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Abstract: In this paper, we present a reinforcement learning control scheme for optimal
frequency synchronization in a lossy inverter-based microgrid. Compared to the existing methods
in the literature, we relax the restrictions on the system, i.e. being a lossless microgrid, and the
transmission lines and loads to have constant impedances. The proposed control scheme does not
require a priori information about system parameters and can achieve frequency synchronization
in the presence of dominantly resistive and/or inductive line and load impedances, model
parameter uncertainties, time varying loads and disturbances. First, using Lyapunov theory
a feedback control is formulated based on the unknown dynamics of the microgrid. Next, a
performance function is defined based on cumulative rewards towards achieving convergence to
the nominal frequency. The performance function is approximated by a critic neural network in
real-time. An actor network is then simultaneously learning a parameterized approximation of
the nonlinear dynamics and optimizing the approximated performance function obtained from
the critic network. The performance of our control scheme is validated via simulation on a lossy
microgrid case study in the presence of disturbances.

Keywords: reinforcement learning, microgrids, stability, frequency synchronization.

1. INTRODUCTION

A microgrid consists of loads, storage units and renewable
energy sources. It forms a locally controllable system that
can detach from the main grid and operate autonomous-
ly, Lasseter (2002), Guerrero et al. (2013). However, an
imbalance between the generated power and the demand
results in frequency instability. To regulate the frequency,
primary droop controllers are widely employed, however,
steady state deviations from the nominal frequency are
observed due to load demand variations. Therefore, an
additional control level, namely the secondary control,
must be implemented to achieve the ultimate frequency
regulation and power sharing; see Simpson-Porco et al.
(2015), Guerrero et al. (2011), De Persis et al. (2016).

A conventional approach to deal with the frequency syn-
chronization problem consists of using a primary droop
controller enhanced by a secondary control scheme follow-
ing the gain plus integral approach, e.g. Simpson-Porco
et al. (2015). To deal with the uncertainties that impact a
microgrid system and to further elevate the performance,
more complex control frameworks have been designed,
Ersdal et al. (2016), Zribi et al. (2005), Chang and Fu
(1997), Dorfler and Grammatico (2017), De Persis and
Monshizadeh (2018), Trip et al. (2018),Weitenberg et al.
(2018), Adibi et al. (2017). In Ersdal et al. (2016) a model
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predictive control scheme is proposed which requires a
nominal model of the system and it can handle tightly
bounded disturbances. In Zribi et al. (2005), an adaptive
controller is developed using a lineare approximation of
the system and its performance is hence limited. A fuzzy
controller is proposed in Chang and Fu (1997), however
the convergece of the algorithm is slow and also stability
is not guaranteed. In Dorfler and Grammatico (2017),
semi-decentralized frequency synchronization schemes are
presented without taking the transmission losses into ac-
count. To achieve frequency and voltage regulation, micro-
grid controllers are desiged in De Persis and Monshizade-
h (2018) based on reduced-order models. However, such
networks do not explicitly describe the loads. Hence, the
controllers are not robust to load variations and model
parametric uncertaities. In Trip et al. (2018), a sliding-
mode controller is developed for the case of lossless micro-
grids and with the assumption of constant disturbances.
Finally, in Weitenberg et al. (2018) an integral frequency
control scheme, robust to disturbances, is proposed. How-
ever, similar to Trip et al. (2018), the power network is
assumed to be purely inductive (lossless). However, this
expectation is not generally met for the microgrids in the
medium and low voltage levels.

In this paper, we propose a new control framework that
handles lossy microgrids, has fast convergence and does
not depend on a nominal model of the system. We present
an actor-critic based reinforcement learning approach for
frequency control of islanded microgrids with inverter-
based DG units. The adaptive actor-critic control scheme
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presented here compensates for the uncertain dynamics
of DG units and time-varying loads. Therefore, the ne-
cessity to know the nonlinear dynamics of the system
is eliminated (as opposed to our previous work Adibi
et al. (2017)). Hence, the controller can be integrated in a
DG without the need to be initially tuned for the DG
and furthermore, the closed-loop system’s performance
would not degrade by system parameters alteration due to
e.g. aging, environmental effects and load variations. The
proposed reinforcement learning approach appropriately
reacts to changes in the nominal conditions of the system
and rapidly tune the control parameters. For the frequency
regulation problem, a long-term performance function is
defined based on instantaneous rewards, but since the
dynamics is unknown, we define a critic network to learn
this performance function in real-time. On the other hand,
an actor network aims at deriving an optimal control
policy by approximating the unknown nonlinear dynamics
and minimizing the learned performance function obtained
from the critic network. Details of our proposed control
design are presented in the following sections.

