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Abstract

Cell counting is a vital practice in the maintenance and manipulation of cell cultures. It is a

crucial aspect of assessing cell viability and determining proliferation rates, which are inte-

gral to maintaining the health and functionality of a culture. Additionally, it is critical for estab-

lishing the time of infection in bioreactors and monitoring cell culture response to targeted

infection over time. However, when cell counting is performed manually, the time involved

can become substantial, particularly when multiple cultures need to be handled in parallel.

Automated cell counters, which enable significant time reduction, are commercially avail-

able but remain relatively expensive. Here, we present a machine learning (ML) model

based on YOLOv4 that is able to perform cell counts with a high accuracy (>95%) for Trypan

blue-stained insect cells. Images of two distinctly different cell lines, Trichoplusia ni (High

FiveTM; Hi5 cells) and Spodoptera frugiperda (Sf9), were used for training, validation, and

testing of the model. The ML model yielded F1 scores of 0.97 and 0.96 for alive and dead

cells, respectively, which represents a substantially improved performance over that of

other cell counters. Furthermore, the ML model is versatile, as an F1 score of 0.96 was also

obtained on images of Trypan blue-stained human embryonic kidney (HEK) cells that the

model had not been trained on. Our implementation of the ML model comes with a straight-

forward user interface and can image in batches, which makes it highly suitable for the eval-

uation of multiple parallel cultures (e.g. in Design of Experiments). Overall, this approach for

accurate classification of cells provides a fast, bias-free alternative to manual counting.

Introduction

In an era characterized by a growing interest in proteins, drugs, antibodies, and enzymes for

therapeutic and biochemical applications, the significance of their production platforms has

increased substantially. These platforms encompass a diverse range of cell lines, spanning

from bacterial to human cells, each with their own advantages and disadvantages, and have

assumed paramount importance in modern biotechnology [1–5]. All these cell-based produc-

tion platforms share a common requirement for precise, accurate and rapid cytometric mea-

surements. In this study, we conducted an investigation on two widely used cell types: insect

cells and HEK cells, which serve as foundational components of two highly prevalent expres-

sion systems, namely the baculovirus expression vector system (BEVS) [5–7] and a
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mammalian expression platform [8, 9]. To maximize the protein expression using the BEVS or

HEK cells, maintaining the cell culture in a viable state is critical [10].

Conventional determination of cytometric parameters, most prominently, alive and intact

dead cell concentrations is performed using a hemocytometer (e.g. Bürker-Türk counting

chamber) [11]. The chamber consists of nine squared wells, each with a set volume, and is

placed under a brightfield microscope (Fig 1). Dividing the total cell count by the total volume

of the counted large squares yields the cell density. To enhance the accuracy of counting, dye

exclusion methods are used to assess whether a cell is alive or dead: because dead cells lose

membrane integrity, dye can traverse the membrane, staining dead cells in a distinctive color

[12]. The most commonly used dye for insect cells is Trypan blue [13]. The major advantage of

this conventional approach is the direct observation of the cell culture by the operator, which

enables the rapid detection of problems such as contamination or aggregation of cells. How-

ever, manual cell counting is time-consuming, especially when a multiple counts are per-

formed on the same culture for increased accuracy. Additionally, because this technique relies

on human interpretation, operator-to-operator variance is not uncommon. Lastly, the repro-

ducibility of manual cell counts can be low, especially if high cell density cultures are used [14].

Some of the human errors inherent in conventional cell counting approaches can be

avoided using automated cell counters (Fig 1). Many research groups have transitioned to this

more reproducible and less time-consuming technique [15–20]. Unfortunately, at present this

technology comes with its own limitations. For example, the majority of the slides used for

automated cell counts contain open experimental handling, meaning that they cannot be

applied to infected cultures. Moreover, new automated cell counters range in price from

€5,000 to €25,000, creating considerable investment cost for R&D labs [21]. This holds espe-

cially true for research groups keen to explore the BEVS as a possibility for specific protein

expression but not yet committed to the technology in the longer term. Lastly, the automated

cell counters based on BF-microscopy can have a significant error range, particularly, when

cells are aggregated or cultures reach high cell densities.

