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ABSTRACT Co-simulation has become increasingly popular as a tool for dealing with the unprecedented
complexity of modern engineering systems, such as electrical power systems and the AC circuits that
compose them. Co-simulation is useful when migrating the models of each subsystem to a single monolithic
simulator is either impractical or impossible, and the need for understanding the interactions between the
subsystems does not leave room for model simplifications. However, co-simulation can suffer from long
execution times, caused by the overhead introduced by exchanging variables between simulators. In this
paper, we propose a method that mitigates this overhead by decoupling the simulators whenever their
inputs become predictable. We applied this method to the co-simulation of an AC circuit composed of
two subsystems and obtained speedups of up to 39% with errors that remain around 1% most of the time.
Although questions regarding the scalability of the method persist, these results indicate that the method has
the potential to make co-simulation an even more valuable tool for the user.

INDEX TERMS AC systems, co-simulation, electromagnetic transient, power systems, simulation.

I. INTRODUCTION
Co-simulation has experienced a surge in popularity as a
method for tackling the unprecedented complexity of modern
engineering systems, such as electrical power systems and the
AC circuits that compose them. In a co-simulation, a system is
simulated using a set of simulators (or simulation tools), each
tasked with simulating only a subsystem of the larger system.
These simulators collaborate with each other by exchanging
a set of selected variables, called interface variables, at run
time. In many cases, the execution of a co-simulation is
orchestrated by a so called co-simulation master, tasked with
keeping the participating simulators synchronized and pro-
viding them with the input variables they require.

The ability to couple different simulators in a co-simulation
setting is useful when migrating the models of each sub-
system to a single monolithic simulator is either impractical
or impossible. This happens, for example, when there is a
need to simulate subsystems that have been modeled using
different tools or languages, when the models cannot be
shared due to privacy or intellectual property restrictions,
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or when the available tools are not compatible with one of
the models (e.g., a continuous simulator and a discrete event
model). Situations such as these become commonplace as the
complexity of the systems under analysis increases, and the
need to understand the way their subsystems interact with
each other does not allow for model simplifications [1]. In the
case of AC circuits, such as those found in electrical power
systems, co-simulation has been advantageous for coupling
models that use different circuit representations (e.g., phasor
and point on wave [2], three phase and three sequence [3]),
power grids of neighboring geographical areas [4], transmis-
sion and distribution grids [5], and to couple circuit mod-
els to models from other domains, such as communication
systems [6] and energy markets [7]. Despite their inherent
advantages, co-simulations can suffer from long execution
times, even if the participating simulators are executed in
parallel [4].

Co-simulation requires exchanging and processing inter-
face variables. These operations introduce overhead that
can significantly impact the total execution time of the
co-simulation, depending on how fast (or slow) they are, and
how often they are executed. Naturally, one way of mitigating
the overhead introduced by exchanging interface variables
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is to reduce the frequency of these exchanges, nevertheless,
reducing the frequency beyond a certain point has a nega-
tive impact on the accuracy and numerical stability of the
co-simulation [1].

In this paper we propose a method for speeding up
co-simulations by selectively decoupling the participating
simulators. This method is based on the premise that the tra-
jectories followed by the interface variables can be predicted
at run time, at least during a portion of the co-simulation.
Hence, as long as the interface variables remain in this pre-
dictable state, it is not necessary to exchange them, since each
simulator should be able to predict them. As a consequence,
the overhead introduced by exchanging interface variables is
reduced. To define and implement the selective decoupling
co-simulation method we assume that the simulators are
black boxes and that the only information available to deter-
mine when to decouple and recouple them is the interface
variables themselves.

To test our method we co-simulate an AC circuit composed
of two subsystems, that represents a simple electrical power
system. In the tests we obtained speedups of up to 39% with
respect to a traditional co-simulation, with errors with respect
to a monolithic simulation that remain around 1%most of the
time. This shows that it is possible to speed up a co-simulation
through simulator decoupling. However, questions regarding
the scalability of the method with respect to the number
of coupled subsystems, and and its applicability to physical
systems other than AC circuits remain open.

This paper is structured as follows: Section II discusses
how co-simulation overhead affects the total execution time,
Section III introduces the selective decoupling method for
reducing co-simulation overhead, Section VI describes how
the method can be applied to AC circuit co-simulation,
Section V evaluates the method and discusses the results, and
Section VI concludes the paper.

II. THE CHALLENGE OF CO-SIMULATION OVERHEAD
Let us consider a system modeled with the initial value
problem

ẋ = f (x,u), y = g(x,u), x(t0) = x0, (1)

where u are the system inputs, x are the state variables, y are
the system outputs, and f and g are vector-valued functions.
If we split this system into two subsystems, A and B, modeled
with

ẋA = f A(xA,uA), yA = gA(xA,uA), xA(t0) = xA0 , (2)

ẋB = f B(xB,uB), yB = gB(xB,uB), xB(t0) = xB0 , (3)

where the outputs of one subsystem are the inputs of the
other, the results of the monolithic simulation of (1) can be
approximated by a co-simulation of (2) and (3) by enforcing
the coupling equations

uA = yB uB = yA, (4)

at every point in a discrete time grid t := {t0, t1, . . . tk , . . . tK }.
This time grid defines when the simulators should exchange

interface variables. The interval [tk , tk+1[ is known as the
co-simulation macro time step and Hk := tk+1 − tk as the
macro time step size. Although there are accuracy and per-
formance benefits to having a dynamically-adjusted macro
time step size [8], for simplicity it is often chosen to be
Hk = H a constant. Within each macro time step, each
simulator can perform several micro time steps. To solve each
micro time step in the k th macro time step, the simulators
approximate the inputs of each subsystem uA(t) and uB(t)
with the k th interpolation polynomials ũA,k (t) and ũB,k (t),
which are obtained from the history of interface variables
exchanged until tk .