The remainder of the paper is arranged as follows. Section
2 describes the modeling for a lossy microgrid and formu-
lates the frequency control problem, along with the closed
loop stability of the error dynamics. Next, we present
our proposed learning algorithm based on coupled critic
and actor networks in Section 3. Simulation results are
discussed in Section 4. Section 5 summarizes the paper.

2. PROBLEM STATEMENT AND THEORETICAL
FOUNDATIONS

We assume a microgrid can be modeled as a graph G =
(N,E), with N = {1, 2, ..., n} the nodes (buses that
generate or consume power) and E ⊆ N × N the edges
(network transmission lines) that connect the nodes. Each
node i ∈ N is a distributed generation source that has
an inverter for interacting with the grid. Further, we
consider a Kron-reduced lossy microgrid, in which the
effect of the impedance loads is merged into the network
impedances via the so-called Kron-reduction procedure
(Kundur (1994), Dorfler and Bullo (2013)). Therefore, two
nodes {i, j} ∈ E are connected by a complex admittance
Yij = Gij + iBij ∈ C with conductance Gij ∈ R and
susceptance Bij ∈ R. Let Ni = {j ∈ N | j �= i, {i, j} ∈
E} denote the neighbors of node i. We assign a time-
dependent voltage phase angle δi ∈ R and a voltage
amplitude Vi ∈ R≥0 to each node i in the grid. The
relative voltage phase angles are denoted by δij := δi− δj ,
{i, j} ∈ E.

Based on the above notations, the active power flow
coming to the grid at node i ∈ N is formulated as (Kundur
(1994))

Pi = GiiV
2
i −

∑
j∈Ni

ViVj

(
Gij cos(δij) +Bij sin(δij)

)
, (1)

with Gii := Ĝii +
∑

j∈Ni
Gij , where Ĝii ∈ R is the shunt

conductance at the ith node.

2.1 Microgrid Non-Linear Dynamical Model

We consider a microgrid model with discrete dynamics
consisting of inverter-interfaced DG sources. The inverters

have the conventional primary droop controllers that com-
promise between frequency and active power as in Schiffer
et al. (2014)

δi(k + 1) =δi(k) + τ1ωi(k), (2)

ωi(k + 1) =ωi(k)−
τ1
τ2

(
ωi(k) + kPi

(Pi(k)− P �
i )− ui(k)

)
,

(3)

for i ∈ N . Here, ωi ∈ R is the inverter frequency and ui is
the secondary control input for which the design procedure
will be presented in Section 2.2. The term Pi is the active
power given by (1) and P �

i represents the active power
setpoint. The parameter τ1 ∈ R+ is the discretization
step-size and kPi

∈ R+ is the frequency droop gain. We
take into account that the power signals are measured
with intermediate low-pass filters that have time constant
τ2 ∈ R+. Moreover, we presume that the amplitude of
voltage signals at each node are constant and consequently,
the injected reactive for each node is zero.

To simplify notation we define

P � := col(P �
i ) ∈ Rn, P := col(Pi) ∈ Rn, (4)

T1 := τ1In ∈ Rn×n, T2 := diag(
τ1
τ2

) ∈ Rn×n, (5)

KP := diag(kPi
) ∈ Rn×n, (6)

x1(k) := [δ1(k), δ2(k), · · · , δn(k)]T ∈ Rn, (7)

x2(k) := [ω1(k), ω2(k), · · · , ωn(k)]
T ∈ Rn, (8)

u(k) := [u1(k), u2(k), · · · , un(k)]
T ∈ Rn, (9)

x(k) := [xT
1 (k), x

T
2 (k)]

T ∈ R2n, (10)

and write the system (2)-(3) compactly as

x1(k + 1) =x1(k) + T1x2(k),

x2(k + 1) =x2(k)− T2

(
x2(k) +KP (P (k)− P �)− u(k)

)
.

(11)

We can write down the above system dynamics in the
following form

x1(k + 1) =f1(x(k)), (12)

x2(k + 1) =f2(x(k)) + g2u(k), (13)

where g2 = T2 defined in (5) and

f1(x(k)) :=x1(k) + T1x2(k), (14)

f2(x(k)) :=x2(k)− T2

(
x2(k) +KP (P (k)− P �)

)
. (15)

We assume that the nonlinear dynamics of DGs, i.e. func-
tions f1(x(k)) and f2(x(k)), are unknown. The aim is to
develop a controller to compensate for frequency devia-
tions, while being robust against parametric uncertainties
resulted from the concealed dynamics and disturbances
affecting the network. Therefore in Section 2.2, we will first
design the control input in which the unknown dynamics
are part of the overall input signal. In Section 3.2, we will
then design actor-critic learning algorithms to estimate
these unknown dynamics.

