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Abstract

The detrimental effects of Cu contamination during steel recycling and production are primarily

due to the segregation of Cu at Fe grain boundaries (GBs). A promising approach to mitigate

these effects is the introduction of alloying elements that inhibit Cu segregation at Fe GBs, which

can be investigated through atomistic simulations. Currently, popular simulation methods in-

clude density functional theory (DFT)-based simulations and empirical interatomic potentials

(EIPs)-based simulations. DFT calculations can provide simulations with high accuracy, while

the high computational cost limits their application to simpler GB structures. Moreover, sim-

ulations utilizing EIPs may lack reliable potentials, especially when predicting GB segregation

tendencies across a broader range of alloy systems. To address these challenges, universal ma-

chine learning interatomic potentials (uMLIPs), which are trained on DFT data and applicable

for most of elements, have emerged as a promising alternative. Although uMLIPs have shown

potential in various materials simulation tasks, their reliability for out-of-distribution tasks,

such as simulating GB segregation behavior, remains unproven.

This thesis project evaluates the performance of the best available uMLIPs, specifically MACE-

MP-0, CHGNet, M3GNet, and SevenNet-0, in predicting single-solute GB segregation energies,

GB energies for both body-centered cubic (BCC) Fe and face-centered cubic (FCC) Fe systems,

and solution enthalpies for BCC Fe and cementite. The results were compared against existing

studies conducted via DFT calculations to assess the accuracy and applicability of each uMLIP.

Additionally, some EIPs were tested for comparison, serving as an extra reference. The findings

reveal that MACE-MP-0 generally outperforms the other uMLIPs in both accuracy and stability

of convergence. While all tested uMLIPs perform well in BCC Fe systems, CHGNet(v0.2.0) and

SevenNet-0 show reduced accuracy in FCC Fe simulations. Although most of the simulations

using uMLIPs converged well in BCC Fe GBs, many unconverged cases were reported in FCC Fe

systems, particularly for uMLIPs other than MACE-MP-0 and CHGNet(v0.3.0). Furthermore, a

consistent underprediction of segregation tendencies for highly segregating solute elements, such

as Cu, is observed in the results of MACE-MP-0 and CHGNet. This suggests that while uMLIPs

hold significant potential for atomistic simulations, fine-tuning pre-trained uMLIP models for

out-of-distribution tasks, such as calculating GB segregation energy, is recommended to improve

accuracy and convergence behavior. This work offers a valuable benchmark for using uMLIPs

in future GB segregation studies.
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List of Frequently Used Abbreviations

GB: Grain Boundary

DFT: Density Functional Theory

PES: Potential Energy Surface

EAM: Embedded Atom Method

MEAM: Modified Embedded Atom Method

EIP: Empirical Interatomic Potential

MLIP: Machine Learning Interatomic Potential

uMLIP: Universal Machine Learning Interatomic Potential

MAE: Mean Absolute Error

STGB: Symmetric Tilt Grain Boundary
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1 Introduction

1.1 Cu Contamination during Steel Recycling

Steel plays an essential role in shaping our built environment and sustaining economic devel-

opment, and at the same time, steel is the most recycled material in the world. According to

Pauliuk et al. [1], by 2050 the global supply of end-of-life scrap will triple from current amounts,

which indicates that there is an abundant supply for steel recycling. To meet the increasing need

in steel recycling, a portion of steelmaking in Europe has shifted into the electric arc furnace

(EAF) process, which relies on steel scrap as the main feedstock. Despite the evident benefits,

the full potential of steel recycling remains underutilized. Currently, EAF is only responsible for

no more than 50% of the EU steelmaking, with the rest of steelmaking still dominated by the

conventional blast furnace route [2]. An important factor that limits the secondary steelmaking

process like EAF is the contamination of tramp elements during recycling.

Tramp elements are undesirable impurities found within materials, particularly metals such as

steel. These elements are often unintentionally introduced during the production or recycling

process and can have negative effects on the properties and performance of the material. Ac-

cording to Nakajima et al. [3], the key tramp elements in steel recycling are identified as Cu

and Ni based on thermodynamic analysis, with Cu contamination posing a significant challenge

in the steel recycling industry. The presence of Cu in steel scrap introduces several detrimental

effects during the manufacturing process, including surface defects, hot shortness, intergranular

cracks during continuous casting, cracking during long time reheating in the furnace, surface

cracking during hot forming, etc [4]. Daehn et al. indicated in their review [5] that the amount

of Cu in steel scrap will surpass tolerable levels across all steel products by 2050 as shown in

Fig. 1 based on Pauliuk’s analysis, making it an urgent need to find an efficient solution to

avoid Cu contamination during steel recycling.

Figure 1: A predicted trend of mass of Cu in the end-of-life scrap supply (orange) and Cu tolerable by
demanded products (blue) from 1950 to 2050 [5].

To mitigate Cu contamination effectively, the steel industry must adopt innovative methodolo-

gies. In recent years, methods for removing tramp element from steel scraps have been widely

investigated by many researchers. However, so far, most of the methods more or less have some

disadvantages. For example, Vacuum Arc Remelting is capable of effectively removing Cu and

is able for commercial use. However, its application is restricted to high-quality, low-volume
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steels due to the necessity of re-melting in a vacuum at very slow rates, resulting in high energy

expenses that are only justified for certain purposes [6].

1.2 Introduction of Grain Boundary Segregation

In the previous subsection, some detrimental effects due to high Cu content in steel were dis-

cussed. It is indicated in the literature that the detrimental effects are related to the segregation

of Cu at Fe grain boundaries (GBs) [7–9]. In the past few decades, although research efforts

have been dedicated to exploring methods for removing Cu during the recycling of steel, there

are fewer studies focusing on understanding the segregation behavior of Cu at Fe GBs.

GBs are one of the most important defects in crystalline materials system. GBs are the regions

where the crystal lattice abruptly changes orientation, marking the interface between adjacent

grains in polycrystalline materials. The formation of GBs are due to variations in crystallo-

graphic orientation between neighboring grains, leading to higher energy levels compared to the

crystalline interior. This increased energy prompts the system to minimize it, often through

interactions with other defects within the crystal lattice [10]. One significant phenomenon ob-

served at GBs is GB segregation, where foreign atoms, also known as solute atoms, preferentially

accumulate at these interfaces. This segregation occurs due to the interaction between GBs and

point defects, such as foreign atoms, leading to a reduction in the overall energy of the system.

The distortion in atomic arrangement and the high free energy of the GB region facilitate the

diffusion of solute atoms from the matrix to the GBs, effectively concentrating them there as

thermodynamically preferred [10].

GB segregation has profound implications for the properties of materials. It affects various

critical material properties, including cohesive energy, mobility, transport coefficients, and the

nucleation of dislocations [11–14]. GB segregation can lead to the loss of cohesion, resulting in

brittle intergranular fractures under loading, thereby limiting the practical use of the materials

[15]. It can also adversely affect corrosive properties and significantly influence grain growth

and recrystallization processes [15]. On the other hand, GB segregation also has advantageous

effects. For example, it can stabilize grain size in nanocrystalline materials [16] and serve as a

design tool for interfaces in metallic alloys [17]. For Fe, one of the most researched topic related

to GB segregation is hydrogen embrittlement in steel. The hydrogen embrittlement in steel can

be attributed to the cohesion loss due to hydrogen segregation at Fe GBs. In addition to that,

the GB segregation of alloying elements at the Fe GBs also makes steel more prone to hydrogen

embrittlement [18].

1.3 Methods for the Study of Grain Boundary Segregation

1.3.1 Experimental Methods

Experimental techniques are essential in offering insights into the GB segregation behavior.

Traditionally, experimental investigations of GB segregation mainly rely on surface analysis

techniques, such as Auger electron spectroscopy (AES), which have been widely utilized to

study GB chemistry. However, these techniques often necessitate intergranular brittle frac-

ture to expose the GBs, limiting the applicability to brittle materials. In recent years, with

the rapid development of materials characterization techniques, the advent of techniques like
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Figure 2: A high resolution high-angle annular dark-field (HAADF) image of membrane processing
induced GB segregation in atomic-scale, showing how GB segregation is observed experimentally. EDX
chemical mapping with atomic resolution was conducted by a ChemiSTEM microscope [19].

3-dimensional atom probe tomography (3D APT), high-resolution transmission electron mi-

croscopy (HRTEM) equipped with chemical analyzers, such as electron energy loss spectroscope

(EELS), and aberration-corrected scanning transmission electron microscopy (AC-STEM) cou-

pled with Energy-Dispersive X-ray Spectroscopy (EDX) offering the capability to investigate

segregation in non-brittle systems, expanding the scope of GB segregation studies (Fig. 2 as an

example). Meanwhile, these advanced techniques enable a two-dimensional or three-dimensional

mapping across GBs, providing atomic-scale details of solute atoms’ spatial distribution, which

offer more insights into the study of GB segregation behavior [10, 15].

While experimental methods provide valuable insights into GB segregation by correlating it

with the atomic structure of GBs, the comprehension of the mechanisms of various types of

GB segregation and their effects on structure-property relationships remains restricted. For

instance, due to the complex microstructures of materials, it is still difficult to isolate the effects

caused by GB segregation experimentally even though using the most advancing techniques to

date [10]. Hence, investigating GB segregation behavior using complementary approaches like

computational modeling has become increasingly popular.

1.3.2 Computational Methods

The computational methods employed by researchers to study GB segregation can be classi-

fied into two categories. The first is first-principle (ab initio) quantum mechanical calculation

methods, which allow for a quantum-level understanding of segregation phenomena by solv-

ing the Schrödinger equation to describe the electronic structure of materials accurately. The

general formulation of the quantum mechanical equations for ab initio electronic structure cal-

culations includes all known interactions among electrons and atomic nuclei in solids. Although

the principle is relatively simple, solving these equations completely remains impossible. Thus,

approximations are necessary for yielding understandable solutions. One significant simplifica-
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tion is density functional theory (DFT), which simplifies the complex many-body motion of all

electrons into an equivalent problem of a single electron navigating within an effective potential

[10].

A major challenge of DFT is that the exact energy functional, particularly the exchange-

correlation component, remains unknown [15]. Therefore, DFT calculations rely on approxima-

tions, and the accuracy of these calculations depends on the quality of these approximations.

Various approximations have been proposed for realistic calculations, with the local-density

approximation (LDA), first proposed by Kohn and Sham [20], being the simplest among many

other approximations. LDA has shown remarkable success in describing the ground-state prop-

erties of many physical systems. Nevertheless, LDA is still limited in systems with significant

density gradients, Since then, there have been several attempts to improve upon the LDA.

To date, a more accurate approximation that includes gradients of the electron density called

generalized gradient approximation (GGA) is applied in many first-principle analyses [21, 22].

Traditional approximations like LDA might be limited in some cases (for example, as indicated

by Lejcek et al. [15], when applying LDA for the exchange-correlation energy in Fe), but the

improved approximation GGA has made DFT calculations able to provide a highly accurate

segregation energy of certain solute element at GB.

The other approach for simulating GB segregation is through empirical interatomic potential

(EIP)-based methods. EIPs are essential for atomistic simulations, which allow for modeling

the interactions between atoms. These EIPs can be as simple as the pairwise potentials, such as

the famous Lennard-Jones potential which can date back to a century ago, or the most widely

used Embedded Atom Method (EAM) technique [23] and Modified Embedded Atom Method

(MEAM) [24] developed decades ago. EIPs can be fitted through different methods, such as

DFT calculations and experiments. EIP-based simulations have grown in popularity in recent

years due to their computational efficiency. However, the accuracy of simulation results relies

on the quality of how the EIPs are fitted. Although some EIPs with good performance can lead

to simulation results closely matching experimental data, developing such potentials is a time-

consuming and effort-intensive process. Additionally, the number of available EIPs is limited

and a single potential model might be only available in certain conditions [25].

In recent years, rapid progress in machine learning techniques has enabled the development of

machine learning interatomic potentials (MLIPs), which have transformed the way of modeling

potential energy surfaces (PES). While the concept of MLIPs was introduced as early as the

1990s, it remained unrealized due to limitations in computational power and the availability

of sufficient data [26]. Fig. 3 shows how MLIPs are constructed. MLIPs are trained on large

reference datasets derived from quantum-mechanical calculations, making them fundamentally

different from EIPs. Unlike traditional EIPs, where the PES is described as a function of

atomic positions and is grounded in the physical understanding of chemical bonding, MLIPs

rely on high-dimensional regression techniques to interpolate between reference energies, with

the PES described as a function of local atomic environment descriptors. The major differences

between EIPs and MLIPs are summarized in Table 1. While EIPs have a strong physical

foundation and require only a few fitting parameters (around 10), MLIPs use thousands of fitting

parameters, enabling greater accuracy, typically achieving an error of around 1 meV/atom.

Although this increased accuracy comes at the cost of reduced computational speed, MLIPs

are still significantly faster than DFT calculations. Despite these advantages, MLIPs exhibit

poorer transferability in extrapolation compared to traditional EIPs, which makes them less
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reliable in scenarios outside of their training data (out-of-distribution scenarios). Nevertheless,

the flexibility of MLIPs allows them to be systematically improved, which is impossible for

traditional EIPs. A common limitation of both MLIPs and EIPs is that they are typically

fitted to specific elements or particular combinations. Therefore, applying MLIPs to elements

outside the training dataset remains infeasible.

Figure 3: Schematic representation of how the MLIPs are constructured, adapted from Deringer et al
[27]. The atomic structures, energies and forces computed via quantum-mechanical methods from the
reference database should be interpreted as ”machine-readable” descriptors, so that the PES can be
constructed through mathematical regressions (learning). The descriptors might differ from different
MLIPs.

Table 1: Comparison of two classes of potentials adapted from Mishin’s paper [26].

Potential type EIPs MLIPs

Physical foundation Strong None

Number of fitting
parameters

∼ 10 ≳ 103

Computational speed Very high Slowera

Reference database Small Large

Accuracy Limited ∼ 1 meV/atom

Transferability Reasonable Poor

Specific to class of
materials?

Yes
Depends on the
training dataset

Systematically
improvable?

No Yes

a Slower than EIPs but orders of magnitude faster than straight DFT calculations.

