
Using Weighted Voting to Optimise
Streamlined Blockchain Consensus Algorithms

Diana Micloiu1

Responsible Professor: Jérémie Decouchant1
Supervisor: Rowdy Chotkan1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Micloiu Diana
Final project course: CSE3000 Research Project
Thesis committee: Jérémie Decouchant, Rowdy Chotkan, Kaitai Liang

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Streamlined Byzantine Fault Tolerant (BFT)
protocols, such as HotStuff [PODC’19], and
weighted voting represent two possible strategies
to improve consensus in the distributed systems
world. Several studies have been conducted on both
techniques, but the research on combining the two is
scarce. To cover this knowledge gap, we introduce
a weighted voting approach on Hotstuff, along
with two optimisations targeting weight assignment
distribution and leader rotation in the underlying
state replication protocol. Moreover, the weighted
protocols developed rely on studies proving the
effectiveness of a specific voting power assignment
based on discrete values. We generalise this approach
by presenting a novel continuous weighting scheme
applied to the Hotstuff protocol to highlight the
effectiveness of this technique in faulty scenarios.
We prove the significant latency reduction impact
of weighted voting on streamlined protocols and
advocate for further research.

1 Introduction
Many distributed system paradigms, such as state machine
replication [1] and blockchains, have a common core concept:
consensus, which denotes the collective agreement of network
participants. Distributed systems are known to be prone
to hardware and software failures that can compromise
availability or even change the system’s normal behaviour.
Hence, consensus is needed as a mechanism for coordinating
the system’s critical actions and ensuring its functionality.

In the blockchain world, consensus algorithms lay at the
basis of distributed ledger technologies. They are classified into
permissioned and permissionless, distinguishing each other by
either limiting participation to a predetermined set of nodes or
allowing anyone to join. Out of the two, permissionless systems
gained more popularity, with the seminal Nakamoto consensus
relying on Proof-of-Work. However, its significant impact
on energy consumption revealed the system’s limitations
and urged researchers to look for alternative consensus
algorithms [2]. In turn, interest in permissioned systems grew
as their efficiency in terms of throughput, latency, and finality
was observed. Thus, the focus shifted towards finding ways
to optimise their performance. Strategies such as system size
reduction [3] and leader rotation mechanisms [4] have been
explored to enhance scalability and resilience. Notably, the
Practical Byzantine Fault Tolerance algorithm (PBFT) [5] has
been a focal point of research in permissioned systems.

PBFT is part of a more prominent family of protocols:
Byzantine Fault Tolerant (BFT), which enables systems to
tolerate arbitrary node failures [6–8]. In particular, the protocol
requires 3f + 1 nodes in the system to withstand f failures.
Hence, the capability of the system to resist failures comes with
the cost of managing the demand for the increased number of
nodes and higher communication complexity. In the efficient
scenario, the leader is truthful. However, this is not always the
case, and protocols need to support intricate fallback strategies,
which usually imply node synchronisation and state transfer.

The main disadvantages of BFT protocols, namely that
they are slow and expensive to run, support the research

of streamlined and cluster-based algorithms. In this sense,
researchers developed Hotstuff [9], a streamlined protocol
that assumes partial synchrony and uses leader rotation
on each block proposal to shift the communication burden
from the leader. By using a star-type communication
pattern, the protocol achieves linear message complexity
and faster response times. Additionally, current research
is being conducted to optimise the features of streamlined
algorithms [10], such as Pili [11], Pala [12], Streamlet [13],
Tendermint [14] and, previously mentioned, Hotstuff [9].
For instance, DAMYSUS improves on top of Hotstuff by
reducing the number of communication phases using trusted
components, thus achieving better performance [15].

Reaching consensus represents a critical point of
improvement for distributed protocols. In this sense, the idea
of using a weight metric as voting power gained popularity
with Proof-of-Stake (PoS) and reputation-based protocols [16].
Building on top of this kind of mechanism, WHEAT
achieved higher performance for state machine replication
in geographically distributed settings [17]. Next, researchers
put together BFT-SMaRt [18] (an enhanced version of PBFT)
and the weighted voting mechanism behind WHEAT to create
AWARE, a deterministic, self-monitoring and self-optimising
algorithm for reducing the latency of the blockchain [19].

So far, research on the benefits of weighted voting has
only studied PBFT in AWARE. This paper seeks to address
this literature gap by investigating the impact of weighted
voting on streamlined consensus algorithms. By extending the
principles established by AWARE to Hotstuff [9] and evaluating
the robustness in facing node failures, we aim to contribute
to the broader understanding of weighted voting’s efficacy in
streamlined blockchain systems.

This study consists of a latency prediction model which
emulates Hotstuff behaviour to gather data on whether or
not applying weighted voting decreases the latency of the
blockchain algorithm. By analysing different optimisation
techniques, this paper points out possible performance
improvements and presents conclusive results that encourage
the development of an actual deployment in a further study.

As an overview, our contributions can be summarised as
follows.

1. We apply AWARE’s weighting scheme [19] to Hotstuff
and Chained Hotstuff, using two latency prediction
models to estimate the algorithms’ performance.

2. We analyse how optimising the weight distribution
to replicas and/or leader rotation impacts latency by
employing separate Simulated Annealing [20] methods.

3. We explore the possibility of using continuous weight
values instead of AWARE’s discrete weights. We apply
this weighting scheme on Hotstuff whilst ensuring quorum
safety and assessing its effectiveness in reducing latency.

The rest of this paper is organised as follows. §2 reviews the
academic advancements in weighted voting and streamlined
algorithms. §3 presents a thorough description of Hotstuff for
the state replication protocol and WHEAT for the underlying
weighting scheme, which is also exploited in AWARE. §4
and §5 describe our contributions by outlining the latency
optimisation methods and prediction models. §6 delves into
the experimental setup and presents our findings. §7 reflects on
the ethical side of this research. §8 provides a critical overview

1

of our experiments and discusses the next steps that could be
taken in this area of research. §9 concludes this paper with
an overview of the impact of studying weighted voting on
streamlined blockchain algorithms in the research field.

2 Related work
The literature related to the aforementioned scientific gap
revolves around two key concepts: weighted voting and
streamlined algorithms. Therefore, we provide an overview of
each of the two research areas to gather a better understanding
of the improvements that have been achieved over the years.