Here, we have developed a machine learning (ML) model based on the publicly available

YOLOv4 model, together with a user-friendly interface, for the determination of dead and alive

insect cells [22]. Our aim was to maximize the accuracy with an error margin of at most 5%.

ML models have significant advantages over other automated cell counting software packages

(e.g. ImageJ). Firstly, a good ML model makes manual image (pre-)processing obsolete [15, 17].

Secondly, enabling batch image processing could reduce significantly overall process time in the

evaluation of multiple cultures (e.g. during Design of Experiments) (Fig 1). Such advantages

have been deployed in the counting of red blood cells and several other cell lines; however, to

date an appropriate model for the counting of insect cells remains lacking [19, 23–25].

Methods

Cell culturing & preparation for manual cell counting

The two most commonly employed insect cells were used to train and test the ML model: Tri-
choplusia ni (Gibco High FiveTM; Hi5 cells) and Spodoptera frugiperda (Gibco; Sf9). The Hi5

and Sf9 cells were separately cultured in final volumes of 50 ml in 125 ml Erlenmeyer culture

flasks using Sf900TM II Serum-free medium (Gibco), and seeded with a cell density of 7.5 * 104

cells/ml and 5.0 * 105 cells/ml, respectively. Samples (~200 μl) were taken every 24 h for 4 d.

The cell culture samples were mixed 1:1 with Trypan blue (Gibco), and 10 μl of each resulting

mixture was transferred to a Countess cell counting chamber slide (Invitrogen). The counting

chamber slides were placed under a brightfield microscope, and ~10 fields of view were imaged

per counting chamber at a 10X magnification using an Olympus CKX41 microscope
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(providing a 0.96 mm2 field of view per image) and cellSens image acquisition software pack-

age (Olympus).

Human embryonic kidney cells (HEK cells) were cultured in 1 l bioreactors using BalanCD

HEK293 medium (Irvine Scientific). Images were captured after 2 and 3 d of growth. Sam-

pling, sample preparation, and imaging was performed analogously to that of the insect cells.

Baseline ML model

The cell counter model was based on the You Only Look Once version 4 (YOLOv4) object

detection model [22]. The YOLOv4 model consists of three architectural components referred

to as the head, neck, and backbone. The backbone is the initial part of the neural network

responsible for extracting the feature maps from the input image. In YOLOv4, the backbone is

based on the CSPDarknet53 architecture and employs a Cross Stage Partial network (CSPNet)

structure to improve information flow and feature extra efficiency in comparison to its prede-

cessor: Darknet53 [22, 26]. CSPDarknet53 contains a series of convolutional layers that gradu-

ally downsample the input image, capturing features at difference scales and levels of

abstraction. The extracted features are then passed to the subsequent stages of the model. The

neck is an intermediary component inserted between the backbone and the head of the

Fig 1. Overview of the most commonly used techniques for cell counting. In cell counting, one exploits the difference in membrane integrity

between alive (membrane intact, no staining of the cell interior; thus cell observed as white) and dead cells (membrane damaged, allowing Trypan blue

to traverse the membrane; thus cell observed as blue). Tracking alive cell density over time then allows one to establish the growth curve of the cell

culture. Conventional cell counting (depicted in light blue box) using a counting chamber represents a time-consuming protocol susceptible to

significant operator-to-operator variance. Automated cell counters (depicted in yellow box) significantly reduce the operation time, at the expense of a

loss of direct observation of the cell culture by the operator and a high investment cost. Our ML model for cell counting (depicted in green box)

provides the operator with a cell counting approach of low investment cost that is rapid and accurate, and permits both the direct observation of cell

culture and the opportunity to perform cell counts on infected cultures. Created with BioRender.com.

https://doi.org/10.1371/journal.pone.0291625.g001
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network. It plays a crucial role in aggregating features from multiple stages of the backbone. In

