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Abstract. Dynamic data-driven simulation (DDDS) incorporates real-
time measurement data to improve simulation models during model run-
time. Data assimilation (DA) methods aim to best approximate model
states with imperfect measurements, where particle Filters (PFs) are
commonly used with discrete-event simulations. In this paper, we study
three critical conditions of DA using PFs: (1) the time interval of itera-
tions, (2) the number of particles and (3) the level of actual and perceived
measurement errors (or noises), and provide recommendations on how
to strategically use data assimilation for DDDS considering these con-
ditions. The results show that the estimation accuracy in DA is more
constrained by the choice of time intervals than the number of parti-
cles. Good accuracy can be achieved without many particles if the time
interval is sufficiently short. An over estimation of the level of measure-
ment errors has advantages over an under estimation. Moreover, a slight
over estimation has better estimation accuracy and is more responsive to
system changes than an accurate perceived level of measurement errors.

Keywords: Dynamic Data-Driven Simulation · Data Assimilation ·
Particle Filters · Discrete-event simulation · Sensitivity analysis

1 Introduction

Simulation modeling has been widely used for studying complex systems [10–12].
In a highly evolving environment, classical simulation shows limitations in situ-
ational awareness and adaptation [8,9]. Dynamic Data-Driven Application Sys-
tems (DDDAS) is a relative new paradigm [4] proposed to integrate the com-
putational and instrumental aspects of complex application systems offering
more accurate measurements and predictions in real-time. A related concept is
Dynamic Data-Driven Simulation (DDDS) [6,9], where Data Assimilation (DA)
[3,14] is used to combine a numerical model with real-time measurements at
simulation run-time. DA aims to obtain model states that best approximate the
current and future states of a system with imperfect measurements [18].
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Owing to disciplinary traditions, DA is predominantly used with simulation
of continuous systems but less with discrete systems [7]. A few examples of
the latter can be found e.g. in wildfire and transport simulations [5–7,26], and
in agent-based simulations that predict the behavior of residents in buildings
[21,22]. For DA in discrete systems simulations, the Sequential Monte Carlo
(SMC) methods, a.k.a. Particle Filters (PFs), are commonly used [6,7,23,25].
Two major reasons are mentioned in literature. First, PFs methods are more
suitable to DDDS than variational methods [15] since the models can easily
incorporate the real-time data that arrives sequentially [23]. Second, the classi-
cal sequential methods such as Kalman Filter and its extensions rely on require-
ments that are difficult to fulfil by systems that exhibit non-linear and non-
Gaussian behaviors which typically do not have analytical forms [7]. SMC or
PFs are sample-based methods that use Bayesian inference, stochastic sampling
and importance resampling to iteratively estimate system states from measure-
ment data [7,23,25]. The probability distributions of interest are approximated
using a large set of random samples, named particles, from which the outcomes
are propagated over time [7,23,25].

In this paper, we study three common and critical conditions of DA using
PFs for discrete-event simulation – the time interval of iterations, the number
of particles and the level of measurement errors (or noises) – to understand
the effect of these conditions on the estimation accuracy of system states. A
number of works studied the conditions of DA for continuous systems such as
meteorology, geophysics and oceanography [13,16,17,20]. But little is known for
discrete-event simulation in this regard.

The time interval of assimilating measurement data and the number of parti-
cles in PFs are two critical conditions because they directly affect computational
cost and estimation accuracy in DA. One recent research studied the effects of
both conditions independently [24]. Our experiments also study their mutual
influences, since they are two conditions that restrict one another given that the
computational time is often limited between two successive iterations in DA. The
level of measurement errors is another critical condition in DA. The actual level
of measurement errors is rarely known in real world situations. What is included
in DA algorithms is always the perceived level (or assumptions) of measure-
ment errors. Our experimental setup imitates the actual level of measurement
errors, and allows the study of the differences between the actual and perceived
measurement errors, and their effects on estimation accuracy. In the following,
we present the methodology used, discuss the experimental results and provide
recommendations on future research.

