
 
 

Delft University of Technology

Analytical formulations and comparison of collapse models for risk analysis of
axisymmetrically imperfect ring-stiffened cylinders under hydrostatic pressure

Reijmers, J. J.; Kaminski, M. L.; Stapersma, D.

DOI
10.1016/j.marstruc.2022.103161
Publication date
2022
Document Version
Final published version
Published in
Marine Structures

Citation (APA)
Reijmers, J. J., Kaminski, M. L., & Stapersma, D. (2022). Analytical formulations and comparison of collapse
models for risk analysis of axisymmetrically imperfect ring-stiffened cylinders under hydrostatic pressure.
Marine Structures, 83, Article 103161. https://doi.org/10.1016/j.marstruc.2022.103161

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.marstruc.2022.103161
https://doi.org/10.1016/j.marstruc.2022.103161


Marine Structures 83 (2022) 103161

Available online 25 January 2022
0951-8339/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Analytical formulations and comparison of collapse models for 
risk analysis of axisymmetrically imperfect ring-stiffened cylinders 
under hydrostatic pressure 

J.J. Reijmers *, M.L. Kaminski, D. Stapersma 
Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands   
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A B S T R A C T   

Risk-based design of marine pressure hulls require computationally efficient and precise models 
predicting collapse pressures of ring stiffened cylindrical shells as a function of realistic 
geometrical imperfections. However, the empirical interframe collapse models commonly 
implemented in design codes do not explicitly depend on imperfections, and the existing 
analytical models are only valid for axisymmetrically imperfect shells. The goal is to derive an 
analytical model that explicitly depends on axisymmetric and asymmetric imperfections. In order 
to derive such a model, first the stress development is investigated using the nonlinear Finite 
Element Analysis (FEA) of twelve marine pressure hulls having axisymmetric imperfections only. 
The knowledge gained from these investigations is used to qualify three collapse models. One of 
them, the integral model introduced by the authors, is accurate and sufficiently precise. It uses a 
new definition of interframe collapse, which also allows for asymmetric imperfections.   

1. Introduction 

Decision makers responsible for design, purchase, and operation of high-value assets, such as marine structures, need risk-based 
methods for comparing different alternatives and, subsequently, for making informed decisions. For ship and offshore structures 
such methods applied for structural systems have been discussed during the last ISSC congress [1]. These methods follow earlier 
developments for mechanical systems, e.g. Vucinic [2]. Recently Stambaugh [3] has presented and validated a new method that is 
based on a Risk and Total Ownership Cost (TOC) trade-space. The method can be used for making decisions on e.g.: carrying out a 
non-mandatory fatigue analysis, application of stricter or less stricter production tolerances, installing Hull Structural Monitoring 
(HSM), lifetime extension or selection of a new design from several alternatives. All these risk-based methods require, however, 
computationally efficient models capable of precisely predicting different structural failures. 

This paper deals with submarine pressure hulls, consisting of a metallic cylindrical shell, stiffened by ring frames as shown 
schematically in Fig. 1. Its main structural failure is a collapse under external pressure which can be i) interframe collapse, i.e. collapse 
of shell between rings; ii) global collapse, i.e. bending collapse of ring stiffener including adjacent shell; iii) frame tripping and iv) failure 
of structural details (e.g. cone transitions, penetrations) (MacKay [4]). In general, the last two failure modes are avoided with a minor 
impact on pressure hull design by making their collapse pressures higher than the collapse pressures of the first two failure modes. The 
influence of frame tripping is in fact rather small [5] and the phenomenon can be avoided by imposing geometrical restrictions of ring 
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scantlings, which eliminate this failure mode. An example of such restrictions is given by Germanischer Lloyd [6]. This paper handles 
the interframe collapse. 

Adequate models of the interframe collapse pressure for use in risk-based methods must be a function of scantlings, material data 
and fabrication factors such as geometrical imperfections, which can be axisymmetric or asymmetric. 

The existing interframe collapse models are either empirical or analytical. Evidently empirical models based on statistical analysis 
of experimental data without explicit allowance for geometrical imperfections must be disqualified. As shown further on, and un-
fortunate for the purpose of present work, the main and widely used model of the interframe collapse pressure is an empirical model 
with scantlings and material data as input, leaving the imperfection unspecified. In contrast, the widely used model of the global 
collapse pressure explicitly allows for an asymmetric imperfection and, therefore, could be adequate for use in the risk-based methods. 

There are analytical interframe collapse models, which are valid either for perfect or axisymmetric imperfect cylindrical shells 
supported by perfectly circular rings, Salerno and Pulos [7], Lunchick and Short [8] or for asymmetrically imperfect cylindrical shells 
supported by perfectly circular rings, Bodner and Berks [9], Kendrick [10], Galletly and Bart [11]. There are no analytical interframe 
collapse models known to the authors for axisymmetrically and asymmetrically imperfect cylindrical shells supported by imperfect (i. 
e. not perfectly circular) rings. The goal is to derive such a model and this paper describes first steps the authors have made towards this 
goal. These steps include i) collection of data on twelve sufficiently diverse marine pressure hulls; ii) interframe collapse analysis of 
these hulls with perfect and axisymmetrically imperfect cylindrical shells supported by perfectly circular rings using a nonlinear 
axisymmetric, i.e. 2D, Finite Element Analysis (FEA) which will be used as a reference for qualifying corresponding analytical 
interframe collapse models; iii) general discussion of existing interframe collapse models; iv) evaluation of existing analytical inter-
frame collapse models for perfectly circular and axisymmetrically imperfect cylindrical shells supported by perfectly circular rings; and 
v) postulation of a new collapse model with a capability to allow for asymmetrically imperfect cylindrical shells and rings. The 
remaining steps will be reported in two follow-up papers and include vi) interframe collapse analysis of the hulls with asymmetrically 
imperfect cylindrical shells supported by perfectly circular and asymmetrically imperfect rings using a nonlinear 3D-FEA; and vii) 
qualification of the new model for such ring stiffened cylindrical shells. 

The focus in qualifying different analytical collapse models is on their ability to allow for different imperfection forms. The FEA 
results are first used to determine the mean plastic reserve and the mean effect of imperfections. Subsequently the FEA calculations 
serve as a benchmark to qualify the analytical stress theories with respect to accuracy and precision in predicting first yield midbay. 
Finally, the FEA results are used to qualify the analytical collapse models regarding their accuracy and precision in predicting the 
interframe collapse pressures. The accuracy and precision both for first yield and interframe collapse were estimated by calculating a 
mean bias and its standard deviation for twelve hulls of sufficiently diverse geometries with either inner or outer rings. The best model 
for use in a risk analysis is a model having the highest precision, i.e. having the lowest standard deviation of its bias. The accuracy, i.e. 
the mean bias, is of less importance in a risk analysis because model predictions can be adjusted by using its value. 