In the next section, the regulation error signal and the
structure of the control input are defined which are the
basis for our adaptive learning-based control design in
Section 3.
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2.2 Regulation Error Dynamic and Control Input Design

Consider system dynamics (12)-(13) with unknown nonlin-
ear functions f1(x(k)) and f2(x(k)), and the control input
u(k) to be designed. For simplicity, we assume that τ1 and
τ2 are known, hence, g2 = T2 is a known constant matrix.
Let us define the nominal frequency of the system as
ω� ∈ R+ and the vector of the desired frequency signals as
x�
2 := ω�1n ∈ Rn. The control objective is to compensate

the deviation of frequency signals (8) from their nominal
value ω� and make frequencies converge to the desired
signal x�

2. To accomplish this, we define the regulation
error signal e(k) ∈ Rn as

e(k) = x�
2 − x2(k), (16)

which results in the error dynamics

e(k + 1) = x�
2 − x2(k + 1)

= x�
2 − f2(x(k))− g2u(k). (17)

To design u(k) such that (17) is stabilized, we define the
candidate Lyapunov function

L(k) = eT (k)e(k). (18)

Differentiating of L(k) in discrete time results in

∆L(k) = eT (k + 1)e(k + 1)− eT (k)e(k). (19)

Using the error dynamics (17) and substituting it in (19),
we obtain

∆L(k) =
(
x�
2 − f2(x(k))− g2u(k)

)T

×
(
x�
2 − f2(x(k))− g2u(k)

)
− eT (k)e(k). (20)

In order to have ∆L(k) < 0, we select the control input as

u(k) = g−1
2

(
x�
2 − f2(x(k)) +Ke(k)

)
, (21)

where K ∈ Rn×n is a constant diagonal positive definite
gain matrix. If we assume f2(x(k)) is known, substituting
(21) in (20) yields

∆L(k) =
n∑

i=1

(K2
i − 1)e2i , (22)

where ei is the ith element of e(k) and Ki is the ith

eigenvalue of the diagonal matrix K for i ∈ N . Hence,
∆L(k) < 0 and the error system (17) is asymptotically
stable if

0 < Kmax < 1, (23)

where Kmax ∈ R is the maximum eigenvalue of K.

However, the dynamics f2(x(k)) is not known. Instead, we

use the estimation of the function f2(x(k)), i.e. f̂2(x(k))

(f̂2(x(k)) is approximated using the actor network and will
be discussed in Section 3.2). We design the control input
(21) as follows

u(k) = g−1
2

(
x�
2 − f̂2(x(k)) +Ke(k)

)
, (24)

which results in

∆L(k) =
(
f̃2(x(k))−Ke(k)

)T(
f̃2(x(k))−Ke(k)

)

− eT (k)e(k), (25)

where f̃2(x(k)) = f̂2(x(k)) − f2(x(k)) is the error of
function estimation. Therefore, ∆L(k) < 0 if∥∥∥f̃2(x(k))−Ke(k)

∥∥∥ < ‖e(k)‖ . (26)

Let the known value fmax
2 ∈ R+ be the upper bound of the

function estimation error f̃2(x(k)), such that
∥∥∥f̃2(x(k))

∥∥∥ ≤
fmax
2 . Hence, ∆L(k) < 0 provided that∥∥∥f̃2(x(k))−Ke(k)

∥∥∥ ≤
∥∥∥f̃2(x(k))

∥∥∥+ ‖Ke(k)‖

≤ fmax
2 +Kmax ‖e(k)‖ . (27)

Considering (26), the system of error dynamics is stable if

fmax
2 +Kmax ‖e(k)‖ < ‖e(k)‖ . (28)

Defining emax :=
fmax
2

1−Kmax , it follows that

∆L(k) < 0, ∀ ‖e(k)‖ > emax. (29)

In other words, ∆L(k) is negative outside of the compact
set Se := {‖e(k)‖ ≤ emax}, or equivalently, all the
solutions that start outside of Se will enter this set within
a finite time, and will remain inside the set forever. This
means that

‖e(k)‖ <
fmax
2

1−Kmax
, (30)

and therefore the estimation errors and the closed-loop
system is bounded above with the ultimate bound emax.