From the description above it follows that in the monolithic
simulation of (1), the total execution time is the time it takes
to solve the model equations from t0 to tK (solver time),
whereas in the co-simulation of (2) and (3) the total execution
time also includes the time it takes to construct and evaluate
ũA,k (t) and ũB,k (t) (interpolation time) and the time it takes
to enforce (4) (communication time).Wewill refer to the time
spent on interpolation and communication-related operations
as co-simulation overhead.
To understand how co-simulation overhead affects total

execution time, let us now consider a simple case in which
subsystems A and B are solved with a constant micro time
step of size h, the solver time per micro time step is Th, and
the overhead per macro time step is TO. Then, the time it takes
to solve one macro time step in a parallel co-simulation is

TH = Th
H
h
+ TO, (5)

and the execution time of the entire co-simulation as a func-
tion of H is

TCS(H ) = TH
tK − t0
H

= (tK − t0)
[
Th
h
+
TO
H

]
. (6)

As (6) indicates, TCS increases rapidly as H decreases
(limH→0 TCS(H ) = ∞). This means that co-simulations of
systems that have fast dynamics and require frequent com-
munication between subsystems can have their performance
heavily penalized. Such is the situation of electromagnetic
transient models of AC circuits. This effect is especially
noticeable when the overhead is large with respect to the
solver time, which is the case when the models are small
and/or the solvers are fast, or when the interpolation of inputs
or communication between simulators is slow. The presence
of this overhead is why co-simulations can be slower than
monolithic simulations of the same model, even if the sub-
systems are co-simulated in parallel [4].

III. REDUCING CO-SIMULATION OVERHEAD THROUGH
SELECTIVE SIMULATOR DECOUPLING
As discussed in Section II, the total execution time of
a co-simulation can be reduced by reducing the total
co-simulation overhead. Since the co-simulation user has lim-
ited control over the performance of the operations that cause
this overhead, an alternative is to reduce the total number of
times these operations are performed. If we assume that this
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cannot be achieved by increasing the macro time step size
without compromising the accuracy of the results, we could
further reduce the co-simulation overhead if each simulator
had the capability of predicting its own inputs, so that the
interface variables do not need to be exchanged.

A. PREDICTABILITY OF INTERFACE VARIABLES
Intuitively, we can argue that the predictability of the interface
variables changes as the co-simulation runs. For example,
when the system is in steady state it is easier to guess what
the outputs of each subsystem will be on the next macro
time step. On the contrary, guessing the outputs of each
simulator becomes more difficult when the system is expe-
riencing a fast transient. If the simulators could identify,
at run time, a closed-form expression or set of expressions
that describes the trajectories followed by the interface vari-
ables over time, each simulator could effectively predict its
own inputs. We will refer to these expressions as trajectory
models. Using the concept of trajectory models we can now
introduce the more precise Definitions 1 and 2 for predictable
and unpredictable interface variables.
Definition 1 (Predictable interface variables): Interface

variables are considered predictable when their trajectories
can be computed with sufficient accuracy from a given tra-
jectory model or set thereof.
Definition 2 (Unpredictable interface variables): Interface

variables are considered unpredictable if they do not comply
with Definition 1.

Note that according to Definitions 1 and 2 interface vari-
ables are classified as predictable or unpredictable based on
an available trajectory model or set of models, not on whether
those models exist. This distinction has as consequence that
the same trajectory could be classified as predictable or
unpredictable depending on the trajectory model identifica-
tion method used. Furthermore, what constitutes sufficient
accuracy is entirely dependent on the requirements of the
co-simulation application.

B. TWO MODES OF CO-SIMULATION OPERATION
Given that the predictability of the interface variables changes
throughout the co-simulation, the co-simulation should be
able to operate in two different modes and transition between
them as needed.

The first mode is the coupled mode. The co-simulation
operates in this mode when the interface variables are con-
sidered unpredictable. In this mode, the simulators exchange
interface variables at every macro time step. During the k th

macro time step, subsystem s is simulated using as inputs
the k th interpolation polynomials ũs,k (t), where t ∈ [tk , tk+1[
and s ∈ s the set of all subsystems. The coupled mode is the
default mode of operation.

The secondmode is the decoupledmode. The co-simulation
operates in this mode when the interface variables are consid-
ered predictable. In this mode, the simulators do not exchange
variables, but predict their own inputs using trajectory mod-
els. For a decoupled mode that starts on the k th macro time

step and lasts κ macro time steps, subsystem s is simulated
using as inputs the k th trajectory models ûs,k (t), t ∈ [tk , tk+κ ]
and s ∈ s.

This bimodal co-simulation poses two main challenges.
The first one is to identify appropriate trajectory models.
The second one is to seamlessly transition between modes.
In this section we only deal with the second challenge, since
the first one is application-dependent. Section IV deals with
the first challenge for the case of AC circuit co-simulation.

