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Towards an Engagement-Aware
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Multi-Party Interactions
Catharine Oertel 1*, Patrik Jonell 2, Dimosthenis Kontogiorgos2, Kenneth Funes Mora3,
Jean-Marc Odobez4 and Joakim Gustafson2

1Department of Intelligent Systems, Interactive Intelligence, Delft University of Technology, Delft, Netherlands, 2Department of
Intelligent Systems, Division of speech music and hearing, KTH Royal Institute of Technology, Stockholm, Sweden, 3Eyeware
Tech SA, Martigny, Switzerland, 4Perception and Activity Understanding, Idiap Research Institute, Martigny, Switzerland

Listening to one another is essential to human-human interaction. In fact, we humans
spend a substantial part of our day listening to other people, in private as well as in work
settings. Attentive listening serves the function to gather information for oneself, but at the
same time, it also signals to the speaker that he/she is being heard. To deduce whether our
interlocutor is listening to us, we are relying on reading his/her nonverbal cues, very much
like howwe also use non-verbal cues to signal our attention. Such signaling becomesmore
complex when we move from dyadic to multi-party interactions. Understanding how
humans use nonverbal cues in a multi-party listening context not only increases our
understanding of human-human communication but also aids the development of
successful human-robot interactions. This paper aims to bring together previous
analyses of listener behavior analyses in human-human multi-party interaction and
provide novel insights into gaze patterns between the listeners in particular. We are
investigating whether the gaze patterns and feedback behavior, as observed in the human-
human dialogue, are also beneficial for the perception of a robot in multi-party human-
robot interaction. To answer this question, we are implementing an attentive listening
system that generates multi-modal listening behavior based on our human-human
analysis. We are comparing our system to a baseline system that does not
differentiate between different listener types in its behavior generation. We are
evaluating it in terms of the participant’s perception of the robot, his behavior as well
as the perception of third-party observers.

Keywords: multi-party interactions, non-verbal behaviors, eye-gaze patterns, head gestures, human-robot
interaction, artificial listener, social signal processing

1 INTRODUCTION

While the idea of robots being an integral part of our society has been around for many years, it
recently became much more immediate. More and more companies are trying to bring companion-
like robots onto the market: examples are Pepper, Nao, Jibo, Furhat and many more. The vision is to
create socially aware robots that can interact with humans in a human-like manner over long periods
of time. For this to be possible, in-depth modeling of human communication to inform human-robot
interaction is becoming increasingly important. One important part of human interaction is
listening. Listening is arguably more subtle than speaking, but it fulfills equally important
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functions in human communication. As humans, we not only
want to express our thoughts and feelings, but we would also like
to feel that we are being listened to and that the listener is taking
an active interest in the conversation. To convey that we are
listening, humans have developed a set of mechanisms. This set
includes looking at the speaker, head nodding, verbal feedback
such as “mh,” “okay” and also facial expressions such as frowning
and smiling. Appropriately applying them is essential for social
interaction to function smoothly. For example, looking at a
speaker for too long a time can make a listener appear creepy.
Choosing the wrong feedback token, or timing it wrongly can
make a listener appear distracted or not listening. Yet, modeling
these behaviors is highly complex, not least due to their subtlety
and multi-dimensionality. For example, while feedback token
such as “mhm” or “okay” can vary in the degree to which they are
consciously produced (Allwood, 1993; Kopp et al., 2008;
Bevacqua et al., 2010), and despite their limited duration, they
have the power to convey a multitude of functions depending on
how they are being produced. We humans are very sensitive to
noticing whether these feedback tokens are given in a situation-
appropriate manner. This might also be the reason why this very
subtle human behavior has proven to be important in human-
robot interactions (Cassell et al., 1999a; Park et al., 2017; Sidner
et al., 2006; Gratch et al., 2006; Skantze et al., 2013). In fact, it has
been found that using feedback tokens such as “mhm” or “yeah”
as well as head nods inappropriately may have negative
consequences for engaging in dialogue (Park et al., 2017). For
example, in an interviewing situation, this may negatively affect
the perceived performance (Bailly et al., 2016). On the other hand,
appropriate modeling positively affects perceptions of empathy
and understanding (Kawahara et al., 2016) and rapport (Gratch
et al., 2006).

Humans are interacting to a large degree in groups larger than
two, and their exchange of social cues includes many modalities.
For modeling listening behavior in human-robot interaction, it,
therefore, makes sense to use multi-modal cues and to not only
focus on dyadic interaction but to include data of multi-party
interaction. In addition to feedback behavior also gaze is an
important cue to estimate the listener’s engagement in the
conversation. Yet, related research on gaze so far has been
mainly concerned with the analysis and modeling of dyadic
interaction rather than multi-party interaction and has not
focused on the role of the listener in particular (Argyle and
Cook, 1976; Vertegaal et al., 2001; Vinayagamoorthy et al., 2004;
Jaffe et al., 1973; Ruhland et al., 2015; Andrist et al., 2017; Mutlu
et al., 2006). Similarily, also research on feedback token has
mainly focused on analyzing dyadic interactions e.g.,
(Kawahara et al., 2016; Ward et al., 2007) and on modeling
the timing of feedback token therein (Morency et al., 2010).
Which modality should be chosen, audio or visual, and how
feedback tokens are combined with gaze has not been the focus of
research so far.

To close this gap, this article focuses on investigating the
effects of implementing multi-party listener behavior in human-
robot interaction. Specifically, we center our research around the
question: Does multi-party listener behavior generation in a
robot, based on human analysis, lead to an improved

perception in comparison to a baseline system? To answer this
question, this article to bring together previous analyses of
listener behavior analyses in human-human multi-party
interaction and provides novel insights into gaze patterns
between the listeners in particular. We are implementing an
attentive listening system that generates multi-modal listening
behavior based on our human-human analysis. We are
comparing our system to a baseline system that does not
differentiate between different listener types in its behavior
generation. We are evaluating it in terms of the participant’s
perception, the participant’s behavior as well as third-party
observers impressions of the systems.

1.1 Paper Structure
This paper is structured as follows. section 2 reviews the literature
related to the research question outlined above, specifies explicit
hypotheses and lists its contributions. section 3 introduces the
multi-party attentive-listener scenario and motivates the
evaluation criteria chosen. section 4 describes the human-
human data-collection and analysis and its implications for
modeling listener behavior in multi-party human-robot
interaction. Our underlying assumption is that taking into
account human multi-party listener behavior in the
implementation of a corresponding model for human-robot
interaction will positively affect its perception. section 5
focuses on the multi-party human-robot experiments. Here we
describe the task, sensor set-up as well as attentive-listener model
implementation in comparison to a baseline model. We discuss
our findings in section 6 and conclude this article in section 7,
together with recommendations for future work.

2 BACKGROUND

The following sections will provide an overview of multi-party
listener modeling in human-robot interaction. It will summarize
relevant findings around audio-visual feedback token and eye-
gaze in human-human interaction. It will also introduce the
construct of social presence and conclude with the formulation
of our hypotheses.

2.1 Multi-Party Listener Categories
To quantify multi-party listener behavior, we adopt the
categorisations of dialogue participant categories that are
already established in the literature. As a general framework,
we are using the work of Clark. (1996) and Goffman. (1967) for
the implementation of such listener categories. Clark. (1996),
building on Goffman. (1967), operationalized participation in
group interactions as follows. First, a distinction is made between
participants and non-participants. The term participant is
referring to anyone contributing to and being part of a
conversation. This includes the speaker, as well as the current
addressee, but can also include further people such as people are
part of the group of possible speakers but who currently are taking
on a listening role. These participants are being classified as side-
participants. In contrast to this is the category of overhearer. Both
bystanders and overhearers are part of the non-participant group.
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A bystander can be defined as a person who the others are aware
off, but who does not partake in the conversation. In contrast, an
eavesdropper is a person who overhears the conversation without
the other participants being aware of it. As these definitions
provide a common frame of reference and their usefulness has
been shown for related tasks, we decided to build up on these
definitions and adapt them for the specific task of listener
classification. For this purpose, we have substituted the term
addressee for attentive listener, and use the terms side-
participants and bystanders to make a distinction to other
listener types. For a complete description of the annotation
instructions please refer to section 4.2.2. In human-robot
interaction some prior work exists around the modeling of
participation categories for multi-party interaction. Most
related to our work maybe, Matsuyama et al. (2015), who
focused on robot interventions to balance speaking time
between participants and Short et al. (2016) who investigated
the effect of a robot moderator on group cohesion and each
participant’s amount of time spent speaking during the
conversation. These works have however not been focused on
the generation of listener behavior in particular.

