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Multi-Level Discrete Fracture Model For Carbonate 
Reservoirs
L. Li (Research Centre of Multiphase Flow in Porous Media, China University of Petroleum (East 
China)), D. Voskov* (Civil Engineering & Geosciences, Delft University of Technology)

Summary 

The main challenge for predictive simulation of carbonate reservoirs is associated with large uncertainties in the 
geological characterization with multiple features including fractures and cavities. This type of reservoirs 
requires robust and efficient forward-simulation capabilities to apply data assimilation or optimization technique 
under uncertainties. The interaction between reservoir matrix and various features introduces a complex multi-
scale flow response driven by global boundary conditions. The Discrete Fracture Models (DFM), which 
represent fractures explicitly, is capable to accurately depict all important features of flow behavior. However, 
these models are constrained by many degrees of freedom when the fracture network becomes complicated. The 
Embedded DFM, which represents the interaction between matrix and fractures analytically, is an efficient 
approximation. However, it cannot accurately reproduce the effect of local flow conditions, especially when the 
secondary fractures are present. In this study, we applied a numerical upscaling of DFM a triple continuum 
model where large features are represented explicitly using the numerical EDFM and small features are upscaled 
as a third continuum. In this approach, we discretize the original geo-model with unstructured grid based on 
DFM and associate the mesh geometry with large features in the model. Using the global solution, we generate 
local boundary conditions for the model capturing the response of primary features to the flow. Applying local 
boundary conditions, we resolve all secondary features using a fine scale solution and update the local boundary 
conditions. This procedure is applied iteratively using the local-global-upscaling formalism. To demonstrate the 
accuracy of the Multi-Level Discrete Fracture Model, several realistic cases have been tested. By comparing 
with fine scale DFM solution and the traditional EDFM technique, we demonstrate that the proposed model is 
accurate enough to capture the flow behavior in complex fractured systems with advanced computational 
efficiency. 
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Introduction 
 
With the development of exploration techniques and theories, more carbonate reservoirs have been 
discovered and utilized recently. As referred in Schlumberger Market Analysis (2007), more than 60% 
of the world’s oil and 40% of the world’s gas reserves are held in carbonates. However, it is always a 
big challenge to predict the production from carbonate reservoirs due to the large uncertainties in 
characterization with multiple features including fractures and cavities. The accurate prediction of 
production dynamics requires uncertainty quantification and data assimilation procedures to determine 
reasonable development plan. For that, robust and efficient forward simulation capabilities are strongly 
required. 
 
There are many models which have been proposed for the carbonate reservoir simulation. The first 
attempt to represent the fluid flow in fractured porous media had been made by Barrenblatt et al. (1960) 
which was later extended by Warren and Root (1963) to the dual-porosity (DP) models into petroleum 
reservoir engineering. Next, the dual-porosity dual-permeability (DPDK) model has been introduced 
(Gerke et al., 1993a; Gerke et al., 1993b). Currently, the DP and DPDK models are widely used in the 
commercial reservoir simulators (Eclipse, 2009; CMG, 2013). Being constrained by an implicit 
representation of fractures, these models are limited to predict the flow response in carbonate systems 
accurately enough. 
 
To improve the representation of flow in fracture reservoirs, Pruess and Narasimhan (1982, 1985) 
developed a multiple interacting continuum model (MINC) which can be seen as an extension of DP 
concept. Different from the DP and DPDK models, MINC model can represent more accurately 
transient effects within the porous matrix. Constrained by assumptions originated from DP concept, it 
can only be used in situations when fractures are well connected. To make the fractured reservoir 
simulation flexible for structured grids and represent the fractures explicitly, an embedded discrete 
fracture model (EDFM) has been developed by Lee et al. (2000) and Li and Lee (2008). In EDFM, non-
conforming grids are applied for the fracture-matrix connections. To extend the application of EDFM, 
Tene et al. (2017) later proposed a project-embedded discrete fracture model (pEDFM) where fracture 
networks have a wide range of conductivities. 
 
