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Abstract: Cyanobacterial blooms appear by complex causes such as water quality, climate, and
hydrological factors. This study aims to present the machine learning models to predict occurrences
of these complicated cyanobacterial blooms efficiently and effectively. The dataset was classified
into groups consisting of two, three, or four classes based on cyanobacterial cell density after a week,
which was used as the target variable. We developed 96 machine learning models for Chilgok weir
using four classification algorithms: k-Nearest Neighbor, Decision Tree, Logistic Regression, and
Support Vector Machine. In the modeling methodology, we first selected input features by applying
ANOVA (Analysis of Variance) and solving a multi-collinearity problem as a process of feature
selection, which is a method of removing irrelevant features to a target variable. Next, we adopted
an oversampling method to resolve the problem of having an imbalanced dataset. Consequently,
the best performance was achieved for models using datasets divided into two classes, with an
accuracy of 80% or more. Comparatively, we confirmed low accuracy of approximately 60% for
models using datasets divided into three classes. Moreover, while we produced models with overall
high accuracy when using logCyano (logarithm of cyanobacterial cell density) as a feature, several
models in combination with air temperature and NO3-N (nitrate nitrogen) using two classes also
demonstrated more than 80% accuracy. It can be concluded that it is possible to develop very accurate
classification-based machine learning models with two features related to cyanobacterial blooms.
This proved that we could make efficient and effective models with a low number of inputs.

Keywords: cyanobacterial blooms; machine learning; classification algorithm; feature selection;
imbalanced dataset; oversampling

1. Introduction

Harmful Algal Blooms (HABs) have appeared due to pollution of aquatic environ-
ments, and increasingly due to climate change, which has been a cause for the increase in
water temperature [1,2]. There are increasing concerns that the combined environmental
factors of uncontrolled pollution and climate change (particularly higher temperature)
may lead to more frequent and more severe HABs [3–5]. HABs have been negatively
affecting not only the aquatic environment but also human health because they produce
toxic substances [6] such as microcystin [7,8]. We can recognize the serious problems of
HABs through the studies that showed that algal blooms (or cyanobacterial blooms) caused
fish death [9,10] and human liver disease [11]. The challenges for water management
in preventing or minimizing HABs are linked to the complexity of the HAB processes
(including identification of main conditioning factors), their site-specificity, and associated
difficulties in their prediction [12,13].
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Cyanobacterial blooms appear when phytoplankton proliferates massively in lentic
water such as lakes, reservoirs, or ponds, owing to eutrophication and stratification [2,14].
In other words, an increase in the nutrients and a rise in the water temperature of stagnant
water bodies can bring about cyanobacterial blooms [15]. In this regard, many people in
South Korea have argued that the weirs, which were built during the Four Major Rivers
Restoration Project from 2009 to 2012, have decreased the flow velocity in the rivers [2],
causing the appearance of cyanobacterial blooms [15] and the environmental problems
such as water pollution and ecological disturbance [10].

As part of the solution to the HABs problem, various studies were carried out on
identifying the cause of cyanobacterial blooms and predicting their occurrence [16]. Many
previous studies revealed that water quality factors (e.g., water temperature, suspended
solids, dissolved oxygen, nutrients such as nitrogen compounds, phosphorus, etc.), climatic
conditions (e.g., air temperature, rainfall, etc.), and hydrological factors (e.g., discharge,
water level, etc.) were significant causes of the cyanobacterial blooms [15,16]. However, it
is not easy to find only one or two specific causes of cyanobacterial blooms because they
appear by complicated biological processes in addition to external factors [15,17]. In order
to predict the occurrence of these cyanobacterial blooms, a number of studies have recently
applied data-driven models, using Artificial Neural Networks (ANN), Decision Tree (DT),
etc., as well as process-based models such as DYRESM/ELCOM-CAEDYM [16].

Numerous earlier studies attempted to predict the cyanobacterial blooms accurately
by developing process-based models that mathematically provide the mechanism of the
blooms [16]. Nevertheless, the process-based models require considerable input [16] and
computing time [18] as they all involve related factors such as water quality, climate, and
flow rate. On the other hand, data-driven models using machine learning or deep learning
produce output by taking less running time [18] and only some main factors [16]. Some
research proved that the data-driven models employing techniques such as Random Forest
(RF) [19,20], Support Vector Machine (SVM) [19], ANN [19], and Extreme Learning Machine
(ELM) [21] ensured high accuracy in predicting the real-valued output such as cyanobacte-
rial cell density [20] or Chlorophyll-a concentration (Chl-a), which is a proxy index for the
cyanobacterial blooms [17,20,21]. Additionally, recent studies were conducted on the ma-
chine learning models that forecast the cyanobacterial blooms in the type of the binary [9]
(e.g., occurrence/non-occurrence) or the ordinal data [22,23] (e.g., low/medium/high)
using classification methods.