C. SIMULATOR DECOUPLING
Any pair of coupled simulators can be decoupled if the inter-
face variables they share follow predictable trajectories. One
way of determining when an interface variable is following
a predictable trajectory is to attempt to identify its trajectory
model and to measure the deviation between the trajectory
this model predicts and the true trajectory. If the deviation
falls below a given threshold, the trajectory can be considered
predictable in the sense of Definition 1. Since the inputs of a
subsystem are the outputs of another, we can express this idea
either in terms of inputs or outputs. Thus, any output y ∈ ys,
s ∈ s can be considered predictable if

max

∣∣∣∣ ŷ(t)− y(t)
max ŷ(t)−min ŷ(t)

∣∣∣∣ < εp, t ∈ tw, (7)

where tw := {tk−Ns+1, tk−Ns+2 . . . tk} is a discrete moving
time window of length Ns samples and duration Tw, ŷ is
the trajectory model of y, and εp is the allowed normalized
deviation. The number of samples Ns should be selected
according to the needs of the trajectory model identification
method.

Note that (7) measures deviation relative to the dynamic
range of the trajectory model. Using a relative deviation
measure simplifies the choice of a suitable εp. Using the
dynamic range instead of ŷ(tk ) or y(tk ) prevents that (7)
becomes indeterminate when the outputs approach zero. One
caveat is that constantly recomputing ŷ to evaluate (7) can
be computationally expensive if H is small. This means that
the window hop size Rw, that is, the number of samples tw
moves every time (7) is evaluated, might need to be adjusted.
An Rw = 1 requires (7) to be evaluated at every macro time
step, which incurs the highest computational expense. Higher
values of Rw reduce the computational expense but might
delay the transition to decoupled mode. However, this should
not negatively impact the accuracy of the co-simulation, only
its total execution time.

D. SIMULATOR RECOUPLING
Any pair of decoupled simulators must be recoupled if one
of the interface variables they share stops following a pre-
dictable trajectory, which in the sense of Definition 2 happens
when the trajectory model in place is no longer representative
of the interface variable. Since Definitions 1 and 2 are mutu-
ally exclusive, we get that a pair of simulators needs to be
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recoupled when

max

∣∣∣∣ ŷ(t)− y(t)
max ŷ(t)−min ŷ(t)

∣∣∣∣ ≥ εp, t ∈ tw, (8)

which is complementary to (7). As opposed to the case of
simulator decoupling, delaying simulator recoupling would
likely have a negative impact on the accuracy of the co-
simulation, so an Rw = 1 is recommendable.
In this case we can reduce the computational expense of

evaluating (8) at every macro time step if we take into account
that when a transition from predictable to unpredictable inter-
face variables occurs, the maximum deviation between the
true outputs and those calculated from the trajectory model
occurs at the last sample in tw (provided that Rw = 1). Thus
we can simplify (8) to∣∣∣∣ ŷ(tk )− y(tk )

max ŷ(t)−min ŷ(t)

∣∣∣∣ ≥ εp, t ∈ tw, (9)

which is more computationally efficient. Every time we eval-
uate (9), ŷ and y are evaluated only at tk . Furthermore, ŷ does
not need to be recomputed.

The importance of expressing (7) and (9) in terms of
subsystem outputs instead of inputs becomes apparent when
we consider that in decoupled mode the inputs are obtained
from trajectory models that are not updated to reflect possible
changes in the operating conditions of other subsystems.
On the contrary, a change in the operating conditions of a
subsystem does reflect on its own outputs, causing them to
deviate from their trajectory model.

A trajectory model can cease to be representative of an
interface variable either due to its own limitations (e.g., lim-
ited model accuracy) or due to a change in the operating con-
ditions of a subsystem (e.g., change of a model parameter).
Changes in the operating conditions are caused by simula-
tion events, which can be classified as external or internal.
External events are scheduled, either by the co-simulation
user or another entity, and their time of occurrence is known
in advance. On the other hand, internal events are a product
of the co-simulation itself and their time of occurrence might
be unknown (e.g., a stochastic event). External events are the
most favorable for simulator recoupling because the simula-
tors know when to recouple before decoupling. Aside from
mode transitions caused by external events, all other transi-
tions back to the coupled mode pose an additional challenge
for non-real time co-simulation.

In a non-real time environment there are no guarantees on
the time it takes to execute a process. This means that as soon
as the simulators decouple, they will likely progress at dif-
ferent rates. When a transition to the coupled mode becomes
necessary, the simulator that discovers the need for recoupling
can either be ahead of all the others in simulation time or
behind at least one simulator. In the first case recoupling is
simple: the simulator that discovers the need for recoupling
informs the others and waits for them to catch up so they
can all resume coupled execution from the same point in
simulation time. In the second case the simulators that are

ahead in simulation time must roll back before recoupling
is possible. This is unfavorable not only because rolling
back comes with a performance penalty, but also because in
practice not all simulators support the roll-back operation.
A possible solution to this problem is to slow down the
execution of the faster simulators during decoupled execution
so all simulators advance at the same rate, but in a non-real
time environment this is not trivial and we consider it beyond
the scope of this paper.

E. ALGORITHMIC DESCRIPTION
Algorithm 1 presents a pseudocode description of the
selectively-decoupled co-simulation from the point of view
of a simulator. We assume that all decoupling and recou-
pling requests are handled by a co-simulation master. This
master should accept or reject decoupling requests and for-
ward recoupling requests to the corresponding simulators.
Additionally, the master is in charge of receiving the outputs
of each simulation and providing them with the inputs they
require.

IV. SELECTIVE DECOUPLING FOR
AC CIRCUIT CO-SIMULATION
In Section III we introduced the selectively-decoupled
co-simulation independently from the system it is applied
to by leaving the only application-dependent component
unspecified: the trajectory model identification method.
Specifying this key component requires knowledge of the
physical behavior that can be expected from the system under
analysis, in our case, an AC circuit.