3. ACTOR-CRITIC LEARNING ALGORITHM

We consider a neural network that has one hidden layer
for both actor and critic networks. In order to measure the
long-term performance of the system, the cost function
J(k) ∈ Rn is defined using the instantaneous reward as
(Lewis et al. (1998), Sokolov et al. (2015))

J(k) =
∞∑

m=k

γm−kr(m+ 1)

= r(k + 1) + γr(k + 2) + γ2r(k + 3) + · · · , (31)

where 0 < γ < 1 is the discount factor and r(k) =
[r1(k)r2(k) · · · rn(k)]T ∈ Rn is the vector of instantaneous
rewards (reinforcement learning signal) as follows (He and
Jagannathan (2005))

ri(k) =

{
0 if |ei(k)| ≤ c

1 if |ei(k)| > c
(32)

for i ∈ N and c ∈ R+ is a fixed threshold. The instanta-
neous reward ri(k) is a measure of the current performance
of the ith DG. To be more precise, it quantifies how
the control input has performed; ri(k) = 0 indicates a
success in the frequency regulation and ri(k) = 1 shows a
performance degradation.

Since the dynamics is unknown, we define a critic network
to learn the cost function J(k) in real-time in Section (3.1).

3.1 Adaptation of Critic Network

The critic neural network, with output Ĵ(k) ∈ Rn, learns
to approximate the cost function J(k) ∈ Rn. The output
of the critic neural network can be described in the form

Ĵ(k) = ψ̂c
T
(k)φc

(
vT1 (k)x(k)

)
= ψ̂c

T
(k)φc(k), (33)

such that ψ̂c
T
(k) ∈ Rn×n1 represents the matrix of weights

between the hidden and output layer and vT1 ∈ Rn1×2n

represents the matrix of weights between the input and
hidden layer. We assume that the matrix of the weights,
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2.2 Regulation Error Dynamic and Control Input Design

Consider system dynamics (12)-(13) with unknown nonlin-
ear functions f1(x(k)) and f2(x(k)), and the control input
u(k) to be designed. For simplicity, we assume that τ1 and
τ2 are known, hence, g2 = T2 is a known constant matrix.
Let us define the nominal frequency of the system as
ω� ∈ R+ and the vector of the desired frequency signals as
x�
2 := ω�1n ∈ Rn. The control objective is to compensate

the deviation of frequency signals (8) from their nominal
value ω� and make frequencies converge to the desired
signal x�

2. To accomplish this, we define the regulation
error signal e(k) ∈ Rn as

e(k) = x�
2 − x2(k), (16)

which results in the error dynamics

e(k + 1) = x�
2 − x2(k + 1)

= x�
2 − f2(x(k))− g2u(k). (17)

To design u(k) such that (17) is stabilized, we define the
candidate Lyapunov function

L(k) = eT (k)e(k). (18)

Differentiating of L(k) in discrete time results in

∆L(k) = eT (k + 1)e(k + 1)− eT (k)e(k). (19)

Using the error dynamics (17) and substituting it in (19),
we obtain

∆L(k) =
(
x�
2 − f2(x(k))− g2u(k)

)T

×
(
x�
2 − f2(x(k))− g2u(k)

)
− eT (k)e(k). (20)

In order to have ∆L(k) < 0, we select the control input as

u(k) = g−1
2

(
x�
2 − f2(x(k)) +Ke(k)

)
, (21)

where K ∈ Rn×n is a constant diagonal positive definite
gain matrix. If we assume f2(x(k)) is known, substituting
(21) in (20) yields

∆L(k) =
n∑

i=1

(K2
i − 1)e2i , (22)

where ei is the ith element of e(k) and Ki is the ith

eigenvalue of the diagonal matrix K for i ∈ N . Hence,
∆L(k) < 0 and the error system (17) is asymptotically
stable if

0 < Kmax < 1, (23)

where Kmax ∈ R is the maximum eigenvalue of K.