2.2 Audio-Visual Feedback
In the following sections, we are going to refer many times to
back-channels. Yvgne defined back-channels as the “channel,
over which the person who has the turn receives short
messages such as “yes” and “uh-huh” without relinquishing
the turn” Yngve. (1970). Back-channels can convey many
communicative functions such as: acceptance, rejection,
confirmation or agreement (Allwood et al., 1992). They can,
however, also be more ambiguous and simply encourage the
speaker to carry on. Such back-channels are often referred to as
continuers (Goodwin, 1986). Back-channels are not only
restricted to vocalisations but can, and often do, occur in
visual or gestural form. Examples of such back-channels are
head nods and frowns. Allwood and Cerrato (2003) for
example, found that gestural back-channels most often co-
occur with vocal back-channels and rarely on their own.
Additionally, he points out that back-channels can carry
different functions depending on their realization. Listener
behavior, including vocal back-channels and head nods, has
been explored in dyadic human-agent interaction (Gustafson
et al., 2005; Maatman et al., 2005; Gratch et al., 2006; Sidner
et al., 2006; Douglas-Cowie et al., 2008; Huang et al., 2011;
Schroder et al., 2015) and to our knowledge, at least in one
case, also for multi-party human-agent interaction (Wang et al.,
2013). Douglas-Cowie et al. (2008) used an artificial listening
agent in a wizard-of-oz setting. They provided participants with
the option of interacting with different listener personalities (e.g.
happy, gloomy etc.). They found this to be a successful method to
collect emotionally colored multi-modal interaction data.
Schroder et al. (2015) could show that their artificial
emotionally expressive listening system had a positive effect on
user engagement in comparison to a non-expressive baseline
system. They highlighted as one of their main contributions the
uniqueness of their system in that it creates a loop between multi-
modal human-human analysis, interpretation and affective

generation of non-verbal behavior in a human-agent
conversational setting. Additionally, they made the software
publically available. Maatman et al. (2005) addressed how to
use para-linguistic instead of semantic features for improving the
responsiveness of artificial listener behavior. Informal tests
showed an improvement in the naturalness of the agent’s
listening behavior. Huang et al. (2011) showed that accurate
modeling of back-channel timing improves the perception of
rapport. Yet, none of these studies explored the effects of mono-
modal vs. multi-modal back-channels.

Most research on this topic has actually been carried out on
human-human interaction focusing on predicting the timing of
back-channels (Morency et al., 2010; Truong et al., 2010; Huang
et al., 2010; de Kok et al., 2013; Bavelas and Gerwing 2011). Much
less work has been carried out on the “what” and “how” to
respond. There is some recent work that predicts the
morphological form of vocal back-channels (Yamaguchi et al.,
2016) and some research investigated how variations in the
prosodic realization of a back-channel can change its (multi-
dimensional) meaning (Allwood 1993; Poggi 2007; Neiberg et al.,
2013). Head nods, on the other hand, have been less investigated
(Wagner et al., 2014). Yet, it can be concluded that, like vocal
feedback tokens, head nods can have different functions. Those
functioning as back-channels are often realized as smaller, single
nods (Rosenfeld and Hancks, 1980). Even fewer studies have
explored the relationship between visual and verbal back-
channels. In a preliminary study, Bertrand et al. (2007) found
that when the speaker is looking at his conversation partner, the
conversation partner generates a sequence of gestural back-
channels. However, the production of gestural back-channels
followed by vocal back-channels appeared not to be a
common phenomenon during intervals of the speaker looking
at his conversation partner. Moreover, Truong et al. (2011) found
that head nods are more often produced during mutual gaze.
They also found that vocal back-channels are more often
produced during pauses in the speaker’s speech.

In a previous study, Oertel et al. (2015) on the same data-set as
used in this article we found that head nods occur more
frequently than vocal back-channels. We also found that the
frequency of both head nods as well as vocal back-channels
significantly decreases across listener categories. The ALi
category produces the highest number of back-channels and
head nods, followed by the SPa and finally the Bys category.
Additionally, we found that the likelihood for a vocal back-
channel to be produced during mutual gaze is 4.6 times higher
than periods of non-mutual gaze. For a head nod, the increased
likelihood lies at 2.14. This is a similar, yet less pronounced trend,
to that described inBavelas and Gerwing. (2011). The focus of this
paper though lies on how the consideration of these results in the
implementation of a multi-party attentive listener system, effect
its evaluation in comparison to a baseline system.

2.3 Gaze Behavior
The fact that it is important to model gaze-behaviour in human-
robot interaction has been illustrated by the positive effect it has
on the evaluation of the interaction, e.g. Fischer et al. (2015).
Research in this domain has mainly been focused on dyadic
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interaction and there specifically joint attention and turn-taking
modeling (Andrist et al., 2017; Yonezawa et al., 2007; Moon et al.,
2014; Mutlu et al., 2009b; Skantze et al., 2014; Andrist et al., 2014;
Cassell et al., 1999b; Ruhland et al., 2015). While listener
modeling for multi-party interaction has not been the focus of
research yet its complexity is illustrated by the fact that simply
increasing the amount of time gazing at the speaker can make
gazing behavior appear strange, scary, or awkward (Wang and
Gratch, 2010). This is in line with findings of human-human
interaction where it was found that gaze patterns of interlocutors
differ when in the role of the speaker or the role of the listener.
Typically, the listener gazes at the speaker for longer intervals
than vice versa (Argyle and Cook 1976; Vertegaal et al., 2001). In
fact, socially acceptable duration of how long to gaze at the
interlocutor uninterruptedly can depend on many factors. One
such factor is the conversational engagement (Oertel and
SalviBednarik et al., 2012; Oertel and Salvi, 2013). Less
engaged participants spent more time looking downwards than
more engaged participants. There is less work on gaze modeling
in multi-party human-robot interaction. Maybe most related to
the current work is the work by Mutlu et al. (2009a) who
manipulated eye-gaze in a robot to convey to participants
which participation role they should be taking on.
Additionally, Admoni et al. (2013) found that the duration of
gaze fixation of the robot influenced the perceived attention of
participants. In a preliminary study Oertel et al. (2015), we
investigated the gaze patterns across different listener
categories. We found no significant difference in the amount
of gaze directed towards the speaker across the different listener
categories. However, there was a significant difference in the
speaker’s amount of gaze directed towards the different listener
categories. There was also a significant difference in the mutual
gaze shared between the speaker and the respective listener
categories. Additionally, we found that the bystander was
gazing downwards more than the attentive-listener. However,
this preliminary study was carried out on a limited sample; for
this article, we are substantially increasing the sample size and re-
analyse the speaker’s gaze patterns and analyze gaze patterns
between the different listener categories.

2.4 Social Presence and Attentiveness
With our implementation of an attentive-listening system, we are
aiming to contribute knowledge towards achieving more socially
aware human-robot interactions. When evaluating such a system,
it, therefore, makes sense to use measures that capture the
perceived social performance of a system. One such measure is
the construct of social presence. It is defined as the feeling of
“being together with another” (Biocca et al., 2001). It has been
correlated with several positive outcome variables such as greater
enjoyment (Richardson and Swan, 2003), performance,
satisfaction (Biocca et al., 2001; Tu and McIsaac, 2002) as well
as trust (Spencer, 2002). Most current work does not address
attentive listener modeling for multi-party interaction. By taking
the different listener categories into account, we aim at creating
this feeling between humans and robots.

While the social presence questionnaire captures the
perception of the participant, it does not capture his behavior.

Humans are not always aware of their subconscious preferences.
Investigating which system the participants pay most attention
could contribute further insights.