Weighted voting Inspired by the popularity of
Proof-of-Stake protocols, researchers have adapted this
idea into using a weight metric as the voting power of nodes
in permissioned systems. One of the first projects highlighting
the advantages of weighted voting was the Cosmos Network,
which used a Tendermint-based blockchain protocol and a
stake-based voting approach for reaching consensus [21].
Next, the possibility of using weights for electing the leader
was researched in credit-based PBFT (CPFT), a blockchain
algorithm that tunes the weights based on nodes’ past
behaviour such that the probability of electing a good leader
increases [22]. Three years later, new research on using
vague sets and credit rating for optimising the consensus of
credit-based PBFT blockchain algorithms appeared [23]. Later
on, starting from the same idea of assigning credits to nodes,
researchers developed CG-PBFT, a blockchain algorithm that
uses a novel credit evaluation model together with a three-way
quick sorting algorithm to achieve around 50% increase in
throughput [24]. Moreover, current research has tackled the
idea of a reward and punishment system based on node ranking
in D-PBFT [25].

Streamlined algorithms The research area for streamlined
BFT protocols gained interest with the introduction of
Hotstuff [9], urging the study of possible optimisations
performed on this protocol. Considering multiple points
of improvement, researchers came up with variations of
Hotstuff targeting a better overall performance of the system.
Sync Hotstuff represents one notable research, which shifts
the focus from the partially synchronous model of Hotstuff
to a fully synchronous one to highlight the trade-offs and
impact on performance and security [26]. Next, researchers
targeted improving performance by introducing DAMYSUS,
a blockchain protocol that enhances Hotstuff by using trusted
components to increase resilience and decrease the number of
communication phases [15]. On the same path of decreasing
the number of communication steps, Hotstuff-2 represents a
two-phase variant which explores the relation between leader
responsiveness and liveness for achieving optimal results [27].
Furthermore, building on top of DAMYSUS, Oneshot is the
first streamlined hybrid BFT protocol which achieves the
minimal number of communication phases by exploiting the
knowledge of the system’s state available to the nodes [28].

Weighted voting on streamlined algorithms Current
research also explored applying the weighted voting scheme
showcased in AWARE [19] to Hotstuff. By leveraging
the idea of an adaptive resilience threshold introduced in
ThreatAdapt [3], FLASHCONSENSUS [29] is optimising
AWARE using this mechanism of dynamically reducing the
number of replicas that actively participate in the protocol’s
execution. The research also mentions experiments combining

this new algorithm with the weighted voting mechanism.
FLASHCONSENSUS-flavoured HotStuff uses weights, best
leader selection and smaller quorums to prove the effectiveness
of using weighted voting on Hotstuff. However, the research
uses the enhanced AWARE algorithm rather than the original,
and it also leaves out details regarding the implementation of
weighted voting on the streamlined algorithm. In addition,
the impact on its chained version and the generalisation from
discrete weighting remains unexplored.

3 Background
This research aims to combine the state replication protocol of
Hotstuff with the weighted scheme introduced by WHEAT [17]
whilst also considering the optimisation approaches established
by AWARE [19]. Hence, this section delves into the
streamlined approach of Hotstuff in §3.1 and presents the
two-weight scheme of WHEAT in §3.2.

3.1 Hotstuff: the streamlined approach
Inspired by the simplicity of the theoretical protocol
Streamlet [13] and part of the BFT family, Hotstuff is a
blockchain protocol that sets itself apart by achieving linear
(in the number of nodes) communication complexity [9]. The
protocol benefits from the mechanism of switching leaders in
each successive round and requires at least 3f + 1 nodes to
tolerate f Byzantine faults.

There are two protocol versions, namely the Basic Hotstuff
and the Chained Hotstuff. The difference between the two
comes from the latter’s enhanced voting mechanism, which
enables a pipelined approach of moving forward multiple
blocks in only one round (view). For completely processing
a block, Hotstuff uses five communication phases, with three
core: prepare, pre-commit, and commit and two additional
ones: new-view, for sending the last prepared block at the
beginning of the protocol, and decide, for actually executing
the block at the end (see Figure 7 in Appendix A.1).

New-view In this first phase, the leader receives the last
prepared block and its corresponding view number from each
node. This step consists of gathering all the new-view messages
triggered at the end of the precedent view.

Prepare This phase concerns finding the next proposal. The
leader awaits for 2f +1 quorum of nodes with their block-view
number information and chooses the block with the highest
view number to be extended. Next, the leader sends to all
replicas its proposal, and they each provide back a vote if the
SAFENODE condition is satisfied [9]. That is, a replica will
accept the proposal if the proposed block extends either its
latest locked block or a prepared block from a view higher than
the one of its last locked block [15]. These checks will ensure
the safety and liveness of the protocol, respectively.

Pre-commit The proposed block is marked prepared as the
leader gets 2f + 1 votes from the replicas, forming a quorum
certificate. The leader sends this certificate to all the replicas
so that each can verify it, mark the proposed block as prepared
and vote for it in the pre-commit phase.

Commit The leader collects again 2f + 1 votes and forms a
quorum certificate of the prepared block, which becomes locked
at this step. Next, the leader sends this certificate to all replicas
to lock the same block, followed by each sending back a vote.

Decide The leader reaches consensus on the locked block
and then executes it. All replicas perform the same action after

2

they receive the certificate from the leader.
Locking mechanism The efficiency of communication

complexity in the Hotstuff protocol comes with the cost of
implementing this locking mechanism. The block is prepared
and then locked in the commit phase to preserve the liveness of
the blockchain consensus algorithm, and only afterwards is it
considered safe to execute in the final phase.

3.2 WHEAT: the weighting mechanism
Based on the BFT-SMaRt protocol of state machine replication,
WHEAT solves the problem of optimising the system’s latency
in geo-replicated settings [17]. The algorithm is able to attain
better performance by introducing the concept of additional
replicas. In the BFT family, quorums are formed by gathering
a majority of replica responses. In contrast, in WHEAT, the
size of a quorum is smaller or equal to that of the Byzantine
majority.