However, for those classification-based machine learning models, we need to consider
at least two prerequisites, which were often overlooked in earlier studies. The first one
is to pre-select input features of the model based on the theoretical knowledge regarding
cyanobacterial blooms. By going through the process of this feature selection, we can
improve the efficiency and accuracy of the model [20,24]. Nonetheless, feature selection
that is not derived from the physical or biological processes related to target variables
may give poor performances to the models [16,25,26]. Moreover, pre-selection of features
without considering the statistical characteristics such as multi-collinearity can be an
obstacle to developing a robust model [27,28].

The other prerequisite is a balanced dataset, which is essential for high performances
of the classification models [29] using nominal or ordinal data [30]. The balanced dataset
ensures the even distribution of two or more classification data without being biased
toward one classification. In the raw dataset of cyanobacterial blooms, non-occurrence
data generally outweigh the occurrence data [9,29,31]. Therefore, the performance of the
models tends to become low if the imbalanced dataset of the cyanobacterial blooms is
used as it is [29]. We need to correct the imbalance of the dataset with an oversampling
technique [31].

The main objective of this study is to develop optimal classification-based machine
learning models for efficiently and effectively predicting occurrences of cyanobacterial
blooms through the process of feature selection and the oversampling of datasets. Specifi-
cally, we (i) derive significant input features using the datasets of a specific point called
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Chilgok weir in South Korea, (ii) present which processes need to take place to reduce
the number of input features as much as possible, which is required to develop machine
learning models efficiently, (iii) identify how the target variables should be classified to
improve model performance, and (iv) find out the optimal combinations of input features
and four classification algorithms such as k-Nearest Neighbor (k-NN), DT, Logistic Regres-
sion (LR), and SVM. The concrete results from this research will introduce some novelty for
decision-makers, who need intuitive and effective strategies for dealing with this problem,
using models that can predict the cyanobacterial blooms as accurately as possible with a
few features. For example, decision makers in charge of reservoir operations will be able
to release more and cleaner water from an upstream reservoir if our model suggests that
cyanobacterial blooms will appear in a downstream river a week later.

2. Materials and Methods
2.1. Study Area

Since 2012, 16 weirs have been operated on the four major rivers of South Korea;
Hang River, Nakdong River, Geum River, and Yeongsan River [10]. The longest, Nakdong
River [21] with a length of about 510 km, has been exposed to water quality problems due
to adjacent industrial and agricultural districts [2]. In the Nakdong river basin, there are
eight weirs [2,21], whose locations are shown in Figure 1.

Figure 1. Location of the study area.

Among the eight weirs, we selected Chilgok weir, completed in June 2012, as the
target location of this study for two reasons. The first reason is the availability of the
datasets related to the cyanobacterial blooms of Chilgok weir. The Algae Alert System in
South Korea [2], based on cyanobacterial cell density as shown in Table 1 [2,9,23], has been
operated by the National Institute of Environmental Research (NIER) to ensure the safety
of drinking water [23]. One of the observation stations is at the upstream point about 500 m
away from Chilgok weir [2]. The second is the location of the observation station. The
station of Chilgok weir is located in the most upstream point among three stations involved
in the Algae Alert System on the mainstream of Nakdong River. It enables us to consider
as few factors as possible influencing the cyanobacterial blooms. In general, there are more
factors in the downstream points affecting the occurrence of cyanobacterial blooms, such
as the inflow of pollutants from tributaries or sewage treatment plants [2,21].
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Table 1. Criteria for algae alert in South Korea.

Stage Cyanobacterial Cell Density (cells mL−1)

Caution ≥1000
Warning ≥10,000
Outbreak ≥1,000,000

2.2. Dataset
2.2.1. Data Availability

For Chilgok weir point, we acquired datasets including water quality factors, cli-
matic conditions, and hydrological factors known as the causes (or influencing factors)
of the cyanobacterial blooms. Cyanobacteria-related water quality data, meteorologi-
cal data, and hydrological data are open to the public by NIER, Korea Meteorologi-
cal Administration (KMA), and Korea Water Resources Corporation (K-water), respec-
tively [2,9,14,15,21,23,29,32]. Table 2 shows the feature, the frequency, and the source of
each dataset. Regarding the cyanobacteria-related water quality, the harmful cyanobacteria
include four genera: Microcystis, Anabaena, Aphanizomenon, and Oscillatoria spp. [2,9,23].

Table 2. List of features.

