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Abstract
This paper investigates the inclusion of domain-specific variable selection heuris-

tics in Constraint Programming (CP) solvers for the Prize-Collecting Job Sequencing
with One Common and Multiple Secondary Resources (PC-JSOCMSR) problem. We
propose two variable selection heuristics: a greedy variable selection method based on
densities, Highest Density First (HDF), and a modified Variable State Independent
Decaying Sum (VSIDS) initialized with job densities, referred to as VSIDS + Density.
Experimental results on benchmark instance sets reveal that the proposed heuristics
do not outperform the baseline VSIDS heuristic. Overall, they lead to higher conflict
counts and slower convergence. These findings highlight the robustness of general-
purpose heuristics like VSIDS in diverse problem instances. Future research should
explore other domain-specific heuristics, as the current experiment demonstrates that
the proposed heuristics do not improve performance.

1 Introduction
Scheduling is vital across industries, including manufacturing, healthcare, transportation,
and education [1, 2, 3, 4]. Effective scheduling boosts throughput, ensures timely task com-
pletion, and prevents resource overuse [5]. Various scheduling problems arise due to unique
operational characteristics [6].

This paper focuses on Prize-Collecting Job Sequencing with One Common and Multiple
Secondary Resources (PC-JSOCMSR), an NP-Hard problem introduced by Horn et al. [7].
Each job is associated with a prize, and the objective is to select a subset of jobs and find a
feasible schedule that maximizes the total prize. Each job requires a common resource for
part of its duration and a secondary resource for its entire duration. The common resource
is shared by all jobs, while the secondary resource can differ per job. Time windows specify
when each job can be processed. Figure 1 illustrates a simple schedule. Applications include
particle therapy patient scheduling [8] and pre-runtime scheduling of avionic systems [9, 10].

Figure 1: A solution to a Prize-Collecting Job Sequencing with One Common and Multiple
Secondary Resources problem instance with 4 jobs and 2 secondary resources. Jobs 1, 3,
and 4 are scheduled to start at times s1, s3, and s4, respectively. Job 2 is not scheduled
due to resource unavailability during its time windows.

Horn et al. explored Mixed Integer Programming (MIP), Constraint Programming (CP),
and A* search for PC-JSOCMSR [7]. Improved results were achieved using Multivalued De-
cision Diagrams (MDDs) [11, 12]. Froger et al. presented a Branch-Cut-and-Price (BCP)
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algorithm supported by an Iterated Local Search (ILS) heuristic, solving larger instances [13].

A trend which can be identified is that general-purpose methods such as CP and MIP
fall behind algorithms tailored specifically for PC-JSOCMSR [7, 13]. This could stem from
the limited problem-specific knowledge available to CP and MIP solvers. For example,
Horn et al.s A* search approach [7] decides which job to schedule next based on a problem-
specific heuristic, a tactic not employed by CP and MIP solutions. Ruiz et al. suggest
that simple heuristics can sometimes outperform more involved solutions [14]. Therefore,
enhancing traditional CP solvers to incorporate domain-specific knowledge to help guide
their search procedure could potentially boost their performance and make them competi-
tive with stateof- the-art algorithms.

This paper investigates the inclusion of PC-JSOCMSR-specific knowledge in CP solvers.
We propose two variable selection heuristics based on job densities (prize to duration ratio):

1. Highest Density First: a heuristic prioritizing high-density jobs

2. VSIDS + Density: Variable State Independent Decaying Sum (VSIDS) [15] initial-
ized with job densities.

Job densities are precomputed and passed to the CP solver. Experimental results show
that neither Highest Density First (HDF) nor VSIDS + Density outperform the baseline
VSIDS heuristic, generally leading to higher conflict counts and slower convergence times.
These findings higjlight the robustness of general-purpose heuristics like VSIDS across var-
ious scenarios.

The paper is organized as follows: Section 2 provides a formal definition of PC-JSOCMSR.
Previous work is discussed in Section 3. Section 4 covers Constraint Programming, VSIDS,
and the CSP formulation of PC-JSOCMSR. Our heuristics are presented in Section 5. Ex-
perimental results are analyzed in Section 6. Section 8 addresses ethical aspects. Finally,
Section 9 concludes and discusses future work.