Effectively, WHEAT uses weighted voting to achieve
consensus faster by leveraging the heterogeneity of the
wide-area network (WAN). That is, the protocol assigns higher
weights to the replicas that yield the lowest end-to-end latency.
In this way, they form smaller quorums but account for the
majority needed to move forward. The rest of the replicas
constitute a fallback strategy since they form a larger quorum
that is in place if the faster replicas become idle. Furthermore,
AWARE enhances this technology by introducing mechanisms
for self-monitoring (deterministic latency prediction) and
self-optimisation (voting weights tuning and leader relocation),
such that latency is decreased by giving more power to
better-performing replicas [19].

In the Byzantine Fault Tolerant world, a quorum system
represents a collection of subsets of replicas that could possibly
form a quorum, and any two subsets intersect by f + 1
replicas [30]. By adding ∆ extra replicas and enforcing a
quorum formation mechanism relying on weighted replication,
WHEAT imposes the subsequent safe weight distribution
scheme.

Consider a BFT system of n replicas withstanding a
maximum of f faulty and including ∆ additional ones. Hence,
n can be expressed as follows:

n = 3f + 1 +∆ (1)

Furthermore, regarding consensus, each replica should wait
for a quorum formation of Qv weighted votes:

Qv = 2(f +∆) + 1 (2)

The voting powers take the form of a binary weight
distribution over the replicas of WHEAT. Each node has value
either Vmax or Vmin, which are computed as follows:

Vmax = 1 +
∆

f
(3)

Vmin = 1 (4)

In the system, the 2f replicas that are best performing in
terms of latency are attributed weight Vmax and all the others
take Vmin. Consequently, the weighted quorum contains at most
n− f and at least 2f + 1 replicas.

4 Weighted voting for streamlined algorithms
To sense the impact of weighted voting on streamlined
algorithms, this research funnels on a representative blockchain
algorithm, namely Hotstuff [9]. This paper evaluates the
effectiveness using latency decrease as a measurement metric.
Hence, to approach the research problem, a latency prediction
model is used to emulate the behaviour of Hotstuff, such that
intricate implementation details are ignored, and the focus lies
on the predicted time of completing a block proposal.

Hotstuff employs five communication phases (which
together form a view) to execute a block. To predict the latency
from the start of the view, when the leader proposes a block,
to the end, when the block is executed, the latency prediction
model follows the new-view, prepare, pre-commit, commit
and decide phases. By analysing a Hotstuff run step-by-step,
four quorum formation events can be identified. The leader
waits sequentially for new-view, prepare, pre-commit and
commit messages to complete a block proposal. Since
weighted voting is defined within the consensus mechanism,
the latency prediction model concentrates on the quorum
formation completion times, which can be optimised.

Given the required information on the network topology
and the weighting scheme (weight assignment for replicas), a
latency prediction for a Hotstuff run depends on the latencies
registered by the leader. That is, for each message type
x, the leader retains latency vector Lx. In particular, Lx[i]
represents the latency, reported by the leader, of receiving
the message of type x from replica i. Hence, we can
use the corresponding latency vectors to compute the times
tPREPARE , tPRECOMMIT , tCOMMIT , tDECIDE it takes the
leader to form a quorum of messages in order to advance to
the next phase (see Algorithm 1). By adding together these
timestamps, we get the overall predicted latency of completing
a Hotstuff view.

Furthermore, to compute the time it takes to form a quorum,
the model uses the voting power of a replica expressed by its
corresponding weight. In short, when gathering messages for
consensus, we first consider the messages that arrive faster,
adding up their weights until the quorum formation condition
is satisfied. In this way, the latency of the last message that
helped constitute the needed quorum equals the overall time it
took the leader to reach a consensus, hence advancing to the
next phase.

4.1 Weighted Basic Hotstuff
The basic version of Weighted Hotstuff entails using the Vmax

and Vmin weights (see Equations (3) and (4)) by assigning the
highest one to 2f replicas. To ensure the safety of the quorum
system, the algorithm follows WHEAT [17] and introduces the
use of ∆, namely the number of additional replicas. In order to
get the predicted latency on a given network setting, the weights
assigned are fed into Algorithm 1.

Best weight assignment The weight assignment to
replicas represents a critical point of improvement. Hence,
Best Assigned Weighted Hotstuff employs a Simulated
Annealing [20] approach to find the proper configuration for
a network scenario. Starting from the weight distribution
used in Weighted Hotstuff, a candidate solution is generated
using a perturbation function as follows: find a replica having
Vmin weight and assign it Vmax instead, whilst its voting
power becomes Vmin. This way, multiple weighting schemes

3

Algorithm 1: Latency prediction model for
Weighted Hotstuff

Data: weightingScheme, leaderRotation, numberOfViews
Result: total latency for running in the given network setup

latency← 0

for viewNumber← 0 to numberOfViews do
currentLeader← leaderRotation[viewNumber]

Lnew−view ← getLatencyOfMessages(”new-view”,
currentLeader)

tPREPARE ← timeToFormQuorum(Lnew−view,
weights)

Lprepare← getLatencyOfMessages(”prepare”,
currentLeader)

tPRECOMMIT ← timeToFormQuorum(Lprepare,
weights)

Lprecommit← getLatencyOfMessages(”precommit”,
currentLeader)

tCOMMIT ← timeToFormQuorum(Lprecommit, weights)

Lcommit← getLatencyOfMessages(”commit”,
currentLeader)

tDECIDE ← timeToFormQuorum(Lcommit, weights)

latency← latency + (tPREPARE + tPRECOMMIT +
tCOMMIT + tDECIDE);

return latency

are tested by predicting the latency under each possible set
of weights as an energy function. Ultimately, the algorithm
converges to one weighting scheme, yielding the lowest latency
for the network scenario.

Optimal Leader Rotation The Hotstuff blockchain
algorithm benefits from a linear message complexity due
to the novel leader rotation scheme it introduces in ledger
technologies. Choosing the best possible succession of leaders
is a potential improvement point since it strongly correlates
with the algorithm’s latency (see Figure 1).

0 20 40 60 80 100 120
Encoded Leader Rotation

2900

3000

3100

3200

3300

3400

La
te

nc
y

[m
s]

3000

3100

3200

3300

3400

La
te

nc
y

[m
s]

Figure 1: Analysis of the impact of leader rotation on Hotstuff’s
latency performance for f = 1,∆ = 1, 4 views executed.

However, the leader election itself does not introduce a
significant delay directly, but it can indirectly affect the
algorithm’s behaviour due to leaders’ network connectivity,

which impacts communication latency. A poorly connected
leader can lead to delays in message propagation, and in
faultiness cases, it can jeopardise the overall view completion.