A. A TRAJECTORY MODEL FOR STEADY STATE
In AC circuit co-simulation, the interface variables are typ-
ically voltage and current, although in some cases power
is used as well [9]. We know that these interface vari-
ables mainly follow sinusoidal trajectories that may contain
harmonic distortion caused by non-linear devices, such as
transformers and power electronic converters. If we define
predictable interface variables as those that follow these sinu-
soidal trajectories, we can define the trajectory model as

û(t) = A0 +
N∑
n=1

An sin (2π fnt + φn), (10)

where An, fn and φn are the amplitude, frequency and phase of
the nth harmonic, andN is the total number of harmonics. This
trajectory model is valid when the circuit is in steady state.
Thus, identifying a suitable trajectorymodel û(t) is equivalent
to estimating the parameters An, fn, φn and N in (10).

B. ACCURACY OF DISCRETE FOURIER METHODS
In the case of continuous trajectories, a Fourier Transform
would yield the required trajectory model parameters. How-
ever, in a discrete case such as a co-simulation, neither the
Discrete Fourier Transform (DFT) nor its more efficient
implementation, the Fast Fourier Transform (FFT), are likely
to produce accurate results due to their discrete frequency
resolution. When estimating the frequency of a harmonic,
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Algorithm 1 Selectively-Decoupled Co-Simulation
1: Define: subsystem s, macro time step index k , recoupling

macro time step index kr, tk ∈ {t0, t1, . . . tk , . . . tK }
the discrete time grid of macro time steps, and tw =
{tk−Ns+1, tk−Ns+2 . . . tk} a discrete moving time widow.

2:

3: Initialize ẋs = f s(xs,us), ys = gs(xs,us)
4: mode← COUPLED
5: k ← 0
6:

7: while k < K do
8:

9: if mode = COUPLED then
10:

11: if ys(t), t ∈ tw are predictable then
12: Request decoupling to master
13: end if
14:

15: Send ys(tk ) and receive us(tk )
16:

17: if Decoupling request accepted by master then
18: Identify trajectory models ûs,k (t)
19: us(t)← ûs,k (t)
20: mode← DECOUPLED
21: else
22: Create interp. polynomials ũs,k (t)
23: us(t)← ũs,k (t)
24: end if
25:

26: else if mode = DECOUPLED then
27:

28: if Recoupling requested by master then
29: Receive recoupling index kr
30: Roll back or catch up to k = kr
31: mode← COUPLED
32: else if ∃y(tk ) ∈ ys(tk ) : y(tk ) is unpredictable then
33: kr← k − 1
34: Request recoupling to master at kr
35: else if Event in next macro time step then
36: mode← COUPLED
37: end if
38:

39: end if
40:

41: Solve ẋs = f s(xs,us(t)), ys = gs(xs,us(t)) until
t = tk+1

42:

43: k ← k + 1
44:

45: end while

the accuracy of a DFT is restricted to

±
1fDFT

2
= ±

fs
2 Ns

,

where 1fDFT is the frequency resolution of the DFT, fs is
the sampling frequency, and Ns is the number of acquired
samples.

As a reference, a macro time step of 0.1ms is a common
choice for co-simulations of a 50Hz electrical power sys-
tem AC circuit, which means that the interface variables are
sampled at a frequency fs = 1/0.1ms = 10kHz. At that
sampling frequency, 25 periods need to be acquired to obtain
a DFT accuracy within ±1Hz. Taking into account that a
frequency deviation of 0.1Hz is significant for these systems,
an accuracy of ±1Hz is unacceptably low, especially consid-
ering howmany periods need to be acquired. For applications
that require more accuracy, methods that interpolate the DFT
(or the FFT) to better approximate a continuous Fourier
Transform are available.

C. INTERPOLATED FOURIER METHODS
The Quadratically Interpolated Fast Fourier Transform
(QIFFT) [10] is one of the methods that approximates a
continuous Fourier Transform. The idea behind the QIFFT is
to fit a parabola to the tuple (|X (b− 1)|, |X (b)|, |X (b+ 1)|),
where |X (b)| is a peak in the discrete spectrum and b its
location in normalized frequency f /1fDFT (bin number),
as Fig. 1 (a) shows. The figure shows how neither the true
peak value |Xt| nor its location bt can be directly obtained
from the discrete spectrum, but the vertex of the fitted
parabola (b̂t, |X̂t|) provides a good approximation. To esti-
mate the phase of each harmonic φ̂t we find the intersection
between the spectrum phase and b̂t through interpolation,
as in Fig. 1 (b).

FIGURE 1. QIFFT of a discrete spectrum. (a) Spectrum magnitude.
(b) Spectrum phase.

The eXponentially weightedQIFFT (XQIFFT) [11] differs
from the QIFFT in that it weighs |X (b − 1)|, |X (b)| and
|X (b + 1)| using an exponential function before fitting the
parabola. This modification improves the accuracy of the
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estimates b̂t and |X̂t|with negligible impact on computational
performance. By defining

α = |X (b− 1)| (11)

β = |X (b)| (12)

γ = |X (b+ 1)|, (13)

we can obtain b̂t and |X̂t| from

b̂t = b+
1
2

f (α)− f (γ )
f (α)− 2f (β)+ f (γ )

(14)

|X̂t| = f −1
(

f (β)−
1
8

[
f (α)− f (γ )

]2
f (α)− 2f (β)+ f (γ )

)
, (15)

where f (2) = 2p and f −1(8) = 8
1
p are the exponen-

tial weighing function and its inverse. According to [11],
p = 0.2308 is a good choice for an accurate b̂t and
p = 0.2318 is a good choice for an accurate |X̂t|. Experi-
mentally we found both of these values to be appropriate for
our application.