2 Prize-Collecting Job Sequencing with One Common
and Multiple Secondary Resources

This section provides a formal description of the Prize-Collecting Job Sequencing with One
Common and Multiple Secondary Resources (PC-JSOCMSR) problem in Subsection 2.1.
Additionally, an important application of PC-JSOCMSR, particle therapy patient schedul-
ing, is briefly introduced in Section 2.2 as it is worth understanding why this problem is
worth solving and why it is worth improving current solutions.

2.1 Formal Definition
Let J = {1, . . . , n} denote the set of n jobs. Let R0 = {0} ∪ R denote the set of resources,
where resource 0 is the common resource, and R = {1, . . . ,m} is the set of m secondary
resources. Resources are renewable, meaning they replenish after being used, and can be
used by one job at a time. Each job j ∈ J is assigned to a secondary resource qj ∈ R,
which is required for the entire duration pj > 0 of the job. The common resource is used
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for p0j units of time, starting after a preprocessing step lasting ppre
j ≥ 0 units of time. A

postprocessing step lasting ppost
j = pj − ppre

j − p0j ≥ 0 units of time makes use only of
the secondary resource. Jobs are processed without interruption once scheduled, meaning
preemption is not allowed.

Each job j ∈ J must be processed within one of ωj disjoint time windows Wj = {Wjk |
k = 0, . . . , ωj}, where Wjk = [wstart

jk , wend
jk ] and wend

jk − wstart
jk ≥ pj . Additionally, jobs have

a release time and a deadline:

T rel
j = min

k=0,...,ωj

wstart
jk

T dead
j = max

k=0,...,ωj

wend
jk

Finally, each job j ∈ J is associated with a prize zj > 0. The objective of PC-JSOCMSR
is to select a subset of jobs S ⊆ J and find a feasible schedule maximizing the total prize
(the sum of prizes of the scheduled jobs):

Z∗ = max
S⊆J

Z(S) = max
S⊆J

∑
j∈S

zj

2.2 Particle Therapy Patient Scheduling
An important application of PC-JSOCMSR is daily scheduling of cancer patients who are
to receive particle therapy [8]. There, the common resource corresponds to a particle accel-
erator, whereas the secondary resources correspond to a small set of treatment rooms. The
accelerator creates a particle beam which can be directed to only one room at a time. Before
treatment begins, time is allocated to setting up the room and possibly sedating the patient
and this whole procedure corresponds to the preprocessing step in PC-JSOCMSR. After the
treatment is complete, the patient stays in the room a while longer such that medical checks
can be carried out (this corresponds to the postprocessing step in PC-JSOCMSR).

3 Related Work
This section discusses problems similar to Prize-Collecting Job Sequencing with One Com-
mon and Multiple Secondary Resources in Section 3.1 and some solving approaches used in
the literature in Section 3.2.

3.1 Related Problems
A problem motivated by particle therapy for cancer treatment [8] is Job Sequencing with
One Common and Multiple Secondary Resources (JSOCMSR) [16]. JSOCMSR is a sim-
plified version of PC-JSOCMSR that minimizes makespan without considering job prizes
or processing time windows. Real-world applications necessitate prioritization due to time
windows. This is addressed by PC-JSOCMSR [7].

PC-JSOCMSR can also be modelled as a Resource-Constrained Project Scheduling Prob-
lem (RCPSP) by splitting each job into three sub-jobs processed sequentially [17, 6]. How-
ever, reducing PC-JSOCMSR to RCPSP is unlikely to provide advantages due to the com-
plexity of RCPSP.
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3.2 Solving Approaches for PC-JSOCMSR
When PC-JSOCMSR was introduced, Horn et al. presented three approaches to solving it:
A* search, Mixed Integer Programming (MIP) using order-based variables, 4 and Constraint
Programming (CP) using option type variables [7]. They derived upper bounds on the to-
tal achievable prize for unscheduled jobs based on relaxations of a 0-1 multidimensional
knapsack problem. These upper bounds were used to create a fast-tocalculate problem-
specific heuristic that guided the A* search. For the MIP and CP solutions, they employed
traditional modelling and solving techniques without incorporating PC-JSOCMSR-specific
knowledge for variable/value selection. Horn et al. concluded that their A* search outper-
forms the MIP and CP solutions in terms of computation time, consistently solving small
to medium-sized instances of up to 40 jobs to optimality.

