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Abstract
Kendall’s tau and conditional Kendall’s tau matrices are multivariate (conditional) dependence

measures between the components of a random vector. For large dimensions, available estimators

are computationally expensive and can be improved by averaging. Under structural assumptions

on the underlying Kendall’s tau and conditional Kendall’s tau matrices, we introduce new esti-

mators that have a significantly reduced computational cost while keeping a similar error level.

In the unconditional setting we assume that, up to reordering, the underlying Kendall’s tau ma-

trix is block-structured with constant values in each of the off-diagonal blocks. The estimators

take advantage of this block structure by averaging over (part of) the pairwise estimates in each

of the off-diagonal blocks. Derived explicit variance expressions show their improved efficiency.

In the conditional setting, the conditional Kendall’s tau matrix is assumed to have a constant

block structure, independently of the conditioning variable. Conditional Kendall’s tau matrix

estimators are constructed similarly as in the unconditional case by averaging over (part of) the

pairwise conditional Kendall’s tau estimators. We establish their joint asymptotic normality, and

show that the asymptotic variance is reduced compared to the naive estimators. Then, we per-

form a simulation study which displays the improved performance of both the unconditional

and conditional estimators. Finally, the estimators are used for estimating the value at risk of a

large stock portfolio; backtesting illustrates the obtained improvements compared to the previous

estimators.
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1 Introduction
The problem of analysing interrelationships between different elements of a multivariate random

vector X = (X1, . . . , Xp) arises in numerous applications in many fields [14]. This often includes

the adoption of a certain statistical model involving the correlation matrix of all pairwise combi-

nations of the random vector X. It is therefore highly relevant to be able to estimate correlation

matrices in all kinds of different types and settings [15].

For multivariate Gaussian data, the classical choice is Pearson’s linear correlation coefficient,

which is the ratio of the covariance of two variables and the product of their standard deviations.

It is well known that Pearson’s sample correlation matrix is generally not suitable for capturing

correlations of heavy-tailed data. It is based on sub-Gaussian theory and is therefore very sensi-

tive to outliers [28]. Consequently, robust measures of dependence should be used when heavy

tails are involved [4].

Rank correlation coefficients measure the relationship between the ranking of two ordinal

random variables and are hereby nonparametric and robust measures of correlation [3]. The

most used ones are Spearman’s rho and Kendall’s tau, with the latter being of particular interest.

This is due to a direct transformation between Kendall’s tau and Pearson’s correlation coefficient

for the general class of elliptical distributions, a common model for financial data [32, 36]. This

allows for robust covariance estimation after combining Pearson’s correlation with the marginal

standard deviations.

Estimation of the p × p Kendall’s tau matrix T becomes particularly challenging in the high-

dimensional setting when p is large. Simple use of the naive Kendall’s tau matrix estimator of

all pairwise sample Kendall’s taus will result in noisy estimates with estimation errors piling up

due to the estimates’ individual imprecision [13]. Over the past two decades, various regulari-

sation strategies have been proposed to reduce the aggregation of estimation errors. Ultimately,

these methods all make certain assumptions on the underlying dependence structure and hereby

reduce the number of free parameters to estimate.

In many instances, sparsity of the target matrix is assumed. For such settings, various (com-

binations of) thresholding and shrinkage methods have been proposed, see for example [2, 24,

44]. However, such assumptions are certainly not appropriate for the modelling of most finan-

cial data, e.g. market risk is reflected in all share prices and therefore their returns are certainly

correlated. To this end, factor models are usually imposed, where the correlations depend on a

number of common factors, which may or may not be latent, see [13, 16].

In 2019, Perreault et al. [40] have introduced an alternative approach to estimating large

Kendall’s tau matrices. They studied a model in which it is assumed that the set of variables

could be partitioned into smaller clusters with exchangeable dependence. As such, after reorder-
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ing of the variables by cluster, the corresponding Kendall’s tau matrix is block-structured with

constant values within each block. Following naturally is an improved estimation by averaging

all pairwise Kendall’s taus within each of the blocks. Additionally, they have proposed a robust

algorithm identifying such structures (see also [41] for testing for the presence of such a structure).