YOLOv4, the neck architecture is designed to enhance feature fusion and information flow. It

consists of bottom-up pathways, which capture high-resolution features from different stages

of the backbone, and top-down pathways which upsample and fuse these features to create a

rich feature representation that is used by the detection head [22, 27, 28]. The head is the final

part of the network responsible for predicting object classes and bounding boxes. It takes the

fused and aggregated feature maps from the neck and applies additionally convolutional and

fully connected layers to predict the presence of objects, their classes, and the corresponding

bounding boxes. The head architecture is designed to accurately locate and classify objects in

the image [22, 29]. Distinguishing itself from alternative object detection methods, YOLO’s

distinctive trait lies in its single-pass approach to image analysis, which lends it greater compu-

tational efficiency. The YOLOv4 model was pre-trained on the MS COCO data set [30, 31].

Training the model

Data sets were annotated using labelImg, a free, open source tool for graphically labelling

images [32]. A training set (46 insect cell images containing 5022 alive cells and 938 dead cells)

and a validation set (14 insect cell images containing 2345 alive cells and 510 dead cells) were

constructed, and the cells were annotated manually as dead or alive using the aforementioned

tool. The training set images contained cell densities ranging from 5 to> 300 cells per field of

view (FoV) of 0.96 mm2. For the training of the original YOLOv4 model in order to obtain our

optimized, insect cell dectection ML model, we used an Adam optimizer with an initial learn-

ing rate of 2 * 10−4 and a final learning rate of 1 * 10−6. The number of iterations through the

data set (epochs) was set to 100. Our ML model was chosen by picking the model for which

the validation set loss was the lowest (“early stopping”), to prevent overfitting. The data sets

used [33] and further details of the implementation [34, 35] are provided separately (S1 File).

Post-processing

The model used three post-processing parameters to produce a final result, namely the confi-

dence score threshold (default = 0.4); the intersection over union threshold (default = 0.3); and

the bounding box (bbox) size threshold (default = 200 px2). The default values were the values

used during training/validation. The values of the three post-processing parameters could be

adapted to make the model more or less sensitive, with the following consequences. The model

will return as a prediction any object with confidence score larger than the confidence score

threshold. Decreasing this threshold will lower the threshold for positive object classification,

and hence in our context will return more cells at the expense of an increased risk of false posi-

tives. The intersection over union threshold dictates how much overlap is allowed between

neighboring objects. Lowering this threshold will allow for bounding boxes to be closer

together, possibly leading to more detected cells, especially aggregated or slightly deformed

ones. However, it also risks false double detections of a single cell. Finally, the bbox size thresh-

old parameter filters out any detections with a small bbox size. Modifying this parameter could

be beneficial upon changes in the magnification or cell size; increasing the value of this post-

processing parameter will increase the size of the allowed bounding boxes, and vice versa.

Model performance

The model performance was evaluated by the construction of a confusion matrix from a test

data set consisting of 122 images, containing >20,000 alive and dead cells. Images of the test

data set were newly acquired and not part of the train and validation data sets. The test set was

used in order to understand how well the model functions for different cell strains, cell
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densities, and viabilities. The numbers of true positives (TP), false positives (FP), and false neg-

atives (FN) on the test set were determined manually [36, 37]. Three metrics were computed

to evaluate the model performance. The recall (alternatively referred to as sensitivity or true

positive value, TPV) measures the extent of error caused by false negatives, and is defined as:

TPV ¼
TP

TPþ FN
: ð1Þ

The precision (or positive predictive value, PPV) measures the extent of error caused by

false positives, and is defined as:

PPV ¼
TP

TP þ FP
: ð2Þ

The F1 score, the leading performance indicator for ML models, is defined the harmonic

mean of the precision and the sensitivity:

