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Abstract
Several philosophical issues in connection with computer simulations rely on the 
assumption that results of simulations are trustworthy. Examples of these include 
the debate on the experimental role of computer simulations (Parker in Synthese 
169(3):483–496, 2009; Morrison in Philos Stud 143(1):33–57, 2009), the nature of 
computer data (Barberousse and Vorms, in: Durán, Arnold (eds) Computer simula‑
tions and the changing face of scientific experimentation, Cambridge Scholars Pub‑
lishing, Barcelona, 2013; Humphreys, in: Durán, Arnold (eds) Computer simulations 
and the changing face of scientific experimentation, Cambridge Scholars Publish‑
ing, Barcelona, 2013), and the explanatory power of computer simulations (Krohs in 
Int Stud Philos Sci 22(3):277–292, 2008; Durán in Int Stud Philos Sci 31(1):27–45, 
2017). The aim of this article is to show that these authors are right in assuming 
that results of computer simulations are to be trusted when computer simulations are 
reliable processes. After a short reconstruction of the problem of epistemic opacity, 
the article elaborates extensively on computational reliabilism, a specified form of 
process reliabilism with computer simulations located at the center. The article ends 
with a discussion of four sources for computational reliabilism, namely, verification 
and validation, robustness analysis for computer simulations, a history of (un)suc‑
cessful implementations, and the role of expert knowledge in simulations.
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1 Introduction

In a recent dispute over the philosophical novelty of computer simulations, Hum‑
phreys (2009) argued in favor of four genuine philosophical issues that require the 
attention of philosophers, namely, epistemic opacity, the semantics of computer 
simulations, the temporal dynamics of computational processes and the distinction 
in principle/in practice. Of those four issues, this article focuses solely on epistemic 
opacity, arguably the most controversial issue raised by Humphreys. There are at 
least two good reasons for paying attention to epistemic opacity. First, because it is 
the most direct consequence of the so‑called anthropocentric predicament, that is, 
the claim that humans have been displaced from the center of production of knowl‑
edge. Thus understood, any epistemological treatment involving computer simula‑
tions faces the question of epistemic opacity. Second, because Humphreys did not 
offer any suggestions for a solution to epistemic opacity, but rather restricts his anal‑
ysis to pointing it out as a philosophically novel issue. In this context, several ques‑
tions remain unanswered. For instance, ‘how does epistemic opacity affect the epis‑
temological treatment of computer simulations?’, ‘in the context of opacity, could 
it be correct to say that scientists are overemphasizing the success of simulations?’ 
(Frigg and Reiss 2009), and ‘is there a way to conceive of epistemic opacity coexist‑
ing with some form of knowledge?’ This article aims at addressing these questions 
and providing a qualitative answer to epistemic opacity in the context of computer 
simulations. Furthermore, it also offers a formal framework to secure claims about 
knowledge provided by computer simulations.

To frame the issue within the current philosophical debate, consider the ques‑
tion of whether epistemic opacity is an unavoidable issue in scientific practice, and 
thus is the acceptance of the epistemic superiority of computers. This point has been 
recently criticized by Julian Newman, who argues that epistemic opacity is a non 
starter for the epistemological treatment of computer simulations. To him, epistemic 
opacity is a symptom of modelers having failed to adopt sound practices of software 
engineering (Newman 2015). Instead, by means of developing the right engineering 
and social practices, Newman argues, modelers would be able to avoid several forms 
of epistemic opacity and ultimately reject the assertion that computers are a superior 
epistemic authority.1 As he explicitly puts it: “[...] well architected software is not 
epistemically opaque: its modular structure will facilitate reduction of initial errors, 
recognition and correction of those errors that are perpetrated, and later systematic 
integration of new software components” (Newman 2015, 267).2

1 Let us note that Newman takes epistemic opacity as a condition for the anthropocentric predicament. 
Humphreys, instead, takes epistemic opacity as a consequence of the anthropocentric predicament. Both 
interpretations are possible and both find an answer in this article.
2 Many philosophers have engaged with the problem of epistemic opacity and suggested reliabilism as 
the most suitable solution, although most of them have not provided a full fledged account. A shortlist 
includes Lenhard and Winsberg (2010), Hasse and Lenhard (2017) and Kaminski et al. (2017), among 
others. The exception is Durán (2014), who offers an early attempt to reconstruct reliabilism in the con‑
text of computer simulations.
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Although we find Newman’s concerns reasonable, for they are based on the 
assumption that knowing how a method works gives insight into its outcome, we 
do not agree with his conclusion. Software engineering practices also promote 
genuine forms of epistemic opacity. For instance, Timothy Colburn and Gary 
Shute claim for new forms of abstraction exclusively for computer systems that 
hide but do not neglect specific aspects of the target system. That is, standard 
forms of abstraction, idealization and the like aim at neglecting specific aspects 
of the target system, while information hiding consists in hiding “details that are 
essential in a lower‑level processing context but inessential in a software design 
and programming context” (Colburn and Shute 2007, 176). Understanding these 
claims in our context, it is possible to identify unavoidable degrees of opacity in 
standard software engineering practice that come with an agent being unable to 
relate a given computer program with its physical instantiation on the computer 
machine (i.e., information is hidden to the agent).

A more general solution is therefore required, one that allows researchers to 
acknowledge epistemic opacity but not at the expense of losing knowledge. This 
viewpoint is also shared by other philosophers, such as John Symons and Jack 
Horner who argue that although it is impossible to test the correctness of all pos‑
sible paths of computer software within any human timescale, trusting the results 
of computer software is nevertheless possible (Symons and Horner 2014). This 
article provides precisely such a general solution.

To be more precise, this article offers an alternative analysis to the current 
philosophical treatment on epistemic opacity. In here, a formal framework is 
developed to the effect of allowing knowledge provided by computer simulations 
without rejecting some degrees of epistemic opacity. To this end, the article first 
analyzes epistemic opacity and essential epistemic opacity as presented by Hum‑
phreys (2009). This is the main subject of Sect.  2, where epistemic opacity is 
reconstructed in terms of accessibility and surveyability conditions on justifica‑
tion. Section 3 elaborates on computational reliabilism, a version of process reli-
abilism (Goldman 1979) more suitable for accommodating computer simulations. 
The aim of this section is to understand the implications of epistemic opacity for 
the analysis of knowledge. It is worth noting that although this article focuses 
efforts on computer simulations, much of what is said here can also be extended 
to other uses of computers provided that the right methods for grounding com‑
putational reliabilism are in place. Section 4 further elaborates on computational 
reliabilism by advancing the four sources that attribute reliability to computer 
simulations. The last section recapitulates the findings and advocates for further 
issues of genuine philosophical interest.