Other methods used to solve PC-JSOCMSR include Multivalued Decision Diagrams
(MDDs) and the Branch-Cut-and-Price (BCP) algorithm. Horn et al. introduced a novel
construction scheme for relaxed MDDs, providing better bounds and more compact rep-
resentations, successfully solving instances with up to 50 jobs to optimality [12, 11]. The
state-of-the-art algorithm for solving PC-JSOCMSR - BCP [13] combined with an Iterated
Local Search (ILS) heuristic iscapable of solving instances with up to 250 jobs to optimality.

Most progress in solving PC-JSOCMSR has been achieved through exact and heuris-
tic solutions that exploit domain-specific knowledge. Using upper bounds of achievable
prizes has provided better results than classical CP and MIP approaches, which lack such
information. While CP and MIP are general-purpose, incorporating more domain-specific
knowledge could improve their performance for PC-JSOCMSR.

4 Preliminaries
The solver used in this paper employs Lazy Clause Generation (LCG) [18]. Section 4.1 intro-
duces Constraint Programming (CP) and how Constraint Satisfaction Problems (CSPs) are
solved, including Satisfiability (SAT) solvers with Conflict-Driven Clause Learning (CDCL)
and Variable State Independent Decaying Sum (VSIDS) [15]. Section 4.3 details the combi-
nation of CP and SAT solvers to achieve LCG solvers. Finally, Section 4.4 presents the CSP
formulation of Prize-Collecting Job Sequencing with One Common and Multiple Secondary
Resources (PC-JSOCMSR).

4.1 Constraint Programming
Constraint Programming (CP) solves combinatorial optimization problems like PC-JSOCMSR
by taking a Constraint Satisfaction Problem (CSP) as input, consisting of variables with
predefined domains and constraints. CP solvers explore variable assignments systematically
to satisfy all constraints.

CP solvers operate by:

• Variable Assignment: Assigning values to variables.

• Constraint Propagation: Pruning values from unassigned variables’ domains.

• Backtracking: Revisiting previous assignments when conflicts are detected.
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For example, in a scheduling problem with tasks A,B, and C under constraints A 6= B
and A ≤ C, a CP solver might proceed as follows:

1. Assign A = 1 and prune 1 from B and C’s domains.

2. Assign B = 2 and check constraints.

3. Assign C = 3; A = 1, B = 2, C = 3 is a valid schedule.

Informed variable selection techniques can greatly reduce the search space, leading to
faster solutions [15].

For optimization problems like PC-JSOCMSR, the search restarts with an additional
constraint for a better objective value each time a new solution is found. For more details
on CP, refer to [19].

4.2 Satisfiability Solvers
SAT solvers [20] determine the satisfiability of propositional logic formulas in Conjunc-
tive Normal Form (CNF). They efficiently handle the Boolean satisfiability problem using
techniques like Conflict-Driven Clause Learning (CDCL) and Variable State Independent
Decaying Sum (VSIDS) [15]. Section 4.2.1 and Section 4.2.2 describe CDCL and VSIDS in
more detail.

4.2.1 Conflict-Driven Clause Learning

Conflict-Driven Clause Learning (CDCL) enhances solver efficiency by learning from con-
flicts to prune the search space [15]. For example:

Given: (X ∨ Y ) ∧ (¬X ∨ Z) ∧ (¬Y ∨ ¬Z)

A SAT solver proceeds as follows:

1. Assign X = true and propagate Z = true.

2. Assign Y = true; conflict triggers CDCL:

• Analyze conflict: Y = true, Z = true.
• Learn clause: ¬X ∨ ¬Y .
• Backtrack: Add the new clause and avoid the conflict.