However, the dynamics f2(x(k)) is not known. Instead, we

use the estimation of the function f2(x(k)), i.e. f̂2(x(k))

(f̂2(x(k)) is approximated using the actor network and will
be discussed in Section 3.2). We design the control input
(21) as follows

u(k) = g−1
2

(
x�
2 − f̂2(x(k)) +Ke(k)

)
, (24)

which results in

∆L(k) =
(
f̃2(x(k))−Ke(k)

)T(
f̃2(x(k))−Ke(k)

)

− eT (k)e(k), (25)

where f̃2(x(k)) = f̂2(x(k)) − f2(x(k)) is the error of
function estimation. Therefore, ∆L(k) < 0 if∥∥∥f̃2(x(k))−Ke(k)

∥∥∥ < ‖e(k)‖ . (26)

Let the known value fmax
2 ∈ R+ be the upper bound of the

function estimation error f̃2(x(k)), such that
∥∥∥f̃2(x(k))

∥∥∥ ≤
fmax
2 . Hence, ∆L(k) < 0 provided that∥∥∥f̃2(x(k))−Ke(k)

∥∥∥ ≤
∥∥∥f̃2(x(k))

∥∥∥+ ‖Ke(k)‖

≤ fmax
2 +Kmax ‖e(k)‖ . (27)

Considering (26), the system of error dynamics is stable if

fmax
2 +Kmax ‖e(k)‖ < ‖e(k)‖ . (28)

Defining emax :=
fmax
2

1−Kmax , it follows that

∆L(k) < 0, ∀ ‖e(k)‖ > emax. (29)

In other words, ∆L(k) is negative outside of the compact
set Se := {‖e(k)‖ ≤ emax}, or equivalently, all the
solutions that start outside of Se will enter this set within
a finite time, and will remain inside the set forever. This
means that

‖e(k)‖ <
fmax
2

1−Kmax
, (30)

and therefore the estimation errors and the closed-loop
system is bounded above with the ultimate bound emax.

3. ACTOR-CRITIC LEARNING ALGORITHM

We consider a neural network that has one hidden layer
for both actor and critic networks. In order to measure the
long-term performance of the system, the cost function
J(k) ∈ Rn is defined using the instantaneous reward as
(Lewis et al. (1998), Sokolov et al. (2015))

J(k) =
∞∑

m=k

γm−kr(m+ 1)

= r(k + 1) + γr(k + 2) + γ2r(k + 3) + · · · , (31)

where 0 < γ < 1 is the discount factor and r(k) =
[r1(k)r2(k) · · · rn(k)]T ∈ Rn is the vector of instantaneous
rewards (reinforcement learning signal) as follows (He and
Jagannathan (2005))

ri(k) =

{
0 if |ei(k)| ≤ c

1 if |ei(k)| > c
(32)

for i ∈ N and c ∈ R+ is a fixed threshold. The instanta-
neous reward ri(k) is a measure of the current performance
of the ith DG. To be more precise, it quantifies how
the control input has performed; ri(k) = 0 indicates a
success in the frequency regulation and ri(k) = 1 shows a
performance degradation.

Since the dynamics is unknown, we define a critic network
to learn the cost function J(k) in real-time in Section (3.1).

3.1 Adaptation of Critic Network

The critic neural network, with output Ĵ(k) ∈ Rn, learns
to approximate the cost function J(k) ∈ Rn. The output
of the critic neural network can be described in the form

Ĵ(k) = ψ̂c
T
(k)φc

(
vT1 (k)x(k)

)
= ψ̂c

T
(k)φc(k), (33)

such that ψ̂c
T
(k) ∈ Rn×n1 represents the matrix of weights

between the hidden and output layer and vT1 ∈ Rn1×2n

represents the matrix of weights between the input and
hidden layer. We assume that the matrix of the weights,
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v1, is fixed and only the weights ψ̂c between the hidden
and output layer are being adapted. We fix the weights
of the hidden layer in order to reduce the training time
and to have faster learning. Moreover, φc(k) ∈ Rn1 is the
vector of basis functions and n1 denotes the total number
of nodes for the hidden layer.

Let ec(k) ∈ Rn be the prediction error (Temporal-
Difference error; see Sutton and Barto (1998)) of the critic
network as

ec(k) = r(k) + γĴ(k)− Ĵ(k − 1),

= r(k) + γψ̂c
T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1),

(34)

and the cost function that is going to be minimized as

Jc(k) =
1

2
eTc (k)ec(k). (35)

Applying gradient descent algorithm for minimizing Jc(k),
and hence ec(k), results in

ψ̂c(k + 1) = ψ̂c(k)− αc
∂Jc(k)

∂ec(k)

∂ec(k)

∂Ĵ(k)

∂Ĵ(k)

∂ψ̂c(k)

= ψ̂c(k)− αcγφc(k)ec(k), (36)

which leads to the following update rule for weights of the
critic network

ψ̂c(k + 1) = ψ̂c(k)− αcφc(k)×(
r(k) + γψ̂c

T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1)

)
,

(37)

where αc ∈ R+ is the critic learning rate.

