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Preface  
 
My interest in artificial intelligence was initially piqued by its increasing use across various industries and 

the ongoing conversations about its potential impact. The opportunity to delve into AI through this 

thesis has allowed me to connect my personal interests with academic research. Despite being relatively 
new to the realms of AI, machine learning, and deep learning, this project helps as an introductory 

journey into these fields, covering foundational principles and insights. 
 

The focus of AI application in this thesis revolves around a hybrid approach aimed at simplifying 
measurement interpretation. The objective is to deepen our comprehension of particle segregation, a 

common yet often overlooked phenomenon in everyday scenarios. By blending elements of computer 

science and particle science, this project brings together two distinct disciplines to shed new light on 
this subject. 

 
I would like to express my gratitude to prof. dr..ir. D. L. Schott for providing the opportunity to work on 

a project centred around AI. Additionally, I extend my thanks to dr. ir. Y. Pang for his supervision A. H. 

Hadi for his guidance with data collection and writing, as well as his patience throughout the process. 

Special thanks to G&G for their support and encouragement, helping me see this thesis through to 

completion. 
 

I hope this thesis inspires further advancements in the use of AI for measuring particle mixture 
compositions and provides an example for the possibilities.  
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Summary  
 
This report explores the possibilities for measuring segregation in granular material with the assistance 

of artificial intelligence (AI), a topic of interest for various industries handling particles including 

pharmaceuticals, agriculture and steel production. The ability to accurately measure the segregation of 
the granular materials can enhance quality control, efficiency, environmental impact, and safety. AI is 

introduced to allow more flexibility in the measuring of the segregation, which is crucial to creating a 
better understanding of the segregation process.  

The reports commence with a literature review of the current methods of measuring and quantifying 
segregation in granular materials. Followed up by an introduction to AI and the ability to let a computer 

find the particles. Despite segregation being a decades old phenomenon, a method of extracting data 

without interacting with the mixture proves to be challenging. Requiring either to disturb the mixture 
with intrusive measuring methods or colouring particles and stable lighting for the non-intrusive 

methods. Both options limit the practicality of the measuring and therefore they are constrained within 
laboratories.  

The primary objective of this report is to evaluate and compare techniques for measuring the 

segregation in granular material, which is split up into recognizing the particles and measuring the 
segregation based on the recognition. The focus lays on improving the accessibility for taking 

measurements in uncontrolled scenarios. This report looks at measuring the segregation of the material 
commonly found in a blast furnace. These materials are coke, sinter, and pellet. These three materials 

possess familiar characteristics in appearance and are troublesome to colour. Making them a challenge 
to show the capabilities of the AI’s. 

A comprehensive review and experimental comparison of several techniques was conducted, including 

sampling, image analysis, and machine learning algorithms. Data was collected from various samples 
of a three component, coke, sinter and pellet, mixture in the form of images. The performance of each 

technique was assessed based on their capabilities of recognizing the particles within images. The best 
performing technique was then applied to measure the segregation. 

The findings show that AIs are capable of recognizing the coke, sinter, and pellet particles within the 

mixture. Since the AIs are recognizing the particles individually, the possibilities of measuring both 
material and size segregation open up. Resulting in the AI processing an image in such a manner that 

both segregations could be analysed. These findings show the potential of applying AI for recognizing 
the particles. The AI offers a comprehensive analysis of the mixture to improve the understanding of 

the composition and what is measured. However, the visualizations of the recognitions expose some 

weak points of the showcased technique, which allows for further improvements to the application. 
In conclusion, the study highlights the potential of AI to improve the identification of granular materials 

to allow for segregation measurements. This has significant implications for various applications, where 
the materials or inconsistent lighting are challenging for conventional methods. 
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1. Introduction 

1.1. Project background 

Particle-based products and services are integral to diverse industries, ranging from agriculture, 

ceramics, and chemicals to energy, geological systems, mining, pharmaceuticals, plastics, pollution 
control, and powder metallurgy. These industries collectively contribute to significant production 

volumes, emphasizing the widespread use of particles across various applications. In 2019 alone, global 
plastic production reached approximately 459 million tons [1], usable iron ores extraction amounted to 

around 2.6 billion tons [2], and the extracted coal was around 7.05 billion tons [3]. The agricultural 
sector also significantly contributes, with various particulate products totalling around 7 billion tons [4]. 

These figures underscore the immense scale and diversity of particle-based products. In many industries 

dealing with particulate materials, these particles often coexist in mixtures comprising multiple 
components. Components, in the context of bulk solids or mixtures, refer to groups of particles with 

similar distinguishing properties, which may include material type or particle size. Even within a single-
material bulk solid, distinctions based on particle size can lead to separate groups of larger and smaller 

particles.  

In manufacturing processes involving multiple components, precise control over the mixture's 
composition is essential to meet product specifications. The quality of the final product relies on 

maintaining the desired particulate composition. However, segregation, a counteracting process that 
opposes the mixing of components, poses a significant challenge. Segregation disrupts the 

homogeneous state of a bulk solid, potentially resulting in defects in the properties of the end products. 
Figure 1 illustrates the impact of segregation on a mixture, showcasing the transition from a well-mixed 

state to a segregated state, with darker particles surfacing on the right. 

 
 

 
Figure 1 Segregation process, from mixed (left) to a segregated state (right) [5] 

A well-known example of the industry for the effects of segregation is a blast furnace, where the bed 

permeability influences the efficiency of the process. Since gas is force through the bed which is the 
premise of the downward movement and reduction heating of the burden [6]. An efficient bed 

permeability is achieved by appropriately distributing the large and fine particles on the burden surface. 
Segregation of the burden materials affects the distribution of the materials in undesired ways [7]. 

Leading to negative effects on the permeability with inconsistent pressure drops over the materials 

which results in inefficient usage of the gas. Having consequences both economic and environmental 
[8]. The blast furnace, among several other cases in the industries that suffer from the phenomenon of 

segregation, highlights the importance of improving the understanding of the causes of segregation. 
Since segregation is a complex process influenced by numerous variables with diverse roots, there are 

lots of contributing factors to segregation. The influence of these factors is presented in various ways: 

the rate of segregation, the dominant segregation form, and the capacity to segregate [9]. Dependency 
on material properties and the environment further complicates the phenomenon. Differences in particle 

properties, including shape, morphology, elasticity, brittleness, density, chemical affinity, moisture 
absorbability, and magnetic properties, influence the segregation. Environmental influences, 

encompassing natural effects like humidity, wind, or gravity, and system-specific factors like surface 
roughness, vibrations, or transport modes, add to the intricacy of segregation. 
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To gain insights into segregation, experiments are conducted to recreate the process. Controlled 
environments in experimental setups help eliminate extraneous influences, allowing for the 

measurement and identification of segregation causes. Experiments often focus on variations in granular 

materials, such as identical particles, density differences, or size differences [10].  
Despite segregation being a phenomenon that has been around for decades and is observed in common 

applications, extracting data on the composition of the granular mixtures is not a trivial task [11]. There 
are two distinct approaches for extracting segregation measurements, either through intrusive or non-

intrusive methods. Intrusive methods involve extracting a sample of the mixture for detailed component 

analysis [12]. While sampling is straightforward, it destroys the structure of the mixture. Causing errors 
in its measurement and the following measurements [12]. On the other hand, non-intrusive methods 

employ a wide array of technologies, such as optics [13] or x-ray waves [14], to collect information 
without direct interaction with the mixture, preserving the undisturbed state for accurate measurements 

[12]. 
 

 
Figure 2 Three coloured component mixture in a rotary drum in front of a black background [15] 

1.2. Problem definition 

Optical measuring offers a cost-effective and straightforward approach to quantify segregation, 
rendering it highly appealing and suitable for application beyond specialized laboratory investigations 

[11]. However, its dependency on image processing for analysis necessitates conditions characterized 

by high colour contrast among particles and minimal light interference. This prerequisite imposes 
constraints on the choice of locations and the objects being measured, compelling the utilization of 

closed and specialized setups. 
The attainment of adequate colour contrast may pose challenges when dealing with particles that exhibit 

similar colours, leading to difficulties in distinguishing them from each other. To mitigate this issue, a 
solution is to paint or coat particles to enable differentiation based on colour. In Figure 2, a purpose-

designed setup illustrates a rotary drum with particles painted in three contrasting colours. The 

controlled lighting on the drum and the presence of a black background aim to minimize light 
disturbances, creating a distinct contrast between the particles and the background. 

Given the constraints associated with the current optical measuring methods, conducting measurements 
in an open environment or with uncoloured particles is challenging. This limitation particularly hinders 

measurements in production lines or outdoors, especially when colouring particles is impractical. 

Recognizing these challenges, this thesis seeks to explore the potential of employing advanced 
algorithms, specifically artificial intelligence (AI). The objective is to leverage AI capabilities to facilitate 

segregation measurements in conditions where traditional image processing methods encounter 
difficulties.  
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1.3. Research questions 

The main research question of this research is stated as: 
 

• How can artificial intelligence be utilized to analyse and measure both material and particle size 

segregation in a granular mixture? 
 

The main research question will be answered with the help of the following sub-research questions: 
 

1. What is the state of the art for measuring and quantifying segregation in granular mixtures? 

2. How can artificial intelligence be utilized through deep learning and computer vision to measure 
segregation in a granular mixture, and what are considerations for selecting a model and 

evaluating its performance? 
3. How to select the most suitable artificial intelligence for measuring segregation in a granular 

mixture and what insights can the artificial intelligence provide on the composition and 

segregation of the mixture? 
 

1.4. Scope 

The objective of this thesis is to develop an artificial intelligence (AI) system with the capacity to discern 

distinct particles, enabling the measurement of segregation within a granular mixture. 

 
The primary goals encompass the capability to identify particles and quantify segregation based on this 

recognition. Importantly, particle recognition should be achieved without the need for painting or 
coating, thereby ensuring applicability to materials or scenarios that prevent the need of particle 

preprocessing. Additionally, efforts are directed towards minimizing dependence on lighting, thereby 

removing constraints on measurement conditions and locations. 
The particle recognition process should be adept at assessing the degree of segregation among 

materials within a mixture. The capacity for assessing segregation will be extended to encompass size 
segregation, relying upon the effectiveness of particle recognition. 

The granular mixture used to identify particles and quantify segregation consists of the three materials 
commonly found in blast furnaces, coke, sinter and pellet. The recognition tasks are challenged by 

introducing three materials which have a lack of distinctive differences between them. 

 
The anticipated outcome is the successful implementation of an AI system for particle recognition and 

segmentation, demonstrating proficiency in accurately identifying different particles and facilitating their 
conversion for segregation quantification. This system is expected to grant information concerning both 

material and size segregation within a granular mixture. 

1.5. Approach 

The methodology employed in this thesis involves an examination of artificial intelligence (AI) and its 

subcategories, including machine learning and deep learning, for the recognition of particles. Both 
machine learning and deep learning exhibit the ability to learn and detect patterns. Considering the 

characteristics of particle groups, three models will be selected for a comparative performance analysis. 

Opting for deep learning over machine learning was deemed more suitable for this thesis due to the 
former's inherent capacity to perform recognition without feature engineering and its enhanced 

generalization capabilities. Performance evaluation will be conducted using the F-score, a metric that 
balances precision and recall in a weighted harmonic mean. To assess a model effectively, a 

comprehensive setup is essential. This entails compiling a collection of images along with corresponding 

annotations, enabling the model to learn particle recognition. Post-learning, the model is presented with 
a new image to evaluate its performance. 

The images utilized in this study make use of a mixture arranged in a heap and captured from an 
overhead perspective. Emphasizing the independence from lighting and particle colouring, none of the 

particles were painted or coated, and no additional lighting arrangements were employed. The images 
were captured using the camera of a smartphone, an iPhone 13 Pro. 

The annotations encompass points outlining each particle, accompanied by a label indicating the 

material. These annotations serve as correct solutions during the learning process, enabling the model 
to learn both particle identification and material classification. 

The learning process necessitates two sets of images: one for learning and another for monitoring 
progress. It is crucial that these sets do not share overlapping images to ensure that the model's 

performance reflects actual capabilities rather than mere reproduction of examples encountered during 
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training. The sets comprise 180 images for learning and 35 for performance evaluation, resulting in a 
dataset of 215 images. 

 

The expected output manifests as pixel markings corresponding to particles, labelled with the respective 
particle materials. Consequently, segregation indices akin to those employed in image analysis 

techniques can be defined. This involves creating a raster overlay on the image and comparing the 
distribution within sections to quantify segregation based on observed differences. 

1.6. Report structure 

The thesis is structured into six chapters, each addressing the research questions presented in the 
introduction. Chapter 2 initiates the discussion by exploring the phenomenon of segregation, introducing 

indices employed for quantifying segregation, and presenting the current state-of-the-art methods for 
measuring segregation in a mixture. Following this, Chapter 3 delves into the trade-off between machine 

and deep learning and provides an introduction to the workings of artificial intelligence (AI). The chapter 

also assesses suitable AIs for the task of measuring segregation, with a selection based on their 
performance using indices. Moving forward, Chapter 4 applies the chosen AI to the case of granular 

materials, primarily focusing on measurement procedures. It explores the AI's capacity to characterize 
the mixture using segregation indices and other pertinent data obtainable from the AI. Chapter 5 

explores potential follow-up steps or ideas for expanding the range of information attainable. Finally, 

Chapter 6 concludes the research by addressing the research questions and summarizing key findings. 
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2. State of art for segregation measurements in 

granular materials 

Before delving into measurement methods, it is important to establish an understanding of the 
phenomenon of segregation and its intricate nature. This chapter explores the appearances of 

segregation, its effects, and the particle properties that influence the process. Once this foundational 
understanding is established, subsequent sections will continue into the quantification of segregation 

through the examination of indices used to describe segregation in mixtures. Simultaneously, the 

chapter will scrutinize the state of the art methods employed to measure segregation in particle 
mixtures. 

2.1. Introduction to segregation 

Segregation denotes the process of separation between components or the demixing of a mixture [9]. 

A component, in this context, includes entities separable based on various properties such as size, 

material, or density. While the focus of this chapter is on the segregation of granular materials, it is 
important to note that this phenomenon extends beyond granular materials and can manifest in various 

mixtures, including gases, liquids, and different forms of solids such as powders. 
 

In industrial processes requiring specific component ratios, materials are added and mixed to attain 

homogeneity, ensuring uniform products. However, segregation can disrupt this homogeneity, leading 
to sections within the mixture where a single component dominates or is nearly absent. This segregation 

can result in undesirable properties in the end products, with significant implications, especially in 
industries like pharmaceuticals, where it can be a matter of effectiveness versus lethality. Monitoring or 

controlling segregation is essential to mitigate the risk of producing malfunctioning products. When 
considering the mixture of coke, sinter and pellet, segregation greatly reduces the efficiency of a blast 

furnace [7]. As the segregation changes the particle size distribution over the burden, the gas flow is 

hindered due to irregular passages through the burden. The distribution of the gas is an important 
variable for the heat and mass transfer in the blast furnace [16]. Additionally, the blast furnaces for iron 

or steel production make up 70% of the energy consumption [17] and nearly 90% of all CO2 emissions 
[18] of the entire production process. Therefore, it is crucial to optimize the operations of the blast 

furnaces to achieve better energy-efficiency and lower the carbon production by reducing the 

segregation. 
 

Controlling segregation is challenging due to its diverse appearances and the ease with which it initiates. 
Five primary segregation mechanisms are recognized: percolation, flotation, transport, elutriation, and 

agglomeration [19] [20] [21]. 

- Percolation involves small particles filling gaps between larger particles, often encountered when 
filling containers or creating heaps. 

- Flotation occurs when larger particles are pushed upwards by smaller particles, typically induced 
by vibrations. 

- Transport happens due to the inertia of particles, where particles of various sizes or densities 
follow distinct trajectories. 

- Elutriation is observed when small and light particles stay suspended in the air longer than 

coarse particles, commonly seen in finer powders. 
- Agglomeration refers to the lumping together of particles, influenced by numerous factors such 

as humidity, heat, and pressure. 
 

These mechanisms lack a common cause, making it challenging to address them collectively. 

Additionally, sensitivity to triggering segregation varies based on the materials and proportions within 
the mixture. 

2.2. Method for measuring segregation in granular materials 

In the context of segregating mixtures, the measurements must effectively reveal the composition of 

the mixture. The composition can be expressed in various ways, often in terms of concentration, 

representing the percentage of a component within the measurement. This concentration is determined 
based on the volume of particles. In the case of particles with distinct densities, mass can also be 

employed to determine concentration. Segregation for granular materials is commonly quantified based 
on either the particle size or material. These measurements are obtained through either invasive or non-

invasive methods [22].  



6 

 

 
Invasive measurements involve influencing the mixture to obtain information, with one prevalent 

method being the extraction of samples. While the removal of a sample allows for more freedom in 

measuring and obtaining information, it introduces errors. Tools used to obtain samples can cause 
disturbances within the mixture, potentially inducing movements and segregation. Additionally, if the 

sample is not from the first or top layer, it may contain additional particles from the mixture's path to 
the sample area [12]. 

Non-invasive methods, in contrast, avoid direct contact with the experiment, utilizing alternative means 

for data collection. Commonly employed non-invasive methods include the use of light, such as 
photography, as well as radio waves and magnetism found in techniques like MRI [23], radar [24], and 

near-infrared [25]. These methods allow information to be obtained without direct contact. Image 
processing analysis, another non-invasive technique, is widely used due to its simplicity and cost-

effectiveness. Unlike more complex methods, image analysis is limited to examining the first layer of 
particles. Image processing analysis involves three steps [26]: image compression, where the memory 

requirements are reduced, image processing, where filters like Gaussian and Laplacian are commonly 

applied, and image analysis, where calculations are performed on the processed image. Gaussian filters 
are used to reduce noise at the expense of sharpness, while Laplacian filters are employed for image 

sharpening and edge detection. Gaussian and Laplacian are used in conjunction to enhance an image 
[27], Figure 3 visualizes the effects of the filters. K-means algorithms and thresholding are additional 

techniques for grouping pixels based on values, providing alternatives for segmenting an image. These 

methods can be applied to subtract information from images, aiding in the quantification of segregation 
and tracking particle motion [27]. 

 

 
Figure 3 Applied effects of Gaussian and Laplacian filters 

While image processing analysis has proven effective, it is essential to address challenges such as the 
potential similarity in colours of different materials and the need for stable lighting to minimize 

processing errors. Some particles may be painted or coated in a contrasting colour to aid in their 
separation from other groups, enhancing the distinction in the image. However, in practice, not all 

particles are capable of being painted. Stable lighting is crucial for consistent processing, minimizing 
shadows and reflections, and facilitating background correction to isolate particles [28]. Ensuring stable 

lighting requires an enclosure to be built around the setup similar to Figure 4. Limiting the intervention 

of foreign light sources with the measurements. Once image processing is complete, image analysis 
enables the segmentation of the image into different groups, allowing the determination of material 

concentration and the quantification of segregation [29].  
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Figure 4 Enclosure for stable lighting on a rotary drum [30] 

2.3. Quantifying segregation with indices 

Once the particles in a measurement are recognized, a segregation index is used for quantifying the 

extent of segregation within a mixture. The measurements, derived from a sample, are compared to 
the intended proportions. The quantification of segregation involves assessing deviations from the 

intended values, often expressed as differences from the mean in cases where the designed ratios 

between components are unknown. Frequently used definitions within segregation indices are outlined 
in Table 1 [31]. 

 
Table 1 Frequent returning definitions for segregation indices 

Name Function 

Average, sample arithmetic mean 
𝑥̅ =

1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

 

Sample variance 
𝜎2 =

1

𝑛
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 

Variance of a segregated system 𝜎0
2 = 𝑃𝑐(1 − 𝑃𝑐) 

Variance of perfectly random system 
𝜎𝑅

2 =
𝑃𝑐(1 − 𝑃𝑐)

𝑁𝑝

 

 

Variance is a common metric employed for quantifying segregation, especially in methods utilizing 

images or videos. It is noteworthy that for the estimation of the variance 
1

𝑛−1
 is preferred over 

1

𝑛
, 

1

𝑛−1
 

aims to have an unbiased estimator. The segregation index, SI, is often quantified using equation (1), 
a widely accepted formula for this purpose, as evidenced by various studies [32] [33] [34] [35] [36] 

[37] [38]. As equation (1) only uses one component, it does not take other groups of particles into 
consideration. Therefore, allowing the application of the equation to mixtures with multiple components. 

 

𝑆𝐼 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1

𝑁 − 1
 

 

(1) 

Here, 𝑥 represents the concentration within the sample, and 𝑁 denotes the number of samples. 