Category Feature Description Unit Frequency Source

Water quality
data

Cyano Cyanobacterial cell density cells mL−1

Weekly NIER

WT Water temperature ◦C
pH Hydrogen ion concentration -
DO Dissolved oxygen mg L−1

Chl-a Chlorophyll a mg m−3

BOD Biochemical oxygen demand mg L−1

COD Chemical oxygen demand mg L−1

SS Suspended solids mg L−1

TN Total nitrogen mg L−1

TP Total phosphorus mg L−1

N/P TN/TP ratio -
TOC Total organic carbon mg L−1

EC Electrical conductivity µS cm−1

TotalColiform Total coliforms 100 mL−1

TDN Total dissolved nitrogen mg L−1

NH3-N Ammonium nitrogen mg L−1

NO3-N Nitrate nitrogen mg L−1

TDP Total dissolved phosphorus mg L−1

PO4-P Phosphate phosphorus mg L−1

FecalColiform Fecal coliforms -

Meteorological
data

AT Average air temperature ◦C

Daily KMA
LT Lowest air temperature ◦C
HT Highest air temperature ◦C

MaxSolarRad Maximum amount of solar
radiation for one hour MJ m−2

DaySolarRad Total amount of solar radiation MJ m−2

Hydrological
data

WeirLevel Water level of weir EL.m

Daily K-water
StorageVolume Storage volume of weir million m3

Rainfall Rainfall in weir catchment area mm
Inflow Weir inflow m3 s−1

Outflow Weir outflow m3 s−1

2.2.2. Data Preprocessing

Across a range of regions, there were previous studies in which the forecast horizons
were set from real-time to as long as one month or more depending on the objective of
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developing the models and the frequency of the used datasets [16]. In this study, we used
a week as the forecast horizon because the frequency of the cyanobacteria-related water
quality dataset is on a weekly basis as shown in Table 2. The raw dataset consisted of
378 instances with the cyanobacterial cell density after a week (Cyano(t+1)) as a target
variable and 30 input features including the current cell density (Cyano(t)) as shown in
Table 3. The period for the used data was from August 2012 to December 2020.

Table 3. Nine-year mean, minimum, median, and maximum values for each feature in the raw
dataset (378 instances).

Category Feature Mean Minimum Median Maximum

Input features

Cyano(t) 2976 0 165 112,735
WT 16.8 0.7 17.5 33.6
pH 8.1 6.5 8.1 9.6
DO 10.4 1.6 10.1 16.4

Chl-a 20.1 2.3 15.45 87.2
BOD 1.9 0.4 1.8 5.0
COD 5.9 3.5 5.8 10.5

SS 7.6 1.5 6.3 44.9
TN 2.674 1.089 2.686 4.396
TP 0.043 0.011 0.034 0.198

N/P 81.5 12.7 76.6 255.5
TOC 4.1 2.6 4.0 7.9
EC 288 124 286 596

TotalColiform 8219 2 264 340,000
TDN 2.513 1.078 2.532 4.125

NH3-N 0.113 0.003 0.091 0.790
NO3-N 1.971 0.530 1.996 3.330

TDP 0.024 0.003 0.018 0.125
PO4-P 0.011 0.000 0.004 0.105

FecalColiform 428 0 12 21,750
AT 15.5 −4.8 15.8 32.5
LT 10.8 −8.9 10.8 27.6
HT 21.0 −1.0 21.9 38.0

MaxSolarRad 2.39 0.19 2.54 3.74
DaySolarRad 15.56 0.69 15.465 31.02

WeirLevel 25.52 25.02 25.56 25.86
StorageVolume 75.321 68.181 75.930 79.005

Rainfall 2.290 0.000 0.023 57.263
Inflow 112.867 3.604 67.733 1147.669

Outflow 113.379 8.098 69.004 1140.136

Target variable
(Output feature) Cyano(t+1) 2903 0 165 112,735

The machine learning models applying classification algorithms require a nominal
or an ordinal data type for target variables [30]. In order to compare the performance of
each model depending on the number of classes, we made three groups by classifying
the target variable (Cyano(t+1)) based on the Algae Alert System, as presented in Table 1.
For the first group, the dataset was classified into four classes (Normal, Caution, Warning,
and Outbreak), which was the same as the Algae Alert System, and it was named Group1.
It had an imbalanced dataset as it comprised 269 Normals, 83 Cautions, 26 Warnings,
and zero Outbreaks. We made the other two groups (Group2 and Group3) by dividing
the dataset into two classes (e.g., [9]) (Normal/Occurrence) for Group2 and three classes
(e.g., [22,23]) (None/Normal/Occurrence) for Group3. As a result, Group1, Group2, and
Group3 consisted of four, two, and three classes, respectively. We used these three groups
to ensure which classification of the cyanobacterial cell density provided us with a better
model with reference to performance. Table 4 shows how each group was specified in
terms of cyanobacterial cell density.
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Table 4. Classification framework for each group.