2  Epistemic Opacity (EO)

In the following, we reconstruct epistemic opacity in terms of accessibility and 
surveyability conditions on justification.
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2.1  What is Epistemic Opacity?

Before we give formal definitions of epistemic opacity, we note that it is motivated 
by a sceptical line of thought. This is best seen by considering the following exam‑
ple: take the uncontroversial assumption that human intellect is limited in the sense 
that it cannot be acquainted with every natural number – for there are an infinity of 
them. It is a well known fact that much of modern mathematical reasoning depends 
upon properties of infinite sets (e.g. the statement that every composite number has 
a prime factorization). The skeptical challenge is now this: how do mathematicians 
establish the truth of general statements which obviously transcend their intellect? 
They certainly cannot try out every instance. One way to answer this question is to 
employ specific methods such as mathematical induction and proof by contradic‑
tion for conferring the required certainty. The question that naturally follows is what 
warrants the validity of those latter methods?

This question concerned early 20th century mathematicians and philosophers in 
the foundational crisis of mathematics, and has its analogue in the notion of epis‑
temic opacity that interests us now. While mathematicians sought to justify their 
use of infinitary methods, which were at the core of Hilbert’s program (see (Zach 
2016) for an overview), we seek to justify computational methods such as computer 
simulations. Such computational methods exceed human abilities in a similar way 
because they also involve a large number of steps to be acquainted with.

As mentioned earlier, Humphreys has stated that a general account of justification 
– or a full fledged epistemology – for computer systems has to be non‑anthropocen‑
tric, that is, computers replace humans in the process of justification. The formal 
definition of epistemic opacity proposed by Humphreys in (2004) and repeated in 
(2009) goes as follows:

[A] process is epistemically opaque relative to a cognitive agent X at time t 
just in case X does not know at t all of the epistemically relevant elements of 
the process (Humphreys 2009, 618)

Concerning Hilbert’s program, it has been debated which methods are finitary 
and therefore admissible. In the context of computer systems, and more specifically 
to our interests, computer simulations, the question is, which are the exact limita‑
tions of the cognitive agent in Humphrey’s definition. It is clear that this has to do 
with what the agent can and can not know. Now, since can is a modal verb, we will 
give an interpretation of the modality involved; furthermore, we will also give an 
account of the epistemic know.

2.2  Reconstruction

Our reconstruction focuses on “X does not know” as part of the above definition, 
and analyzes knowing in terms of accessibility and surveyability. The central role 
of justification in the computing process will be argued for. We note in passing that 
knowing could also have been analyzed in terms of JTB. As it is contentious that 
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JTB gives sufficient conditions for knowledge one would have to resort to a more 
general reading like JTB+X. While the role of justification becomes directly appar‑
ent in JTB+X due to the justification clause, we think that avoiding the immediate 
replacement know → JTB+X clauses is more charitable to Humphrey’s intentions 
and thus allowing for a less contentious interpretation of knowledge.

As we focus on the justificatory aspects of epistemic opacity, we should clarify 
what we mean by justification. A simple example could be a (not necessarily deduc‑
tive) argument as exemplified in ones (not necessarily deductive) logic of choice. An 
argument has premises, steps and a conclusion, with the inference from the premises 
to the conclusion warranted by some inferential relation. We also allow for informal 
and non‑deductive arguments, so justification doesn’t have to be truth‑preserving 
nor do we require a formal theory of truth. Though it seems obvious that computa‑
tional processes are deductive (Beisbart 2012), we don’t require them to be formal‑
ized in some specific logic nor will we attempt to do so.

Let us now begin by emphasizing the last part in Humphreys’ definition of EO:

[A] process is epistemically opaque relative to a cognitive agent X at time t 
just in case X does not know at t all of the epistemically relevant elements of 
the process (Humphreys 2009, 618)

A process which contains epistemically relevant elements is different from a 
causal process or a mere sequence of events. We take this to mean that such a 
process can be understood as a justification, which is an epistemic term in itself. 
Basically, this means that the epistemically relevant elements of the process are 
the steps of the argument giving the justification.

In the next step we deal with the knowing part of the definition, while already 
substituting steps of the justification for epistemically relevant elements.

[A] process is epistemically opaque relative to a cognitive agent X at time t 
just in case X does not know at t all of the steps of the justification

Taking into account the speed and volume at which justificatory steps could be 
generated by computing processes, there are two conditions for how an agent can 
fail to know them. She could fail to access each step—maybe they are generated 
and discarded so fast that she can not keep up, maybe her memory is insufficient. 
But even granting full access to every justificatory step, will she still be able to 
check every step according to some predefined set of rules? In most cases the 
answer is probably no, since having access to the steps of a process and checking 
the validity of an argument are two different things. All things being equal, the 
limiting factors to be able to check a justification are finiteness in length and time. 
This is exactly what the concept of surveyablity captures for mathematical proofs 
(Tymoczko 1981). Following this idea, we say that a justification is surveyable if 
and only if it is finite in length and checkable in finite time. Of course the exact 
amount of finitude and the meaning of checkability depends on the agent. We will 
discuss the application to human agents in the next section.

With these clarifications in mind, our final proposal for the definition of epis‑
temic opacity including the notions of accessibility and surveyability now reads:
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[A] process is epistemically opaque relative to a cognitive agent X at time t 
just in case X at t doesn’t have access to and can’t survey all of the steps of the 
justification.

We now see that a justification is epistemically opaque if there is a failure to jus‑
tify elements of it. At this point an example of such a computational process is in 
order. Consider the execution of a computer program on a particular machine (i.e. 
the changes in the physical state of the processor, the access to ram, etc.). The steps 
involved in the justification are defined relative to an agent. That is, if one already 
knows how a half‑adder works, one is allowed to subsume its internal processes and 
take the result as justified. Say you know the workings of the basic logical circuitery 
of the CPU and the rest of the hardware. You are now going to write a ‘hello world’ 
in machine code. Would the execution of this program be epistemically opaque to 
you? The answer is no, and the reason is because you can give a justification for 
every step thanks to your previous knowledge (i.e., of knowing the basic logical cir‑
cuitery of the CPU and the rest of the hardware). Naturally, it is easy to imagine 
programs more complex than a simple ‘hello world’ on the screen where giving an 
actual justification would take too long. The next section tries to capture this aspect 
of computer software.