In Section (3.2), the actor network is constructed to

minimize both the function estimation error f̃2(x(k)) and

the cost function Ĵ(k).

3.2 Adaptation of Actor Network

The main purpose of the actor network is to generate the
approximation of the unknown nonlinear function f2(x(k))

and then plug the estimated f̂2(k) into the control policy
(24). The estimated function is parameterized as

f̂2(k) = ψ̂a
T
(k)φa

(
vT2 (k)x(k)

)
= ψ̂a

T
(k)φa(k), (38)

where ψ̂a
T
(k) ∈ Rn×n2 represents the matrix of weights

between the hidden layer and the output layer and vT2 ∈
Rn2×2n represents the matrix of weights between the input
layer and the hidden layer. We assume that the matrix of

the weight v2 is fixed and only the weights ψ̂a between
the hidden layer and the output layer are being adapted.
Moreover, φa(k) ∈ Rn2 is the vector of basis function of the
hidden layer and n2 denotes the total units of the hidden
layer.

We define the function estimation error f̃2(k) ∈ Rn as

f̃2(k) = f̂2(k)− f2(k), (39)

and the error between the desired cost function J�(k) ∈ Rn

and the critic network output Ĵ(k) as

J̃(k) = Ĵ(k)− J�(k). (40)

Fig. 1. The grid model taken from Schiffer (2015) has
eleven buses and multiple storage and generation
units.

The training of the actor network is done using f̃2(k) and

J̃(k) and defining the prediction error ea(k) ∈ Rn as

ea(k) = f̃2(k) + J̃(k). (41)

According to (31) and (32), the desired value for J�(k) is
0. Thus, (41) becomes

ea(k) = f̃2(k) + Ĵ(k). (42)

We consider the cost function that is going to be minimized
by the actor network in the form

Ja(k) =
1

2
eTa (k)ea(k). (43)

Using the gradient descent algorithm for minimizing Ja(k)
and subsequently for ea(k), we obtain

ψ̂a(k + 1) = ψ̂a(k)− αa
∂Ja(k)

∂ea(k)

∂ea(k)

∂f̃2(k)

∂f̃2(k)

∂ψ̂a(k)

= ψ̂a(k)− αaφa(k)ea(k), (44)

which results in

ψ̂a(k + 1) = ψ̂a(k)− αaφa(k)(f̃2(k) + Ĵ(k))T , (45)

where αa ∈ R+ is the actor learning rate. However, we
can not use the weight update rule (45) in practice. This

is due to the fact that the error function f̃2(k) defined
in (39) consists of the unknown nonlinear function f2(k).
This problem can be addressed by substituting (24) in
(17), which yields

e(k + 1) = −f2(x(k)) + f̂2(x(k))−Ke(k)

= f̃2(x(k))−Ke(k). (46)

Hence, the function estimation error becomes

f̃2(k) = e(k + 1) +Ke(k). (47)

Substituting (47) in (45), results in the actor network
weight update rule

ψ̂a(k + 1) = ψ̂a(k)− αaφa(k)
(
e(k + 1) +Ke(k) + Ĵ(k)

)T

.

(48)

In the following section, we validate the performance of the
proposed control scheme via simulation on a benchmark
microgrid in the presence of disturbances.
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4. CASE STUDY

The effectiveness of our reinforcement learning-based con-
trol scheme is evaluated on the isolated three-phase sub-
network of the CIGRE medium voltage benchmark net-
work as described in Rudion et al. (2006) and Schiffer
et al. (2014). The benchmark microgrid is illustrated in
Fig. (1). The simulation is carried out by considering
n = 6 controllable generation sources at buses 5b, 5c,
9b, 9c, 10b and 10c named by DG1 to DG6 from now
on, respectively. All photovoltaic (PV) sources together
with the wind turbine at bus 8 are considered as non-
controllable units and are neglected. All of the generation
units have integrated droop controllers. For each inverter
i ∈ N , the active power rating PN

i ∈ R+ is assigned. The
associated active power rating PN

i , active power setpoints
P �
i and droop controller gains kPi

to each inverter i ∈ N
are given in Table 1. The industrial and household loads at
nodes 3-11 are described in Rudion et al. (2006), see Table
1 in there. The other parameters such as the transmission
line lengths and etc are summarized Rudion et al. (2006),
see Table 3 in there. Furthermore, we discard the load at
node 1.