F1 ¼
PPV � 1 þ TPV � 1

2

� �� 1

¼
2TP

2TP þ FPþ FN
: ð3Þ

Results & discussion

To verify that the ML model was accurate for a broad range of Trypan blue-stained cell images,

we tested the model on a large data set containing different cell strains, cell densities, and via-

bilities. The model was tested using a data set of 122 images (66 images from Hi5 cell cultures

and 56 images from Sf9 cell cultures) containing 20,046 cells. The majority of the images were

captured successively and in a single experimental procedure at 10X magnification, then batch

processed by the ML model. The model classified cells as either alive or dead and assigned

them blue or red bounding boxes, respectively (Fig 2). The post-processing thresholds for the

confidence interval, intersection over union, and bounding box size (see section Post-process-

ing) were set to 0.3, 0.3, and 25 px2, respectively. These post-processing thresholds, which were

optimized by visual inspection, were dependent on cell fitness and density, as well as on micro-

scope settings such as the magnification. Based on visual inspection we could determine that

Fig 2. ML model classified cells (blue = alive, red = dead) in images originating from test data set. Images of Hi5 cell cultures taken at 10X magnification

with their contents classified by the ML model. Alive cells were indicated by blue bounding boxes and dead cells by red bounding boxes. Scale bar represents

250 μm. (A) Hi5 cell culture grown for 4 d at 28˚C in Sf900iiSFM. (B) Hi5 cell culture 7 days post infection with baculovirus at an MOI of 0.01.

https://doi.org/10.1371/journal.pone.0291625.g002

PLOS ONE Automated cell counting for Trypan blue-stained cell cultures using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0291625 November 28, 2023 5 / 13

https://doi.org/10.1371/journal.pone.0291625.g002
https://doi.org/10.1371/journal.pone.0291625


the model was able to identify the presence of the majority of the cells and classify them cor-

rectly. Furthermore, the model did not classify as cells any of the cell debris and/or protein

aggregation that was visible as small blue dots (Fig 2B), thus obviating additional manual

image processing. Additionally, anomalies originating from microscope contamination, such

as scratches or dust, were not classified as cells. Relative to previously reported automated cell

counting models, which depended on conventional image processing to eliminate such con-

taminants, the ML model was fast and reduced the overall process time for cell count determi-

nation [15–17, 38].

A first qualitative assessment of the ML model’s performance in classification was assessed

by comparing it to multiple independent manual inspections of all 122 classified images. The

result is summarized in correlation plots (Fig 3A and 3B) in which the black dotted diagonals

represent the ideal scenario in which the ML-determined and manually determined cell counts

are identical. Over the entire range from 5 to>400 cells per FoV, the machine learning model

was able to determine the alive cell counts with very high accuracy (r2 > 0.99 from linear fits

(red lines) to the data) for both Hi5 (Fig 3A) and Sf9 cells (Fig 3B). These correlation coeffi-

cients, obtained from the linear fit through the data, are similar or higher than previously

obtained using image processing software packages or ImageJ [15–17]. High accuracies were

also achieved by the ML model for dead cell counts for Hi5 (Fig 3C) and Sf9 (Fig 3D) cells,

with a maximum overestimation of ~4.5% for the higher cell counts (>150 cells/FoV), origi-

nating from the double counts of aggregated cells. Aggregated cells can result in a significant

overestimation of cell counts due to the lack of cell boundary detection, leading to double

counts. This is in line with the decreased accuracy observed for heavily aggregated cultures by

manual cell counting methods and the majority of automated cell counters [39]. In general,

dead cell detection and classification represents a greater challenge. This is because these cells

have less distinct features (e.g. a less pronounced outer boundary and decreased distinction

from the blue background relative to white alive cells), and are more susceptible to disintegra-

tion as a result of apoptosis. Indeed, the accuracy of (intact) dead cell counts achieved by the

ML model exceeded that of previously published work [15–17]. Because the majority of the

test images were acquired from cultures with conditions supporting cell growth, the dead cell

counts were low relative to the alive cell counts. It needs to be noted that the accuracy of all cell

counting techniques based on cell phenotype increases when the sample is derived from cul-

tures exhibiting low levels of cell lysis. These techniques only take into account alive and intact

dead cells, and therefore cannot determine the degree of cell lysis. Any extent of cell lysis will

necessitate further evaluation, such a through the measurement of lactate dehydrogenase levels