In the past few years, several universal machine learning interatomic potentials (uMLIPs) have

been developed. These MLIPs are termed “universal” because they are trained on data covering

a broad range of elements from the periodic table, allowing them to be applied across various

elements and combinations, rather than being restricted to specific ones. This technique offers

a potentially powerful toolbox for materials engineers. However, their performance in relevant

simulations still needs to be evaluated.
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2 Literature Review

2.1 Universal Machine Learning Interatomic Potentials

2.1.1 Available Potentials

The first uMLIP is Three-Body Interaction Neural Network (M3GNet) proposed by Chen and

Ong [28] in 2022. While MLIPs based on traditional material graph neural networks (GNN)

lack physical constraints, the M3GNet GNN architecture takes many-body interactions into

account. M3GNet utilizes a large dataset of intermediate structures generated during structural

relaxation, along with their corresponding energies and forces, rather than focusing solely on

the final equilibrium structures. The training data of the M3GNet (named “MPF.2021.2.8”)

includes energies a wide range of energies, forces and stresses of crystal structures obtained from

the Materials Project database, covering 89 elements on the periodic table. The model includes

227.5k model parameters, and is trained by dataset contains 63k structures in total.

Following M3GNet, other uMLIPs trained on larger datasets, have been subsequently released.

Another GNN-based uMLIP, Crystal Hamiltonian Graph Neural Network (CHGNet) [29], ef-

fectively accounts for the interaction between electrons in its simulations. Modeling electron

interactions and their subtle effects in atomistic simulations has long been a challenge, specifi-

cally for classical interatomic potentials. Although some MLIPs are able to provide predictions

at nearly quantum-mechanical accuracy efficiently, these MLIPs treat ions with different valence

as they are different elements [29]. Such treatment fails to capture the chemical interactions

such as site-preference of ions because the valence of the ions are not considered as a degree-

of-freedom. However, in the model CHGNet, the atomic charges are defined in relation to the

site-specific magnetic moments (magmoms), so that the effects due to the change in atomic

charges can be incorporated. For example, Fig. 4 shows the results of a structural relaxation

test performed by CHGNet, demonstrating the model’s capability to differentiate V-ions with-

out prior knowledge of their charge distribution. The training dataset (named “MPtrj 2022.9”)

of CHGNet also includes structures obtained from Materials Project dataset, which is much

larger than the dataset used to train M3GNet, containing 146k structures. The dataset used to

train M3GNet is a proper subset of the dataset “MPtrj 2022.9”, with no materials deprecated

in the later one [30].

Two additional GNN-based uMLIPs have been developed using the same training dataset as

CHGNet. The first is MACE-MP-0, a uMLIP proposed by Batatia et al. based on their machine

learning architecture MACE [31, 32]. MACE is a higher-order equivariant message-passing neu-

ral network that allows the efficient computation of high-body-order features. A more recent

uMLIP is SevenNet-0 (Scalable EquiVariance Enabled Neural NETwork) developed based on

the machine learning architecture NequIP [33], which enables parallel molecular dynamic sim-

ulations. The SevenNet-0 model replaces a large number of element-specific parameters to a

linear message-passing layer. In this way, the model parameters are reduced to 842.4k without

affecting the performance, thereby lowering the computational cost.

Beyond the above-mentioned uMLIPs, several new models with larger number of model pa-

rameters have also been developed, with MatterSim [34] and GNoME [35] represent notable

advancements in the field. And at the time of writing, another state-of-the-art uMLIP, ORB

MPtrj, trained on the “MPtrj 2022.9” dataset, has also been released. These models utilize a
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Figure 4: a) A graph of magmom distribution and b) a two dimensional visualization of the principal
component analysis on V ions of unrelaxed structures and relaxed by CHGNet [29]. The creators of
CHGNet generated a supercell structures to illustrate that CHGNet is able to differentiate V-ions without
any prior knowledge about the charge distribution of V-ions.

greater number of model parameters compared to other uMLIPs (for instance, MatterSim has

182M model parameters), allowing them to achieve cutting-edge performance. The rapid de-

velopment of uMLIPs highlights their vast potential and significant advancements in atomistic

simulations with increasing accuracy and efficiency.

2.1.2 Performance Evaluations

Although benchmarks reported by the developers of each uMLIP showed that most uMLIPs

exhibit small training and test errors compared to DFT calculations, these models lack eval-

uations for out-of-distribution simulations. Consequently, comprehensive evaluation of these

uMLIPs remains necessary.

Matbench Discovery [30] provides a standardized benchmark specifically designed to evaluate

the performance of uMLIP models. It provides comprehensive testing based on diverse datasets,

including training dataset (dataset from Materials Project) and unseen (using WBM test dataset

[36]) scenarios, which assess models’ ability to generalize to unseen data. Table 2 highlights the

best available uMLIPs (models) based on Matbench Discovery evaluation results. A clear trend

from the table is that models trained on larger datasets generally exhibit lower mean absolute

error (MAE) and root mean square error (RMSE). For instance, MatterSim, trained on 17M

structures, has the lowest MAE (0.026 eV/atom) and RMSE (0.080 eV/atom) values, reflecting

the advantage of extensive training data. Conversely, models trained on smaller datasets, such

as M3GNet (trained on 63k structures), show higher errors (MAE of 0.075 eV/atom and RMSE

of 0.118 eV/atom), indicating the limitations in generalization from limited data. Models with

a higher number of parameters, such as MatterSim (182M) and ORB (25.2M), tend to perform

better, likely due to their enhanced capacity to capture complex patterns in the data. This

size-performance relationship of uMLIPs has also been reported in the literature [37]. However,

increased model size does not always guarantee the better performance, as seen with MACE,
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which, despite having more model parameters, does not outperform SevenNet according to

this evaluation. This suggests that while larger models typically perform better, smaller, well-

optimized models or machine learning architectures can still achieve reasonable accuracy.

Table 2: uMLIPs performance comparison adapted from Matbench Discovery [30]. MAE: mean absolute
error (eV/atom); RMSE: root mean square error (eV/atom); R2: coefficient of determination. Training
set: Number of materials (number of structures). The training datasets of ORB, MatterSim and GNoME
are different from the dataset mentioned in the main text.

Model MAE RMSE R2 Training Set Model Params Date Added

ORB 0.031 0.079 0.816 3M (32.1M) 25.2M 2024-09-02

MatterSim 0.026 0.080 0.812 17M 182.0M 2024-06-16

GNoME 0.035 0.085 0.785 6M (89M) 16.2M 2024-02-03

ORB MPtrj 0.046 0.094 0.740 146k (1.6M) 25.2M 2024-09-02

SevenNet 0.048 0.092 0.750 146k (1.6M) 842.4k 2024-07-13

MACE 0.057 0.101 0.697 146k (1.6M) 4.7M 2023-07-14

CHGNet 0.063 0.103 0.689 146k (1.6M) 412.5k 2023-03-03

M3GNet 0.075 0.118 0.585 63k (188.3k) 227.5k 2022-09-20

By providing a more robust assessment environment, Matbench Discovery facilitates a more re-

liable comparison of uMLIPs, highlighting their strengths and weaknesses in predicting material

properties. However, the evaluation conducted by Matbench Discovery put more emphasis on

assessing the performance of uMLIPs in the context of materials discovery. Currently, except

for the evaluation work done by Matbench Discovery, only few other studies have systemati-

cally evaluated the performance of the mentioned uMLIPs. Focassio et al. [38] assessed the

performance of three uMLIPs (MACE, CHGNet, and M3GNet) in predicting surface energies

and Yu et al. [39] evaluated the performance of four uMLIPs (M3GNet, CHGNet, MACE and

ALIGNN) in calculating formation energy for geometry optimization. Both assessments were

carried out by comparing calculation results with DFT results obtained from Materials Project

database, which included both data used for model training and unseen data for validation.

The evaluation done by Focassio et al. focused on surface energy predictions, an out-of-

distribution task that presents challenges since most uMLIP training datasets include only

bulk materials. According to their assessment, CHGNet exhibits the highest precision in cal-

culating surface energy. The performance of MACE is also good while M3GNet exhibits the

poorest performance among the three tested uMLIPs. However, discrepancies are observed for

some different surface orientation and different chemical system. MACE, for example, shows

excellent accuracy in predicting surface energies for the Cu system, where its error is the small-

est, even outperforming several traditional MLIPs such as Moment Tensor Potential (MTP)

and Neural Equivariant Interatomic Potential (NequiIP) as shown in Fig. 5. While MACE

produced large errors for the W system (not shown in the figure), with a RMSE reaching nearly

3 eV/atom. This inconsistency could be attributed to the model’s difficulty in generalizing to

systems dissimilar to its training data, particularly surfaces, which are structurally different

from bulk materials. Although in this assessment the calculated feature is mainly surface en-

ergy, the performance of uMLIPs following the sequence MACE > (better than) CHGNet >

M3GNet is in good agreement with the assessment given by Matbench Discovery.
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Figure 5: (a) Performance comparison between the three uMLIPs, other traditional MLIPs and fine-
tuned MACE model. The RMSE of the universal interatomic potentials vs relation to the surface
chemistry, for selected elements [38].

Similar conclusions were also made by Yu et al. [39] in their assessments. Generally, MACE and

CHGNet outperform the other uMLIPs in calculating formation energies for structural relax-

ation, while M3GNet and ALIGNN exhibit significantly larger errors. This can be clearly seen

from the heat maps in Fig. 6, the colors of elements of MACE and CHGNet are mostly purple

(0-100 meV/atom), with only a few cases in blue region (100-200 meV/atom). In contrast, in

Figure 6: Heat maps of mean formation energy difference of (a) CHGNet, (b) M3GNet, (c) MACE and
(d) ALIGNN [39].
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the heat maps of M3GNet and ALIGNN, most of the elements are in blue region, the formation

energies predicted for some elements exhibit significant errors in green or even yellow region

(more than 200 meV/atom). For the prediction of transition metals, M3GNet and ALIGNN

predicted formation energies with significantly larger errors compared to MACE and CHGNet,

especially for elements like V, Cr, Mo and W.

2.1.3 Limitations

Yu et al. [39] reported the convergence issues of uMLIPs during structural relaxation. From

their analysis (Fig. 7) it can be seen that all tested uMLIPs have limited unconverged cases

when relaxing the atomic positions only, while the unconverged cases increases significantly

if relaxing both the atomic positions and the cell parameters. Based on Yu’s assessment, it

can be concluded that among the four tested uMLIPs, CHGNet and MACE can perform the

structural relaxation more robustly. In another assessment, Gonzales et al. [40] investigated the

convergence behavior of MACE, CHGNet, and M3GNet by performing structural relaxation on

10,773 structures taken from the Materials Project. Their results showed a different convergence

behavior compared to those of Yu et al. Specifically, the convergence rate of CHGNet is only

40.9%, while that of M3GNet is 62.9%. Their study confirmed the robustness (of convergence

behavior) of MACE, with a convergence rate of 95.1%. The two studies indicated that the

convergence issues of uMLIPs are a significant limitation when using uMLIPs for molecular

statics simulations. In contrast, traditional EIPs can provide more robust simulations with

better convergence.

Figure 7: Convergence assessment of uMLIPs. [39] (a) Only the atomic position was relaxed. (b) Both
the atomic position and the cell size were relaxed.

The training dataset of uMLIPs are obtained from Materials Project database, where only

data of perfect lattice structures are included [41]. Since GB segregation is a type of defect

of the lattice, the prediction of GB segregation is out-of-distribution for uMLIPs. Deng et

al. [42] investigated the performance of M3GNet, CHGNet and MACE-MP-0 on several out-

of-distribution material modeling tasks such as calculating surface energies. A PES softening

behavior which was characterized by a systematic underprediction of energies and forces is

observed from their benchmark tests. This phenomenon is illustrated in Fig. 8, as we can

see that the high-energy regions (indicated in red) of the PES of uMLIPs are lower than the

PES described by DFT. This softening behavior is attributed to the uMLIP training datasets,

which include only structures at near equilibrium states. It can be corrected by fine-tuning
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with high-energy out-of-distribution data points, such as those from intermediate states during

structural relaxation.

Figure 8: Schematic illustration of PES softening behavior, PES described by DFT (left) and uMLIPs
(right) [42].

The PES softening behavior of pre-trained uMLIP models highlights the importance of fine-

tuning the models. The accuracy of out-of-distribution simulation tasks such as calculating GB

segregation energies might be reduced when using pre-trained model of uMLIPs due to this

systematic underprediction phenomenon. Deng et al. also indicated that the PES softening

might be mitigated by increasing the number of model parameters of the uMLIPs. Therefore,

uMLIPs such as MACE-MP-0 and SevenNet-0 might be less influenced by the PES softening

compared to CHGNet and M3GNet due to a larger model size.

2.2 Grain Boundary Segregation Simulations Based on DFT Methods

In this subsection, literature that simulated GB segregation based on DFT calculations will be

reviewed. The review aims at learning the methodology of simulating GB segregation, and more

importantly, how to present the data and find the correlation between GB segregation behavior

and the investigated material properties. Since simulation based on DFT calculations is the

most accurate methods, they can serve as a valuable reference to evaluate the performance of

uMLIPs.

Ito et al. [43] studied the segregation behavior of nine transition metals (Ti, V, Cr, Mn,

Co, Ni, Cu, Nb and Mo) at nine face-centered cubic (FCC) Fe GBs as shown in Fig. 9.

Their research employed the first-principles calculations based on DFT using the projector

augmented wave (PAW) method within the Vienna Ab-initio Simulation Package (VASP). For

exchange–correlation effects the generalised gradient approximation with the Perdew-Burke-

Ernzerhof (PBE) functional is used.

The segregation energies of all inequivalent sites within 2.5 Å for each GBs were calculated

and the results with respect to the Voronoi volume of the segregation site were presented as

shown in Fig. 10(a) and in a histogram as shown in Fig. 10(b). The segregation energy can be

understood
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Figure 9: The nine simulated GB strucutures in the study of Ito et al. [43]. The atoms are presented
in the axis direction [001]. The sites within region 2.5Å from the GB plane are indicated by the dashed
lines. Fig. (e) is the same GB as (d) which is viewed from a different axis.

Figure 10: Results of segregation energies calculated by Ito et al. via DFT calculations [43]. (a)
Segregation energy vs. Voronoi volume of the segregation sites, Eseg is the elastic contribution of the
segregation energy. (b) Histogram of the segregation energy calculated at different sites of the nine GBs.
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as the difference in energy between having the solute at the GB compared to being in the

bulk material. If Eseg is negative, it suggests that the solute prefers to segregate to the GB,

while a positive value indicates a preference for the solute to remain in the bulk. According

to their results, the segregation energy can be well correlated with the Voronoi volume of the

segregation site. For example, for Cu and other alloying elements including Ti, Mo, V, and

Nb, the segregation energy will shift to more negative at segregation sites with a larger Voronoi

volume than the bulk. When the Voronoi volume at segregation sites is smaller compared to the

bulk, the segregation energy will be positive, which means segregation is unfavorable. Different

trends are observed for Ni, Co, and Cr. However, the dependence of segregation energy on

Voronoi volume is different. Among the mentioned alloying elements, Cr is almost independent

of Voronoi volume, while Cu exhibits the least dependence among the remaining elements. The

dependence can also be well reflected from the histogram, the alloying element having a larger

dependence will show a larger variance in segregation energy in the histogram. For instance, Cr,

as mentioned with the least dependence, exhibits a histogram with segregation energy localized

around zero.