Finally, if we ignore the negative frequencies in the spec-
trum, we can apply (14) and (15) to the nth peak in the discrete
spectrum and estimate An, fn and φn as

Ân = 2|X̂t| (16)

f̂n = b̂t1fDFT (17)

φ̂n = φ̂t (18)

D. SPECTRUM PREPROCESSING
In practice, the trajectories followed by the interface variables
need to be preprocessed to maximize the accuracy of the
XQIFFT. The two main challenges that need to be addressed
are the possibility of an insufficient frequency resolution,
which is detrimental to spectrum interpolation, and spectral
leakage [12], which modifies the shape of the spectrum.

Fig. 2 (a) shows the spectrummagnitude of a 0.06s window
of a current trajectory sampled at a 10kHz rate. The trajectory
has one frequency component around 50Hz, that appears
as the most prominent peak, and one around 250Hz that is
almost indistinguishable. In the case of the the most promi-
nent magnitude peak, the large separation betweenmagnitude
samples would make it difficult to fit a parabola to them
as precisely as in Fig. 1. This problem can be mitigated by
zero-padding the trajectory before obtaining its spectrum.
This results in the smoother spectrum magnitude shown
in Fig. 2 (b), where the actual location of both frequency
components becomes easier to estimate from the main lobes.

However, the resulting spectrum is affected by spectral
leakage, as the presence of side lobes around each main
lobe indicates. These side lobes are a challenge for peak
detection, as they are difficult to distinguish from the main
lobes without supervision, and modify the amplitude of the
main lobes. We can mitigate spectral leakage by applying a
windowing function to the zero-padded trajectory. Fig. 2 (c)
shows the result of applying a Blackman window [12] to
the zero-padded trajectory. The resulting spectrum has two

FIGURE 2. Spectrum preprocessing of a current trajectory with one
frequency compoent at 50Hz and another at 250Hz, sampled for 0.06s at
a 10kHz rate. (a) Original trajectory. (b) Zero-padded trajectory.
(c) Zero-padded and Blackman-windowed trajectory.

smooth and easily distinguishable main lobes around 50Hz
and 250Hz. For each main lobe it is now straightforward
to identify |X (b − 1)|, |X (b)| and |X (b + 1)| and to apply
the XQIFFT.

E. PARAMETER POSTPROCESSING
Experimentally we found that the φn that the XQIFFT pro-
duces are not accurate enough for our application. To remedy
this, we resorted to curve fitting based on least squares opti-
mization. For this, we transform the trajectory model into a
function of time an phase and solve

{φ1, . . . , φN }=argmin
ϕ1,...,ϕN

∑
t∈tw

[
u(t)− û(t, ϕ1, . . . , ϕN )

]2
, (19)

using the Levenberg-Marquardt algorithm, which is an iter-
ative method. We use the φn obtained from the XQIFFT as
starting point for the first iteration, and let the algorithm refine
them further.

V. METHOD EVALUATION
To evaluate the selective decoupling method we measured
its accuracy with respect to a monolithic simulation and its
speedup with respect to a traditional co-simulation, using a
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FIGURE 3. Diagram of the test circuit.

test circuit. We quantified accuracy by measuring the devia-
tion (error) of the state variables computedwith co-simulation
from those obtained from a monolithic simulation. In every
case we present the error of a given state variable in per-
cent of the dynamic range of said state variable. We cal-
culated speedup as the ratio between the execution time of
a traditional co-simulation and a selectively-decoupled co-
simulation. All of these (co-)simulations are of the same
AC circuit.

A. TEST CIRCUIT
Fig. 3 shows the test circuit we used to evaluate the selective
decoupling method. This circuit represents one phase of a
simple electrical power system, composed of a generator,
a transmission line and a load, and it is based on the electro-
magnetic transient models from [13]. The switch connected
between the transmission line and the load simulates line-
to-ground short circuits, and the current source connected in
parallel to the load injects 3rd and 5th harmonics to simulate
the presence of non-linear devices. Table 1 specifies the
parameters of this test circuit.

TABLE 1. Test circuit parameters.

For co-simulation, we split the test circuit in two sub-
systems as in Fig. 4, where vπ1 and iπ are the interface
variables. At every macro time step, subsystemA sends vπ1 to
subsystem B, and subsystem B enforces vπ1 with a controlled

FIGURE 4. Diagram of the co-simulated test circuit split in two
subsystems that exchange the interface variables vπ1 and iπ .

voltage source. At the same time, subsystem B sends iπ to
subsystem A, and subsystem A enforces iπ with a controlled
current source.

B. TEST ENVIRONMENT
We implemented the circuit model, the simulators and the
co-simulation master in Python 3.6, aided by the numeri-
cal methods provided by SciPy [14], and by the ØMQ [15]
messaging library for communication between the simulators
and the master. We ran all the (co-)simulations on a desktop
computer with a 3.5GHz Intel Xeon CPU and 8GB of RAM.
All processes (i.e., both simulators and the co-simulation
master) run in parallel, each on a different CPU core. In our
implementation, the simulators are in charge of analyzing
their own inputs and outputs and of requesting mode tran-
sitions to the co-simulation master. In turn, the co-simulation
master has the additional task of synchronizing mode transi-
tions at the request of the simulators.