In this thesis, we study a more flexible framework by assuming that the set of variables can

be grouped in a way such that the pairwise Kendall’s tau between variables of different groups

is only dependent on group numbers. As such, after reordering of the variables by group the

corresponding Kendall’s tau matrix is again block-structured, but with arbitrary (non-constant)

values within the diagonal blocks. The interest in this relaxation originates from the application

to modelling financial stock returns; we could, for example, assume that the returns of stocks

from a certain sector and economy have constant correlations with the returns of stocks from a

certain other group, but that they have varying correlations with each other since they operate

within the same sector and economy.

We propose an estimator similar to the one studied in [40], but that applies averaging to only

the off-diagonal blocks, and study its efficiency. One of the drawbacks of the estimator studied in

[40] is its computational cost, which is close to the one of the naive Kendall’s tau matrix estimator:

the number of pairwise sample Kendall’s taus that are to be computed scales quadratically with

the dimension p. Naturally, the idea of averaging among several Kendall’s taus can be applied to

part of the blocks, which allows for faster computations. As such, we propose several estimators

that average among part of the Kendall’s tau per off-diagonal block, and study their efficiencies

and computational costs. For every off-diagonal block, we will consider averaging over elements

in the same row, averaging over elements on the diagonal and averaging over a number of ran-

domly selected elements. We will be referring to these estimators as the row, diagonal and random

estimators; the estimator that averages over all elements is referred to as the block estimator.

Further, we investigate the extension of this model to the conditional setup when a d-dimen-

sional covariate Z ∈ Z is available. In this setting, Kendall’s taus are depending on Z and we

assume that the set of variables can be clustered such that for all z ∈ Z the Kendall’s tau condi-

tional on Z = z between variables of different groups is only depending on group numbers and

on the value of z. In view of applications to finance, the conditional version of our structural as-

sumption could, for example, be seen as assuming that the correlations between European stocks

of two different groups are equal and react equally in changes of some other American stock or

portfolio. Furthermore, in [1, 12, 33], it was shown that stock returns actually exhibit higher corre-

lations during market declines than during market upturns, and moreover that the same applies

to exchange rates in [37]. This illustrates that analysing a model in which correlations depend on

some conditioning variable is certainly relevant.

In this framework, we adopt nonparametric estimates of the conditional Kendall’s tau based

on kernel smoothing. Based on these nonparametric estimates we introduce conditional versions
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of the averaging estimators and study their asymptotic behaviour as the sample size n tends to in-

finity. It is worth noting that conditional estimates of Kendall’s tau using kernel smoothing carry

significantly more computational cost than their unconditional counterparts, especially when the

covariate’s dimension d is large. Therefore, faster computations of conditional Kendall’s tau ma-

trices will be of particular use in the conditional, nonparametric setup.

This thesis is structured as follows. Chapter 2 provides an overview of the theory underlying

the topic. In order to understand the basis of multivariate dependence structures we touch upon

the concept of (conditional) copulas. Furthermore, we discuss the idea of rank-based correlation

and examine the generic class of elliptical distributions. Next, we consider the theory behind

U-statistics, which serves as the foundation for the proofs in subsequent chapters. Moreover, we

discuss the concept of kernel smoothing for the construction of nonparametric conditional esti-

mators. Chapter 3 sets the stage for improving the estimation of the unconditional Kendall’s tau

matrix. We formalise the proposed model, and follow up with a construction of estimators. Then,

we derive their explicit variance expressions to compare them to the usual sample Kendall’s tau

matrix. Similarly, Chapter 4 is devoted to the improved estimation of the conditional Kendall’s

tau matrix. We discuss several nonparametric estimators of the conditional Kendall’s tau in order

to define the conditional versions of the averaging estimators. After formalising the conditional

setup, we derive the estimators’ joint asymptotic normality at different points of the covariate.

This allows us to theoretically compare the performance of the different estimators. In Chapter

5 we perform a simulations study in order to support the theoretical findings. Here we examine

the (conditional) estimators’ performances for varying block dimensions and sample sizes. Ad-

ditionally, we study the bandwidth choice that is associated with kernel regression. Finally, in

Chapter 6, we examine a possible application to study the behaviour of the estimators in real data

conditions. The estimators are used for the robust inference of the covariance matrix to calculate

the value at risk of a large stock portfolio. We perform backtesting in order to asses the results.