To further explain the physical origin of the segregation energy and the dependence on Voronoi

volume, Ito el al. quantified the elastic contribution to the segregation energy. They concluded

that the grain boundary segregation energy of alloying elements can be attributed to the elastic

energy arising from the atomic radius difference between the Fe atom and the solute atom.

Solute atoms with larger radii prefer to segregate at sites with larger Voronoi volumes, as

this reduces the elastic energy, leading to more negative segregation energy. Additionally, the

segregation tendency of solutes to each investigated GBs were quantified by calculating the

effective segregation energy for each GB. Effective segregation energy can be calculated based

on temperature, the bulk composition of the solute element, and the solute composition at GB.

This allows for the calculation of effective segregation energy under conditions consistent with

existing experimental studies, enabling direct comparison with experimental results. From Fig.

11 it can be seen that, the segregation of Cu at the investigated GBs of FCC Fe are not intense,

and it is of weak dependence on GB character. According to Ito et al., the calculated effective

segregation energy can be validated by previous experimental results, confirming the accuracy

of their simulation.

Figure 11: Effective segregation energies (eV) per alloying element per GB calculated by Ito [43]. Effec-
tive segregation energies were calculated to validate their simulations by comparing them with existing
experimental results.
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Similar to Ito’s work, Mai et al. [12] investigated the segregation and co-segregation behavior

of transition metals (including phosphorus (P) in their later paper [44]) at body-centered cubic

(BCC) Fe GBs via first-principle calculations. They selected four symmetric tilt grain bound-

aries (STGBs) as shown in Fig. 12 for simulations: Σ3(111)[110], Σ3(112)[110], Σ9(221)[110]

and Σ11(332)[110]. The co-segregation was assessed by calculating the increment segregation

energy Einc
seg, which is defined as the energy changed when a second solute atom Y segregating

to a GB with solute X already presented at the most energetically favourable site at the pure

GB. While most GB co-segregation studies have focused binary systems, Mai’s work expanded

this to include ten transition metals, providing valuable insights for research in the related field.

Figure 12: The four simulated GB strucutures in the study of Mai et al. [12]: (a) Σ3(111)[110], (b)
Σ3(112)[110], (c) Σ9(221)[110] and (d) Σ11(332)[110]. The GB plane is indicated with red dashed lines,
and the calculated sites are within the shaded region.

From the results of Mai et al. as shown in Figs. 13 & 14, it can be seen that the Cu has a

high tendency of both single solute segregation and co-segregation with other elements. There’s

a high co-segregation tendency for Cu with Ti, Ni and Nb. The co-segregation of V as the

second solute seems unfavorable for Cu and all other alloying elements. In addition to the

alloying elements, the GB character also influece the segregation tendency. The segregation at

GB Σ3(112) is generally less favorable compared to other GBs. The lower segregation tendency

of stacking-fault/twin-type Σ3(112) GB can be attributed to the lower relative excess volume

in the GB, which is at the same time a distinguishing characteristic of this type of GBs. When

analyzing the results of co-segregation, Mai et al. argued that the bulk solute-solute interaction

energies cannot adequately represent the GB co-segregation interaction. As an example, the

Cu-Cu interactions in the bulk exhibit an attractive force ranging from -0.23 eV to -0.08 eV

within the first to third coordination shells. While the Cu-Cu interaction in the minimum

energy configurations across the four investigated GBs varies from 0.60 eV to -0.13 eV.
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Figure 13: Segregation energy profiles for a particular element to segregate (1 atom) to a GB plotted
against the distance from the GB plane. (a) Σ3(111)[110], (b) Σ3(112)[110], (c) Σ9(221)[110] and (d)
Σ11(332)[110] [44].

Both studies by Ito’s group and Mai’s group indicated that the segregation behaviors of tran-

sition metals cannot be solely studied on an elemental basis, the GB character should also be

considered. The dependence of segregation preference on Voronoi volume was also discussed

in both studies. In Ito’s work, the physical origin of this dependence was examined through

analysis of the force contributions to segregation energy. Mai’s work, meanwhile, examined the

co-segregation of transition metals in detail and investigated how segregation influenced cohe-

sion. The two studies mentioned above covers the segregation behaviors of transition metals

at FCC Fe and BCC Fe GBs, providing valuable insights to the thesis project, especially on

presenting the calculated data and performing a quantitative analysis. There are other relevant

literature based on first-principle calculations: Xu et al. [45] studied the electrical origin of

3d-transition metals segregation at Σ3(111) and Σ11(332) BCC Fe GBs. Yuasa and Mabuchi

[9] investigated the effects of Cu segreagtion at Σ3(111)[110] BCC Fe GB using fully relaxed

tensile and shear test via DFT simulations. Numerous other studies have examined the segre-

gation of various elements, including hydrogen segregation in Fe GBs, which is a primary cause

of hydrogen embrittlement. As the methodologies in these studies are similar, they will not be

discussed here to avoid repetition.
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Figure 14: The incremental energy of segregation of solute 2 when solute 1 is present. The 4 values in
each cell from top to bottom correspond to Σ3(111)[110], Σ3(112)[110], Σ9(221)[110] and Σ11(332)[110]
GBs, respectively. More negative values (in deeper color) indicate that segregation is more likely to
occur. “N/A” values indicate that segregation of the second solute is unfavourable. Yellow color indicate
that the co-segregation is negligible [12].

2.3 Grain Boundary Segregation Simulations Based on EIPs

Simulations based on DFT calculations provide high accuracy in predicting atomic-scale prop-

erties. These methods are based on solving Schrödinger equations without using any empirical

parameters, ensuring the accuracy of calculation output. However, the expensive computational
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cost of the calculations limits the computational scale to hundreds of independent atoms. Such

GB models might not be realistic in some simulation tasks compared to a real GB structure with

enormous amount of atoms. On the other hand, simulations using EIPs are computationally

much faster, allowing the modeling of systems with millions of atoms.

Currently, most of the EIPs for simulating pure metal systems or metallic alloy systems are de-

veloped based on EAM or MEAM. The EAM potential is an approach combining both pairwise

interactions and contributions from multiple atoms, making it particularly suitable for modeling

metallic systems [10]. In these systems, the behavior of atoms is significantly affected by the

surrounding electron density provided by nearby atoms. MEAM potentials are more versatile

by incorporating directional bonding, allowing them to handle a broader range of materials such

as ceramics. MEAM potentials are more straightforward for simulating alloy systems compared

to EAM potentials [24, 46]. Although MEAM potentials include an additional angular term

over EAM potentials and some literatures have shown that the performance of MEAM potential

are better than EAM potentials in some applications [47, 48], it remains unclear which method

outperforms the other in simulating GB segregation.

Many studies have examined the GB segregation behavior via EIP-based molecular dynamic

(MD) simulation. For example, Gao et al. [49] investigated segregation behavior of Cu at STGB

Σ3(112) via MD/MC (Monte Carlo) simulations with a Fe–Cu EAM potential. Similarly, Zhou

et al. [50] studied the segregation preference of Cr at several BCC Fe GBs for different GB

structures and different Cr composition using MD/MC simulation with a Fe-Cr EAM potential.

The methodology of simulating GB segregation based on EIPs is similar to the simulation

using DFT methods which has been reviewed in previous subsection. Although EIP-based

simulations are less accurate than DFT, they offer the advantage of simulating more complex

structural models due to their lower computational cost. Unlike the bi-crystal GB models that

are usually used for DFT-based simulations, polycrystalline GB models can be used for EIP-

based simulation. These polycrystalline GB models can be randomly generated and contain tens

of grains, allowing the simulation of more realistic GB features such as triple-junctions and more

GB structures simultaneously. Additionally, It is indicated in literature that STGBs with low

Σ value cannot adequately represent the diverse and intricate structures found in polycrystals

[51]. The generation of polycrystalline GB models can incorporate GBs with higher Σ values in

simulations, which can enhance the sampling of local atomic environment space, and thereby

improving the efficiency of segregation energy predictions.

One illustrative example is the segregation study by Ito et al. [18], where they investigated

the hydrogen segregation at BCC Fe GBs using a polycrystalline model. Their study compre-

hensively analyzed the segregation energies of hydrogen at approximately 17 million interstitial

sites, a scale made possible by the use of EIPs. The calculated effective segregation ener-

gies ranged from -0.48 to -0.42 eV, closely aligning with experimental data, demonstrating the

model’s reliability. Their study identified that hydrogen predominantly segregates at octahedral

sites (as shown in Fig. 15) with larger Voronoi volumes due to uniaxially distorted crystal struc-

tures near GBs. This ability to simulate diverse GB structures simultaneously demonstrates

the strength of using polycrystalline models with EIP-based simulations.

GB triple junctions or more complex GB junctions are considered to be more “realistic” com-

pared to bi-crystal GB models [52]. Understanding segregation behavior at GB triple junctions

is critical when simulating polycrystalline structures. For example, Adlakha and Solanki [53]

studied the solute segregation behavior at triple junctions of BCC Fe GBs using EIP-based MD

17



Figure 15: Nano-polycrystalline GB model with segregation energy computed. The right image is the plot
of segregation energy against Voronoi volume, highlighting the prefered segregation of H at octahedral
sites [18].

simulation. Their simulation results indicated large solute binding energies at sites within the

core regions of triple junctions would lead to an intense solute segregation, which cannot be

observed if using bi-crystal GB models.

In recent years, EIP-based MD and MC simulations have become popular in the study of high-

entropy alloys, the segregation behavior at GBs of alloying elements can be well simulated using

a polycrystalline GB model. He et al. [54] studied the influence of elemental segregation at GBs

on the mechanical properties of FeNiCrCoCu high-entropy alloys using combined MD and MC

simulations with a five elements (FeNiCrCoCu) EAM potential. The simulations were applied

on a polycrystalline model containing 40 randomly orientated Voronoi cells. Their results, as

shown in Fig. 16, revealed that Cu (indicated in blue in the polycrystalline model) dominated

the segregation at GBs, while the other alloying elements preferred to segregate into the bulk.

This segregation behavior was confirmed by EDX elemental mapping. It’s indicated that the

high concentration of Cu at GBs can weaken the mechanical properties by initiating GB cracking

based on their results.

Figure 16: Equillibrium state of polycrystalline GB model of FeNiCrCoCu high-entropy alloys simulated
by MD and MC, 4 at.% Cu and T=300K [54]. Segregation energy distribution is plotted, the orange line
is the theoretical values calculated. In the polycrystalline GB model, Cu atoms are highlighted in blue.

In computational simulation studies, presenting the results in an organized and structured man-

ner is crucial for effective comprehension and interpretation. In many simulation studies related

to GB segregation, the segregation behaviors are usually described by a single-value segregation

energy (for example, the DFT studies reviewed in previous subsection). However, such simpli-

fication ignores the variation of substitutional sites within individual GB and the fact that a
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polycrystal contains different types of GBs [55]. To address these limitations, researchers have

developed strategies that utilize a GB energy spectrum to represent the segregation behavior.

The GB energy spectrum is more effective because it captures the full range of segregation

energies across different GB sites, accounting for the complex distribution of elements and their

specific interactions with various GBs. For example, in the work of He et al. as shown in Fig.

16, the GB segregation energy distribution of Cu (4 at.% Cu and T=300K) highlights that

Cu dominates the segregation behavior, while other elements like Ni and Fe are depleted from

the GB region. From this spectrum, correlation functions can be constructed, offering insights

into how segregation behavior may influence alloy properties when combined with results on

strengthening effects.

2.4 Grain Boundary Segregation Studies Based on Machine Learning Tech-

niques

The construction of GB segregation energy spectra offers a more comprehensive approach to

analyzing segregation behavior, as previously mentioned. The computations needed for the

construction of a segregation energy spectrum remain challenging to this day. With the rapid

development of machine learning techniques, these methods are not only used in developing

uMLIPs but also in reducing the computational cost of building segregation energy spectra.

Huber et al. [56] designed a new computational framework to calculate the full distribution

of GB segregation energies with modest computational effort. This framework enables the

computation using quantum mechanics DFT calculations with higher accuracy but more com-

putational cost. For the calculation of the segregation spectrum, firstly, investigation involving

Figure 17: Segregation energy distributions predicted based on machine learning. The polar plot includes
GB interfacial energies for 38 different boundaries in the boundary-plane fundamental zone for pure Al
53.1°[001] GBs with different normal vectors [56].

19



six solute species segregating across numerous sites at 38 low and high-symmetry boundaries

were conducted, yielding a dataset consisting of over a million segregation energies. Then,

Huber et al. identified a set of machine learning descriptors based solely on the local atomic

environment around an atom within a cutoff radius of the unsegregated GB. These machine

learning descriptors enable to forecast the segregation energy distribution and the segregation

isotherm accurately. They applied this computational framework to study the segregation be-

havior of Mg at Al GBs as shown in Fig. 17, making it possible to predict GB segregation

energy at arbitrary GBs for Al–Mg system.

In more recent works done by Schuh and Wagih, they provided two new machine learning-based

frameworks for developing the segregation energy spectrum. The first framework (the upper

framework shown in Fig. 18), proposed in 2020 [57], utilized segregation energies calculated from

structural relaxation using EIPs to train machine learning models. This framework significantly

improves computational efficiency by replacing resource-intensive atomistic calculations with

machine-learned predictions based on atomic descriptors. The model can predict the segregation

Figure 18: Workflow of the frameworks developed by Schuh and Wagih. Top: Segregation energy spectra
for polycrystals developed based on machine learning that trained by results structural relaxation using
EIPs [57]. Bottom: Workflow of DFT based learning framework for GB segregation energies [58].
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energies for solute atoms at different GB sites in a polycrystal based solely on the undecorated

local atomic environment of the grain boundary sites. This approach enabled the creation of an

extensive database of GB segregation spectra for over 250 metal-based binary alloys as shown

in Fig. 19, offering valuable insights into how different solutes interact with GBs across a wide

variety of alloy systems. However, this model has a limitation that the segregation energies are

calculated via strutural relaxation at zero K, making predictions at elevated temperature less

accurate.

Figure 19: A summarization (Pettifor map) of segregation energy specra covering 15 alloying elements
which can be used to predict the segregation tendency [57].