2 Methodology

This research uses an M/M/1 single server queuing system with balking for the
DA experiments. The real system is imitated with a sensing process that gen-
erates measurement data where errors (or noises) are introduced. The discrete-
event simulation model is a perfect representation of the real system. The DA
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process uses PFs to iteratively construct probability distributions for particle
weight calculation incorporating measurement data. The DA results are evalu-
ated with regard to different time intervals Δt, the numbers of particles N and
the levels of actual and perceived measurement errors ε and ε′.

2.1 Experimental Setup

The experimental setup consists of four components (cf. [7,24]): (1) Real System,
(2) Measurement Model, (3) Simulation Model, and (4) Data Assimilation. The
real system and the simulation model are implemented with Salabim1. The whole
experimental setup is implemented in python2.

Real System. The real system is represented by an ESP32 microcontroller,
which (1) imitates the real M/M/1 queuing system with balking, and (2) gen-
erates the “sensor data” in real-time.

The queuing process has exponential inter-arrival times of jobs (or customers)
with mean arrival rate λ, and exponential service times with mean service (or
processing) rate μ. The queue has a limit of length L for balking [1]: when the
queue reaches length L, no new job is appended to the queue. The state of the
queuing system Sreal at time t is denoted as

St,real := {arrRatet,real, procRatet,real, queLent,real}

where arrRatet,real is the mean arrival rate λ, i.e. the inter-arrival time
Tarr,real ∼ Exp(arrRatet,real); procRatet,real is the mean processing rate μ, i.e.
the processing time Tproc,real ∼ Exp(procRatet,real); and queLent,real ∈ [0, L]
is the queue length.

To imitate second order dynamics [8] in the queuing system, every 15 s the
values of arrRatet,real and procRatet,real are updated stochastically from a uni-
form distribution as

arrRatet,real ∼ U(0, 20)
procRatet,real ∼ U(0, 20)

These are the two internal values (i.e. non observables) the data assimilation
component needs to estimate for the simulation model. Two “observables” are
measured from the real system:

{numArrreal, numDepreal}

the number of arrival numArrreal at the queue, and the number of departure
numDepreal from the queue during a measurement period. These two variables
are added with noises and then used for DA.

1 https://www.salabim.org.
2 https://github.com/yuvenious/ddds queuing.

https://www.salabim.org
https://github.com/yuvenious/ddds_queuing
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Measurement Model. The “real system” sends sensor data (a set of two
values each time) {numArrreal, numDepreal} through serial communications,
and generates measurement data:

{numArrmeasure, numDepmeasure}
The measurement data at time t is denoted as

numArrt,measure = numArrt,real + errort,arr

numDept,measure = numDept,real + errort,dep

where errort,arr and errort,dep are the imitated measurement errors (or noises),
sampled from Gaussian distributions N ∼ (0, σ2) at time t. The variance σ can
take one of the four values denoted by ε ·Δt2, where ε is the level of measurement
errors during the sensing process: ε ∈ [0, 3] represents the error levels from zero
(0) to low (1), medium (2) till high (3). Δt is the time interval of DA. For
example, if Δt = 5 then σ is set to be [0, 5, 10, 15] in the experiments depending
on the corresponding error levels. In addition, σarr and σdep are independent to
each other in the experiments. As such, the joint probability can be obtained by
the product of the two probabilities.

Note that in our experiments, the data assimilation process uses the perceived
level of measurement errors ε′ to represent the difference between the assumption
of the level of measurement errors and their actual level. To our knowledge, these
two are deemed as the same, i.e. ε = ε′, in previous works.

Simulation Model. The simulation model of the single server queuing system
with balking has state St,sim at time t denoted as

St,sim := {arrRatet,sim, procRatet,sim, queLent,sim}
where arrRatet,sim is the mean arrival rate; procRatet,sim is the mean processing
rate; and queLent,real is the queue length. In the simulation, the inter-arrival
times and processing times also have exponential distributions, and the queue
has maximum length L as in the “real system”.