In contrast, when considering the counterpart of segregation, which is mixing, additional options for 

quantification come into play. The quantification for mixing characterizes the state of the mixture in 
terms of how well-mixed or segregated it is. The key distinction lies in the purpose of the measurement. 
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As the mixing index solely conveys the state of the mixture, the interpretation could vary. A well-mixed 
mixture exhibits minimal segregation, while a poorly mixed one displays more pronounced segregation. 
Mixing indices are categorized into four groups [31]: formula incorporating variances 𝜎0

2 and 𝜎𝑅
2, 

formula that do not depend on the variances 𝜎0
2 and 𝜎𝑅

2, formula for multicomponent systems and 

formula based on experimental work. Table 2 provides examples of mixing indices, drawn from the 
survey paper [31], which contains additional indices not explicitly mentioned. Regardless of the chosen 
index, the relationship 𝜎𝑅

2 > 𝜎2 > 𝜎0
2 holds true for all cases. This is rooted in the understanding that 

a mixture's state can never be perfectly mixed or entirely segregated, and the variance can only fall 
between these two extremes. 

 
Table 2 Mixing indices 

Author Index 𝝈 = 𝝈𝟎 𝝈 = 𝝈𝑹 

Kramers [39] 𝑀 =
𝜎0 − 𝜎

𝜎0 − 𝜎𝑅

 0 1 

Lacey [39] 
𝑀 =

 𝜎0
2 − 𝜎2

 𝜎0
2 − 𝜎𝑅

2
 

0 1 

Beaudry [40] 
𝑀 =

𝜎0

𝜎
− 1

𝜎0

𝜎𝑅
− 1

 
0 1 

Valentin [41] 
𝑀 =

log 𝜎0 − log 𝜎

log 𝜎0 − log 𝜎𝑅

 
0 1 

Sakaino [42] 𝑀 =
𝑝𝑐  𝑞𝑐

𝜎2𝑊𝑒

 P, q: concentration of sample 

We: sample weight 

Legatt [43] 
𝑀 =

∑(𝑥𝑖 − 𝑥̅)2

𝑥̅
 

 

Lastovtsev [44] 

𝑀 = √
∑(𝐶𝑖 − 𝐶0)

2𝑛𝑖

𝐶0
2(𝑛 − 1)

 

𝐶0: concentration of sample for an ideal mixture 

𝐶𝑖: concentration of sample i 

n: number of samples 
𝑛𝑖: number of samples at concentration 𝐶𝑖 

 

2.4. Conclusion 

In summary, segregation, a highly intricate phenomenon, is found across diverse industries, 

necessitating a comprehensive understanding and quantification. Measurement methods can be 
categorized as invasive or non-invasive, with the latter being preferred due to its minimal impact on the 

mixture's sensitivity. A non-intrusive method using optical measurements, particularly those utilizing 
cameras, is commonly employed. However, they face challenges in object recognition, requiring 

preprocessing techniques such as contrasting particle colours and controlled lighting setups. Which is 

only replicated in experimental setups, limiting the possibility of collecting data due to particles not being 
distinguishable. The literature proposes various indices, predominantly based on particle concentration, 

for quantifying segregation. Image analysis employs a comparable approach, focusing on concentration 
ratios derived from pixel sections.   
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3. Artificial intelligence for image processing 

The fundamental principles of artificial intelligence important to vision systems as described in this 

chapter are derived from the book “Deep Learning for vision systems” by Mohamed Elgendy [45]. In 
this work, Elgendy explains the utilization of neural networks for the development of end-to-end 

computer vision applications, while providing in-depth insights aimed at equipping the reader with the 

knowledge necessary to comprehend research papers and interpret advancements in this domain. 
Consequently, this book serves as a primary reference throughout this chapter. 

 
Artificial intelligence (AI) is a diverse area of computer science that concentrates on developing 

intelligent systems and algorithms, aiming to perform tasks typically carried out by humans due to the 

inherent decision-making involved. The goal of AI is to emulate human-like thinking, reasoning, 
problem-solving, and decision-making processes through the utilization of algorithms. These algorithms 

empower machines to process and comprehend information, make decisions, and learn from their 
actions, emulating human cognitive functions. The application of AI extends to exploring how computers 

can interact with the world and the various domains in which these technologies find utility [46]. 
 

In the realm of AI research and development, a spectrum of techniques is employed, encompassing 

machine learning, deep learning, computer vision, natural language processing, recommender systems, 
and robotics [47]. Machine learning, a subset of AI, focuses on creating algorithms capable of learning 

from data rather than relying on explicitly programmed rules [48]. This approach finds applications in 
diverse fields such as image recognition, natural language processing, and predictive analytics [47]. 

Deep learning, a subfield of machine learning, deals with artificial neural networks comprising a higher 

number of hidden layers, hence the term "deep" learning. These networks are designed to learn and 
extract patterns and features from data, demonstrating exceptional performance in tasks like image and 

speech recognition, natural language processing, and complex data analysis  [49]. 
Computer vision, another AI subfield, revolves around teaching computers to interpret and understand 

their environment using visual inputs, commonly in the form of images and videos. Tasks like object 
recognition enable machines to "see" and comprehend their surroundings. 

 

In the context of particle recognition, computer vision is employed to work with visual inputs, allowing 
for measurements with a camera. This accessibility makes the proposed measuring method viable for a 

wide user base, as most devices, including smartphones, are equipped with cameras. Given the inherent 
variability in experiments, particles, and images, predetermined algorithms are insufficient for 

information retrieval. Hence, particle recognition incorporates machine learning methodologies. 

3.1. Trade-offs between machine learning and deep learning 

In the realm of machine learning, an essential decision arises whether to adhere to conventional 

machine learning or delve into the subset known as deep learning. The primary distinction between 
these approaches lies in the neural networks they employ. While both machine learning and deep 

learning utilize neural networks, the latter employs deep neural networks, distinguished by a substantial 

number of hidden layers. The term "deep" in deep learning signifies the inclusion of neural networks 
with more than a thousand hidden layers, a significant contrast to the two or three hidden layers 

common in machine learning [50]. The alternative label for deep learning is “deep machine learning” 
referring to the large number of hidden layers. 

 

The choice between machine learning and deep learning depends significantly on the application, as 
each option possesses distinct advantages and applications. A critical divergence lies in how they handle 

object features, which are informative patterns describing an object. Machine learning provides explicit 
control over features, allowing for manual crafting, often yielding quicker results. Conversely, deep 

learning can directly learn features from raw data, eliminating the need for handcrafted features. This 
autonomy enables deep learning to discern complex patterns and features [51], crucial in scenarios with 

intricate patterns, such as the variance among nearly identical particles in this study. 

In the context of the amount of data, referring to the dataset employed for model training, machine 
learning demonstrates proficiency with limited labelled data. On the contrary, deep learning thrives on 

larger datasets to achieve robust generalization. Making the performance comparing similar to Figure 
5. When faced with constraints in obtaining labelled data, machine learning might outperform deep 

learning [52]. 
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Figure 5 General performance comparison between deep learning and other machine learning algorithms based 

on data size [52] 

Examining the performance of machine learning and deep learning, the latter exhibits the potential to 
attain state-of-the-art performance, characterized by a high level of generalization during training. This 

results in enhanced resilience to disturbances and elevated accuracy. However, the training duration for 

deep learning, compared to machine learning, is relatively prolonged and is dependent upon available 
computational resources, presenting a trade-off between performance and resource-time considerations 

[51]. 
Deep learning proves advantageous in image-related tasks, accommodating differences in object 

appearance across various scales and orientations. It can handle large numbers and diverse objects 

within a single model. In contrast, machine learning prefers consistent object appearances, necessitating 
preprocessing steps for input generalization to minimize variance. [53] [45] 

An inherent dissimilarity exists in understanding the reasoning behind detection choices between 
machine and deep learning. Machine learning models permit the tracing of decisions through features, 

each contributing to a probability that collectively informs the decision. Deep learning, however, lacks 

known features and traverses numerous neural network layers before decision-making, making detailed 
scrutiny challenging. Yet, techniques like class activation maps (CAM) in object detection provide insight 

into contributing areas for decision-making [54]. 
For the application of detecting and localizing coke, sinter, and pellet particles, the concern lies in the 

limited distinguishing features among the particles. Features such as the round shape of pellets or the 
copper colour of sinter are subject to challenges such as partial coverage or variations in lighting 

conditions. The size of pellets is close to constant, while sinter exhibits significant size variability. 

Overlapping characteristics make feature crafting for machine learning become an intricate process due 
to lacking consistently discriminating features. The complexity intensifies as no singular characteristic 

can reliably separate the particles. [55] 
 

To facilitate the measurement of segregation under varying conditions, including lighting, image size, 

and setup, flexibility is necessary. Additionally, variation in conditions causes the materials under 
consideration to have inconsistent visual representation in the images. The need for flexibility in handling 

diverse environments and the potential for state-of-the-art performance align with the decision to 
employ deep learning for the measurement setup. Moreover, deep learning accommodates the inclusion 

of additional particles in the dataset, potentially expanding the range of detectable particles and enabling 
broader applicability to bulk solids with fewer learned particles. 

3.2. The usage of neural networks 

The depth of the neural network is the main differentiator between machine learning and deep learning 
and most of the learning capabilities are in the neural network. Therefore, a brief overview is provided 

for the general workings of a neural network. A neural network is an interconnected system of numerous 

neurons and their respective connections. Analogous to the human brain, artificial neural networks seek 
to emulate this structure. Comprising layers of neurons or nodes interconnected by edges, an artificial 

neural network typically includes an input layer, followed by hidden layers, and culminating in an output 
layer. This architectural arrangement, as illustrated in Figure 6, is referred to as a multilayer perceptron 

due to its incorporation of multiple layers of nodes or perceptrons. The functioning of a perceptron, 
similar to neurons in the brain, involves the reception of signals, their processing, and subsequent 

transmission to the next perceptron contingent upon surpassing a specified threshold. The decision or 

prediction made by the model is influenced by how the signal undergoes processing and transmission. 
To signify the significance of a signal, each input connection is assigned a weight value. The weight 

value, when high, imparts a more substantial impact on the decision-making process, amplifying the 
input signal. Conversely, low weights attenuate the input signal. In neural network representations, 

these weights are portrayed by the edges or connections from the input node to the perceptron. 
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Figure 6 Multilayer perceptron 

 

Internally, within a perceptron, the input signals undergo multiplication by their corresponding weights 
to yield a linear combination known as the weighted sum. The inclusion of a bias in the weighted sum 

allows for the linear combination to be shifted. Analogous to a linear equation, such as y = ax + b, 
where 'a' determines the slope angle, and 'b' introduces a shift along the y-axis, the bias in the weighted 

sum serves a similar purpose. This flexibility aids in better aligning predictions with the data. 

The learning process of a perceptron involves iteratively adjusting the weights until the error between 
the prediction and the ground truth approaches zero. This process, referred to as the feedforward 

process, encompasses calculating the weighted sum and applying an activation function to make 
predictions. Subsequent adjustments to the weights are made to refine predictions in response to 

excessively high or low predictions. This iterative refinement continues until the error converges to a 
negligible value. Minimizing the error indicates close proximity of the predictions to the correct values, 

and the learned weights can then be preserved for future cases to facilitate predictions. 

Termed as a perceptron, this neural network unit can predict the class to which an input belongs. The 
size of a perceptron varies, ranging from the minimal configuration comprising a single node to extensive 

networks housing millions of nodes. Larger neural networks are structured in layers, including input, 
hidden, and output layers. The input layer accepts information, the hidden layers make predictions 

based on weights and activation functions in nodes, and the output layer produces the final prediction. 

A simplified node is depicted in Figure 7, and the exemplary illustration in Figure 6 explains how these 
nodes can be expressed as equations to describe a network. 

 

 
Figure 7 A single node with 6 inputs 

The process involving the computation of a linear combination and the subsequent application of the 
activation function is termed feedforward. The designation feedforward conveys the forward progression 

of information from the input layer through the hidden layer to the output layer. This sequence unfolds 

through the execution of two successive functions: the weighted sum and the activation sum. The 
forward pass denotes the calculation across these layers to formulate predictions. 

 
Each node encompasses a summation of inputs and an activation function, which dictates how inputs 

should be transmitted based on the chosen function. Frequently operating as a threshold mechanism, 

the activation function filters out inadequate values. Also referred to as transfer functions or 
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nonlinearities, activation functions transform linear combinations of the weighted sum into a nonlinear 
model. Their incorporation introduces nonlinearity into the network, preventing a multilayer perceptron 

from functioning identically to a single perceptron, regardless of the number of layers. Additionally, 

these functions constrain output values to finite ranges. 
Despite the surplus of activation functions developed in recent years, only a limited subset constitutes 

the predominant choices for practical application. Figure 8 illustrates some common types of activation 
functions, showcasing the diversity and variations within this essential component of neural network 

architectures. 

 

 
Figure 8 Activation functions 

To exemplify the computations involved in the feedforward process, we will consider the neural network 

depicted in Figure 9. This particular example comprises 3 inputs and 4 layers, with node configurations 

of 3, 3, 4, and 1 for each layer, respectively. The notation 𝑊𝑎𝑏
𝐿  is used signify the weights and biases, 

where 'L' signifies the layer number, 'ab' designates the weighted edge connecting neuron 'a' in layer 

'L' to neuron 'b' from the previous layer. 
For the activation function σ(x) is used to represent a sigmoid activation function. The nodes are 
represented as 𝑎𝑚

𝐿  where ‘L’ is the layer and ‘m’ is the node index in the layer. 

 

 
Figure 9 Neural network with 4 layers, 3 inputs and 1 output 
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Writing Figure 9 in equations form the prediction: 
 

𝑎1
1 = 𝜎(𝑊11

1 ∗ 𝑥1 + 𝑊12
1 ∗ 𝑥2 + 𝑊13

1 ∗ 𝑥3) 

𝑎2
1 = 𝜎(𝑊21

1 ∗ 𝑥1 + 𝑊22
1 ∗ 𝑥2 + 𝑊23

1 ∗ 𝑥3) 
𝑎3

1 = 𝜎(𝑊31
1 ∗ 𝑥1 + 𝑊32

1 ∗ 𝑥2 + 𝑊33
1 ∗ 𝑥3) 

 
The second and third layers have similar equations for 𝑎1

2, 𝑎2
2, 𝑎3

2, 𝑎1
3, 𝑎2

3, 𝑎3
3 and 𝑎4

3 all the way to the 

output prediction 𝑦̂ in layer 4: 
 

𝑦̂ = 𝑎1
4 = 𝜎(𝑊11

4 ∗ 𝑎1
3 + 𝑊12

4 ∗ 𝑎2
3 + 𝑊13

4 ∗ 𝑎3
3 + 𝑊14

4 ∗ 𝑎4
3) 

 

This representation is for a simplified four-layer neural network with three inputs. The complexity and 

number of equations significantly increase when working with a higher number of nodes in the input or 
layers. 

A more efficient approach for prediction computation involves using matrices. This not only enhances 
the visibility of equations but also accelerates the computation process. For the given example network, 

the prediction in matrix form is expressed as: 

 
𝑦̂ = 𝜎 ∗ 𝑊4 ∗ 𝜎 ∗ 𝑊3 ∗ 𝜎 ∗ 𝑊2 ∗ 𝜎 ∗ 𝑊1 ∗ 𝑥 

 

𝑦̂ = 𝜎[𝑊11
4 𝑊12

4 𝑊13
4 𝑊14

4 ] ∗ 𝜎

[
 
 
 
 
𝑊11

3 𝑊12
3 𝑊13

3

𝑊21
3 𝑊22

3 𝑊23
3

𝑊31
3 𝑊32

3 𝑊33
3

𝑊41
3 𝑊42

3 𝑊43
3 ]
 
 
 
 

∗ 𝜎 [

𝑊11
2 𝑊12

2 𝑊13
2

𝑊21
2 𝑊22

2 𝑊23
2

𝑊31
2 𝑊32

2 𝑊33
2

] ∗ 𝜎 [

𝑊11
1 𝑊12

1 𝑊13
1

𝑊21
1 𝑊22

1 𝑊23
1

𝑊31
1 𝑊32

1 𝑊33
1

] ∗ [

𝑥1

𝑥2

𝑥3

] 

 
 
The output prediction 𝑦̂ is made within a range of zero and one by applying for example the SoftMax 

activation function. The output prediction is made into a probability distribution, providing the probability 
for all unique outputs. In the example of Figure 9, the output would result in the probability the input 

belongs to the singular class. For networks with more output classes, a node is required per class. [53] 

[45] 
During the training phase, the weights and biases of the prediction equation undergo iterative 

adjustments. A loss function is employed to gauge the magnitude of the error by comparing the 
prediction against the expected output. The objective is to minimize the error, as a value close to zero 

indicates a more accurate prediction. Various loss functions can be used, with mean squared error and 

cross-entropy being common examples. The mean squared error considers the squared difference 
between the expected and actual values, averaging the result. This ensures a positive error value, with 

a smaller error indicating a higher likelihood of correct predictions. In contrast, cross-entropy compares 
distributions. Applied to machine learning predictions, this loss function involves taking the natural 

logarithm of the product of predicted and expected values, resulting in a value between zero and one. 
A smaller value signifies improved performance.  

 

The training process utilizes the gradient descent algorithm [56], an optimizer designed to approach 
optimal performance. This algorithm manipulates the weights and biases within the network based on 

initial random values for predictions. The error is determined using metrics like mean squared error, 
and adjustments to weights and biases are made accordingly. The size and direction of these changes 

are influenced by the error magnitude and location within the error graph, with more significant 

adjustments made for larger errors. The training rate variable scales the size of these changes before 
applying them to the chosen weights and biases. 

Back propagation, a key process within gradient descent, involves determining the changes for the 
weights. This process extracts information on predicted results, total error, and weights to update the 

weights for more accurate predictions. While the optimizer suggests that repeated iterations can lead 

to near-perfect performance, excessive training may cause the model to interpret irrelevant information, 
associating decisions with noise in the image. This overfitting phenomenon results in exceptional 

performance on training data but a significant drop in performance on unseen images. To prevent 
overfitting, training sessions may be halted earlier, or additional data may be introduced. Conversely, 

underfitting, the opposite problem, occurs when the model has not been trained sufficiently to recognize 
patterns effectively [57]. Striking a balance during the training process is crucial to ensure the model 

generalizes well to new data. 

 
To assess performance and track progress during training, validation cycles are incorporated between 

iterations. Validation involves exposing the model to new data to measure its performance, allowing 
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comparison with training results. Fluctuations or a decline in performance within the validation process, 
alongside a decreasing loss function, may indicate overfitting. Conversely, a diminishing loss function 

and an increase in performance suggest underfitting.  

Finally, once training concludes, test data is employed to evaluate and visually inspect the model's 
performance. While evaluation yields numerical indicators of performance, test data offers a tangible 

assessment of the model's capabilities. 

3.3. Computer vision 

In the context of quantifying segregation in granular materials, the emphasis is on the domain of 

computer vision, a field that involves providing artificial intelligence (AI) with inputs to interpret the 
environment and respond accordingly [58]. Computer vision primarily deals with visual inputs such as 

images and videos, encompassing tools like Lidar or radar for generating depth maps based on reflection 
points. This capability is often harnessed for tasks like monitoring areas or processes [59], automating 

mundane tasks without human intervention, and responding dynamically to the environment in 

applications like autonomous vehicles [60] and robotics. 
 

Initially, computer vision was equated with image processing analysis. However, contemporary 
perspectives recognize image processing as just one facet of the broader and intricate systems dedicated 

to interpreting the content within images. Machine learning applications for computer vision frequently 

integrate various image processing features [61], exemplified by colour-based detection, similar to 
thresholding but tailored to specific colours. On the contrary, deep learning models may integrate image 

processing tools within feature extraction pyramids, but they do not depend on these tools. Deep 
learning models can discern patterns without the need for separate tools, creating case-specific filters 

for application in convolutional layers, a concept to be explored further in the subsequent section 3.4.1. 
 

Common to diverse computer vision tasks is the fundamental query: "What are we looking at?" This 

question underpins three distinct recognition levels built upon each other. The first level involves image 
classification, where an image is labelled based on the detected elements within it. This task provides 

considerable flexibility in terms of the detection targets and corresponding labels, such as identifying 
animals or defects in a production line. A more intricate task follows, combining object identification and 

localization, wherein each recognized object is labelled, and a bounding box is assigned to delineate its 

spatial extent. This bounding box facilitates contextual understanding and action based on object 
placement, a significant advancement in robotics. Further enhancement in object identification includes 

landmark detection or keypoints, which identifies crucial features within objects, commonly applied for 
tracking human motion in activities such as sports [62]. 

Building on object identification and localization, the final recognition level is segmentation. 
Segmentation involves marking pixels corresponding to identified objects and creating a detailed 

representation of their shapes and locations. This process results in binary values stored as masks, with 

semantic segmentation assigning a class to pixels belonging to an object group, while instance 
segmentation labels pixels per individual object. This nuanced understanding facilitates precise targeting 

of specific object pixels rather than entire groups. 
 