It is noted that the 2D-FEA results have been convincingly used as the reference because an additional investigation [12] has 
demonstrated that different FEA programs using different axisymmetric elements and meshes (Abaqus with elements CAX4R and 
CAX8R, NX NASTRAN with elements CQUADX4 and CQUADX8, and ANSYS with elements Plane182 and Plane183) give the same 
results when shear locking is prevented for linear elements. This means that the FEA predictions of the axisymmetric problem under 
consideration are deterministic, i.e. are free of uncertainty. An example of applied axisymmetric mesh with five quadratic higher order 
elements over the thickness is shown in Appendix A. For 3D-FEA it is different as shown by MacKay [13] and Reijmers and Stapersma 
[14]. 

2. Interframe collapse process 

2.1. Perfect geometry 

The process of interframe collapse of perfect ring stiffened cylindrical shells is discussed in this section. Submarine pressure hulls 
are stocky and their interframe collapse is dominated by plasticity before a significant geometrical nonlinearity is developed. This is 
hereafter illustrated using a non-linear FEA of twelve different pressure hulls described in Appendix A. These pressure hulls are 
characterised by three characteristic parameters (i.e. two parameters which are characteristic for the elastic buckling differential 
equation and one material parameter). 

The first parameter is the shell flexibility parameter θ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3 · (1 − ν2)4

√
· L/

̅̅̅̅̅̅̅̅̅
R · h

√
[7], also known in different forms as the Batdorf 

parameter Z =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ν2

√
· L2/(R · h) [15] or the composite geometric parameter S =

̅̅̅
6

√
/π ·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ν24

√
· L/

̅̅̅̅̅̅̅̅̅
R · h

√
[16]. Small (e.g. Z < 102) 

Fig. 1. A segment of a ring-stiffened cylindrical shell and its scantlings.  
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and high (e.g. Z > 104) values of these parameters indicate respectively a plate-like and a ring-like elastic buckling of cylindrical shells. 
As shown in the table in Appendix A all hulls under consideration have very small values of these parameters meaning that the cy-
lindrical shells under consideration are short and would buckle like plates having the length (a) equal to shell’s circumference (a =
2πR) and the width (b) equal to the cylindrical shell length (b = L). 

The second parameter is the ratio of the shell area and the effective ring area As/Af. This ratio controls the extent of buckling. The 
higher the ratio the smaller the rings and the more likely the global buckling and consequently the global collapse is. The table in 
Appendix A shows values of the ratio. The ratio is also plotted against the shell flexibility parameter in Fig. 2. The first seven hulls 
represent modern realistic submarine designs having relatively small values of the ratio indicating that they are designed to fail first by 
the interframe collapse. Remaining pressure hulls and especially both Kendrick hulls show higher values of the ratio indicating that 
they are designed to fail first by global collapse. Therefore, the paper presents two groups of statistical results: results calculated for all 
twelve hulls and the first seven. 

The third parameter is a material parameter. It is the ratio between Young’s modulus and the yield stress E/σy. This ratio controls 
the extent of yielding involved in a failure. The higher value of the ratio the more a structural failure is governed by yielding. All 
considered cylinders are made of materials having high values of the ratio. The table in Appendix A shows these values. Fig. 3 shows 
the ratio versus the shell flexibility parameter θ. 

The pressures of first yield and the collapse pressures are given hereafter for all twelve hulls but the interframe collapse process is 
illustrated for the Starfish-aft hull only because the other hulls undergo a similar process. Fig. 4 shows how axial, hoop and von Mises 
stresses develop at the ring and midbay of the Starfish-aft hull. The blue and red lines indicate stress developments at outside and inside 
shell surfaces of the pressure hull, respectively. The relationship between stresses and external pressure is predominantly linear until 
the first yield occurs at the ring inside location at a pressure pyy,ring = 5.332 MPa. This observation is important for analytical models 
discussed further on because it confirms that the nonlinear geometric effects are hardly developed when yielding starts for the hulls 
under consideration. The yielding zone at the ring extends slowly and yielding midbay at outside shell surface successively follows at a 
pressure pyy, midbay = 5.606 MPa (The first yield pressure is calculated in pressure-von Mises space, as shown in Fig. 4e and f, by linear 
extrapolation of the last two solutions having von Mises stress lower than the yield stress.) The yielding zone midbay extends faster 
than the yielding zone at the ring and starts to dominate the interframe collapse process. At collapse pressure a large area midbay is 
yielding over the entire thickness, while at ring location the yield zone remains restricted to the inside of the shell. This justifies the 
assumption used in the analytical models as used by most Class Rules that interframe collapse is driven by yielding between the rings. 

Further, all stresses at both locations begin as compressive stresses and remain compressive until yielding starts. During yielding 
some stress redistribution is taking place, which results in less compression midbay inside and a tension at ring outside location. This 
observation is also important for defining plastic hinges in analytical collapse models discussed further on. The collapse pressure of pc 
= 6.479 MPa is defined as the last solution at which convergence criteria on displacements, forces and moments are met. The plastic 
reserve is defined as the ratio between the collapse pressure and the pressure at first yield at midbay and equals pc/pyy = 1.16. The 
results, including those for the other pressure hulls, are summarised in Table 1. The plastic reserve of all pressure hulls under 
consideration varies between 10% and 18%. The mean plastic reserve for all hulls and the first seven hulls do not differ much and 
equals 15% and 16%, respectively. 

Next section presents the FEA results of the same pressure hulls but with an axisymmetrically imperfect cylindrical shells supported 
by perfectly circular rings. 

2.2. Imperfect geometry 

Submarine hulls show geometrical imperfections of their shells, caused by the fabrication process or operational incidents. The last 
ones (dents or locally reduced shell thickness caused by corrosion) result in an immediate repair or an operational restriction and are 
not considered in this paper. The fabrication induced shell imperfections are caused by welding of bended plates and ring stiffeners in 

Fig. 2. Area ratio As/Af versus shell flexibility parameter θ  
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order to form a ring stiffened cylindrical shell. 
Seams and welds of ring stiffeners induce predominantly axisymmetric imperfections which in the axial direction can be 

approximated by a half wave. This is in agreement with Ellinas and Croll [16] who predict such imperfections for ring stiffened cy-
lindrical shells having composite geometric parameter S < 2, which is the case for the submarine pressure hulls under consideration 
(see the table in Appendix A) except the two Kendrick’s hulls which have slightly higher values. It is important to note that with outer 
rings this axisymmetric imperfection will be directed outward, i.e. in the opposite direction to the deflection caused by the external 
pressure. 

The butt welds between the bended plates of which the shell is fabricated induce an asymmetric imperfection showing N-waves in 
the circumferential direction, where N usually varies between 2 and 5. This imperfection spans over ring stiffeners and, therefore, also 
contributes to the global imperfection. 