2.3  Strengthening EO with Essential Epistemic Opacity

Essential Epistemic Opacity (EEO) imposes severe restrictions on what counts as a 
justification under EO, depending on the reading of (im)possibility in the following 
definition:

A process is essentially epistemically opaque to X if and only if it is impos-
sible, given the nature of X, for X to know all of the epistemically relevant ele‑
ments of the process (Humphreys 2009, 618)

Translating this definition into our scheme from above, it reads:

A process is essentially epistemically opaque to X if and only if it is impossi-
ble, given the nature of X, for X to have access to and be able to survey all of 
the relevant elements of the justification.

For Humphreys EEO is on the practical side of his in principle—in practice 
divide. For him it makes a difference whether the agent knows something or whether 
he only can know something. Of course his interpretation of the can know has to 
involve a specific account of modality in which human limitations come to play.

The standard account in epistemology interprets possibilities as logical possibili-
ties, meaning that everything that does not imply a contradiction is therefore pos‑
sible. This idealizing account of possibilities also affects the nature of X, insofar as 
the nature of X should not contain anything which prevents logical possibilities to 
be known. Therefore, on the face of it, the ability of X to access and survey all of the 
relevant elements, even given its nature, does not imply a logical contradiction.

To make sense of EEO, therefore, we need to further restrict the notion of possi‑
bility to cover only metaphysical or physical possibilities. For the metaphysical case, 
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one needs an account for X’s nature or essence which has been contested at least 
since Aristotle presented the idea. In the end, the extension of EEO would have to be 
set by a dogmatic decree. Now, if we want to restrict ourselves to physical possibli‑
ties,3 then we have to be precise about which physical theory is at stake, for Newto‑
nian possiblities are certainly different from relativistic possibilities.

We propose a common sensical reading of possiblity. For Humphreys, eligible 
possibilities are restricted by human action4 which takes place in finite time and 
space and is constrained by finite mental capabilities. A process is EEO if it is 
impossible for someone to justify epistemically relevant elements of a process under 
those conditions. Therefore, justifications themselves are restricted by finite space, 
time and mental capabilities. This means that unsurveyablility is a real possibility 
for such justifications. In a sense, this claim was already contained in our reformu‑
lation of EO, with the difference that the agent referred to was a generic one while 
now it is a human agent. And it is for humans that most processes in (computational) 
science are EEO (see Humphreys (2009)). This immediately implies the skeptical 
challenge mentioned at the beginning, namely, that if most processes are EEO then 
we are not justified in believing their results.

This article holds a different position. At its core, we claim that researchers are 
justified in believing the results of computational processes, such as computer simu‑
lations, given certain conditions for their reliability. In the following sections, we 
flesh out these ideas by introducing computational reliabilism, a version of pro-
cess reliabilism that relaxes the demands for accessibility and surveyability of the 
computational process and thereby allows us to regain some human control over 
justifications.

3  Dissolving EEO with Computational Reliabilism

As mentioned earlier, a core epistemological concern in studies on computer sim‑
ulation is to find grounds for claims about knowledge. That is to say, to be able to 
justify the belief that either the results of computer simulations are correct of the 
target system, that they are valid with respect to our system of beliefs, or simply 
that they are employed within their intended uses. This is a concern that can be 
found, explicitly or implicitly, in the work of most philosophers interested in the 
epistemological input of computer simulations. Margaret Morrison, for instance, 

3 An anonymous reviewer pointed out that those possibilities do not depend on the physical theory we 
adopt. Although correct, we also do not have access to physical possiblities outside of any physical the‑
ory. If we want to give meaning to epistimic opacity through physical possibilities, then we have to adopt 
some physical theory.
4 Humphreys says: “For certain philosophical purposes, such as demonstrating that some kinds of 
knowledge are impossible even in principle, in principle arguments are fine. But just as humans cannot in 
principle see atoms, neither can humans in principle be given the attributes of unbounded memory and 
arbitrarily fast computational speed.” (Humphreys 2011, 138)
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explicitly addresses these concerns in her treatment of the ‘materiality’ of com‑
puter simulations (Morrison 2009), and reuses the same ideas in her analysis of 
the role of computer simulations in finding the Higgs boson (Morrison 2015). 
Wendy Parker is another philosopher that has made explicit her concerns about 
knowledge and justification in the context of computer simulations. To her mind, 
conclusions about the target systems on the basis of computer simulation results 
“cannot be automatic, but rather require justification” (Parker 2009, 490).

Accepting EEO in computer systems has several consequences of importance 
for the epistemological treatment of computer simulations. Perhaps the most 
immediate one is that EEO casts doubts on whether researchers could trust the 
results of computer simulations at all. But by removing trust in results, the initial 
reasons for using computer simulations in scientific and engineering practice fal‑
ter. Furthermore, standard philosophical examination on the experimental value 
of computer simulations becomes meaningless (Morgan 2003, 2005). Without 
the assumption that results of computer simulations are trustworthy, there are no 
grounds for claims about their experimental side.

As discussed, a core assumption lying behind EEO is that the justification of 
results requires some form of surveyability of the simulation process. That is to 
say, in order to be justified in believing the results of the simulations, researchers 
must survey every step of the computational process that leads to such results. 
But as it has been argued earlier, such surveillance is indeed impossible and, for 
our purposes, equally undesirable. Therefore, a more effective solution needs to 
be found, one that allows some degree of reliability to be attributed to the simu‑
lation process and, by means of it, to grant the results the necessary trust. Now, 
since EEO prevents us from attributing reliability by means of inspecting the sim‑
ulation models or by surveying the process of computing such models, then it 
must be done by appealing to procedures external to the simulation itself.