Group1 Group2 Group3

Class Cyano(t+1) Number Class Cyano(t+1) Number Class Cyano(t+1) Number

Normal <1000 269 Normal <1000 269 None 0 136
Caution ≥1000 83 Occurrence ≥1000 109 Normal <1000 133
Warning ≥10,000 26 - Occurrence ≥1000 109
Outbreak ≥1,000,000 0 -

In addition, the logarithmic transformation of base 10 was applied to Cyano(t) to
convert the skewed distribution of the raw dataset into normal distribution as much as
possible [31]. Consequently, it was named as logCyano. Here, when Cyano(t) was zero,
logCyano was also given zero. Furthermore, we applied standardization to 30 input
features according to Equation (1). It is one of the feature scaling methods, which is an
important preprocessing task in machine learning modeling [30,33].

x′ =
x− µ

σ
(1)

where x′ is a standardized value, x is an observation data for a specific feature from the raw
dataset, µ is the mean of the whole observation data for the feature, and σ is its standard
deviation.

Table 5 shows the values of the input features after preprocessing using the logarithmic
transformation and the standardization of input features, together with the classified target
variable.

Table 5. Input features (including the mean, minimum, median, and maximum values for each fea-
ture) after preprocessing the dataset using logarithmic transformation and standardization, together
with the classified target variable.

Category Feature Mean Minimum Median Maximum

Input features

logCyano

0.000

−1.200 0.224 2.046
WT −1.974 0.085 2.071
pH −3.340 0.032 3.193
DO −3.115 −0.077 2.144

Chl-a −1.194 −0.310 4.514
BOD −2.066 −0.148 4.237
COD −2.316 −0.100 4.430

SS −1.240 −0.280 7.533
TN −2.451 0.018 2.661
TP −1.219 −0.329 6.019

N/P −1.602 −0.114 4.048
TOC −1.784 −0.133 4.468
EC −2.312 −0.041 4.324

TotalColiform −0.308 −0.299 12.455
TDN −2.357 0.031 2.646

NH3-N −1.213 −0.243 7.458
NO3-N −2.425 0.042 2.288

TDP −1.045 −0.307 4.957
PO4-P −0.570 −0.355 5.068

FecalColiform −0.252 −0.245 12.520
AT −2.286 0.024 1.907
LT −2.182 0.000 1.861
HT −2.372 0.088 1.826

MaxSolarRad −2.567 0.171 1.569
DaySolarRad −2.103 −0.014 2.186

WeirLevel −3.042 0.219 2.030
StorageVolume −3.250 0.277 1.677

Rainfall −0.349 −0.346 8.381
Inflow −0.751 −0.310 7.111

Outflow −0.723 −0.305 7.054

Target variable Each class of three groups (Group1, Group2, and Group3) based on Cyano(t+1)
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2.3. Feature Selection
2.3.1. Analysis of Variance (ANOVA)

To build robust learning models, we need feature selection, leading to the elimination
of redundant and irrelevant features [24]. This helps prevent overfitting, enhance model
performance, and increase the running speed of a model [24]. The filter approach, one
of the feature selection methods [24], uses techniques such as ANOVA, which is widely
used in statistical studies. One-way ANOVA determines whether differences between two
or more classes are statistically significant through a comparison of variances between
classes [34]. Through one-way ANOVA, we can judge that the difference is significant
when the F value is large enough and the p-value is less than 0.05 [34,35]. In this study,
features with valid F and p values (F value > 50, p-value < 0.05) by one-way ANOVA were
selected to develop the machine learning models for three groups formed by using the
categorical variables [36]. This is because significant F and p values mean the features have
a high correlation with the categorical target variable.

2.3.2. Multi-Collinearity

Multi-collinearity arises when inter-correlation between input features is strong [27,28].
It can be a problem in statistical analysis such as regression as it distorts the prediction
results of the model [27,28]. For classification-based machine learning, the multi-collinearity
problem can be addressed as part of feature selection (e.g., [27,37–39]). In this study, features
with weak inter-correlation are candidates to be selected. To be specific, the features with
high inter-correlation are removed after correlation analysis using all the features selected
through one-way ANOVA. As a result, we could achieve the purpose of feature selection,
such as warding off the overfitting of the model, by having only the minimum number of
features [40].