The accuracy of the first framework proposed by Schuh and Wagih is limited by the training

dataset calculated using EIPs. While the second framework (the bottom framework shown

in Fig. 18), developed in 2022 [58], improves the accuracy of GB segregation predictions by

directly integrating DFT calculations into the machine learning model. By combining quantum

mechanics with machine learning, this model achieves near quantum-level accuracy in predicting

segregation tendencies across a broader range of alloy systems, particularly those where reliable

EIPs are not available. The framework provides a tool that not only covers a larger chemical

space but also produces higher fidelity segregation spectra for complex alloys. This method

has been successfully applied by Schuh and Wagih to a comprehensive database of Al-based

alloys, which is able to fill a crucial gap in the understanding of GB segregation behavior in

polycrystals.

These above-mentioned works represent the most state-of-the-art methods for the study of

GB segregation. Both frameworks proposed by Schuh and Wagih represent a significant im-

provement over earlier models, such as those developed by Huber et al., which were limited

to bi-crystal systems and specific GB configurations. By focusing on polycrystals, Schuh and

Wagih’s models better capture the complexities of real-world materials, where a wide variety of

GB types and orientations coexist within the same structure. These models offer the most ac-
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curate predictions to date for polycrystals, enabling more effective alloy design. Their database

of GB segregation energies for over 250 binary alloys is a key resource for researchers seeking

to design materials with tailored properties, including improved strength, corrosion resistance,

or embrittlement resistance [51]. More importantly, their frameworks are extensible, meaning

they can be adapted to other base metals and alloy systems, which makes them particularly

useful for future materials discovery and optimization efforts.

For the framework proposed by Schuh and Wagih, the machine learning techniques are applied to

the local atomic environment descriptors, which are restricted to predicting segregation energies

exclusively. While most recently, Scheiber et al. [59] proposed another method to investigate GB

segregation through machine learning, which also allows a broader range of prediction tasks.

The machine learning descriptors of their model include physical quantities, such as partial

cohesive energy, the volume mismatch between the solute and matrix, and the Voronoi volume

of the GB site, providing their model with a stronger physical foundation compared to uMLIPs

or the previously reviewed machine learning frameworks. The model can predict GB segregation

energies with good accuracy (as shown in Fig. 20) based on the input computational data from

available literature.

Figure 20: Comparison of predicted lowest segregation energy between the model of Scheiber et al. (blue)
with data from the other literature [59].

A significant challenge in assessing the performance of uMLIPs on predicting GB segregation

arises from the scattered and inconsistent available data. The model of Scheiber et al., however,

offers an effective approach for predicting segregation behavior in a consistent manner (consis-

tency in computational parameters). Furthermore, due to the strong physical foundation of the

machine learning model, their model can also predict other related physical properties, such as

strengthening energies in addition to GB segregation energy. However, as shown in Fig. 20,

their model seems to overlook the influence of different GB structures on segregation tendency.

If this is the case, the model may only be suitable for predicting the general segregation tenden-

cies of solute elements within a given matrix, rather than providing detailed, structure-specific

predictions. This also highlights the difficulty of proposing an evaluation framework for assess-

ing the performance of uMLIPs, due to the limited and scattered available GB segregation data

from various literature.
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3 Research Question and Objective

This section provides a brief summary of the research question and objectives of this Master’s

thesis project. Since experimental methods face challenges in precisely analyzing the effects

of GB segregation, computational simulation is a more promising approach to study the GB

segregation behavior of Cu and to explore solutions for Cu contamination. Although DFT

calculations offer high accuracy, their high computational cost limits them to simulating systems

with up to 1000 atoms. Simulations using EIPs, on the other hand, face the challenge of a lack of

reliable potentials, especially when modeling the co-segregation of Cu with various other alloying

elements at Fe GBs to investigate Cu segregation behavior. Recently developed uMLIPs offer a

potential solution to this issue, as they can be applied to simulations involving nearly all elements

in the periodic table. However, evaluations of uMLIPs remain limited, particularly regarding

their performance in simulating GB segregation. Therefore, an evaluation of these potentials is

necessary before they can be fully applied in the study of GB segregation. The evaluation will

be applied on the best available uMLIP models according to the Matbench Discovery (Table 2),

with an emphasis on their performance in simulating GB segregation across various GBs and

as many solute elements as possible, to validate their accuracy.

4 Methodology

In the Literature Review (section 2.3), we highlighted that segregation energy spectra can

provide a more comprehensive representation of segregation behavior. However, for this project,

in order to evaluate the performance of uMLIPs by computing segregation energy, the evaluation

is still limited to comparing single-value segregation energies. The simulation of polycrystalline

GB models using uMLIPs remains unavailable due to the high computational cost and the

absence of reference data.

The best reference for evaluating the performance of uMLIPs comes from existing GB segre-

gation studies based on DFT methods, as quantum mechanical methods are considered the

most accurate and the reviewed evaluations typically use DFT data for comparison [30, 38, 39].

Systematically evaluating uMLIPs for simulating GB segregation is challenging. Firstly, the

available DFT results are limited, and most of these DFT-based studies focus either on merely

one or two GBs or the segregation of a single solute at Fe GBs. Consequently, the most relevant

comparative studies currently available are the DFT-based GB segregation studies by Mai et al.

[12], which examined four BCC Fe GBs and ten transition metals, and Ito et al. [43], which in-

vestigated nine FCC Fe GBs and nine transition metals. Additionally, since segregation energy

calculations can also provide GB energy data, and both of the aforementioned studies include

such data, GB energies will also serve as a reference for evaluation. Finally, we also followed

the work of Ande and Sluiter [60] to calculate the solution enthalpy of BCC Fe and cementite

with a single solute element substituted, to see if this can offer further insights for our study.

The evaluation details of this project are summarized in the following table:
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Table 3: Details of the evaluation.

Calculation Targets
Substituted Elements

(Solutes)
Relaxed Structures

Segregation Energy
Ti, V, Cr, Mn, Co, Ni, Cu,

Nb, Mo, W

4 BCC Fe GBs, 4×4×4 BCC

Fe supercell

GB Energy \ 4 BCC Fe GBs

Segregation Energy
Ti, V, Cr, Mn, Co, Ni, Cu,

Nb, Mo

9 FCC Fe GBs, 3×3×3 FCC

Fe supercell

GB Energy \ 9 FCC Fe GBs

Solution Enthalpy
Al, Si, P, S, Ti, V, Cr, Mn,

Co, Ni, Cu, Nb, Mo, W

3×3×3 BCC Fe supercell,

cementite

Five pretrained uMLIP models were employed for the simulations: MACE-MP-0 (using the

“large” model that includes more model parameters for higher accuracy), two versions of

CHGNet, v0.2.0 and v0.3.0, M3GNet (MP-2021.2.8-PES), and SevenNet-0. CHGNet (v0.3.0)

enhances the previous v0.2.0 version by increasing the AtomGraph cutoff, resolving discontinu-

ities when no BondGraph is present, adding normalization layers, and improving accuracy in

energy, force, and stress predictions. In addition to the uMLIPs used, several EIPs featuring

Cu, the solute of primary interest, were selected from the Interatomic Potential Repository

of the National Institute of Standards and Technology (NIST) database [61, 62] to serve as a

secondary reference for the simulation (segregation energy and GB energy only). These EIPs

include three EAM potentials and one MEAM potential. For the BCC Fe systems, the EAM

potentials from Zhou et al. [63] and Bonny et al. [64] were employed, along with the MEAM

potential from Lee et al. [65]. An EAM potential specifically fitted for studying high-entropy

alloys, proposed by Deluigi et al. [66] and also the MEAM developed by Lee et al., were used

for the FCC Fe system. The EAM potentials from Zhou and Bonny were used exclusively for

BCC Fe systems because the pre-testing of this work showed that their predictions for FCC Fe

systems were unreliable. Similarly, Deluigi’s EAM potential was employed only for FCC Fe, as

it was fitted for high-entropy alloys and exhibited significant errors when applied to BCC Fe

systems.

4.1 Calculation

4.1.1 Grain Boundary Energy

In order to evaluate the performance of the uMLIPs in simulating GB segregation, GB energies

and the segregation energies were calculated for comparison. The GB energy γGB can be

represented as the excess energy associated with the presence of a GB compared to the energy

of the bulk material. It quantifies the disruption of atomic structure and bonding that occurs

at the interface between two grains. A higher value of γGB indicates a greater energy penalty

for having the GB, which can influence the material’s stability and mechanical properties. The

GB energy was calculated as follows:
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γGB =
EGB − Ebulk × NGB

Nbulk

2A
(1)

Ebulk is the energy of the bulk cell in its pure form, containing Nbulk Fe atoms. Similarly, EGB

is the energy of the GB cell in its pure form, containing NGB Fe atoms. Area A represents the

area of the grain boundary, and the factor of two is due to the periodic boundary condition of

the GB cells.

4.1.2 Segregation Energy

The segregation energy Eseg can be understood as the difference in energy between having

the solute at the grain boundary compared to being in the bulk material. If Eseg is negative,

it suggests that the solute prefers to segregate to the grain boundary, while a positive value

indicates a preference for the solute to remain in the bulk. The segregation energy was calculated

as following:

Eseg = EGB(n− 1)Fe,X − EGB − Ebulk(m− 1)Fe,X − Ebulk (2)

EGB(n − 1)Fe,X represents the total energy of a GB structure with n atoms, one of which is

the substitutional solute X. Ebulk(m− 1)Fe,X represents the total energy of a bulk cell with m

atoms, one of which is the substitutional solute X. Ebulk and EGB are the energy of the bulk

cell and GB cell in its pure form, containing m Fe atoms in the bulk cell and n Fe atoms in the

GB cell.

4.1.3 Solution Enthalpy

The calculation of solution enthalpy in BCC Fe system is done by finding the formation enthalpy

difference of the solute-free bulk BCC Fe system and the system substituted by one solute

element. The calculation of solution enthalpy for cementite is also the same.

Using cementite as example, the solution enthalpy of cementite where a Fe atom is substituted

by an atom of element M can be calculated as:

∆Hf = Hf[Fe3q-1MCq] −Hf[Fe3qCq] (3)

where Hf[Fe3q-1MCq] represents the formation enthalpy of the alloying-element-substituted-

cementite system and Hf[Fe3qCq] is the formation enthalpy of the solute-free cementite system.

4.2 Structures

All the bulk models were constructed using Python module Atomic Simulation Environment

(ASE) [67]. A large supercell was built for the bulk to prevent solute-solute interaction. The

bulk model for BCC Fe consists of a supercell containing 128 atoms, arranged in a 4×4×4

configuration of unit cells. While for the FCC Fe system, bulk model is a supercell containing

108 atoms in a 3×3×3 configuration of unit cells.
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In the work of Mai et al., four STGB structures were used for GB segregation simulations as

shown in Fig. 12. The initial GB models can simply be found in the appendix of Mai’s paper

[12]. And these GB structures were rescaled according to the lattice parameters of BCC Fe

obtained using tested potentials as listed in Table A.1. While for Ito’s work, the GB structures

were obtained in the same way. The structures of the nine FCC Fe GBs (as shown in Fig. 9)

were created according to the structures of stable [001] STGBs of Cu provided by Tschopp et

al. in their dataset [43, 68]. These GB structures of Cu were rescaled according to the lattice

parameters of FCC Fe of the potentials used in this work.

The 54 atoms BCC Fe supercell used for Ande and Sluiter’s work was built via the ASE module

in unit cell configuration of 3×3×3. While the ferromagnetic cementite structure was obtained

from Materials Project database. The cementite structure is orthorhombic with space group

pnma, and the lattice constants are a = 4.49085 Å, b = 5.03018 Å, and c = 6.73931 Å.

Table 4: Size of GB cells (number of atoms nGB) and the cell parameters. Note that the cell parameters
correspond to lattice parameters 2.832 Å (BCC Fe) and 3.540 Å (FCC Fe) used for DFT simulations.
The cell parameters were rescaled according to the lattice parameter obtained for each potential as listed
in Table A.1. The cell parameter c includes the thickness of the vacuum layer.

System GB nGB a (Å) b (Å) c (Å)

BCC Fe
[110]

Σ3(111) 72 4.005 6.937 44.144

Σ3(112) 48 4.005 4.905 41.620

Σ9(221) 68 4.005 6.332 50.973

Σ11(332) 42 4.005 4.696 50.973

FCC Fe
[001]

Σ5(210) 100 7.92 7.08 30.00

Σ5(310) 144 11.19 7.08 30.00

Σ13(320) 160 12.76 7.08 30.00

Σ13(510) 224 18.05 7.08 30.00

Σ17(410) 180 14.60 7.08 30.00

Σ25(430) 228 17.70 7.08 30.00

Σ29(520) 240 19.06 7.08 30.00

Σ37(610) 276 21.53 7.08 30.00

Σ41(540) 288 22.67 7.08 30.00

4.3 Computational Details

For all the simulations, structural relaxation was conducted using either the Fast Inertial Re-

laxation Engine (FIRE) [69] or the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [70],

implemented in ASE. The relaxation convergence criterion was fmax = 0.0001 eV/Å, which

means the relaxation will stop when the force on all individual atoms is less than fmax. BFGS

was primarily utilized for minimization, while FIRE was employed in cases where minimization

using BFGS did not converge. The maximum step for structural relaxation was set to 2000,

any relaxation not converging within 2000 steps will be reported as unconverged in this work.

When calculating the segregation energies and solution enthalpies for the bulk systems, relax-

ations were performed on both the atomic positions and the cell parameters. While for the
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GB system, only the atomic positions were relaxed. This approach is consistent with the relax-

ation methodologies employed by Mai et al. and Ito et al. in their first-principles calculations.

Furthermore, the segregated solutes simulated for the FCC Fe GBs consist of nine transition

metals, including Ti, V, Cr, Mn, Co, Ni, Cu, Nb, and Mo. The same solutes were also inves-

tigated by Mai et al., incorporating an additional transition metal W. It is noteworthy that

the EIPs utilized as references included only the covered solutes. For example, for the EAM

potential proposed by Bonny et al. [64] (will be referred as “FeMnNiCu Bonny” in this work),

the Fe atom was substituted by an atom of Mn, Ni or Cu when performing simulation using

this potential.

The simulated substitutional sites for all GB structures are identical to those simulated by

Mai et al. [12] and Ito et al. [43]. For the four BCC Fe GBs, the simulated substitutional

sites are within the shaded region as shown in Fig. 12. And for the nine FCC Fe GBs, the

simulated substitutional sites are indicated in Fig. 9, where all inequivalent substitutional sites

within region 2.5 Å from the GB plane were studied. Note that for each GB, the segregation

energies discussed in this work will be the lowest segregation energy among the results of all

the simulated sites. For the cementite structure, the substituting sites of alloying elements are

the 4c and 8d site of Fe atom as shown in Fig. 21.