To capture the fine-scale flow response accurately, Karimi-Fard et al. (2004) developed a discrete 
fracture and matrix (DFM) model which reduces the dimensionality of the fracture representation in the 
mesh. Due to the explicit representation of fractures, DFM is by far the most accurate approach for 
modelling of fractured reservoirs. However, the DFM application can lead to a large number of control 
volumes which in turn reduces the computational efficiency. To overcome the drawbacks of DFM, 
several upscaling approaches were proposed (Karimi-Fard et al., 2006; Gong, 2007; Karimi-Fard et al., 
2012; Karimi-Fard et al., 2016). In addition, the DFM approach was extended to account for 
geomechanics effects (Garipov et al., 2016) and fracture propagation (Gallyamov et al., 2018). 
 
In this study, we propose a multi-level discrete fracture model (MLDFM), which takes full advantage 
of the accuracy of DFM and the flexibility of EDFM and is capable to capture the multi-scale flow 
response related to complex carbonate reservoirs. In this approach, we apply a numerical upscaling of 
fine-scale DFM characterization to a triple continuum model where large features are represented 
explicitly using the numerical EDFM and small features are upscaled as third continuum. We construct 
two levels of grids: the coarser structured grids are used for forward-simulation and capture the main 
flow response; the finer unstructured grids, which represent small features explicitly, are used for 
resolving fine-scale flow response and computing the connectivity with numerical upscaling technique. 
To integrate the multi-scale flow response, the main flow response from a coarse-scale model is applied 
to generate local boundary conditions for a fine-scale simulation. In this approach, the effect of local 
flow conditions on the multi-scale flow response can be considered. However, the local flow conditions 
driven by global boundary conditions are not static. To update the dynamic local flow conditions 
according to global boundary conditions, we apply the local-global formalism based on which the 
interactions between different features can be updated once the local flow conditions have been 
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changed. The MLDFM approach is illustrated by several test-cases to demonstrate its robustness, 
accuracy and efficiency. 
 
Modeling approach 
 
The model is numerically solved using the Automatic Differentiation General Purpose Research 
Simulator (ADGPRS) (Voskov, 2012; Zaydullin et al., 2014; Garipov et al., 2016, 2018). 
 
Conservation equations 
 
In this study, the dead-oil model is applied. The mass conservations of oil and water phases can be 
written as follows: 

     0o o o o o oS q
t
  

   


u , (1) 

     0w w w w w wS q
t
  

   


u . (2) 

where ϕ is the reservoir porosity; t is the time; subscripts o and w indicate oil and water phases; ρ is the 
phase molar density; S is the saturation; q is the source/sink term; u is the velocity: 

 rj
j

j

kk
P


  u  (3) 

where μ is viscosity; k is the permeability; krj is the relative permeability of phase j; P is the reservoir 
pressure. 
 
The saturation constraint is used to close the system: 
 1o wS S   (4) 
Apply the two-point flux approximation (TPFA) finite volume discretization and the backward Euler 
approximation discretization in time, the fully-implicit approximation of (1) can be written as: 
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Here t  is the time step; V is the volume of grid cell; l  is the potential difference over interface l; 

 ll
j rj jk  is the mobility of phase j over the interface l by upstream weighting; n+1 is the current 

time step; n is the previous time step; 𝛾 is the transmissibility. 
 
To represent the dynamic of flow in carbonate reservoirs accurately, the DFM model is applied in this 
study following Karimi-Fard et al. (2004). The transmissibility between matrix blocks is written as: 

 
i i l l

mi mj m m i i
mimj mi i

mi mj m

k A

L

 
 

 
 


n f

, (6) 

where subscript m indicates matrix grid, subscripts i and j mean the two neighbouring grids connected 
by l interface; Al is the area of the interface l; l

in  is the unit normal to the interface l inside grid i; l
if is 

the unit vector along the direction of the line joining the volume centroid to the centroid of the interface 
l; i

mL is the length of the line joining the volume centroid of grid i to the centroid of the interface l. 
 
The transmissibility between matrix block and fracture element is defined as: 

 ,
j j l li i l l

mi fj f f j jm m i i
mifj mi fji j

mi fj m f

k Ak A

L L

 
  

 
  



n fn f
, (7) 

where f indicates fracture element. Finally, the transmissibility between the elements of two or more 
fractures is given by: 
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Due to the explicit representation of fractures, which leads to a large number of control volumes for 
complex fractured reservoir, DFM model is usually among the most computational expensive technique 
for fractured reservoir simulation. While DFM discretization is largely used as high-fidelity models for 
fractured reservoirs due to their accuracy, various alternative models, such as DP, DPDK, MINC, 
EDFM and MSR, are still widely used in the industry as proxy models due to their computational 
efficiency. 
 