The training of deep learning models is categorized based on the learning method, broadly classified 

into supervised [63], unsupervised [64], hybrid [64], and reinforcement learning [65]. Supervised 
learning, the most prevalent method, necessitates the provision of solutions for the learning process, 

the model learns by minimizing the error between its predictions and the provided solutions within a 
dataset. Unsupervised learning, conversely, identifies correlating patterns within large datasets, often 

employed in generative models like DALL-E [66]. Reinforcement learning is applied when models interact 
with the environment, optimizing based on reward policies that score model performance, and fostering 

improvement through positive reinforcement. Hybrid models seek to combine aspects of various learning 

methods to utilize their respective strengths. 
In the specific context of measuring segregation, the approach involves segmentation trained through 

supervised learning. Unsupervised learning encounters challenges due to the absence of supervision 
[67], while reinforced learning, although emerging for image segmentation, necessitates a comparable 

loop to supervised learning for performance evaluation against annotated datasets [68]. 

3.4. Deep learning architecture components for computer vision 

Before venturing into the performance comparison of various models, the structural components that 

constitute these models are examined. This exploration aims to raise an understanding of the model's 
elements, which will guide the selection process for evaluating their performance. The insight on the 

components and performance within this chapter is solely derived from the literature. Moreover, the 

focus here is exclusively on models relevant to computer vision and segmentation tasks. 
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At a high level, a model presents a simplified structure that outlines its distinctive features and the 
specific problem it addresses. Among the array of available networks, Convolutional Neural Network 

(CNN) stands out for excelling in tasks related to image data and classification, prerequisites for 

segmentation tasks [65]. Tailored for processing structured arrays of data, such as images, CNNs have 
established themselves as the state-of-the-art solution for numerous visual applications in computer 

vision. Notably, CNNs demonstrate a robust capacity for recognizing intricate patterns in images, 
encompassing elements like lines, circles, and even more complex patterns such as facial features. 

Structurally, CNNs share similarities with Multi-Layer Perceptron’s (MLPs), featuring multiple 

convolutional layers, followed by activation and pooling layers, culminating in fully connected (FC) layers 
at the end. The convolutional layers within a CNN exhibit the remarkable capability to discern 

sophisticated patterns. For instance, a network comprising three or four convolutional layers could 
proficiently recognize handwritten digits, while a more complex architecture with 25 layers could 

distinguish human faces. 
When referring to the "backbone" of a model, we are referring to networks like CNNs. In some instances, 

the primary distinction between models lies in the specific version or variant of CNN that is employed. 

 

3.4.1. Convolutional layers 
Convolutional layers serve as crucial components within convolutional neural networks (CNNs), 

functioning as feature extraction windows that navigate input pixels to identify relevant features crucial 

for object recognition. These convolutional kernels, conceptualized as square areas, systematically 
traverse an image, searching for distinctive patterns. A single layer incorporates numerous kernels, each 

adept at recognizing specific patterns. The convolutional operation yields feature maps, subsequently 
processed by an activation function to produce the final outcomes. 

A kernel, depicted as a grid of discrete numerical values, possesses weights adjusted during the training 

process to discern significant features. The convolution operation involves multiplying these weights 
with corresponding pixels in the receptive field, resulting in a sum. This process, repeated across the 

entire input, generates convolved images known as feature maps or activation maps. Each kernel 
produces a distinct feature map within a convolutional layer [69]. 

 
Illustrating this process through an example, consider the application of a single kernel to a colour 

image. A colour image is characterized by three colours represented in the RGB space, with each colour 

ranging from 0 to 255. The convolutional layer's input is a three-dimensional matrix, reflecting the 
image's pixel dimensions and colour channels (m x n x r). Concurrently, kernels possess similar three-

dimensional dimensions (p x p x q). The parameterization demands that the dimension p of the kernel 
must be less than both the width m and height n of the input image. Furthermore, the third dimension 

q of the kernel is not constrained to the depth r. As the kernels traverse the input, the resulting feature 

maps' dimensions are smaller than the input, impacting both width and height. 
Figure 10 presents a starting image in its original colours together with the extracted three RBG colour 

layers. The image is used to illustrate the workings of a convolutional layer. 
 

 
Figure 10 Image [70] and the extracted RBG layers 

For demonstration, the focus is on the red layer of a colour image represented by a matrix in Table 3. 

Table 3 contains the colour intensity of the top left corner of the red layer. An edge-detection kernel, 
exemplified in Table 4, is applied to highlight edges based on intensity differences within the colour. 
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Table 3 Top left pixels of the red layer from Figure 10 

189 187 165 193 182 

181 191 178 183 181 

184 193 188 185 187 

192 188 187 192 179 

170 173 190 193 183 

 
 

Table 4 Kernel with edge detection filter 

0 -1 0 

-1 4 -1 

0 -1 0 

 

For the first iteration, the receptive field is highlighted, and the values from Table 3 are multiplied by 
the kernel. The sum is then stored in the convoluted image at the corresponding destination pixel. For 

the initial operation at the top-left position, the convoluted image's top-left pixel is determined. For 

subsequent operations, the kernel is shifted one column to the right to determine the next pixel of the 
output. The convoluted image has dimensions (m-p+1 x n-p+1) after all operations. In the given 

example, considering a 100 x 100 pixel image, the resulting size of the convoluted image would be 98 
x 98. 

Table 5 Image multiplied by the kernel to obtain a convoluted image 

189 187 165 193 182      

181 191 178 183 181  25    

184 193 188 185 187      

192 188 187 192 179      

170 173 190 193 183      

 
The sum of the multiplication for the highlighted operation would be: 

 

189x0 + 187x-1 + 165*0 + 181*-1 + 191*4 + 178*-1 + 184*0 + 193*-1 + 188*0 = 25 
 

The convolution operation, detailed in Table 5, demonstrates how the kernel traverses the image, 
producing a convoluted image, Figure 11, emphasizing contours and shapes. 

 

 
Figure 11 Convolution on the image from Figure 10 

The design of convolutional layers involves decisions on the number and size of kernels. Theoretically, 

larger kernels with more weights offer enhanced learning potential but increase computational 
complexity. Common kernel sizes include 2x2, 3x3, 5x5, and 7x7, with occasional deviations like 9x9 or 

11x11 [71]. The 1x1 kernel, however, serves a different purpose, intensifying non-linearity without 
decreasing the receptive field [72]. 

 
Additionally, the number of layers impacts a model's learning capacity and performance. An increase in 

layers generally improves feature learning [72] [73] but can lead to overfitting if not regulated effectively 
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[74]. The number of layers also affects the model's input size, limiting it to prevent convolution from 
reducing to a 1x1 output. Larger inputs are resized or cropped, potentially resulting in unintended 

information loss.  

 

3.4.2. Pooling Layers 
Similar to the convolutional layers, where each kernel has optimized weights, networks with multiple 

layers and kernels result in a considerable number of weights, leading to increased mathematical 

complexity during the learning process. Pooling layers address this issue by reducing the parameters 
transmitted to the subsequent layer. Through a pooling process that employs summary statistical 

functions like maximum or average, the input undergoes resizing, resulting in fewer parameters. This 
downsampling of the feature map from the convolutional layer diminishes computational complexity. 

Pooling layers are strategically positioned after every one or two convolutional layers. 

In the pooling layer, akin to convolutional layers, a kernel traverses the convoluted image. However, 
the pooling kernel selects specific values to retain. Max pooling retains only the highest values, while 

average pooling computes the average of all values within the kernel. This summarization condenses a 
portion of the image into a single pixel, effectively reducing the feature map for subsequent layers. 

 
To illustrate the impact on the feature map, the feature map from the convolutional layer undergoes 

downsampling in a pooling layer. The outcomes are depicted in Figure 12, utilizing a 2x2 kernel with a 

stride of 2. Stride, denoting the step size of the kernel, signifies the movement every two rows or two 
columns when traversing input values. In contrast, a stride of 1, as employed in the convolutional layer, 

advances to the next column or row. Additionally, padding can be applied to the pooled image, 
maintaining its size. Given multiple convolutional and pooling layers, each operation reduces the image 

size. To prevent the elimination of pixels, padding in the form of zeroes is added around the pooled 

image. For instance, a padding of 2 would introduce two rows above and below the pooled image and 
two columns on either side. 

 

 
Figure 12 Downsampling, average pooling (left) and max pooling (right) 

Similar to the convolutional layer's kernel size, there is no universal solution for the size of the pooling 

kernel. It becomes a network parameter subject to tuning based on preference. The same applies to 
stride and padding, serving as additional parameters to be adjusted during CNN design. 

 

3.4.3. Notable additional features 

Within the realm of CNN components, namely convolutional, activation, and pooling layers, there is 
flexibility for making up the structure. As observed with convolutional layers, there are no rigid guidelines 

to adhere to, allowing for the design of structures tailored to specific problems. Consequently, numerous 
slightly different versions of CNNs are available. Despite this flexibility, only a handful of distinct CNNs 

are commonly employed across various use cases. This section explores extensions applied to models 

or CNNs that enhance model performance, focusing on those deemed promising based on component 
evaluation and available literature. The analysis is confined to models and CNNs within the domains of 

deep learning and computer vision, specifically for instance segmentation tasks. 
 

Two extensively researched and widely used extensions that enhance model prediction quality are the 
Feature Pyramid Network [75] and region of interest (RoI) Align [76]. Feature Pyramid Networks (FPN) 

address the challenge of feature recognition at multiple scales by generating feature maps with varied 

resolutions and levels of detail. This assists in extracting features more effectively from the convolutional 
neural network (CNN). FPN is integral to the feature extraction process, offering several options for 

passing on feature maps, as shown in Figure 13. These options include resizing the image into different 
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sizes (image pyramid) and extracting different-sized feature maps (feature pyramid). Alternatively, 
convolutions can be utilized to create feature maps of varying sizes, with options to pass on only the 

smallest or last feature map or all feature maps. There is also the option to enrich feature maps with 

details from higher levels. This comprehensive approach, known as a Feature Pyramid Network, 
significantly enhances object detection and segmentation performance compared to using either nothing 

or an image pyramid [75]. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 13 Image pyramids. (a) feature pyramid, (b) feature map, (c) multiple feature maps, (d) top-down feature 
map, (e) feature pyramid network [75] 

RoI Align comes into play after a region proposal network, refining regions proposed by the network. 
Since the convolutional layers alter the size of feature maps from the original image, RoI Align proposes 

adjusting coordinates based on the number of convolutions the feature map undergoes. This adjustment 
ensures the new coordinates are relative to the feature map's size. To align the region of interest with 

the feature map's grid, RoI Align divides the coordinates, creating sections (bins). For each bin, RoI 

Align selects four points and utilizes bilinear interpolation to assign a specific value to these points. This 
process is followed by obtaining maximum or average values within the bins, similar to the pooling layer. 

RoI Align thus constructs the feature map for the proposed region of interest, which is then utilized for 
bounding box predictions, classification, and segmentation masking. 

In addition to RoI Align, there are RoI Pooling and RoI Warp. However, due to differences in their 

approaches for determining values within bins, both RoI Pooling and RoI Warp are less preferable for 
segmentation. A comparison between the two, presented in the introduction of Mask R-CNN [76], 

illustrates a clear performance gap. 
 

In more recent developments, deformable convolutional networks have garnered attention for making 
dense predictions, such as those required for tasks like semantic segmentation and depth map prediction 

[77]. Deformable convolutional networks introduce an additional step within convolutional layers, 

allowing the kernel's locations to have variable values. Unlike conventional convolutional layers, which 
derive values from around the kernel's central pixel, deformable convolutional layers incorporate an 

extra set of parameters representing offsets for each grid spot in the kernel. Similar offset additions are 
applied to RoI pooling. This approach enhances accuracy and localization capabilities, particularly for 

objects with inconsistent shapes [78]. 

 
Apart from traditional convolutional networks and deformable convolutional networks, transformers can 

serve as a backbone. While transformers are commonly applied in natural language processing models, 
recent exploration has extended their use to object detection and segmentation [79]. The transformer's 

approach differs from CNNs, dividing an image into sections that are linearly embedded to create a 
sequence of vectors representing the image [80]. The primary mechanism of a transformer is self-

attention, emphasizing the importance of critical aspects in an image and focusing more on relevant 

features. Additionally, the self-attention mechanism aids in modelling dependencies between input 
sequence elements over large ranges, improving generalization capabilities. This is achieved by sparingly 

utilizing the neighbourhood structure, a departure from CNNs' common reliance on kernel operations 
[79]. While transformers can function as a standalone backbone, they can also collaborate with a CNN 

by linearly embedding the feature maps from the CNN and passing them into the transformer. This 

hybrid architecture structure achieves even higher accuracy [80]. 
 

FPN is easily implementable with any traditional backbone [75] and is integrated into deformable CNNs 
[78]. RoI Align can be applied to any architecture involving region proposal networks as an alternative 

to RoI pooling. Deformable CNNs relinquish the fixed orientation of the RoI kernel by applying offsets, 
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contributing to increased accuracy and enhanced localization capabilities, particularly for objects with 
inconsistent shapes [78]. Given the distinct approaches of RoI Align and deformable CNN, a combination 

of both does not exist. 

 

3.5. Considerations for potential image processing models 

Amongst the extensive array of models, containing multiple iterations with alterations in the backbones, 
a selection of three models is introduced. These chosen models will undergo comprehensive training 

and subsequent performance comparison in the specific context of instance segmentation for granular 

materials. 
In addition to evaluating models based on referenced features or methods embedded within their 

architectures, performance indicators gathered from relevant literature serve as benchmarks for the 
coming comparisons. As there is no definitive method of determining the performance capabilities, a 

comparison on the same dataset is done to provide insight. Therefore, important models are frequently 

subject to comparative analyses for establishing benchmarks, particularly employing datasets such as 
MS COCO [81], ImageNet [82], ADE20K [83], and Cityscapes [84]. These datasets, encompassing 

diverse image volumes with annotated objects across myriad categories, provide standardized metrics 
for assessing model performance. MS COCO, in particular, stands out as the predominant choice for 

benchmarking instance segmentation performance due to its realistic representation of common objects 

in natural environments. Within MS COCO there 80 different common objects labelled across 328k 
images. 

However, it is crucial to acknowledge that performance metrics derived from standardized datasets may 
not universally translate to other datasets. Despite this limitation, such measurements offer insights into 

a model's learning capabilities. The distinguishable features and performance indicators from 
standardized datasets inform the strategic selection of potential models. 

 

Drawing insights from benchmarks curated by Papers with Code [85], as depicted in Figure 14, enables 
informed speculation on models exhibiting high learning capabilities and prevalent trends. Notably, 

recent trends underscore a reliance on transformer-based models, evident in the top scores achieved 
over the past two years. Consequently, a detailed examination of available models, particularly those 

leveraging transformers, is warranted. 

Upon exploring transformer-based models, hybrid models contemplate the integration of a transformer 
with a convolutional neural network (CNN) or a deformable CNN. When examining top-performing model 

groups that share similar backbones or structures, the potential for comparable performance becomes 
evident. Intriguingly, besides the shift toward transformers, models established on Mask R-CNN and 

Cascade Mask R-CNN [86] continue to be created. Their sustained presence, despite their initial release 
several years ago, underscores their enduring relevance in the field of artificial intelligence development. 

Noteworthy, is the substantial increase in Average Precision (AP, 3.6.3) exhibited by top-performing 

models, demonstrating an enhancement of ten to fifteen per cent over preceding iterations. 
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(a) 

 

 
(b) 

 
Figure 14  Performance graph of instance segmentation on (a) the COCO minival dataset and (b) the COCO test-
dev dataset [72] 

The models considered for the selection have to be capable of performing segmentation. For the purpose 

of measuring segregation, instance segmentation is required of the model. Instance segmentation 
allows for both material and size segregation measurements while semantic segmentation would only 

be able to perform material segregation measurements. Additionally, as the models develop at a rapid 

rate, many models are freely available. However, there are still models that are not made publicly 
accessible. The latter is often the case for newer or more nuanced models. Therefore, only models that 

are public are taken into consideration. The discussed FPN in section 3.4.3 is seen as a requirement for 
the models. However, as almost all models have an FPN included, this requirement does not affect the 

options. When presented with the option of selecting a backbone, as mentioned in section 3.4.1 the 

backbone with more parameters often allows for better performance and is therefore preferable. The 
criteria for a model to be considered are the potential or the popularity. These criteria are for models 

that comply with the task of instance segmentation. The potential of a model is based on its performance 
relative to other models, often shown in the form of performance scores on a dataset. The popularity 

of a model is seen by the frequent appearances in performance comparison tables. Alternatively, the 

models' popularity could also be represented by having models released based on them. 
When considering instance segmentation models, the model Mask R-CNN has to be mentioned. Mask 

R-CNN is considered to be the most basic model for instance segmentation [87] and a classic [88]. 
Thus, it is not uncommon to see Mask R-CNN being referenced in comparison tables. To name some 

papers in which Mask R-CNN is used for comparison: MEInst [89], SOLOv2 [90], YOLACT [91] and 
CenterMask [92]. Therefore, Mask R-CNN is included in the performance comparison. 

A survey paper is taken to limit the number of potential models. A survey paper filters the models that 

show limited innovation or are minor adjustments on other models out. Resulting in a more distinct and 
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sizable group of models to narrow down a select few. Hence, the survey paper of Sharma [93] is taken  
to reduce the pool for the selection. To start with the performance potential of the models, Sharma 

presents a table with an overview of the performance on standardized datasets. From the table, the 

best performing model among the presented models is ISTR [94], a transformer based model. The 
potential of transformer models in the overview echoes the trend seen in Figure 14. 

A popular technique that is presented in several high scoring models is cascade learning [95]. Cascade 
learning takes the outputs through several iterations to improve the prediction. A similar iterative 

approach is seen in transformer based models and hybrid task cascade models (HTC) [96]. The model 

to bring cascade learning to instance segmentation is Cascade Mask R-CNN [86] [96]. Besides the 
conventional approach of using a CNN, Cascade Mask R-CNN is also used with a transformer backbone 

such as Swin Transformer [97]. Cascade Mask R-CNN inspired the HTC branch of models that is seen 
in some of the best performing models, as Swin-L or SwinV2 in Figure 14 b. Since Cascade Mask R-CNN 

has such influence on the development of other models and the relevance of the model to date, Cascade 
Mask R-CNN is added to the group of models for the selection. 

With a selection of three models that have shown their relevance or performance for image 

segmentation, the model selection includes Mask R-CNN [76], Cascade Mask R-CNN [86] and a 
transformer based model, ISTR. All three models incorporate a Feature Pyramid Network (FPN). While 

Mask R-CNN and ISTR utilize a Resnet101 backbone, Cascade Mask R-CNN employs a Resnet50 
backbone. The distinction between Resnet50 and Resnet101 primarily lies in the number of 

convolutional layers, denoted by the numerical suffix in their names. Therefore, Resnet50 and 

Resnet101 feature 50 and 101 convolutional layers, respectively [74]. 
 

Mask R-CNN involves four key steps: the backbone, region proposal network, classification network, 
and the mask head. The backbone scans the image using filters to identify potential objects. These 

objects are then forwarded to the region proposal network for focused attention and proposal of 
bounding boxes and labels based on object features. Subsequently, the classification network assigns 

labels to the objects, and the bounding boxes undergo regression for refinement. For segmentation, a 

mask head identifies the precise shape of the object at the pixel level [76]. Figure 15 provides an 
overview of this process. The object detection head is where classification occurs alongside additional 

bounding box refinement, while parallel generating masks through the Mask generation head. 
The backbone for Mask R-CNN is the convolutional neural network described at the beginning of this 

chapter. The region proposal network (RPN) takes an image as input and returns boxes with object 

proposals [98]. The generation of the proposals is done by placing a set of convolutional layers over the 
convolutional feature maps near the end of the CNN. Splitting the process into two different tracks, the 

output of the backbone and the separation into the RPN. The RPN is followed by two fully connected 
networks for classification and location prediction. These networks are implemented with square 

convolutional layers and two 1x1 convolutional layers for the classification and location prediction. The 

RPN in Mask R-CNN is shared with the Fast R-CNN object detection network [76]. The RoI Align 
procedure discussed in Section 3.4.3 aligns the bounding boxes with the image. The object detection 

head is taken from Faster R-CNN [50] [75]. The mask branch is presented in Mask R-CNN’s paper [76] 
as a fully convolutional neural network applied to each RoI. Predicting a segmentation mask pixel by 

pixel. 
 

 
Figure 15 Structure of Mask R-CNN [99] 

Cascade Mask R-CNN introduces cascade learning to Mask R-CNN, where the outputs of classifiers 
undergo multiple progressively refining stages. Each stage builds upon the previous one, aiming for 

enhanced accuracy and performance [100]. A three-iteration model is depicted in Figure 16, wherein 
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the FPN network operates at the same level as the backbone, extracting features. The bounding box is 
iteratively passed back to the RoI pooling layer, leading to output generation in C3, S, and B3 after two 

iterations. The removal of the first two stages would render the model identical to Mask R-CNN.  

 
 

 
Figure 16 Cascade structure of Cascade Mask R-CNN [101] 

 

ISTR uses a CNN backbone with FPN to construct a feature pyramid [94]. After the feature pyramid are 

two paths. For one path, RoI Align is used to extract RoI features from the feature pyramid. The other 
path creates the image's features by averaging and summing the features from the feature pyramid. 