Figure 21: Schematic of a cementite cell with substituting sites labeled. The large sphere represents Fe
atom and the small ones are C. The white Fe shpere is the 8d site and the dark sphere is the 4c site [71].

The GB models used for segregation energy calculations included a vacuum layer, whereas the

models used to calculate GB energies had the vacuum layers removed. This treatment was

adopted to maintain consistency with the work of Mai et al. [12]. Additionally, the relaxation

performed on the GB cells without vacuum was conducted in the same way as in Mai’s work,

with both the atomic positions and the cell direction along the GB relaxed. The simulation of

FCC Fe systems for calculating GB energies also follows this procedure, as Ito et al. did not

specify how their GB energies were obtained.
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5 Results

5.1 Grain Boundary Energy

Table 5: BCC Fe GB energies (J/m2) for different potentials compared with DFT results from Mai et
al.[12]. The GB misorientation axis is [110]. Missing data: results unconverged.

GB Energy [J/m2] Σ3(111) Σ3(112) Σ9(221) Σ11(332) MAE [J/m2]

MACE-MP-0 1.16 0.22 1.87 0.75 0.36

CHGNet(v0.3.0) 0.72 0.10 1.23 0.53 0.67

CHGNet(v0.2.0) 0.90 0.27 1.35 0.82 0.48

M3GNet 0.01 0.20 0.91

SevenNet-0 0.04 0.22 0.48 0.59 0.98

FeMnNiCu Bonny 1.31 0.27 2.01 1.04 0.28

FeTiCoNiCuMoW Zhou 1.41 0.26 2.13 1.04 0.28

FeCu Lee 1.16 0.24 2.12 0.86 0.39

DFT (Mai) 1.58 0.45 1.77 1.45

The GB energies for all simulated GB structures are presented in Table 5 for BCC Fe and Table

6 for FCC Fe. There are convergence issues for the simulation of M3GNet and SevenNet-0.

The relaxation of M3GNet on Σ9(221) and Σ11(332) BCC Fe GBs didn’t converge, and none

of the relaxation performed on FCC Fe GBs converged within 2000 steps. For SevenNet-0, one

unconverged case was noted when relaxing the Σ37(610) FCC Fe GB. Although the relaxation

of BCC Fe GB Σ3(111) using M3GNet and SevenNet-0 converged, the calculated GB energies

are only 0.01 and 0.04 J/m2, respectively. Compared to the GB energy 1.58 J/m2 obtained by

Mai et al. via DFT calculation, the GB energies obtained by M3GNet and SevenNet-0 for this

GB are unreasonably small.

For BCC Fe systems, the two EAM potentials achieve the smallest error in predicting GB

energies, with an MAE of only 0.28 J/m2. Among the uMLIPs, the model with the smallest

error is MACE-MP-0, which has an MAE of 0.36 J/m2, slightly smaller than the MAE of the

MEAM potential at 0.39 J/m2. The MAEs of the two CHGNet models are 0.67 J/m2 for version

0.3.0 and 0.48 J/m2 for version 0.2.0. Although the GB energy errors obtained by uMLIPs

are larger compared to the EIPs, MACE-MP-0 and both CHGNet versions still demonstrate

reasonable accuracy in predicting the GB energies of BCC Fe. For the GB energies of the nine

FCC Fe GBs, all models show significant errors compared to the DFT results, with the EAM

potential proposed by Deluigi having the smallest MAE at 0.51 J/m2. In general, the simulated

GB energies tend to be lower than the DFT results.
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Table 6: FCC Fe GB energies (J/m2) for different potentials compared with DFT results from Ito et
al.[43], the GB misorientation axis is [001]. Missing data: result unconverged.

GB Energy [J/m2] Σ37(610) Σ13(510) Σ17(410) Σ5(310) Σ29(520)

MACE-MP-0 0.36 0.43 0.41 0.37 0.42

CHGNet(v0.3.0) 0.23 0.24 0.27 0.27 0.28

CHGNet(v0.2.0) 0.19 0.29 0.30 0.32 0.21

SevenNet-0 0.40 0.42 0.39 0.37

FeCrCoNiCu Deluigi 0.49 0.53 0.70 0.48 0.33

FeCu Lee 0.36 0.44 0.36 0.35 0.36

DFT (Ito) 1.07 1.13 1.20 1.24 1.29

Σ5(210) Σ13(320) Σ25(430) Σ41(540) MAE [J/m2]

MACE-MP-0 0.19 0.36 0.31 0.11 0.79

CHGNet(v0.3.0) 0.12 0.20 0.20 0.06 0.91

CHGNet(v0.2.0) 0.06 0.19 0.17 0.16 0.91

SevenNet-0 0.39 0.31 0.29 0.37 0.76

FeCrCoNiCu Deluigi 0.52 0.86 0.82 0.75 0.51

FeCu Lee 0.12 0.33 0.34 0.22 0.80

DFT (Ito) 1.33 1.08 0.91 0.81

5.2 Segregation Energy

As this evaluation serves as a preparation for future simulation studies of Cu GB segregation,

particular emphasis will be placed on the results related to Cu.

5.2.1 Overview

In the relaxation of the bulk system for both solute-free and solute-segregated, no instances

of unconvergence were reported. However, when relaxing the solute-segregated BCC Fe GB

system using M3GNet, unconverged cases were noted at several GB sites. While the relaxation

of solute-segregated BCC Fe GB systems with other uMLIPs showed good convergence. For

FCC Fe GB systems, there were significantly more cases of unconvergence. MACE-MP-0 and

CHGNet(v0.3.0) showed no unconverged results, while CHGNet(v0.2.0) and SevenNet-0 exhib-

ited several cases of unconvergence, which have been removed from the results. The convergence

issues with M3GNet are particularly problematic, as almost all segregation at sites near the GB

plane fails to converge, making result analysis nearly impossible. Therefore, the results from

M3GNet cannot be presented due to these convergence issues.

Fig. 22 provides an overview of the lowest segregation energies predicted by uMLIPs compared

to DFT results of all tested GBs and elements. For the BCC Fe system, MACE-MP-0 and both

versions of CHGNet tend to underpredict the segregation tendency at BCC Fe GBs, as most

data points lie above the dashed line. For the FCC Fe system, the accuracy of CHGNet(v0.3.0)

is very high when the segregation tendency is small (from 0 to -0.3 eV). However, for data points

with higher segregation tendencies at all FCC Fe GBs, CHGNet(v0.3.0) tends to underpredict

29



Figure 22: An Overview of the segregation energies results of all tested GBs and elements calculated by
uMLIPs, plotted against DFT results from Mai et al.[12] and Ito et al.[43]. Note that for the FCC Fe
include all solute elements and GBs. The results of SevenNet-0 are not presented on this graph due to
large deviations.

the segregation tendency. The figure also shows that CHGNet(v0.2.0) performs poorly on the

FCC Fe system.

All MAEs for both uMLIPs and EIPs are listed in Table 7. In general, the accuracy of uMLIPs

is better than or at least as good as EIPs, including EAM and MEAM potentials. This is

consistent with expectations, as uMLIPs are trained using datasets obtained from quantum

mechanical methods. In the simulation of the BCC Fe system, the EAM potential proposed by

Bonny et al. shows the largest error of 0.392 eV, which is almost twice that of other potentials.

The uMLIP with the largest error is SevenNet-0, with an MAE of 0.257 eV. The accuracy of the

uMLIPs follows the sequence: M3GNet > CHGNet(v0.2.0) > MACE-MP-0 > CHGNet(v0.3.0)

> SevenNet-0. It’s worth mentioning that although CHGNet(v0.3.0) was improved from version

0.2.0, version 0.2.0 outperforms version 0.3.0 in BCC Fe systems. The accuracy of the EAM

potential from Zhou et al. and the MEAM potential from Lee et al. is high, comparable to that

of uMLIPs.

The accuracy of different potentials in predicting GB segregation in FCC Fe GBs varies com-

pared to BCC Fe GBs. The uMLIPs, particularly CHGNet(v0.3.0) and MACE-MP-0, demon-

strate the highest accuracy, with MAE around 0.15 eV, surpassing selected traditional poten-

tials, such as the EAM potential from Deluigi et al. (0.258 eV) and the MEAM potential from

Lee et al. (0.307 eV). While M3GNet demonstrates the highest accuracy for BCC Fe structures,

convergence issues limit its applicability in simulating the FCC Fe system. Similar convergence

problems were noted with SevenNet-0, where seven data points were excluded due to unconver-

gence. CHGNet(v0.2.0) and SevenNet-0 exhibit significantly lower accuracy in FCC Fe systems,

with the latter showing large deviations from the DFT results, reaching an MAE of 2.781 eV.

Although CHGNet(v0.2.0) maintains accuracy for some solutes and GBs, many results show

significant errors, which can also be seen in Fig. 22. Overall, the accuracy of these potentials

in predicting segregation in FCC Fe GBs follows the sequence: CHGNet(v0.3.0) > MACE-MP-
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Table 7: Overall MAE of segregation energy results compared to DFT results. Note that for EIPs, the
MAE were calculated with available chemicals only. For example, the MAE of FeCu Lee is the MAE of
Cu only.

BCC Fe FCC Fe

Potential MAE (eV) Potential MAE (eV)

MACE-MP-0 0.221 MACE-MP-0 0.169

CHGNet(v0.3.0) 0.245 CHGNet(v0.3.0) 0.150

CHGNet(v0.2.0) 0.193 CHGNet(v0.2.0) 0.786

M3GNet 0.176 SevenNet-0 2.781

SevenNet-0 0.257 FeCrCoNiCu Deluigi 0.258

FeMnNiCu Bonny 0.392 FeCu Lee 0.307

FeTiCoNiCuMoW Zhou 0.207

FeCu Lee 0.256

0 > CHGNet(v0.2.0) > SevenNet-0. Among the tested uMLIPs, only CHGNet (v0.3.0) and

MACE-MP-0 provide reliable predictions for FCC Fe systems.

5.2.2 Segregation Energy of BCC Fe GBs

Fig. 23 presents the lowest segregation energies of four BCC Fe GBs for different solutes. The

variation in segregation energies across different solutes shows a similar pattern among the

uMLIPs, which means that uMLIPs can capture the general segregation tendency of tested

solute elements. It is evident that these uMLIPs exhibit relatively higher accuracy in predicting

the segregation tendencies of V, Cr, and Co. However, the predictions for Mn, Ni, and Cu

exhibit lower accuracy, as DFT results from Mai et al. show a much stronger segregation

tendency for these solutes. This discrepancy is a significant contributor to the underprediction

noted in the Overview subsection 5.2.1. While the segregation energies of Mn, Ni, and Cu

predicted by uMLIPs are similar, including those from the three EIPs, the data points for these

potentials cluster closely together in Fig. 23, except for M3GNet in the two high-angle GBs,

Σ3(111) and Σ9(221), and SevenNet-0 in the twin GB, Σ3(112). In addition to Mn, Ni, and Cu,

another major contribution of error is the predictions for Ti and Nb. Unlike Mn, Ni, and Cu,

the predicted segregation energies for Ti and Nb show much greater variability across different

potentials.

For the prediction of Cu segregation, the results show that M3GNet has the best performance

in Cu segregation simulation with an MAE of 0.242 eV (MAE of the segregation energy of Cu

only for the four studied GBs compared to DFT results), while the MEAM potential developed

by Lee et al. specialzed in Cu has an MAE of 0.255 eV. The MAEs of Cu segregation of

other uMLIPs and the two EAM potentials are around 0.4 eV or even larger. In addition to Cu,

M3GNet also exhibits the best performance in simulating Ni segregation with an MAE (Ni only)

down to 0.153 eV, while the other uMLIPs and the two EAM potentials have an MAE nearly

twice as large. Despite the outperformance of M3GNet in simulating Ni and Cu segregation at

BCC Fe GBs compared to other uMLIPs, M3GNet shows the worst performance in simulating

Ti segregation, which can be seen clearly on Fig. 23. M3GNet always predicts a much larger

segregation tendency of Ti which is nearly twice of the DFT results. Similar to M3GNet on
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Figure 23: Lowest segregation energies (eV) of BCC Fe systems plotted against solute elements. GB line
direction is [110].

Ti, CHGNet(v0.2.0) also exhibits large errors when simulating Ti and Nb. For STGB Σ3(111),

CHGNet(v0.3.0) predicted the most negative segregation energies when solutes are Ti or Nb.

While for the other GBs, the segregation energies of Ti and Nb predicted by CHGNet(v0.3.0)

become the most positive.

5.2.3 Segregation Energy of FCC Fe GBs

For FCC Fe results, MACE-MP-0 and CHGNet(v0.3.0) exhibit higher accuracy compared to

the BCC Fe results, with a MAE of 0.17 eV and 0.15 eV, respectively. While the results of Ni

and Cu segregation in BCC Fe GBs show large errors, the predictions for Ni and Cu by MACE-

MP-0 and CHGNet(v0.3.0) in FCC Fe systems are the most accurate. The MAE for Ni and Cu

segregation with MACE-MP-0 are 0.08 eV and 0.09 eV, respectively, while for CHGNet(v0.3.0),

the values are as low as 0.04 eV for Ni and 0.05 eV for Cu. Based on the DFT results from Ito et

al. in Table A.11, it appears that the smaller MAEs of MACE-MP-0 and CHGNet(v0.3.0) may

be attributed to the smaller variation in segregation energies across different GBs. However,

the higher MAEs for Deluigi’s EAM potential (0.20 eV for Ni and 0.31 eV for Cu) and Lee’s

MEAM potential (0.31 eV) confirm that MACE-MP-0 and CHGNet(v0.3.0) outperform EIPs

in FCC Fe systems. CHGNet(v0.3.0) also exhibits small errors in the prediction of V, Cr, Mn,
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Figure 24: Lowest segregation energies (eV) of FCC Fe systems plotted against solute elements. Results
of SevenNet-0 are not shown in order to avoid the stretch of the plots due to large errors.

and Co, with MAEs around 0.1 eV or smaller. However, CHGNet(v0.3.0) shows larger errors

in the prediction of Ti, Nb, and Mo, with Ti and Nb errors similar to those observed in BCC

Fe, where the variation is much larger. The primary contributors to the errors for MACE-MP-0

are also Ti and Nb, while predictions for other elements generally yield MAEs between 0.1 and

0.2 eV. It can be observed that the segregation tendencies of Ti and Nb predicted by DFT

are generally much higher than those predicted by MACE-MP-0 and CHGNet(v0.3.0). This

underprediction can also be observed in the BCC Fe ones.