Social presence is a construct generally used to capture the
perception of the participant. As a participant will focus his
attention on his task, there is a danger that he will miss out on
certain aspects of the behavior generation. Therefore, capturing
the impression of third-party observers will provide further
insights and maybe better represent the impression of non-
speaking participants within a multi-party interaction. A
measure that is often used in human-robot interaction to
measure the perception of third-party observers and measure
participant’s perceptions of a system is the construct of
“engagement.” While engagement is defined differently across
different studies, one definition that is often used in human-robot
or human agent interaction is the one by Sidner defining
“engagement as the process by which two (or more)
participants establish, maintain and end their perceived
connection” (Sidner et al., 2005). Other studies attribute more
of an affective dimension to engagement and use engagement
more synonymously with “interest” and “attentiveness” (cf.
Oertel et al. (2020)). Within the scope of this article, we are
using engagement with the latter interpretation in mind. To
emphasize this interpretation, we are using the term
“attentiveness” within the context of our human-agent and
human-robot experiment. We know from the literature that
eye-gaze (Oertel and Salvi, 2013; ?), as well as prosody (Oertel
et al., 2011), used with an affective interpretation, are important
cues for the detection of engagement in group discussions. While,
in these studies, no differentiation is made between intervals
where a participant is speaking and intervals where a participant
is listening, they remain good candidates for the evaluation of an
attentive-listener agent for third-party perception.

2.5 Hypotheses
We are posing the following hypotheses:

H1: In human-human multi-party interaction, participants will
show different gaze patterns depending on their listener category:

a) there will be no significant difference in the amount of time
different listener categories gaze towards the speaker

b) there will be differences across listener categories in the
amount of gaze received from the speaker

c) the amount of gaze directed downwards will be different
between the listener categories

d) between listener categories the bystander, side participant and
attentive listener will gaze the most amount of time towards
the attentive listener

e) listeners gaze at all participants in an interaction not only the
speaker or attentive listener

f) there will be differences across listener categories in the
amount of mutual gaze with the speaker

H2: A social robot, that accounts for the multi-party nature of
an interaction, by adapting its gaze and audio-visual feedback
behavior according to the participatory role of the participant
(speaker, different listener categories).

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 5559134

Oertel et al. Towards Multiparty Attentive Listener Generation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


a) will be perceived as more socially present by the speaker
b) will receive more visual attention from the speaker
c) will be received as more attentive by third-party observers

than a baseline system that does not adapt its behavior
accordingly.

While we acknowledge that feedback tokens and multi-modal
back-channels can take on several functions, we restrict our study
to the investigation of back-channel tokens in terms of their
function in signifying attentiveness. We focus on the indicative
types of back-channel tokens that are produced as an unconscious
reaction rather than a deliberate response to the speaker, those
that have a “continuer” function. A continuer signals to the
speaker that he should continue speaking.

3 CONTRIBUTIONS

Different from previous studies which only focused on listener
modeling in dyadic interactions, this article focuses on listener
modeling in multi-party settings. We are aiming to close the loop
between human-human interaction analysis and human-robot
interaction. To achieve this goal, we are carrying out an in-depth
analysis of gaze behavior in multi-party human-human
interaction. Additionally, we are building upon previous
research on the relationship between listener categories and
audio-visual back-channels. We are using the gaze and back-
channel distributions gathered from the human-human analysis
to implement and evaluate an attentive-listener system for
human-robot interaction. Our discussion and conclusion
section focuses on highlighting the challenges encountered and
insights gained in the modeling of both human-human and
human-robot data. With this paper, we are aiming to make
the first step towards more socially aware listener modeling in
multi-party human-robot interaction.

The description of the human-human data set in section 4 and
preliminary findings related to H1a,b,c were previously published
in Oertel et al. (2015) While initial statistical analysis results
seemed promising, the classification accuracy of listener category
prediction only rendered moderate success (cf. section 4.5). We
suspected a reason for this to be the limited amount of data
samples available. For this paper, we, therefore, approximately
doubled the data samples analyzed. An exact overview of the
additional samples added can be found in Table 1. The analysis
presented in this paper under H1 a,b,c, has not been previously
published and is based on the added data samples. Additionally,
this previous publication was limited to the analysis of gaze

patterns from- and towards the speaker as well as gaze
directed downwards. It did not include any analysis of gaze
patterns between the different listener categories. This analysis
is new has been added to the current article (cf. H1 c and d).

In section 5.1 we are summarizing the results of a pre-test that
served to exclude confounding factors that might have influenced
our human-human analysis. It also served as a bridge between the
human-human and human-robot experiments and provided
further insights into the perception of multi-modal back-
channel realisations. This pre-test was previously published in
Oertel et al. (2016). As we are using its findings for our attentive-
listener system, we are summarizing it in this article for the ease of
the reader.

With the experiments designed to answer H2, we are
contributing a whole new set of experiments designed to
understand the effect human-behaviour inspired feedback
generation has on the perception of multi-party human-robot
interaction.

4 LEARNING FROM DATA:
HUMAN-HUMAN DATA COLLECTION

This section describes the data-set we used for our human-human
analysis. It provides details on our procedure of listener category
annotations and explains the feature extraction methods used for
our subsequent analysis. We report results on gaze patterns
within listener categories and between listener categories. We
conclude this section by commenting on the usefulness of the
extracted features for the automatic prediction of listener
categories and summarize the most important findings
regarding the subsequent human-robot experiment.

4.1 Data Description
To collect suitable data, we used a corpus of four-party
interactions (Oertel et al. (2014)). The interactions consisted of
interviews. One participant, the moderator, interviewed three
other participants, who competed on winning a scholarship.
Participants were first asked to introduce themselves, then
describe their PhD work along with how they saw their work
could impact society at large, and finally design a joint project.
After the initial introduction, the moderator let participants talk
and remained in the role of a listener for long stretches of the
interaction. Similarly, given the nature of the interaction
participants also took on the role of a listener for larger
durations of the interaction. Five sessions were recorded. Each
session lasted for about an hour. The set-up is shown in

TABLE 1 | The first row of this table states the number of samples per listener categories (LCategory), in absolute numbers and percentages, as originally reported in Oertel
et al. (2015). The second row of this table states the numbers as used in this article. It can be observed that the number of samples got more than doubled and that in
82.0% of cases, a majority annotation was reached. Ties occurred mainly between neighboring categories such as ALi-SPa and SPa-Bys, as opposed to further away
categories such as ALi-Bys.

Ali SPa Bys ALi-SPa SPa-bys ALi-bys No maj

Amount 62 (16.1%) 82 (21.2%) 118 (30.6%) 21 (5.4%) 37 (9.6%) 7 (1.8%) 59 (15.3%)
Amount 138 (16.5%) 216 (25.9%) 240 (28.7%) 31 (3.7%) 48 (5.7%) 12 (1.4%) 150 (18.0%
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Figure 1B. Participants behaviors were recorded using a range of
individually synchronized sensors. These include head-mounted
microphones, Microsoft Kinect one sensors that are positioned at
a distance of around 0.8 m away from participants, and high-
resolution GoPro cameras.

4.2 Annotations
To conduct our analysis, we needed annotations about the
listeners in our dataset. We, therefore, adopted a thin slice
approach (Ambady et al., 2000) for which we extracted video
clips, including at least one listener from the corpus. These clips
were given to the annotators for annotations. The duration of the
video was a compromise between providing sufficient
information to annotators to form an opinion but not a too
broad range of behaviors to cause confusion. In line with prior
work on engagement by Bednarik et al. (2012) and interest-level
inference by Gatica-Perez et al. (2005), we decided on a video-
segment-length of 15 s.

4.2.1 Video Segments
An illustration of how videos were displayed to annotators is given in
Figure 1A. Annotators were provided with a view of all four
participants. We aimed at reproducing the feeling of a 3D setup
as much as possible in order to facilitate the observation of
participant’s visual focus of attention. An additional top-view
table illustration was added to the bottom of the video to further
aid annotator’s grasp of geometric relations. It has to be noted that all
videos were presented without audio-track. The reasoning behind
leaving out the audio-track was to exclude the influence of semantic
speech content on annotations and to allow annotators to
concentrate fully on the visual content. Additionally, the lack of
audio helped to disguise the moderator’s role. Besides, focusing on

low level rather than higher-level features allows formore robustness
in real-time systems. However, this choice admittedly brings with it
the limitation that modeling remains on a surface level.