The classical elastic buckling theory states that only imperfections in the form of the lowest buckling mode reduce the elastic 
buckling pressure. For the pressure hulls under consideration the lowest interframe buckling pressure (listed in Appendix A) is much 
higher than the first yield pressure given in Table 1. The associated mode is asymmetric and shows n-waves around the circumference, 
where n > N and ranges between 11 and 15 for the hulls under consideration as listed in Appendix A. An imperfection with such 
number of waves is in practice very small and is therefore disregarded. In this paper only axisymmetric shell imperfections are 
considered. However, the new interframe collapse model has a capability to account for asymmetric imperfections having N-waves. 

The amplitude of the axisymmetric shell imperfection is chosen at L/250. This value is relatively high for submarine manufacturing 
but for the purpose of qualifying the model it approximately represents an average of maximum allowable amplitudes of axisymmetric 
shell imperfection (i.e. out-of-straightness) specified by the following codes:  

• DNV-GL [17] and PD 5500 [18] specify maximum allowable amplitudes for long cylinders equal to L/500 and L/333, respectively.  
• Offshore rules specify larger maximum allowable amplitudes, e.g. DNV–OS–C401 [19] specifies the amplitude equal to δ = 0.01 g, 

where g is the rod length, which in the considered case equals the ring distance, giving the amplitude equal to L/100.  
• Ellinas and Croll [16] base the amplitude on the composite geometry parameter S and this gives a varying percentage of the ring 

distance. 

Table 2 summarises these amplitudes. Just for comparison, the last column of this table, gives the maximum allowable amplitude of 
asymmetric imperfection (i.e. out-of-circularity) specified in many codes. 

Nevertheless, the goal is to show the interframe collapse process of axisymmetrically imperfect stocky shells and this should be 
qualitatively independent of imperfection amplitude in the range presented above. Following Lunchick and Short [8] the half wave 
shape of axisymmetric imperfection is modelled in a parabolic shape and, therefore, the initial imperfection has a discontinuity at ring 
location as shown for the Starfish-aft on Fig. 5a. 

Fig. 5c and e shows how von Mises stresses develop midbay of the Starfish-aft and Starfish-mid having respectively outer and inner 
rings and having consequently opposite axisymmetric imperfections. Both developments are qualitatively the same and are also 
qualitatively the same to those developments shown in Fig. 4 for the perfect hull. Hence, all conclusions made for perfect hulls are also 
valid for imperfect hulls. 

Fig. 3. Material parameter E/σy versus shell flexibility parameter θ  
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Table 3 shows the first yield and the collapse pressures for imperfect hulls. The mean plastic reserve of all pressure hulls under 
consideration (15%) and the first seven pressure hulls (16%) is the same as for perfect hulls. So, the selected amplitudes of axisym-
metric imperfections do not affect plastic reserves. 

Fig. 4. FEA stress results for perfect Starfish-aft.  
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2.3. Comparison between perfect and imperfect geometry 

As expected, and as shown in Table 4, the first yield and the collapse pressures depend on the position of ring stiffeners. For hulls 
with inner and outer ring stiffeners the imperfections respectively decrease and increase both pressures. The change in the first yield 
pressure is − 7.3 and 6.9% for inner and outer rings, respectively. The change in the collapse pressure − 4.3 and 3.7% for inner and 
outer rings, respectively. 

The qualitative and quantitative descriptions of the interframe collapse process of perfect and axisymmetrically imperfect hulls are 
hereafter used for qualifying corresponding analytical models. The 3D-FEA of interframe collapse of hulls having asymmetric shell 
imperfections with perfect and asymmetrically imperfect rings will be reported in two follow-up papers. 

3. Pressure hull collapse models 

Interframe buckling and collapse pressure models have a long history that dates to the beginning of the last century [20]. Over the 
50’s and 60’s several models have been developed for estimating collapse pressures, and the achievements of the David Taylor Model 
Basin (USA) and the Naval Construction and Research Establishment (UK) contributed largely to present pressure hull design methods. 
Where the UK tradition for an important part makes directly use of experimental data through regression analysis, for instance 
Kendrick [21,22], Faulkner [23], Mackay [24], Cerik [25] and Cho [26], the US tradition relies mostly on analytical models presented 
by Salerno and Pulos [7], Galletly and Bart [11], Lunchick [27], Reynolds [28], Lunchick [29] and Pulos [30]. In 90’s several re-
searchers investigated probabilistic design of submarine pressure hulls among others Faulkner and Das [31], Faulkner [32], Chrys-
santhopoulos [33], Frieze [34], Morandi [35], Groen and Kaminski [36]. However, this research was focused on probabilistic design 
and was using existing analytical models. Therefore, this research is excluded from the discussion because it has not resulted in new 

Table 1 
FEA pressure results for perfect hulls.  

Perfect hull First yield midbay pressure Collapse pressure Plastic reserve 

pyy pc pc/pyy - 1 

MPa MPa % 

Manatee 5390 6290 17 
Starfish - aft 5606 6479 16 
Starfish - mid 5553 6570 18 
Seahorse - aft 5956 6972 17 
Seahorse - mid 5931 6759 14 
Sea lion - aft 7371 8412 14 
Sea lion - mid 7152 8313 16 
Potvis 4896 5662 16 
DREA experiment 1993 7825 9336 19 
ISSC Round robin 7557 8637 14 
Kendrick hull 1970 6064 6738 11 
Kendrick hull 1986 5710 6290 10  

Mean plastic reserve All geometries 15   
First seven 16  

Table 2 
Examples of maximum allowable axisymmetric and asymmetric imperfection amplitudes [mm].  

Hull Maximum allowable amplitude 

Axisymmetric imperfection Asymmetric imperfection 

DNV-GL 
L/500 

PD 5500 
L/333 

DNV–OS–C401 
L/100 

Ellinas & 
Croll 
wmax 

This paper 
L/250 

PD 5500 
DNV-GL 
0.005*Rm 

Manatee 1,30 1,95 6,50 7,40 2,60 15,1 
Starfish - aft 1,25 1,88 6,25 6,97 2,50 15,6 
Starfish - mid 1,60 2,40 8,00 8,67 3,20 21,1 
Seahorse - aft 0,72 1,08 3,60 2,36 1,44 14,1 
Seahorse - mid 0,90 1,35 4,50 2,97 1,80 17,6 
Sea lion - aft 1,20 1,80 6,00 6,72 2,40 14,1 
Sea lion - mid 1,50 2,25 7,50 8,43 3,00 17,6 
Potvis 0,75 1,13 3,75 4,18 1,50 7,7 
DREA experiment 1993 0,08 0,12 0,40 0,38 0,16 0,56 
ISSC Round robin 0,10 0,15 0,50 0,55 0,20 0,61 
Kendrick hull 1970 1,52 2,29 7,62 8,19 3,05 12,7 
Kendrick hull 1986 1,46 2,19 7,30 8,09 2,92 13,5  

J.J. Reijmers et al.                                                                                                                                                                                                     
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interframe collapse models. 
Until the last two decades interframe and global failure modes were assumed independent and assessed separately because the 

conventional design strategy was directed towards interframe collapse, i.e. a choice of the shell thickness, which predominantly de-
fines the pressure hull mass, based on a safety factor on the axisymmetric stresses with respect to midbay yield, determined either in an 
empirical or analytical way. The global collapse pressure was kept away from the interframe collapse pressure by using a higher safety 
factor in order to account for a large uncertainty associated with interaction between both failure modes and large imperfection 
sensitivity of the global collapse pressure. A new design strategy, such as a Risk and TOC trade space, ultimately must account for 
possible interaction between both failure modes. However, first an interframe model, which explicitly accounts for both axisymmetric 
and asymmetric imperfections is needed. 