C. CASE 1: VALIDATION
To validate the selective decoupling co-simulation method,
we compared it to a monolithic simulation and a traditional
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co-simulation of the test circuit. The (co-)simulated scenario
includes a short circuit event that starts at t = 0.05s and
clears at t = 0.15s, and a load event at t = 0.25s repre-
sented as a step reduction of RL to 5�. For the selectively
decoupled co-simulation we considered two cases: one where
these events are known in advance and another where they
are unknown and must be detected. This is to study how the
method reacts to external and internal events. To solve the
differential equations that model our test circuit we used the
DOPRI5 solver, which is a Runge-Kutta solver of order 4(5)
with step size control [16], and limited its maximum step size
to the size of the macro time step. For the co-simulations we
used a macro time step H = 0.1ms, an acquisition window
size Tw = 2/50Hz = 0.04s, a window hop size Rw = 1
sample, and a predictability threshold εp = 0.02p.u.
Table 2 presents the execution time of each method. In the

table we can see that the co-simulation is more than four
times slower than the monolithic simulation. The table also
shows that the selectively-decoupled co-simulation provides
a speedup of about 20% with respect to the traditional
co-simulation. Even though this is a substantial improve-
ment, it is not enough to come close to the execution time
of the monolithic simulation. Unexpectedly, the selectively-
decoupled co-simulation with unknown event times provides
a higher speedup than the one with known event times,
despite the additional operations the former executes. This
is because an event can only be detected after it happens,
which causes the co-simulation with unknown event times
to remain decoupled for slightly longer that its counterpart.
Nevertheless, we do not believe this result would necessarily
extend to larger models, where the penalty for rolling back
a simulator is higher and could offset the gains from longer
decoupled execution.

TABLE 2. Execution times and speedup for Case 1 (average of 10 runs).

Fig. 5 compares the trajectories of all the state variables in
the test circuit, computed with each (co-)simulation method.
The colored background indicates that the co-simulation is
decoupled. The figure shows that all the trajectories overlap
to the point where they are practically indistinguishable from
each other, even when the co-simulation is decoupled. The
selectively decoupled co-simulations are able to seamlessly
transition between modes, and of accurately reproducing fast
transients, such as the peaks in vL and iL at t = 0.15s, or the
small oscillations in vL at t = 0.25s.

It is not until we examine the error of each co-simulation
with respect to the monolithic simulation in Fig. 6, that the
differences between the methods become clear. With the

FIGURE 5. State variables computed with a monolithic simulation,
a traditional co-simulation, a selectively-decoupled co-simulation with
known event times, and a selectively-decoupled co-simulation with
unknown event times (Case 1). The colored background indicates when
the co-simulation is in decoupled mode: green for known event times,
red for unknown event times. Note that vL = vπ2 and vG = vπ1 .

exception of a few peaks that occur at mode transi-
tions, the errors obtained from the selectively decoupled
co-simulations are well below 1%. The error plots show that
all three co-simulations are similarly accurate in coupled
mode, and that the error increases as soon as the simulators
decouple. During the longest decoupledmode we can also see
that the error has a tendency to increase, which we attribute
to the limited accuracy of the trajectory models. Although
both selectively-decoupled co-simulations show similar accu-
racy, after recoupling the error is slightly higher for the
co-simulation with unknown event times. The delay between
event occurrence and event detection is to blame for this
additional deviation.

D. CASE 2: INFLUENCE OF THE MACRO TIME STEP
The objective of this case is to study the influence of the
macro time step H on the accuracy and execution time
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FIGURE 6. State variable errors of the traditional co-simulation,
the selectively-decoupled co-simulation with known event times, and the
selectively-decoupled co-simulation with unknown event times (Case 1).
The errors are measured with respect to the monolithic simulation and
are in percent of the dynamic range of the corresponding state variable.
The colored background indicates when the co-simulation is in decoupled
mode: green for known event times, red for unknown event times.

of a selectively decoupled co-simulation. For this purpose,
we considered the same scenario and settings as in Case 1,
but repeated the co-simulations for different values of H .
Fig. 7 shows the results of these (co-)simulations in terms
of state variable errors and speedup with respect to H . The
figure summarizes the errors using box plots that mark the
25th, 50th, 75th and 100th error percentiles.
The results show an overall tendency for both the error and

the speedup to grow asH grows. We can observe that most of
the error of the traditional co-simulation lays in a lower range
than the error of the selectively-decoupled co-simulations,
with some exceptions for large H , where the ranges are
approximately the same. We can observe this tendency most
clearly if we compare the 75th error percentiles.

FIGURE 7. State variable errors with respect to the monolithic simulation
and speedup with respect to the traditional co-simulation for different
macro time step sizes (Case 2). The error is in percent of the dynamic
range of the corresponding state variable. Each box plot marks the 25th,
50th, 75th and 100th error percentiles. The speedup is the average
of 10 runs.