Inspired by AWARE’S established leader relocation
mechanism [19], this variant of Weighted Hotstuff aims to
provide a latency prediction for using an optimised leader
rotation. Thus, a decrease in the measurement metric
would support further study of a Hotstuff implementation
with alternative leader selection strategies. As of its
current implementation, Hotstuff uses a round-robin leader
rotation [31]. However, a leader selection based on network
health, similar to that of AWARE, could be beneficial.
Illustrating the optimisation opportunity in Hotstuff, Simulated
Annealing is used by Optimal Leader Rotation Weighted
Hotstuff to run the blockchain protocol against different leader
rotation schemes, collecting the best performance that can be
achieved in a given network setting.

The metaheuristic method starts from the classical leader
rotation of Hotstuff, which serves as a baseline for comparing
alternative solutions. From the existing state, the algorithm
moves to a neighbouring one by swapping two leader positions,
generating a new possible leader rotation scheme. If the new
one proves to be better, the simulation moves to this new state
and continues in the same manner until it converges to a leader
sequence that is most suitable in terms of latency for a proposed
scenario.

Optimal Leader Rotation + Best Assigned A combined
Simulated Annealing approach targeting both optimisation
strategies illustrates their latency reduction impact on Weighted
Hotstuff. The algorithm generates a candidate that follows with
probability 1

2 the weighting distribution optimisation model
and, with the same probability, a leader rotation one. Hence, the
solution indicates the best weighting scheme and leader rotation
based on the network environment.

4.2 Weighted Chained Hotstuff
The Chained Hotstuff blockchain algorithm represents a
pipelined version of the original one. It benefits from the
similarity of the five communication phases to introduce a
unique approach to advancing to the next phase on multiple
blocks. In a network with n replicas, each one votes for
the progress of at most n block proposals in one view.
Hence, a leader proposes a block in view i and forwards the
responsibility to the leader of the upcoming view until, ideally,
it is executed in view i+ 4 by the corresponding leader.

The latency prediction model used in Weighted Hotstuff
is tweaked accordingly to account for these changes in state
replication behaviour. For one view, we have a set of
block proposals b1, b2...bn for which we consider simultaneous
advancement. Since the focus still lies on quorum formation
times, the Lx,bj [i] vector encapsulates the latency reported by
the leader of the view for receiving the message of type x for
block proposal bj from replica i. The latency vectors are then
used to predict the time it takes to reach the required quorum
weight for consensus. Note that due to its state replication
nature, the adapted model exhibits a warming-up period of
n views until the simulation reaches the point of having a
maximum capacity of block proposals in each upcoming view.

As in the Weighted Hotstuff algorithm, its chained version
also employs a weight metric as voting power in the consensus
mechanism. The Weighted Chained Hotstuff assigns Vmax

4

and Vmin weights to 2f replicas in the network. Furthermore,
the blockchain algorithm benefits from the same possible
performance improvements: weighting distribution and leader
rotation. In this sense, this research explores their impact
by developing two Simulated Annealing approaches: Best
Assigned Weighted Chained Hotstuff and Optimal Leader
Rotation Weighted Chained Hotstuff, which follow the same
paradigm presented in §4.1, but with the required changes for
emulating the proper chaining behaviour of the protocol.

5 Continuous Weighting Scheme
WHEAT [17] presents the effectiveness of using two-weight
vote power assignments in optimising blockchain systems’
performance in geographically distributed environments. The
use of Vmax and Vmin can be interpreted as a limitation of
the algorithm. Following this idea, Continuous Weighted
Hotstuff extends on top of the Weighted Hotstuff algorithm by
introducing a weighting scheme generalisation using Simulated
Annealing. This research only tests its efficacy on Hotstuff
to compare its performance to the other variants of protocol
optimisations. Nevertheless, the continuous weighting scheme
is not limited to the streamlined blockchain world and could be
applied to any voting power-based consensus algorithm.

The Simulated Annealing approach for finding the
continuous weighting scheme that achieves minimal
latency works as follows. The latency prediction model
of Algorithm 1 is used as an energy function to evaluate the
fitness of alternative weighting schemes. To generate a new
candidate from the current state, the set of weights uses a
perturbationStep = 0.1 hyperparameter to draw a new
weight from the uniform distribution U(currentWeight −
perturbationStep, currentWeight + perturbationStep).
Moreover, the voting power of replicas is capped between zero
and two to reduce the searching area of the annealing process.
The required sum of weights equals the weighted quorum
condition of a consensus process to progress on the block
proposal safely. Hence, the weighted quorum size depends
on the replicas’ specific weighting distribution scheme. The
choice of capping the weight values does not represent a
limitation of the research conducted and does not endanger the
validity of the optimisation since the weights are relative to the
network scenario.

For a quorum to be safe, the following properties of the
quorum system need to be validated:

1. Availability: Even when the most powerful f replicas fail,
there is at least one quorum to reach consensus.

2. Consistency: Every two quorums overlap by at least one
correct replica.

The probabilistic model uses an additional functionality to
deem the correctness of the two quorum system conditions
when predicting latency. When a new candidate is used to
predict the latency, its corresponding quorum size must be
computed. First, considering the f replicas having the highest
voting power faulty implies that the sum of weights of the
remaining replicas is an upper bound on the quorum size.
Availability is satisfied by considering this upper bound as the
required weighted consensus condition. To ensure consistency,
only the subsets of replicas with total voting power greater or
equal to the weighted quorum size are valid. The algorithm
takes any two valid quorums and verifies if they overlap by f+1

replicas. Suppose the candidate continuous weighting scheme
passes all of these steps. In that case, the quorum system is
well-founded, and the latency predicted by the model is taken
into account by the annealing process in moving to a subsequent
state. Otherwise, the current state remains unmodified for the
next step of the algorithm.

6 Evaluation
This paper analyses the impact of weighted voting on
streamlined algorithms by gathering data from multiple
experiments to determine whether or not introducing the voting
power assignment generates significant latency improvements.

6.1 Experimental setup
We evaluate the performance of Weighted Hotstuff (§4.1),
Weighted Chained Hotstuff (§4.2) and their multiple
optimisation variants to weigh up against those of basic
and chained Hotstuff. Thus, we perform experiments in two
scenarios: non-faulty, when the network behaves normally, and
faulty, when some replicas are idle.