4.2.2 Coding Instructions
We asked annotators to provide a listener type categorization for
each video clip. Annotators were given definitions of three
listener types as listed in the paragraph below and already
described in Oertel et al. (2015):

• Attentive Listener (ALi): An attentive listener is the person
who is most likely to start speaking after the current speaker.

• Side Participant (SPa): A side participant is a person who is
part of the group of potential future speakers, but is
probably not the next speaker.

• Bystander (Bys): A bystander is a person whom the group of
potential future speakers is aware of, but whom they do not
expect to speak in the near future. The bystander acts as an
observer rather than a potential future speaker.”

Participants were asked to watch the video clip at least twice
before deciding on an annotation. Specifically, we asked them to
focus on the indicated participant when watching the clip for the
first time, and the group, when watching the clip for the second
time. Our complete pool of annotators comprised 25 people,
mainly sampled from a post-graduate population. All
participants were naive to the task. We provided all of them
with five video clips for training, that were afterwards excluded
from the overall analysis. These training video clips showcased a
range of behaviors to help the annotators get used to the kind of
behaviors they could expect. Each annotator spent approximately
40 min on the annotation task. All annotations were carried out

TABLE 2 | The first row of this table states the results of the posthoc test, as originally reported in Oertel et al. (2015). The second row of this table indicates the results of the
posthoc test after having added the extra samples specifically for this article. It can be observed that the significant differences between listener categories did not
change.

Categories Gaze_At_Speak Gaze_From_Speak MGaze_Speaker Gaze_Down

ALi_SPa SPa_Bys ALi_SPa SPa_Bys ALi_SPa SPa_Bys ALi_SPa SPa_Bys

Original results NS NS p < 0.001 p < 0.001 p < 0.001 p < 0.01 NS NS
Updated results NS NS p < 0.01 p < 0.001 p < 0.05 p < 0.001 NS NS

FIGURE 1 | Depictions of the KTH-Idiap Corpus. (A) Video Clip Arrangement. Annotation material. Annotators were given a 15 s video slice, as illustrated above.
(B) Corpus Collection Set-up.
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voluntarily without any compensation granted. Preliminary
findings have previously been reported by Oertel et al. (2015).

4.2.3 Relationship to Engagement
In Oertel et al. (2015), we also investigated the relationship
between the listener category annotation with the construct of
engagement. Engagement (ENG) was rated by third party
observers on a seven-point Likert scale from 1 (not engaged)
to 7 (highly engaged). ANOVA tests revealed that the listener
categories affected ENG F (4,314) � 114.8 (p < 0.001)).

4.2.4 Video Sampling
It was not possible to have all 5 h of data being annotated. To still
cover as much variability in behaviors as possible, we
automatically assigned each participant to be either of two
roles: the speaker (Sp), or listener. Based on the duration that
had passed since the last time they spoke and the start of the video
clip window (denoted LT), we further distinguished between two
listener types; listener type A (La) and listener type B (Lb). The
moderator was mostly incorporated in the (Lb) category.

If it was more than 20 s, (Lb)was assigned and if it was less
Lawas assigned. We then assigned video clip categories according
the role combinations as stated below: (Sp,La,La), (Sp,La,Lb),
(Sp,Lb,Lb), (Sp,Sp,La), (Sp,Sp,Lb). In accordance with these
definitions, and the following rules, 600 video-clip windows were
sampled. In total we defined three rules. 1) no windowwas included
in which speakers spoke for less than 3 s; 2) video-clips windows
were sampled uniformly across all category types and interviews; 3)
the decision on which of the participants to annotate was made
uniformly among the pool of participants, including the moderator.
Most video-clips were annotated by four annotators, however, some
video-clips also received three or five annotations. The minimum
number of annotations we accepted per video-clip was 3. For each
window video-clip at least three annotators had to agree on a
listener category (ALi, SPa or Bys) for it to receive that annotation.
We assigned an in-between category if there was a tie between two
categories (2–2). If each of the annotators chose a different category,
the “no majority” category was assigned. Results are presented in
Table 1. It can be summarized that using visual information alone
suffices to reach a majority vote in the vast majority of cases.

4.3 Data Processing
To study the dynamics which relate to the different listener
categories, we processed the corpus to extract relevant audio
and visual cues. These include speaking turns and vocal back-
channel, head nods and gaze patterns.

4.3.1 Back-Channels
Back-channels were automatically annotated following the definition
of very short utterances being surrounded by the speech of another
participant (as proposed by Heldner et al. (2011)).

4.3.2 Gaze Coding
Gaze was annotated automatically using the method described in
Oertel et al. (2015). The approach takes the RGB-D data from the
Kinect as input to: 1) constructs a 3 days model of the person’s
face; 2) uses the iterative closest points (ICP) algorithm to register

the face model onto each depth frame and thus estimating the 3D
head pose; 3) extracts rectified eye images which are then passed
through a machine learning model to retrieve the gaze direction,
and finally; 4) based on the 3D gaze of each person and their
relative positions, it was computed at whom each participant was
looking at. Moreover, if a person was found not to be looking
directly to another participant, the approach classified the gaze as
otherwise looking “up,” “down” or “others” by simply monitoring
the 3D gaze ray in relation to all other participants.

4.3.3 Head Nods
The annotation of visual back-channels, i.e. head nods, was
conducted automatically based on the work of Nguyen et al.
(2012). Given that the 3D head pose was available from the
tracking algorithm described in the previous subsection, Gabor
filters were computed from the pan, tilt and roll signals. Then, an
SVM classifier, using a radial-basis function, was used to detect
the head-nods from the Gabor filter features. As found by Nguyen
et al. (2012), the method was effective to infer nods mostly from
listeners whereas it was found to be less accurate for speakers.

4.3.4 Higher-Level Cues for Listener Characterization
In order to analyze how the different low-level features are related
to the listener categories we followed the same methodology as
described in Oertel et al. (2015). Means and standard deviations of
low-level cues were calculated for each participant and each clip
and significance tests were carried out cf. section 4.4. Definitions of
calculated cues are taken from Oertel et al. (2015) and included in
the next paragraph for the convenience of the reader.

• “Visual back-channels” (VisBack): the number of nods
detected during the window duration.

• Vocal back-channels (AudioBack): the number of verbal
back-channels uttered by the listener during the window
duration.

• Gaze at speaker(s) (GazeAtSpeak): percentage of window frames
in which the listener looks at the person currently speaking.

• Gaze received from speaker(s) (GazeFromSpeak):
percentage of window frames in which the actual speaker
looks at the listener.

• Mutual gaze with speaker (MutGazeSpeaker): percentage of
window frames in which the listener and the current speaker
look at each other.

• Gaze down (GazeDown):percentage of window frames in
which the listener looks down/in front of himself/herself.

4.4 Results
Using the set of features described in the previous section, in this
section, we are testing hypothesis H1 and H2 (cf. section 2) which
states that there are differences in listener relevant behavioral cues in
humans. If there are such differences, then we can use this
information to inform the algorithms implementing our data-
driven artificial listener. While initial results have already been
reported elsewhere by Oertel et al. (2015), the number of
annotations has been extended (approximately doubled) and
differences are reported. The ANOVA analysis which will be
reported here is based on the extended annotations. Additionally,
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we are reporting awhole new set of analyses that focus on differences
in gaze-patterns between the different listener categories.