4. Empirical interframe collapse models 

An empirical interframe collapse pressure model is presented in the British Standard (BS) [18]. Its origin can be found in Ref. [21]. 
Kendrick presented his model to the British Standards institution in Ref. [22]. A thorough description is also given by Faulkner [23]. 
Fig. 6 shows a large collection of experimental data of interframe collapse pressures pc which are normalized with the shell yield 
pressures py defined by Kendrick [22] (Section 8), i.e. a pressure at which the membrane hoop stress midbay reaches the minimum 

Fig. 5. FEA stress results for imperfect Starfish-aft and -mid.  
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Table 3 
FEA pressure results for the imperfect hulls.  

Hull with 
imperfection amplitude 
Lf/250 

First yield midbay pressure 
pyy_i 

MPa 

Collapse pressure 
pc_i 

MPa 

Plastic reserve 
pc_1/pyy_i - 1 
% 

Manatee 4.994 5.947 19 
Starfish - aft 6.078 6.815 12 
Starfish - mid 5.143 6.231 21 
Seahorse - aft 6.403 7.242 13 
Seahorse - mid 5.497 6.647 21 
Sea lion - aft 7.997 8.817 10 
Sea lion - mid 6.626 7.863 19 
Potvis 5.216 5.776 11 
DREA experiment 1993 8.246 9.596 16 
ISSC Round robin 7.218 8.412 17 
Kendrick hull 1970 5.655 6.430 14 
Kendrick hull 1986 6.199 6.570 6  

Mean plastic reserve All geometries 15   
First seven 16  

Table 4 
FEA results – effect of imperfections on first yield and collapse pressures.  

Hull First yield pressure Collapse pressure 

Perfect Imperfect Difference Perfect Imperfect Difference 

(i) - inner ring pyy pyy_i 1 - pyy/pyy_i pc pc_i 1 - pc/pc_i 

(o) - outer ring MPa MPa % MPa MPa % 

Manatee (i) 5.390 4.994 − 7,9 6.290 5.947 − 5,8 
Starfish - aft (o) 5.606 6.078 7,8 6.479 6.815 4,9 
Starfish - mid (i) 5.553 5.143 − 8,0 6.570 6.231 − 5,4 
Seahorse - aft (o) 5.956 6.403 7,0 6.972 7.242 3,7 
Seahorse - mid (i) 5.931 5.497 − 7,9 6.759 6.647 − 1,7 
Sea lion - aft (o) 7.371 7.997 7,8 8.412 8.817 4,6 
Sea lion - mid (i) 7.152 6.626 − 7,9 8.313 7.863 − 5,7 
Potvis (o) 4.896 5.216 6,1 5.662 5.776 2,0 
DREA experiment 1993 (o) 7.825 8.246 5,1 9.336 9.596 2,7 
ISSC Round robin (i) 7.557 7.218 − 4,7 8.637 8.412 − 2,7 
Kendrick hull 1970 (i) 6.064 5.655 − 7,2 6.738 6.430 − 4,8 
Kendrick hull 1986 (o) 5.710 6.199 7,9 6.290 6.570 4,3   

Mean difference (i) − 7,3   − 4,3   
Mean difference (o) 6,9   3,7  

Fig. 6. Empirical basis of BS design curve for interframe collapse pressure (Faulkner, 1983, Image 4).  
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required yield stress. So, the contribution of the axial stress to the yielding is here disregarded. The ratio of pc/py depends on the ratio 
pm/py where pm is the elastic interframe buckling pressure. This ratio presents a characteristic value of the pressure hull shell ge-
ometry. Hence, the empirical interframe model in PD 5500 depends solely on two variables pm and py which do not depend on 
imperfections. 

The effect of imperfections and other influencing parameters is considered by regression analysis of experimental results (as shown 
in Fig. 6) assuming that the experimental cylindrical shells had representative imperfections, i.e. out-of-circularity amplitude lower 
than R/200. PD 5500 uses a safety factor of 1.5 on the lower bound curve of empirical data of interframe collapse pressures whereas for 
global collapse pressures it uses a safety factor of 2.0. This difference in safety factors reflects Kendrick’s intention of keeping global 
collapse pressures away from interframe collapse pressures. 

Fig. 6 shows a significant scatter of the experimental data points. An analysis of graphically retrieved data gives the standard 
deviation of approximately 12%. Another estimate is published by Mackay [24] (his Table 2) who investigated the accuracy estimates 
for submarine design formulae. He estimated a coefficient of variation of 8.53% and a bias of 1.022 based on 50 experimental data 
points, resulting in a standard deviation of approximately 9%. Both standard deviations comprise measurement uncertainty, parameter 
uncertainty in scantlings, material properties and imperfections (i.e. deflections, misalignments, residual stresses) and model uncer-
tainty caused by the assumed mean curve. The analytical models have no measurement uncertainty, use deterministic values of the 
parameters but have model uncertainty in the support by the ring stiffeners and in the collapse models. Therefore, the standard de-
viation in the comparison between analytical models and FEA results must be stricter than 9%–12%. In this paper the achievable 
standard deviation (precision) for three analytical collapse models will be assessed. 

Besides the above empirical interframe collapse model, PD 5500 presents also an analytical interframe collapse model in 
Appendix M. This model will be discussed in a follow-up paper because this model is applicable for cylindrical shells with asym-
metrically imperfect shells with imperfection amplitudes higher than R/200 and perfectly circular rings. 

PD 5500 [18] without its Appendix M is an example of a conventional design methodology with an empirical model for the 
interframe collapse pressure. This disqualifies PD 5500 design methodology for an adequate use in risk-based methods. 