These image features are position embedded, by cosigning the positions to the values. The image 
features and the position embedding are inputted into the self-attention module [102]. The self-

attention module encapsulates complex relationships among different features. Additionally, a dynamic 
attention head is included for fusing the RoI and the image features. The combination of the RoI and 

image features are proceeded to the prediction heads for the predictions. The predictions are made 

similarly to Mask R-CNN in different heads depending on the task, including a class head, box head, 
mask head and, for ISTR, a mask decoder. The mask heads output the mask embeddings, which are 

reconstructed with the mask decoder into the prediction masks. Lastly, a recurrent refinement is done 
with the predictions by repeatedly updating the prediction boxes. Which refines the predictions and 

allows for in parallel the processing of the classification and segmentation. Figure 17 presents a 

simplified overview of ISTR. 
 

 
Figure 17 Structure of ISTR [94] 

 
Both Cascade Mask R-CNN and ISTR are utilizing refinement steps, either as cascade learning or 

recurrent refinement. Compared to Mask R-CNN and Cascade Mask R-CNN, ISTR takes different 
information from the FPN and uses it to use an alternative approach to providing data to the prediction 

heads. This alternative approach does allow ISTR to produce masks without relying on bounding boxes 

unlike Mask R-CNN and Cascade Mask R-CNN. 

3.6. Performance evaluation metrics 

The assessment of algorithmic performance within computer vision is typically enabled through the 
utilization of metrics. Originating from the foundational focus on classification tasks in computer vision, 

the metrics employed are derived from established methods for quantifying the efficacy of classification 

models. As explained in 3.3, classification models are primarily set up towards determining whether an 
image depicts a specific object. The outcomes of model decisions are encapsulated in a comprehensive 

framework known as a confusion matrix [103], as illustrated in Table 6. This matrix systematically 
captures the correctness of model outputs for each processed image. Subsequently, following the 
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model's testing phase, the confusion matrix serves as a foundational tool for conducting performance 
assessments tailored to classification models. 

 
Table 6 Confusion matrix 

 Predicted positive Predicted negative 

Actual positive True positive False negative 

Actual negative False positive True negative 

 

The confusion matrix, as described in Table 6, presents four distinct outcomes based on the model's 

predictions: True Positive (TP), False Negative (FN), False Positive (FP), and True Negative (TN). A more 
specific illustration, provided in Table 7, further explains the application of this matrix in the context of 

images featuring dogs. Here, the top row signifies the model's predictions, distinguishing between a 
particle and a non- particle, while the first column represents the actual nature of the image, classifying 

it as either a particle or not. 
 

Table 7 Confusion matrix for images of particles 

 Predicted particle Predicted not a particle 

Actual particle TP FN 

Actual not a particle FP TN 

 
However, the application of a confusion matrix becomes less straightforward when dealing with instance 

segmentation, particularly in scenarios such as particle detection. In the realm of instance segmentation, 

assessments are diverged into object detection and the corresponding segmentation of identified 
objects. Although not directly employed, the majority of performance metrics for instance segmentation 

can be translated back to the fundamental principles of a confusion matrix. 
Prominent metrics applied to evaluate segmentation performance include mean intersection over union 

(mIoU), pixel accuracy, average precision (AP), average recall (AR), and the F-score. These metrics 

collectively contribute to a comprehensive understanding of the effectiveness of instance segmentation 
models in finding and accurately describing distinct objects within an image. 

 

3.6.1. Mean intersection over union 

The intersection over union (IoU) metric quantifies the degree of overlap between a predicted bounding 
box and the corresponding ground truth bounding box. Mathematically, IoU is calculated as the ratio of 

the area of overlap to the area of union and is alternatively referred to as the Jaccard index [104]. The 
resulting IoU value ranges between 0 and 1, where a lower score indicates a poorly selected bounding 

box with minimal overlap, while a score approaching 1 signifies a bounding box closely aligned with the 
ground truth. The visual depiction in Figure 18 clarifies the concept of IoU using a predicted bounding 

box and the associated ground truth. 

In the context of evaluating multiple objects' localization, the mean intersection over union (mIoU) is 
employed. The mIoU considers the IoU for all predicted bounding boxes, offering a comprehensive 

performance assessment for object localization across the entire dataset. 
 

 
Figure 18 Example of three IoU values for the bounding box of a dog. The IoU from left to right: 0.97, 0.73, 0,29 

 

3.6.2. Pixel accuracy 

Pixel accuracy gauges the proportion of correctly labelled pixels relative to the total number of pixels in 

an image [105]. This metric, however, does not factor in false positives and true negatives. Furthermore, 
in scenarios involving multiple classes, individual class performances are not taken into consideration. 

It is crucial to note that pixel accuracy might yield deceptive results if the test image selection is not 



24 

 

meticulous. While pixel accuracy predominantly focuses on segmentation, object detection employs a 
similar metric known as accuracy. In object detection, accuracy assesses the correct identification of 

objects, dividing this by the total number of objects present in the image. Similar to pixel accuracy, 

maintaining a balance between classes is imperative for accurate measurements, as false positives and 
true negatives are not accounted for. To illustrate, consider a scenario where 90% of the mixture 

comprises component 1 and the remaining 10% is component 2. If the model erroneously labels every 
particle as component one, the accuracy would still be 90%, even though the practical utility of such a 

model would be compromised.  

 

3.6.3. Average precision (AP) 
Precision, a fundamental metric, is defined as the proportion of correctly identified objects divided by 

the total number of predictions [106]. As an illustration, suppose a model predicts 10 objects within an 

image, of which 6 are correct; the precision, in this case, would be 0.6. Precision exclusively provides 
insights into the likelihood that when the model identifies an object, it is indeed the predicted one. To 

calculate the average precision (AP), the cumulative sum across multiple images is determined for each 
object category. In object detection, where models identify and localize various object categories within 

a single image, the AP is instrumental in evaluating performance across all categories. Consequently, 
AP is often referred to as mean average precision (mAP), representing the mean of the AP per category 

and offering a comprehensive evaluation of overall model performance. 

The AP metric is frequently integrated with intersection over union (IoU) to assess performance with 
varying degrees of bounding box overlap. Three IoU thresholds are commonly considered: .50:.05:.95, 

.50, and .75, with .50:.05:.95 being the primary challenge metric. Another approach involves examining 
AP concerning the size of objects and categorizing objects based on the area of their bounding boxes. 

The areas are used to determine size categories, as outlined in Table 8. 

 
Table 8 Various Average Precision measurements 

Average precision (AP) Description 

AP % AP at IoU = .50:.05:.95 
APIoU=.50 % AP at IoU = .50 

APIoU=.75 % AP at IoU = .75 
APsmall % AP for small objects with area smaller than 322 

APmedium % AP for medium objects with area between 322 and 962 

APlarge % AP for large objects with area larger than 962 

 
Precision can be expressed using the confusion matrix, Table 6: [106] 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(2) 

 

3.6.4. Average recall (AR) 

The recall of a model, often referred to as sensitivity [73], gauges the model's capacity to detect objects. 
Analogous to average precision, average recall is linked to intersection over union (IoU). Unlike average 

precision, which is evaluated at various IoU thresholds, average recall focuses solely on the .50:.05:.95 

range and is thus omitted in the table description for brevity. Average recall is computed concerning the 
number of detections and the size of the objects. 

 
Table 9 Various Average Recall measurements 

Average recall (AR) Description 

AR1 % AR at 1 detection 
AR10 % AR at 10 detections 

AR100 % AR at 100 detections 

ARsmall % AR for small objects with area smaller than 322 

ARmedium % AR for medium objects with area between 322 and 962 

ARlarge % AR for large objects with area larger than 962 

 
Recall can be expressed using the confusion matrix, Table 6: 
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𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(3) 

 

3.6.5. F-score 
The F-score, or F1-score, is defined as the harmonic mean of the precision and the recall [107].  
 

𝐹 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

(4) 

 
The harmonic mean, distinct from the arithmetic mean typically used for averages, provides a more 

nuanced representation of performance assessment [107]. When comparing the two means, the 
harmonic mean proves to be more indicative in measuring performance. 

 
The arithmetic mean (A) and harmonic mean (H) are defined as follows: 

 

𝐴 =  
1

𝑛
∑ 𝑥𝑖 =

1

𝑛
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𝑛
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(5) 
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For the means of precision (P) and recall (R), the equations become: 
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The harmonic mean can be transformed into the equation seen for the F-score. For example, in particle 

recognition, with precision at 0.9 and recall at 0.1, the arithmetic mean is 0.5, while the harmonic mean 

is 0.18, offering a more realistic representation of performance. 
 

The term F1-score is derived from the F measurement [108]. The F measurement uses Fβ, where β 
ranges from 0 to +∞. As β is squared in equation (11), negative numbers do not deviate from their 

positive counterpart. In the F1-score, β is set to 1:  
 

𝐹𝛽 = 
(𝛽2 + 1)𝑃𝑅

𝛽2𝑃 + 𝑅
 

 

(11) 

The F1-score, with β=1, balances precision and recall equally and results in equation (10). Other values 
of β, such as F2, F0.5 or Fβ, allow prioritization of precision or recall based on specific needs. For instance, 

F2 places more emphasis on recall, F0.5 prioritizes precision, and Fβ permits custom balance shifts for 

specific cases. Values for β between 0 and 1 favour the precision of the model, with values closer to 
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zero providing a stronger relation with the precision. Using β=0 makes the F measurement equal to the 
precision. On the other hand, moving β further away from 1 and 0, the F measurement shifts towards 

the recall. Assigning a huge value to β makes the equation equal to the recall.  

 
The F1-score is used in this study as there is an equal importance on both the precision and recall. The 

metric considers both missing and misclassified identifications, influencing the performance evaluation. 
Precision and recall contribute equally to the assessment, ensuring a balanced evaluation of models 

based on β=1. The F-score utilizes average precision for precision and average recall for recall, both 

measured with IoU = .50:.05:.95 for bounding box overlap. 

3.7. Conclusion 

In the field of machine learning, manual crafting of features poses a challenge, particularly when dealing 
with highly similar objects, constraining the model to adhere closely to learned images. Conversely, 

deep learning eschews explicit feature engineering, relying on a substantial number of examples. This 

abundance of examples enables deep learning models to generalize patterns from observed images, 
enhancing predictive capabilities when confronted with conditions that diverge from the learned 

scenarios. 
The process of particle recognition necessitates a mechanism for the computer to interpret complex 

mixtures. In the context of presenting the environment to a computer through cameras or sensors, the 

domain of computer vision comes into play. Convolutional Neural Networks (CNN) are prevalent in 
computer vision, serving as widely employed networks for decision-making based on images. The 

specific task at hand is segmentation, a process that assigns labels to pixels corresponding to individual 
objects. The segmentation of the entire image yields distinct groups of pixels representing various 

objects, which can be further transformed into coloured masks. The training methodology employed for 
this segmentation task is supervised learning, requiring manually labelled images to impart the 

knowledge necessary for recognition and replication. Throughout the training phase, the model utilizes 

the Gradient Descent algorithm to iteratively refine its behaviour. 
Three models are selected for a performance comparison on our dataset composed of granular 

materials. The models have to comply with the requirements of the tasks instance segmentation and to 
be publicly available. To select the three models, there is looked at the potential and relevance of the 

models. The potential describes the hypothetical performance a model could achieve. The relevance is 

seen as the popularity and reoccurrence of the model over time. Resulting in three models to be 
selected. The models Mask R-CNN, Cascade Mask R-CNN and ISTR are taken for further testing. 

The evaluation is done with metrics to describe the performance. There are several options when 
considering metrics, the most commonly presented metrics are the average precision (AP) and average 

recall (AR). To obtain a single comprehensive value to present the performance, metrics such as the F-
score are used. As the F-score comprise of the common metrics AP and AR, the F-score is considered 

during the evaluation of the selected models.  
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4. Application of artificial intelligence for quantifying 
segregation 

The models chosen in section 3.4 will be applied to a mixture of granular materials. The purpose of the 
models is to find all particles, segmentate the particles and identify the correct material. Finding the 

best suited model for the task is done by training all three models and running performance tests. After 
which the selected model will be applied to extract data from the granular mixture to estimate the 

segregation. 

4.1. Model selection for segregation measurements 

In the pursuit of finding a suitable model for the task of assessing segregation in granular materials, an 

exhaustive examination of various models was undertaken. The exploration initiated with an analysis of 

machine learning models, focusing specifically on the subset known as deep learning, as elaborated in 
Section 3.1. This decision led to that deep learning, owing to its inherent capacity for pattern recognition, 

would be a justifiable choice, particularly given the inherent similarity of the objects within this study 
requiring identification. Subsequently, in Section 3.2, a detailed exploration of deep learning within the 

domain of computer vision was conducted. This exploration shows the intricacies of instance 
segmentation tasks and the requisite learning setup, necessitating a dataset with annotated examples 

for segmentation purposes. The significance of a substantial dataset, characterized by numerous 

examples and diverse data variations, was underscored, recognizing the enhanced performance 
achievable under a broader spectrum of conditions. The training procedure adhered to Gradient Descent 

principles, as expounded in Section 3.2, necessitating an iterative approach to converge towards an 
optimal solution. To ensure equitable comparison, a uniform constraint of 40 thousand iterations (or 

222 epochs) was imposed for maximum training, fostering consistent conditions among the models. 

Post-training, the models underwent evaluation using an unseen image to gauge their performance, 
and the ensuing assessment was quantified through evaluation metrics, as detailed in Section 3.6. These 

performance metrics, serving as discernible indicators of expected model proficiency, facilitated a 
comprehensive observation of model behaviour when confronted with an image. In the event of 

noticeable performance gaps, the prospect of considering an alternative model was contemplated. 
 

4.1.1. Dataset creation 

A dataset, a fundamental component for training models, is a curated collection of data integral to the 

supervised learning method in computer vision. Specifically, for deep learning models in computer vision, 
this entails a set of images accompanied by an annotation file explaining the object attributes and their 

spatial configurations. 

The image acquisition process involves the deliberate formation of heaps. For the creation of the heaps, 
the materials are loaded into a cylinder. The cylinder is lifted to allow to materials within to spread out 

from underneath. Resulting in the forming of a heap. The heap was thereafter captured from a top 
perspective to create images such as Figure 19. The process is conducted upon an initially white cloth. 

This methodology facilitates the expeditious collection of particles, yielding a diverse set of images from 

various heaps. These images are used for multiple purposes: they constitute the training data for the 
model, contribute to performance assessments, and function as test cases. Importantly, to prevent any 

potential model bias, distinct sets of images are allocated for training, performance evaluation, and 
testing, ensuring a lack of overlap between these tasks. The distinct sets of images are manually 

separated. The method of using separate sets for training and performance evaluation is referred to as 

cross-validation. 
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Figure 19 Image taken of the created heap 

For model preparation, a training dataset comprising 13 thousand particles was employed, consisting of 

6.5 thousand sinter, 2 thousand coke, and 4.5 thousand pellet particles. The dataset exclusively holds 
images of particles in a mixture, providing a realistic environmental context for the recognition task. In 

adherence to the principles of deep learning, which thrives on extensive datasets, the substantial 

quantity of objects enhances the model's ability to generalize and predict unforeseen variations in object 
characteristics. 

The accompanying annotation file constitutes a crucial aspect of dataset preparation, containing a 
comprehensive list of objects per image. Each object is characterized by its material type and a set of 

coordinates. Manual annotation, accomplished by enumerating a list of coordinates and connecting them 
sequentially to outline the object shape, is the traditional approach. However, alternative tools, 

categorized as commercial or open source, offer more intuitive annotation methodologies. Open source 

tools, while fully capable of annotations, may lack the convenience provided by commercial tools. An 
illustrative example is the incorporation of selection assistance in commercial tools, which, particularly 

in segmentation tasks, proposes object contours based on edge detection or object detection AI. While 
these suggestions may necessitate minor adjustments for precise inscriptions, they notably expedite the 

annotation process, particularly for irregular shapes. The end-user, functioning as a quality control 

entity, validates the suggested annotations, thereby ensuring dataset quality. In the absence of such 
assistance, annotations involve placing dots around the object, connected by straight lines to enclose 

the object. For irregular shapes, this manual dot-placement process can be considerably time-
consuming. 

As the number of annotation tools available is large, Table 10 presents a handful of examples, including 

both open-source and commercial options. All listed tools featured facilitate segmentation annotations, 
as there are tools specialized for image classification and/or object detection. The selection of a specific 

tool depends on individual preference. In this study, Roboflow, an effective tool for dataset preparation 
in the context of granular material segregation is used. 

 
Table 10 Annotation tools 

Name Open-source 

CVAT [109] Yes 
Label-studio [110] Yes 

VIA [111] Yes 

Labelbox [112] No 
V7labs [113] No 

Roboflow [114] No 

 
The process of annotating is described in the following images. First load in the image to be labelled. 

The classes that are going to be appointed to the objects could be done beforehand or when assigning 

an object. To mark the mask, a polygon is drawn around the object by placing vertices on the edge of 
the object. The polygon is used as a reference for the learning process of the model. Loose annotations 

would therefore result in the outputs also loosely encompassing the object. After completing the 
polygon, a class is assigned. In the case of the example, the classes are already made and the 

corresponding class could be selected. The steps of creating a polygon and assigning a class are 
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repeated till all particles are marked. A visual representation of these steps is shown in Figure 20 and 
ends with an overview of the reference masks. 
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Figure 20 Steps of annotating in images in Roboflow [114]. In order: Loading in an image, create a polygon 

around the object, assign a class to the object, repeat for all objects and the reference masks for this annotated 
image. 

4.1.2. Training setup 

The training of the models is done in python on the aforementioned dataset. To control the learning 

process, parameters in the form of hyperparameters are used. Hyperparameters are used to describe 
any process, component and step in the learning process and the model. Therefore, a small number of 

hyperparameters are given in Table 11, while others are in Appendix B. The first four hyperparameters 
describe the learning iterations. MAX_ITER prescribes the maximum of iterations the model does on the 

images. BASE_LR is used to indicate the size of change the model is permitted to apply based on the 

back propagation. The following two hyperparameters introduce a stepdown in the learning rate with 
GAMMA the magnitude of the step and STEPS the iteration when the steps occur. Lastly, the 

EVAL_PERIOD is the interval for the evaluation on the evaluation dataset to track the progress of the 
learning. Directly noticeable is the different BASE_LR for ISTR. This is set lower to prevent the 

divergence of the solver. 
 

Table 11 Training hyperparameters of the three models 

Setting Mask R-CNN Cascade Mask R-CNN ISTR 

MAX_ITER 40 000 40 000 40 000 
BASE_LR 0.001 0.001 5e-5 

GAMMA 0.1 0.1 0.1 
STEPS (36500, 38500) (36500, 38500) (36500, 38500) 

EVAL_PERIOD 500 500 500 
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Besides setting up the hyperparameters for the models, the images need to be adjusted. Given the 
constraints of deep learning models regarding maximum and minimum input sizes, preprocessing of 

inserted images is necessary to ensure compliance with these limits. Two primary methods, downsizing 

and dividing the image into smaller sections, are considered. Downsizing enables the acquisition of 
information in a single output that covers the entire image, while splitting the image retains details 

captured by high-resolution cameras, distributed across several sub-images. Prioritizing the preservation 
of details, the decision is made to split high-resolution images into smaller sections, as depicted in Figure 

21. To determine the size of these sub-images, alignment with the size of images in the dataset is 

recommended, given that the model anticipates such conditions. The mean size of the dataset images 
is 600 by 550, while the size used by the ResNet backbone is 224x224 [74]. Consequently, opting for a 

much larger size would necessitate downsizing, risking partial framing of objects or loss of context. 
However, in the context of a particle mixture, this limitation is mitigated as the particles are small, and 

contextual information is derived from surrounding particles. Considering the additional constraint of 
dividing an image into sections, the size of the sections is set to 504 x 504. For the captured images, 

this results in 48 sections of 6 by 8, which are subsequently employed to compare particle concentrations 

for segregation analysis. 
 

 
(a) 

  
(b) 

Figure 21 Unused image in the training process utilized for the visual analysis, (a) image of the heap, (b) the 
division of the sections 

The input image undergoes processing through the models, generating a significant amount of 

information. Since the models are specifically designed for instance segmentation, section 3.3, the 

expected outputs include: 

• Identification of particle types within the image. 

• Bounding boxes denoting the locations of identified particles. 

• Masks portraying the pixels correlated to individual particles. 
 

For the evaluations, most of the information was directly provided. Between training cycles performance 
assessments are done to show the progress of the training. The numbers created during the last 

assessment which occurred after the final iteration are used for the numerical performance evaluation 

in the following section. The visual analysis takes the outputs responsible for the identification of the 
particle and the masks. By combining the two outputs, the masks are coloured per material. The 

materials coke, pellet, and sinter are represented for all coming images by blue, red, and green, 
respectively. The colours make the predictions from the models easily interpretable. Missing particles 

stand out by the lack of colour, while wrongly identified particles are found by comparing the predictions 
with the original image. 