The conclusions of this thesis are summarised in Chapter 7.
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2 Preliminaries
This chapter aims at providing the necessary fundamentals for the material discussed in subse-

quent chapters. We start by introducing the concept of (conditional) copulas in Section 2.1 in

order to understand the basics of dependence in multivariate random variables. We then fol-

low up with a short background on rank-based correlation in Section 2.2, where we formally

define Spearman’s rho and Kendall’s tau. Furthermore, in Section 2.3 we give the definition of

elliptical distributions together with some of their main properties, in particular that of the rela-

tion between Pearson’s correlation coefficient and Kendall’s tau. We then follow up with a brief

background on U-statistics in Section 2.4, which serves as the basis for the proofs in subsequent

chapters. Lastly, in Section 2.5 we discuss the concept of kernel regression estimation for under-

standing the basics of nonparametric conditional estimation.

2.1 Copulas

The concept of copulas, first introduced by Sklar [47], links the multivariate distribution to its

one-dimensional marginal distributions. As such, copulas effectively capture the dependence

structure between the components of a random vector. They have therefore become a popular

modelling tool for when multivariate dependence has interest. Let us start by stating the formal

definition.

Definition 1. Let p ≥ 2 be integer. A copula is a function C : [0, 1]p → [0, 1] with the following

properties:

1. For any j = 1, . . . , p and all uj ∈ [0, 1], C(u1, . . . , uj−1, 0, uj+1, . . . , up) = 0.

2. For any j = 1, . . . , p and all uj ∈ [0, 1], C(1, . . . , 1, uj , 1, . . . , 1) = uj .

3. C is p-increasing, i.e. for each hyperrectangle A = Πp
j=1 [aj , bj ] ⊆ [0, 1]

p the C-volume of A is

non-negative: ∫
A

dC(u) ≥ 0.

In probabilistic terms, copulas are defined as the joint cumulative distribution function (CDF)

of a multivariate random vector on the unit cube with uniform marginal distributions. When

given this definition, the concept of copulas may seem rather abstract. However, the following

theorem shows how it effectively connects the the joint CDF of any multivariate random variable

with its one-dimensional marginals. For the proof we refer to [48].



2 Preliminaries 6

Theorem 2 (Sklar’s Theorem). Let X = (X1, . . . , Xp) be a random vector with joint CDF F and

univariate marginal CDFs F1, . . . , Fp. Then, there exists a copula C such that for all x ∈ Rp,

F (x) = C(F1(x1), . . . , Fp(xp)).

In addition, C is given for all u ∈ [0, 1]
p by

C(u1, . . . , up) = F (F−1 (u1), . . . , F−p (up)),

where F−j denotes the generalised inverse of Fj for j = 1, . . . , p. Therefore, if X is continuous, then C is

unique.

It follows from Theorem 2 that any joint CDF can be written in terms of its marginal CDFs and

a copula. Conversely, if F1, . . . , Fp are continuous CFDs on R, and C is a copula on [0, 1]
p, then

the function F : Rp → [0, 1] given by

F (x) = C(F1(x1), . . . , Fp(xp)),

is the joint CDF of a random variable on Rd with marginals F1, . . . , Fp. As a consequence, there

exists a bijection between the joint CDF F and the decomposition (F1, . . . , Fp, C). Hereby, we

can decouple any random vector’s joint CDF in a "dependent" and "marginal" part, given by the

copula and all of its marginals respectively.

Given the definition of copulas, the concept of copula densities follows naturally. If it exists,

then the copula’s probability density function (PDF) is obtained in the usual way as

c(u1, . . . , up) =
∂pC (u1, . . . , up)

∂u1 · · · ∂up
,

and it follows that the joint PDF f of X is given by

f(x) = f1(x1) · . . . · fp(xp) · c(F1(x1), . . . , Fp(xp)),

where f1, . . . , fp denote the marginal densities. Copulas and copula densities are studied in a

wide variety of different parametric families. For an overview of the most well-known ones we

refer to [11].

One of the key characteristics of copulas is that they are invariant under monotonic transfor-

mations of the marginal distributions. This will be useful later on when dealing with rank-based

correlations. For a proof on Theorem 3 and for a thorough review on copulas, see [11, 29].