To run the latency prediction models, we use Python scripts
to test the behaviour of protocols in a given network scenario.
Hence, each experiment depends on the specified distributed
environment. Moreover, the latency prediction algorithm
for Weighted Hotstuff requires providing a set of weights.
The algorithm’s behaviour matches that of Best Assigned
Weighted Hotstuff in case of optimal weight assignment. Thus,
the experiments are conducted by tailoring the weighting
distribution to the network scenario. That is, data on the
distance within all replicas is gathered, and the f best and f
worst connected replicas are assigned Vmax voting power.

To make the analysis reliable, experiments are conducted
using real data collected from cloudping, a tool for latency
monitoring of deployed AWS clusters [32]. For the results
presented later in this section, the following clusters were
used: Cape Town (af-south-1), Hong Kong (ap-east-1),
Canada (ca-central-1), London (eu-west-2) and Northern
California (us-west-1). This choice of network setting supports
the research of weighted voting efficacy on geographically
distributed settings since it reflects the heterogeneity of wide
area network (WAN) environments. Moreover, simulations
were performed using a blockchain system with f = 1 and
∆ = 1 (having a total of n = 5 replicas). Since Hotstuff is a
protocol that sets itself apart from the others in the BFT family
by using a new leader in each view, the views represent a critical
aspect of the influence of weighted voting. Thus, we vary the
number of views by performing simulations for all values from
5 to 20, focusing on the average latency per view.

The latency prediction models depend on the values
generated for latency vectors Lx. In an actual deployment, the
latency at which the leader receives messages from each replica
is influenced by two factors: distance from leader to replica,
reflected in link latency and the payload of the transmitted
data, namely message delay. To emulate the network behaviour
properly, for a leader i, we create its corresponding latency
vectors Lx as follows: distance within clusters (for the link
latency) plus an offset drawn from a uniform sample U(0, 5)
for Lnew−view (since new-view messages encapsulate the block
proposal, whereas the rest have lower payload containing just
hashes) and U(0, 2) for the rest. If the link is fast enough,
the message payload latency can be neglected. However, for

5

a better analysis of weighted voting, we went for a uniform
distribution with significantly lower values than the cluster
latency. In this way, message complexity is considered without
severely influencing the protocol’s behaviour but with the perks
of mocking the heterogeneity of real environments.

6.2 Non-faulty scenario
The experiments performed considered as baseline Basic and
Chained Hotstuff whose latencies are obtained by running the
prediction model of Weighted Hotstuff with all weights equal
to Vnormal = 1. In this way, we highlight the effectiveness of
weighted voting on streamlined protocols (see Table 1).

Table 1: Performance comparison between Hotstuff and Weighted
Hotstuff variants based on Figures 2 and 3.

Basic Chained

No optimisation -7.13% -7.28%
Best Assigned -19.48% -19.64%
Optimal Leader Rotation -10.52% -9.78%
Continuous -18.30% n.a
Optimal Leader Rotation + Best Assigned -24.36% -22.48%

Weighted Hotstuff Figure 2 showcases the impact of
weighted voting on Hotstuff. It is clear from this
visual representation of latency performance that introducing
weighted voting decreases the latency of running the
streamlined blockchain algorithm. Compared with the Basic
Hotstuff in which all weights are assigned equal voting
power, Weighted Hotstuff exhibits around 7% decrease in
latency. Adding to the Vmax/Vmin weight assignment,
the Optimal Leader Rotation variant reduces latency by up
to 10%. However, there is room for improvement as Best
Assigned and Continuous Weighted Hotstuff both indicate
almost 20% latency decrease. Furthermore, by combining
the two optimisation approaches, (Optimal Leader Rotation +
Best Assigned) Weighted Hotstuff reveals around 25% latency
reduction. Hence, the prediction models developed on multiple
protocol variants support the idea established in AWARE of
introducing leader relocation and weight-tuning mechanisms
for improving the performance of blockchain algorithms.

Figure 2 also shows that the optimal leader rotation variant
has the same latency as its underlying weight optimisation
Hotstuff variant over multiple of n views. That is a consequence
of the simulation framework using a static network setting
for the experiments conducted. Since for such a simulation
consisting of a multiple of n views, each replica is the leader
for an equal amount of times, the cumulative latency over all
the views is the same.

Chained Weighted Hotstuff Figure 3 showcases the impact
of weighted voting on Chained Hotstuff. The figure highlights
the warming-up period of n views and supports the research of
weighted voting on streamlined algorithms with a 7% latency
improvement gained by just assigning weights. Furthermore,
adding the leader rotation optimisation on top of it accounts
for an additional 3% decrease in latency. As presented in Best
Assigned Weighted Hotstuff, its chained version follows the
same trends, exhibiting an average latency per view with 20%
better than the baseline and performing best with an up to 25%
reduction for the combined version of the two optimisations.

6 8 10 12 14 16 18 20
#views

600

650

700

750

800

850

Av
er

ag
e

La
te

nc
y

pe
r V

ie
w

[m
s]

Basic
Weighted
Best Assigned Weighted

Continuous Weighted
Optimal Leader Rotation Weighted
(Optimal Leader Rotation + Best Assigned) Weighted

Figure 2: Average latency per view in Hotstuff protocol variants for
f = 1,∆ = 1.

6 8 10 12 14 16 18 20
#views

400

450

500

550

600

650

700

750

Av
er

ag
e

La
te

nc
y

pe
r V

ie
w

[m
s]

Basic
Weighted
Optimal Leader Rotation Weighted
Best Assigned Weighted
(Optimal Leader Rotation + Best Assigned) Weighted

Figure 3: Average latency per view in Chained Hotstuff protocol
variants for f = 1,∆ = 1.

6.3 Faulty scenario
Resilience against failures is critical in any distributed
environment. Hence, we compare the performance of different
Weighted Hotstuff optimisations under faulty conditions. Since
streamlined protocols are part of the BFT family, the system
would need at least 3f +1 nodes to withstand f failures. Thus,
for a given network scenario, the f replicas holding the highest
voting power are considered idle, jeopardising faster consensus.
In this way, we force the analysed streamlined algorithms to
mimic their fallback scenario strategy.