Unexpectedly, there are cases where a smaller H produces
a higher error range. One example of this is the error in vG,
which lays in a lower range for H = 0.1 × 2−1ms than
for H = 0.1 × 2−2ms. In all of these cases, the 25th, 50th

and 75th do not follow this tendency, indicating that only a
few error points cause the higher error range. By examining
the results of each co-simulation individually, we found that
the error points that cause the higher error range come from
small oscillations that occur at the mode transition right
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after t = 0.15s, the amplitude of which does not show a clear
tendency with respect to H .
If we now compare both selectively decoupled co-

simulations, we observe that the 75th error percentile is sim-
ilar for every value of H , but that the 25th percentile drops
much lower for the co-simulation with known event times
as H decreases. This is because the upper error bound is
mostly influenced by the accuracy of the trajectory model,
whereas the lower error bound is mostly influenced by the
accuracy of the coupled co-simulation (see Fig. 6). The accu-
racy of the trajectory model does not significantly improve
as H decreases, because the accuracy of the DFT depends
on the size of the acquisition window (number of acquired
periods), not the sample rate (see Section IV-B), provided
that the minimum sample rate requirement is met. Since the
co-simulation with unknown event times spends more time in
decoupled mode for the reasons exposed in Case 1, a larger
portion of its error lays towards the higher extreme of the error
range.

Regarding the speedup, we see that a selectively decou-
pled co-simulation can become slower than a traditional
co-simulation if H is sufficiently small. As H decreases,
(7) must be evaluated more often. Additionally, the trajectory
model identification method has to process a larger number
of samples. As a result, the overhead of detecting predictable
interface variables grows to the point where the selectively
decoupled co-simulation yields no benefit.

E. CASE 3: INFLUENCE OF THE PREDICTABILITY
THRESHOLD
The objective of this case is to study the influence of the
predictability threshold εp on the accuracy and execution time
of a selectively decoupled co-simulation. For this purpose,
we considered the same scenario and settings as in Case 1, but
repeated the (co-)simulations for different values of εp. Fig. 8
shows the results of these (co-)simulations in the same style
as in Case 2. Although the traditional co-simulation does not
depend on εp, we show its error for each εp for ease of visual
comparison.

The results in Fig. 8 share some characteristics with those
from Fig. 7. We observe that the 75th error percentile of the
selectively-decoupled co-simulations grows with εp. We also
observe that there is no clear tendency for the 100th error
percentile, although higher error ranges do tend to appear
for higher εp. In addition, we see that in most cases both the
25th and 75th error percentiles are lower for the selectively
decoupled co-simulation with known event times.

Even though the 75th error percentile increases with εp,
it always remains below 0.5%. However, the 100th error per-
centile reaches values above 10% for high εp. By examining
the results of each co-simulation individually, we found that
the error points that cause such a high 100th percentile come,
once more, from small oscillations that occur at the mode
transition right after t = 0.15s. This indicates that variations
of εp do not affect all mode transitions the same way, and that
while some remain seamless, others do not.

FIGURE 8. State variable errors with respect to the monolithic simulation
and speedup with respect to the traditional co-simulation for different
predictability thresholds (Case 3). The error is in percent of the dynamic
range of the corresponding state variable. Each box plot marks the 25th,
50th, 75th and 100th error percentiles. The speedup is the average
of 10 runs.

Fig. 9 shows how changes in εp shift the time when mode
transitions occur. According to the figure, as εp increases,
the transitions to the decoupled mode happen earlier, whereas
the transitions to the coupled mode happen later. The fig-
ure also confirms that not all mode transitions are equally
affected by changes in εp. For example, the 2nd decoupling
happens around 300 macro time steps earlier for εp = 0.15
than for εp = 0.01, whereas all the other transitions are
shifted by 20 macro time steps or fewer. This means that this
transition alone produces most of the additional speedup.
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FIGURE 9. Change in the mode transition times measured in macro time
steps for different predictability thresholds (Case 3). As the threshold
grows, the simulators decouple earlier and recouple later.

How much a mode transition shifts in time as a conse-
quence of a change in εp has to do with how quickly an
interface variable deviates from (or converges towards) its
trajectory model. Fig. 10 shows the deviation of iπ from
its trajectory model îπ . Here we see that the transitions to
decoupled mode with the largest shift are those where the
deviation decreases slowly (second and fourth), whereas the
least affected transitions are those where there is virtually no
deviation (first) or the deviation falls sharply (third).

FIGURE 10. Deviation between the true trajectory of iπ and the trayectory
model îπ , and mode transitions for two predictability thresholds (Case 3).
The colored background indicates when the co-simulation is in decoupled
mode: orange for εp = 0.05, green for εp = 0.15.

F. CASE 4: INFLUENCE OF THE WINDOW HOP SIZE
The objective of this case is to study the influence of the
acquisition window hop size Rw on the accuracy and exe-
cution time of a selectively decoupled co-simulation. Once
more, we considered the same scenario and settings as in
Case 1, but repeated the (co-)simulations for different values
of Rw. Fig. 11 shows the results of these (co-)simulations in
the same style as in Cases 2 and 3. Since a change in Rw
only affects the transitions to decoupled mode, we omit
the results of the selectively decoupled co-simulation with

FIGURE 11. State variable errors with respect to the monolithic
simulation and speedup with respect to the traditional co-simulation for
different acquisition window hop sizes (Case 4). The error is in percent of
the dynamic range of the corresponding state variable. Each box plot
marks the 25th, 50th, 75th and 100th error percentiles. The speedup is the
average of 10 runs.

unknown events. Although the traditional co-simulation does
not depend on Rw, we show its error for each Rw for ease of
visual comparison.

The results in Fig. 11 show that the error does not
change significantly for different values of Rw. Additionally,
the maximum speedup that we can achieve by increasing
this parameter is more modest than in Case 3. As opposed
to previous cases, where the speedup shows a tendency to
settle at a certain value, in this case we find that the speedup
drops significantly for large Rw. This happens because as Rw
increases, so does the probability of delaying transitions to
the decoupled mode.
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G. CASE 5: SELECTING PARAMETERS
FOR ADDITIONAL SPEEDUP
The objective of this case is to tune the selectively decoupled
method to obtain a higher speedup than that of Case 1, guided
by the results of Cases 2 to 4. Here, we considered the same
scenario and settings as in Case 1 but set εp = 0.07 and Rw =
24 based on the relationship between error and speedup found
in Cases 3 and 4.