While the results from MACE-MP-0 and CHGNet(v0.3.0) demonstrate smaller errors in FCC

Fe systems, the accuracy of other uMLIPs remains inadequate. Despite the convergence issues

associated with M3GNet, the converged results from CHGNet(v0.2.0) and SevenNet exhibit

significant errors. As shown in Appendix Table A.15, the predictions of Ti, V, Cr, Co, Ni, and

Cu for GB Σ13(320) are relatively reasonable, whereas the majority of the other predictions

exhibit absolute errors exceeding 2 eV. As for M3GNet(v0.2.0), there are a few predictions with

smaller errors, which are illustrated in Fig. 24. These include the segregation energies for Cr,

Mn, Co, and Ni in FCC Fe GBs such as Σ5(210), Σ13(320), Σ13(510), Σ17(410), Σ25(430), and

Σ29(520). However, the remaining predictions from CHGNet(v0.2.0) generally exhibit absolute

errors around 1 eV.

From the results of FCC Fe GB segregation, no distinct dependence on the GB structures

was observed. The two EIPs showed the largest errors when simulating the Σ29(520) GB.
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CHGNet(v0.3.0) demonstrated consistent performance across different GBs, with only small

variations in error, ranging from 0.14 eV to 0.16 eV (the MAE for each GB). In contrast,

MACE-MP-0 exhibited errors ranging from 0.1 eV to 0.17 eV for most GBs, except for the

Σ5(210) GB, which had an MAE of approximately 0.24 eV, and the Σ13(320) GB, which

showed the largest MAE at around 0.37 eV. The discrepancies of MACE-MP-0 on these two

GBs are clearly visible in Fig. 24: while the segregation tendency predicted by DFT decreases,

MACE-MP-0 does not capture this reduction.

5.3 Solution Enthalpies of Alloying-Element-Substituted BCC Fe and Ce-

mentite

Table 8: Solution enthalpies (unit: eV) of the alloying-element-substituted BCC Fe supercell containing
54 atoms. DFT data from Ande and Sluiter [60].

Potential Al Si P S Ti V Cr

MACE-MP-0 3.667 1.559 2.159 4.835 -0.595 -1.513 -1.303

CHGNet(v0.3.0) 3.725 1.833 1.562 3.657 -0.714 -1.331 -1.167

CHGNet(v0.2.0) 3.728 2.017 1.408 4.402 -0.577 -1.328 -1.113

M3GNet 4.385 2.175 1.189 4.438 0.798 -1.090 -0.922

SevenNet-0 3.944 1.782 1.825 4.333 -0.360 -1.264 -1.443

DFT 3.751 1.661 1.842 4.314 -0.394 -1.453 -1.412

Potential Mn Co Ni Cu Nb Mo W

MACE-MP-0 -0.572 1.120 2.599 4.556 -2.044 -2.317 -4.559

CHGNet(v0.3.0) -0.687 1.319 2.594 4.625 -2.118 -2.414 -4.595

CHGNet(v0.2.0) -0.648 1.355 1.769 4.661 -2.019 -2.440 -4.793

M3GNet -0.515 1.217 2.699 4.798 -1.303 -1.933 -4.245

SevenNet-0 -0.741 0.950 2.341 4.222 -1.744 -2.222 -4.034

DFT -0.522 1.069 2.844 5.217 -1.992 -2.575 -4.796

The calculated solution enthalpies of the alloying-element-substituted BCC Fe supercell are

shown in Table 8 and the MAEs are in Table 9. The general performance of the uMLIPs

in predicting solution enthalpy follows the sequence that MACE-MP-0 > CHGNet(v0.2.0)

> CHGNet(v0.3.0) > SevenNet-0 > M3GNet. According to the MAE of CHGNet(v0.3.0),

M3GNet and MACE-MP-0 in calculating formation energy reported by Yu et al., the perfor-

mance of these three uMLIPs follow the sequence that MACE-MP-0 > CHGNet(v0.3.0) >

M3GNet, which aligns well with the results in Table 9. Furthermore, both results also show

the small difference in MAE between MACE-MP-0 and CHGNet(v0.3.0) and the much larger

error of M3GNet. It’s worth mentioning that although M3GNet exhibits the best performance

in calculating the segregation energy at BCC Fe GBs, the solution enthalpy calculated are with

the largest errors among the uMLIPs instead.

Similar to the results for BCC Fe GB segregation energy, the solution enthalpy of Cu shows

the largest error among all the alloying elements. For other alloying elements, uMLIPs consis-

tently predict solution enthalpies with errors around or below 0.1 eV. However, for the solution

enthalpy of Cu, the result with the smallest error is predicted by M3GNet, with an error of

approximately 0.42 eV. The solution enthalpy of Cu predicted by DFT is significantly larger

34



than those predicted by uMLIPs. M3GNet also exhibits a large error in calculating the solu-

tion enthalpy of Ti. The substitution process predicted by M3GNet is endothermic (positive

solution enthalpy), whereas all other predictions and DFT results show negative solution en-

thalpies. This is the only case where a difference in thermal behavior compared to DFT results

was observed.

Table 9: MAEs (eV) of solution enthalpies of alloying-element-substituted BCC Fe, uMLIPs vs. DFT.
The MAE of specific solute, e.g., Al, represents the MAE of the Al results simulated using all potentials
compared to DFT results. The MAE of specific potential, e.g., MACE-MP-0, represents the MAE of all
solutes using MACE-MP-0 compared to DFT results.

Element MAE Element MAE Element MAE Model MAE

Al 0.192 Ti 0.386 Ni 0.244 MACE-MP-0 0.218

Si 0.253 V 0.172 Cu 0.645 CHGNet (v0.3.0) 0.255

P 0.279 Cr 0.235 Nb 0.229 CHGNet (v0.2.0) 0.224

S 0.282 Mn 0.113 Mo 0.333 M3GNet 0.448

Co 0.171 W 0.432 SevenNet-0 0.272
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Figure 25: Solution enthalpies of alloying-element-substituted cementite compared with DFT data from
Ande and Sluiter [60].

The solution enthalpies of alloying-element-substituted cementite are presented in Fig. 25.

Since the solution enthalpies provided by DFT are distinguished as NM (non-ferromagnetic)

and FM (ferromagnetic), the solution enthalpies calculated using uMLIPs were compared with

both NM and FM DFT data. It can be observed that, with the exception of M3GNet, the other

four uMLIPs predict almost the same solution enthalpies for all tested alloying elements. In

contrast, the solution enthalpies predicted by M3GNet exhibit significant errors. This can be

further confirmed by calculating the MAEs as listed in Table 10. The MAEs for MACE-MP-0,

both versions of CHGNet, and SevenNet-0 are quite similar, while the MAEs for M3GNet are

significantly higher—three times those of the other uMLIPs at the 4c site and almost ten times

35



higher at the 8d site.

Table 10: MAEs of calculated solution enthalpies for each uMLIP compared to both the FM and NM
DFT data.

MAE (eV) MACE-MP-0 CHGNetv3 CHGNetv2 M3GNet SevenNet-0

Site 4c 8d 4c 8d 4c 8d 4c 8d 4c 8d

FM 0.55 0.32 0.58 0.34 0.57 0.33 1.77 3.10 0.57 0.33

NM 0.58 0.44 0.59 0.45 0.59 0.45 1.80 3.12 0.59 0.44

6 Discussion

6.1 Convergence Analysis

In the Results section, the convergence issues were briefly discussed. Structural relaxations

performed on the bulk systems, including cementite, successfully converged across all uMLIPs.

However, convergence issues were encountered during the relaxation of GB systems, particularly

when using M3GNet, as detailed in Table 11. Notably, seven out of nine GBs failed to converge

during the relaxation of pure FCC Fe GB systems using M3GNet. This is why results from

M3GNet for FCC Fe are not included in this work. Among the other uMLIPs, MACE-MP-0

and CHGNet(v0.3.0) demonstrated the most robust relaxation performance, with no reported

convergence failures. CHGNet(v0.2.0) had only one unconverged case when relaxing the FCC Fe

Σ37(610) GB system segregated by Co. This unconverged case might be resolved by increasing

the maximum relaxation steps. For SevenNet-0, all unconverged cases were associated with the

Σ41(540) FCC Fe GB and Cu-segregated GBs (see Table A.15). It is also possible that both Cu

and the Σ41(540) GB (with 216 atoms) require more relaxation steps to achieve convergence.

Table 11: Convergence analysis on structrual relaxation of the GB structures substituted by tested
solutes. For BCC Fe, there are 4 GBs and 10 solute elements, 40 cases for each uMLIP. For FCC Fe,
there are 9 GBs and 9 solute elements, 81 cases for each uMLIP.

# of Convergence BCC Fe Rate FCC Fe Rate

MACE-MP-0 40 100% 81 100%

CHGNet(v0.3.0) 40 100% 81 100%

CHGNet(v0.2.0) 40 100% 80 99%

M3GNet 40 100% <18 <22%

SevenNet-0 40 100% 74 91%

Since the structural relaxation of GB systems in calculating segregation energies was performed

by relaxing the atomic position only, the significant increase in unconverged cases when relaxing

both the atomic position and the cell cannot be assessed quantitatively in this work. However,

the increase of possibility of unconvergence can be observed in this work when calculating the

GB energies (relaxation was performed on atomic position and the direction along the GB

of the cell parameter). For instance, when calculating the segregation energies at BCC Fe

GBs, all relaxation using M3GNet converged, while unconvergence cases were found for the

36



relaxation performed on the two BCC Fe GB systems (Σ9(221) and Σ11(332)) when calculating

GB energies.

The convergence problems reported in this work align with the analysis performed by Yu et

al. [39], as mentioned in the Literature Review section 2.1.3, which concluded that MACE-

MP-0 and CHGNet (v0.3.0) can perform relaxations more robustly. However, according to the

assessment by Gonzales et al. [40], the robustness of CHGNet (v0.3.0) remains questionable,

and the origin of the convergence issues requires further investigation. One assumption based

on this work is that the convergence issues of uMLIPs might be attributed to a lack of training

data for structures at intermediate states. Although the training datasets of the tested uMLIPs

include data of intermediate structures [28, 30], fine-tuning the models with additional data of

such structures might improve their convergence behavior.

6.2 Accuracy Analysis

Although the primary focus of this thesis is on assessing the performance of uMLIPs in simu-

lating GB segregation, GB energies and solution enthalpies were also calculated as additional

reference points. For BCC Fe systems, the GB energies calculated using selected EIPs are close

to those obtained through DFT methods. In contrast, most of the GB energy results calcu-

lated by uMLIPs show relatively larger errors, with only the BCC Fe GB energies calculated by

MACE-MP-0 with reasonable errors compared to EIPs. Since both uMLIPs and EIPs exhibit

significant errors in predicting GB energies for FCC Fe systems. This suggests that the discrep-

ancies may not be due to the inherent performance limitations of uMLIPs in FCC Fe GBs but

may instead be attributed to issues with the simulated structures, as Ito et al. did not provide

sufficient details about the GB energy calculation. Consequently, the GB energies calculated in

this work may not provide a reliable basis for evaluating the performance of uMLIPs.

It has been reviewed (section 2.1.2) that the performance of uMLIPs highly depends on the

quality of the training dataset, and increasing the size of the training dataset will improve

the performance of uMLIPs. Additionally, the out-of-distribution performance of the tested

pre-trained uMLIP models can be reduced due to a systematic underprediction as reviewed in

section 2.1.3 [42]. Furthermore, the training datasets for MACE-MP-0, CHGNet, and SevenNet-

0 are identical, with the training dataset of M3GNet being a subset of the former. Since the

cementite structure was obtained from Materials Project database, this structures is included in

the training dataset of the uMLIPs except for M3GNet. This is clearly shown in the results (Fig.

25) of calculating the solution enthalpies of alloying-element-substituted cementite. While the

other four uMLIPs give almost the same solution enthalpy for each substituted alloying elements,

the solution enthalpies predicted by M3GNet show larger deviations and errors.

In terms of performance on GB segregation simulation, M3GNet exhibited the smallest error in

predicting the segregation energies for BCC Fe GBs among the uMLIPs evaluated. However,

due to the relatively smaller size of M3GNet’s training dataset and convergence issues, its per-

formance requires further evaluation. While CHGNet(v0.2.0) outperforms CHGNet(v0.3.0) in

BCC Fe systems, large errors and several unconverged cases were observed in FCC Fe systems.

Overall, the performance of CHGNet(v0.3.0) is still superior to CHGNet(v0.2.0) across both

systems, as it represents an improved version. According to the assessment of Matbench Dis-

covery [30], SevenNet-0 is expected to perform best among the tested uMLIPs. However, the

segregation energies predicted by SevenNet-0 for FCC Fe GB systems are found to be unreason-
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able. Further evaluation of SevenNet-0 is necessary, since currently no additional studies have

assessed its performance. Since only four BCC Fe GBs were simulated in this study, the current

evaluation is insufficient to definitively determine the performance of M3GNet and SevenNet-0

on predicting the segregation behavior, particularly given their performance in FCC Fe GB

systems.

It is difficult to summarize the performance of each uMLIP in predicting the GB segregation

of specific solute elements, as discrepancies are frequently observed across different uMLIPs.

In the Results section 5.2.1, it was noted that MACE-MP-0 and both CHGNet models tend

to underpredict the segregation tendency at BCC Fe GBs, particularly when the segregation

tendency predicted by DFT is high. The elements with high segregation tendencies at BCC

Fe GBs—Ti, Mn, Ni, Cu, and Nb, as shown in Table 12, generally exhibit underpredictions

of over 0.3 eV (with few exceptions). For the GB Σ11(332), the error due to underprediction

increases significantly. A similar underprediction of segregation tendencies was observed in the

results of all tested EIPs, as well as for certain solutes predicted by M3GNet and SevenNet-0,

particularly Cu. However, this does not imply that the uMLIPs’ predictions for these solute

elements are inherently inaccurate, as some of their accuracy can be high when predicting solute

segregation at FCC Fe GBs. For FCC Fe GBs, this underprediction is observed when predict-

ing the segregation behavior of Ti, Nb, and Mo using MACE-MP-0 and CHGNet(v0.3.0). A

common characteristic among these elements is their high segregation tendency in this partic-

ular structure. It is hypothesized that this underprediction phenomenon, when the segregation

tendency predicted by DFT is high, may be the same phenomenon reported by Deng et al. [42].

However, since this phenomenon is also observed with the results of EIPs, further evaluation of

its underlying cause is required. Based on these observations, it is suggested that fine-tuning

the model, especially when simulating solutes with high segregation tendencies at specific GBs

is necessary to achieve greater accuracy.