4.2.2 Variable State Independent Decaying Sum

Variable State Independent Decaying Sum (VSIDS) is a heuristic that prioritizes variables
likely to cause conflicts [15]. It works by assigning initial weights to variables, increasing
weights on conflict, and selecting variables with the highest weights. VSIDS parameters
include:

• Increment: Amount weight increases on conflict. (a value of 1 is used in this paper)

• Decay Factor: Adjusts how quickly the solver "forgets" less important variables. (a
value of 0.95 is used in this paper)

• Max Threshold: Prevents solver from getting stuck in local extremes by scaling
down weights. (a value of 10100 is used in this paper)
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4.3 Lazy Clause Generation
Lazy Clause Generation (LCG) combines CP and SAT solvers, leveraging CP’s concise
representations and SAT’s learning techniques (CDCL and VSIDS) [18]. CP variables and
constraints are converted into SAT clauses.

For example, translating the simple scheduling problem from Section 4.1 into clauses:

Domain Clauses A ∈ {1, 2, 3} becomes (A = 1∨A = 2∨A = 3). (similarly for B and C)

Mutual Exclusivity (¬(A = 1) ∨ ¬(A = 2)) ensures A is assigned to a single value.
(similarly for B and C)

A 6= B constraint becomes (A 6= 1 ∨B 6= 1).

A ≤ C constraint becomes (A = 1 → C 6= 1).

4.4 CSP Formulation of PC-JSOCMSR
The CSP formulation of PC-JSOCMSR, developed by Maarten Filippo and Imko Marijnis-
sen, is defined as follows:

max
∑
j∈J

Sj · zj (1)

s.t. sj ∈ {T rel
j , . . . , T dead

j − pj}, ∀j ∈ J, (2)
Sj ∈ {0, 1}, ∀j ∈ J, (3)
Bij ∈ {0, 1}, ∀i, j ∈ J, i 6= j, (4)
Bij =⇒ Si ∧ Sj ∧ (Pij ∨ Pji), ∀i, j ∈ J, i 6= j, (5)
Pij ∈ {0, 1}, ∀i, j ∈ J, i 6= j, (6)
Pij =⇒ (si + ppre

i + p0i ≤ sj + ppre
j ), ∀i, j ∈ J, i 6= j, (7)

Pij =⇒ (si + pi ≤ sj), ∀i, j ∈ J, i 6= j, qi = qj (8)
Ωjk ∈ {0, 1}, ∀j ∈ J, k ∈ {0, . . . , ωj}, (9)
Ωjk ⇐⇒ (wstart

jk ≤ sj ∧ sj + pj ≤ wend
jk ), ∀j ∈ J, k ∈ ωj , (10)

Sj =⇒ (Ωj0 ∨ . . . ∨ Ωjωj ), ∀j ∈ J. (11)

For each job j ∈ J , sj is the start time variable (2), and Sj is a binary variable indicating if
the job is scheduled (3). Bij indicates if both jobs i and j are scheduled (4), with consistency
ensured by (5). Pij indicates if job i precedes job j (6), with (7) and (8) ensuring the end
time of i is before the start time of j. Ωjk indicates if job j is scheduled within its time
window k (9), with (10) ensuring scheduling within time windows. (11) ensures jobs respect
their time windows if scheduled. The objective (1) is to maximize the total prize of scheduled
jobs.

5 Domain-Specific Variable Selection Heuristics
In addition to general-purpose variable selection heuristics like VSIDS, problem-specific
heuristics can be highly effective in certain contexts [21]. This section introduces two
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domain-specific variable selection heuristics tailored for the Prize-Collecting Job Sequencing
with One Common and Multiple Secondary Resources (PC-JSOCMSR) problem.

In PC-JSOCMSR, each job j ∈ J is associated with a prize zj , and the objective is
to maximize the total prize of the produced schedule. This is analogous to the Weighted
Knapsack Problem (WKP), where a job’s density dj is defined as the ratio of its prize zj to
its total processing time pj :

dj =
zj
pj

For combinatorial optimization problems like PC-JSOCMSR, many feasible solutions
often exist. Guiding Constraint Programming (CP) solvers to find near-optimal solutions
quickly can facilitate early pruning of the solution space, resulting in faster convergence.