In this context, many philosophers have suggested different sources for relia‑
bility. Claims range from stating that good simulations require well grounded sci‑
entific knowledge (Massimi and Bhimji 2015), to assertions that scientists believe 
the results of their simulations because they trust the assumptions upon which 
they are built (Beisbart 2017). Although we heartedly endorse these claims, 
more needs to be said. Relating computer simulations to well grounded scientific 
knowledge as well as trusting the assumptions built in are, at best, only necessary 
but not sufficient conditions for attributing reliability to computer simulations. 
For this reason, we argue that these sources are more diverse and numerous than 
those usually discussed in the literature. In this respect, we offer the first compre‑
hensive review of the sources that attribute reliability to computer simulations 
and, by doing so, grant trust to their results. Furthermore, claims about knowl‑
edge need to be located within a theoretical framework that properly articulates 
these sources and supplies a justification of the reliability of the computer simu‑
lation along with reasons to believe in their results. To us, such framework comes 
in the form of a modified version of Alvin Goldman’s (1979) process reliabi-
lism—or reliabilism for short—that we deem to call computational reliabilism. 
Let us now try to make sense of these ideas.
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3.1  Computational Reliabilism

Let us begin by presenting process reliabilism as elaborated by Goldman 
(1979) and Goldman and Beddor (2016). In its simplest form, reliabilism can be 
expressed in the following way:

(PR) if S’s believing p at t results from m, then S’s belief in p at t is justified.

where S is a cognitive agent, p is any truth‑valued proposition, t is any given 
time, and m is a reliable process.

Thus understood, according to reliabilism, Peter is justified in believing that 
‘2 + 2 = 4’ because counting small natural numbers is usually a reliable process. 
Indeed, there is nothing accidental about the truth of the belief that ‘2 + 2 = 4’ 
when knowledge is acquired by a reliable reasoning process such as doing arith‑
metics under normal circumstances and within a limited set of operations.

For process reliablism to work, however, it is essential that a reliable process 
is not so because it was successful once, but rather because there is a tendency 
to produce a high proportion of true beliefs relative to false ones. Goldman has 
a simple way to depict reliabilism as “consist[ing] in the tendency of a process 
to produce beliefs that are true rather than false” (Goldman 1979). His proposal, 
then, highlights the place that a belief‑forming process has in the steps towards 
knowledge. Consider the following example offered by Goldman:

If a good cup of espresso is produced by a reliable espresso machine, and 
this machine remains at ones disposal, then the probability that ones next 
cup of espresso will be good is greater than the probability that the next 
cup of espresso will be good given that the first good cup was just luckily 
produced by an unreliable machine. If a reliable coffee machine produces 
good espresso for you today and remains at your disposal, it can normally 
produce a good espresso for you tomorrow. The reliable production of one 
good cup of espresso may or may not stand in the singular‑causation rela‑
tion to any subsequent good cup of espresso. But the reliable production of 
a good cup of espresso does raise or enhance the probability of a subsequent 
good cup of espresso. This probability enhancement is a valuable property 
to have. (Goldman 1979, 28)

The probability here is interpreted objectively, that is, as the chance that 
a recorded observation – or a long history of collected data – produces beliefs 
that are true rather than false. The core idea of reliabilism is that if a given pro‑
cess is reliable in one situation, then it is very likely that, all things being equal, 
the same process will be reliable in a similar situation. Thus, Peter is justified in 
believing that ‘2 + 2 = 4’ because he has been correct in the past – and, we could 
add, most likely he will also be correct in the future. Let it be noted that Goldman 
is very cautious in demanding infallibility or absolute certainty for the reliabilist 
account. Rather, a long‑run frequency or propensity account of probability fur‑
nishes the idea of a reliable production of coffee that increases the probability of 
a subsequent good cup of espresso.
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Now, one way to reinterpret Goldman’s reliabilism in the context of computer 
simulations is to say that researchers are justified in believing the results of their 
simulations because there is a reliable process that produces, most of the time, true 
beliefs about such results. We can now reinterpret computational reliabilism in the 
following terms:

(CR) if S’s believing p at t results from m, then S’s belief in p at t is justified.
where S is a cognitive agent, p is any truth‑valued proposition related to the 
results of a computer simulation, t is any given time, and m is a reliable com‑
puter simulation.

Let us note that the formulation of process reliabilism remains largely unmodi‑
fied by computational reliabilism, as it is evidenced in (CR). An important – and 
rather obvious – difference, however, is that process reliabilism is no longer a gen‑
eral account for any p and m, but rather specified for computational undertakings. 
In this respect, computational reliabilism takes that p is a truth‑valued proposition 
related to the results of a computer simulation. These could be particular, such as 
‘the results show that republicans have won,’ ‘the results suggest an increase of tem‑
perature in the Arctic as predicted by theory’, and ‘the results are consistent with 
experimental results,’ among others. Alternatively, they could also be general such 
as ‘the results are correct of the target system’, ‘the results are valid with respect to 
the researcher’s corpus of knowledge’, and ‘the results are accurate for their intended 
use.’5 Naturally, the reliable process m is identified with the computer simulation 
(see Sect. 3.2 for further differences with process reliabilism).

We can now assimilate Goldman’s process realibilism into our analysis of com‑
putational reliabilism: researchers are justified in believing the results of their simu‑
lations when there is a reliable process (i.e., the computer simulation) that yields, 
most of the time, trustworthy results. More formally, the probability that the next set 
of results of a reliable computer simulation is trustworthy is greater than the prob‑
ability that the next set of results is trustworthy given that the first set was produced 
by an unreliable process by mere luck (Durán 2014).

The challenge now is to spell out what makes a computer simulation a reliable 
process in the sense given above. To this end, Sect.   4 discusses four sources for 
computational reliabilism. However, let us first discuss some shortcomings of pro‑
cess reliabilism for computer simulations and the reasons for promoting (CR).

5 By posing these general propositions, we remain neutral on whether computational reliabilism should 
hold commitments to a representationalist viewpoint (e.g., first general proposition), or to a non‑repre‑
sentationalist one (e.g., second and third general propositions). Furthermore, it is important to notice that 
we have spelled out computational reliabilism in a positive form, that is, that if researchers know p then 
they ‘cannot be wrong’ about the results. However, and just like process reliabilism, computational relia‑
bilism also makes place for the possibility of errors (Goldman and Beddor 2016).
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3.2  Justifying Computational Reliabilism

Earlier, we mentioned that accepting EEO casts doubts on whether researchers 
could trust the results of computer simulations at all. The chief argument for EEO 
is, again, that computer simulations contain so many steps that they become inac‑
cessible and unsurveyable by a human agent, and thus their belief in the results are 
impossible to justify. This is a fundamental skeptical concern about knowledge and 
justification for computer simulations with the consequences already stated.