Impact of local boundary conditions 
 
As the complex multi-scale flow response, driven by various features, is closely related to the flow 
condition, we demonstrate first the effect of local boundary conditions on the interaction between matrix 
and fractures using a simplified geo-model shown in Figure 1. 
 

 
Figure 1 A fractured network in local region. 
 
By injecting water at left or down boundary of the fracture network, we obtain the pressure and 
saturation distributions shown in Figure 2. The comparison of the solutions in Figure 2a and Figure 2b 
demonstrates that the local flow conditions have a large effect on the interaction between matrix and 
fracture network. Some fractures can be activated or inactivated with the variation of local flow 
conditions. Therefore, we can conclude that, the direct implicit representation of the fractures, used in 
DP and DPDK models, cannot reproduce the differences in the local flow response accurately enough. 
The existence of one fracture can affect the interaction between matrix and other fractures, and their 
interactions varies with local boundary conditions. Therefore, the transmissibility between different 
features should be updated with the local flow condition. As the traditional MINC, EDFM and MSR 
usually represent the interaction between matrix and fractures with fixed transmissibility, it is difficult 
to reproduce the complex multi-scale flow response using them. 
 

a) pressure and saturation distributions when water is injected from the left  
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b) pressure and saturation distributions when water is injected from the bottom 

   
Figure 2 The effect of local flow conditions on the flow response. 
 
In this study, we propose a multi-level discrete fracture model (MLDFM) where large features are 
represented explicitly using the numerical EDFM and small features are upscaled as a third continuum. 
To make sure that our model can capture the complex multi-scale flow response accurately, we apply 
the local-global upscaling technique which can update the transmissibility between different features 
according to changes in local flow conditions. 
 
Multi-Level Discrete Fracture Model for Carbonate Reservoirs 
 
Here, we describe the proposed method in all details using a realistic geo-model shown in Figure 3a. In 
this model, we have two sets of features: the large-scale fractures (in yellow) and the small-scale 
fractures (in blue). First, we discretize the geo-model with structured grids shown in Figure 3b. The 
discretized model at this stage is used for coarse-scale forward-simulation with an application of the 
triple continuum model. The small-scale fractures fall inside the same structured grid are upscaled as a 
third continuum in addition to the large-scale discrete fractures and matrix. 
 
Second, to generate a triple continuum model, we split the whole domain into subdomains and perform 
local upscaling in each subdomain. The subdomains are represented as coarser structured grids shown 
in Figure 4a. Third, to insure a robust and accurate local upscaling, we need to extend the subdomains. 
With the red grids shown in Figure 4a, we can determine an extended region for each subdomain. 
Fourth, to perform the local upcaling in the final step, we need to determine the boundary conditions in 
each subdomain. 
 
The large-scale fractures (in yellow) and purple lines obtained from red grids, shown in Figure 4b, are 
taken as boundaries to constrain the local flow condition. The pressure values on the boundary are 
determined in the following approach: the pressure of large-scale fractures are taken from coarse-scale 
forward simulation; the pressure values on the positions corresponding to the centroids of coarse-scale 
structured grids are taken from coarse-scale forward simulation; the pressure values on other positions 
of the boundaries can be resolved with interpolation or basis function approach used in multiscale finite 
volume method (Hajibeygi et al., 2011; Wang and Tchelepi, 2014; Tene et al., 2015). 
 
Finally, we perform local upscaling for each subdomain. We pick out a subdomain shown in Figure 5a, 
then include all small fractures into the local region shown in Figure 5b and mesh the domain with fine 
unstructured grid constructed using Gmsh (Geuzaine, 2009). With the known boundary conditions, we 
perform a steady state simulation. Next, we can reproduce the fine-scale flow response. Based on this 
flow response, we compute transmissibilities between various continua: matrix and large fractures, 
matrix and small fractures and small fractures and large fractures. For transmissibility computation we 
use a numerical upscaling approach. Among the upscaling methods discussed in Durlofsky (2012), we 
adapt the single-phase flow-based upscaling in this study. 
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Figure 3 The geo-model of fractured reservoir(left) and meshed structured grids(right). 
 