Each simulation replication is a particle in the DA. The state transition of a
replication i (i.e. particle i) from time t to t + Δt is denoted as

Si
t,sim �−→ Si

t+Δt,sim (i = 1, 2, · · · , N)

Si
t,sim := {arrRatei

t,sim, procRatei
t,sim, queLeni

t,sim}
where N is the total number of particles. The simulation time is repeatedly
advanced by time interval Δt, each time after the measurement data becomes
available and when the calculations in the DA are completed. The measurement
data is “compared with” the corresponding predicted values by the simulation
model:

{numArrsim, numDepsim}
which are the number of arrival and the number of departure in the simulation.
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Data Assimilation. At initialization (t = 0), N sets of mean arrival rates and
mean processing rates are sampled from uniform distribution U(0, 20) for the N
particles in the simulation, and each particle has equal weight:

{arrRatei
0,sim, procRatei

0,sim}
The simulation time t of each particle i then advances by Δt denoted as

Si
0,sim �−→ Si

0+Δt,sim

Iteratively, the simulation time t advances by Δt, and each simulation (replica-
tion, i.e. particle i) Si

t,sim �−→ Si
t+Δt,sim is interpreted as the predictive distri-

bution p(xi
t+Δt|xi

t) of state variable x ∈ Ssim.
The importance weight wi of each particle i is calculated by comparing the

measurement data with the simulation (prediction). Each particle i is equally
weighted at initialization: wi

0 = 1/N . For the subsequent iteration steps, weights
are calculated as:

wi
t+Δt = p(measuret+Δt | predictit+Δt) · wi

t where
measuret+Δt = {numArrt+Δt,measure, numDept+Δt,measure}

predictit+Δt = {numArri
t+Δt,sim, numDepi

t+Δt,sim}
As mentioned earlier, the level of measurement errors ε is used to imitate the

measurement noises, errorarr and errordep, that are added into the measure-
ment data. A different value (i.e. the level of perceived measurement errors ε′)
is used for the weight calculation of each particle, comparing the measure-
ment data, measuret+Δt (or measuret), with the prediction by the simula-
tion, predictit+Δt (or predictit). The conditional probability of measuret given
predictit, is interpreted as the conditional probability of the difference between
the two, measuret − predictit, given the level of perceived measurement errors ε′

(cf. [23] p.47):

p(measuret | predictit) = p(measuret − predictit | ε′)

=
1

σ′√2π
· e−

(measuret−predictit)
2

2σ′2

where σ′ = ε′ · Δt2

In each iteration, arrRatei
sim and depRatei

sim of every particle i are resam-
pled according to its weight wi. This means a higher probability of resampling
is given to a particle with a higher weight. As a result, the resampled particles
are located nearby the highly weighted particles in the previous iteration.

For example, if the evaluated weight of particle i is wi
t+Δt = 0.6 and N =

1000, then 600 new particles (j = 1, 2, · · · , 600) are subjected to resampling
derived from particle i. In principle, Si

t+Δt,sim is assigned to Sj
t+Δt,sim as

Sj
t+Δt,sim ←− {arrRatei

t+Δt,sim, procRatei
t+Δt,sim, queLeni

t+Δt,sim}
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But since all these resampled particles contain the identical state, different ran-
dom seeds shall be used to prevent identical simulation runs. We also use Gaus-
sian distributions to scatter the values of arrRatei

t,sim and depRatei
t,sim. This

additional treatment guarantees that the resampled particle j is close but dif-
ferent to the previous particle i to represent the dynamic change of the system.

arrRatej
t+Δt,sim ∼ N(arrRatei

t,sim, arrRatei
t,sim/10)

depRatej
t+Δt,sim ∼ N(depRatei

t,sim, depRatei
t,sim/10)