Cerik [25] eliminates the separate treatment of interframe and global failure modes by proposing the following interaction formula: 

(
pc

ρ1 · pm
+

pc

ρoa · pn

)2

+

(
pc

pyy

)2

= 1 (1)  

where pc is a collapse pressure in an undefined mode, pm is the linear elastic interframe buckling pressure defined by von Mises [37], pn 
is the linear elastic global buckling pressure presented by Bryant [38], and ρ1 and ρoa are knockdown factors which are determined in a 
regression analysis of experimental data and implicitly account for effects of interframe and global imperfections, respectively. Cerik 
defines the yield pressure pyy as the pressure causing yield midbay at the shell centre. He uses therefore the equivalent stress calculated 
from the hoop membrane stress and the axial membrane stress (Equation (5)). 

It is observed that Cerik’s formula (1) does not reduce to the formulation of PD 5500 for the interframe collapse pressure shown in 
Fig. 6, when pn is disregarded, pm/py≫1 and when py is used instead of pyy. 

The Cerik’s model is an empirical combination model of both collapse modes that not really explains the interaction and does not 
explicitly depend on interframe imperfections. This disqualifies the model for use in risk-based methods. The same conclusion applies 
for the model presented by Cho [26] who extended Cerik’s model by accounting for the ring tripping failure mode. Hence there will be 
a need of proposing a new combined model which will be a function of the global collapse pressure and a new interframe collapse 
pressure model presented in this and follow-up papers. 

5. Analytical interframe collapse models 

5.1. Axisymmetric stress theory 

Stress levels in perfectly circular, ring-stiffened cylindrical shells were given by von Sanden and Günther [39] and improved by 
Salerno and Pulos [7]. They derived the solution for a fourth order differential equation in radial deflection of a thin-walled cylindrical 
shell including geometrically nonlinear terms coupling radial deflection with axial compression, i.e. the beam-column effect. The 
ring-frame was considered as a boundary condition with constrained rotation and finite radial stiffness determined by the area of the 
ring. The ring area is translated into an effective area depending on the location of the ring (inside or outside) where the dependency on 
the ratio of the radii of the shell and the centre of gravity (C.o.G.) of the ring can be either linear or quadratic. Where Salerno and Pulos 
[7] leave the choice between linear or quadratic dependency open (see their equation 24), Pulos [30] states that linear dependency is 
applicable to internal rings and quadratic dependency to external rings (see his equation 9). Kendrick [21] following Wilson [40] 
(1966) has the quadratic relation. In this paper a linear dependency is used. The solution basically gives the radial deflection, and this 
means that the decrease in radius gives not only the stresses in the shell (both midbay and at ring location) but also the stresses in the 
rings. Different codes are based on their solution. While DNV-GL follows the same solutions as the authors, PD 5500 (in 3.6.2.1) uses 
the solution without the beam-column effect and with the quadratic dependency. The solution shows that normally first yield in the 
shell occurs at ring location at the inner side of the shell, followed by yielding midbay at the outer side. This matches very well FEA 
results presented earlier. 

Following the solution of Salerno and Pulos [7] for a perfect cylindrical shell Lunchick & Short [8] presented an analytical solution 
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for cylindrical shells having axisymmetric imperfections described by a parabolic shape between the rings. 
Table 5 shows the pressures giving first yield for the perfect (S&P) and the imperfect (L&S) hulls. These pressures are compared 

with the FEA result presented in Table 4. The first seven geometries are considered to be realistic modern pressure hull designs and 
show a small bias (− 0.16% for the perfect hull and − 0.22% for the imperfect hull). Both stress theories are precise because the standard 
deviations (0.6% and 0.7%) are very low. 

5.2. Mid-fibre yield pressure collapse model (MYP) 

Salerno and Pulos [7] proceed further and present a simple approach to collapse of a perfect cylindrical shell (see their equation 98) 
considering only the mid-fibre (membrane) stress of the solution described above. Collapse is assumed when the von Mises stress at 
mid-fibre between the rings reaches the yield stress indicating that half of the shell thickness must be yielding as indicated by the red 
zone in Fig. 7, although the exact behaviour in the plastic zone is not considered. The interframe collapse pressure model of Salerno and 
Pulos (the MYP model) does not allow for imperfections but in case of axisymmetric imperfections the stress state at first yield ac-
cording to Lunchick and Short (L&S) can be applied. 

For comparison with other models the mid-plane yield predictions are compared separately for all geometries, the first seven (being 
realistic pressure hull designs) in Table 6. The model gives good predictions of the collapse pressures. The mean bias calculated for all 
hulls under consideration is 1.7% for the perfect hull and 1.6% for the imperfect hull. For the first seven hulls the mean bias is even 
lower and equals − 0.2% and − 0.4%, respectively. The difference in collapse pressures is caused by their different definitions. For the 
S&P-model the yielding of half of the thickness is sufficient whereas in FEA the yielding develops further until lack of convergence. 

Table 6 also gives the standard deviation of the biases. This because, in addition to allowance for imperfections, the standard 
deviations of the biases are used for qualifying different analytical models. The realistic geometries, presented by the first seven, show 
a standard deviation of 2.2% for the perfect hull and 3.4% for the hull with initial imperfection. This means that the precision is better 
than the 5% following from the experimental results (see Fig. 6). 

5.3. Plastic hinge collapse model (HIN) 

Lunchick [27] used stress formulas derived by Salerno and Pulos [7] and defined the interframe collapse mechanism as beginning 
of a plastic hinge at midbay. He assumed the stress state in a plastic hinge at midbay, as shown in Fig. 8, in which the outer side of the 
shell is in axial and circumferential directions in compression, and the inner side of the shell is in both directions in tension. This 
assumption is not valid for hulls under consideration because hoop stresses are always in compression at both sides of the shell as 
shown in Fig. 4. 

Nevertheless his analytical derivations are correct. His formulation assumes a linear relation between hydrostatic pressure and 
resulting sectional forces and moments and thus stress, midbay in axial and circumferential direction. This means that linearity is 
assumed not only in the elastic range, but also in the plastic range as Lunchick clearly states. Fig. 9 shows the stress distribution over 
the thickness at first yield and collapse. Both distributions are proportional to the hydrostatic pressure. Although at some locations the 
yield stress is exceeded it is assumed that the distribution of stress is not affected and increases linearly with the pressure. This linearity 
also neglects the beam-column effect, which introduces a nonlinear relation between pressure and stress. Since the beam-column effect 
already occurs in the elastic regime, it is best to determine the linear relations at the pressure inducing first yield midbay at the outside 

Table 5 
First yield pressure for the perfect hull and the hull with imperfection.  