Theorem 3. Let X = (X1, . . . , Xp) be a random vector with continuous marginal CDFs F1, . . . , Fp and

a continuous copula C. Let Ti : R → R, for i = 1, . . . , d be strictly increasing functions. Then the



2 Preliminaries 7

dependence structure of the random vector

(T1(X1), . . . , Tp(Xp))

is also given by the copula C.

When a d-dimensional conditioning variable Z is available, the concept of copulas can be

generalized. Such a generalization was first introduced for time series in [38, 39]. Conditional

copulas effectively allow for the modelling of (time-varying) multivariate processes that depend

on a certain (time-varying) covariate. This was further generalised in [17]. In a similar way as

in the unconditional case, conditional copulas form the link between a conditional joint CDF and

the corresponding conditional marginal CDFs. Let us start with a formal definition.

Definition 4. Let p ≥ 2 and Z be a conditioning vector taking values in Z ⊂ Rd. A conditional copula

is a measurable function C : [0, 1]p × Z → [0, 1] such that for PZ-almost every z ∈ Z the following

properties are satisfied:

1. For any j = 1, . . . , p and all uj ∈ [0, 1], C(u1, . . . , uj−1, 0, uj+1, . . . , up|Z = z) = 0.

2. For any j = 1, . . . , p and all uj ∈ [0, 1], C(1, . . . , 1, uj , 1, . . . , 1|Z = z) = uj .

3. For each hyperrectangle A = Πp
j=1 [aj , bj ] ⊆ [0, 1]

p the C-volume of A is non-negative:

∫
A

dC(u|Z = z) ≥ 0.

As such, conditional copulas are defined as the conditional joint CDF of a multivariate random

vector on the unit cube with uniform marginals. Next, let us simply state the conditional version

of Sklar’s theorem. For a proof we refer to [38].

Theorem 5 (Sklar’s Theorem for Conditional Copulas). Let X and Z be random vectors taking values

in respectively Rp and Z ⊂ Rd. Let the conditional joint CDF of X given Z = z, denoted by FX|Z=z, have

conditional marginals F1|Z=z, . . . , Fp|Z=z. Then, there exists a conditional copula, denoted by CX|Z=z,

such that for all x ∈ Rp and all z ∈ Z ,

CX|Z=z(u1, . . . , up) = FX|Z=z(F−1|Z=z(u1), . . . , F−p|Z=z(up)),

where F−j|Z=z denotes the generalised inverse of Fj|Z=z for j = 1, . . . , p. Therefore, if X|Z = z is continu-

ous, then CX|Z=z is unique.

Similarly to the unconditional case, we can combine any set of continuous marginal CDFs

with any conditional copula to form a well-defined conditional CDF. It then follows that there



2 Preliminaries 8

exists a bijection between FX|Z=z and the decomposition (F1|Z=z, . . . , Fp|Z=z, CX|Z=z). As such,

the concept of conditional copulas effectively connects the conditional multivariate CDF with its

conditional marginals.

Again, the concept of conditional copula densities follows naturally. If it exists, then the con-

ditional copula’s PDF is obtained as

c(u1, . . . , up|Z = z) =
∂pC (u1, . . . , up|Z = z)

∂u1 · · · ∂up
,

and it follows that the conditional joint PDF of X given Z = z, denoted by fX|Z=z, is given by

fX|Z=z(x) = f1|Z=z(x1) · . . . · fp|Z=z(xp) · cX|Z=z(F1|Z=z(x1), . . . , Fp|Z=z(xp)),

where cX|Z=z denotes the conditional copula density and f1|Z=z, . . . , f1|Z=z denote the condi-

tional marginal densities.

Lastly, let us point out that the dependency of the conditional copula CX|Z=z with respect to

the conditioning point z introduces significant complexities in terms of model specification and

inference. As such, it is sometimes assumed that the so-called simplifying assumption holds,

which assumes that CX|Z=z is independent of z. Note, however, that this does not mean that the

conditional copula is equal to the unconditional copula, but merely that the conditional depen-

dence structure is independent of the conditioning point. For a detailed discussion on the proper

use of the simplifying assumption, as well as several methods of testing it, we refer to [8].