The voltage amplitudes are set to Vi = 1 per unit for all
i ∈ N . The nominal frequency, the time constant and the
sampling time are taken as f� = 50 Hz, τ2 = 0.5 s and
τ1 = 50 ms, respectively. The elements of the diagonal
gain matrix K is selected as Ki = 0.1 for i ∈ N . The
threshold value c is set to c = 0.02. We consider one
hidden layer for both critic and actor neural networks,
and we assume that each hidden layer contains 10 nodes,
i.e. n1 = n2 = 10. For weight updating rules, the learning
rates are selected as αc = 0.1, αa = 0.1 and the discount
factor is set as γ = 0.5. All the weight parameters of the
matrices v1 and v2, between the input layer and the hidden
layer, are fixed as 1. The initial values for the adapting

weights ψ̂c and ψ̂a are selected randomly between 0 and
1. Furthermore, we choose hyperbolic tangent functions as
activation functions.

Table 1. Network parameters

Base values Pbase = 4.75 MVA, Vbase = 20 kV

PN
i , i = 1, · · · , 6 [0.505, 0.028, 0.261, 0.179, 0.168, 0.012] p.u.

P �
i , i = 1, · · · , 6 [0.202, 0.008, 0.078, 0.054, 0.067, 0.004] p.u.

kPi
, i = 1, · · · , 6 [0.396, 7.143, 0.766, 1.117, 1.191, 16.667] Hz

p.u.

In this case study, we demonstrate the effectiveness of
the adaptive control scheme under load variations. The
trajectories of the frequencies fi =

ωi

2π in Hz for i = 1, ..., 6
for the controllable sources are presented in Fig. (2) and
Fig. (3), with closer view. We choose the initial states
arbitrarily. Further, we consider the microgrid to be in
the islanded mode. Since we have developed an online
learning algorithm, we do not have the entire training data
set available at once as in batch neural network training
approaches. Instead, the learning data becomes available
in a sequential order and the new observed data at each
time step is used to continuously train and update our
control law. As seen in Fig. (2), during the initial phase

Fig. 2. Time trajectories of the frequency signals, consid-
ering a change in system parameters at t = 2.5 s.

Fig. 3. Time trajectories of the frequency signals from a
closer point of view at t = 2.5 s.

Fig. 4. Sum of cost functions among DGs, considering a
change in system parameters at t = 2.5 s.

of the simulation, the critic and actor networks quickly
learn the undisclosed dynamics, within a short transient.
At time t = 2.5 s, the conductance and inductance in the
system are changed. As one can observe in Fig. (2) and
from a closer view in Fig. (3), after applying the changes,
the frequency signals vary from 50 Hz due to sudden
impedance changes. However, after some oscillations for
a short period of time, the frequencies converge to the
nominal frequency f� = 50 Hz. Hence, the reinforcement
learning actor-critic based control scheme compensates for
the deviation of frequencies and the frequency regulation
errors quickly converge to zero. Note that without the
proposed control strategy and by using only the primary
droop control the lossy system has deterioration from the
nominal frequency and in the presence of the mentioned
disturbances the system becomes unstable.

Fig. (4) illustrates the sum of cost functions among DG
sources. At time instant t = 2.5 s, when the load changes
are applied, a rise in the total cost function is observed.
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4. CASE STUDY

The effectiveness of our reinforcement learning-based con-
trol scheme is evaluated on the isolated three-phase sub-
network of the CIGRE medium voltage benchmark net-
work as described in Rudion et al. (2006) and Schiffer
et al. (2014). The benchmark microgrid is illustrated in
Fig. (1). The simulation is carried out by considering
n = 6 controllable generation sources at buses 5b, 5c,
9b, 9c, 10b and 10c named by DG1 to DG6 from now
on, respectively. All photovoltaic (PV) sources together
with the wind turbine at bus 8 are considered as non-
controllable units and are neglected. All of the generation
units have integrated droop controllers. For each inverter
i ∈ N , the active power rating PN

i ∈ R+ is assigned. The
associated active power rating PN

i , active power setpoints
P �
i and droop controller gains kPi

to each inverter i ∈ N
are given in Table 1. The industrial and household loads at
nodes 3-11 are described in Rudion et al. (2006), see Table
1 in there. The other parameters such as the transmission
line lengths and etc are summarized Rudion et al. (2006),
see Table 3 in there. Furthermore, we discard the load at
node 1.