4.4.1 Gaze Patterns in Relation to Speaker
Figure 2 illustrates the listener’s gaze patterns in relation to the
speaker as well as gaze aversions downwards. A Kruskal-Wallis test
provided very strong evidence of a difference (p < 0.001) between
the mean ranks of at least one pair of groups. Dunn’s pairwise tests
were carried out for the three pairs of groups (significance tests
between pairs of groups are reported in Table 2). There was very
strong evidence (p < 0.001, adjusted using the Bonferroni
correction) of a difference between the listener categories SPa
and Bys and a strong difference (p < 0.01) between ALi and
SPa in the amount of gaze the received from the speaker. The ALi
received a significantly more proportionate amount of gaze from
the speaker than the SPa, and the SPamore than the Bys. There was
also very strong evidence (p < 0.001) of a difference between the
listener categories SPa and Bys and evidence of a difference (p <
0.05) between the ALi and SPa in the amount of mutual gaze. The
ALi shared significantly more mutual gaze with the speaker than
the SPa and the SPa significantly more than the Bys. Additionally,
our analysis found strong evidence (p < 0.01) of a difference
between the listener categories ALi and Bys in the amount of
gaze directed downwards. The Bys averted his gaze downwards for
significantly longer times than the ALi. It can also be observed that
the listener gazes more at the speaker than the other way around.
This finding supports Argyle and Cook. (1976) previous finding.

4.4.2 Gaze Patterns Between Listener Categories
When modeling multi-party listener behavior, it is essential to
understand gaze distribution between the speaker and the
different listener categories. However, given the multi-party

nature of the interaction, listeners may not only direct their gaze
towards the speaker but also towards different listeners.
Therefore, it is important also to investigate these
distributions. Figure 3 illustrates the gaze distributions
between the different listener categories. Please note that
while it was not a frequent case, it did happen that two
different participants in a video got assigned the label of ALi
by third-party observers. Similarly also the assignments of two
SPas or two Bys is possible. A Kruskal-Wallis test provided very
strong evidence of a difference (p < 0.001) between the mean
ranks of at least one pair of groups. Dunn’s pairwise tests were
carried out for all listener categories. There was very strong
evidence (p < 0.001, adjusted using the Bonferroni correction) of
a difference between the listener categories SPa_SPa and
SPa_ALi, SPa_SPa and Bys_ALi, SPa_SPa and SPa_ALi,
SPa_ALi and Bys_Bys, SPa_ALi and ALi_Bys, Bys_Bys and
Bys_ALi, Bys_ALi and ALi_Bys. There was strong evidence p
< 0.01 of a difference between the listener categories SPa_Bys
and SPa_ALi, SPa_ALi and Bys_SPa. There was evidence p <
0.05 of a difference between the listener categories SPa_ALi and
ALi_SPa, Bys_SPa and Bys_Bys, Bys_Bys and ALi_SPa. We can
observe that listeners direct their gaze to a higher proportion to
the more engaged listener in the scene. For example, a side-
participant is more likely to gaze at an attentive listener than a
bystander. Similarly, a bystander gazes more at an attentive
listener than the other way around.

4.5 Listener Category Prediction
Experiments
We carried out several machine learning (ML) experiments, that
are detailed in greater detail in Oertel et al. (2015), to investigate

FIGURE 2 | Eye gaze patterns between the various listener categories and the speaker as well as downwards. See section 4.3.4 for the definition of these
measures.
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the possibility of automatically predicting listener categories from
the data gathered and analyzed above. Given the limited data
available, we decided against the use of deep learning but tested
both decision tree and support vector machine approaches
instead. Balancing the data-set per listener category, the
highest average accuracy achieved was 54.1%, using support
vector machines. The addition of additional data points, see
table 1, did not lead to an improvement in prediction
accuracy. While beyond the scope of this paper, we believe
that the accuracy could be improved if additional content
related cues were added. For evaluating our attentive listening
system, we, therefore, decided not to add an ml-based module to
our system but to use a rule-based approach that draws from the
collected gaze and back-channel distributions per listener
category. We describe the process in further detail in
section 5.4.1.

4.6 Summary of Multiparty Human Listener
Modeling
We found that there were no differences in the amount of gaze
directed towards the speaker across the different listener categories.
However, we did find differences in the amount of time the speaker
gazed towards the different listener categories, i.e., H1 a and b can
be confirmed. We could not find significant differences in gazing
downward between the attentive listener and side participant and
side participant and bystander. We only found differences between
the attentive listener and bystander. Therefore, we can only
partially accept H1 c. H1 d can be accepted as we did find that
the bystander, side participant and attentive listener gazed themost
amount of time towards the attentive listener. H1 e can also be
accepted as the listeners gaze at all participants in an interaction
not only the speaker or attentive listener. Finally, we can also accept
H1 f. We found that the speaker shared more mutual gaze with
with the attentive listener than the side participant and more
mutual gaze with the side participant than the bystander.

5 MULTI-PARTY HUMAN-ROBOT
EXPERIMENTS

This section focuses on our proposition of an artificial listener
model for multi-party human-robot interaction. We start this
section by summarizing the results of a pre-test that evaluated the
perception of different audio-visual back-channel realisations in
an agent. We then continue to detail the experimental setup. We
describe our baseline and the attentive-listener system
implementation that is based on our statistical analysis of
multi-party human-human interactions. We provide
information relating to two studies. The first focuses on the
perception and behavior of the study participants, and the
second focuses on perception of third-party observers. We
conclude this section by reporting on the respective results
elaborated on in the subsequent discussion section.

5.1 Pre-Test:Perception of Back-Channel
Generation in a Virtual Agent
To test the effect on the perception of attentiveness by generating
head nods and back-channels in a robot, we decided to carry out a
pre-test before starting the complete human-robot experiment.
This pre-test was previously published in Oertel et al. (2016), and
we are only summarizing its results here for the reader’s ease.
Using the pre-test methodology allowed us to exclude other
variables that might influence the perception of a back-
channel or head nod (such as the appearance of the speaker
or his/her facial expressions). For this, we decided to replay the
original participant’s back-channels and regenerate their head
nods in a virtual agent. Specifically, we extracted sentences in
which a back-channel occurred across the whole data collection.
These sentences would serve as carrier sentences. To avoid effects
caused by incorrect timing, newly generated back-channels were
added at the exact point in time where the original back-channel
had occurred. This means that the virtual agent back-channels
against the original speaker’s speech. We recorded videos of the
virtual agent generating the audio-visual back-channels. These
videos served as stimuli for our pre-test perception experiment.
Specifically, we set up a task on the crowd-working platform
crowdflower. Crowd-workers were presented with the same video
of a turn-segment twice. The only difference being the realization
of the back-channel. Crowdworkers were asked through pairwise
comparisons to indicate in which video the virtual agent showed
more, respectively less attentiveness. We were both interested in
identifying discriminative head-nod related features and
comparing uni-modal (just verbal back-channel or audio back-
channel) to multi-modal back-channel generation.

Relevant to this article is that we could indeed show that a human
can perceive differences in an agent’s perceived degree of
attentiveness related to the generation of audio-visual back-channels.

Specifically, we could show that “maximum downward
amplitude,” “frame duration,” “the number of oscillations,” “first
amplitude” and “maximum downward speed” were discriminative
between less and more attentively perceived head nods.

With regards to vocal back-channels we found rms to be a
discriminative feature. We found differences in the way

FIGURE 3 | Gaze patterns between listener categories.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 5559139

Oertel et al. Towards Multiparty Attentive Listener Generation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


attentiveness is expressed inmono-, in contrast to bisyllabic back-
channel token. We could also show that head nods were generally
perceived to convey more attentiveness compared to audio back-
channels. However, the fusion of modalities appeared to increase
the degree of perceived attentiveness. We were able to
automatically rank head-nods with an average accuracy of
74.3%. For full details on the statistical analysis, please refer to
Oertel et al. (2016). These findings enabled us to improve upon
the human-robot experiment’s design that we will detail in the
next section.

5.2 Task
This section describes the task around which we designed the
human-robot interaction, the robot used in our study, its
perception capabilities, its attentive listener model and detail
the role of the wizard.

5.2.1 Task Content
The human-robot interaction scenario revolved around a
storytelling interaction. This constituted a change from the
human-human data collection scenario and was done to optimize
for the evaluation of the robot’s attentive listening capabilities.
Participants were given three tasks in total. First, they were asked
to retell the story of Cinderella. Afterwards, they would be asked to
talk about their favorite movie. Finally, they were asked to fill out the
social presence questionnaire and to indicate whether they perceived
one of the robots to be more attentive.