 

The following part explores the capabilities of three models to analyse a mixture composed of coke, 
sinter, and pellet materials. These materials exhibit common visual features, including shared colours 

and shapes, with the distinctions becoming more nuanced under conditions with over or underlighting. 
This inherent complexity makes the mixture a valuable subject for experimentation with a deep learning 

model designed for recognition.  
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4.1.3. Numerical performance evaluation 

The primary metric used for evaluating performance is the F-score, which considers both precision and 
recall. The balance between precision and recall, reflected in the F-score, is set to 1 due to the similar 

importance of these two metrics, as discussed in Section 3.5.5. Additionally, Average Precision (AP) and 
Average Recall (AR) are provided as they are commonly employed metrics in assessing deep learning 

model performance. Table 12 displays the performance results of Mask R-CNN and Cascade Mask R-

CNN, with minimal differences between them. Notably, ISTR performs noticeably worse under the 
specified conditions, suggesting that Mask R-CNN is the most suitable for the given task among the 

three models. 
 

Table 12 Scores of the trained deep learning models 

Model F1 score AP AR 

Mask R-CNN 0.69 0.67 0.70 

Cascade Mask R-CNN 0.66 0.63 0.69 

ISTR 0.25 0.21 0.29 

 

4.1.4. Visual performance analysis 
For the visual examination, an unused image, shown in Figure 21, created during the dataset creation 

process but not included in it, is provided as input to the models. This image is processed by the models 

with the task of identifying particles and marking the corresponding pixels. The output is an image with 
marked pixels associated with different materials, and the particles are colour-coded (blue for coke, 

green for sinter, and red for pellet), as shown in Figure 22. 
The performance of the models aligns with the predictions from the numerical performance evaluation. 

Mask R-CNN and Cascade Mask R-CNN show somewhat similar performance, while ISTR significantly 

deviates. This is evident from the particles not marked with the expected colours (red, blue, or green). 
A noteworthy distinction between Mask R-CNN and Cascade Mask R-CNN is observed, particularly 

concerning larger sinter particles. Mask R-CNN appears to face challenges in identifying these particles. 
When considering predictions with the confidence threshold lowered as shown in Figure 23, Mask R-

CNN marks all particles. The precision and the recall of the output of the model are tied to the confidence 

threshold [115]. The model has uncertainties about the correctness of all predictions which is referred 
to as the confidence score given as a percentage or a number between zero and one. Lowering the 

confidence threshold allows predictions with lower confidence to be outputted. The predictions with 
lower confidence are more likely to be incorrect.  For the recall, the threshold results in the elimination 

of the uncertain predictions, thereby reducing the number of particles that are detected as only particles 
with a high probability are passed along. The balance is to be calibrated towards the intended use case 

[116]. Figure 22 shows the predictions with a confidence threshold of 0.8 while Figure 23 is lowered to 

0.4.  
 

 
Figure 22 Predictions from the models, from left to right Mask R-CNN, Cascade Mask R-CNN and ISTR 
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Figure 23 Predictions from the models with confidence threshold lower, from left to right Mask R-CNN, Cascade 
Mask R-CNN and ISTR 

4.1.5. Conclusion 

A noteworthy observation is the inconsistency between the numerical and visual assessments. While 
the numerical evaluation allows for the ranking of models based on performance metrics, the visual 

examination reveals subtle aspects beyond numerical scores. For instance, the challenges encountered 

with larger sinter particles using Mask R-CNN. The inconsistency between these two analyses 
underscores the significance of not overly relying on a singular evaluation method. 

In light of both analyses, the selection of ISTR is excluded as it significantly underperforms compared 
to the other models. The performance between Mask R-CNN and Cascade Mask R-CNN appears 

comparable in numerical evaluation, with a marginal 0.03 difference, predominantly on the AP side of 
the equation. However, the visual analysis exposes Mask R-CNN's struggles with larger sinter particles, 

indicating a substantial issue in identifying this class. Consequently, within the defined constraints, 

Cascade Mask R-CNN emerges as the most effective model. 
The separation between numerical analysis and the visual representation of Mask R-CNN can have 

several causes. Firstly, the confidence for the numerical assessment is not included. A significant drop 
in performance can be seen solely based on the confidence score threshold [117]. The size and variation 

in the evaluation dataset are an additional potential cause. When the size and variation are not sufficient, 

the evaluation cannot assign representable values for all cases. Therefore, the images used for the 
evaluation dataset might have been more favourable for Mask R-CNN compared to Figure 21, providing 

a higher score than appropriate. A similar argument could be given for Cascade Mask R-CNN or ISTR, 
the used images might have been (un)favourable. 

The underperformance of ISTR was expected due to the constraints. ISTR used a 5e-5 as it tended to 

diverge at larger values, compared to Cascade Mask R-CNN and Mask R-CNN which used a 1e-3, which 
is twenty times bigger. Therefore, the adjustments to the weights are smaller and likely require more 

iteration to reach a similar performance. Besides the learning rate, transformers work better with larger 
datasets as transforms lack inductive biases compared to CNNs [118]. Transformers do not have any 

prior knowledge of dealing with visual data, therefore requiring larger training data to get started [93]. 
As a result, transformers need significantly longer training times. Even though transformers have the 

potential to be the best models, the conditions under which the selection was held were not in their 

favour. 
 

4.2. Analysis of extracted measurements for segregation 

The following sections explore the capabilities of the selected model to analyse the mixture composed 
of coke, sinter, and pellet materials. The emphasis is on the application of measuring material and size 

segregation based on the model's predictions. For the application of the model, Figure 24 presents a 
new case. 
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(a) 

 
(b) 

Figure 24 Unused image in the training process used for extraction of segregation measurements (a) image of 
the heap, (b) the division of the sections 

Leveraging the output from the model opens up various possibilities. Initially, a clear overview of the 

observations of the model is created by grouping individual materials. For the Figure 24, the grouping 
results in Figure 25. Similar to in section 4.1.4 the materials coke, pellet, and sinter are highlighted by 

the colours blue, red, and green, respectively. Beyond visual clarity, calculations can be performed with 

the collected information, offering the possibility to measure the segregation of components within the 
image. Subsequent sections will delve further into the potential applications of measuring material and 

size segregation from a single image within the mixture. Consequently, all presented images, numerical 
data, and graphs correspond to the same experimental scenario. 

 

 
Figure 25 Particle masks coloured based on material, coke - blue, pellet - red, sinter - green 

In addition to the colour-coded image representation, the recognition process can be extended to 
encompass a monochromatic version, encompassing all masks as well as masks exclusively dedicated 

to each of the individual materials, as presented in Figure 26. 
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Figure 26 Particle masks. From left to right, all materials, coke, sinter, pellet 

4.2.1. Results: material segregation 
From the information provided by the model, it is possible to extract details about the type, location, 

and size of particles, employing a similar approach used for generating images displaying masks. Given 

that segregation is a relative measure based on overall presence in the mixture, the image is partitioned 
into smaller sections to calculate a segregation index (SI). This division can be based on the splits from 

the input image or defined by specifying the pixels per section. Within each section, the pixels 
corresponding to masks for each material are tallied. By dividing the pixel counts over the pixels in the 

section and comparing them within different sections, the segregation in the image can be assessed 
using equation (1). This formula produces a score between 0 and 0.5, where 0.5 indicates complete 

segregation and 0 represents perfect mixing.  

 
Table 13 Segregation index for material segregation 

Material Segregation index 

Coke 0.22 
Sinter 0.15 

Pellet 0.07 

 

Another approach is to manually define the sections in the image instead of relying on the division for 
the processing of the image. Manually defining the section enables one to look at the materials in a 

more relevant manner. As for the heap, an interesting feature would be the outwash of the materials. 
To measure the segregation due to the outwash, the sections need to have a circular pattern. A centre 

point is placed on the middle of the heap and five radii are used to create the sections. Resulting in 
multiple rings of materials. By utilizing the separate masks from Figure 26, each pixel is given a value 

representing the material. Concentrations of the materials are determined based on the values of the 

pixels. The concentrations are used in equation (1) to obtain the segregation indices for the material 
segregation, as shown in Table 15. The process gives several parameters to tune to ensure the accuracy 

of the measurements. Besides the centre point which is set to the middle of the heap, there are the 
number of rings and the radius of the rings. By exploring the measurements at different values for the 

rings and radii, low numbers of rings together with small radii provide inconsistent measurements as 

seen in Figure 27. Figure 27 (a) gives the SI for coke where with each configuration the radius increases 
by ten pixels. After twenty increases of the radius, a ring is added and the radius is set back to the 

beginning. This is done for eleven additional rings, starting from one ring and ending with twelve rings. 
From ring four a clear shape of the graph is being formed. A similar response is observed for sinter in 

Figure 27 (b) while pellet becomes fairly uniform for all configurations. 
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(a) 

 

 
(b) 

 
(c) 

Figure 27 SI for (a) coke, (b) sinter, (c) pellet for multiple radii and number of rings configurations. Every iteration 
the radii increase by 10 pixels, after 20 iterations the radii reset and a ring is added to the configuration. 

Hence the graphs became more stable for the larger number of rings, a more detailed look was taken 

at the total covered area of the rings. The difference between the inner and outer radii of the ring is 

kept small, at fifty pixels. The number of rings increased from one ring to thirty rings. A similar shape 
in the SI graph is observed, Figure 28 shows the same trends as seen in Figure 27. Laying the graph, 

Figure 28, next to an image of the rings, Figure 29 (b), shows that the dip in coke’s SI curve around 
configuration 23 correlates with the edge of the materials. The rings after the edge do not add any 

particles but influence the measurements by providing sections with low concentrations of material. This 

affects both the mean and adds a large number for the difference of the mean, resulting in a larger SI. 
This effect is seen in Figure 28, as coke and sinter start to rise significantly. The early rise of the sinter 

SI is due to the low presence of the sinter in the outer parts of the heap as seen in Figure 29 (a). 
 

 
Figure 28 SI for coke, sinter and pellet. Configuration reflects the number of rings with radius increases of fifty 

pixels 
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(a) 

 
(b) 

 
(c) 

Figure 29 (a) particle masks colourized, Coke - blue, pellet - red, sinter – green (b) 29 rings over the heap (c) 
configuration 22, clear white parts of the particles are not included in the measurements 

For the number of rings and the radius, the main concern is the number of pixels with cloth included in 

the calculations. The outer rings go from mostly particles to entirely cloth. The relevance of the most 

outwards particles needs to be decided. In other words, an outer parameter, the distance from the 
centre that is taken into consideration while the rest is ignored, for the measurements is to be set. In 

this thesis, the transition from materials to cloth is taken into the measurements. Therefore, the outer 
parameter will be on the edge of the heap, which corresponds to configuration 22. Configuration 23 

covers the edge of four particles, including barely any particles. Figure 29 (c) shows the particles 

included in the measurement in grey scales while the unused particles are white. Therefore, the outer 
radius of the total area is set to be between 1200 and 1300 pixels. With the outer radius of the total 

area, several combinations of rings and radii are created and shown in Table 14. The areas of all 
configurations are shown in Figure 30, providing an impression of the sections for the segregation 

measurements. 

 
Table 14 Configuration of rings and radius differences for a total area radius between 1200 and 1300 pixels 

Configuration Rings Radius differences Total area radius 

1 2 390 1220 
2 2 400 1250 

3 2 410 1280 
4 3 290 1210 

5 3 300 1250 
6 3 310 1290 

7 4 240 1250 

8 5 200 1250 
9 6 170 1240 

10 7 150 1250 
11 8 130 1220 

12 9 120 1250 

13 10 110 1260 
14 11 100 1250 

15 12 90 1220 
16 14 80 1250 

17 16 70 1240 

18 19 60 1250 
19 23 50 1250 

20 28 40 1210 
21 29 40 1250 

22 30 40 1290 
23 38 30 1220 

24 39 30 1250 
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(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

 
(m) (n) (o) (p) 

 
(q) (r) (s) (t) 
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(u) (v) (w) (x) 

Figure 30 Area of the particles covered visualized for all configurations, 
(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i) 9 (j) 10 (k) 11 (l) 12 (m) 13 (n) 14 (o) 15 (p) 16 (q) 17 (r) 18 (s) 

19 (t) 20 (u) 21 (v) 22 (w) 23 (x) 24 

 
 

 
Figure 31 SI obtained from the configurations for Table 14 

The segregation measurements of the configurations are shown in Figure 31. As the area of the 

measurements is consistent, the measurements tend to be fairly close to each other. The configurations 
with the smaller number of rings deviate from the consistency seen in the later configurations. Plotting 

the segregation measurements against the mean of the measurements shows a relatively large offset 

for the configurations 2 to 9. While configuration 1 is close to the mean, the lesser number of rings 
makes it highly sensitive to minor changes in the measurements. This can be seen in the increase of 

the size of the rings, configuration 2 and 3 where the results drastically change. The offsets per material 
are shown in Figure 32 combined with a combined offset over the three materials. The graph of the 

combined offset in Figure 32 (g) settles below a deviation of 0.01 at measurement 10. 
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     (a) (b) (c) 

 
    (d) (e)         (f)          (g) 

Figure 32 Comparison of the measurements from the configurations. (a), (b) and (c) compare the measurements 
for Coke, Sinter and Pellet with in red the mean of the respective measurement. (d), (e) and (f) show the deviation 
from the mean for each measurement with (g) being the combination of all three for each configuration. 

As configurations 1 to 9 are highly sensitive or have large offsets, configurations 1 to 9 are excluded 

from the comparison. The exclusion is to reduce the effect configurations 1 to 9 have on the mean of 
the measurements. The exclusion of configurations 1 to 9 does not influence the result as seen in Figure 

33 besides zooming in. Configuration 18 provides the lowest error to the mean. While the optimization 
of the configuration may make this measurement better, it is image or case specific. The most important 

aspect is the determination of the area to be measured. In the case of the presented heap, a method 

is utilizing circles. However, with images fully filled with particles, other shapes are to be considered. 
Additionally, the location of the centre of the radial measurements influences the measurements when 

approaching the edge of the materials. As offsets translate to unnecessarily taking empty pixels into 
consideration for the segregation. As seen in Figure 27, there should be enough rings to take 

representative segregation measurements. The largest difference from the mean in Figure 33 has the 
size of 0.005, which is a hundredth of the maximum value of 0.5 for a completely segregated mixture. 

 

 
    (a) (b)    (c) 

 
        (d)       (e)      (f)      (g) 

Figure 33 Comparison of the measurements from the configurations with the exclusion of configuration 1. (a), (b) 
and (c) compare the measurements for Coke, Sinter and Pellet with in red the mean of the respective measurement. 
(d), (e) and (f) show the deviation from the mean for each measurement with (g) being the combination of all 
three for each configuration. 
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The results of a grid and circular pattern provide similar results despite their different approaches. Coke 
shows for both methods the most segregation while pellet the least. A slight increase of both sinter and 

pellet segregation is observed in the circular pattern compared to the grid approach. 

 
Table 15 Segregation index for material segregation of the manual defined sections 

Material Segregation index 

Coke 0.22 
Sinter 0.17 

Pellet 0.11 

 
While obtaining a segregation index is informative, it does not convey the entire narrative. Analysing 

pixel counts in sections opens additional possibilities. For instance, examining the ratio between 

materials per section offers more insights into the mixture's segregation and aids in comprehending the 
measurements. Material amounts can be measured either in pixels or as ratios relative to each other. 

Furthermore, assessing the ratio of materials per section provides insights into the composition on a 
smaller scale. Measuring per section also offers information on unlabelled data, which may include 

background elements, unidentifiable particles on lower layers, or particles overlooked by the model.  

An illustrative example of measuring material distribution is depicted in Figure 34. This graph displays 
the percentage of each material in the section along with the quantity of unlabelled data, represented 

as black. The percentage of material present is similar to the before determined concentrations for the 
SI. All sections are represented, with empty sections indicating an absence of materials. The colour 

scheme corresponds to the materials mentioned earlier, and the black bar signifies pixels not associated 

with a particle. 
 

 
(a) 

 
(b) 

Figure 34 Material concentration (a) particle masks coloured based on material (b) the concentration of each 
material per section. Coke - blue, pellet - red, sinter – green, black – unlabelled pixels 

Upon examining material presence in the sections, a noteworthy observation is the significant amount 

of coke near the outside with limited pellet and sinter. The distribution of pellet is almost evenly spread 

out across the heap. A slight increase is seen in the inner sections. Despite the marginal concentration 
increase, the segregation index remains low as the particles are divided over many sections. Sinter 

exhibits more variation within this measurement with clear high and low concentrations present in Figure 
34 (b). Additionally, the unlabelled data within crowded sections is minimal, indicating that the presented 

measurements offer reliable information with minimal data gaps. 

 

4.2.2. Results: size segregation 
The model handles each particle as a distinct entity, facilitating the extraction of data concerning 

individual particles. However, due to the irregular shapes of particles, there is no singular measurement 

that perfectly characterizes their size. Notably, the surface area and Feret diameter are employed as 
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estimators [119]. The surface area corresponds to the area-equivalent diameter, representing the size 
of the particle. This entails transforming the particle's area into a circle with an equivalent surface area, 

where the circle's diameter is regarded as the area-equivalent diameter, as shown in Figure 35. Another 

method to determine the size of a particle is the Feret diameter. The Feret diameter measures the 
distance between two parallel planes that touch the particle, with the maximum Feret diameter 

representing the longest such distance shown in Figure 36. Additionally, an elongation (EL) ratio is 
derived from the Feret diameters, providing insights into the particle's shape and distinguishing between 

long and thin versus more equal distributions such as squares or circles. 

 

 
Figure 35 From particle to area-equivalent diameter 

 
Figure 36 Particle shape and maximum Feret diameter 

In the size measurements, it is important to consider that, due to image cropping, some particles may 

be fragmented into two to four pieces, creating additional particles for measurement. The model 

counted 857 particles, likely slightly higher than the actual count, as there are also particles partially 
obscured by others. Both separations in the image and overlapping particles influence the measured 

sizes.  
 

Area-equivalent 
diameter 

Maximum Feret diameter 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 37 Size of particles per section of the image, (a) and (c) particle masks coloured per material (b) area-
equivalent diameter (d) maximum Feret diameter 

Figure 37 displays the particle size distribution per section, revealing a prominent peak in the number 

of particles for inner sections. In addition, the particle size distribution is able to be segmented based 

on materials, as presented in Figure 38. showcasing substantial differences due to measuring method 
in pellet particle diameters compared to coke and sinter. Instead of a narrow and high peak, pellet 

particles exhibit a smaller and wider peak with two tops, while coke and sinter demonstrate similar 
proportions in width and height. Moreover, the maximum size of measured particles is observed to be 
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smaller when using the area-equivalent diameter, a distinction evident in the empirical distribution 
function (ECDF) plots as shown in Figure 39. 

 

 

 
(a) 

 
(b) 

Figure 38 Size distribution graphs separated on material, (a) area-equivalent diameter (b) maximum Feret 
diameter 

 

 
(a) 

 
(b) 

Figure 39 Size distribution ECDF graphs separated on material, (a) area-equivalent diameter (b) maximum Feret 
diameter 

For analysing particle shapes, the elongation (EL) ratio is employed. The elongation signifies the aspect 
ratio between the particle's length and width. The ratio is derived from the maximum and perpendicular 

Feret diameters [119]. A value of 1 indicates a particle that can fit within a square box, resembling a 
square or round shape, while larger values correspond to more rectangular or oval shapes, indicative of 

longer and thinner particles. The subsequent graphs in Figure 40, Figure 41 and Figure 42 present the 

number of particles per maximum Feret diameter and EL for each material separately, offering insights 
into the size and shape of the materials. 
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(a) 

 
(b) 

Figure 40 (a) Number of particles per maximum Feret diameter (b) EL graph for coke particles 

 

 
(a) 

 
(b) 

Figure 41 (a) Number of particles per maximum Feret diameter (b) EL graph for sinter particles 
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(a) 

 
(b) 

Figure 42 (a) Number of particles per maximum Feret diameter (b) EL graph for pellet particles 

Utilizing the information on particle size per section, a similar segregation index could be calculated. 

The particles are separated into categories of which their concentration in the sections is determined. 
This concentration is inserted into equation (1) to obtain the segregation indices presented in Table 16 

and visualized in Figure 44. As seen in the distributions in Figure 38 and Figure 39, the maximum Feret 

diameter and the area equivalent diameter do not always give the same values for a particle. Therefore, 
both are presented. The diameter of the particles is measured with both methods and sorted based on 

size into three categories: smaller than 50 pixels, between 50 and 100 pixels, and larger than 100 pixels. 
These categories will go by the names small, medium, and large respectively. The categories are 

visualized in Figure 43, providing the masks with the colour based on their category. The diameter 

smaller than 50 pixels, between 50 and 100 pixels and larger than 100 pixels are coloured orange, light 
blue and purple, respectively. The difference between the two measuring methods is visible present as 

a significant number of particles are moved to different categories. The distribution of the 857 particles 
along the three categories is found in Table 17. These numbers additionally confirm the observation of 

the shift between categories for some particles when comparing both methods of measuring. 
 