[40]. To assess whether the ML model could accurately determine the number of dead cells

even at low cell counts, we magnified this regime (insets Fig 3C and 3D). For both cell lines

the ML model was able to determine the cell counts with high accuracy. The viability of the

cell cultures was determined based on the viable and total cell counts in the individual images

and categorized per cell type (Fig 3E and 3F). Again, as most of the cell images originated

from cultures with conditions supporting cell growth, the higher viabilities are overrepre-

sented in the data set (insets Fig 3E and 3F). For both cell lines jointly, on average the differ-

ence in viability determined by manual counting and the ML model was 0.99% ± 1.55%, which

is lower than the average operator-to-operator variation in manual viability determination

using a counting chamber (2–13%) [41] and well within the target (maximum difference of

5%) of this study.

As a second, more quantitative assessment of the performance of our ML model, we con-

structed a confusion matrix to determine the F1 score, sensitivity, and recall of all images, both

per cell line and for both cell lines jointly (Fig 4) [36, 37]. The per cell line quantification was

performed to reveal any differences in the performance of the model between them. For the
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alive cell count, this analysis showed that the ML model performed better for Hi5 (F1 = 0.99)

cells than for Sf9 (F1 = 0.96) cells. This increased performance most likely originated from the

larger size of the Hi5 cells, which made them easier to detect [42]. For both cell lines jointly,

the model was able to detect alive cells (Fig 4A) slightly better than dead cells (Fig 4B), a conse-

quence of their greater consistency in size and shape and the larger number of alive cells in the

training data set. For all investigated conditions (per cell line and jointly; alive and dead cells),

Fig 3. Correlation plots between the manual cell count of images and the cell count by the ML model. (A) Alive cell counts for Hi5 cells (n = 66). (B) Alive

cell counts for Sf9 cells (n = 56). (C) Dead cell counts for Hi5 cells (n = 66). Inset: magnification of the region with lower dead cell counts. (D) Dead cell counts

for Sf9 cells (n = 56). Inset: magnification of the region with lower dead cells counts. (E) Calculated viability of Hi5 cell cultures. Inset: magnification of the

region with higher viabilities. (F) Calculated viability of Sf9 cell cultures. Inset: magnification of the region with higher viabilities.

https://doi.org/10.1371/journal.pone.0291625.g003
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the leading performance parameter (F1 score) exceeded 0.95. These high F1 scores demon-

strate that this ML model is highly suitable for accurate cell density and viability determination

of cell cultures.

To examine whether there were differences in performance between images with a high

and low cell count, we investigated the F1 scores across the range of cell densities (Fig 5). As

we can observe in both panels, we note that the ML model is able to accurately classify both

alive and dead cells in images with a very high cell density (F1> 0.90 for cell counts >400

cells/FoV). This allows one to apply the ML model to cell cultures with a high cell density with-

out the need for additional dilution prior to analysis, thus reducing additional experimental

error and process time, provided that aggregation is not apparent. If it is, then dilution is

required, analogously to other cell detection methods (e.g. manual and automated cell count-

ing). The ML model yields lower F1 scores for both alive (Fig 5A) and dead (Fig 5B) cell

counts at lower cell counts, with this effect being more substantial for the dead cell counts

(inset to Fig 5B). A decrease of the F1 scores with lower cell counts is inherent to their

Fig 4. Performance of the ML model based on confusion matrix theorem. The independent performance parameters were calculated using Eqs (1)–(3) for

Hi5 (n = 66 images) and Sf9 (n = 56 images) data sets both separately, and jointly (totaling 20,000+ cells in 122 images). False positives, false negatives, and true

positives were determined manually.(A) Performance parameters for the alive cell counts both per cell line and jointly. (B) Performance parameters for the

dead cell counts both per cell line and jointly.