5.2.2 Roles
Each interaction included one moderator, two social robots and
one participant. The moderator’s role was to start the experiment.
He first introduced himself. He then asked the two robots to

introduce themselves and also asked the participant to do the
same. After the introductory phase concluded, the moderator
asked the participants to start with retelling the Cinderella story.
He reminded them to ignore him for the duration of this task and
to focus on identifying which of the robots was paying attention
to them. He also informed them that he would address them
again once it was time to continue to the movie retelling part of
the experiment. The two social robots followed the moderator’s
instruction and introduced themselves, using their respective
names, Joakim and Gabriel (To help the participant
differentiate between at a later stage a name tag was also
attached underneath their respective head). They elaborated
that they were developed at the department of speech music
and hearing at KTH and that they are each other’s brother. The
robots contributed to the storytelling scenario through active
listening. It is made clear that the robots do not have any further
dialogue capabilities apart from this. The robots demonstrate
their active listening through a combination of gaze and audio-
visual feedback behavior.

5.2.3Robot Embodiment
We used two back-projected robot heads for our experiment. Their
only differentiating features were their hat and the name-tag
attached underneath the robot head. They were using the same
voice. Our decision for the use of back-projection technology was
made because of its capability of realizing fine-grained gaze changes
in quick succession. Additionally, the physical servos of the robot’s
neck allow for realizing head nods and lip synchronization for
audio-backchannels could be insured. Accurate and detailed non-
verbal behavior realization is essential for a task such as ours, where
a human must be able to perceive even subtle gaze changes and be
able to identify the robot’s gaze target undoubtedly.

FIGURE 4 | The experimental setup for the evaluation of the proposed data-driven artificial listener, in comparison to the baseline system.
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5.3 Sensor Set-Up
The following section comprises information relating to the room
set-up as well as multi-modal perception set-up. By multi-modal
perception, we are referring to the motion-tracking, audio and
video information used to provide our systems with sensory
information. We are here also providing detail on the role a
wizard takes in our system implementation.

5.3.1 Room Set-Up
Figure 4 illustrates the room set-up that was optimized to
facilitate multi-party interaction. There were two back
projected robot heads and two humans sitting around a
round table. The two robots are facing each other, and the
two humans are facing each other. The moderator sat across
the table from the human participant. The participant sat with
his/her back towards an adjacent experimenter room with a
connecting window. Particular attention was given to create
equal distance between participants and robots so that it would
require equal effort to look at each other. Additionally, it was
ensured that a gaze shift would not suffice to look at a
participant to the left or the right, but that the head would
need to be shifted to achieve this. The choice of exposing the
participant to two robot systems was taken in order to facilitate
comparison making for the participant.

5.3.2 Multi-Modal Perception
We placed a go-pro camera in front of both humans and robots
for a close-up face shot. Additionally, there were also cameras
installed behind both humans and robots to enable a more
global room view from the view-point of the respective
participant. We used one additional camera to capture the
whole room. These video recordings were used for subsequent
analysis alone. Both moderator and human participant were
equipped with close-talking microphones. This audio-feet was
used to estimate speaking in real-time. Participants and
moderator were equipped with glasses to which we attached
motion-tracking markers. Using our motion tracking set-up,
we were able to infer participants head rotation. By defining
head rotation intervals for a given gaze target, we could
automatically and in real-time infer whether the participant
was looking at either of the robot-participants, the moderator
or “elsewhere.” Before the start of the experiment, we did pilot
tests to ensure that the head-tracking was a good
approximation for the visual focus of attention, which, also
thanks to the room set-up, it was. Synchronization was ensured
through the use of a clapper that had motion tracking markers
attached to it. We clapped it in front of the room overview
camera. The motion tracker signal was used for
synchronization with the system logs, whereas the visual
channel of the clap was used for audio and video
synchronization.

5.3.3 Wizard
As discussed in the background section, the perception of a
conversational system is determined by both the accuracy of
timing and appropriate choice in back-channel function and
realization. To allow us to investigate the latter, it was

therefore essential to ensure the accuracy of timing. We
achieved this by employing a wizard who had audio-visual
access to the experimental room. She was tasked to indicate
feedback-relevance-points (FRP) by pressing a button. FRPs are
points within the interaction at which it is appropriate to back-
channel. They were provided to both the attentive listener system
and the baseline system in real-time. Whether they were taken up
or not was decided autonomously by the respective systems.

5.4 Robot Behavior Implementation
The robot’s feedback behavior implementation is based on the real-
time multi-modal perception data, cf. section 5.3.2 as well as the
wizard’s indication of feedback-relevance points. Participant’s
influence the robot’s attentive listening response through their
gaze behavior and speech activity. All perception data is calculated
in an infinite loop over 15-s intervals. It is amended if the listener
category changes. A listener category is only changed if a robot is
being gazed at for more than 2 s. This threshold has been
established through experimentation, also taking into account
the robots affordances. The robot’s listening behavior is
dependent on its category assignment that is determined by five
rules. See Figure 5 and Figure 6 fora flow diagramme depicting the
rules and Table 3 for a description of the rules.

5.4.1 Attentive Listener System
The attentive listener behavior realization is based on the multi-
modal data human-human collection and subsequent multi-modal
analysis, as described in section 4.4. Gaze and feedback behavior
generation is dependent on the listener category assignment, and
distributions are extracted per 15-second-intervals.

Gaze behavior implementation includes decisions at which of the
three possible gaze targets (moderator, participant, second robot) to
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look at and for how long. This also includes the modeling of short
gaze aversions at the same target. The pseudocode for gaze behavior
generation is described in Algorithm 1.

Feedback behavior generation is divided into audio back-
channel and head nods. While a wizard provides the feedback-
relevance points, the decision whether to produce a back-
channel or not at this point is taken by the system. Decisions
are also taken on whether to produce a head nod or an audio
back-channel. Frequency distributions of head nods and back-
channels are taken from our previous study on the same corpus
Oertel et al. (2015). The findings of our pre-test 5.1 relating to
subtle differences in head nods and back-channel realisations
further contributed to the feedback behavior design cf. section
2 ? Specifically, We restricted the use of back-channels to
continuers (back-channels that indicate to the speaker to
continue talking) only, and we used two levels of
continuers. These two variants were associated with more
and less attentiveness, respectively. More attentively

perceived back-channels tokens had a greater duration of
the second syllable, a smaller F0 slope for the first syllable
and higher rms intensity of both syllables.

The processes for head nod generation and gaze behavior
realization ran as an infinite loop and in parallel to the rest of the
system.

5.4.2 Baseline System
As in the attentive-listener system, the baseline system follows
the five rules, outlined above for listener category assignment.
However, in contrast to the attentive-listener system, the
baseline system uses a flat distribution for modeling its gaze
and feedback generation. Two exceptions apply. First, when a
speaker looks at the robot running the baseline system for
more than 2 s, the robot reciprocates by gazing back at the
speaker. Second, as in the attentive-listener system, the
baseline system was also provided with the feedback
relevance points. This means that the random distribution

FIGURE 5 | Rules for assigning listener categories: General case.

FIGURE 6 | Rules for assigning listener categories: Moderator case.
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of feedback behavior only applied within the range of possible
feedback points.

5.5 Study I
In this section, we are carrying out two studies that are both related
to the participant. In the first study, we are investigating his
perception of the robot’s social presence. In the second one, we
are investigating at which robot system he spendsmore time gazing.

5.5.1 Participants
We recruited a total number of 12 participants (9 male, three
female)from a pool of students and staff at the Royal Institute of
Technology, KTH via e-mail advertisement. Participants received a
cinema voucher in exchange for their participation in the study.

5.5.2 Procedure
Before the conduction of the experiment, participants were briefed
about the study procedure and asked whether they felt comfortable
with the study set-up. Specifically, they were told that they would be
greeted by amoderator who would introduce them to two robots and
that the experiment would be split into two parts. In the first part,
they would be asked to retell the Cinderella story, and in the second
part, they would be asked to talk about their favorite movie cf. section
5.2.1. They were tasked to find out whether 1, two or none of the
robots was paying attention to them. They were informed that the
interaction would be audio and video recorded and that some sensor
set-up and synchronization steps would be necessary cf. section 5.3.2.
They were informed that we would be asked for their consent to use
the recordings for analysis once more after the recording had taken
place. They were informed that the experiment would conclude with
them filling out a questionnaire. Once they agreed to the procedure,
they were brought into the study room, and the experiment
commenced. In each interaction, one robot system was using the
baseline system, and one robot system was using the attentive-
listening one. We were exchanging for each interaction which
system controlled the robots’ behavior. This means that in 50% of
the total of all interactions, the attentive-listening system was
controlling the robot situated to the left of the participant and in
50% the robot situated to the right of the participant.