First yield midbay Perfect hull Imperfection amplitude Lf/250 

S&P FEA (FEA-S&P)/FEA L&S FEA (FEA-L&S)/FEA 

py py  py py  

Geometry MPa MPa % MPa MPa % 

Manatee 5.380 5.390 0,2 4.995 4.994 0,0 
Starfish - aft 5.586 5.606 0,4 6.043 6.078 0,6 
Starfish - mid 5.569 5.553 − 0,3 5.174 5.143 − 0,6 
Seahorse - aft 6.025 5.956 − 1,1 6.440 6.403 − 0,6 
Seahorse - mid 5.969 5.931 − 0,6 5.569 5.497 − 1,3 
Sea lion - aft 7.345 7.371 0,4 7.946 7.997 0,6 
Sea lion - mid 7.147 7.152 0,1 6.640 6.626 − 0,2 
Potvis 4.876 4.896 0,4 5.183 5.216 0,6 
DREA experiment 1993 7.981 7.825 − 2,0 8.375 8.246 − 1,6 
ISSC Round robin 7.418 7.557 1,8 7.099 7.218 1,6 
Kendrick hull 1970 6.015 6.064 0,8 5.611 5.655 0,8 
Kendrick hull 1986 5.650 5.710 1,0 6.127 6.199 1,2 

Mean bias  All 0,1  All 0,1 
First seven − 0,2 First seven − 0,2 

Standard deviation  All 1,0  All 1,0 
First seven 0,6 First seven 0,7  
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side of the shell. Fig. 9 show stress levels for the Starfish-aft over the shell thickness at first yield pressure of pyyS&P = 5.586 MPa. Based 
on these stress levels the Lunchick’s model gives the collapse pressure of pcHIN = 6.145 MPa. Fig. 9 further illustrates how von Mises 
stress is distributed over the shell thickness at first yield midbay and at the collapse pressure as defined by Lunchick. From the 

definition of von Mises stress σvM =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

ax + σ2
φ − σax · σφ

√
follows that von Mises stress is also linear with the hydrostatic pressure, p, 

however, it is nonlinearly distributed over the shell thickness coordinate z. The property that von Mises stress is proportional with the 
external pressure is further on used for derivation of a new model for the interframe collapse model. 

The Lunchick’s interframe collapse model is denoted by HIN and predictions are compared with FEA results in Table 7. The mean 
bias of the collapse pressure predicted by the HIN model is much higher than found by the MYP model. Considering all the twelve 

Fig. 7. MYP model – assumed stress distribution midbay at collapse pressure.  

Table 6 
Comparison Mid-fibre Yield Pressure collapse (MYP) with FEA result.  

Collapse model Perfect hull Imperfection amplitude Lf/250 

(MYP) MYP FEA (FEA-MYP)/FEA MYP FEA (FEA-MYP)/FEA 

pc pc  pc pc  

Geometry MPa MPa % MPa MPa % 

Manatee 6.224 6.290 1,1 5.998 5.947 − 0,9 
Starfish - aft 6.437 6.479 0,7 6.652 6.815 2,4 
Starfish - mid 6.687 6.570 − 1,8 6.488 6.231 − 4,1 
Seahorse - aft 6.859 6.972 1,6 6.945 7.242 4,1 
Seahorse - mid 7.062 6.759 − 4,5 6.968 6.647 − 4,8 
Sea lion - aft 8.322 8.412 1,1 8.611 8.817 2,3 
Sea lion - mid 8.287 8.313 0,3 8.005 7.863 − 1,8 
Potvis 5.363 5.662 5,3 5.504 5.776 4,7 
DREA experiment 1993 9.056 9.336 3,0 9.220 9.596 3,9 
ISSC Round robin 8.121 8.637 6,0 7.938 8.412 5,6 
Kendrick hull 1970 6.462 6.738 4,1 6.170 6.430 4,0 
Kendrick hull 1986 6.061 6.290 3,6 6.358 6.570 3,2 

Mean bias  All 1,7  All 1,6 
First seven − 0,2 First seven − 0,4 

Standard deviation  All 3,0  All 3,6 
First seven 2,2 First seven 3,4  

Fig. 8. Lunchick’s assumed stress distribution in a plastic hinge a midbay.  

J.J. Reijmers et al.                                                                                                                                                                                                     



Marine Structures 83 (2022) 103161

12

geometries the mean bias is more than 3 times higher for the perfect hulls (5.7/1.7) and also for the imperfect hulls (5.5/1.6). This 
inaccuracy can be eliminated in a risk analysis by correcting the HIN model predictions with the mean bias. The standard deviation of 
the collapse pressure bias is for the HIN model lower than for the MYP model. For all twelve geometries the standard deviation for the 
perfect hull is 1.9% versus 3.0% and for the imperfect hull 1.7% versus 3.6%. Therefore, for the risk-based methods the HIN model 
formally is more attractive than the MYP model, in spite of its doubtful mechanism and large bias. 

5.4. Integral collapse model (INT) 

From Table 5 follows that elastic stress solutions of Salerno and Pulos [7] and Lunchick and Short [8] for respectively perfect and 
axisymmetrically imperfect ring stiffened cylindrical shells are accurate and precise. This supports the choice of both stress solutions as 
a basis for the new model. What remains is to define the collapse pressure in such a way that it depends on additional stresses caused by 
asymmetric imperfections of shell and rings. These additional stresses will be investigated in follow-up papers. The present paper 
develops a new method to define the collapse pressure and validates the new model for perfect and axisymmetrically imperfect ring 
stiffened cylindrical shells. 

Considering the membrane stresses only when defining the collapse pressure would probably not work because the additional 
bending hoop stress due to asymmetric imperfection influences the membrane stresses throughout the geometric nonlinearity which is 
not significant for the pressure hulls under consideration. As it will be demonstrated, a better choice is connecting the collapse pressure 
with yielding of the whole shell thickness midbay, i.e. σvM = σy at each z position. As there is no elastic-plastic stress solution available 
for pressures higher than the first yield pressure an engineering approach is followed. 

First the elastic Salerno and Pulos [7] solution for perfect hulls is used in order to calculate the hoop and axial stresses midbay. 
Second, the first yield pressure midbay is determined pyyS&P. Then, von Mises stresses over the shell thickness midbay at onset of 
yielding σvM(z, p= pyyS&P) are calculated. After that, the earlier discussed property that von Mises stress is proportional to the pressure 
is used. So, it is assumed that at the onset of yielding the ratio of the first yield pressure and an integral of von Mises elastic stresses over 

Fig. 9. Stresses over the thickness midbay – Starfish aft hull.  

Table 7 
Comparison Plastic Hinge (HIN) with FEA result.  