 
(a) 

 
(b) 

Figure 43 Particle size masks, (a) area-equivalent diameter (b) maximum Feret diameter. Small – orange, medium 
– light blue, large - purple 
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Table 16 Segregation index for particle size segregation 

Category Segregation index 
 Max Feret Area-equivalent 

Small 0.03 0.06 

Medium 0.14 0.13 

Large 0.22 0.18 

 
 

 
Figure 44 Segregation indices for the particle size categories per method, visualization of Table 16 

 
 

Table 17 Number of particles per particle size 

Category Number of particles 

 Max Feret Area-equivalent 

Small 226 395 

Medium 391 334 
Large 240 128 

 

 

4.2.3. Discussion 

The model exhibits the capacity to assess segregation by leveraging equation (1), considering both 
material concentration within sections and particle size. Nevertheless, the accuracy of particle 

recognition significantly influences the measurements. Instances of incorrect recognition encompass 
missed particles, mislabelling non-particles, or erroneously labelled particles, resulting in 

underrepresentation or overrepresentation of components. 

The partitioning of sections presents challenges as well, as it negatively impacts particle sizes and 
numbers for size segregation. Sections may inadvertently split medium-sized particles into two smaller 

ones, complicating recognition and analysis. A potential solution involves generating multiple images 
from the same setup with slight repositioning, mitigating the impact of section divisions. A mean from 

these images could reduce separation errors. 

The need for separations arises from dataset constraints and model limitations, as not all image sizes 
can traverse the model. Creating a dataset with larger images compatible with the model could enhance 

performance but does not completely address the need for sections in segregation measurements. 
Beyond structural errors imposed by grid-based image processing, model misinterpretations contribute 

to errors. Highlighted errors in Figure 45 include a false positive, where a cloth piece is misidentified as 

a coke particle, and false negatives, such as a missed pellet particle. Preventing these false positives 
could involve using higher contrasting colours for the background to enhance distinction. The missed 

pellet might be attributed to over-lighting, causing difficulties in recognition under unusual conditions. 
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Expanding the dataset with variations in lighting, achieved by image augmentation, presents a potential 
solution by exposing the model to more diverse scenarios. 

 

 
Figure 45 Highlight of two types errors in the prediction 

4.3. Conclusion 

The methodologies applied to image analysis can be extended to process the model outputs. As 
demonstrated the model is capable of differentiating particles, presenting them in a distinct fashion. 

Consequently, this enables the description of the mixture based on the materials and their spatial 
distribution, quantified through segregation indices. The processing of the image, conducted on a per-

particle basis, empowers the model to incorporate other properties of the mixture, specifically the 

particle characteristics such as size and shape. The extraction of the material segregation is conducted 
in two manners, utilizing the preprocessing of the image for square shapes and the radial approach 

suggested for the heap structure. Between the two approaches minor deviations were observed 
Collectively, these procedures provide a detailed understanding of the mixture's composition, offering 

insights into the size, shape, and material attributes of each particle. Despite the multitude of 

possibilities, the precision of these measurements is intricately linked to the model's performance. 
Instances of missing particles or mislabelling can introduce variability and exert influence on the 

accuracy of the results. Consequently, there is a heightened emphasis on the dataset, as it sets the 
conditions within which the measurements are conducted. The robustness of the dataset becomes 

essential in ensuring the reliability and accuracy of the obtained insights. 
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5. Conclusions 

This chapter revisits the preceding section to address the main research question: 

 
How can artificial intelligence be utilized to analyse and measure both material and particle size 
segregation in a granular mixture? 
 
This question is explained through the exploration of the following sub-questions: 

 
What is the state of the art for measuring and quantifying segregation in granular materials? 

The current state of the art involves two distinct measurement approaches: invasive (sampling) 

and non-invasive (scanning). The latter predominantly utilizes optical measurements due to 
their equipment simplicity. However, optical methods confront limitations in differentiating 

particle categories, especially when similar groups are present. Consequently, preprocessing, 
such as painting or coating, is often used to enhance distinction. Moreover, stable lighting 

conditions are a necessity for optical measurements to mitigate colour leakage due to varying 
illumination. Quantifying segregation relies heavily on the concentration of particles and is often 

derived from standard deviation. With optical measurements utilizing specific formulas based 

on pixel concentration within image sections. 
 

How can artificial intelligence be utilized through deep learning and computer vision to measure 
segregation in a granular mixture, and what are considerations for selecting a model and evaluating its 
performance? 

For an AI system to consistently interpret images, an adaptable algorithm capable of identifying 
particles across varying positions, shapes, and lighting conditions is essential. Hence, a deeper 

investigation into deep learning is undertaken due to its elevated performance capabilities and 
superior generalization skills. Deep learning exhibits enhanced proficiency in recognizing 

particles amidst diverse lighting, shapes, and sizes, even in unexplored conditions. To derive 
meaningful interpretations from images, deep learning models necessitate training. This 

iterative process involves exposing the model to a set of images annotated with expected 

outcomes. Over successive iterations, the deep learning model attains the ability to replicate 
and transfer its acquired knowledge to novel images. 

The learning mechanism of a deep learning model involves adjusting the weights in the neural 
network and filters. Filters dictate how the model perceives objects, while the neural network 

attributes labels to them. Determining optimal parameters is achieved through loss functions 

and the Gradient Descent algorithm. Subsequently, a trained model analyses input images, 
generating three essential types of information for each particle: category, bounding box, and 

mask. These outputs can be translated to material, location, and corresponding pixels for a 
given particle. Since the material is associated with groups of pixels, the segregation 

quantification formula used in optical measurements becomes applicable. 

The most important factor is the dataset, both its quantity and quality. The efficacy of deep 
learning is dependent upon extensive datasets, enabling generalizations. The model's 

performance improves with exposure to a diverse array of conditions. Moreover, the quality of 
annotations within images assumes significance, with meticulous annotations setting a high 

standard for the predictions, while lax annotations may lead to loosely created masks. When 
drawing conclusions based on pixel count, the quality of masks becomes a crucial factor 

influencing the outcomes. 

A model exerts a significant influence on performance. Various models exhibit varying 
proficiencies in learning or discerning patterns. To discern these disparities in performance, 

metrics can be employed for model comparisons. Among the various available metrics, precision 
and recall are the most commonly employed. These metrics quantify the accuracy of predictions 

and the capacity to identify all relevant instances, respectively. A frequently used derivative of 

these metrics is average precision, which is commonly applied for evaluation on standardized 
datasets such as MSCOCO, facilitating comparative analysis between models. It is important to 

note that performance metrics derived from standard datasets may not consistently correlate 
with performance on custom datasets. However, due to the lack of a direct correlation of model 

components and the performance. A comparison on the same dataset is the best indication for 
performance available. 

The evaluation of model performance reveals two distinct trends. Firstly, the majority of high-

performing models leverage Transformer architectures, whereas more widely adopted models 
primarily employ conventional neural networks. Informed by comparisons presented in literature 

utilizing standardized datasets, a top-performing model was selected: ISTR, which is based on 
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the Transformer architecture. In addition to this high-performing model, the commonly utilized 
Mask R-CNN was included for comparison. Furthermore, Cascade Mask R-CNN, which has 

significantly influenced the evolution of modern models and shares similar methodologies with 

ISTR, was also incorporated. This model, built upon the Mask R-CNN, implements an iterative 
improvement process to enhance performance, similar to strategies observed in transformer-

based models. 
 

How to select the most suitable artificial intelligence for measuring segregation in a granular mixture 
and what insights can the artificial intelligence provide on the composition and segregation of the 
mixture? 

From the comparison test of three models on our dataset, the model Cascade Mask R-CNN was 
selected. While the performance based on numerical values was slightly lower than Mask R-

CNN, the processed output made clear it performed better than the values suggested. Labelling 
more particles and with more prediction correct than its competitors. Therefore, Cascade Mask 

R-CNN was used to investigate the potential information to be abstracted with this method of 

measuring. 
Three outputs are generated by the model which present a multitude of potential applications. 

Primarily, the mixture can be segregated based on the materials identified, thereby facilitating 
the determination of material segregation through the utilization of a segregation index. 

Additionally, an in-depth analysis of material distribution allows for a more nuanced 

understanding of the segregation index. 
As the mixture undergoes processing on a particle-by-particle basis, several supplementary 

avenues for information extraction become apparent. Particle size can be ascertained through 
metrics such as the Feret diameter or the area-equivalent diameter. Armed with knowledge 

about the size of all particles, it becomes possible to explore the size distribution within the 
mixture. Furthermore, similar to material segregation, size segregation can be determined by 

assessing the distribution of particle sizes. The final feature under consideration relates to the 

shape of particles. Specifically, the elongation ratio. A metric that encapsulates the shape 
characteristics of particles within the mixture. 

 
To summarize this thesis, the results demonstrate a significant potential in the acquisition of information 

concerning both the mixture and its individual particles. The outputs facilitate a comprehensive analysis 

that presents greater opportunities compared to traditional methodologies. The employed artificial 
intelligence algorithms exhibit a strong capability for effective particle differentiation. By identifying 

intricate patterns, AI can recognize particles without necessitating preprocessing or consistent lighting. 
This advancement surpasses the limitations associated with traditional measurement techniques and 

substantially streamlines the measurement process. This approach would serve as a compelling solution 

for industries where traditional methods are impractical or for applications involving special conditions, 
such as elevated temperatures or highly sensitive materials. 

With the three output types, category, bounding box and masks, the AI generates multiple perspectives 
and insights regarding mixtures. The detailed information extracted for each individual particle allows 

for comprehensive characterization of the mixture in terms of material composition, size, shape, and 
their respective distributions, as well as both material and size segregation.  

Crucially, the dataset is the primary driver of the performance, as well as the scalability of the AI. A 

broader diversity of particles during the training phase enables the algorithm to be applied across a 
wider range of mixtures. This results in the development of a unified tool capable of measuring any of 

the included particle types, which can be expanded as necessary. 
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6. Recommendations 
 
This project introduces deep learning methodologies to particulate science, specifically focusing on the 

measurement of segregation. However, acknowledging the nuanced nature of this challenge, the current 

model's performance could be further optimized, and its applicability expanded by introducing diverse 
materials or extracting additional information. This section delves into opportunities for extending and 

utilizing this project as a foundation for future developments. 
 

1. Dataset considerations: 

• Interchangeable: The dataset plays a critical role in the model's abilities, providing the 
foundation for learning particle recognition. One key aspect is the interchangeability of datasets 

among different models, facilitating ease of transferability or updates. This is exemplified in this 

thesis by training three different models with the same dataset. While the format of annotations 
may differ based on the model and task, standardizing representations, such as using COCO 

format, enables flexibility. 

• Impact on model performance: Despite the saying "quality over quantity," in the realm of 
deep learning, both are crucial. The dataset's quality, in terms of precise annotations, coupled 

with its size, contributes to the model's robustness and accuracy. 

 
2. Dataset expansion: 

• Increasing dataset size: Deep learning's effectiveness correlates with extensive data. 

Enlarging the dataset would enhance model performance, making it more adept at identifying 
materials and reducing errors caused by lighting or noise, as illustrated in Figure 45. A larger 

dataset contributes to more accurate measurements. 

• Incorporating new materials: Introducing new materials into the dataset expands the 
model's capabilities. Sufficiently representing diverse particles enables the model to detect and 

distinguish novel materials, broadening the range of detectable components within a mixture. 

 
3. Dataset creation challenges: 

• Manual annotation: The creation of datasets demands substantial resources, with manual 

inputs necessary for supervised learning. Depending on the computer vision task (classification, 
object detection, or segmentation), annotations may involve labelling images, marking objects 

with bounding boxes, or delineating precise shapes for segmentation. Precision in annotations 

significantly impacts model performance. 

• Automated annotation: The quick expansion of datasets can be facilitated through the 
utilization of a pre-trained model for generating annotations. Such an approach requires the 

availability of a model proficient in particle recognition. This methodology produces the swift 
expansion of the dataset, leveraging the model's inherent capability to discern particles. 

Additionally, the generated images can undergo processing via augmentation tools, thereby 
simulating diverse conditions and consequently strengthening the model's robustness. 

 

4. Training process options: 

• Starting from scratch vs. continued training: When incorporating additional data, two 
training approaches exist. Starting from nothing is recommended for substantial dataset 

changes, ensuring maximal utilization of new data. Alternatively, continuing training from a pre-
existing model with new data accelerates the training process, requiring less time for increased 

performance. 

• Hyperparameter optimalisation: The training process consists of a large number of 

parameters influencing the learning of the model. These parameters can be optimized for 
improved learning rates, recognition and decision-making. Therefore, an improved version can 

be made without introducing new or altering components. 
 

5. Transfer learning: 

• Utilizing pretrained models: Leveraging pretrained models expedites training, as they 
continue upon knowledge from similar tasks [120]. For instance, a model trained on coke, sinter, 

and pellet particles can be applied to a project involving different granular materials, saving 

training time and resources. 
 

6. Realistic environment integration: 

• Background and lighting conditions: Introducing realistic environmental elements, such as 
background features and varied lighting conditions, would enhance the model's adaptability. 
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Simulating extreme lighting effects and colour tints corresponding to material properties could 
contribute to a more authentic representation. 

 

7. Speed considerations: 

• Optimizing measurement speed: Considering the time constraints for measurements, an 
exploration of optimizing the processing speed is warranted. Focusing solely on classification 

and bounding boxes, or employing particle count as an indicator of size, could expedite the 
measurement process. 

 

8. AI integration with traditional methods: 

• Binary presentation of masks: Since masks can be presented in a binary manner, AI 
recognition could replace conventional image processing, while traditional methods and 

algorithms handle subsequent image analysis. This approach allows for seamless integration 
into complex systems. 

 
Conclusion: 

In conclusion, numerous prospects exist for expanding upon this project. Most of these opportunities 

lie in the dataset, emphasizing the need for both quality and quantity. Expanding the dataset in a 
diversified manner and augmenting it with varied scenarios can reinforce the performance and enable 

operation in a broader spectrum of conditions. Considerations include the addition of more materials to 
recognize and the possibility of faster-paced environments. Furthermore, the project could be proposed 

as a replacement for the image processing step, while retaining traditional means of image analysis 

through the output of black and white material images. The project provide potential for the creation of 
a tool that is able to recognize a variety of materials that is easily applicable for experiments once it is 

setup. Providing opportunities to measure in previously unthinkable environments. 
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7. Implementation framework for continuation 
This chapter provides a detailed examination of the practical aspects involved in establishing an AI 
project, explained in eight steps. These steps outline critical considerations for initiating the project from 

the ground up. Follow up iterations of the project can utilize the established works for continuation, 

allowing for modifications to the existing project parameters or datasets to align with the requirements 
of the new project. 

- A project with a similar objective but utilizing different or additional materials can be duplicated, 
although modifications to the dataset are necessary. This involves adjustments to Step 3, 

followed by a continuation from Step 5. 
- Changing the model necessitates additional steps to ensure proper functionality, as the model 

is depending upon a specific operational environment and data format. This process would 

involve starting from Step 2, while the dataset creation from Step 3 can be bypassed. However, 
it is crucial that the dataset annotations are exported in a format compatible with the new 

model. 
- In instances where the task is altered, optimal performance is likely achieved by beginning from 

the initial stage. Given that the existing project is created for segmentation, other tasks can be 

executed at a more gradual pace compared to model designed for the task. However, this 
adjustment only requires a revaluation of the outputs to extract the sought information. 

 
 

Step 1: task for AI 
The initial step involves determining the specific information required from the AI. This refers to the 
three categories of computer vision models: classification, object detection and localization, and 

segmentation. The AI's output must correspond with the project's objectives. Relevant literature or 
existing projects can serve as references for potential implementations. Opting for the simplest model 

type facilitates easier dataset creation, accelerates the learning process, and enhances processing 

efficiency upon completion. Nonetheless, this choice may hinder the integration of more complex model 
capabilities. For example, segmentation encompasses both segmentation and object detection and 

localization, whereas object detection and localization do not include segmentation functionalities. The 
flowchart depicted in Figure 46 streamlines the decision-making process regarding model selection to 

expedite this determination. 
 

 

 
 

Figure 46 Flowchart computer vision model type selection 

 

Step 2: Choosing model 
A model must be selected for the project based on the type identified in step 1. Provided that the model 

type aligns, all such models should be capable of completing the specified task. Variations among models 
primarily concern to their processing speed and accuracy. Various sources are available for obtaining a 

model. Many models are accessible on GitHub, frequently referenced in their associated research 
publications. An alternative and more approachable option for newcomers is to utilize models available 

in libraries such as MMlabs [121] and Detectron2 [122]. These libraries provide a comprehensive 

catalogue of models that can be easily implemented. An additional advantage of utilizing these libraries 
is the active communities associated with them. Similar to widely adopted models, a larger user base 

facilitates troubleshooting and support when encountering difficulties. 
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Step 3: Dataset and annotations 
In order for the model to effectively comprehend the task requirements, a considerable volume of 

examples must be provided. These examples are referred to as a dataset, which comprises of images 
and their corresponding annotations. To enhance the probability of accurate object recognition by the 

model, it is essential that the images present the objects within contextual environments. Given the 
existence of various annotation formats, it is imperative to export annotations in the appropriate format. 

The dataset must be constructed in alignment with the specific task and model being utilized; the correct 

labels must be assigned to the objects in the images. For the model to learn to identify an object, it 
must encounter the object recurrently across diverse settings, positions, and configurations. A lack of 

variability in the object's presentation will hinder the model's ability to detect variations of that object. 
Furthermore, the dataset should present the multiple instances of the objects across numerous images. 

While there is no predetermined quantity for the required appearances or images, practice suggests 

that an increased number of instances correlates with improved performance [123]. 
To facilitate the image annotation process, several tools are available to improve the tediousness of this 

task. Section 4.1.1 presents various options for annotation tools. A wide selection is available, A tool 
that aligns with one’s preferences can be used. It is crucial to note that the quality of the dataset directly 

influences the model's output. 

 

Step 4: Setting up environment 
Prior to training a model, it is recommended to establish an environment made for the model’s 
dependencies. Given that models often rely on specific versions of libraries, failing to do so may lead to 

conflicts with other models or scripts. Commonly utilized tools for creating such environments include 

Anaconda [124] and Docker [125], while a virtual environment is an alternative option. Each model 
necessitates its own environment due to distinct dependencies. However, utilizing a library offers several 

models that share compatible dependencies. Furthermore, having an active community that works with 
the model or library can facilitate troubleshooting when issues arise. The specific dependencies, along 

with their requisite versions, are typically provided during the model or library installation process, often 
in the form of a requirements file that is validated during setup. 

Many models can be executed using Python and C++, often as a combination of both languages. 

Consequently, having access to Python expands the pool of available models. The environment must 
have access to an NVIDIA GPU, as numerous models depend on CUDA [126] for training. While some 

models may function on a CPU, it is important to note that CPU processing is significantly slower than 
GPU processing for image handling. For instance, a task that takes 10 minutes on a GPU might require 

a couple of hours on a CPU, or tasks that take a few hours on a GPU are extended to several days on a 

CPU. As a result, utilizing a GPU is strongly advised. Furthermore, working with larger datasets demands 
an increased amount of VRAM. If local GPUs are unavailable, alternative options include leveraging a 

virtual environment with GPU capabilities, such as Google Colab [127]. 
 

For a full installation guide, it is advisable to check the specific documentation associated with the model 

or library, as installation procedures may vary. For instance, the installation of ISTR, as documented on 
their GitHub repository [128], requires specific versions of PyTorch [129], torchvision [130], and the 

CUDA toolkit; these versions may not correspond to the latest releases or be compatible with other 
installed versions. The command `git clone` is employed to retrieve the model from GitHub, while `cd` 

navigates to the directory of the cloned model. The final command initiates the installation process; 
when executed in a command window, the invocation of Python directs the system to use Python to 

run the setup script with the `build` and `develop` commands. 

 
install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch 

pip install opencv-python 
pip install scipy 

pip install shapely 

git clone https://github.com/hujiecpp/ISTR.git 
cd ISTR 

python setup.py build develop 
 

Step 5: Training 
The training process is relatively straightforward. After configuring the environment and defining the 
hyperparameters, the training loop is executed for the predetermined number of iterations. Taking ISTR 

as an example, a single command is issued to initiate the training script. Similar to step 4, this operation 
is conducted in a command window, again necessitating the invocation of Python to execute the script. 

Specifically, the script train_net.py is employed, which calls upon the dataset, associated functions, and 
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hyperparameter settings for the training process. The subsequent command-line inputs the number of 
usable GPUs for the image processing and the model for which the weights will be optimized during 

training. 

 
python projects/ISTR/train_net.py --num-gpus 4 --config-file projects/ISTR/configs/ISTR-R50-3x.yaml 

 

Step 6: Performance evaluation 
To evaluate the success of the training process, two primary methods can be employed: analysing 

performance metrics or conducting a practical test of the model. Based on the observer's assessment, 
a decision is to be made to either continue training for additional iterations, adjusting the 

hyperparameters and restart the training process, or to finalize the model. 
For testing the model, it is advisable to utilize images that were not included in the training set to obtain 

the most accurate assessment of the learning progress. This can be accomplished using a separate test 

dataset or by providing the model with individual images and manually assessing the predictions. While 
the latter method may lack precision, it offers a quick means of gauging the model's current state. While 

employing a dedicated dataset is more advantageous for tracking progress across multiple training 
iterations. 