5.5.3 Method I: Participant’s Impressions of Social
Presence of the Robots
To evaluate the model, we first collected participant’s impressions
of the robots in terms of their social presence. For this, we chose
the Social Presence Questionnaire (Harms and Biocca, 2004). The
social presence questionnaire captures the following dimensions:
textitCo-Presence, textitAttentional-Allocation, textitPerceived
Message Understanding, textitPerceived Affective
Understanding, textitPerceived Behavioral Interdependence
and Perceived Emotional Interdependence. We used the first
five items of the social presence questionnaire. We exchanged the
last item, Perceived Emotional Interdependence, for a direct
question concerning attentive listening. We decided to do so
as we were not manipulating the mood of the robot but the
perception of attentiveness. Similarly to Pereira et al. (2019), we
divided the social presence questionnaire in two directions:
perception of self and perception of the robot. The
questionnaire contained a total of 30 items (6 items per
category), which the participants answered on a five-point-
likert scale. The likert scale ranged from 1 (Strongly Disagree)
to 5 (Strongly Agree). To differentiate between the two robots in

TABLE 3 | Rules for listener category assignment.

Rules Description

Rule 1 If voice activity is detected, then the participant gets assigned the role of the speaker
Rule 2 The robot being gazed at gets assigned the role of attentive listener
Rule 3 The robot not currently being gazed at is assigned the role of side-participant
Rule 4 The moderator can also be assigned the role of bystander. He gets assigned that role if he is not speaking and not being

gazed at. Otherwise, he gets assigned the role of attentive listener or speaker respectively
Rule 5 If no speaker is detected then the robot remains in idle mode
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the questionnaire, they were referred to with their respective
name, Joakim and Gabriel.

5.5.4 Method II: Participant’s Focus of Attention
We also evaluated our system in terms of visual attention received
from the speaker. The reason for this was that in our human-human
data collection, we found that the speaker looked more at the
attentive listener speaker than the side-participant or bystander.
Following the same approach as described in the human-human
analysis, we divided the interaction into thin-slices of 15 s each. For
each of these thin-slices, we calculated participant’s focus of
attention towards the attentive-listening system and the baseline
system. We used participant’s head rotation as a proxy for
estimating their focus of attention towards each of the robots.
The validity of head rotation as a proxy was facilitated through the
room set-up and evaluated via a pilot-test.

5.5.5 Results I:Participants Perceptions of the Social
Presence of the Robot
The results of the Social Presence Questionnaire are summarized in
Figure7. Each dimension of the Social Presence Questionnaire
contains questions relating to the perceived perception of the
robot and separately human. In the analysis, we separated the
two directions. It can be summarized that the attentive listener
system was perceived more positively in all five dimensions than the
baseline system. As this article’s focus is on the perception and
modeling of listening behavior in a group and the perception of non-
addressees, we did not focus on maximizing the number of first
party-participants. Therefore, the number of first-party- participants
is not sufficient to carry out statistical tests. Nevertheless, some of the
answers still provide interesting points of discussions for future
work, and we, therefore, report the found tendencies as such.
Perceived Affective Understanding was rated comparatively low,
which makes sense, as we modeled no affective components. Also,
Attentional Allocation was more positively perceived in the robot’s
direction in the attentive listener system. Likewise, participants rated
our model higher than the baseline model in terms of Perceived
Behavioral Interdependence. Interestingly, participants not only
believed that they were affected more by the attentive listener
system but also that they could affect the attentive listener system
more. However, this is, in fact, not true. Participants could affect both
systems to the same degree. Co-Presence was the dimension which
received the highest ratings overall. Participants had the perception
that they were not alone and that the robots perceived their presence.
The proposed model was perceived more positively in the robot’s
direction, which makes sense as the baseline model should have
disappointed participants’ expectations of the visual focus of
attention more often. For Perceived Message Understanding
ratings of both the proposed model and the baseline model were
more pronounced from the participant’s direction. This means that
the participants thought they understood the robots better than the
robots understood them, particularly the baseline model. The fact
that they perceived the proposed model to understand them better
indicates that gaze patterns and back-channels by themselves can
already make a difference in the perception of message
understanding. However, of course, the implementation of

further dialogue behavior apart from the ones mentioned above
would further improve the ratings.

In addition to the Social Presence questions, participants also
indicated, with mean-scores of 3.6 to 2, that they thought the
proposed model was the more attentive listener.

5.5.6 Results II: Participant’s Focus of Attention
Figure 8 shows the time participants spent looking at the robot
realizing the behaviors of the attentive listener system vs. the
robot realizing the behaviors of the baseline system. It can be
observed that the participants spent more time directed towards
the robot realizing behavior of the attentive listener system than
the baseline system. Finally, a one-way ANOVA revealed that the
robot configuration affected the gaze duration of the participant F
(1,1028) � 8.554 (p < 0.01).

5.6 Study II: Third Party Observer Ratings
The goal of this study was to investigate third-party
observer perceptions of our attentive-listener system. It
is, of course, important to evaluate the participant’s
impression of our attentive listening system. However,
being the speaker, they might also be too preoccupied
with talking to notice subtle differences. For this reason,
third-party observers might be more suitable to provide a
holistic view of the interaction.

5.6.1 Observers
Ratings were distributed over a total of 21 crowd-workers
who were recruited via the crowd-sourcing platform crowd-
flower. Only English speaking workers from the
United States, with the highest trust score level, were
included in the study.

5.6.2 Procedure
We set-up a crowd-sourced perception experiment to capture the
third-party observer judgements. We adopted elements of the
perception studies carried out as in section 4.4. Specifically, we
arranged different video shots into one video in such a way that it
would reflect the arrangement of the room at the time. As in the
human-human experiment, we sampled 30-s video intervals
randomly across the interaction with the only constraint that
we sampled from both the Cinderalla storytelling sequence as well
as the favorite movie retelling part equally. Different from the set-
up in the human-human study, we did not ask for the different
listener categories (e.g., attentive listener, side-participant,
bystander), but asked which participant (of the robots, in this
case) they perceived to be more attentive. In total, there were
sixty, 30-s videos, five per participant, distributed across the
duration of the interaction. There were seven ratings of
workers per video segment, which resulted in a total of 420
judgements. As in the human-human experiment a majority
voting was implemented to achieve one voting. The video clips
were presented to observers in a random manner. We added a
time threshold to the task to maximize the quality of ratings. If
crowd-workers were clicking too quickly through the sites, they
were excluded from the study.
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5.6.3 Method
The third and final measure we chose to evaluate our attentive-
listener system with, was third-party observer perceptions of
attentiveness. Using the perceptions of third-party observers
rather than one of the participants has the advantage that third-
party observers can concentrate on observing the robot’s behavior
without worrying about performing the story-telling task. It was the
same methodology we used for both the listener-annotation in the
human-human data collection as well as the pre-test.

5.6.4 Results
As can be seen in Figure 9, observers identified the baseline-
model version as the more attentive listener in only five out of 60
cases. A binominal test revealed that the proportion of 0.92 of
observers identifying the robot running our attentive listener
system as more attentive was significantly higher than the
expected 0.5, p < 0.001.

6 DISCUSSION

Listening behavior is essential for the coordination of dialogue in
human-human interaction. In human-agent interaction, it has
been shown to have a positive effect on rapport (Huang et al.,
2011), user engagement (Schroder et al., 2011) and the perceived
naturalness of the interaction (Maatman et al., 2005).

Being a listener in a multi-party setting is, however, quite
different. The speaker is not as dependent on receiving feedback
from one person in particular, as there are several participants he
could choose. Similarly also the listeners do not necessarily have
to look at the speaker alone.