TABLE 3. Speedup for Case 5 (average of 10 runs).

Table 3 shows the speedups for Case 5, which are around
10% and 20% higher than in Case 1. If we now observe
Fig. 12, we can see that the first and third transitions to the
coupled mode occur much later for the co-simulation with
unknown event times than for the one with known event
times, which explains the speedup difference between them.
In addition, by comparing Fig. 12 to Fig. 5 we see that much
of the additional speedup comes from the second and fourth
transitions to decoupled mode, which is in accordance with
the results from Fig. 9.

Regarding the accuracy of the results, it is still difficult
to perceive the differences between the methods, as Fig. 12
shows. Once more, these differences become clear when we
observe the error in Fig. 13. Indeed, the error is higher in
this case than in Case 1, and the differences between both
selectively decoupled co-simulations are also more promi-
nent. Nevertheless, the error remains under or around 1%
for all state variables, with the exception of some peaks that
reach almost 10% at the second transition to the coupled
mode. These errors might be acceptable if we consider the
appearance of the trajectories in Fig. 12.

H. DISCUSSION
Our results show that it is possible to speed up a co-simulation
by decoupling the simulators, if the interface variables go
through predictable states. If more events happened in the
time span of our (co-)simulations, there would be no pre-
dictable states and no speedup would be possible. However,
since our definition of predictability depends on the trajectory
model, a more sophisticated trajectory model that can repre-
sent the interface variables during slow transients might be
able to produce speedup if events occurred more frequently,
on the condition that these trajectory models can be identified
at a reasonable computational cost.

We found that there are cases where detecting predictable
interface variables becomes so computationally expensive
that the selectively-decoupled co-simulation turns out to be
slower than the traditional co-simulation. This opens up the
question of how effective the method would be for systems

FIGURE 12. State variables computed with a monolithic simulation,
a traditional co-simulation, a selectively-decoupled co-simulation with
known event times, and a selectively-decoupled co-simulation with
unknown event times (Case 5). The colored background indicates when
the co-simulation is in decoupled mode: green for known event times,
red for unknown event times.

that have multiple inputs, and therefore, incur a higher com-
putational expense testing for predictability. A selectively-
decoupled co-simulation will likely become slower than a
traditional co-simulation if the number of interface variables
is large enough, and all of them are continuously tested for
predictability. Nevertheless, in the case of only two coupled
subsystems it is not necessary to test all variables simultane-
ously. Instead, a simulator could tests only one of its inputs,
and onlywhen that input becomes predictable it would test the
predictability of the others. This would substantially decrease
the additional computational expense.

This brings us to the question of how effective the selec-
tive decoupling method is for co-simulations with more than
two subsystems. The answer to this questions depends on
whether all simulators are expected to couple and decouple
simultaneously, or if some can decouple while the others
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FIGURE 13. State variable errors of the traditional co-simulation,
the selectively-decoupled co-simulation with known event times, and the
selectively-decoupled co-simulation with unknown event times (Case 5).
The errors are measured with respect to the monolithic simulation and
are in percent of the dynamic range of the corresponding state variable.
The colored background indicates when the co-simulation is in decoupled
mode: green for known event times, red for unknown event times.

remain coupled. In the first case, the opportunities for decou-
pling can become scarce, since not all simulators can be
expected to behave predictably at the same time. However,
this approach has the advantage that not all interface variables
need to be continuously tested for predictability. On the other
hand, allowing some simulators to decouple while the rest
remain coupled might open up more opportunities for decou-
pling, but this comes at the cost of having to analyze at least
one interface variable per pair of coupled simulators.

As mentioned in Section III, the selective decoupling
method requires that the simulators are able to roll back
in time. This significant practical limitation can be circum-
vented by ensuring that all the simulators run at the same rate
while in decoupled mode. Yet, this is difficult to ensure in a
non-real time environment. One possible compromise could

be to have the simulators exchange synchronization messages
at low frequency while decoupled. This is a compromise
because depending on how infrequent the synchronization
messages are, either the speedup or the accuracy when recou-
pling would suffer.

We defined the selective decoupling method independently
from the system it is applied to, but we only analyzed the
case of AC circuits. In principle, there is no reason to think
that the method cannot be applied to other physical systems.
Yet, finding appropriate trajectory models for their interface
variables might be more challenging than in our case.

VI. CONCLUSION
This paper proposed a method for speeding up co-simulations
by selectively decoupling the simulators when their out-
puts are predictable, and presented its application to the
co-simulation of an AC circuit that represents an electri-
cal power system. After comparing a monolithic simulation,
a traditional co-simulation, and two selectively-decoupled co-
simulations, our method yielded a speedup of around 20%
with errors below 1%, with the exception of some brief
peaks. After selecting method parameters based on system-
atic experimentation we were able to increase the speedup
up to 39%, while keeping the error around 1%, again with
the exception of some brief peaks. Our results show that it is
possible to speed up co-simulations composed of two simu-
lators by decoupling them, while keeping the co-simulation
error low. However, questions regarding the scalability of
the method to co-simulations with more than two simulators
remain open. All in all, the method shows characteristics that
can make co-simulation an even more valuable tool for the
user.
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