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Abstract
We report themagnetic domain structure, and electrical andmagnetoresistance properties of laser
ablatedCo40Fe40B20 (CoFeB) (6 to 36 nm) thinfilms deposited on SiO2 / Si(001) substrates.Magnetic
forcemicroscopy performed on annealedCoFeB thinfilms revealed largermagnetic domains, which
are formed due to strong exchange coupling between the grains. The temperature-dependent sheet
resistance of as-deposited thinfilms revealed that the observed non-metallic behavior is due to
intragrain-tunneling and SiO2 inclusions in the amorphousmatrix. Themetallic behavior of annealed
CoFeB thinfilms is due to electron scattering from grain boundaries and granularity correlated to the
formation of nano-crystallites. Thickness andfield-dependentmagneto-transport studies show
highermagnetoresistance values for thinner annealedCoFeB films due tomore scattering events upon
crystallization, which is consistent with the granular nature of the annealed thinfilms.

1. Introduction

Co40Fe40B20 (CoFeB) alloy thinfilms have been under extensive research focus due to their high tunneling
magnetoresistance (TMR)which is utilized for spintronics applications such asmagnetoresistive random-access
memory [1, 2]. To improve the giant TMR, post-growth thermal annealing of theCoFeB layer and its chemical
composition, crystalline structure aswell as themagnetic structure are important topics of investigation in any
device [3–12].Moreover, it was reported that TMR can be enhanced by the amorphization of normally bccCoFe
alloy thin films sandwiched between two conventional amorphousmaterials [13]. Therefore, the basic
understanding of the structural, electrical andmagneto-transport properties of CoFeB thin films is essential for
further improvement of spintronic devices.

Magnetoresistance (MR) of granular ferromagnet with non-magneticmetals and insulators such asCo-Ag
andCo-SiO2 etc, observed that electrical conduction properties are different althoughmagnetic properties are
similar [14–16]. An earlier study on transport anisotropy inCoFeB-SiO2 granular amorphous thinfilms
revealed that isotropic giantmagnetoresistance (GMR) appears due to electrons hopping between granules
[16, 17]. They found that electrical resistivity is lowered by applying amagnetic field and also has less anisotropic
resistivity in the filmwith highmetallic content.Moreover, the study onGMRofCoFeB-SiO2 amorphous
granular composites revealed the absence ofMR for the samples withmetallic content above 50% [17]. CoFeB/
MgOgranular systemoffers significantly highMRdue to themagnetic softness of CoFeB thinfilmswhich
undergo a ferromagnetic to superparamagnetic phase transition at 130K [18]. However, an individual CoFeB
withNi nanotubes reported that the anisotropicMR values up to 1.4% at room temperature [19].

To investigate these aspects further, we have analyzed themagnetic domain structure and electrical and
magneto-transport properties of CoFeB thinfilms of different thicknesses.
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2. Experimental

Wehave employed pulsed laser deposition (PLD) technique as it offers a unique advantage for the growth of
multi-elemental films of desired stoichiometry for the deposition of CoFeB thin films [20, 21] on SiO2 (300 nm)
/ Si(001) substrates. The substrates are commercially available oxidized Si(001)wafers with a 300 nm thick SiO2

seed layer. The oxide layer ensures the electrical isolation of the film fromSi. AKrF excimer laser was used to
ablate a stoichiometric target of Co40Fe40B20 (at%). To enhance the crystallinity, thefilmswere subsequently
annealed at 400°C for 1 h in a high vacuum (1×10−6 Torr), immediately after deposition. For the post-growth
annealing, the temperature increased to 200°Cat 20°Cpermin and then from200°C to 400°Cat 10°Cpermin.
Thenwe anneal thefilms at 400°C for 1 h and cool down to room temperature at 20°Cpermin. Amultimode
atomic forcemicroscopy (AFM)withNanoscopeV controller, (Veeco Ltd, USA) is used for all samples and
magnetic forcemicroscopy (MFM) in tappingmode is used to probe themagnetic domains and grain growth
analysis of amorphous and polycrystalline CoFeB thin films. To perform four-probe electricalmeasurements,
we deposit Ag/Cr contact pads onCoFeB thinfilms using the shadowmask technique. TheAlwires bonded to
the pads ensure ohmic contacts with equipotential surfaces.