Collapse model Perfect hull Imperfection amplitude Lf/250 

(HIN) HIN FEA (FEA-HIN)/FEA HIN FEA (FEA-HIN)/FEA 

pc pc  pc pc  

Geometry MPa MPa % MPa MPa % 

Manatee 5.939 6.290 5,6 5.651 5.947 5,0 
Starfish - aft 6.145 6.479 5,2 6.447 6.815 5,4 
Starfish - mid 6.289 6.570 4,3 6.005 6.231 3,6 
Seahorse - aft 6.562 6.972 5,9 6.771 7.242 6,5 
Seahorse - mid 6.660 6.759 1,5 6.433 6.647 3,2 
Sea lion - aft 7.995 8.412 5,0 8.391 8.817 4,8 
Sea lion - mid 7.902 8.313 4,9 7.533 7.863 4,2 
Potvis 5.198 5.662 8,2 5.396 5.776 6,6 
DREA experiment 1993 8.680 9.336 7,0 8.929 9.596 7,0 
ISSC Round robin 7.885 8.637 8,7 7.654 8.412 9,0 
Kendrick hull 1970 6.322 6.738 6,2 5.995 6.430 6,8 
Kendrick hull 1986 5.931 6.290 5,7 6.284 6.570 4,4 

Mean bias  All 5,7  All 5,5 
First seven 4,6 First seven 4,7 

Standard deviation  All 1,9  All 1,7 
First seven 1,5 First seven 1,1  
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the shell thickness equals the ratio of collapse pressure and an integral of yield stress over the shell thickness (indicating yielding over 
whole shell thickness): 

pyyS&P
∫ h/2
− h/2 σvM

(
z, p = pyyS&P

)
dz

=
pcI

∫ h/2
− h/2 σydz

(2) 

The above equation gives the interframe collapse pressure for perfect ring stiffened cylindrical shells as: 

pcI =
h · σy

∫ h/2
− h/2 σvM

(
z, p = pyyS&P

)
dz

pyyS&P (3) 

The above new model is called the Integral model, i.e. the INT model, because the collapse pressure is predicted using two stress 
integrals. For axisymmetrically imperfect hulls the Lunchick and Short stress solution is used and then the interframe collapse pressure 
for axisymmetrically imperfect hulls equals: 

pciI =
h · σy

∫ h/2
− h/2 σvM

(
z, p = pyyL&S

)
dz

pyyP (4) 

Both equations (3) and (4) use elastic stress solutions and do not require elastic-plastic calculations. Before qualifying the INT 
model, first an example is given in order to quantitatively illustrate the new definition. The example concerns application of Equation 
(3) for the perfect Starfish-aft. Fig. 10 shows the distribution of von Mises stresses over the thickness midbay when the first yield takes 
place at outside shell midbay at pressure pyyS&P = 5.586 MPa. This distribution is obtained using the Salerno and Pulos stress solution. 
The integral of these stresses equals: 

∫h/2

− h/2

σvM
(
z, p= pyyS&P

)
dz= 13, 066 MPa ·mm (5) 

The integral of the yield stress over the thickness equals: 

h · σy = 27 mm · 552 MPa = 14, 904 MPa ·mm (6) 

Hence, the collapse pressure for the perfect Starfish-aft equals: 

pcI =
14, 904 MPa ·mm
13, 066 MPa ·mm

5.586 MPa = 6.371 MPa (7) 

Fig. 10 also demonstrates the difference between the MYP model and the INT model. The dashed red line shows von Mises stresses 
equal to the yield stress at each z what corresponds to a fully plastic shell thickness. The continuous red line shows hypothetical von 
Mises stresses calculated using elastic Salerno and Pulos solution if no plasticity would occur and the area under both red lines is equal. 
Because of the concave distribution of the von Mises stress over the thickness its value at the shell centre is just below yield. This is 

Fig. 10. Von Mises stress distribution over the thickness midbay at first yield pressure (blue) and at collapse pressure (red) for Starfish-aft.  
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encircled by a black ellipse on Fig. 10. This means that the INT model gives lower collapse pressures than the MYP model, which 
requires the yield pressure at the shell centre. This difference is desired because MYP model gives not conservative results for Starfish- 
mid and Seahorse-mid. 

Now the new definition of the interframe collapse pressure is compared with the FEA results. Fig. 11 shows two von Mises stress 
distributions over the thickness obtained from FEA of Starfish-aft. The left one is at the load step near the first yield pressure midbay (i. 
e. pyy = 5.586 MPa, see Table 5). The right one is at the load step near the collapse pressure (i.e. pc = 6.371 MPa, see equation (7)). The 
integrals of both distributions equal 13,171 MPa mm and 14,871 MPa mm, respectively. Their ratio equals 1.1291. The analytical 
integrals are given in Equations (5) and (6), and their ratio equals 1.1407. The difference between both ratios equals 1.0% in this case 
and underpins the new analytical definition of the collapse pressure. A next support of the definition is given in Fig. 12 which compares 
the variation of the von Mises stress integral with the external pressure obtained from the FEA with the linear variation assumed in the 
definition. 

Fig. 12 confirms that the FEA results vary almost linearly up to the analytical collapse pressure. This justifies the assumption made 
in the new definition that in excess of the first yield pressure the integral of the von Mises stress over the thickness varies linearly with 
the pressure. 

Having examined the new collapse definition, the remaining part of this section qualifies the new integral model based on its 
predictions for the twelve pressure hulls under consideration. 

The INT model predictions for perfect hulls and hulls with imperfection are compared with FEA results in Table 8. The accuracy of 
the INT model, represented by the mean bias, regarding the collapse pressure is 2.5% for all perfect hulls and hulls with imperfection. 
This is better than mean biases of the HIN model (5.7% and 5.5%) and somewhat worse than mean biases of the MYP model (1.7% and 
1.6%). These differences are less relevant in the risk analysis because model predictions can be corrected by using its mean bias. More 
relevant is the model precision represented by the standard deviation of the bias. The precision of the INT model regarding the collapse 
pressure equals 2.7% and 2.9% for all perfect hulls and the imperfect hulls, respectively. 

Considering the first seven geometries, which can be addressed as realistic designs, the standard deviation is even lower. These 
geometries show 2.1% and 2.7% for respectively the perfect and imperfect hulls. This is better than the MYP model (2.2% and 3.4%) 
but worse than the HIN model (1.5% and 1.1%). Nevertheless, the INT model meets the requirement that its precision must be stricter 
than the 5% following from the experiments. 

The next section summarises all findings in successive evaluations of the three collapse models. 

Fig. 11. FEA results for Starfish-aft, von Mises stress distribution over the thickness midbay at a) first yield pressure, and b) at collapse pressure.  
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Fig. 12. Comparison of INT model and FEA – for perfect Starfish-aft.  

Table 8 
Comparison Integral model (INT) with FEA result.  