Thereafter, all resampled particles are evenly weighted: wj
t+Δt = 1/N . These

resampled particles are used for the next iteration (t ← t + Δt).
The (aggregated) system state at time t can be estimated by the state of

each particle and their corresponding weights as

St,sim =
1
N

N∑

i

(Si
t,sim · wi

t)

2.2 Sensitivity Analysis

In the experiments, three critical conditions in DA are investigated to study their
effects on the estimation accuracy: (1) the time interval Δt, (2) the number of
particles N , and (3) the level of measurement errors ε and the level of perceived
measurement errors ε′. The time interval Δt determines the frequency of the DA
steps, i.e. how often the measurement data is assimilated to the simulation which
triggers the calculation of the subsequent predictive distributions. The number of
particles N is the number of simulation replications used for the DA algorithm.
It determines the “number of samples” used for the predictive distribution. The
level of measurement errors ε is used to introduce noises in the measurement
data, and the level of perceived measurement errors ε′ is used in importance
weight calculation. The experiments make combinations of the levels of actual
and perceived measurement errors to study the effect.

Each DA experiment run lasts 50 s, during which arrRatereal and
procRatereal change every 15 s in the “real system”. The values of numArr
and numDep are assimilated to the simulation model in the experiment using
different time interval Δt which ranges from 1 to 5 s. The number of particles
N for the DA varies from 10 to 2000. The measurement errors and perceived
measurement errors are set to be different as will be further explained in the
next section.

To compare the estimation accuracy of different DA experiment settings,
distance correlation [2,19] is used to measure the association between the state
variables of the “real system” and the simulated values:

0 ≤ dCor(Sreal, Ssim) =
dCov(Sreal, Ssim)√

dV ar(Sreal)dV ar(Ssim)
≤ 1

dCor is measured for each state variable. The overall distance correlation of the
estimation is the mean of the individual distance correlations.
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3 Experimental Results and Discussions

This section first presents the results regarding time interval and number of
particles, as they produce related effects on computational cost and estimation
accuracy. Since computational cost is often limited in practice, experiments are
also made to show the trade-offs of the two. The second part of this section
compares the effect of measurement errors with perceived measurement errors.

3.1 Time Interval and Number of Particles

The time interval Δt of iternation in DA is experimented ranging from 1 to 5
s. The number of particles N is set to be 1000 in those experiments (ε = 1 and
ε′ = 1). As shown in Fig. 1, when Δt decreases, the estimation accuracy dCor
increases significantly with narrower variances.

The number of particles N is experimented ranging from 10 to 2000 with
different steps, as shown in Fig. 2, where Δt = 1, ε = 1 and ε′ = 1. The estimation
accuracy dCor increases with narrower variances as more particles are used in the
DA. However, when N exceeds 100, the increment in accuracy becomes slower.
The Tuckey test (CI = 95%) is performed to compare the difference of dCor
between N = 100 and higher numbers of particles. The result shows that the
increase in the number of particles above 400 in these experiments is no more
effective in improving estimation accuracy.

Trade-Off Between Time Interval and Number of Particles. To under-
stand the relation between the time interval Δt and number of particles N with
regard to the estimation accuracy dCor, an extensive number of DA experi-
ments are performed. The results are displayed in Fig. 3, where the X-axis shows
the total number of simulation runs over one DA experiment. For example, if
Δt = 2 s and N = 1000 in a DA experiment, then the number of total simulation
runs within that experiment is 50/2 · 1000 = 25000. The Y-axis is the resulting
dCor of that experiment. Each dot in Fig. 3 hence represents one DA experi-
ment, where the size of the dot (small to large) denotes the number of particles
N ∈ {500, 1000, 1500, 2000}, and the color of the dot (blue to red) indicates the
time interval Δt ∈ {1, 2, 3, 4, 5} used in that DA experiment.