Computational reliabilism has been the proposed solution to the skeptical chal‑
lenge posed by EEO. Taken seriously, however, EEO entails that the processes that 
attribute reliability to the simulation could be, in turn, also epistemically opaque. 
This is to say that the alleged reliability of computer simulations could be attrib‑
uted by an unreliable process. To illustrate this point, consider that researchers can‑
not trust the results of a simulation using the Schelling’s model of segregation if 
the original distributions are produced by a pseudo‑random generator that produces 
non‑random results (i.e., it is a non‑reliable pseudo‑random generator). Trusting the 
results of computer simulations, therefore, depends on having a chain of reliable 
processes that, in the end, allow researchers to be justified in believing the results.6

Unfortunately, process reliabilism eschews any form of the skeptic’s concerns 
simply by denying any need for further justification of the reliable process m. In 
fact, it is a well known characteristic of process reliabilism that it rejects any form 
of regression in the justificatory chain. That is, whether or not we know that the 
method by which we attribute reliability is, in and by itself, reliable, is of no concern 
to the traditional reliabilist (Goldman and Beddor 2016; Bird 1998). In this sense, 
and always according to process reliabilism, Peter is justified in believing that ‘2 + 
2 = 4’ because he acquired true beliefs by looking into a textbook on algebra, and 
algebra is a reliable process as a matter of fact. There is no need for further justifica‑
tion that algebra is, in turn, a reliable process.

In its standard form, process reliabilism is inapplicable as a general solution 
to EEO without providing further restrictions. Specifically, process reliabilism 
do not require the agent to know (or to justify) the methods which produce reli‑
able processes. This is the so called JJ‑principle, which states that in order for 
a method to yield justified belief, the method too must be justified (Bird 1998, 
152). By evading this principle, process reliablism is unable to account for the 
varied justificatory practices as detailed in our paper. Why scientists concern 
themselves with verification and validation, robustness analysis, etc. and how 
the epistemic strength of those methods is to be evaluated are questions which 
cannot be answered by process reliabilism. In computational reliablism, instead, 
an agent can know something by relying on a reliable method (i.e., the compu‑
tational process). In this first step, the JJ‑principle is not required, thereby cir‑
cumventing the skeptical challenge posed by Humphreys. But as we would also 
like to allow skepticism about reliable methods, we reintroduce the JJ‑principle 

6 This point raises the obvious question of where does this chain of reliable processes end. Unfortu‑
nately, we cannot answer this question here.
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in the second step. If a researcher thinks that a specific verification procedure 
is reliable, she would have to adduce reasons for it. In this way, computational 
reliabilism better reflects current scientific and engineering practices better.

Thus understood, computational reliabilism requires a ‘retrospective reliabil‑
ity chain,’ one that conditions the sources that attribute reliability to computer 
simulations to be reliable in and by themselves. This means that the sources pre‑
sented in Sect.  4 must be shown to be reliable. For instance, many verification 
and validation methods depend, in turn, on mathematics and the empirical sci‑
ences. The history of (un)successful implementations, on the other hand, is a 
reliable source insofar as there are well defined theories in the social epistemol‑
ogy and scientific practice that can vouch for the methods that populate such his‑
tory. As more sources come into play, or as the same sources change over time, 
researchers must sanction their reliability.

To sum up, computational reliabilism encompasses two specifications of 
standard process reliabilism and one amendment. These are, the truth‑valued 
proposition p, which stands for the results of the computer simulation; the reli‑
able computer simulation m, which is a specification of the reliable process; and 
the series of reliable sources leading to the reliability of m.

4  Sources for Computational Reliabilism

In the following, we identify four sources for attributing reliability to a com‑
putational process such as computer simulations. It is important to note that 
each source offers a different ‘degree of reliability’ to computer simulations. For 
instance, expert knowledge by itself is a rather weak source for the reliability of 
most computer simulation. The reason for this is that it could be idiosyncratic in 
several ways, and therefore not reliable in the epistemic sense required. Verifica‑
tion and validation methods, on the other hand, are stronger forms of reliabil‑
ity for they depend on mathematical machinery and thus are epistemically more 
secure. This is the reason why the latter, and not expertise knowledge, are on 
many occasions decisive for attributing reliability to computer simulations. Hav‑
ing said this, we are unable to offer here a measurement of the degree of reliabil‑
ity for each source. Instead, we offer an analysis of each individual source.

1. Verification and validation methods
2. Robustness analysis for computer simulations
3. A history of (un)successful implementations
4. Expert knowledge
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4.1  Verification and Validation

Verification and validation7 are the general names given to a host of methods used 
for increasing the reliability of scientific models as well as computer simulations. 
Understanding their role, then, turns out to be essential for attributing reliability to 
computer simulations.

In verification, it is standard that formal methods are at the center for the reli‑
ability of computer software, whereas in validation benchmarking is responsible for 
confirmation of the outcomes (Oberkampf and Roy 2010, Preface). In verification 
methods, then, the relationship of interest is between the specification of a model 
and the computer software, whereas in validation methods the relationship of inter‑
est is between computation and the empirical world. Here are two standard defini‑
tions largely accepted and used by the community of researchers:

Verification: the process of determining that a computational model accurately 
represents the underlying mathematical model and its solution.
Validation: the process of determining the degree to which a model is an accu‑
rate representation of the real world from the perspective of the intended uses 
of the model. (Oberkampf et al. 2003)

In recent philosophical studies, these definitions have been adapted to include 
computer simulations. Eric Winsberg, for instance, takes it that “verification, [...] is 
the process of determining whether or not the output of the simulation approximates 
the true solutions to the differential equations of the original model. Validation, on 
the other hand, is the process of determining whether or not the chosen model is 
a good representation of the real‑world system for the purpose of the simulation” 
(Winsberg 2010, 19–20). Another example of a philosopher discussing verification 
and validation in computer simulations is Margaret Morrison. Although she agrees 
with Winsberg that verification and validation are two methods not always clearly 
divisible, she nevertheless downplays the need for verification methods claiming 
that validation is a more crucial method for assessing the reliability of computer 
simulation (Morrison 2009, 43).