3. Results and discussion

3.1.Magnetic forcemicroscopy studies
TheMFMmicrographs of as-depositedCoFeB thinfilms of varying thicknesses (6, 9 and 36 nm) are presented in
figure 1(a)–(c) and the corresponding AFMmicrographs are shown in (d)–(f).We observe granular surface
topography for all threefilms. Clearly, thesemorphological features dominate themagnetic signalmeasured by
MFM.Therefore theMFM images look quite similar to surface topography. TheMFMmicrographs of annealed
CoFeB thin films of varying thicknesses (6, 9 and 36 nm) are presented infigure 2(a)–(c) and the corresponding
AFMmicrographs are shown in (d)–(f). In contrast to as-deposited films, the annealedfilms are less granular.
Therefore, theMFM images reveal themagnetic domain structures where the intensity of repulsive interaction
(bright region) and the intensity of attractive interaction (dark region) are considered domains. The domain
structures consist of irregular patches of varied shapes and sizes. The irregularly shaped domainsmay be due to
grain growth formation in the amorphousmatrix whichwas also confirmed by previously reported transmission
electronmicroscopemeasurement results [20].

Themagnetic domains found in annealedCoFeB thinfilms are greater than the grain size of 30-40 nm for 36
nm thinfilm. These largemagnetic domains are formed due to strong exchange coupling interaction between
the grains [22, 23]. TheMFM images of the films show anisotropicmagnetic domain contrasts for the smooth
film, and the subsequent fragmentation of these domains as the roughness of the films increased.With
increasingfilm thickness we observe largermagnetic domains.

3.2. Electrical transport
Figures 3(a) and (b) show the temperature-dependent four-probe sheet resistance,R,(T) plots for both as-
deposited and annealedCoFeB films. Clearly, all as-deposited films shownon-metallic behavior, i. e. the
resistance increases with decreasing temperature. On the other hand, we observemetallic behavior for annealed
thinfilms. In addition,R,(T) for the annealed thin film is smaller than that of the as-deposited film of the same

Figure 1. (a)—(c)TheMFM images and the corresponding AFM images (d)—(f)with an area of 3×3μm2 for as-deposited CoFeB
thin films of varying thicknesses 6, 9, and 36 nm respectively.
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thickness revealing the non-metallic behavior for as-deposited andmetallic behavior for annealedCoFeB thin
films, respectively. These resistance values are comparable to the previously reported values in 23. The resistivity
of annealed 36 nmfilm is found to be≈ 8.6μΩcm consistent with the resistivity of≈8μΩcm reported
previously [20]. The largerR,(T) for amorphous films and observed non-metallic behavior are due to intra-
grain tunneling and SiO2 inclusions in the amorphous filmswhich are confirmed by the previous reports on the
effect of annealing on the electrical properties of polycrystalline CoFeB thin films [20, 23]. On the other hand,
themetallic behavior of annealed thinfilms is due to the formation of nano-crystallites with electron scattering
happening at grain boundaries. The post-growth annealing treatment of the as-deposited films improves the
crystalline structure [20, 22–27]. Thismay reduce the grain boundaries and thus result in lower resistivity.