Weighted Hotstuff Figure 4 shows that, out of all,
the (Optimal Leader Rotation + Best Assigned) Weighted
Hotstuff performs the best. Conversely, Best Assigned and
Continuous Weighted Hotstuff express their over-fitting nature
by showcasing significantly higher fallback latency. Since
these two variants optimise the weight assignment for a given
network scenario, the system would inevitably take longer to
recover from an idle actor. Additionally, they perform worse

6

6 8 10 12 14 16 18 20
#views

600

700

800

900

1000

1100

1200

Av
er

ag
e

La
te

nc
y

pe
r V

ie
w

[m
s]

Best Assigned Weighted
Continuous Weighted
Weighted

Optimal Leader Rotation Weighted
(Optimal Leader Rotation + Best Assigned) Weighted

Figure 4: Average latency per view in Hotstuff protocol variants for
faulty scenario, f = 1,∆ = 1.

than Weighted Hotstuff and its leader rotation optimisation
version under normal network conditions and far worse under
faulty ones.

Continuous Weighting Scheme As expected, Continuous
Weighted Hotstuff performs at least as well as the Best
Assigned one in non-faulty environments. However, we
introduce this generalisation to investigate its impact in faulty
scenarios. For this, we experimented with multiple simulations
on randomly generated network topologies with within clusters
latency ranging between 0 and 400ms. Figure 5 showcases
the difference in latency between the Best Assigned and
Continuous Weighted Hotstuff and proves that the latter
performs better or equal in 85% of the performed simulations
(see Figure 8 in Appendix A.2). Notably, the continuous variant
fails to surpass the discrete one in all simulations due to the
Simulated Annealing algorithm terminating before reaching the
global minimum. Hence, this research supports further study of
the continuous metric for voting power assignment.

0 200 400 600 800 1000
Simulation number

4000

2000

0

2000

4000

La
te

nc
y

di
ffe

re
nc

e
[m

s]

Average difference = 113.46 ms

Figure 5: Difference in latency performance between Best Assigned
and Continuous Weighted Hotstuff variants for 1000 faulty scenario
simulations, f = 1,∆ = 1, 10 views executed.

Chained Weighted Hotstuff Despite behaving similarly
to its basic version, Chained Weighted Hotstuff and its

optimisations show major differences in fallback behaviour,
as presented in Figure 6. Best Assigned Weighted Chained
Hotstuff has the lowest fallback latency. That is due
to the communication pattern of the chained protocol.
Because simulations are performed under a specific set of
weights, Chained Hotstuff cannot overfit when optimising for
best weight assignment since the pipelined block proposal
mechanism heavily influences the algorithm performance. With
voting quorums for multiple blocks in one view, some weight
assignments might benefit the consensus of one block whilst
requiring more time to gather messages for the other. Hence,
the Best Assigned Chained Hotstuff has higher resilience
against idle nodes. Furthermore, the Weighted and Optimal
Leader Rotation Weighted Hotstuff have higher fallback latency
but still within the expected limits of 200ms delay, with the
latter performing better under this faulty environment setting.

6 8 10 12 14 16 18 20
#views

400

500

600

700

800

Av
er

ag
e

La
te

nc
y

pe
r V

ie
w

[m
s]

Weighted
Optimal Leader Rotation Weighted
Best Assigned Weighted

Figure 6: Average latency per view in Chained Hotstuff protocol
variants for faulty scenario, f = 1,∆ = 1.

7 Responsible Research
This section reflects upon the ethical aspects of the research,
presenting the measures taken to adhere to the Netherlands
Code of Conduct for Research Integrity [33].

Datasets Given the area of research, namely blockchain
algorithms, this paper does not use predefined datasets or
extend upon implemented algorithms of previous academic
work. This research employs designing latency prediction
models for Weighted Hotstuff and Weighted Chained Hotstuff
alongside their variants. As detailed in §6, we used data
from cloudping [32] to get the latency between different AWS
clusters. Moreover, we motivated our choice of clusters,
providing transparency in our research. Hence, the experiments
aim to emulate a real-life scenario using reliable data to support
the study of weighted voting on streamlined algorithms.

Results Due to the nature of this research project, results
are heavily influenced by the prediction models. Hence,
we provide a Gitlab repository that describes the codebase
extensively in its included README file [34]. Furthermore,
all design choices are mentioned and explained in §4 and §6.
Besides, the results can be obtained by running the Python
experiment files. In interpreting the results, we objectively

7

point out the performance aspects presented in the figures and
explain any odd behaviour that the plots showcase. This way,
we target transparency and reproducibility of our research,
complying with the FAIR (Findable, Accessible, Interoperable
and Reusable) principles.

Research process This research process was conducted
responsibly by ensuring a proper literature review. §2 describes
all the research performed in recent years on our study’s two
areas of interest: weighted voting and streamlined algorithms.
Additionally, we mentioned a research study that briefly looked
into the possibility of applying weighted voting on Hotstuff,
and we discussed its limitations to put our research endeavours
into perspective. The latency prediction models were developed
after an in-depth analysis of Hotstuff and Chained Hotstuff
communication protocols to ensure the validity of our solutions.
Moreover, for Continuous Weighted Hotstuff, we followed
the axiomatic quorum system properties and provided an
implementation that would comply with the availability and
consistency requirements. Throughout the research process, we
tried to be as meticulous as possible to guarantee the ethics and
correctness of our paper.

8 Discussion
The results presented in §6 showcase the impact of our research
on the study of streamlined blockchain algorithms. Providing
multiple prediction models for different optimisations of
weighted voting in Hotstuff and Chained Hotstuff, this paper
states the efficacy of the voting power mechanism in such
ledger technologies. Thus, we provide real arguments towards
the broader study of this research area.

Limitations Some experiments, such as simulations of the
Simulated Annealing approaches for n > 15 replicas, are
impractical due to the high code complexity. Moreover,
for the continuous weighting scheme, the function for
checking that the properties of the quorum are satisfied is
computationally expensive, making simulations for n > 4
infeasible (see Figure 9 in Appendix A.2). Hence, further
research could benefit from extensive analysis for latency
prediction in a broader network context.