The steady-state simulation is performed on local region based on the governing equation: 

 0f fk p    g . (9) 

The flux through a fine-scale interface l is defined as: 

    f f f

l l
q T p  . (10) 

The flux between coarse-scale control volumes can be written as: 

  c f

l
l

q q . (11) 

The pressure of coarse-scale control volumes can be computed with volume-average method: 

 c f c f
m nm n

p p p p  , (12) 

where subscripts m and n mean two connected control volumes in coarse-scale; 
m

g  denotes a bulk-

volume-averaged property computed over the fine-scale control volumes which are inside the coarse 
control volume m. Then the transmissibility between coarse-scale control volumes can be written as: 

 
 

 ,

f

l
c l

m n f f

m n

q
T

abs p p





. (13) 

Note that in the first step, the pressure distribution on coarse-scale can be obtained with a simulation 
based on traditional EDFM. 

 
 

 
 

Figure 4 Coarser structured grid (left) and 
boundary lines (right). 

    

    

    

    

    

    

    

    



 

 
ECMOR XVI 2018 – 16th European Conference on the Mathematics of Oil Recovery 

3-6 September 2018, Barcelona, Spain 

Figure 5 The local boundary conditions for coarse features (left) and the same region with all features 
included (right). 
 
Adaptive local-global upscaling 
 
As discussed in Renard et al. (1997) and Miller et al. (1998), the local boundary conditions are quite 
important in local upscaling techniques. Due to adjustments in field development strategy and the 
variety of multiscale heterogeneities, the local boundary conditions cannot be fixed. Therefore, dynamic 
local boundary conditions, which are adapted to the dynamic situation, are required to accurately 
reproduce the multiscale flow response in fine-scale simulation. To achieve this goal, the adaptive local-
global (ALG) upscaling formalism described in Chen (2003) and Li (2014) is adopted in our study. We 
determine the local Dirichlet boundary conditions from coarse-scale forward-simulation solutions (the 
first step described above) based on interpolation or basis function approach used in multiscale finite 
volume method. Considering the fact that the local boundary conditions are stable during this process, 
we only perform the ALG upscaling once the local boundary conditions have been changed. 
 
Numerical results 
 
In this section, we validate the accuracy and feasibility of the Multi-Level DFM strategy to capture the 
multi-scale flow response in fractured systems. Next, we apply it to several examples of practical 
interest and study the sensitivity of the proposed method to the flow condition, and fracture orientation. 
We also study the feasibility of the MLDFM method for realistic fractured reservoirs. 
 
Basic single-phase flow response 
 
In this section, we construct a simple fracture network shown in Figure 6. Then we compare the 
reference high resolution DFM solution against EDFM where all fractures are represented explicitly 
and against MLDFM. The reference DFM solution is based on the conformal grid and numerically 
converged, see Satori (2018) for details. The geometry parameters and fluid properties are taken from 
Tables 1, 3 and 4 in Appendix A. The model studies a single-phase flow with the constant rate boundary 
conditions specified at 200 m3/day on the left and right boundaries when upper and lower boundaries 
was set to no-flow conditions. The simulation is run for 1000 days. 
 
The pressure distributions, obtained from simulation with DFM, EDFM and MLDFM models, are 
shown in Figure 7. The results demonstrate that the MLDFM model is capable to capture the main flow 
response caused by an idealistic fracture system and produces similar results to the DFM approach and 
slightly better results than the EDFM approach. Next, we compare the pressure distribution of both 
solutions in Figure 8. The mean square errors of the EDFM and MLDFM compared with DFM are 
equal to 0.638 and 0.399 respectively. It shows that the implementation of MLDFM can improve the 
accuracy by 37.5% compared with EDFM for a single phase flow. 
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Figure 6 The schematic of a simple fracture network. 
 

a) DFM                                        b) EDFM                                     c) MLDFM 

   
Figure 7 The pressure distributions obtained from DFM, EDFM and MLDFM. 
 

 
Figure 8 The comparison of pressure solutions obtained from DFM, EDFM and MLDFM. 
 
Multi-phase multi-scale flow response 
 
Next, we test the fractured model shown in Figure 9 to demonstrate the capability of MLDFM to capture 
the multi-scale flow response. The geometry parameters, relative permeability, fluid properties and 
injection/production strategy are taken from Tables 1- 5 in Appendix A. 
 