Inspired by Dantzig et al.’s greedy algorithm for the 0-1 knapsack problem, which selects
items based on the largest density and yields near-optimal solutions [22], we propose two
domain-specific heuristic variable selection methods based on job densities:

1. Highest Density First (HDF) in Section 5.1

2. A combination of HDF and VSIDS in Section 5.2

5.1 Highest Density First
The Highest Density First (HDF) heuristic selects variables in descending order of their
associated job densities. This approach is inspired by Dantzig et al.’s greedy algorithm for
the 0-1 knapsack problem [22]. Our hypothesis is that applying a similar method to PC-
JSOCMSR will help find near-optimal solutions early in the CP search procedure, aiding in
pruning inferior solutions and speeding up convergence.

To implement HDF in a Lazy Clause Generation (LCG) solver, we must first translate
CP variables into clauses suitable for a SAT solver. The objective function is represented
by an extra variable Z ∈ {0,

∑
j∈J zj} used for branching. Each PC-JSOCMSR job j ∈ J is

represented by CP variables indicating the job’s start time sj and whether it is scheduled Sj .
Since other variables’ values can be inferred from sj and Sj , they are not used for branching.
After converting all variables into clauses, we obtain boolean literals for branching on sj ,
Sj , and Z.

The boolean literals used for branching are:

• For sj : corresponding equality literals (sj = T rel
j ), . . . , (sj = T dead

j )

• For Sj : (Sj = 1), (Sj = 0)

• For Z: corresponding equality literals (Z = 0), . . . , (Z =
∑

j∈J zj) and lower bound
literals (Z ≥ 0), . . . , (Z ≥

∑
j∈J zj)

After creating a list of literals corresponding to sj , Sj , and Z, they are stably sorted
based on the respective jobs’ densities. Since Z is not associated with any job, its literals
are assigned a weight of 0 and remain at the end of the list.

7



Finally, this ordered list of variables is passed to the solver. The variable selection
method picks variables in the order they appear in the list, ensuring the desired behaviour
of HDF.

5.2 VSIDS + Density Initialization
VSIDS [15] is a highly effective general-purpose heuristic used with Conflict-Driven Clause
Learning (CDCL) solvers [20, 23]. However, the default variable weights in VSIDS may take
time to become effective. By initializing VSIDS’ variable weights with the corresponding
job densities, we aim to make more informed variable selections early in the solving process.

6 Experimental Setup and Results
This section provides an overview of our experimental setup and results. Subsection 6.1
elaborates on the characteristics of the instance sets used in the experiment. Subsequently,
the setup and metrics are detailed in 6.2. Finally, subsection 7 provides our results and
interpretation.

6.1 Instance Sets
For the purpose of this experiment, we used two instance sets created by Horn et al. [7].
These instance sets, B and S, are inspired by the particle therapy patient scheduling appli-
cation and are available online1. Each set consists of several batches: 30 instances for each
combination of n ∈ {10, 20, . . . , 90} jobs and m ∈ {2, 3} secondary resources.

• B (Balanced): Instances generated to ensure that the usage of each secondary re-
source is roughly balanced.

• S (Skewed): Instances generated such that the usage of each secondary resource is
skewed, with 50% of the jobs requiring the same secondary resource, while the other
50% of the jobs are spread evenly across the remaining secondary resources.

Details on the creation of each instance set are provided in Appendix A.1.

6.2 Experimental Setup
The purpose of this experiment is to compare our proposed variable selection heuristics:
Highest Density First (HDF) and VSIDS initialized using job densities (VSIDS + Densi-
ties), against the general-purpose VSIDS heuristics used as a baseline.