The voltage amplitudes are set to Vi = 1 per unit for all
i ∈ N . The nominal frequency, the time constant and the
sampling time are taken as f� = 50 Hz, τ2 = 0.5 s and
τ1 = 50 ms, respectively. The elements of the diagonal
gain matrix K is selected as Ki = 0.1 for i ∈ N . The
threshold value c is set to c = 0.02. We consider one
hidden layer for both critic and actor neural networks,
and we assume that each hidden layer contains 10 nodes,
i.e. n1 = n2 = 10. For weight updating rules, the learning
rates are selected as αc = 0.1, αa = 0.1 and the discount
factor is set as γ = 0.5. All the weight parameters of the
matrices v1 and v2, between the input layer and the hidden
layer, are fixed as 1. The initial values for the adapting

weights ψ̂c and ψ̂a are selected randomly between 0 and
1. Furthermore, we choose hyperbolic tangent functions as
activation functions.

Table 1. Network parameters

Base values Pbase = 4.75 MVA, Vbase = 20 kV

PN
i , i = 1, · · · , 6 [0.505, 0.028, 0.261, 0.179, 0.168, 0.012] p.u.

P �
i , i = 1, · · · , 6 [0.202, 0.008, 0.078, 0.054, 0.067, 0.004] p.u.

kPi
, i = 1, · · · , 6 [0.396, 7.143, 0.766, 1.117, 1.191, 16.667] Hz

p.u.

In this case study, we demonstrate the effectiveness of
the adaptive control scheme under load variations. The
trajectories of the frequencies fi =

ωi

2π in Hz for i = 1, ..., 6
for the controllable sources are presented in Fig. (2) and
Fig. (3), with closer view. We choose the initial states
arbitrarily. Further, we consider the microgrid to be in
the islanded mode. Since we have developed an online
learning algorithm, we do not have the entire training data
set available at once as in batch neural network training
approaches. Instead, the learning data becomes available
in a sequential order and the new observed data at each
time step is used to continuously train and update our
control law. As seen in Fig. (2), during the initial phase

Fig. 2. Time trajectories of the frequency signals, consid-
ering a change in system parameters at t = 2.5 s.

Fig. 3. Time trajectories of the frequency signals from a
closer point of view at t = 2.5 s.

Fig. 4. Sum of cost functions among DGs, considering a
change in system parameters at t = 2.5 s.

of the simulation, the critic and actor networks quickly
learn the undisclosed dynamics, within a short transient.
At time t = 2.5 s, the conductance and inductance in the
system are changed. As one can observe in Fig. (2) and
from a closer view in Fig. (3), after applying the changes,
the frequency signals vary from 50 Hz due to sudden
impedance changes. However, after some oscillations for
a short period of time, the frequencies converge to the
nominal frequency f� = 50 Hz. Hence, the reinforcement
learning actor-critic based control scheme compensates for
the deviation of frequencies and the frequency regulation
errors quickly converge to zero. Note that without the
proposed control strategy and by using only the primary
droop control the lossy system has deterioration from the
nominal frequency and in the presence of the mentioned
disturbances the system becomes unstable.

Fig. (4) illustrates the sum of cost functions among DG
sources. At time instant t = 2.5 s, when the load changes
are applied, a rise in the total cost function is observed.
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Fig. 5. The control input trajectories, considering a change
in system parameters at t = 2.5 s.

However, the control input restores it back to the optimal
value J� = 0 in less than a second. The time trajectory of
the learned control law (24) that regulates the frequencies
to the nominal frequency is illustrated in Fig. (5).

5. CONCLUSIONS AND FUTURE RESEARCH

A fast reinforcement learning control scheme has been
proposed for optimal frequency synchronization of lossy
microgrids. Our method is able to efficiently handle general
cases of resistive and inductive line and load impedances,
parameter uncertainties, time varying loads and distur-
bances. Using this adaptive control approach, no priori
knowledge about the system dynamics is required. Adap-
tive critic and actor neural networks are exploited to
approximate the nonlinear system dynamics, and approxi-
mate and minimize the cost function corresponding to the
frequency errors. The simulation results have shown that
the proposed control scheme provides fast convergence of
frequency signals of DG sources to the nominal frequency
in the presence of disturbances affecting the system. In
case we discard the contribution from the neural network
in our control scheme, the overall performance will be
deteriorated. However, the regulation error will remain
bounded based on (30). Further discussions on this situa-
tion will be presented in the longer version of this paper.

As next steps, we will extend our approach to deal with the
voltage control and active/reactive power sharing prob-
lems. The convergence proof of the learning algorithms is
currently under developments by the authors. Experimen-
tal validations of our proposed methods will be carried out
as well.
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