 

Step 7: Saving model 
The model at this stage is divided into two components: the model structure and the associated weights. 

This model is operations with the separation while allowing for switching out the weights or continuing 
the training process at later stages. However, both components can be merged into a single unit for 

enhanced integration, resulting in a more efficient and faster processing tool. 

Model exportation can be performed to various formats to ensure compatibility across different 
applications and systems. A significant advantage of this approach is the reduction in the overall storage 

size of the model. Maintaining a separation between the model and the weights can require tens of 
gigabytes of storage, which is suboptimal for transferring the model or the implementation within other 

applications. The supported export formats include ONNX [131], NCNN [132], TensorRT [133], PyTorch 
and Keras [134] frameworks. Each having their expertise and compatibilities. 

 

Step 8: Output exploration 
Upon inputting an image, the model generates outputs specific to the model type utilized. Each model 

type produces distinct outputs, which can be examined to extract relevant information. The data is 

structured in a tensor comprising multiple layers. For segmentation tasks, the outputs consist of three 
components: class, bounding box, and mask. The class indicates the type of object detected, while the 

bounding box provides the coordinates representing the object's location within the image. The mask is 
represented as a binary image, matching the dimensions of the input image, with pixels corresponding 

to detected objects marked as ones. Each detected object in the image is assigned a unique index within 
these three components. Therefore, element 𝑖 in the class is the same object as element 𝑖 in the list of 

bounding boxes and masks. 

Similar to traditional methods, the data derived from the model requires processing. The outputs can 

be set to match expectations from traditional techniques, facilitating the transition from legacy programs 
or scripts to AI-based approaches. Nevertheless, thorough exploration of the generated data may 

produce new and valuable insights, as the AI is able to separate individual particles and components 
within the image. 

 
For processing using separated weights and a model for ISTR, the following command is used. This 

command invokes a Python script titled “demo” for image processing, accompanied by the following 

parameters: the model configuration file, the input image to be analysed, the designated output data 
location, the confidence threshold for predictions, and the file path for the weight parameters. 

 
python demo/demo.py --config-file projects/ISTR/configs/ISTR-R50-3x.yaml --input input1.jpg --output 

./output --confidence-threshold 0.4 --opts MODEL.WEIGHTS ./output/model_final.pth 

 

Final remark 
The eight steps provide a broad outline for considerations when initiating an AI project. However, 
variability may arise when implementing different models. Consequently, it is advisable for novices in 

this area to adhere to the instructions associated with the models and avoid lesser-known alternatives. 

This is needed, as the probability of successfully setting up a model on the initial attempt is low, even 
when following the prescribed guidelines.  
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Abstract— Segregation is a significant factor that can affect 

the uniformity of a mixture. In order to address and mitigate 

segregation, accurate data is necessary to characterize particles 

throughout the process. However, obtaining data in a manner 

that does not impact the mixture can be challenging, 

particularly in non-laboratory settings where conditions may 

not be as controlled. 

In laboratory settings, stable lighting and coloured particles 

can be used to aid in differentiation. However, this approach 

may not be feasible for all materials. Therefore, the development 

of a tool that can identify particles without the need for 

colouring or consistent lighting is highly valuable. 

This study focuses on a common mixture found in blast 

furnaces, consisting of coke, pellet, and sinter. The similarities 

in colour schemes and overlapping sizes of coke and sinter 

present challenges for particle recognition. Unstable lighting 

further complicates the differentiation process. 

The proposed method is applied to a mixture containing all 

three components to demonstrate its capabilities. This method 

effectively distinguishes between the various particles, 

providing information on both the material and area of each 

particle. The measurement data is utilized to assess material and 

size segregation within the mixture. Material segregation is 

evaluated using a square grid and ring configuration, while size 

segregation is determined by categorizing particles into three 

groups based on diameter, including Feret diameter and area-

equivalent diameter. Code and pre-trained models are available 

at https://github.com/WesselJonge/SMAI. 

Keywords—Particle, Granular materials, Size segregation, 

Material segregation, AI, Deep learning 

I. INTRODUCTION

During the manufacturing processes involving multiple 
component mixtures, control over the ratios is essential to 
meet product specifications. However, the natural 
phenomenon of segregation is counteracting both the mixing 
and the ability to maintain the mixed state [1]. As the particle-
based industries are vast and are found in diverse fields, 
segregation is a common issue. Showing influence on the end 
products and efficiency of the manufacturing. A well-known 
example is the blast furnaces in the iron and steel industries. 
Within the blast furnaces, the permeability of the bed has a 
great influence on the efficiency of the process [2]. An 
efficient permeability for the bed is achieved with appropriate 
distribution of the large and fine particles on the burden 
surface. Segregation influences this distribution in undesired 
manners. Leading to negative effects on the permeability. 

Providing inconsistent pressure drops over the burden and 
inefficient usage of the gas. The consequences are both 
economic and environmental [3]. The segregation in a blast 
furnace is one of the many cases that highlight the importance 
of improving the understanding of the causes of segregation. 
Especially since segregation is a complex process influenced 
by numerous variables with diverse roots, as there are lots of 
contributing factors to the segregation [1] The dependencies 
on the material properties and the environment further 
complicate the phenomenon. For the material properties, the 
difference between the properties of the particles such as the 
size, shape and density but also the chemical affinity, moisture 
absorbability and magnetic properties are considered. 
Environmental influences range from weather conditions to 
system-specific factors in the form of surface roughness, 
vibrations or transport modes. The gain insight into 
segregation, experiments are conducted to recreate the 
process. Experimental setups allow for a controlled 
environment to help reduce external influences. Making it 
possible to take measurements and identification of 
segregation causes. Experiments with granular materials often 
focus on the variation between particles such as density or size 
difference [4]. 

Despite segregation being around for decades and being 
observed in common applications, extracting data on the 
composition of granular mixtures is not a trivial task [5]. There 
are two distinct approaches for extracting segregation 
measurements, either through intrusive or non-intrusive 
methods. Intrusive methods involve extracting a sample of the 
mixture for detailed component analysis [6]. While sampling 
is straightforward, it is destructive to the structure of the 
mixture. Which introduces errors in the measurement and 
following measurements. On the other hand, non-intrusive 
methods employ a wide array of techniques such as optics [7] 
or x-ray [8] waves. Collecting information without direct 
interaction with the mixture and therefore preserving the 
undisturbed state for accurate measurements [6]. 

Optical measuring provides a cost-effective and 
straightforward approach to quantifying segregation, which 
makes it highly appealing for applications beyond specialized 
laboratory investigations [5]. However, optics is reliant on 
image processing to facilitate the analysis. Requiring 
conditions with high colour contrast among particles and 
minimal light interference. To attain an adequate colour 
contrast may pose challenges when the materials exhibit 
similar colours. This issue is mitigated by painting or coating 



the particles to improve the differentiation based on colour. 
However, this solution is not always feasible as not all 
particles allow to be painted. Additionally, this is only suitable 
for setups in laboratories. For the lighting problem, a similar 
issue is seen. As appropriate lighting is difficult to achieve, 
fully enclosed setups are used to minimize light interference. 
These two issues with taking measurements mainly lay with 
the recognition of the particles. Therefore, this paper explores 
the options of utilizing AI for the recognition of the particles. 

II. SEGREGATION QUANTIFICATION 

The segregation is quantified with indices. The indices 
describe the variation in the presence of the particles across a 
mixture. A similar quantification is done when measuring the 
degree of mixing. Despite both aiming for the opposite side of 
the spectrum, they measure the same spread of the particles 
[9]. For measuring segregation using optics, the formula often 
applied is the standard variation [10] [11] [12] [13] [14] [15] 
[16], in the form of: 

𝑆𝐼 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1

𝑁 − 1
 

 

(1) 

With 𝑁 is the number of sections, 𝑥 is the concentration in 
section 𝑖 and 𝑥̅ is the arithmetic mean of the concentration of 
all sections (2) [9]. 
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(2) 

The segregation index presented in (1) outputs a number 
between 0 and 0.5. Where 0 is perfectly mixed and 0.5 is 
completely segregated. The equation takes only one 
component into consideration for the quantification. The 
values index is determined based on the deviation from the 
mean presence of particles per section. Therefore, allowing 
the use to investigate mixtures of more than two components. 

III. UTILIZING AI FOR MEASURING 

The recognition of inconsistently shaped and placed 

objects requires a form of flexibility from the AI. The 

flexibility is found in machine learning models that learn to 

detect the object. However, as the mixture presents a 

challenge due to the limited characterizing features of the 

particles, a statistical approach will be difficult. With this 

challenge, the machine learning models that utilize larger 

neural networks become interesting [17]. Machine learning 

with large neural networks is referred to as deep learning. 

Deep learning models utilize their large neural network to 

find the objects in addition to recognizing them. This makes 

the model able to use not directly visible patterns to 

distinguish the particles. 

A. Computer vision 

All AI models that interpret the environment and respond 
accordingly are considered to be part of computer vision [18]. 
Despite it being a broad term, computer vision primarily deals 
with visual inputs such as images and videos. There are 
several tasks a model is able to perform on an image. The main 
three tasks are classification, object identification and 
localization, and segmentation. Classification looks at the 
entire presented image and attempts to classify what is in it. 
Identification and localization looks for patterns in the image 

for objects. The objects that are found are then classified. 
Lastly, segmentation continues by marking the pixels 
corresponding to the object. The pixels marked are referred to 
as the mask. For the purpose of measuring the segregation, 
segmentation is required to accurately measure the particles’ 
volume. Within segmentation, there are three distinct 
directions, instance, semantic and panoptic [19]. Instance 
segmentation keeps all segmented particles separate. While 
semantic segregation groups all particles that are from the 
same material in a single output. Panoptic segmentation marks 
every pixel in an image and links it to an object, regardless of 
it being a foreground object or background. To facilitate size 
segregation measurements all particles are needed to be 
presented one by one with the known material. Therefore, 
among the segmentation methods instance segmentation is the 
most suited for the application. 

B. AI for image segmentation 

Most of the models for segmentation make use of a 
convolution neural network (CNN) as they excel at handling 
image data and classification [20]. The CNN consist of layers 
of filters to process the image. The filters allow to highlight 
features in an image, making it easier to find patterns that 
signify the presence of an object. After several layers of filter, 
the image enters a neural network for the classification and 
mask generation.  

The learning capabilities of a model are correlated with the 
number of parameters present in the model [21]. The 
parameters are spread throughout the model. There are 
parameters in the filters of the CNN, which alter the view on 
the image. Other parameters are found within the neural 
networks to signify the importance of inputs for the decision-
making process. As the parameters have a large influence on 
the ability to learn and identify objects, models with a larger 
number of parameters have an increased performance. 

IV. METHOD 

In the field of image segmentation tasks, there is a wide 

range of models available for selection. Three potential 

models have been carefully chosen based on their relevance, 

popularity, and potential for success. Due to the lack of 

universally accepted metrics for evaluating model 

performance, the community has adopted alternative methods 

to standardize this process. 

A common approach is to evaluate model performance 

using a standardized dataset, such as the popular MS COCO 

dataset. By assessing each model's learning capabilities with 

the same inputs, we can more accurately compare their 

performance. However, it is important to recognize that 

performance on one dataset may not necessarily indicate 

performance on another dataset. While this method allows us 

to assess a model's learning abilities, it may not fully capture 

its performance on all tasks. 

For a more precise comparison of models for a specific 

task, it is crucial to test them using representative data and 

tasks. 

A. Models of interest 

The three models for further testing are Mask R-CNN [22], 
Cascade Mask R-CNN [23] and ISTR [24]. Mask R-CNN is 
one of the most popular segmentation model available. Mask 
R-CNN is the most basic model [25] and is even considered 
to be a classic for segmentation tasks [26]. Even though the 
model comes from 2017, its ongoing relevance is visible 



through the inclusion in performance comparison tables for 
newer models and the derivations created from Mask R-CNN. 
One of the derivations is Cascade Mask R-CNN [23]. Cascade 
Mask R-CNN introduces Cascade learning [27] to Mask R-
CNN. By implementing refinement stages, the predictions are 
iterated to enhance the accuracy and improve the 
performance. When looking at the recent top-performing 
models on the standardized datasets, transformer-based 
models are shown to take the top spots. In the survey paper for 
Sharma [28], the transformer-based model ISTR shows 
potential on the standardized dataset by having the highest 
score. Transformers make use of combining features and 
position embedding to find objects. Transformers are often 
found in natural language processing (NLP) [29]. Similar to 
Cascade Mask R-CNN, transformers use a refinement 
feedback loop to improve the findings, boosting the accuracy 
and the performance of the model. However, a good score on 
the standardized dataset is an indication of their performance, 
but it might differ on another dataset. 

Mask R-CNN consists of four key steps: the filters, a 
region proposal network, a classification network and the 
mask head. The filters prepare the images for the region 
proposal network. The region proposal network identifies 
potential objects on which the classification network and the 
mask head make their predictions. The classification network 
provides a class and a box capturing the object, a bounding 
box. The mask head provides the segmentation by identifying 
the precise shape of the object at the pixel level [22]. 

Cascade Mask R-CNN introduced a refinement loop into 
Mask R-CNN. The refinement is done on the classification 
network to narrow down the object more accurately [30]. 
After the refinement loops, the segmentation is done of the 
refined prediction of the object and is outputted together with 
the class and bounding box. 

ISTR uses a different approach than Mask R-CNN and 
Cascade Mask R-CNN by utilizing a transformer for the 
predictions. The transformer takes filtered images and 
vectorizes the images by embedding the features with a 
position which are inputted into the self-attention module. [31] 
The self-attention module encapsulates complex relationships 
among different features. Additionally, a dynamic attention 
head is included to fuse RoI and the image features for the 
prediction head for the predictions. The predictions are made 
similarly to Mask R-CNN with the exemption of the 
segmentation head. The segmentation is done with the 
embedding, therefore to reconstruct the mask a mask decoder 
is applied. The recurrent refinement is done with the 
predictions by repeatedly updating the prediction boxes. 
Which refines the predictions and allows for in parallel the 
processing of the classification and segmentation. 

B. Comparing the models on a granular mixture 

The comparison of the models is only possible once the 

models are set up. The setting up of the models requires 

creating a dataset with the expected outputs and the training 

of the model. After which the model is able to process new 

images to detect and segmentate the particles in new 

situations. The application of the model is focused on the 

materials found in a blast furnace coke, sinter, and pellet. 

Therefore, a mixture of these three materials is used to set the 

model up. Therefore, the model is able to recognize the three 

materials once trained on the dataset. The comparison of the 

models is done by the performance metrics precision, 

indicating the correctness of the predictions, and recall, the 

ability to find all particles. These two performance indicators 

are then combined in a singular score to represent the 

performance with the F1-score [32], as in: 

 

 

 Additionally, a visual evaluation is done to inspect the 

performance. Which allows the models to show their 

capabilities in an application case.   

 

1) Dataset and training 

The dataset consists of images that serve as examples for 

the models to learn from. Besides the images, an additional 

file is included telling the model the correct answers. The 

correct answers for what the model should detect are named 

annotations. For segmentation, the annotations consist of 

coordinates on the images. By linking the coordinates, a 

surface area is created which covers the object. During 

training, the predictions of the model will be compared with 

the created surface area and the difference is returned as 

feedback [33]. Based on the feedback the parameters within 

the model will be adjusted following the gradient descent 

algorithm [34]. 

 The dataset created for the coke, sinter and pellet mixture 

is created in natural lighting and uses unprocessed particles. 

The used images are taken from a heap formed by releasing 

the mixture from a tube. A top-down view is used for the 

creation of the images. The dataset is divided into two sets of 

images. The first set will solely be used for training and will 

consist of 180 images. These 180 images contain around 13 

thousand particles correlating to 6.5 thousand sinter, 2 

thousand coke and 4.5 thousand pellet particles. The second 

set is smaller with 35 images and is used to measure the 

performance. The two sets of images allow for the use of 

cross-validation. Making the performance independent from 

the training and more representative of the end performance. 

The datasets are made with Roboflow [35], which provides 

various tools to make the annotating of the images more 

convenient. Tools include features such as altering the 

brightness or contrast of the image, to make the objects more 

visible for annotating. These changes in appearance are not 

saved onto the images in the dataset. The process of 

annotating consists of providing per particle in the image the 

material and the coordinates that describe the surface area. 

Which requires the manual selection of pixels in the image. 

The training for all three models is set to make 40 

thousand iterations, each iteration includes the feedback for 

changing the parameters. Which are roughly 222 epochs. The 

learning rate is set at 0.001 for both Mask R-CNN and 

Cascade Mask R-CNN, while ISTR required a far lower 

learning rate of 5e-5 to prevent divergences. The learning rate 

indicates the aggressiveness of the change in the parameters 

in the gradient descent algorithm. A larger learning rate uses 

bigger steps to find the best solution. Therefore, it is 

recommended to decrease the step size near the end of the 

training to get closer, than the larger step allows due to their 

size, to the optimal parameter values. Hence, the last four 

thousand steps have a reduced step size of a magnitude of 10 

and the final 2 thousand are another tenfold smaller. 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

(3) 



2) Comparison of the models 

 The evaluation set allows to extract the numerical 

performance from the model. Within the set, there are several 

images presenting the mixture in different arrangements. The 

scores represent the ability to recognize the different particles 

and correctly identify the material on the images in the 

evaluation set. As the model is selected to segment the 

objects, the scores are given at the pixel level. Therefore, 

being a few pixels off does influence the scoring of the 

performance. Despite the error being minimal and the 

possibility of the drawn annotation being slightly off due to 

the nature of connecting the coordinates not perfectly lining 

up with the particles. The resulting performance indices are 

shown in Table 1. The table provides next to the F1-score, 

also the precision in the form of the average precision (AP) 

and the recall as the average recall (AR). The average 

precision and average recall are taken due to the recognition 

and identification of multiple objects in several images. 

 
Table 1 Scores of the trained deep learning models 

 F1-score AP AR 

Mask R-CNN 0.69 0.67 0.70 

Cascade Mask R-CNN 0.66 0.63 0.69 

ISTR 0.25 0.21 0.29 

 

 The visual evaluation consists of processing a larger 

image and looking at the detections by eye. To process a 

larger image, the image needs to be resized to fit the input and 

preference of the model. As the backbone uses a 224 x 224 

resolution [36], the image is going to be resized for all sizes. 

The average size of the images used in the datasets is around 

600 x 550. As the model is used to dimensions around that 

size, the model performs better when giving an image close 

to the average. An additional constraint to the size of the input 

image is the original size of the image. Therefore, the original 

image is cut into even sections to provide to the model for 

processing. The original image is cut into 48 sections, 6 

horizontal by 8 vertical, with a resolution of 504 x 504. 

Resulting in the grid of images seen in Figure 3. All the 48 

sections are individually inputted into the model and 

processed. To highlight the different materials recognized by 

the model, the pixels corresponding to the materials coke, 

sinter and pellet are labelled blue, green, and red respectively. 

After reassembling the sections, the images in Figure 1 with 

the materials highlighted are created. The second set of 

images in Figure 2 shows the predictions with a lower 

confidence threshold. The confidence threshold [37] filters 

out predictions for which the model assumes a low 

probability of being correct. Which allows to see the further 

potential or struggles of a model. As the models are permitted 

to show the particles of which the model is less certain. 

C. Decision 

Taking both the numerical and the visual evaluation into 

consideration, the model that is used for further analysis of 

the mixture is Cascade Mask R-CNN. In the numerical 

evaluation, Mask R-CNN and Cascade Mask R-CNN are 

close in scores. Mask R-CNN does seem to have the upper 

hand with the average precision. However, taking the visual 

evaluation into consideration, the roles are reversed with 

Cascade Mask R-CNN showing better performance. While a 

good score is indicative of performance, a number cannot 

always show the entire picture. As for the case of Mask R-

CNN the struggle with larger sinter particles. ISTR showed 

the lowest performance of all three in both evaluations and 

therefore not considered to be used for further analysis of the 

mixture. ISTR does show promise with the lowered 

confidence threshold. Making it likely that ISTR would have 

needed more iterations to get to a similar performance as 

Mask R-CNN or Cascade Mask R-CNN. Transformers do not 

have the initial intuition on how to handle image data, unlike 

CNNs. Therefore, transformers require iterations to learn to 

handle the data. However, under set constraints, it was not 

able to catch up to the other two models. 
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Figure 1 Predictions from the models (a) Mask R-CNN, (b) 
Cascade Mask R-CNN, and (c) ISTR 

Coke - blue, pellet - red, sinter – green 

Figure 2 Predictions from the models with confidence 
threshold lowered (a) Mask R-CNN, (b) Cascade mask R-CNN, 

and (c) ISTR 
Coke - blue, pellet - red, sinter – green 
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(b) 

Figure 3 Unused image in the training process utilized 
for the visual analysis, (a) image of the heap, (b) the 

division of the 48 sections 



V. RESULTS 

Both the material and size segregation are considered 
while measuring the segregation in the mixture. Due to the 
model processing per particle, a single particle can be isolated 
in the form of Figure 5 for measuring the size of the particle. 
Which enables the inclusion of size segregation. Similar to the 
visual evaluation an unused image, shown in Figure 6, in 
neither training nor evaluation, is cut up into sections and 
inputted into the model. The quantification of the segregation 
is done with (1) for all cases. 