2.4. Machine Learning
2.4.1. Classification Algorithms

For this study, we applied four classification-based machine learning algorithms, k-NN,
DT, LR, and SVM, which are widely used [41]. The k-NN is a distance-based classification
algorithm that finds the ‘k’ neighbors, which are closest to the data to be classified. The
target data are allocated the same label as the closest neighbors [22]. The DT is a technique
of classifying data based on the impurity of training data, such as the Gini index [29] and
the entropy [42]. The LR is a classification method that uses logit functions to predict the
probability that data fall into a category between zero and one [43]. Multinomial logistic
regression, an extended form of LR, allows multiple classes to be applied [43]. The SVM
is a machine learning algorithm that determines the optimal hyperplane to maximize the
distance between the categories. The class of new data is determined by the hyperplane [22].
These four machine learning techniques can be implemented using scikit-learn, one of
Python’s machine learning libraries [30].

2.4.2. Oversampling Using SMOTE (Synthetic Minority Oversampling Technique)

As shown in Table 4 regarding the classification frameworks of three groups (Group1,
Group2, and Group3), the dataset to be used in this study had an imbalance by class in all
three groups. While the application of machine learning using such an imbalanced dataset
gives rise to overfitting by increasing excessively prediction accuracy for the majority
class [44], it may make an inaccurate prediction for the minority class [29]. To overcome
the problem of an imbalanced dataset, oversampling can be applied, leading to improved
prediction accuracy for minority classes. It is a process of producing new data of minority
classes equal to the number of data belonging to a majority class [31].

One of the widely used oversampling techniques is SMOTE [45]. It is a method
of synthesizing the interpolated points on a line connecting between adjacent groups
of a minority class in a training set and labeling them as new samples of the minority
class [29,31,45]. Shin et al. [29] and Choi et al. [31] suggested that the cyanobacterial-related
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models to which SMOTE was applied outperformed those without oversampling. In this
study, SMOTE was employed by using a Python library, imblearn [30].

2.4.3. Training, Cross-Validation, and Test

The dataset should be split into a training set for learning and a test set for verification
of the model [30]. In this study, the split ratio between the training set and the test set
was 80%:20%. Additionally, four-fold cross-validation was performed on the training set
to prevent the overfitting of the model [46]. At the same time, the optimal parameters
for each classification algorithm were found through grid search that could improve the
model performance [30,46]. Finally, the models built through four-fold cross-validation
were evaluated using the test set. The parameters which were optimized in this study are
shown in Table 6 [30].

Table 6. Parameters to be optimized in this study for four algorithms.

Algorithm Parameter Description

k-NN n_neighbors Number of neighbors

DT max_depth Maximum depth of the tree

LR C Regularization parameter

SVM
C Regularization parameter

kernel The kernel type to be used in the algorithm
such as ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, etc.

2.4.4. Model Evaluation

The metrics that evaluate the performance of the classification model include Accuracy
(ACC), Precision (PRE), Recall (REC), and F1-score (F1) [30,44,47]. As shown in Figure 2 [30],
we can describe each metric through a confusion matrix schematizing binary classification
using True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN). Accuracy is obtained by dividing the sum of correct predictions (TP + TN) by the
total number of data. Precision represents the ratio of TP to the total number of samples
predicted to be positive (TP + FP). Recall indicates the ratio of TP to the total number
of samples belonging to the actual positive class (TP + FN). F1-score is expressed as a
harmonic mean of Precision and Recall [47]. Precision, Recall, and F1-score are known
as the more reliable metrics for an imbalanced dataset than Accuracy [47]. We, however,
used Accuracy as a performance evaluation metric in this study. The reasons are that we
developed the models using a balanced dataset through SMOTE and we needed to see
their accuracy for both Negatives and Positives of the predicted classes. The four metrics
are formulated as follows [30,44,47].

ACC =
TP + TN

TP + TN + FP + FN
(2)

PRE =
TP

TP + FP
(3)

REC =
TP

TP + FN
(4)

F1 = 2
PRE× REC
PRE + REC

(5)
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Figure 2. Confusion matrix.

2.5. Summary of the Modeling Procedure

We summarized the modeling procedure as follows with Figure 3, based on the above
subsections.

1. One-way ANOVA was carried out using 30 features including logCyano of a stan-
dardized dataset with 378 instances for three groups (Group1, Group2, and Group3).
For the purpose of selecting the features having a strong correlation with the tar-
get variable, F values of more than 50 and p-values of less than 0.05 [34,35] were
applied. Here, the target variable was a class based on Cyano(t+1) for each group;
Normal/Caution/Warning/Outbreak for Group1 (which was actually divided into
three classes because the number of Outbreak elements was zero), Normal/Occurrence
for Group2, and None/Normal/Occurrence for Group3.