As can be seen in Figure 3, which shows all gaze comparisons
between the different listener categories, both side participant and
bystander gaze the most amount of time towards the
textitattentive listener. This finding makes intuitive sense as
the textitattentive listener would be the listener most engaged
in the conversation, and others might want to gauge his reaction
towards the speaker.

These findings highlight the importance of considering all
participants of a multi-party interaction; not only the speaker and
addressee. In fact, in our data collection, gazing at the speaker
only account for a maximum of about 50% of the time. This is in

FIGURE 8 | Percentage of time spent gazing towards the attentive
listener system robot (model) vs. the baseline system robot (baseline).

FIGURE 7 | Results of Social Presence Questionnaire. Mean values for each direction of the five different social presence dimensions (Harms and Biocca,
2004)._par indicates the direction of the participant. _robot the direction of the robot (aff_u) Perceived Affective Understanding, the ability to understand the other’s
emotional and attitudinal states (Att _all) attentional allocation, the amount of attention the user allocates to and receives from the other (bi) perceived behavioral
interdependence, the extent to which the user’s behavior affects and is affected by the other’s behavior; (co_pres) co-presence, the degree to which the observer
believes s/he is not alone (pm) perceived message understanding, the ability of the user to understand the message from the other.
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line with citealtwang2010don who found that simply increasing
the amount of time gazing at the speaker can make gazing
behavior appear strange, scary, or awkward. As (Argyle and
Cook, 1976; Vertegaal et al., 2001) we also found that the
proportionate amount of time the listeners gaze at the speaker
is higher than the other way around. We found further proof that
the degree of conversational engagement (Oertel and Salvi, 2012;
Oertel and Salvi, 2013) is important when modeling eye-gaze.
Conversational engagement does not only relate to the speaker
but also the different listener categories as gaze is not being
distributed equally across the listener categories. Still, participants
gaze more towards the listener categories that are related to more
engagement. We found only limited support for Mutlu et al.
(2009a) finding’s as there were no significant differences between
the different listener categories gazing at the speaker, but that it
was rather the speaker’s gaze differed in relation to listener
category.

In Oertel et al. (2015), we also found that the number of gaze
changes did not differ significantly across participant categories.
This finding might, at least in part, be related to the scenario
chosen for the data collection. The introduction and the PhD
pitch were both scenarios which invited the participants to engage
in more extended monologues, and it appears logical that a
participant would not change its gaze target significantly. We
did not carry out a separate analysis looking at gaze changes in the
collaborative part of the data collection in comparison the
monologue part of the data collection. Therefore, it may well
be that differences got canceled out of across conditions.

An additional aspect that might influence the perception of a
listener category is the appearance of the speaker. We, therefore,
among other reasons, carried out the pre-test, where the appearance
of the agent was controlled for.We could show that the differences in
the realization of the backchannel did have an impact and also that it
made a difference in which modality the backchannel was produced.
This finding extended Allwood’s. (2003) finding that different
realization of head nods and audio backchannels seem to be also
associated with different communicative functions.

It is encouraging to see that our attentive listening system received
in general higher ratings in terms of social presence than our baseline
system. This is encouraging, especially as greater enjoyment
(Richardson and Swan, 2003), performance, satisfaction (Biocca
et al., 2001; Tu and McIsaac, 2002) as well as trust (Spencer,
2002), which have been related to the perception of social presence
are all essential for developing conversational systems that can engage
with people of extended periods of time. Similarly, also the fact that
our attentive-listener system was perceived as more “attentive” by
third-party observers points towards the same direction. The fact that
the robot’s behavior influenced the participant’s focus of attention
lends further support to the findings of Mutlu et al. (2009a) and
Admoni et al. (2013) who found that the robot’s gazing behavior
influences participants behavior and might be used for directing
participant roles or turn management. This could particularly
important for applications in which the robot is designed to
increase, for example, team cohesion.

In conclusion, the main strength of our approach lies in the
fact that we not only modeled the gazing behavior towards the
speaker but also towards the other listener categories. It is also a

first step towards investigating whether a regulating of the degree
of attentiveness exhibited towards a specific person has the
potential to influence group outcomes as a whole. While
explicit intervention is, of course, an effective means, as shown
in Matsuyama et al. (2015), more subtle changes of listener
behavior might also the potential to achieve similar effects. H2
a,b and c can be accepted.

7 CONCLUSION

This article aimed to build and evaluate an attentive-listener
model for multi-party human-robot interaction based on human-
human data analysis. We aimed to contribute both to the
understanding of human-human listener behavior in multi-
party interactions as well as the knowledge on how modeling
such behaviors would affect the perception of attentiveness in
human-robot interaction.

To achieve this aim, we built upon existing literature on listener
categories and used these for data annotations and subsequent
analysis. We brought forward a thin-slice approach for collecting
annotations by listener category. Results showed that it is feasible to
annotate listener categories based on visual information alone.

We used a corpus that used a multitude of sensors such as
head-mounted microphones and RGBD sensors. This
methodology allowed for the automatic annotation of voice
activity, eye gaze and head nods and rendered unnecessary the
need for costly and lengthy manual annotations.

Our analysis revealed that there are indeed distinctive gaze
patterns that characterize listener categories in multi-party
interaction. We found, for example, that the proportion of
mutual-gaze and gaze-from-speaker differed significantly across

FIGURE 9 | This figure indicates the number of cases in which the third-
party observers identified the attentive listener model, respectively, the
baseline model as more “attentive.”
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the different categories. We also found differences between listener
categories. Our work extends work carried out on dyadic
interactions to the multi-party case, making use of substantially
more data than used in prior work on listeners. For example, by
analyzing the gaze distribution between the speaker and the various
listener categories we extended Vertegaal’s (2001) findings.

We implemented an attentive-listening system for multi-party
interaction and evaluated it against a baseline system. While the
attentive-listening system used the gaze and back-channel
distributions stemming from the human-human experiment, the
baseline system did not. Instead, it sampled from even distributions
with the exception that in case of the speaker looking at a participant
for more than 2 s, the participant was assigned the role of attentive-
listener. The 2 s threshold was based on practical considerations.
Two seconds was too long for it to be a coincidence to be looking at
the participant but still short enough to not cause too long of a delay
in the system’s reaction. Similarly, also back-channel generation was
only varied within the range of possible feedback relevance points
provided to both systems. Our analysis showed that humans take on
different listener roles within multi-party meetings and vary their
feedback behavior accordingly. We found that it is also beneficial for
the perception of social presence and attentiveness in a robot, to
model listener category-specific feedback behavior.

While our experiments showcase the potential of modeling
attentive listener behaviors in multi-party interactions, the current
implementation of our attentive-listener system is still limited.
While our choice of a story-telling experiment allows us to have
more control over the interaction, it is not representative of most
real-life scenarios. In most every-day interactions, people would
not stay in the role of a listener for such extended periods of time
but would be expected to take the turn. In its current
implementation, our system does not parse nor manage the
content of the dialogue. Neither does it have any dialogue
capabilities of its own. Additionally, also, our listener category
definitions have its limitations. They are optimized for multi-party
situated interaction, rather than for example, a lecturing situation.
Similarly, also, the data used for modeling gaze has its limitations.
We constrained our data collection by clearing away any
unnecessary artifacts that might attract a participant’s focus of
attention. We would expect that gaze patterns would differ
in situations where participants would be engaged in, for
example, a joint assembly task. While the use of different sensor
technologies allows us to send the visual focus of attention and
speech activity information in real-time to our systems, the set-up
is very much restricted to a laboratory setting currently. It would
not be transferable to in-the-wild settings. It is of course, already
now possible track the head pose of participants in in-the-wild

settings and to infer whether a participant’s gaze is directed towards
a robot. However, it becomes much more challenging to infer the
gaze direction of different participants towards each other,
especially in cases where participants are moving around.
Additionally, a noisy background would make voice activity
detection more challenging. Finally, relying on the extraction of
gaze and back-channel related features alone, on the size of data-set
available, did not suffice to train a classifier that was able to predict
listener categories with high accuracy. Despite these limitations, we
believe that we could show the potential of modeling attentive-
listener behavior for multi-party human-robot interaction.
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