We compare the reference high resolution DFM solution against hybrid model of EDFM with 
Equivalent Continuum Model (EDFM + ECM) and MLDFM. Regarding the EDFM + ECM, the large-
scale fractures are represented explicitly; the small-scale fractures are taken as matrix continuum and 
contribute to the matrix permeability using upscaling technique. The models were compared at the same 
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boundary conditions as described in previous example except that the water is injected from the left 
side. 
 

 
Figure 9 The schematic of fracture network. 
 
As shown in Figures 10 and 11, the fracture network generates a complex multi-scale flow response. 
The saturation distribution shown in Figure 10 demonstrates that MLDFM is capable to predict the main 
flow path more accurate than EDFM + ECM. The pressure solutions shown in Figure 11 demonstrates 
that MLDFM improves the simulation accuracy compared with EDFM + ECM. The mean square errors 
of the EDFM + ECM and MLDFM compared with DFM are equal to 4.108 and 1.101 respectively. The 
implementation of MLDFM can improve the accuracy by 73.2% compared with EDFM + ECM in 
multi-phase flow. 
 

a) DFM                                b) EDFM+ECM                                c) MLDFM 

   
Figure 10 The water saturation distributions. 
 

 
Figure 11 The pressure distributions. 
Sensitivity to flow conditions 
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As discussed above, boundary conditions have a large effect on the multi-scale flow response. Here, we 
will test the sensitivity of MLDFM solutions to flow conditions with the fracture networks shown in 
Figure 9. The geometry parameters, relative permeability, fluid properties and injection/production 
strategy are taken again from Tables 1-5 in Appendix A. The flow directions are shown in Figure 12. 
As the solution for the first flow conditions is already shown in Figures 10 and 11, we only include here 
the second and third flow conditions. The saturation distributions, presented in Figures 13 and 14, 
demonstrate that MLDFM is capable to predict the main flow path more accurately than EDFM + ECM. 
The pressure solutions shown in Figures 15 and 16 demonstrate that MLDFM can improve the 
simulation accuracy quite significantly compared with EDFM + ECM at different boundary conditions. 
The improvement of the accuracy of MLDFM compared with EDFM + ECM for the second and third 
flow conditions are equal to 65.0% and 51.4% respectively. It demonstrates that MLDFM is flexible to 
different flow conditions and can be applied for the simulation of complex and realistic fracture 
networks. 
 

a) first flow condition             b) second flow condition            c) third flow condition 

   
Figure 12 The schematic of three flow conditions. 

 
a) DFM                                 b) EDFM+ECM                               c) MLDFM 

   
Figure 13 The water saturation distributions at second flow condition. 

 
a) DFM                                   b) EDFM+ECM                                  c) MLDFM 

   
Figure 14 The water saturation distributions at third flow condition. 
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Figure 15 The pressure distributions at second flow condition. 
 

 
Figure 16 The pressure distributions at third flow condition. 
 
Sensitivity to the fracture orientation 
 
The fracture orientation has another significant effect on the flow response. While main large-scale 
fractures control the major flow distribution, the small-scale fractures distribution affects it as well. To 
estimate this influence, we generate a geological model shown in Figure 17 by removing most of the 
small-scale features in the geological model shown in Figure 9 when the angles are larger than 90 
degrees. Using this model, we perform a similar sensitivity analysis as before. Again, the geometry 
parameters, relative permeability, fluid properties and injection/production strategy are taken from 
Tables 1-5 in Appendix A. 
 
The saturation and pressure solutions are shown in Figures 18 and 19. The results demonstrate that 
MLDFM is capable to predict the flow response accurately compared with EDFM + ECM for different 
fracture orientations. The improvement in the accuracy of MLDFM compared with EDFM + ECM is 
equal to 80.1%. 
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Figure 17 The schematic of a fracture network. 

 
a) DFM                                   b) EDFM+ECM                                  c) MLDFM 

   
Figure 18 The water saturation distributions at first flow condition. 

 
Figure 19 The pressure distributions at first flow condition. 

 
Realistic fracture network 
 
In this section, we will test MLDFM with a realistic complex fracture network shown in Figure 20. The 
fracture network is obtained from Apodi, Brazil. The reservoir dimension is 300×300 m, there is a 
water injection well at (75, 75) and a production well at (225, 225), the simulation time is 20,000 days, 
the other parameters needed are taken from Tables 1-5 in Appendix A. 
 