https://doi.org/10.1371/journal.pone.0291625.g004

Fig 5. Investigation of a drop-off in F1 scores at different insect cell counts per image. Sf9 and Hi5 data sets combined. (A) F1 scores for alive cell

counts per FoV assigned by the ML model (n = 122). (B) F1 scores for dead cell counts per FoV assigned by the ML model (n = 122). Inset: magnification

of the region with low cell counts.

https://doi.org/10.1371/journal.pone.0291625.g005
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computation: for a low number of cells (TP in Eq (3)), the effect of a single misclassification

(either FP or FN in Eq (3)) has a disproportionate influence. This, together with the low total

number of dead cells per FoV detailed above, accounts for the more severe decrease in F1

scores observed at lower cell counts for dead cells.

Given the promising performance of our ML model for insect cells, we next investigated

the applicability of the same model to Trypan blue-stained human embryonic kidney (HEK)

Fig 6. Evaluation of the performance of the ML model on HEK cells. (A) Image of HEK cell culture taken at 10X magnification with contents classified by

the ML model. Alive cells are indicated by blue bounding boxes and dead cells by red bounding boxes. Scale bar represents 250 μm. (B) Correlation plot

between the alive cell counts determined manually and by the ML model on HEK cells. Inset: magnification of the lower count regimes. (C) Correlation plot

between the dead cell counts determined manually and by the ML model on HEK cells. Inset: magnification of the lower count regimes. (D) F1 scores of the

alive cell counts assigned by the ML model for HEK cells (n = 52). Inset: magnification of the low cell count regime. (E) F1 scores for dead cell counts assigned

by the ML model for HEK cells (n = 52). Inset: magnification of the low cell count regime. (F) False positives, false negatives, and true positives were

determined manually. The independent performance parameters were calculated over all 6801 HEK cells in all 52 images.

https://doi.org/10.1371/journal.pone.0291625.g006
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cells. These cells exhibit a distinctive differentiation pattern similar to that of insect cells,

where white and blue markers are used to distinguish between alive and dead cells, respec-

tively. As before, images were taken of cultures with conditions supporting cell growth, and

these were then analyzed using slightly altered post-processing parameters (confidence inter-

val, intersection over union, and bounding box size were set at 0.15, 0.1, and 25 px2, respec-

tively) set following visual inspection of the initial classification by the model using default

settings. The decrease in the values of the confidence interval and intersection over union

parameters followed logically from the smaller size of HEK cells relative to insect cells

(Fig 6A).

The correlation plots for HEK cells (Fig 6B and 6C) indicated similar performances of the

ML model for alive (Fig 6B) and dead (Fig 6C) cell counts, with a marginal underestimation

for the higher dead cell counts (>200 cells/FoV). Anew, the performance parameters deter-

mined that the ML model was able to determine the majority of the cell counts correctly

(Fig 6D; F1 = 0.97 and 0.95 for alive and dead cell counts, respectively), however, marginally

lower than for insect cells. This decreased performance originated from the much smaller size

(diameter: 11–15 μm) of HEK cells compared to insect cells (diameter: 17–30 μm), their less

pronounced cell boundaries, and most prominently, the lack of training of the ML model on

these cells [8, 42]. Similarly to insect cells and especially so for dead cell counts, we observed

drop-offs in the F1 score for lower cell counts (Fig 6E and 6F). The rationale behind this drop-

off is analogous to the abovementioned detrimental effects of misclassification at low cell

counts on the F1 score.

Conclusions

Here, we have presented an alternative to manual or automated cell counting, for Trypan blue-

stained microscopic images of insect cells and HEK cells. Our ML model was able to determine

cell counts with very high accuracy, without the need for manual image processing prior to

automated cell counting. Our ML model provides a faster and cheaper alternative to manual

cell counting and acquisition of a commercially available automated cell counter, respectively.

Moreover, the model is able to quickly process a large number of images, allowing the operator

the opportunity to rapidly determine the cell counts of multiple cultures. We expect that this

ML model will provide a useful tool for operators of cell cultures at all scales, and that it will

lower the threshold for scientists requiring protein expression by insect cell production

platforms.
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