Pumpkin, the LCG solver used for this experiment, was developed by Dr. Emir Demirović,
Maarten Flippo, and Imko Marijnissen in Rust2. The code base was compiled using rustc
1.78.03. All instances were run on an HP ZBook Power G7 Mobile Workstation with an
Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz and 16GB of RAM. The operating system

1https://www.ac.tuwien.ac.at/research/problem-instances/
2https://www.rust-lang.org/
3https://doc.rust-lang.org/rustc/what-is-rustc.html
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used by this machine is Microsoft Windows 11 Home 10.0.22631 Build 22631, however, all
experiments have been run through Windows Subsystem for Linux. The CPU time limit was
set to 15 minutes in single-threaded mode, as this is a reasonable time frame for computing
a good schedule in real-world scenarios. Memory usage was not restricted.

For each PC-JSOCMSR instance, we recorded the following:

• The total prize Z of each schedule found and the time t taken to compute it.

• The number of conflicts Kwhich occurred in order to compute each schedule.

• Pumpkin’s final state:

– O - An optimal schedule has been found and proven to be optimal.
– S - A solution has been found, but it is not necessarily optimal.
– U - No solution has been found.

For each batch of 30 instances from the same instance set, number of jobs n, and sec-
ondary resources m, we collected the following statistics:

• Z̄best - The average best total prize Z.

• AOC - The average area under the curve, used to measure the convergence rate. This
metric is central to our experiment, as it evaluates how quickly the proposed heuristics
converge compared to VSIDS. To compute this value, we aggregated the results from
the three solvers (VSIDS, HDF, and VSIDS + Densities). First, AOC was computed
for each run. Then, the maximum AOC across the three algorithms for each instance
was normalized. Finally, the average of all normalized AOCs within each n,m batch
was taken.

• K̄ - The average number of conflicts across all instances in a batch. K̄ was computed
by first averaging the conflicts K encountered for each schedule, then averaging these
values across all instances in the batch.

• Batch status - The number of instances for which Pumpkin finishes in optimal, sat-
isfiable, and unknown states.

7 Results
7.1 Analysis of B (Balanced) Instance Set
Figure 2 illustrates the performance of different heuristics on the B (Balanced) instance set.

• Solution Quality (Top Row): The histograms in the top row of Figure 2 show the
percentage of the highest Zbest achieved. The VSIDS and VSIDS + Density heuristics
generally maintain high solution quality across various job sizes (n), with VSIDS +
Density occasionally outperforming the baseline VSIDS. In contrast, HDF shows lower
performance, particularly as the number of jobs increases, indicating its inefficiency in
balanced scenarios.
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Figure 2: Histograms showing the distribution of total prizes collected across the B
(Balanced) instance set for each heuristic.

B m = 2 m = 3
HDF VSIDS VSIDS +

Density HDF VSIDS VSIDS +
Density

n O S U O S U O S U O S U O S U O S U
10-30 optimal optimal

40 13 17 0 30 0 0 30 0 0 5 25 0 30 0 0 30 0 0
50-90 satisfiable satisfiable

Table 1: Batch status outcomes for the B (Balanced) instance set with 2 and 3 secondary
resources using HDF, VSIDS, and VSIDS + Density variable selection heuristics.
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S m = 2 m = 3
HDF VSIDS

VSIDS +
Density HDF VSIDS

VSIDS +
Density

n O S U O S U O S U O S U O S U O S U
10, 20 optimal optimal

30 25 5 0 30 0 0 30 0 0 21 9 0 30 0 0 30 0 0
40 0 30 0 23 7 0 20 10 0 0 30 0 16 14 0 13 17 0

5090 satisfiable satisfiable

Table 2: Batch status outcomes for the S (Skewed) instance set with 2 and 3 secondary
resources using HDF, VSIDS, and VSIDS + Density heuristics.

• Convergence Rate (Middle Row): The middle row shows the percentage of the
highest area under the curve (AOC). Here, both VSIDS and VSIDS + Density display
robust convergence rates, frequently hitting high percentages close to the best AOC
found in the experiments. HDF, on the other hand, often lags, particularly for larger
instances, underscoring its slower convergence in balanced settings.