Following the same limitation pattern, the latency prediction
models only treat the scenario of running protocols on a specific
set of weights. The next step would be dynamically changing
the weights from one view to the other to accommodate the
leader rotation better. However, to ensure the availability
and consistency of the quorum system, this approach entails
checking that every two quorums formed on a protocol run
overlap by at least one correct replica. This check only would
severely delay the overall simulation time of the experiment.
Thus, a study should be conducted to circumvent this limitation
and research a safe way of changing the voting powers.

Furthermore, the experiments benefit from using specified
reliable data of within AWS clusters latency extracted from
cloudping [32]. Even though the setting supports this research,
it also introduces some limitations. The most notable one is for
the study of the continuous weighting scheme approach, which
points out the significant impact of the technique only when
run on a randomly generated network scenario. Hence, the next
step would be extending this research by running the prediction
models on timestamped data from AWS cluster monitoring to
observe how weighted voting would impact performance given
real-time network fluctuations.

Future work This paper aims to provide the means to
understand the impact of weighted voting on streamlined
blockchain algorithms. Hence, we advocate for future studies in
this area by showing results of possible latency improvements
generated through the weighted voting approach. In this
sense, upcoming research should apply weighted voting on
the actual implementation of Hotstuff and Chained Hotstuff
protocols. Instead of using the cloudping data, the research
should deploy AWS clusters to observe the real-time behaviour
of the blockchain algorithms. Furthermore, the research should
follow AWARE’s steps of establishing leader relocation and
vote assignment fine-tuning mechanisms for improving latency
performance in geographically distributed settings whilst taking
into account the unreliable side of distributed environments.

9 Conclusions
This paper explored the potential of weighted voting in
optimising streamlined blockchain algorithms and analysed,
in particular, the latency impact on Hotstuff and its chained
variant [9]. It investigated possible protocol improvements
in weight assignment and leader rotation. Besides, it
looked into extending from AWARE’s weighting scheme [19]
to a generalised continuous approach that would improve
performance whilst maintaining the safety of the quorum
system. To this end, we introduced latency prediction models
that emulate Hotstuff and Chained Hotstuff behaviour and
assign voting powers to the system’s nodes, hence simulating
a Weighted (Chained) Hotstuff protocol. Furthermore, we
used Simulated Annealing to estimate the impact of optimising
the weight assignment distribution in Best Assigned Weighted
and the leader rotation in Optimal Leader Rotation Weighted
for both basic and chained versions of the streamlined
protocol. Using these latency prediction models, we conducted
experiments on reliable data of within AWS clusters latency
from cloudping [32] and also analysed the faulty scenario
of best-performing nodes becoming idle. In this way, our
experiments are based on real data and consider the fallback
scenario, producing results which support future research in
the area. Hence, we showcased that only applying weighted
voting to a streamlined blockchain algorithm reduces latency by
around 7%. Moreover, combining best weight assignment and
optimal leader rotation achieves minimal latency, almost 25%
lower than one of the classic protocols. As for the Continuous
Weighted Hotstuff, the enhancement from the discrete set
of weights performs in faulty settings equally well or better
than Best Assigned Weighted Hotstuff in around 85% of the
simulations.

In short, this research represents the standing proof that
weighted voting decreases the latency of Hotstuff and Chained
Hotstuff, and optimisations of the weight distribution and leader
rotation are critical for further performance improvement. As
for the generalisation of AWARE’s weighting scheme [19], this
paper introduces a novel approach of using continuous weights
as the voting power of the nodes, which is set to improve
performance in recovery scenarios. Even though applied in
this study only on the Hotstuff algorithm, any blockchain
algorithm can employ the continuous weighting scheme. The
results provided in this research, together with the novel ideas
described, are a founding base for the study of weighted voting
in streamlined algorithms and its shift from the discrete model.

8

References
[1] F. B. Schneider, “Implementing fault-tolerant services

using the state machine approach: A tutorial,” ACM
Computing Surveys (CSUR), vol. 22, no. 4, pp. 299–319,
1990.

[2] R. Asif and S. R. Hassan, “Shaping the future
of Ethereum: exploring energy consumption in
Proof-of-Work and Proof-of-Stake consensus,” Frontiers
in Blockchain, vol. 6, 2023.

[3] D. S. Silva, R. Graczyk, J. Decouchant, M. Völp, and
P. Esteves-Verissimo, “Threat adaptive byzantine fault
tolerant state-machine replication,” pp. 78–87, 2021.

[4] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime:
Byzantine replication under attack,” IEEE transactions
on dependable and secure computing, vol. 8, no. 4, pp.
564–577, 2010.

[5] M. Castro, B. Liskov et al., “Practical byzantine fault
tolerance,” in OsDI, vol. 99, no. 1999, 1999, pp. 173–186.

[6] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
generals problem,” in Concurrency: The Works of Leslie
Lamport, 2019, pp. 203–226.

[7] C. Cachin and M. Vukolic, “Blockchain Consensus
Protocols in the Wild,” CoRR, vol. abs/1707.01873, 2017.

[8] C. Natoli, J. Yu, V. Gramoli, and P. J. E. Verı́ssimo,
“Deconstructing Blockchains: A Comprehensive Survey
on Consensus, Membership and Structure,” CoRR, vol.
abs/1908.08316, 2019.

[9] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and
I. Abraham, “HotStuff: BFT consensus with linearity
and responsiveness,” in Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[10] E. Shi, “Streamlined blockchains: A simple and
elegant approach (a tutorial and survey),” in Advances
in Cryptology–ASIACRYPT 2019: 25th International
Conference on the Theory and Application of Cryptology
and Information Security, Kobe, Japan, December 8–12,
2019, Proceedings, Part I 25. Springer, 2019, pp. 3–17.

[11] T. H. Chan, R. Pass, and E. Shi, “Pili: An extremely
simple synchronous blockchain,” Cryptology ePrint
Archive, 2018.

[12] ——, “Pala: A simple partially synchronous blockchain,”
Cryptology ePrint Archive, 2018.

[13] B. Y. Chan and E. Shi, “Streamlet: Textbook streamlined
blockchains,” in Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, 2020, pp. 1–11.

[14] E. Buchman, J. Kwon, and Z. Milosevic, “The latest
gossip on BFT consensus,” CoRR, vol. abs/1807.04938,
2018.

[15] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu,
“DAMYSUS: streamlined BFT consensus leveraging
trusted components,” in Proceedings of the Seventeenth
European Conference on Computer Systems, 2022, pp.
1–16.