A. Material segregation 

The material segregation is measured by identifying and 

separating the materials within the images. The different 

materials within the mixture are visualized in Figure 4a. Once 

the pixels and their corresponding material are known, the 

concentrations of the materials within defined areas are 

determined. The concentrations are determined with two 

different approaches. The first approach uses the 

predetermined sections from the input and the second 

approach uses a ring structure. Both approaches prescribe 

areas wherein the concentrations are calculated. The 

predetermined section does not allow for any tuning of the 

section. Therefore, an ample amount of background is 

included which provides low concentrations for those 

sections. The approach making use of the ring structure 

follows more of the shape of the heap. Reducing the number 

of empty pixels included in the equation. As the ring 

configuration uses custom-defined areas, a minor calibration 

process was done to select the combination for the number of 

rings and the diameters of the rings. For the calibration, the 

effect of the combinations on the SI is investigated. When the 

combinations have similar outmost diameters, the differences 

in the segregation measurements are minimal. However, 

amongst the combinations with similar outer diameter, there 

was one relatively large outlier which had a lower 

measurement compared to the other combinations. This 

combination consisted of the least number of rings, 

highlighting the importance of having enough areas to 

compare in the calculations. The differences between the 

combinations with a larger number of areas are minor and the 

values hover around similar values. The combination with the 

least deviation from the mean of the different combinations 

is used to extract the SI. The configuration consists of 19 

rings with a 60 pixel ring diameter, as shown in Figure 4b. 

The comparison between the SI of the two approaches in 

Table 2 shows differences in the measurements for sinter and 

pellet with pellet having the largest difference. 

 
Table 2 Material segregation index 

 Segregation index 

Method Squares Rings 

Coke 0.22 0.22 

Sinter 0.15 0.17 

Pellet 0.07 0.11 

 

B. Size segregation 

Since the model processes the image particle-by-particle, 

individual particles are isolated in the output. The isolated 

particles are measurable in pixels. For the particle size, the 

following two methods are used for measuring the size of the 

particles: the maximum Feret diameter and the Area-

equivalent diameter [38]. The maximum Feret diameter 

 

 

 
Figure 5 A single 

output of the 
segmentation model 

Figure 6 Unused image in 
the training process used 

for extraction of segregation 
measurements 
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(b) 

Figure 4 (a) Materials highlighted in the 48 sections 
configuration, (b) The selected ring configuration 

Coke - blue, pellet - red, sinter – green 
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(b) 

Figure 7 Particle size masks, (a) maximum Feret diameter, 
(b) area-equivalent diameter. 

Small – orange, medium – light blue, large - purple 

 



places two parallel planes on opposite sides of the particle 

and determines the largest distance between the planes while 

planes both touch the particle. The area-equivalent diameter 

takes the surface area of the particle and converts the area into 

a circle with an equal-sized surface area of which the 

diameter is determined. Both methods are used to describe 

irregularly shaped particles.  

The particles in the mixture are measured and divided into 

three categories, small, medium, and large, for both methods. 

These categories use the following particle size criteria: 

smaller than fifty pixels, between fifty and a hundred pixels, 

and larger than a hundred pixels respectively. Figure 7 shows 

the classification of the particle size applied to the mixture, 

which presents the mixture in a similar manner as the figures 

for the material segregation. The particles are coloured by 

using the following colour scheme: small – orange, medium 

– light blue and large - purple. Equation (1) is applied to 

quantify the size segregation for both methods and presented 

in Table 3. For the size segregation, only the square sections 

are used for the segregation index. 

 
Table 3 Size segregation index 

 Segregation index 

Method Feret Area-equivalent 

Small 0.03 0.06 

Medium 0.14 0.13 

Large 0.22 0.18 

 

VI. DISCUSSION 

The possibilities for the extracted data are not limited to 

the shown results. More detailed information is available on 

the mixture such as the concentration of materials per section 

to further understand the measured index. Additionally, the 

model allows counting the particles per material, size, within 

a section or a combination of the mentioned properties. 

Providing additional details on the composition of the 

mixture. 

The results presented are based on the outputs of the same 

model. The SI values are determined using the same 

established method and equations. Precise recognition of the 

model is essential for accurate calculations. However, there 

is room for improvement in the model's outputs. In terms of 

material segregation, two primary types of errors are 

identified: missing particles and false identification of 

particles. The former leads to decreased concentration in a 

section, while the latter increases the concentration, both of 

which can impact the SI depending on the magnitude of the 

error. Similarly, size segregation faces challenges in 

recognition, with a more significant impact due to the 

division of particles at section boundaries. 

A potential solution lies within the dataset itself. Errors 

such as missing particles and background markings stem 

from insufficient data and variability to differentiate particles 

from the background. By expanding the dataset with a greater 

number of images, the model can learn from a wider range of 

examples, ultimately enhancing its performance. For size 

segregation, linking sections to the model and aligning them 

with the expected input size from training data can be 

effective. Adjusting the size of training images to match the 

input size, without scaling the particles, can eliminate the 

need for sections. 

VII. CONCLUSION 

The proposed method for utilizing artificial intelligence 

in quantifying segregation within mixtures demonstrates 

promise. The presented case study involves a mixture that 

proves challenging for conventional methodologies. Through 

AI technology, the ability to identify various particles and 

materials is achieved, enabling simultaneous examination of 

both material and size segregation. The imaging setup lacked 

controlled lighting and contrasting coloured particles, 

facilitating measurements in diverse and uncontrolled 

environments. This opens up the possibility of conducting on-

site measurements. 
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Appendix B: Hyperparameters 

Hyperparameters of Mask R-CNN 

MODEL: 

  MASK_ON: True 
  RESNETS: 

    DEPTH: 101 
SOLVER: 

  STEPS: (36500, 38500) 
  MAX_ITER: 40000 

MODEL: 

  META_ARCHITECTURE: "GeneralizedRCNN" 
  BACKBONE: 

    NAME: "build_resnet_fpn_backbone" 
  RESNETS: 

    OUT_FEATURES: ["res2", "res3", "res4", "res5"] 

  FPN: 
    IN_FEATURES: ["res2", "res3", "res4", "res5"] 

  ANCHOR_GENERATOR: 
    SIZES: [[32], [64], [128], [256], [512]]  # One size for each in feature map 

    ASPECT_RATIOS: [[0.5, 1.0, 2.0]]  # Three aspect ratios (same for all in feature maps) 
  RPN: 

    IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"] 

    PRE_NMS_TOPK_TRAIN: 2000  # Per FPN level 
    PRE_NMS_TOPK_TEST: 1000  # Per FPN level 

    POST_NMS_TOPK_TRAIN: 1000 
    POST_NMS_TOPK_TEST: 1000 

  ROI_HEADS: 

    NAME: "StandardROIHeads" 
    IN_FEATURES: ["p2", "p3", "p4", "p5"] 

  ROI_BOX_HEAD: 
    NAME: "FastRCNNConvFCHead" 

    NUM_FC: 2 

    POOLER_RESOLUTION: 7 
  ROI_MASK_HEAD: 

    NAME: "MaskRCNNConvUpsampleHead" 
    NUM_CONV: 4 

    POOLER_RESOLUTION: 14 
DATASETS: 

  TRAIN: ("my_dataset_train",) 

  TEST: ("my_dataset_val",) 
SOLVER: 

  IMS_PER_BATCH:4 
  BASE_LR: 0.001 

  STEPS: (60000, 80000) 

  MAX_ITER: 90000 
INPUT: 

  MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) 
VERSION: 2 

 

Hyperparameters of Cascade Mask R-CNN 

_BASE_: "../Base-RCNN-FPN.yaml" 

MODEL: 
  MASK_ON: True 

  RESNETS: 

    DEPTH: 50 
  ROI_HEADS: 

    NAME: CascadeROIHeads 
  ROI_BOX_HEAD: 
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    CLS_AGNOSTIC_BBOX_REG: True 
  RPN: 

    POST_NMS_TOPK_TRAIN: 2000 

SOLVER: 
  STEPS: (36500, 38500) 

  MAX_ITER: 40000 
MODEL: 

  META_ARCHITECTURE: "GeneralizedRCNN" 

  BACKBONE: 
    NAME: "build_resnet_fpn_backbone" 

  RESNETS: 
    OUT_FEATURES: ["res2", "res3", "res4", "res5"] 

  FPN: 
    IN_FEATURES: ["res2", "res3", "res4", "res5"] 

  ANCHOR_GENERATOR: 

    SIZES: [[32], [64], [128], [256], [512]]  # One size for each in feature map 
    ASPECT_RATIOS: [[0.5, 1.0, 2.0]]  # Three aspect ratios (same for all in feature maps) 

  RPN: 
    IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"] 

    PRE_NMS_TOPK_TRAIN: 2000  # Per FPN level 

    PRE_NMS_TOPK_TEST: 1000  # Per FPN level 
    POST_NMS_TOPK_TRAIN: 1000 

    POST_NMS_TOPK_TEST: 1000 
  ROI_HEADS: 

    NAME: "StandardROIHeads" 
    IN_FEATURES: ["p2", "p3", "p4", "p5"] 

  ROI_BOX_HEAD: 

    NAME: "FastRCNNConvFCHead" 
    NUM_FC: 2 

    POOLER_RESOLUTION: 7 
  ROI_MASK_HEAD: 

    NAME: "MaskRCNNConvUpsampleHead" 

    NUM_CONV: 4 
    POOLER_RESOLUTION: 14 

DATASETS: 
  TRAIN: ("my_dataset_train",) 

  TEST: ("my_dataset_val",) 

SOLVER: 
  IMS_PER_BATCH:4 

  BASE_LR: 0.001 
  STEPS: (60000, 80000) 

  MAX_ITER: 90000 
INPUT: 

  MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) 

VERSION: 2 
 

 

Hyperparameters of ISTR 

_BASE_: "Base-ISTR.yaml" 

MODEL: 
  RESNETS: 

    DEPTH: 101 
    STRIDE_IN_1X1: False 

  ISTR: 

    NUM_PROPOSALS: 300 
    NUM_CLASSES: 4 

DATASETS: 
  TRAIN: ("my_dataset_train",) 

  TEST:  ("my_dataset_val",) 

SOLVER: 
  STEPS: (36500, 38500) 
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  MAX_ITER: 40000 
INPUT: 

  FORMAT: "RGB" 

CUDNN_BENCHMARK: False 
DATALOADER: 

  ASPECT_RATIO_GROUPING: True 
  FILTER_EMPTY_ANNOTATIONS: True 

  NUM_WORKERS: 4 

  REPEAT_THRESHOLD: 0.0 
  SAMPLER_TRAIN: TrainingSampler 

DATASETS: 
  PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 

  PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 
  PROPOSAL_FILES_TEST: () 

  PROPOSAL_FILES_TRAIN: () 

  TEST: ('my_dataset_val',) 
  TRAIN: ('my_dataset_train',) 

GLOBAL: 
  HACK: 1.0 

INPUT: 

  CROP: 
    ENABLED: True 

    SIZE: [0.7, 0.7] 
    TYPE: relative 

  FORMAT: RGB 
  MASK_FORMAT: polygon 

  MAX_SIZE_TEST: 1333 

  MAX_SIZE_TRAIN: 1333 
  MIN_SIZE_TEST: 800 

  MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800) 
  MIN_SIZE_TRAIN_SAMPLING: choice 

  RANDOM_FLIP: horizontal 

MODEL: 
  ANCHOR_GENERATOR: 

    ANGLES: [[-90, 0, 90]] 
    ASPECT_RATIOS: [[0.5, 1.0, 2.0]] 

    NAME: DefaultAnchorGenerator 

    OFFSET: 0.0 
    SIZES: [[32, 64, 128, 256, 512]] 

  BACKBONE: 
    FREEZE_AT: 2 

    NAME: build_resnet_fpn_backbone 
  DEVICE: cuda 

  FPN: 

    FUSE_TYPE: sum 
    IN_FEATURES: ['res2', 'res3', 'res4', 'res5'] 

    NORM:  
    OUT_CHANNELS: 256 

  ISTR: 

    ACTIVATION: relu 
    ALPHA: 0.25 

    CLASS_WEIGHT: 2.0 
    DEEP_SUPERVISION: True 

    DIM_DYNAMIC: 64 
    DIM_FEEDFORWARD: 2048 

    DROPOUT: 0.0 

    GAMMA: 2.0 
    GIOU_WEIGHT: 2.0 

    HIDDEN_DIM: 256 
    IOU_LABELS: [0, 1] 

    IOU_THRESHOLDS: [0.5] 

    L1_WEIGHT: 5.0 
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    MASK_DIM: 60 
    MASK_WEIGHT: 2.0 

    NHEADS: 8 

    NO_OBJECT_WEIGHT: 0.1 
    NUM_CLASSES: 4 

    NUM_CLS: 3 
    NUM_DYNAMIC: 2 

    NUM_HEADS: 6 

    NUM_MASK: 3 
    NUM_PROPOSALS: 300 

    NUM_REG: 3 
    PATH_COMPONENTS: 

/content/ISTR/projects/ISTR/LME/coco_2017_train_class_agnosticTrue_whitenTrue_sigmoidTrue_60_
siz28.npz 

    PRIOR_PROB: 0.01 

  KEYPOINT_ON: False 
  LOAD_PROPOSALS: False 

  MASK_ON: True 
  META_ARCHITECTURE: ISTR 

  PANOPTIC_FPN: 

    COMBINE: 
      ENABLED: True 

      INSTANCES_CONFIDENCE_THRESH: 0.5 
      OVERLAP_THRESH: 0.5 

      STUFF_AREA_LIMIT: 4096 
    INSTANCE_LOSS_WEIGHT: 1.0 

  PIXEL_MEAN: [123.675, 116.28, 103.53] 

  PIXEL_STD: [58.395, 57.12, 57.375] 
  PROPOSAL_GENERATOR: 

    MIN_SIZE: 0 
    NAME: RPN 

  RESNETS: 

    DEFORM_MODULATED: False 
    DEFORM_NUM_GROUPS: 1 

    DEFORM_ON_PER_STAGE: [False, False, False, False] 
    DEPTH: 101 

    NORM: FrozenBN 

    NUM_GROUPS: 1 
    OUT_FEATURES: ['res2', 'res3', 'res4', 'res5'] 

    RES2_OUT_CHANNELS: 256 
    RES5_DILATION: 1 

    STEM_OUT_CHANNELS: 64 
    STRIDE_IN_1X1: False 

    WIDTH_PER_GROUP: 64 

  RETINANET: 
    BBOX_REG_LOSS_TYPE: smooth_l1 

    BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) 
    FOCAL_LOSS_ALPHA: 0.25 

    FOCAL_LOSS_GAMMA: 2.0 

    IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7'] 
    IOU_LABELS: [0, -1, 1] 

    IOU_THRESHOLDS: [0.4, 0.5] 
    NMS_THRESH_TEST: 0.5 

    NORM:  
    NUM_CLASSES: 80 

    NUM_CONVS: 4 

    PRIOR_PROB: 0.01 
    SCORE_THRESH_TEST: 0.05 

    SMOOTH_L1_LOSS_BETA: 0.1 
    TOPK_CANDIDATES_TEST: 1000 

  ROI_BOX_CASCADE_HEAD: 

    BBOX_REG_WEIGHTS: ((10.0, 10.0, 5.0, 5.0), (20.0, 20.0, 10.0, 10.0), (30.0, 30.0, 15.0, 15.0)) 
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    IOUS: (0.5, 0.6, 0.7) 
  ROI_BOX_HEAD: 

    BBOX_REG_LOSS_TYPE: smooth_l1 

    BBOX_REG_LOSS_WEIGHT: 1.0 
    BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0) 

    CLS_AGNOSTIC_BBOX_REG: False 
    CONV_DIM: 256 

    FC_DIM: 1024 

    NAME:  
    NORM:  

    NUM_CONV: 0 
    NUM_FC: 0 

    POOLER_RESOLUTION: 7 
    POOLER_SAMPLING_RATIO: 2 

    POOLER_TYPE: ROIAlignV2 

    SMOOTH_L1_BETA: 0.0 
    TRAIN_ON_PRED_BOXES: False 

  ROI_HEADS: 
    BATCH_SIZE_PER_IMAGE: 512 

    IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] 

    IOU_LABELS: [0, 1] 
    IOU_THRESHOLDS: [0.5] 

    NAME: Res5ROIHeads 
    NMS_THRESH_TEST: 0.5 

    NUM_CLASSES: 80 
    POSITIVE_FRACTION: 0.25 

    PROPOSAL_APPEND_GT: True 

    SCORE_THRESH_TEST: 0.05 
  ROI_KEYPOINT_HEAD: 

    CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512) 
    LOSS_WEIGHT: 1.0 

    MIN_KEYPOINTS_PER_IMAGE: 1 

    NAME: KRCNNConvDeconvUpsampleHead 
    NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True 

    NUM_KEYPOINTS: 17 
    POOLER_RESOLUTION: 14 

    POOLER_SAMPLING_RATIO: 0 

    POOLER_TYPE: ROIAlignV2 
  ROI_MASK_HEAD: 

    CLS_AGNOSTIC_MASK: False 
    CONV_DIM: 256 

    NAME: MaskRCNNConvUpsampleHead 
    NORM:  

    NUM_CONV: 0 

    POOLER_RESOLUTION: 14 
    POOLER_SAMPLING_RATIO: 0 

    POOLER_TYPE: ROIAlignV2 
  RPN: 

    BATCH_SIZE_PER_IMAGE: 256 

    BBOX_REG_LOSS_TYPE: smooth_l1 
    BBOX_REG_LOSS_WEIGHT: 1.0 

    BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) 
    BOUNDARY_THRESH: -1 

    CONV_DIMS: [-1] 
    HEAD_NAME: StandardRPNHead 

    IN_FEATURES: ['res4'] 

    IOU_LABELS: [0, -1, 1] 
    IOU_THRESHOLDS: [0.3, 0.7] 

    LOSS_WEIGHT: 1.0 
    NMS_THRESH: 0.7 

    POSITIVE_FRACTION: 0.5 

    POST_NMS_TOPK_TEST: 1000 
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    POST_NMS_TOPK_TRAIN: 2000 
    PRE_NMS_TOPK_TEST: 6000 

    PRE_NMS_TOPK_TRAIN: 12000 

    SMOOTH_L1_BETA: 0.0 
  SEM_SEG_HEAD: 

    COMMON_STRIDE: 4 
    CONVS_DIM: 128 

    IGNORE_VALUE: 255 

    IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] 
    LOSS_WEIGHT: 1.0 

    NAME: SemSegFPNHead 
    NORM: GN 

    NUM_CLASSES: 54 
  WEIGHTS:  

OUTPUT_DIR: ./output 

SEED: 40244023 
SOLVER: 

  AMP: 
    ENABLED: False 

  BACKBONE_MULTIPLIER: 1.0 

  BASE_LR: 5e-05 
  BIAS_LR_FACTOR: 1.0 

  CHECKPOINT_PERIOD: 5000 
  CLIP_GRADIENTS: 

    CLIP_TYPE: full_model 
    CLIP_VALUE: 1.0 

    ENABLED: True 

    NORM_TYPE: 2.0 
  GAMMA: 0.1 

  IMS_PER_BATCH: 4 
  LR_SCHEDULER_NAME: WarmupMultiStepLR 

  MAX_ITER: 40000 

  MOMENTUM: 0.9 
  NESTEROV: False 

  OPTIMIZER: ADAMW 
  REFERENCE_WORLD_SIZE: 0 

  STEPS: (36500, 38500) 

  WARMUP_FACTOR: 0.01 
  WARMUP_ITERS: 10 

  WARMUP_METHOD: linear 
  WEIGHT_DECAY: 0.0001 

  WEIGHT_DECAY_BIAS: 0.0001 
  WEIGHT_DECAY_NORM: 0.0 

TEST: 

  AUG: 
    ENABLED: False 

    FLIP: True 
    MAX_SIZE: 4000 

    MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200) 

  DETECTIONS_PER_IMAGE: 100 
  EVAL_PERIOD: 500 

  EXPECTED_RESULTS: [] 
  KEYPOINT_OKS_SIGMAS: [] 

  PRECISE_BN: 
    ENABLED: False 

    NUM_ITER: 200 

VERSION: 2 
VIS_PERIOD: 0 

 