2.2 Rank correlation

To assess the dependence between two random variables, various types of dependence measures

can be considered [20, 46]. Let us start by considering the Pearson correlation coefficient, which

is essentially a normalised version of the covariance with values in [−1, 1]. Thus, Pearson’s corre-

lation coefficient only reflects a linear type of correlation, and ignores other types of correlation.

Its population and sample versions are given in the following definition.

Definition 6. Let X1 and X2 be real-valued random variables. The population Pearson correlation coeffi-

cient of X1 and X2 is defined by

%X1,X2 :=
Cov(X1, X2)

σX1σX2

,

where σ1, σ2 denote the standard deviations of X1, X2. Further, let {(X1,1, X2,1) , . . . , (X1,n, Y2,n)} be

paired observations, then the sample Pearson correlation coefficient is defined by

rX1,X2
=

∑n
i=1

(
X1,i − X̄1

) (
X2,i − X̄2

)√∑n
i=1

(
X1,i − X̄1

)2√∑n
i=1

(
X2,i − X̄2

)2 ,
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where X̄1 and X̄2 denote the sample means of {X1,1, . . . , X1,n} and {X2,1, . . . , Y2,n}.

Note that the sample statistic r will be largely affected by an outlier in either X1 or X2 as it

will have different impacts on the numerator and denominator. Especially for heavy-tailed data,

this will lead to misleading results. For such settings, robust measures of correlation should be

used. Accordingly, let us turn to measures of rank correlation that indicate the similarity of the

orderings of the data when ranked by each of the quantiles. We recollect the definitions of two

such measures, Spearman’s rho and Kendall’s tau. For continuous random variables X1, X2 with

marginals F1, F2, set Ui := Fi(Xi), i = 1, 2 and note that U1, U2 have uniform marginals on [0, 1]

by Fisher’s theorem [19]. Let us define Spearman’s rho between variables X1 and X2 as the linear

Pearson’s correlation coefficient % between variables U1, U2.

Definition 7. Let X1 and X2 be real-valued continuous random variables. The population Spearman’s

rho of X1 and X2 is defined as

ρX1,X2 := %U1,U2 =
Cov(U1, U2)

σU1σU2

=
E[U1U2 − 1/4]

1/12
= 12

∫
[0,1]2

u1u2dC(u1, u2)− 3,

where σ1, σ2 denote the standard deviations of U1, U2 and C is the copula corresponding to (X1, X2).

Further, let {(X1,1, X2,1) , . . . , (X1,n, Y2,n)} be paired observations with distinct integer ranks, then we

define the sample Spearman’s rho by

ρ̂X1,X2
= 1−

6
∑n
i=1(R(X1,i)−R(X2,i))

2

n (n2 − 1)
,

where R(X1,i) and R(X2,i) denote the ranks of observations X1,i and X2,i, for i = 1, . . . , n.

Note that Spearman’s rho is a distribution-free measure of dependence, i.e. independent of

marginals and thus invariant under monotonic transformations. As a consequence, it can be ex-

pressed in terms only of the copula. Further note that the corresponding sample statistic is robust

to outliers as it only depends on ranked data. The same also applies to other rank correlation co-

efficients, e.g. Kendall’s rank correlation coefficient. Let us define Kendall’s tau as the difference

between the probability of concordance and the probability of discordance of two independent

versions of (X1, X2). A concordant pair is a pair of bivariate observations such that both elements

of one observation are either greater than or less than the corresponding elements of the other ob-

servation. We speak of a discordant pair when only one of the elements of one observation is

greater than the corresponding element of the other observation.

Definition 8. Let X1 and X2 be real-valued random variables. The population Kendall’s tau of X1 and

X2 is defined as

τX1,X2
: = P ((X1,1 −X1,2) (X2,1 −X2,2) > 0)− P ((X1,1 −X1,2) (X2,1 −X2,2) < 0) (1)
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where (X1,i, X2,i)i=1,2 are two independent versions of (X1, X2). Further, we define the sample Kendall’s

tau for paired observations {(X1,1, X2,1) , . . . , (X1,n, Y2,n)} by

τ̂X1,X2 :=
2

n(n− 1)

∑
i1<i2

sign ((X1,i1 −X1,i2) (X2,i1 −X2,i2)) .