Table 12: Error (EuMLIP
seg - EDFT

seg , unit: eV) of MACE-MP-0 and both CHGNet models for various
elements, demonstrating the general underprediction of segregation tendency of listed elements. The
results of twin-type GB Σ3(112) were not compared since the general segregation tendencies of all
solutes at this GB are small. The plotted data of this table can be found in the appendix Figure A.1.

Potential GB Ti Mn Ni Cu Nb

MACE-MP-0

Σ3(111) 0.14 0.45 0.25 0.32 0.25

Σ9(221) 0.19 0.47 0.28 0.47 0.16

Σ11(332) 0.39 0.63 0.47 0.68 0.46

CHGNet(v0.3.0)

Σ3(111) -0.69 0.35 0.31 0.43 -0.41

Σ9(221) 0.39 0.40 0.32 0.56 0.36

Σ11(332) 0.48 0.54 0.45 0.67 0.57

CHGNet(v0.2.0)

Σ3(111) 0.15 0.50 0.38 0.40 0.13

Σ9(221) 0.23 0.45 0.27 0.49 0.19

Σ11(332) 0.23 0.58 0.38 0.61 0.25

Based on the results of BCC Fe GBs, it can be concluded that as the misorientation (Σ) of the GB

increases, a general trend of increasing errors is observed for all potentials since greater structural
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complexity increases the difficulty of simulation. A notable example is the significant increase in

errors at the Σ11(332) GB, as shown in Table 12. However, with the exception of SevenNet-0,

the simulation results for SevenNet-0 at the two Σ3 GBs exhibit higher errors, which are the

primary contributors to the overall MAE of SevenNet-0. These discrepancies are particularly

evident for FCC Fe GBs, where the variation in segregation energies is smaller. The prediction

of GB segregation is an out-of-distribution task for uMLIPs, and they are expected to have

a weaker physical foundation. However, the results for the BCC Fe Σ3(112) GB demonstrate

that uMLIPs are capable of capturing the characteristics of this twin-type GB, similar to EIPs

and quantum mechanical methods, by predicting lower segregation energies compared to other

GBs.

6.3 Summary of Performance Evaluation

Table 13: Ranked uMLIPs and EIPs according to the MAE of predicted segregation energy.

MAE (eV) Good (0.15-0.20) Moderate (0.2-0.26) Bad (0.39)

MACE-MP-0

M3GNet CHGNet(v0.3.0)

Eseg BCC Fe CHGNet(v0.2.0) SevenNet-0 FeMnNiCu Bonny

FeTiCoNiCuMoW Zhou

FeCu Lee

MAE (eV) Good (0.15-0.20) Moderate (0.25-0.30) Bad (0.79 & 2.78)

Eseg FCC Fe CHGNet(v0.3.0) FeCrCoNiCu Deluigi CHGNet(v0.2.0)

MACE-MP-0 FeCu Lee SevenNet-0

To better summarize the general performance of uMLIPs in predicting GB segregation, we

categorized the uMLIPs, along with the EIPs, into three tiers based on their accuracy, as shown

in Table 13. In BCC Fe systems, all uMLIPs exceed or at least meet the accuracy of EIPs, with

models like M3GNet and CHGNet(v0.2.0) performing particularly well. In FCC Fe systems,

MACE-MP-0 and CHGNet(v0.3.0) outperform the EIPs, while the other uMLIPs either exhibit

inadequate accuracy or experience severe convergence issues.

Although M3GNet, CHGNet(v0.2.0) and SevenNet-0 exhibit good performance in the prediction

of GB segregation at BCC Fe GBs. The reason why they are not recommended for future

simulaions has been discussed (see 6.2). Therefore, the uMLIPs can finish the GB segregation

simulation tasks robustly with relatively high accuracy are MACE-MP-0 and CHGNet(v0.3.0)

in general. However, for predicting solute segregation with high segregation tendency at BCC Fe

GBs, the accuracy of these two pre-trained models might be restricted. For example, considering

the simulation of single segregation of Cu only at BCC Fe GBs, the MAE of MACE-MP-0 and

CHGNet(v0.3.0) can achieve over 0.5 eV, while the MAE of using the Fe-Cu MEAM potential is

half of that. Since the underprediction of the mentioned solutes with high segregation tendencies

is the major contribution to the errors of MACE-MP-0 and CHGNet(v0.3.0), the prediction of
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other elements can reach near quantum-level accuracy.

Overall, CHGNet(v0.3.0) and MACE-MP-0 emerged as the two best-performing uMLIPs in

this evaluation. Both models demonstrate strong performance in BCC Fe and FCC Fe systems

without convergence issues. However, as CHGNet(v0.3.0) can occasionally be unstable (e.g.,

predicting negative elastic constants [72] and in the benchmarking of Gonzales et al. [40]),

MACE-MP-0 is the preferred choice. While the performance of uMLIPs like MACE-MP-0

generally surpasses that of the tested EIPs, their accuracy can be limited by the underprediction

phenomenon noted earlier. Another limitation of uMLIPs is their higher computational cost,

which constrains their application to larger structures, such as polycrystalline GB models,

compared to EIPs. It is noteworthy that EIPs can still outperform uMLIPs in certain cases.

7 Conclusion

This thesis study evaluates the performance of uMLIPs in simulating solute segregation at Fe

GBs. The performance of the tested uMLIPs was compared with referenced DFT-based studies.

It can be concluded that uMLIPs, specifically MACE-MP-0 and CHGNet(v0.3.0), are capable

of replacing EIPs in GB segregation studies (with MACE-MP-0 more recommended). However,

this study also highlighted the challenges in simulating the segregation of highly segregating

solutes, where significant errors persisted for both MACE-MP-0 and CHGNet. This limitation

could be problematic for future research aimed at using simulations to explore alloying elements

that inhibit Cu segregation at Fe GBs, given that Cu is highly segregating. Another limitation

of uMLIPs identified in this work is convergence issues. The issues identified in this work may be

mitigated through further fine-tuning of uMLIP models, such as by expanding training datasets.

Nevertheless, this thesis provides an important benchmark for using uMLIPs in simulating solute

segregation at Fe GBs.

Acknowledgement

This work was supported through the computational resources and staff contributions provided

for the TulipX high-performance computing facilities at SKF Research and Technology Devel-

opment, Houten, The Netherlands.

40



References

[1] Stefan Pauliuk, Rachel L. Milford, Daniel B. Müller, and Julian M. Allwood. The steel

scrap age. Environmental Science Technology, 47(7):3448–3454, 3 2013.

[2] European Steel Association (EUROFER). EUROFER Statistics,

https://www.eurofer.eu/statistics.

[3] Kenichi Nakajima, Osamu Takeda, Takahiro Miki, Kazuyo Matsubae, and Tetsuya Na-

gasaka. Thermodynamic analysis for the controllability of elements in the recycling process

of metals. Environmental Science Technology, 45(11):4929–4936, 5 2011.

[4] Olivier Rod, Christian Becker, and Margareta Nylén. Opportunities and dangers of using

residual elements in steels: a literature survey. Jernorets Forskning, 1 2006.
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[15] Pavel Lejček, Mojmı́r Šob, and Václav Paidar. Interfacial segregation and grain boundary

embrittlement: An overview and critical assessment of experimental data and calculated

results. Progress in Materials Science, 87:83–139, 6 2017.

[16] Reiner Kirchheim. Grain coarsening inhibited by solute segregation. Acta Materialia,

50(2):413–419, 1 2002.
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Potentials as emerging Tools for Materials Science. Advanced Materials, 31(46), 9 2019.

[28] Chi Chen and Shyue Ping Ong. A universal graph deep learning interatomic potential for

the periodic table. Nature Computational Science, 2(11):718–728, 11 2022.

[29] Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J.

42



Bartel, and Gerbrand Ceder. CHGNet as a pretrained universal neural network potential

for charge-informed atomistic modelling. Nature Machine Intelligence, 5(9):1031–1041, 9

2023.

[30] Janosh Riebesell, Rhys E. A. Goodall, Anubhav Jain, Philipp Benner, Kristin A. Persson,

and Alpha A. Lee. Matbench Discovery – An evaluation framework for machine learning

crystal stability prediction. arXiv (Cornell University), 1 2023.
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Tejs Vegge, Lasse Vilhelmsen, Michael Walter, Zhenhua Zeng, and Karsten W Jacobsen.

The atomic simulation environment—a Python library for working with atoms. Journal of

Physics Condensed Matter, 29(27):273002, 6 2017.

[68] Mark A. Tschopp, Shawn P. Coleman, and David L. McDowell. Symmetric and asymmetric

tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc

metals). Integrating materials and manufacturing innovation, 4(1):176–189, 10 2015.

[69] Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumbsch. Struc-

tural relaxation made simple. Physical Review Letters, 97(17), 10 2006.

[70] R. Fletcher. Practical methods of optimization. 5 2000.

[71] Jae Hoon Jang, In Gee Kim, and H.K.D.H. Bhadeshia. Substitutional solution of silicon

in cementite: A first-principles study. Computational Materials Science, 44(4):1319–1326,

10 2008.

[72] Marcel H.F. Sluiter Sebastián Echeverri Restrepo, Naveen K. Mohandas and Anthony T.

Paxton. Applicability of universal machine learning interatomic potentials to the simulation

of steels. 2024.

46



A Appendix: Simulation Results Data

Table A.1: Lattice Parameters for BCC Fe and FCC Fe obtained by all tested potentials. The lattice
parameters of DFT for BCC Fe and FCC Fe are from Mai et al. [12] and Ito et al. [43], respectively.

Potential BCC Fe (Å) FCC Fe (Å)

MACE-MP-0 2.859 3.634

CHGNet(v0.3.0) 2.847 3.496

CHGNet(v0.2.0) 2.849 3.463

M3GNet 2.852 3.464

SevenNet-0 2.846 3.516

FeMnNiCu Bonny 2.855 3.658

FeCrCoNiCu Deluigi 2.860 3.560

FeTiCoNiCuMoW Zhou 2.866 3.628

FeCu Lee 2.864 3.611

DFT (Mai & Ito) 2.832 3.540

Table A.2: BCC Fe lowest segregation energies of DFT, data from Mai et al [12].

Eseg (eV) Ti V Cr Mn Co Ni Cu Nb Mo W

Σ3(111) -0.48 -0.11 -0.18 -0.50 -0.18 -0.41 -0.51 -0.77 -0.44 -0.39

Σ3(112) -0.09 0.00 -0.07 -0.18 -0.04 -0.15 -0.24 -0.15 -0.10 -0.08

Σ9(221) -0.74 -0.12 -0.21 -0.54 -0.14 -0.43 -0.64 -1.00 -0.43 -0.31

Σ11(332) -0.65 -0.20 -0.29 -0.62 -0.15 -0.56 -0.74 -0.91 -0.55 -0.51

Table A.3: BCC Fe lowest segregation energies of MACE-MP-0. The last row of MAE is the MAE of
specific element, e.g. the MAE in second column is the MAE of Ti results. Similarly, the MAE in the
last column is the MAE of specific GB, and the last cell is the overall MAE.

Eseg (eV) Ti V Cr Mn Co Ni Cu Nb Mo W MAE

Σ3(111) -0.34 -0.14 -0.02 -0.05 -0.13 -0.16 -0.19 -0.52 -0.29 -0.25 0.19

Σ3(112) -0.02 0.03 0.04 0.00 -0.02 -0.04 -0.04 0.01 -0.04 -0.05 0.10

Σ9(221) -0.55 -0.26 0.01 -0.07 -0.12 -0.15 -0.17 -0.84 -0.42 -0.42 0.21

Σ11(332) -0.26 -0.08 0.04 0.01 -0.04 -0.09 -0.06 -0.45 -0.22 -0.21 0.38

MAE 0.20 0.08 0.21 0.43 0.05 0.28 0.42 0.26 0.14 0.14 0.22

Table A.4: BCC Fe lowest segregation energies of CHGNet(v0.3.0).

Eseg (eV) Ti V Cr Mn Co Ni Cu Nb Mo W MAE

Σ3(111) -1.17 -0.13 -0.11 -0.15 -0.11 -0.10 -0.08 -1.18 -0.21 -0.22 0.28

Σ3(112) 0.04 0.00 -0.02 -0.01 -0.03 -0.04 -0.02 0.06 -0.04 -0.03 0.10

Σ9(221) -0.35 -0.18 -0.08 -0.14 -0.11 -0.11 -0.08 -0.64 -0.33 -0.33 0.24

Σ11(332) -0.17 -0.09 -0.07 -0.08 -0.09 -0.11 -0.07 -0.34 -0.22 -0.24 0.37

MAE 0.42 0.05 0.12 0.36 0.04 0.30 0.47 0.39 0.18 0.13 0.25
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Table A.5: BCC Fe lowest segregation energies of CHGNet(v0.2.0).

Eseg (eV) Ti V Cr Mn Co Ni Cu Nb Mo W MAE

Σ3(111) -0.33 -0.19 -0.04 0.00 -0.03 -0.03 -0.11 -0.64 -0.25 -0.31 0.22

Σ3(112) -0.11 -0.09 -0.04 0.00 -0.06 -0.09 -0.04 -0.17 -0.04 -0.09 0.07

Σ9(221) -0.51 -0.24 -0.12 -0.09 -0.12 -0.16 -0.15 -0.81 -0.32 -0.49 0.21

Σ11(332) -0.42 -0.25 -0.11 -0.04 -0.11 -0.18 -0.13 -0.66 -0.28 -0.40 0.27

MAE 0.16 0.09 0.11 0.43 0.06 0.28 0.42 0.15 0.16 0.10 0.19

Table A.6: BCC Fe lowest segregation energies of M3GNet.

Eseg (eV) Ti V Cr Mn Co Ni Cu Nb Mo W MAE

Σ3(111) -1.02 -0.38 -0.33 -0.29 -0.33 -0.41 -0.44 -0.91 -0.44 -0.57 0.17

Σ3(112) -0.45 -0.10 -0.09 -0.10 -0.05 -0.08 -0.06 -0.26 -0.11 -0.18 0.10

Σ9(221) -1.28 -0.25 -0.24 -0.16 -0.29 -0.29 -0.49 -1.10 -0.38 -0.51 0.19

Σ11(332) -1.00 -0.24 -0.13 -0.09 -0.11 -0.16 -0.18 -0.79 -0.37 -0.54 0.24

MAE 0.45 0.14 0.09 0.30 0.09 0.15 0.24 0.12 0.06 0.13 0.18

Table A.7: BCC Fe lowest segregation energies of SevenNet-0.