The scientific and computational communities, in contrast, have a more diverse 
set of definitions to offer, all tailored to the specificities of the simulation under 
study. In verification studies, for instance, the literature provides two methods par‑
ticularly important for computer simulations. These are code verification and calcu-
lation verification.8 Their importance lies in the fact that both methods focus on the 
correctness of the discretization procedure, a key element for implementing math‑
ematical models as computer simulations.

William Oberkampf and Timothy Trucano have further argued that it is use‑
ful to segregate code verification into two activities, namely, numerical algorithm 
verification and software quality engineering. The purpose of numerical algorithm 

7 Also known as ‘internal validity’ and ‘external validity’ or ‘testing’ respectively.
8 Also referred to as solution verification in (Oberkampf and Roy 2010, 26), and as numerical error esti-
mation in (Oberkampf et al. 2003, 26).
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verification is to address the mathematical correctness of the implementation of all 
the numerical algorithms that affect the numerical accuracy of the results of the sim‑
ulation. The goal of this verification method is to demonstrate that the numerical 
algorithms implemented as part of the simulation model are correctly implemented 
and performing as intended (Oberkampf and Trucano 2002, 720). Software qual‑
ity engineering, on the other hand, sets the emphasis on determining whether the 
simulation model is reliable and produces, most of the time, trustworthy results. The 
purpose of software quality engineering is to verify the simulation model and the 
results of the simulation on a specific computer hardware, in a specified software 
environment—including compilers, libraries, I/O, etc. These verification procedures 
are primarily in use during the development, testing, and maintenance of the simula‑
tion model (Oberkampf and Trucano 2002, 721).

As for calculation verification, it is generally depicted as the method that prevents 
three kinds of errors: human error in the preparation of the code, human error in the 
analysis of the results, and numerical errors resulting from computing the discre‑
tized solution of the simulation model. A definition for calculation verification is 
“the process of determining the correctness of the input data, the numerical accu‑
racy of the solution obtained, and the correctness of the output data for a particular 
simulation” (Oberkampf et al. 2003, 34).

The process of validation consists in showing that the results of the simulation 
correspond, more or less accurately and precisely, to those obtained by measure‑
ment and observation of the target system. Oberkampf and Trucano highlight three 
key aspects of validation methods. These are “i) quantification of the accuracy of 
the computational model by comparing its responses with experimentally measured 
responses, ii) interpolation or extrapolation of the computational model to condi‑
tions corresponding to the intended use of the model, and iii) determination if the 
estimated accuracy of the computational model, for the conditions of the intended 
use, satisfies the accuracy requirements specified” (Oberkampf and Trucano 2008, 
724).

It is important to mention that, with the introduction of computer simulations in 
experimental contexts, validation does not exclusively depend on contrasting results 
against empirical data. Ajelli and team have shown how it is possible to run differ‑
ent computer simulations and use their results to assert their mutual reliability – in 
this case, there is not a mere convergence of results, but also of key variables (Ajelli 
et al. 2010), as we argue in Sect. 4.2.

The role of verification and validation methods in attributing reliability to com‑
puter simulations is rather straightforward: on the one hand, they make sure that the 
implementation of well established theories is correctly carried out and not much 
information is missed; on the other, they provide good reasons to trust the results of 
the simulations because they match, with more or less accuracy, empirical data.

4.2  Robustness Analysis for Computer Simulations

When systems under study are inherently too complex and particular degrees 
of precision and accuracy in idealized models are required but not delivered by 
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fundamental theories, then robustness analysis becomes a suitable alternative 
method for determining the trustworthiness of results (Weisberg 2013, 156).

Robustness analysis, as presented by Richard Levins (1966) and further elabo‑
rated by Michael Weisberg (2013) allows researchers to learn about the results of 
a given model and whether they are an artifact of it (e.g., due to a poor idealiza‑
tion) or whether they are related to core features of the model (Weisberg 2013, 
156). At its heart, robustness analysis consists of two steps, the first one consist‑
ing in examining a group of models to determine if they all predict a common 
result—called the robust property; during the second step, models are analyzed 
for those structures in the model that generate the sought robust property. The 
results from these two steps are combined in order to formulate the robust theo-
rem, “a conditional statement linking common structure to robust property, pref‑
aced by a ceteris paribus clause” (Weisberg 2013, 158). It is important to empha‑
size that robust theorems do not make claims about the frequency with which the 
robust property occur in target systems. Rather, it makes the conditional claim 
about what happens if a model is instantiated in an specific way (Weisberg 2013, 
169).

Following Weisberg, the ideal case of robustness analysis requires researchers to 
examine a group of similar but distinct models in search of a robust behavior. The 
aim of such an examination is to formulate sufficiently diverse models in such a way 
that the discovery of a robust property is not due to mere luck in the way the mod‑
els were analyzed but rather because the property is actually there (Weisberg 2013, 
158). The question now is how to formulate such diverse models. Weisberg suggests 
a list of possibilities, none of which consists of changes in the parametrization of the 
model and of initial and boundary conditions, but in significant modifications to the 
structure of the model. Reinterpreting these possibilities in terms of modification in 
computer simulations, they include varying the regularity of the grid, varying the 
number of attributes of a process, and varying the heterogeneity of the utility func‑
tion, among others.

Let us note that Weisberg’s analysis of robustness relies on the number of (het‑
erogeneous) models that researchers are able to create. The more models available, 
the more likely it is that the robust property identified across models can actually be 
found in a real‑world system (Weisberg 2013, 160ff). In computer simulations, the 
computational power allows researchers to produce a large number of heterogeneous 
models at a relatively low cost (e.g., in terms of human resources, money, time, etc.). 
In this sense, inferring that a robust property is present in the simulation models, 
and therefore that the core structure is giving rise to such a property, is a much sim‑
pler task with computer simulations.