It follows from the definition that, like Spearman’s rho, Kendall’s tau takes values in [−1, 1],

where a value of −1 corresponds to the variables being negatively dependent and a value of 1

corresponds to the variables being positively dependent, independent random variables a value

of 0 is taken. Note that the Kendall’s tau of independent variables is equal to 0, but conversely

that a Kendall’s tau of 0 does not necessarily mean that the variables are independent.

Furthermore, whenever the random variables are continuous, then the following expressions

are equivalent to that of Definition 8

τX1,X2
= 4P (X1,1 < X1,2, X2,1 < X2,2)− 1 (2)

= 1− 4P (X1,1 < X1,2, X2,1 > X2,2) (3)

= 4

∫
C(u1, u2)dC(u1, u2)− 1.

As both Spearman’s rho and Kendall’s tau can be represented in terms of the copula, it follows

that for most one-dimensional families of copulas, estimation of the parameter is equivalent to

either estimating Kendall’s tau or Spearman’s rho. Kendall’s taus thus provide much information

on the underlying dependence structure, while being much easier to manipulate than the copulas

themselves. Indeed, it should be noted that the Kendall’s tau matrix (of all pairwise Kendall’s

tau) of a p-dimensional multivariate vector X lives in a space of dimension 1
2p(p − 1), whereas

the underlying copula is a multivariate function defined on a p-dimensional space. For notational

convenience, we will write subscripts τ1,2 for τX1,X2 when the appropriate variables are obvious.

Let us turn to the conditional setup when a multivariate covariate Z is available. Conditional

Kendall’s tau has been studied before, see [7, 9, 10, 23, 50]. Conditional Kendall’s tau is a condi-

tional dependence measure used to predict whether a pair of random variables is concordant or

discordant conditionally on Z. We define the conditional Kendall’s tau in a similar manner as its

unconditional counterpart.

Definition 9. Let X1 and X2 be real-valued random variables and Z be a random vector taking values in

Z ⊂ Rd. For any point z ∈ Z , we define Kendall’s tau of X1 and X2 conditional on Z = z by

τ1,2|Z=z = P ((X1,1 −X1,2) (X2,1 −X2,2) > 0|Z1 = Z2 = z)

− P ((X1,1 −X1,2) (X2,1 −X2,2) < 0|Z1 = Z2 = z) , (4)
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where (X1,i, X2,i,Zi)i=1,2 are two independent versions of (X1, X2,Z).

For every point in z ∈ Z the conditional Kendall’s tau takes values [−1, 1], while the underly-

ing conditional copula is a bivariate function for each z ∈ Z . As such, conditional Kendall’s tau,

and more generally conditional dependence measures, allow us to summarise the dependency

between two variables under a changing covariate.

Furthermore, when the conditional marginal distributions of X1 and X2 given Z = z are

continuous, Definition 9 is equivalent to any of the following expressions

τ1,2|Z=z = 4P (X1,1 < X1,2, X2,1 < X2,2|Z1 = Z2 = z)− 1 (5)

= 1− 4P (X1,1 < X1,2, X2,1 > X2,2|Z1 = Z2 = z) , (6)

= 4

∫
[0,1]2

C1,2|Z=z (u1, u2) dC1,2|Z=z (u1, u2)− 1.

Since it can be expressed in terms of the underlying conditional copula, it follows that the con-

ditional Kendall’s tau is also invariant under increasing transformations. Clearly, the conditional

Kendall’s tau is equal to its unconditional counterpart if the variables X1, X2 are independent of

Z. However, the definition of appropriate estimators is less straightforward as we need to deal

with the dependency on Z. To this end, we discuss kernel regression estimation in Section 2.5.

2.3 Elliptical Distributions

The class of elliptical distributions is a generalization of the family of multivariate normal distri-

butions. It is more flexible, e.g. providing for heavy tails, while still keeping some of its useful

Gaussian properties. It is therefore often used in the modelling of different types of heavy tailed

data. See [36] for a discussion on the use of elliptical distributions in finance.

Definition 10. Let X be a p-dimensional random vector. Further, let µ denote a vector in Rp, Σ a p × p
nonnegative definite symmetric matrix and g : R+ → R+∪{∞} a measurable function. We say that X has

an elliptical distribution with parameters µ, Σ and g, if its density function w.r.t. the Lebesgue measure in

Rp is given by

fX(x) = |Σ|−1/2g
(
(x− µ)TΣ−1(x− µ)

)
,

for all x ∈ Rp, and we write X ∼ Ep(µ,Σ, g).