2. To address the multi-collinearity problem, the correlation analysis was performed
among the features selected in the first step. As the final process for the feature
selection, the paired features with low inter-correlation coefficients (0.4 or less [48,49])
were selected. Here, Pearson’s correlation analysis was performed with only 241
instances by excluding the zero values of Cyano(t) in 378 instances, as the zero values
were able to distort the analysis result.

3. The dataset consisting of the input features selected in the second step and the target
variable was split into a training set and a test set by 80% and 20%. Therefore, 302
and 76 out of 378 instances were used as the training set and the test set, respectively.
After that, oversampling for the training set was performed [31] by applying SMOTE.
As a result of the oversampling, the number of instances by class became the same.

4. Using the balanced datasets of three groups acquired in the third step, four classification-
based machine learning algorithms including k-NN, DT, LR, and SVM, were applied.
The models with optimal parameters for each machine learning method were con-
structed through four-fold cross-validation and grid search using the training set.

5. The optimal combination of input features and machine learning algorithms for
predicting the categorical target variable was presented by evaluating the performance
(Accuracy) from the test set using the models developed in the fourth step.
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Figure 3. Summary of the modeling procedure.

3. Results
3.1. Determination of the Modeling Cases

We could determine the modeling cases based on the result of feature selection.
Through one-way ANOVA, as shown in Table 7, nine features such as logCyano, WT,
DO, TN, TDN, NO3-N, AT, LT, and HT had significant F and p values (F value > 50,
p-value < 0.05 [34,35]) for the categorical target variable in all three groups. Figure 4 shows
the box plots having the data distribution for each group for the selected nine features,
which helps intuitively notice the differences between classes. As shown in Figure 4, the
distinctions between classes in Group2 and Group3 are clear for the nine features, as in
the results of Table 7. On the other hand, in Group1, the distinction between Normal and
Caution is clear, but it is somewhat unclear between Caution and Warning. Nonetheless,
we used Group1 to compare with the modeling results for the other two groups. This is
because we applied the same classification as the Algae Alert System in Table 1 to Group1
and the F and p values for its three classes were significant as shown in Table 7.

Table 7. F and p values of 30 features. (The nine features with the bold font have significant F and p
values).

Feature
Group1 Group2 Group3

F Value p-Value F Value p-Value F Value p-Value

logCyano 132.367 <0.001 256.089 <0.001 270.917 <0.001
WT 71.613 <0.001 143.214 <0.001 142.227 <0.001
pH 0.545 0.580 0.313 0.576 6.180 0.002
DO 74.182 <0.001 145.698 <0.001 131.458 <0.001

Chl-a 7.137 0.001 14.118 <0.001 7.637 0.001
BOD 1.463 0.233 2.917 0.088 5.022 0.007
COD 2.599 0.076 5.186 0.023 18.898 <0.001

SS 5.244 0.006 3.924 0.048 4.928 0.008
TN 63.964 <0.001 123.352 <0.001 108.115 <0.001
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Table 7. Cont.

Feature
Group1 Group2 Group3

F Value p-Value F Value p-Value F Value p-Value

TP 4.222 0.015 0.951 0.330 6.432 0.002
N/P 19.436 <0.001 38.336 <0.001 40.293 <0.001
TOC 1.499 0.225 1.456 0.228 18.843 <0.001
EC 6.176 0.002 0.170 0.680 8.701 <0.001

TotalColiform 4.703 0.010 6.984 0.009 7.137 0.001
TDN 66.039 <0.001 128.394 <0.001 103.655 <0.001

NH3-N 5.961 0.003 11.281 0.001 6.176 0.002
NO3-N 85.820 <0.001 163.285 <0.001 126.452 <0.001

TDP 3.874 0.022 2.428 0.120 12.020 <0.001
PO4-P 2.922 0.055 0.594 0.441 8.241 <0.001

FecalColiform 1.754 0.175 3.176 0.076 5.414 0.005
AT 63.407 <0.001 126.277 <0.001 98.519 <0.001
LT 66.861 <0.001 133.669 <0.001 103.961 <0.001
HT 53.737 <0.001 106.578 <0.001 83.166 <0.001

MaxSolarRad 5.712 0.004 9.368 0.002 6.774 0.001
DaySolarRad 4.996 0.007 7.154 0.008 5.754 0.003

WeirLevel 3.047 0.049 4.768 0.030 9.661 <0.001
StorageVolume 2.737 0.066 4.370 0.037 9.695 <0.001

Rainfall 2.256 0.106 0.370 0.543 0.327 0.721
Inflow 3.843 0.022 0.244 0.622 6.501 0.002

Outflow 3.649 0.027 0.148 0.701 6.543 0.002

Figure 4. Cont.
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Figure 4. Box plots of nine features selected by ANOVA. (a) Group1; (b) Group2; and (c) Group3.