• Number of Conflicts (Bottom Row): The bottom row shows the average number
of conflicts (K̄). HDF consistently shows a higher number of conflicts, especially
for larger job sizes. This high conflict count can explain its poorer performance in
solution quality and convergence rate. In contrast, VSIDS and VSIDS + Density
show significantly fewer conflicts, supporting their better performance in achieving
high-quality solutions efficiently. By observing the poor results of HDF, we can also
conclude that the lower performance of VSIDS + Density compared to VSIDS is due
to this strategy of choosing jobs with the highest density. The initialization of VSIDS
negatively affects the beginning stages of the search procedure by creating a larger
number of conflicts, and therefore the whole search is affected negatively in terms of
solution quality and convergence rate when it comes to instances with 40 or more jobs.

The batch status data in Table 1 for the B instance set supports these observations.
HDF achieves optimal solutions for smaller job sizes but struggles as the job count increases,
resulting in fewer optimal solutions and more satisfiable ones. This aligns with the histogram
data, showing that HDF might not be well-suited for balanced scenarios as the complexity
increases.

7.2 Analysis of S (Skewed) Instance Set
Figure 3 illustrates the performance across the S (Skewed) instance set.

• Solution Quality (Top Row): The histograms in the top row of Figure 3 show
that HDF performs worse than VSIDS and VSIDS + Density in skewed scenarios.
VSIDS + Density occasionally matches the baseline VSIDS but generally shows poorer
performance compared to VSIDS.

• Convergence Rate (Middle Row): The middle row of histograms shows the per-
centage of the highest AOC. HDF demonstrates a lower convergence rate in skewed
scenarios, often failing to reach high percentages. This indicates that HDF struggles
to exploit the resource skewness to find good solutions quickly. VSIDS and VSIDS +
Density both show better convergence rates, with VSIDS performing the best.
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Figure 3: Histograms showing the distribution of total prizes collected across the S
(Skewed) instance set for each heuristic.
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• Number of Conflicts (Bottom Row): The bottom row illustrates the average
number of conflicts (K̄). HDF maintains a relatively high number of conflicts even in
skewed scenarios, which significantly hinders its solution quality. The negative effect
of initializing VSIDS with job densities is more evident in the skewed instance set
compared to the balanced one, as the number of conflicts of VSIDS + Density is
comparable to the one of HDF. Correlation between the low number of conflicts and
the superior solution quality of VSIDS can be observed for the skewed instance set as
well.

The batch status data in Table 2 for the S instance set highlights that HDF consistently
performs worse for larger job sizes, finding no optimal solutions. This is primarily due to
the high number of conflicts generated when prioritizing high-density jobs. The comparison
between VSIDS and VSIDS + Density shows that the density initialization negatively affects
VSIDS + Density for the same reason. However, VSIDS + Density adjusts the initial density
weights in later search stages, which lets it escape the poor performance of HDF. In summary,
the inferiority of HDF and VSIDS + Density compared to VSIDS is mainly caused by the
large number of conflicts arising from prioritizing high-density jobs.

7.3 General Observations
Across the experiments, it is evident that the effectiveness of each heuristic is primarily
influenced by the algorithmic strategy employed rather than the specific characteristics of
the instance sets.

• HDF: Consistently underperforms due to its strategy of prioritizing high-density jobs,
which leads to a large number of conflicts and slower convergence. This makes it
unsuitable for both balanced and skewed scenarios.

• VSIDS + Density: While incorporating job densities into VSIDS initially appears
promising, it ultimately performs poorly compared to the baseline VSIDS. The density-
based initialization creates more conflicts, similar to HDF, negatively affecting its
overall performance. Although VSIDS + Density adjusts the variable weights over
time based such that the ineffective strategy of prioritizing high densities is "forgotten",
VSIDS + Density remains inferior to VSIDS.

• VSIDS: Outperforms both HDF and VSIDS + Density, maintaining strong perfor-
mance across both instance sets. This demonstrates the robustness of the VSIDS
general purpose variable selection method.

Overall, these results highlight that the choice of a variable selection heuristic plays
a crucial role in performance. HDF and VSIDS + Density are less effective due to their
high conflict rates stemming from prioritizing high-density jobs. VSIDS, on the other hand,
proves to be a more reliable and efficient heuristic across various scenarios.