3.3.Magnetoresistance
Figure 4(a) and (b) show themagnetoresistance (MR) curvesmeasured at 300K and 10K, respectively, for 36 nm
annealedCoFeB thinfilmwhen the appliedmagnetic field is in longitudinal (parallel) and transverse
(perpendicular) geometry to the sample plane. The negativeMR valueswere observed in both parallel and
perpendicular field geometry to the sample plane. A small hysteresis is foundwhen the appliedfield is
perpendicular to the filmwhich is evident for the ferromagnetic behavior of annealedCoFeB thinfilm. The
hysteresis ismore prominent at low temperatures in the case of 50K [see figure 5(a)]when thefield is in
perpendicular geometry to the sample plane. It is noted that the film has a slightly higherMR value at 10K. The
observedMR in the film through electronic transport is due to intragrain tunneling. Similar results on negative
MRbehavior were observed in the previous reports [16, 17]. In addition, we found that the thinner film has a
largerMR value and theMRvalues remain almost temperature-independent as shown infigure 5(b).

Figure 2. (a)–(c)TheMFM images and the correspondingAFM images (d)—(f)with an area of 3×3μm2 for annealedCoFeB thin
films of varying thicknesses 6, 9, and 36 nm respectively.

Figure 3. (a)The temperature-dependent sheet resistance,R,(T) plots for as-deposited and (b) annealed at 400°CCoFeB thin films of
thicknesses 6 nm, 9 nmand 36 nm, respectively.
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In a granular system, the electronic transport at low temperatures depends significantly on the grain
boundaries. As explained before, these boundaries act as ametallic barrier between ferromagnetic grains.With
increasingmagnetic fields, the grains gradually tend to alignmagnetically and, thus, the resistance reduces due to
the conduction of spin-polarized charge carriers. The observed thickness dependence ofMR can be explained in
terms of the granularity of the film [16]. TheMRmeasured at 50K for a 6 nm thinner annealedCoFeB thinfilm
is shown infigure 5(a). In the case of thinner filmswith smaller grains, the number of ferromagnetic grains
within themean free path is larger. Thus, the scattering events are higher and theMR is higher as compared to
the case of thicker filmswith larger grains. Other granular alloys like Co-Cu andCo-Ag have displayed similar
MR effects [14, 15, 28]. Figure 5(b) depicted the temperature-dependentMR for 6 nmand 36 nm thin films
measured at 3T, which remain almost constant throughout the temperature range. The corresponding
differences in the resistivity at 0 and 3T,Δρ are also shown infigure 5(b).With decreasing temperature,Δρ is
reduced for both annealed films. At lower temperatures, the conduction electrons aremore strongly spin-
polarized due to largermagnetization and thus a larger decrease in resistance.

4. Conclusions

In summary, we have investigated PLD-grownCoFeB as-deposited and annealed thinfilms of varying
thicknesses (6 to 36 nm) formagnetic domain structure, electrical conduction andmagnetoresistance
properties. Themagnetic domain images probed usingmagnetic forcemicroscopy revealed very largemagnetic
domains due to the interactions between the nanocrystalline grains in the annealedCoFeB thinfilms. The

Figure 4.Magnetoresistance,MR= (ρ(H) - ρ(0)) x100/ ρ(0) for 36 nmannealed CoFeB film at 300K (a) and 10K (b). ρ(H) is the
resistivity in the presence of amagnetic field,H applied parallel geometry to thefilm plane (red circles), and perpendicular geometry
(blue squares).

Figure 5. (a)Magnetoresistance,MR for 6 nmannealed CoFeB thin filmmeasured at 50K and (b)Temperature dependence ofMR
andΔρ= ρ (0) - ρ (H) atμoH= 3T for 6 nm (blue squares) and 36 nm (green circles) annealed thinfilms.
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as-deposited thin films are non-metallic whereas the annealed thinfilmswith growing granularity showmetallic
behavior. In comparison to thick films, higherMR values are observed in 6 nmannealed CoFeB thin film.We
found an almost temperature-independentMR for bothfilms.However, increasingmagneticfields reduces the
resistivity due to the conduction of spin-polarized charge carriers. Our present study provides essential
information onmagneto-transport in crystalline CoFeB thin films in particular, which is eventually useful for
the development of spintronic devices.
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