Although those nine features were highly correlated with the target variable, two
features among them had a multi-collinearity problem. This could be solved by eventually
selecting the features with low inter-correlation coefficients (0.4 or less [48,49]). As shown
in Figure 5, we could recognize that WT and DO should be eliminated because they were
highly correlated with the other features. Accordingly, we were able to make eight modeling
cases, which consisted of two features as shown in Table 8.
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Figure 5. Pearson correlation coefficients (absolute values) among nine features selected by ANOVA.
The red circles indicate the correlation coefficients of 0.4 or less.

Table 8. Modeling cases with a combination of input features.

Modeling Case Input Features

Case1 logCyano, HT
Case2 TN, AT
Case3 TN, LT
Case4 TN, HT
Case5 TDN, HT
Case6 NO3-N, AT
Case7 NO3-N, LT
Case8 NO3-N, HT

3.2. Accuracy of the Models

For eight modeling cases, the machine learning models were developed using four
classification algorithms: k-NN, DT, LR, and SVM. Prior to applying those algorithms,
oversampling for the training sets was implemented for the eight cases by a group as shown
in Figure 6. As a result, a total of 96 models were built with the balanced datasets of the
three groups for the eight cases using four machine learning techniques. Table 9 shows the
parameters optimized by four-fold cross-validation and grid search of each model using the
training sets. One thing we need to note in this table is that the parameter max_depth of the
Case1 model using Group2 and the DT algorithm (DT-Group2-Case2) is one. It means that
only one of the two input features was used to build the model, so we have to be careful
when using this model.
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Figure 6. Bar graphs to show oversampling for train sets of three groups. (a) Group1; (b) Group2;
and (c) Group3.

Table 9. Optimized parameters of four classification algorithms.

Algorithm
(Parameter) Group Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8

k-NN
(n_neighbors)

Group1 3 11 12 6 6 7 3 5
Group2 3 16 13 13 9 5 5 3
Group3 19 16 19 17 16 10 14 14

DT
(max_depth)

Group1 15 11 10 9 15 9 12 14
Group2 1 3 4 14 14 10 8 6
Group3 3 4 3 3 3 4 3 2

LR
(C)

Group1 0.01 1 0.001 0.1 1 0.01 0.01 0.001
Group2 1 1 100 1 0.1 10 1 1
Group3 1 10 100 100 0.1 10 1 1

SVM
(C/kernel)

Group1 1000/rbf 1000/rbf 1000/rbf 1000/rbf 1000/rbf 1000/rbf 1000/rbf 1000/rbf
Group2 10/linear 1/rbf 1/rbf 0.1/rbf 1/rbf 1/rbf 100/rbf 100/rbf
Group3 10/rbf 100/rbf 10/linear 1/linear 0.1/rbf 0.1/rbf 1/linear 0.1/rbf

We could verify which model was more accurate using the test sets as shown in
Figure 7. The combination of SVM-Group2-Case1 using logCyano and HT as input features
provided us with the most accurate model for predicting the cyanobacterial blooms of
Chilgok weir, which ensured the highest accuracy of 92% among the 96 models. On the
other hand, the model accuracy of DT-Group3-Case3 and DT-Group3-Case5 was the lowest
at 54%.

Of the 96 models, 25 models with an accuracy of 80% or more came from Group2, but
all 10 models with less than 60% were from Group3. The accuracy of all the models using
Group2 with two classes was higher than the other groups with three classes. Moreover,
when evaluating performance based on the used features, we could confirm the highest
accuracy of the models using logCyano as a feature. Among the models without using
logCyano, the ones with NO3-N ensured the highest accuracy except the DT algorithm. To
be specific, we obtained the highest accuracy of 88% in the models of k-NN-Group2-Case6
except for four models using logCyano. Figure 8 shows the confusion matrices for the two
models, each with the highest accuracy when using logCyano (SVM-Group2-Case1) and
when not using it (kNN-Group2-Case6). We could see that both models provided results
that were not biased overall towards non-occurrence or occurrence.
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Figure 7. Bar graphs to show models’ accuracy for test sets of three groups. (a) k-NN; (b) DT; (c) LR;
and (d) SVM.

Figure 8. Confusion matrices. (a) SVM-Group2-Case1; (b) k-NN-Group2-Case6.

3.3. Summary of the Modeling Results

The results of the modeling study can be summarized as follows:

• We had nine input features including logCyano, WT, DO, TN, TDN, NO3-N, AT, LT,
and HT from 30 input features by applying one-way ANOVA.

• Seven input features except for WT and DO were available finally for model construc-
tion due to the multi-collinearity problem.

• By using only two input features, we could build a model with a prediction accuracy
of more than 80%.
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• The models using Group2 with two classes surpassed the other models using Group1
and Group3 that were divided into three classes in terms of model performance.