Now, the core assumption in robustness analysis is that if a sufficiently heteroge‑
neous set of models give rise to a property, then it is very likely that the real‑world 
phenomenon also shows the same property. Furthermore, robustness analysis allows 
researchers to infer that, when the robust property is observed in a real‑world sys‑
tem, then it is very likely that the core structure of the computer simulation corre‑
sponds to the causal structure giving rise to the real‑world phenomenon. Robustness 
analysis, therefore, is a key player in the process of attributing reliability to com‑
puter simulations.
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Consider the following example of robustness analysis in computer simula‑
tions. Ajelli et al. provide a side‑by‑side comparison of two computer simulations, 
a stochastic agent‑based model and a structured meta‑population stochastic model 
(GLobal Epidemic and Mobility—GLEaM). The agent‑based model includes an 
explicit representation of the Italian population through highly detailed data on 
the socio‑demographic structure. In addition, and for determining the probability 
of commuting from municipality to municipality, Ajelli et al. use a general gravity 
model used in transportation theory. However, the epidemic transmission dynamics 
is based on an ILI (Influenza‑like Illness) compartmentalization, which in turn is 
based on stochastic models that integrate susceptible, latent, asymptomatic infec‑
tions, and symptomatic infections (Ajelli et  al. 2010, 5). The authors define their 
agent‑based model as “a stochastic, spatially‑explicit, discrete‑time, simulation 
model where the agents represent human individuals [...] One of the key features of 
the model is the characterization of the network of contacts among individuals based 
on a realistic model of the socio‑demographic structure of the Italian population.” 
(Ajelli et  al. 2010, 4) The authors also mention that both GLEaM and the agent‑
based model are dynamically calibrated in that they share exactly the same initial 
and boundary conditions (Ajelli et al. 2010, 6).

On the other hand, GLEaM is a multiscale mobility network based on high‑reso‑
lution population data that estimates the population with a resolution given by cells 
of 15 × 15 min of arc. Balcan et al. explain that a typical GLEaM consists of three 
data layers. A first layer, where the population and mobility allows the partition of 
the world into geographical regions. This partition defines a second layer, the sub‑
population network, where the inter‑connection represents the fluxes of individuals 
via transportation infrastructures and general mobility patterns. Finally, and super‑
imposed onto this layer, is the epidemic layer, that defines inside each subpopulation 
the disease dynamic (Bruno et al. 2009). In the study by Ajelli et al., GLEaM also 
represents a grid‑like partition where each cell is assigned the closest airport. The 
subpopulation network uses geographic census data, and the mobility layers obtain 
data from different databases, including the International Air Transport Association 
database consisting in a list of airports worldwide connected by direct flights.

By increasing spatial resolution, changing grid size, the topography of the net‑
work, internal functions, and several other structures – tailored to what each model 
can offer to alter – Ajelli et al. are able to identify a series of robust properties and 
thus elaborate a series of robust theorems.9 To illustrate just one case, Ajelli et al. 
reported to have found that the two computer simulations “display a very good 
agreement in the timing of the epidemic, with a very limited variation in the time of 
the simulated epidemic activity peaks. In the metapopulation approach the fraction 

9 A further point to evaluate is whether identifying differences in what should be a robust property 
is epistemically as relevant as identifying a robust property. The former requires an evaluation by the 
researchers of what should be a robust property whereas the later is somehow provided by the simulation 
model. To Ajelli et al. identifying similarities and differences both work towards the reliability of their 
computer simulation: “we investigated and quantified similarities and differences in the results at differ‑
ent scales of resolution, and related those to the assumptions of the frameworks and to their integrated 
data” (Ajelli et al. 2010, 11)
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of the population affected by the epidemic is larger (by 5–10%) than in the agent‑
based approach. This difference is due to the assumption of homogeneity and thus 
the lack of detailed structure of contacts (besides the age structure) in the metapopu‑
lation approach with respect to the agent‑based approach” (Ajelli et al. 2010, 11). In 
this case, robustness analysis provides good reasons to believe that core structures in 
GLEaM and the agent‑base simulation correspond very well to the actual timing of 
the epidemic. Researchers are thus justified in believing claims about results of these 
simulations – and from those created from these two simulations.

4.3  A History of (Un)successful Implementations

The history of science offers a long record of successes and accomplishments, as 
well as failures and incompetence. What does such a disruptive history tell us about 
the scientific enterprise? In the context of experimental practice, Hacking (1988) 
and Galison (1997) have argued that mature science has been, by and large, cumula‑
tive since the seventeenth century. Such a claim builds on the idea that (un)success‑
ful implementation of a theory, a model, or even two chemicals in a laboratory setup 
are part of the corpus of knowledge as much as the theory, the model, and the two 
chemicals in question.

Something very similar can be said about the success, failure and cumulative 
nature of computer simulations. The simulation model as a whole is conceptualized, 
designed, programmed and executed in a series of stages that do not remain con‑
stant over time (Durán 2018). In each stage, the knowledge relied upon to devise 
each method comes from a wide range of domains, including mathematics, logic 
and computer theory, sociology and cognitive psychology. Over time, techniques are 
improved upon, reconfigured, and radically revised when the technology changes 
or a new method is envisaged. For instance, design prototyping is a sub‑field of 
software engineering that helps developers assess alternative design strategies and 
decide which is best for a particular project. There are no standard methods for 
choosing the best strategy, but rather the designers may address the requirements 
of the simulation with several different design approaches to see which has the best 
properties. For instance, a simulation involving networking may be built as a ring in 
one prototype and as a star in another, and performance characteristics evaluated to 
see which structure is better at meeting performance goals or constraints (Pfleeger 
and Atlee 2009, Chapter 5). In this respect, for some cases the best option will be 
to draw from a body of successful implementations (e.g., of successful implemen‑
tations of ring networking simulations); for some other cases, a new strategy will 
populate such a body (e.g., failures in communication protocols, and the success in 
a new networking topology). In both cases, they integrate a history of (un)successful 
implementations.

This is, we believe, part of what Massimi and Bhimji (2015) have in mind when 
they claim that the epistemic reliability of computer simulations come from the cre‑
dentials supplied by well grounded scientific knowledge. Although we agree with 
this claim, we must keep in mind that the methodology of computer simulations is 
dynamic and non‑hierarchical. That is to say that researchers make constant changes 
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to their simulations, rather than merely implementing a well grounded theory once 
and for all. It is also to say that well grounded scientific knowledge is, to today’s 
scientific standards, also knowledge generated by computer simulations. In this vein, 
well grounded scientific knowledge depends as much on computer simulations as the 
latter depend on scientific knowledge. Naturally, such a dynamism in the methodol‑
ogy might introduce sources of unreliability (e.g., using a method that has been his‑
torically successful in one domain into a complete different domain). However, the 
simulation model itself is, at some point, methodologically stabilized – as opposed 
to constant tinkering.