Collapse model perfect hull Imperfection amplitude Lf/250 

(INT) INT FEA (FEA-INT)/FEA INT FEA (FEA-INT)/FEA 

pc pc  pc pc  

Geometry MPa MPa % MPa MPa % 

Manatee 6.157 6.290 2,1 5.891 5.947 0,9 
Starfish - aft 6.371 6.479 1,7 6.621 6.815 2,8 
Starfish - mid 6.592 6.570 − 0,3 6.340 6.231 − 1,8 
Seahorse - aft 6.815 6.972 2,3 6.930 7.242 4,3 
Seahorse - mid 6.999 6.759 − 3,5 6.855 6.647 − 3,1 
Sea lion - aft 8.252 8.412 1,9 8.582 8.817 2,7 
Sea lion - mid 8.200 8.313 1,4 7.865 7.863 0,0 
Potvis 5.329 5.662 5,9 5.490 5.776 4,9 
DREA experiment 1993 8.980 9.336 3,8 9.176 9.596 4,4 
ISSC Round robin 8.077 8.637 6,5 7.872 8.412 6,4 
Kendrick hull 1970 6.438 6.738 4,5 6.128 6.430 4,7 
Kendrick hull 1986 6.040 6.290 4,0 6.352 6.570 3,3 

Mean bias  All 2,5  All 2,5 
First seven 0,8 First seven 0,8 

Standard deviation  All 2,7  All 2,9 
First seven 2,1 First seven 2,7  
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6. Discussion and conclusions 

This paper qualifies two existing and one new analytical interframe collapse models of ring stiffened cylindrical shells for use in the 
risk-based analyses. The collapse models are based on stress levels following from axisymmetric stress theory. Table 5 presents a 
comparison between the results from this theory and FEA results and for the realistic pressure hull designs the precision is lower than 
1%. 

Table 9 gives an overview of the three collapse models where the last collapse model (INT) is introduced in this paper. Since this 
model considers the stress distribution over the complete thickness of the hull it allows not only for axisymmetric imperfection but also 
for asymmetric imperfection (Out-of-Circularity). The application and qualification of the INT model for asymmetric imperfection will 
be reported in follow-up papers. 

The overview in Table 9 presents the mean value of the biases and the standard deviations. Especially the standard deviations are of 
interest since they show the precision of the models. The mean of the bias can be corrected by a factor in risk-based design. This 
suggests that the HIN model performs better since the standard deviation (precision) has the lowest values. However the HIN model 
has a doubtful basis since a plastic hinge is not developed. The outside of the hull midbay starts to yield and plasticity develops over the 
thickness and then from midbay towards the rings. The assumed tension at the inside of the shell is not found. Considering the 
additional bending stress in case of asymmetric imperfection (out-of-circularity) the HIN model will not be able to cope with the stress 
distribution over the thickness. The same applies to the MYP model. Since only mid-fibre stresses at the plate centre are considered the 
additional bending is not covered. 

The integral model (INT) shows a better precision than the MYP model but worse than the HIN model. The objective was a better 
precision than the 9%–12% found for the empirical method presented in section 4. This is achieved by the analytical INT model with a 
maximum value of 2.7% for the imperfect hull and considering only the realistic designs. But most importantly the INT model, making 
use of the full stress distribution, can allow for asymmetric imperfections. 
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Appendix A 

Table A-1 shows the data for the twelve geometries presented in this paper. These geometries are divided in seven representative 
designs (shown in Figure A.1) and five additional ones in Figure A.2. 

Table A-1 is split in four parts and the first part shows the dimensions of the pressure hull and the material properties. Some derived 
dimensions which are entered in the analytical formulations can be found in the second part. The third part contains the non- 
dimensional parameters that characterize the different geometries. The last row presents the linear elastic buckling pressure ac-
cording to von Mises as a reference. 

Table 9 
Overview of analytical interframe collapse models – bias with respect to FEA.  

Model All twelve hulls First seven hulls Allowance for asymmetric imperfection 

Mean bias SD Mean bias SD 

% % % % 

Perfect hulls MYP 1,7 3,0 − 0,2 2,2 No 
HIN 5,7 1,9 4,6 1,5 No 
INT 2,5 2,7 0,8 2,1 Yes 

Hulls with imperfection MYP 1,6 3,6 − 0,4 3,4 No 
HIN 5,5 1,7 4,7 1,1 No 
INT 2,5 2,9 0,8 2,7 Yes  
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Table A-1 
Overview of the geometries under consideration    

Manatee Starfish 
Aft 

Starfish 
Mid 

Seahorse 
Aft 

Seahorse 
Mid 

Sea 
lion 
Aft 

Sea 
lion 
Mid 

Potvis DREA 
experiment 
1993 

ISSC 
Round 
robin 

Kendrick 
1970 

Kendrick 
1986 

Frame position – Inner Outer Inner Outer Inner Outer Inner Outer Outer Inner Inner Outer 
Inner radius mm 3000 3100 4200 2800 3500 2800 3500 1540 110 120 2527 2688 
Hull thickness - h mm 26 27 36 22 27 26 32 18 2,7 3 25,4 25 
Frame distance mm 650 625 800 360 450 600 750 375 40 50 762 730 
Frame web height mm 175 190 320 170 230 160 200 124.5 8 8 187 190 
Frame web thickness mm 9 10 16 15 20 12 14 10 5,5 2 8128 8 
Frame flange width mm 120 175 235 110 150 120 170 46 – 8 101,6 100 
Frame flange thickness mm 35 27 36 22 27 26 32 15.5 – 2 16,26 16 
Material – HY80 HY80 HY80 HY80 HY80 HY100 HY100 St52 Al Al HY80 HY80 
Yield stress MPa 552 552 552 552 552 690 690 353 270 264,1 552 552 
Young’s modulus GPa 206 206 206 206 206 206 206 206 70 65,5 206 206 
Poisson’s ratio – 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,32 0,33 0,30 0,30 

Unsupported length mm 641 615 784 345 430 588 736 365 34,5 48 754 722 
Mean radius mm 3013 3114 4218 2811 3514 2813 3516 1549 111,4 121,5 2540 2700 
Shell area mm2 16,900 16,875 28,800 7920 12,150 15,600 24,000 6750 108 150 19,355 18,250 
Effective ring area mm2 6135 6153 14,578 4730 9141 4784 8717 1843 42 34 3383 2945 

Ratio area shell/area ring – 2,75 2,74 1,98 1,67 1,33 3,26 2,75 3,66 2,57 4,38 5,72 6,20 
Young’s modulus/Yield 

stress 
– 373 373 373 373 373 299 299 584 259 248 373 373 

Shell flexibility 
parameter θ 

– 2,94 2,73 2,59 1,78 1,79 2,79 2,82 2,81 2,55 3,21 3,82 3,57 

Composite geometric 
parameter S 

– 1,74 1,62 1,53 1,06 1,06 1,66 1,67 1,66 1,51 1,90 2,26 2,12 

Batdorf parameter Z – 5,00 4,29 3,86 1,84 1,86 4,51 4,59 4,56 3,75 5,97 8,40 7,37 

Asymmetric buckling 
pressure pe 

MPa 8,41 9,41 9,86 14,29 13,64 10,34 9,91 16,22 27,60 19,73 8,07 7,50    
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Fig. A.1. Representative pressure hull geometries [14,41].   
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Fig. A.2. Additional pressure hull geometries [21,42–46].    
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Fig. A.3. Example of the FE mesh – Starfish aft.  
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