The result shows that when N increases (large dots) and Δt decreases (blue
dots), thereby more simulation replications and iterations executed, the estima-
tion accuracy improves and dCor approaches to 1. Notably, there is hardly any
red dots close to dCor = 1, and many large red dots (i.e. experiments with high
numbers of particles and long time intervals) are located at where dCor ≤ 0.8.
This means, if Δt is too long, using a large number of particles increases compu-
tational cost without improvement in estimation accuracy. On the other hand,
there are small blue dots (i.e. experiments with low numbers of particles and
short time intervals) that are located close to dCor = 1. This indicates, if Δt
is sufficiently short, good estimation accuracy can be achieved even though not
many particles are used.
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Fig. 1. Time interval Δt and estimation accuracy dCor (N=1000)

Fig. 2. Number of particles N and estimation accuracy dCor (Δt=1)

To summarize the findings: while the number of particles is positively cor-
related and the time interval is negatively correlated to estimation accuracy in
DA, the estimation accuracy is more constrained by the choice of time interval
than the number of particles in the experiments. This implies that, given lim-
ited computational resources in DA applications, once the number of particles is
sufficiently large, more computational resources can be allocated to shorten the
time interval of iteration in DA to improve the estimation accuracy.
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(a) Linear scale

(b) Log scale

Fig. 3. Trade-off between the time interval Δt and number of particles N (Color figure
online)

3.2 Measurement Errors and Perceived Measurement Errors

In the experiments, the levels of measurement errors ε ∈ [0, 3] are from zero
(0) to low (1), medium (2) till high (3). The levels of perceived measurement
errors ε′ are represented in a similar manner. Different levels of measurement
errors ε ∈ [0, 3] are experimented first with perceived measurement errors ε′ = 1,
Δt = 1 and N = 400. As shown in Fig. 4, when ε increases from zero to high,
the estimation accuracy dCor decreases with increasing variances.

The levels of perceived measurement errors ε′ ∈ [1, 4] are experimented with
ε = 1, Δt = 1 and N = 400. Figure 5 shows that a higher level of perceived
measurement errors in DA does not seem to generate a clear pattern in relation
with dCor. The variances of dCor have slight reduction, however.
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Fig. 4. Measurement errors ε and estimation accuracy dCor

Fig. 5. Perceived measurement errors ε′ and estimation accuracy dCor

Fig. 6. Difference between perceived measurement errors and actual measurement
errors ε′ − ε and estimation accuracy dCor

How does the difference between ε and ε′ affect the estimation accuracy in
DA? We further experiment this by sweeping ε ∈ {0, 1, 2, 3} and ε′ ∈ {1, 2, 3, 4, 5}
where Δt = 1 and N = 400. The results are shown in Fig. 6, where the X-axis
shows the difference of perceived measurement errors and actual measurement
errors by subtracting the value of the latter from the former, i.e. x = ε′ − ε.
For example, when the levels of measurement errors ε = 0 and the levels of
perceived measurement errors ε′ ∈ {1, 2, 3, 4, 5}, the results are plotted along
x ∈ {1, 2, 3, 4, 5}; when ε = 3 then the results are along x ∈ {−2,−1, 0, 1, 2}.
This means, a negative x value indicates under estimation and a positive x
indicates over estimation of the measurement errors.
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The experimental results show that under estimation of the measurement
errors (x < 0) leads to lower estimation accuracy dCor in average, and over
estimation (x > 0) often has higher dCor than under estimation (x < 0). Perfect
knowledge about measurement errors (x = 0) does not necessarily result in
better dCor, while slight over estimation (x = 1) has better dCor than perfect
knowledge. In the cases when x > 1, dCor gradually decreases again (see the
slight right skew of the bars in Fig. 6) but it is no worse than the same levels of
under estimation. In addition, dCor has lower variances when over estimating
the errors than under estimation, which is often a desired feature in DA.