In this respect, we follow Eric Winsberg who, borrowing in turn from Hacking, 
claimed that building techniques have their own life for “they carry with them their 
own history of prior (un)successes and accomplishments, and, when properly used, 
they can bring to the table independent warrant for belief in the models they are used 
to build” (Winsberg 2003, 122). We include such history of (un)successful imple‑
mentations as an important source for attributing reliability to computer simulations.

4.4  Expert Knowledge

The last source we offer here for computer reliabilism can be found in the differ‑
ent disciplines that constitute Science and Technology Studies. In there, a great 
deal of attention is put on understanding the notion and role of experts in science 
and engineering. Harry Collins and Robert Evans argue that standard theories of 
expertise [e.g., the relational theory of expertise, which take expertise to be a matter 
of the experts’ relations with other experts (Collins and Evans 2007, 2)] fall short 
in a series of respects. They usually provide no guidance on how to legitimize and 
identify the experts nor how to choose between competing experts [see the periodic 
table of expertises (Collins and Evans 2007, 14)]; furthermore they leave out of con‑
sideration the analysis of the citizen’s role in technological decision‑making and, if 
the proper measures are not in place, they can be dangerously idiosyncratic. Col‑
lins and Evans propose as alternative the realist theory, which takes that expertise is 
some sort of attribute or possession that groups of experts have and that individuals 
acquire through their membership of those groups. “Acquiring expertise” Collin and 
Evans conclude, “is therefore a social process – a matter of socialization into the 
practices of an expert group – and expertise can be lost if time is spent away from 
the group” (Collins and Evans 2007, 3).

To us, the expert is interpreted in the realist mode proposed by Collin and Evans, 
with the condition that having membership of a given group does not mean strict 
participation in that group. Thus, to us the mathematician and physicist that know 
the underlying theory that will be implemented as a simulation very well, but know 
nothing about the implementation itself, are as much an expert in the computer sim‑
ulation as the computer scientist that knows how to implement the theory but little 
or nothing about the theory itself.

As Claus Beisbart indicates, scientists believe the results of their simulations 
because they trust the assumptions upon which such simulations are built (Beisbart 
2017). These assumptions are here interpreted as being suggested and approved by 



1 3

Grounds for Trust: Essential Epistemic Opacity and…

the relevant actors, that is, the experts. Furthermore, by and large scientists believe 
the results of their simulations because they fall within an expected range. Marco 
Ajelli et al. provide us with a good example of the interplay between the assump‑
tions built into the simulation model and what experts typically anticipate. To Ajelli 
et  al. “[t]he epidemic size profile shows an expected overall mismatch of 5–10% 
depending on the reproductive rate, which is induced by the homogeneous assump‑
tion of the metapopulation strategy” (Ajelli et al. 2010, 2).

With these ideas in mind, it is possible to argue that the expert is a key contribu‑
tor to the reliability of computer simulations:10 the theory and assumptions built into 
the simulation, along with the implicit theory supporting the computation largely 
depend on the experts, and/or they determine the range within which results can be 
accepted.

Expert knowledge also plays an important role in determining the robustness of a 
simulation as well as in participating in a history of (un)successful implementations. 
In the latter case, because they are the main actors in creating such (un)successful 
history. In the former case, because the expert’s abilities to identify and judge rele‑
vantly similar structures is paramount for claims about robust properties. According 
to Weisberg, there are occasions where researchers rely on judgment and experience, 
not mathematics or simulation, to determine whether a common structure gives 
rise to the robust behavior as well as judge whether the common structure contains 
important mathematical similarities as opposed to just intuitive qualitative similari‑
ties (Weisberg 2013, 159). Ajelli et al. again offer an interesting assertion that com‑
bines claims about robustness and the modeling assumptions advanced by experts: 
“[t]he good agreement of the two approaches [i.e., the agent‑based simulation and 
the GLEaM simulation] reinforces the message that computational approaches are 
stable with respect to different data integration strategies and modeling assumption” 
(Ajelli et al. 2010, 2)

5  Final Remarks

If the philosophical novelty of computer simulations is a matter of controversy, we 
hope that this article evidenced that more philosophical efforts need to be channeled 
towards a better understanding of simulations. The EEO is just one issue proposed 
for a genuine philosophy of computer simulations. To the few attempts to answer it, 
we suggested a peaceful coexistence between accepting EEO and reasons for having 
genuine knowledge provided by computer simulations.

Although our approach builds much from past research on justification and theo‑
ries of knowledge, it is new in at least three different ways. First, because it is the 
only account that takes EEO seriously and proposes an effective solution to it in 
terms of theories of knowledge; second, because it attends to some shortcomings 
that process reliabilism has in the context of computer simulations (hence, renaming 

10 Let us keep in mind that expert knowledge is also a source for a variety of errors. Thanks to an anony‑
mous reviewer for pointing this out to us.
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it computational reliabilism); and third, because it is the only work in the literature 
that systematically and qualitatively addresses the sources that attribute reliability to 
computer simulations.

Having mentioned these merits, we must also acknowledge the limitations of our 
approach. For starters, more needs to be said about the sources attributing computa‑
tional reliability. Whereas our treatment has been general, some specific work would 
shed more light on the methods for attributing reliability to computer simulations. 
For instance, addressing verification methods exclusively for computer simulations 
will help to understand better the degree to which they are absolutely necessary in 
the assessment of their reliability. Similarly, to the argument here advanced, it is 
important to factor in the specific uses of computer simulations. In climate science, 
for instance, expert knowledge has a more epistemically prominent place than vali‑
dation methods because the scarcity of data makes the justification of the simulation 
via validation a rather difficult task. This is, of course, not to say that we must accept 
weaker standards of verification and validation for climate science. Rather that the 
justification of certain simulations, such as in climate science, comes by and large 
from expertise knowledge.11

All in all, we expect to have provided a formal account of how to address and 
solve the skeptic’s challenge that follows by taking EEO seriously in the context of 
computer simulations.
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