[16] J. Yu, D. Kozhaya, J. Decouchant, and
P. Esteves-Verissimo, “Repucoin: Your reputation is
your power,” IEEE Transactions on Computers, vol. 68,
no. 8, pp. 1225–1237, 2019.

[17] J. Sousa and A. Bessani, “Separating the WHEAT from
the chaff: An empirical design for geo-replicated state
machines,” in 2015 IEEE 34th Symposium on Reliable
Distributed Systems (SRDS). IEEE, 2015, pp. 146–155.

[18] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine
replication for the masses with BFT-SMART,” in 2014
44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2014, pp.
355–362.

[19] C. Berger, H. P. Reiser, J. Sousa, and A. Bessani,
“AWARE: Adaptive wide-area replication for fast and
resilient Byzantine consensus,” IEEE Transactions on
Dependable and Secure Computing, vol. 19, no. 3, pp.
1605–1620, 2020.

[20] Baeldung, “Simulated Annealing,” Website, 2023,
Accessed on May 30, 2024. [Online]. Available:
https://www.baeldung.com/cs/simulated-annealing

[21] J. Kwon and E. Buchman, “The Cosmos Network: A
Primer on Tendermint-Based Blockchains,” Tendermint
Inc. and Interchain GmbH, White Paper, 2016.
[Online]. Available: https://github.com/cosmos/cosmos/
blob/master/WHITEPAPER.md

[22] Y. Wang, Z. Song, and T. Cheng, “Improvement
research of PBFT consensus algorithm based on
credit,” in Blockchain and Trustworthy Systems: First
International Conference, BlockSys 2019, Guangzhou,
China, December 7–8, 2019, Proceedings 1. Springer,
2020, pp. 47–59.

[23] Z. Zeng, B. Wen, W. Du, F. Zhang, and W. Zhou, “PBFT
Consensus Algorithm Optimization Scheme Based on
Vague Sets and Credit Rating,” in 2023 6th International
Conference on Software Engineering and Computer
Science (CSECS). IEEE, 2023, pp. 1–5.

[24] J. Liu, X. Deng, W. Li, and K. Li, “CG-PBFT: an efficient
PBFT algorithm based on credit grouping,” Journal of
Cloud Computing, vol. 13, no. 1, pp. 1–20, 2024.

[25] J. Wang, W. Feng, M. Huang, S. Feng, and D. Du,
“Improvement of Practical Byzantine Fault Tolerance
Consensus Algorithm Based on DIANA in Intellectual
Property Environment Transactions,” Electronics, vol. 13,
no. 9, p. 1634, 2024.

[26] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin,
“Sync hotstuff: Simple and practical synchronous state
machine replication,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 106–118.

[27] D. Malkhi and K. Nayak, “Hotstuff-2: Optimal two-phase
responsive bft,” Cryptology ePrint Archive, 2023.

[28] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu,
“OneShot: View-Adapting Streamlined BFT Protocols
with Trusted Execution Environments,” in IPDPS 2024,
2024.

[29] C. Berger, L. Rodrigues, H. P. Reiser, V. Cogo, and
A. Bessani, “Chasing the speed of light: Low-latency

9

https://www.baeldung.com/cs/simulated-annealing
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md

planetary-scale adaptive Byzantine consensus,” CoRR,
vol. abs/2305.15000, 2023.

[30] D. M. M. Reiter et al., “Byzantine quorum systems,”
Distributed Computing, vol. 11, no. 4, pp. 203–213, 1998.

[31] D. Yaga, P. Mell, N. Roby, and K. Scarfone, Blockchain
Technology Overview. NIST Interagency/Internal
Report (NISTIR), National Institute of Standards and
Technology, Gaithersburg, MD, 2018.

[32] “CloudPing,” Website, Accessed on June 2, 2024.
[Online]. Available: https://www.cloudping.co/grid/
latency/timeframe/1D

[33] Netherlands Organisation for Scientific Research
(NWO), “Netherlands Code of Conduct for
Research Integrity,” Accessed on June 19,
2024. [Online]. Available: https://www.nwo.nl/en/
netherlands-code-conduct-research-integrity

[34] D. Micloiu, “Using Weighted Voting to Optimise
Streamlined Blockchain Consensus Algorithms,” 2024,
Accessed on June 23, 2024. [Online]. Available:
https://github.com/dmicloiu/weightedhotstuff.git

10

https://www.cloudping.co/grid/latency/timeframe/1D
https://www.cloudping.co/grid/latency/timeframe/1D
https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
https://github.com/dmicloiu/weightedhotstuff.git

A Appendix
A.1 Hotstuff communication
Figure 7 depicts the five communication phases of Hotstuff [9]
that together form one view. This view has n participating
replicas, out of which one is the leader. As the illustration
highlights, only the leader communicates with the other
replicas, thus achieving linear communication rather than the
quadratic one of PBFT [5].

Figure 7: Hotstuff communication phases.

A.2 Continuous Weighted Hotstuff Analysis
Compared with the Continuous version, Best Assigned
Weighted Hotstuff has higher latency in 13% of the simulations
performed (see Figure 8). Even though the algorithms
have matching performance in around 50% of the cases, the
generalised weighting scheme still recovers faster in 30%.
Since the optimisation model we developed relies on Simulated
Annealing [20], the algorithm can be further tweaked to
improve these results. By increasing the hyperparameter for
step convergence, we can let the annealing process explore
more, eventually reaching the state of a better-performing
solution than the Best Assigned one.

However, the prediction model we developed in this
research has one considerable limitation: high computational
complexity. Due to the rigorous process of ensuring quorum
system safety, the time it takes the Simulated Annealing
algorithm to converge increases significantly with the number
of faulty replicas the system can withstand. In this
sense, Figure 9 showcases that running the prediction model
for f = 4 took almost 40 times more than for the precedent
value.

0 100 200 300 400 500
Simulations

worse

same

better

135 (13.5%)

537 (53.7%)

328 (32.8%)

Figure 8: Latency performance comparison between Continuous and
Best Assigned Weighted Hotstuff for 1000 faulty scenario simulations,
f = 1,∆ = 1, 10 views executed.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
f value

0

100

200

300

400

500

Ti
m

e
(s

)

Figure 9: Simulated Annealing convergence time for Continuous
Weighted Hotstuff for multiple f values, 1 view executed.

11