To further illustrate the difference, we present and discuss another experi-
ment that compares two cases: (a) perfect knowledge about measurement errors
(x = 0); (b) slight over estimation of measurement errors (x = 1). The result is
shown in Fig. 7. In both cases, the level of the actual measurement errors is Low
(ε = 1,Δt = 2 and N = 1300). The first case (a) has perceived measurement
errors at level Low (ε′ = 1) while the second case (b) over estimates the mea-
surement errors at level Medium (ε′ = 2). These two cases perform distinctly
in estimating the queue length queLensim in the simulation responding to the
sudden change of the arrival rate arrRatereal and processing rate procRatereal

at time t = 15 in the “real system”. In case (a), the simulation can not well
follow the trajectory of queLen already in the first 15 s (t : 0 → 15). Once the
sudden change occurs at t = 15, queLen diverges more and can catch up the
system state again after 10 iterations in DA. In case (b), the simulation can
follow the sudden change more responsively.

(a) Accurate Estimation of Measurement Errors

(b) Over Estimation of Measurement Errors

Fig. 7. Accurate estimation (a) vs over estimation (b) of measurement errors

The difference in response time in the two cases can be explained by the
spread of particles, which are depicted as gray dots in Fig. 7. Note that the
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vertical spread of particles in case (a) is narrower than that in case (b). In
case (a), only a few particles having a small deviation from the measurement
can “survive” throughout the experiment. Particles are discarded when they are
located far apart. Consequently, sudden and large changes in the system are not
detected rapidly because of the restricted spread of particles. In case (b), as the
particles spread wider, the aggregated result can quickly converge to the true
value under sudden changes. Thus widespread particles are more tolerating and
show more responsive estimation in detecting capricious system changes.

Given these observations in the experiments, we conclude that a pessimistic
view on measurement errors has advantages over an optimistic view on measure-
ment errors with respect to the resulting estimation accuracy in DA. In addition,
a slight pessimistic view on measurement errors results in better estimation accu-
racy than an accurate view on measurement errors in the experiments. (This is
rarely an intuitive choice in DA experimental setup.)

4 Conclusions and Future Work

The experiments presented in this paper study the effect of experimental condi-
tions – namely the time interval of iterations, the number of particles and the
level of measurement errors (or noises) – of data assimilation (DA) on estima-
tion accuracy using an M/M/1 queuing system (which is implemented in discrete
event simulation). The simulation model is constructed with perfect knowledge
about the internal process of the system. The choice of a simple target system
and its model have the advantages that thorough experiments can be performed
with a high number of iterations and particles, and the states of the real system
and the simulated system can be easily compared. In addition, the experimental
results of the difference in estimation accuracy (or inaccuracy) are direct conse-
quences of the experimental conditions but not (partly) due to model noises since
the model is “perfect”. The results of the experiments can thus be interpreted
in relative terms contrasting different experimental setups. The main findings in
the experiments are as follows.

The time interval, i.e. the inverse of the frequency of iterations, in DA has
a negative correlation with the estimation accuracy of system states. More fre-
quent assimilation of real-time measurement data is effective to improve the
estimation accuracy and the confidence level of the estimation. Although the
number of particles has in general a positive correlation with the estimation
accuracy, increasing the number of particles is ineffective in improving estima-
tion accuracy beyond a certain level. Notably, good estimation accuracy can be
achieved even though not many particles are used if the time interval is short.
Since both decreasing the time interval and increasing the particles require more
computation, the former can be more cost effective when the number of parti-
cles is sufficiently large. With regard to measurement errors, an over estimation
of the level of measurement errors leads to higher estimation accuracy than an
under estimation in our experiments. A slight over estimation has better esti-
mation accuracy and more responsive model adaptation to system states than
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an accurate estimation of measurement errors. An overly pessimistic view on
measurement errors, however, deteriorates the estimation accuracy.

In this paper, the assimilation of real-time data to the simulation model is
performed with fixed time intervals during an experiment run. An event based
data assimilation approach and its effects can be an interesting future research
direction. The experimental setups could also be dynamically configured during
DA in real-time to achieve good estimation results.
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