Eseg (eV) Ti V Cr Mn Co Ni Cu Nb Mo W MAE

Σ3(111) -0.08 -0.02 0.03 -0.02 -0.01 0.01 -0.05 -0.18 -0.04 -0.04 0.36

Σ3(112) -0.22 -0.15 -0.08 -0.37 -0.47 -0.07 -0.06 -0.58 -0.25 -0.34 0.20

Σ9(221) -0.89 -0.34 -0.15 -0.12 -0.05 -0.03 -0.11 -1.18 -0.39 -0.44 0.22

Σ11(332) -0.61 -0.34 -0.08 -0.03 -0.27 -0.09 -0.03 -0.89 -0.40 -0.55 0.25

MAE 0.18 0.15 0.12 0.42 0.20 0.34 0.47 0.31 0.18 0.19 0.26

Table A.8: BCC Fe lowest segregation energies of FeMnNiCu Bonny.

Eseg (eV) Mn Ni Cu MAE

Σ3(111) -0.08 -0.12 -0.18 0.35

Σ3(112) -0.03 -0.00 -0.02 0.17

Σ9(221) 0.00 -0.10 -0.02 0.50

Σ11(332) -0.03 -0.13 -0.11 0.55

MAE 0.43 0.30 0.45 0.39

Table A.9: BCC Fe lowest segregation energies of FeTiCoNiCuMoW Zhou. Unconverged results were
not presented (empty cells in the table).

Eseg (eV) Ti Co Ni Cu Mo W MAE

Σ3(111) -0.33 -0.12 -0.14 -0.19 -0.25 -0.19 0.20

Σ3(112) 0.02 -0.02 -0.05 -0.05 -0.00 0.03 0.10

Σ9(221) -0.11 -0.17 -0.18 0.25

Σ11(332) -0.40 -0.08 -0.09 -0.20 -0.34 -0.30 0.29

MAE 0.17 0.05 0.28 0.38 0.17 0.17 0.21
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Table A.10: BCC Fe lowest segregation energies of FeCu Lee.

Eseg (eV) Cu

Σ3(111) -0.29

Σ3(112) -0.09

Σ9(221) -0.31

Σ11(332) -0.42

MAE 0.26

Table A.11: FCC Fe lowest segregation energies of DFT, data from Ito et al [43].

Eseg (eV) Ti V Cr Mn Co Ni Cu Nb Mo

Σ37(610) -0.89 -0.22 0.06 -0.15 -0.08 -0.07 -0.22 -1.25 -0.62

Σ13(510) -0.94 -0.18 0.02 -0.18 -0.11 -0.08 -0.23 -1.25 -0.62

Σ17(410) -0.89 -0.25 0.03 -0.17 -0.10 -0.05 -0.23 -1.20 -0.60

Σ5(310) -0.79 -0.23 0.03 -0.10 -0.11 -0.05 -0.12 -1.09 -0.58

Σ29(520) -0.77 -0.33 -0.03 -0.11 -0.09 -0.05 -0.14 -1.02 -0.65

Σ5(210) -0.67 -0.35 0.00 0.05 -0.05 0.00 -0.11 -0.84 -0.53

Σ13(320) -0.51 -0.10 0.09 0.00 -0.05 -0.02 -0.24 -0.80 -0.47

Σ25(430) -0.59 -0.17 0.04 -0.05 -0.07 -0.03 -0.19 -0.88 -0.51

Σ41(540) -0.61 -0.18 0.02 -0.05 -0.09 -0.07 -0.23 -0.89 -0.52

Table A.12: FCC Fe lowest segregation energies of MACE-MP-0.

Eseg (eV) Ti V Cr Mn Co Ni Cu Nb Mo MAE

Σ37(610) -0.59 -0.28 -0.16 -0.21 -0.09 -0.06 -0.19 -0.85 -0.45 0.14

Σ13(510) -0.57 -0.29 -0.13 -0.20 -0.11 -0.07 -0.19 -0.82 -0.45 0.15

Σ17(410) -0.57 -0.29 -0.08 -0.16 -0.12 -0.08 -0.19 -0.83 -0.44 0.12

Σ5(310) -0.61 -0.27 -0.04 -0.12 -0.17 -0.12 -0.19 -0.87 -0.46 0.10

Σ29(520) -0.57 -0.36 -0.09 -0.14 -0.17 -0.14 -0.19 -0.80 -0.51 0.10

Σ5(210) -0.14 -0.10 -0.05 -0.12 -0.02 -0.01 -0.07 -0.21 -0.11 0.24

Σ13(320) -0.80 -0.66 -0.45 -0.47 -0.48 -0.37 -0.54 -0.95 -0.70 0.37

Σ25(430) -0.60 -0.48 -0.26 -0.30 -0.30 -0.16 -0.36 -0.75 -0.53 0.17

Σ41(540) -0.53 -0.41 -0.19 -0.24 -0.23 -0.10 -0.31 -0.69 -0.46 0.13

MAE 0.26 0.18 0.19 0.14 0.11 0.08 0.09 0.31 0.17 0.17
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Table A.13: FCC Fe lowest segregation energies of CHGNet(v0.3.0).

Eseg (eV) Ti V Cr Mn Co Ni Cu Nb Mo MAE

Σ37(610) -0.55 -0.20 -0.01 -0.03 -0.05 -0.05 -0.18 -0.87 -0.35 0.15

Σ13(510) -0.53 -0.22 -0.01 -0.01 -0.05 -0.05 -0.16 -0.85 -0.36 0.14

Σ17(410) -0.50 -0.23 -0.03 0.03 -0.05 -0.05 -0.15 -0.83 -0.37 0.16

Σ5(310) -0.46 -0.19 -0.04 0.07 -0.08 -0.07 -0.13 -0.65 -0.30 0.15

Σ29(520) -0.40 -0.24 -0.06 0.04 -0.08 -0.07 -0.13 -0.64 -0.34 0.15

Σ5(210) -0.27 -0.21 -0.02 0.07 -0.02 0.02 -0.07 -0.43 -0.25 0.15

Σ13(320) -0.27 -0.11 0.01 0.07 -0.02 -0.04 -0.14 -0.44 -0.26 0.15

Σ25(430) -0.30 -0.22 -0.15 -0.14 -0.03 -0.16 -0.14 -0.45 -0.30 0.12

Σ41(540) -0.37 -0.27 -0.08 -0.11 -0.05 -0.19 -0.24 -0.46 -0.36 0.16

MAE 0.33 0.05 0.07 0.11 0.03 0.04 0.05 0.40 0.25 0.14

Table A.14: FCC Fe lowest segregation energies of CHGNet(v0.2.0). Unconverged results were not
presented (empty cells in the table).

Eseg (eV) Ti V Cr Mn Ni Cu Nb Mo Co MAE

Σ37(610) -1.07 -1.03 -1.10 -0.84 -1.99 -0.68 -1.42 -2.06 0.93

Σ13(510) 0.94 1.00 -0.03 0.12 0.03 1.23 0.62 0.04 0.00 0.85

Σ17(410) 1.01 0.95 -0.04 0.14 0.03 1.25 0.71 0.04 0.02 0.86

Σ5(310) -0.82 -0.84 -1.82 -1.47 -1.77 -0.51 -1.09 -1.76 -1.83 0.98

Σ29(520) 0.97 0.16 -0.12 0.15 0.01 1.22 -0.77 -1.38 -0.01 0.62

Σ5(210) 1.04 1.09 0.05 0.26 0.01 1.23 0.80 0.01 0.01 0.78

Σ13(320) 1.03 1.05 -0.04 0.14 -0.00 1.23 0.85 -0.02 -0.02 0.73

Σ25(430) 1.01 1.07 -0.16 0.04 -0.06 1.19 0.84 -0.08 -0.06 0.74

Σ41(540) 0.60 0.74 -0.55 -0.35 -0.43 0.80 0.44 -0.36 -0.37 0.62

MAE 1.31 1.00 0.46 0.41 0.49 1.06 0.92 0.81 0.59 0.79

Table A.15: FCC Fe lowest segregation energies of SevenNet-0. Unconverged results were not presented
(empty cells in the table).

Eseg (eV) Ti V Cr Mn Co Ni Cu Nb Mo MAE

Σ37(610) 1.64 3.29 2.94 4.49 3.79 2.38 2.25 0.50 2.62 3.03

Σ13(510) 1.58 2.82 3.27 4.10 3.52 2.37 2.25 0.77 3.22 3.05

Σ17(410) 1.39 2.62 2.92 3.50 2.60 1.77 1.92 0.01 3.04 2.58

Σ5(310) 2.36 3.08 3.31 4.43 3.54 2.69 1.39 3.75 3.43

Σ29(520) 2.12 2.84 3.30 4.00 3.73 2.32 2.61 0.55 2.87 3.06

Σ5(210) 2.06 2.94 3.14 4.27 3.39 2.25 1.16 3.56 3.14

Σ13(320) -0.59 -0.29 0.31 1.51 0.54 -0.28 -0.44 -1.66 1.04 0.60

Σ25(430) 2.54 3.36 3.71 4.68 3.55 2.59 -0.71 1.54 3.86 3.18

Σ41(540) 3.20 4.32 3.54 2.35 3.40

MAE 2.41 2.86 2.87 4.01 3.22 2.15 1.76 1.79 3.57 2.78

50



Table A.16: FCC Fe lowest segregation energies of FeCrCoNiCu Deluigi.

Eseg (eV) Cr Co Ni Cu MAE

Σ37(610) -0.47 -0.34 -0.33 -0.72 0.39

Σ13(510) -0.35 -0.17 -0.22 -0.49 0.21

Σ17(410) -0.34 -0.19 -0.22 -0.47 0.22

Σ5(310) -0.25 -0.15 -0.16 -0.33 0.16

Σ29(520) -0.72 -0.62 -0.64 -0.89 0.64

Σ5(210) -0.27 -0.16 -0.18 -0.31 0.19

Σ13(320) -0.25 -0.13 -0.16 -0.35 0.17

Σ25(430) -0.26 -0.14 -0.16 -0.43 0.19

Σ41(540) -0.26 -0.15 -0.17 -0.45 0.16

MAE 0.38 0.14 0.20 0.31 0.26

Table A.17: FCC Fe lowest segregation energies of FeCu Lee.

Eseg (eV) Cu

Σ37(610) -0.64

Σ13(510) -0.55

Σ17(410) -0.18

Σ5(310) -0.62

Σ29(520) -0.92

Σ5(210) -0.18

Σ13(320) -0.37

Σ25(430) -0.44

Σ41(540) -0.47

MAE 0.49
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Table A.18: DFT results (in eV) of solution enthalpies for different alloying elements, data from Ande
and Sluiter [60]. FM: ferromagnetic; NM: non-ferromagnetic. 4c and 8d are different substitutional sites
of Fe atoms in cementite.

Element DFT FM 4c DFT FM 8d DFT NM 4c DFT NM 8d

Al -0.17 -0.24 -0.54 -0.53

Si 0.54 0.29 0.17 -0.07

P 1.6 0.39 1.35 0.44

S 2.77 1.0 2.77 1.04

Ti -1.03 -1.04 -1.41 -1.40

V -0.63 -0.72 -0.98 -1.12

Cr 0.0 -0.1 -0.33 -0.51

Mn 0.08 0.05 -0.19 -0.30

Co 0.09 0.04 0.05 0.13

Ni 0.22 0.14 0.11 0.25

Cu 0.98 0.88 0.79 0.97

Nb -0.1 -0.15 -0.34 -0.40

Mo 0.24 0.18 0.01 -0.11

W 0.28 0.2 0.02 -0.13

Table A.19: Results (in eV) of solution enthalpies for different alloying elements calculated by MACE-
MP-0.

Element MACE 4c MACE 8d

Al 0.26 0.26

Si 0.20 0.19

P 0.28 0.25

S 0.46 0.38

Ti -0.04 -0.04

V -0.08 -0.09

Cr -0.07 -0.08

Mn -0.03 -0.04

Co 0.09 0.09

Ni 0.18 0.18

Cu 0.34 0.34

Nb -0.10 -0.11

Mo -0.13 -0.14

W -0.24 -0.26
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Table A.20: Results (in eV) of solution enthalpies for different alloying elements calculated by CHGNet
(v0.3.0).

Element CHGNetv3 4c CHGNetv3 8d

Al 0.27 0.27

Si 0.18 0.18

P 0.19 0.18

S 0.35 0.30

Ti -0.05 -0.05

V -0.09 -0.09

Cr -0.09 -0.09

Mn -0.06 -0.06

Co 0.08 0.09

Ni 0.17 0.17

Cu 0.32 0.32

Nb -0.12 -0.13

Mo -0.15 -0.15

W -0.28 -0.28

Table A.21: Results (in eV) of solution enthalpies for different alloying elements calculated by CHGNet
(v0.2.0).

Element CHGNetv2 4c CHGNetv2 8d

Al 0.27 0.26

Si 0.21 0.20

P 0.22 0.19

S 0.32 0.29

Ti -0.06 -0.07

V -0.09 -0.09

Cr -0.07 -0.08

Mn -0.05 -0.06

Co 0.08 0.08

Ni 0.17 0.17

Cu 0.31 0.31

Nb -0.14 -0.14

Mo -0.14 -0.14

W -0.27 -0.27
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Table A.22: Results for solution enthalpies (in eV) of different alloying elements calculated by M3GNet.

Element M3GNet 4c M3GNet 8d

Al 0.84 -0.94

Si -1.05 5.36

P 8.17 5.54

S 3.09 0.88

Ti -1.27 1.99

V -0.07 0.62

Cr -1.30 -0.40

Mn 5.40 0.48

Co 0.20 14.58

Ni -1.03 0.70

Cu -0.90 4.04

Nb 1.07 5.73

Mo 2.97 -1.37

W -0.50 -1.40

Table A.23: Results for solution enthalpies (in eV) of different alloying elements calculated by SevenNet-
0.

Element SevenNet-0 4c SevenNet-0 8d

Al 0.27 0.26

Si 0.19 0.16

P 0.23 0.19

S 0.38 0.35

Ti -0.05 -0.05

V -0.09 -0.10

Cr -0.09 -0.10

Mn -0.05 -0.05

Co 0.09 0.09

Ni 0.17 0.17

Cu 0.33 0.33

Nb -0.13 -0.13

Mo -0.15 -0.15

W -0.28 -0.28
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Figure A.1: GB segregation energies of MACE and CHGNet at three BCC GBs, Σ3(111), Σ9(221) and
Σ11(332) for solutes Ti, Mn, Ni, Cu and Nb. The underprediction can be clearly observed with few
exceptions.
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