The water saturation and pressure distributions obtained by DFM and MLDFM simulations are shown 
in Figures 21 and 22. It is clear that MLDFM can predict the main flow response accurately in realistic 
fracture networks. The number of control volumes corresponding to MLDFM and DFM are 1727 and 
218456 respectively, and we can conclude that MLDFM is an accurate and computational efficient 
forward-simulation method for carbonate reservoirs. 
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Figure 20 A realistic fracture network. 
 

a) The water saturation distribution obtained from DFM (volume weighted) 

 
 

b) The water saturation distribution obtained from MLDFM 

 
 

Figure 21 The water saturation distributions obtained from MLDFM and DFM. 
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Figure 22 The pressure solutions on the diagonal of geo-model. 
 
Conclusions 
 
Due to the various multiscale features, the flow response in carbonate reservoir has a very complex 
structure. A multi-level discrete fracture model (MLDFM) has been proposed in this study to provide a 
robust and efficient forward-simulation approach for modelling of complex fractured reservoirs. In 
MLDFM, we represent a fractured reservoir as a triple continuum forward model where large fractures 
are treated explicitly using the numerical EDFM and small features are numerically upscaled as a third 
continuum. Therefore, the large-scale flow response is captured in the model by the application of 
Embedded DFM, and the small-scale flow response is captured by the third continuum. To make 
MLDFM feasible in practice, two levels of grids have been constructed and associated with each other. 
Among the two grid levels, the coarser one is based on a structured grid and used in global simulation. 
The finer level is based on unstructured DFM and used to resolve the flow response associated with 
small-scale features. As the multi-scale flow response depends on local boundary conditions, we apply 
the local-global upscaling formalism to update transmissibilities between different features once the 
local flow conditions have been changed. The test cases in this study demonstrate that MLDFM is 
capable to capture the multi-scale flow response in carbonate reservoirs accurately and efficiently, and 
is robust with respect to different flow conditions, fracture position, distributions and orientation. 
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Nomenclature 
k  Absolute permeability [μm2] 
kr  Relative permeability of phases [-] 
P  Reservoir pressure [10-1MPa] 
q  Sink/source per unit volume of reservoir [mol/cm3/s] 
S  Saturation of water, oil or gas phase [-] 
t  Time [s] 
V  Volume [cm3] 
u  Darcy velocity of oil or gas phase [cm/s] 
   Reservoir porosity [-] 

ρ  Molar density of oil or gas phase [mol/cm3] 
   Viscosity [cP] 

   Phase mobility [cP-1] 
 
 
Subscripts 

0 50 100 150 200 250 300 350 400 450
220

240

260

280

300

320

340

360

DFM
MLDFM
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m  the matrix block 
f  the fracture element 
 
Superscripts 
 
n  Time step level 
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Appendix A: Properties of simulation model 
 
Table 1 Geometry parameters. 

Parameter Value Unit 
Reservoir dimensions 100×100 m 
Reservoir thickness 10 m 

Initial pressure 200 bar 
Initial water saturation 0.3  

Matrix permeability 0.01 μm2 

Matrix porosity 0.2  

Fracture permeability 10000  μm2 
Fracture porosity 1.0  
Fracture aperture 0.001 m 

Well radius 0.1 m 
 
Table 2 Relative permeability (Corey equation). 

Parameter Value 
Phase exponent 2 

Oil exponent 4 
Irreducible phase saturation 0 

Residual oil saturation 0 
End point of the oil relative permeability curve 1 

 
Table 3 Oil formation volume and viscosity. 

Pressure 
Formation volume 

(rm3/sm3) 
Viscosity 

(cP) 
50.0  1.97527 0.21564 
70.0  1.96301 0.21934 
90.0  1.95464 0.21981 

110.0  1.93391 0.22325 
130.0  1.91309 0.22736 
150.0  1.89217 0.2317 
170.0  1.87115 0.23628 
190.0  1.85005 0.24112 
210.0  1.82887 0.24623 
230.0  1.80761 0.25165 
250.8  1.78628 0.25738 

 
Table 4 Fluid densities (surface condition). 

Oil density 
(Kg/m3) 

Water density 
(Kg/m3) 

800 1000 
 
Table 5 Injection/Production strategy. 

Parameter Value Unit 
Injection rate 500  m3/d 

Production rate 500  m3/d 
Simulation time 10000  d 

 