• The optimal combination, developing the most accurate model was SVM-Group2-
Case1, whose accuracy was the highest at 92%.

• All the models with the highest accuracy for each of the four machine learning algo-
rithms (k-NN, DT, LR, and SVM) included logCyano as a feature.

• Among the models that did not use logCyano as a feature, the ones in combination
with air temperature (AT, LT, or HT) and NO3-N enabled high predictive accuracy of
more than 80%.

These results will enable the concerned decision makers to understand how to build
classification-based machine learning models for predicting the occurrences of cyanobac-
terial blooms (HABs) efficiently and effectively. They also indicate that monitoring the
cyanobacterial cell density closely is very important for predicting HABs. For further
prevention or minimization of HABs, actions could be considered targeting a reduction
in pollutants in the water (e.g., NO3-N), or reducing water temperature (e.g., by selective
releases from upstream reservoirs, which do exist in the case study area considered). It
should be noted, however, that the primary goal of this analysis is the efficient and effective
prediction of HABs, while actions for their prevention may be quite diverse and case-study
specific.

4. Discussion and Conclusions

We developed and evaluated the classification-based machine learning models to
predict the cyanobacterial blooms after a week for Chilgok weir in South Korea. In order
to build accurate models, we went through important processes such as feature selection,
oversampling for the imbalanced dataset, and application of classification algorithms.

Through the feature selection, we could not retain features such as water temperature,
total phosphorus, solar radiation, discharge, etc., which are theoretically known to affect the
occurrence of cyanobacterial blooms [15,16]. However, it is noted that this was the result of
the targeted data reduction, namely applying ANOVA and solving the multi-collinearity
problem. At the same time, the more important thing is that we collected the data of
30 features based on the theories of cyanobacterial blooms. It would be possible to develop
a more accurate and efficient model when we would combine an understanding of the
physical or biological processes for the target variable and a rational approach to data
analysis simultaneously [16,25,26].

We were able to develop the classification-based machine learning models to predict
cyanobacterial blooms with more than 80% accuracy using only two features. That is to say,
an efficient and effective model development methodology that could increase prediction
accuracy with a few features was devised. However, it was essential to select features that
were involved in the target variable statistically through feature selection methods such
as one-way ANOVA. Furthermore, the problems of multi-collinearity and an imbalanced
dataset needed to be addressed.

We confirmed that the accuracy of the models using two classes of Group2 was overall
higher than the other groups with three classes. In other words, we needed to classify
the cyanobacterial density into simple two classes rather than three classes to improve
the model performance. Similar to the result of this study, most multi-class classification
problems are more challenging than binary ones [50]. Although we concluded that the
models using Group2 outperformed the others, we have to consider how to improve the
performance of the models using Group1 or Group3, which can fit the real Algae Alert
System through further research.

The models using algorithms other than SVM, which accuracy was highest at 92%, also
made very slight differences by achieving an accuracy of 91% for DT or 89% for k-NN and
LR. On the other hand, except for the highest accuracy, the algorithms’ performances were
different for different groups (Group1, Group2, and Group3) or the input features. Hence,
we need to decide which machine learning algorithm should be employed by considering
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the application purpose of a model and the available datasets. This consideration is
necessary because it would assist in determining how to encode the target variable (as
binary, or as multi-class), and which input features should be used.

In predicting the cyanobacterial blooms, we could recognize that the current cyanobac-
terial density (Cyano(t)) had high auto-correlation with ones after a week (Cyano(t+1)).
Even if this auto-correlation was not considered, it could be seen that some models us-
ing NO3-N or TN as input features along with air temperature were also very accurate.
From these results, we could assume that nitrogen compounds were directly or indirectly
involved in cyanobacterial blooms [23,51]. Therefore, further research could identify if
the control of nitrogen compounds flowing into rivers or reservoirs according to the air
temperature is possible to make the cyanobacterial blooms produce or fade.

With regard to decision making, the predictive models using nominal or ordinal data
can be more efficient than real-valued data as the results using the former type of data
are much more intuitive [9]. Nevertheless, building a model based on real-valued data,
rather than on a classification basis, could support more detailed decision making. Further
research would be needed on whether the feature selection process presented through this
study can improve the accuracy of such a model.

One of the limitations of this study relates to the fact that we did not separate the four
harmful cyanobacteria genera when applying the cyanobacterial cell density [9]. Referring
to the previous studies [9,22,23,29], it was our decision to acquire a sufficient number
of instances for the dataset to carry out this research. Further study will be aimed at
developing models involving the cyanobacteria species by reflecting a wider spectrum of
their characteristics.
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