8 Responsible Research
The Netherlands Code of Conduct [24] outlines five principles: honesty, scrupulousness,
transparency, independence, and responsibility. These principles guide our research prac-
tices, ensuring adherence to the highest standards of integrity and ethics.
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Once the Pumpkin solver paper is published by Emir Demirovi, Maarten Flippo, and
Imko Marijnissen, the PC-JSOCMSR model will be made available for public scrutiny. This
transparency enables third parties to reproduce the research, increasing its credibility. De-
tailed descriptions of the methods will facilitate replication.

To further enhance transparency, our raw results, published online4 with scripts used for
processing and visualization, make it possible to validate that our results are not cherry-
picked. We have ensured reproducibility by thoroughly documenting machine specifications,
including hardware, operating systems. Programming language and compiler versions are
specified to minimize inconsistencies. This meticulous documentation enhances the reliabil-
ity of our findings.

No sensitive data was processed during this project. All datasets are synthetically gen-
erated to mimic real-world applications of PC-JSOCMSR (particle therapy patient schedul-
ing), ensuring privacy and data security.

9 Conclusion and Future Work
Constraint Programming (CP) is a versatile approach to solving combinatorial optimization
problems but often underperforms compared to tailored algorithms. This paper investi-
gated domain-specific variable selection methods for the Prize-Collecting Sequencing with
One Common and Multiple Secondary Resources (PC-JSOCMSR) problem.

We compared a general-purpose variable selection heuristic, VSIDS, with two proposed
domain-specific methods based on job densities. Results showed that the Highest Den-
sity First (HDF) heuristic and VSIDS + Density underperformed compared to the baseline
VSIDS due to increased conflicts. VSIDS proved to be more reliable and efficient across
various scenarios, highlighting the robustness of this general-purpose heuristic.

Future research should explore heuristics based on 0-1 knapsack relaxations of PC-
JSOCMSR, as used by Horn et al. [7], and value selection methods that maximize resource
usage overlap. These approaches could enhance scheduling efficiency and increase total prize.
Additionally, validating the solver’s effectiveness with real-world datasets, rather than syn-
thetic ones, is crucial. Collaborating with industry partners to obtain and share real-world
data will be beneficial.
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A Instance Set Descriptions
A.1 Particle therapy patient scheduling instance sets
As described by Horn et al. [7], the two particle therapy patient scheduling inspired instance
sets B and S differ in the sense that the secondary resources allocated to each job are
distributed evenly between the jobs in set B, whereas in set S they are skewed. For each job
j ∈ J in set B, the secondary resource qj was sampled from a discrete uniform distribution
U(1,m) (from now on we use the following notation U(l, u) which refers to a discrete uniform
distribution with lower and upper bounds l and u respectively). Meanwhile, in set S, the
secondary resource m is chosen with probability 0.5 and all other secondary resources with
probability 1

2(m−1) .
For the creation of set B, processing times, i.e. pre-processing pprej , processing on the

common resource p0j and post-processing ppostj , were sampled in a balanced manner such
that pprej and ppostj were sampled from U(0, 8) and p0j was sampled from the random variable
p0B ∼ U(1, 8). On the other hand, for the creation of set S, pprej and ppostj were sampled
from U(0, 5) and p0j was sampled from the random variable p0S ∼ U(1, 13), which makes the
usage of the common resource more dominant with respect to the pre- and post-processing
times.

For both instance sets B and S, the prize zj associated to each job j ∈ J was generated
such that it is correlated to the common resource usage p0j . zj was sampled from U(p0j , 2p

0
j ).

Finally, the time windows associated to each job j ∈ J have been sampled such that on
average 30% of the jobs can be scheduled. Let Ti =

⌊
0.3nE(p0i )

⌋
be the expected maximum

resource usage related to instance set i ∈ B,S. The number of windows ωj were sampled
from U(1, 3). The start W start

jω and end W end
jω time of each time window ω = 1, · · · , ωj was

sampled from U(0, Ti−pj) and from W start
jω +max

(
pj , U

(⌊
0.1 Ti

ωj

⌋
,
⌊
0.4 Ti

ωj

⌋))
respectively

for job j ∈ J . Time windows were merged whenever an overlap occurred and sorted by
increasing start time.
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