Here, the function g is called the density generator of X. Note that not every function g can

be used to construct an elliptical distribution. Examples of elliptical distributions include the

Gaussian, Student’s t and Laplace distributions. With Definition 10 it may still be difficult to

visualise the general concept of elliptic distributions. An alternative form of approaching elliptic

distributions is given in the following theorem.
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Theorem 11. We have that X ∼ Ep(µ,Σ, φ) with rank(Σ) = p if and only if there exists a continuous

random variable ξ ≥ 0 independent of a random variable U, where U is uniformly distributed on the unit

sphere in Rp, and a p× p matrix A with AAT = Σ, such that

X ∼ µ+ ξAU.

Note that the representation given in Theorem 11 is not unique. By substituting A and U by

AO and OTU for some orthogonal p × p matrix O, we end up with the same distribution. The

existence of the inverse of Σ is ensured by requiring rank(Σ) = p, and if we set E
[
ξ2
]

= p, then

Σ is equal to the covariance matrix of X.

Next, let us state a well-known result for the relation between Kendall’s tau and the linear

Pearson’s correlation coefficient in the following theorem. For the proof and for more details on

the claim, we refer to [32].

Theorem 12. Let X ∼ Ep(µ,Σ, φ). Assume that for all j = 1, . . . , p, P(Xj = µi) = 0. Then,

τj1,j2 =
2

π
arcsin %j1,j2 ,

for every j1, j2 = 1, . . . , p.

Consequently, estimating the correlation matrix of an elliptically distributed random variable

is equivalent to obtaining its Kendall’s tau matrix. As such, Kendall’s tau can be used for the

robust inference of the covariance matrix. This makes the use of Kendall’s tau particularly inter-

esting as inference of the covariance matrix often plays a central role when analysing multivariate

data.

2.4 U-statistics

The generic class of U-statistics is effective in constructing optimal estimators and was first stud-

ied by Hoeffding [27]. Let us start with some definitions. Let P be some general (nonparametric)

family of probability distributions. Let θ(F ) denote a real-valued function defined for F ∈ F .

Definition 13. We call θ(F ) a regular parameter within F , if for some integer m there exists an unbiased

estimator of θ(F ) based on m i.i.d. random variables with distribution F , i.e. there exists a real-valued

measurable function g(x1, . . . , xm) such that

E [g(X1, . . . , Xm)] = θ(F ) for all F ∈ F ,

where X1, . . . , Xm are all independent and distributed according to F . The smallest m for which this

applies is referred to as the degree of θ(F ).



2 Preliminaries 13

There is no loss of generality in assuming that g is a symmetric, because it can always be

replaced by the symmetric function

1

m

∑
Pm

g(xj1 , . . . , xjm),

where the summation is over the set Pm of all m! possible permutations (j1, . . . , jm) of (1, . . . ,m).

Definition 14. Let g(x1, . . . , xm) be a real-valued symmetric function and let X1, . . . , Xn be an i.i.d.

sample of size n ≥ m distributed according to a distribution F . Then, a U-statistic with kernel g is defined

as

Un =

(
n

m

)−1 ∑
Cm,n

g(Xi1 , . . . , Xim),

where
∑

Cm,n
denotes the summation over all

(
n
m

)
possible permutations (i1, . . . , im) of size m out of

(1, . . . ,m).

U-statistics are unbiased estimators for θ(F ) and are in fact optimal in most cases, i.e. uni-

formly minimum variance unbiased (UMVU). Let F be the family of probability distributions

such that θ(F ) is finite for all F ∈ F . Since Un is a symmetric function we can write in terms of

the ordered statistic of X1, . . . , Xn, which is known to be a complete and sufficient statistic for

F ∈ F . It follows then by the Lehmann-Scheffé theorem that Un is in fact UMVU.

Let Un be a U-statistic with kernel g(x1, . . . , xm) of a sample size n. For the variance of a

Un there exists an explicit expression. To introduce this result, we consider a symmetric ker-

nel g(x1, . . . , xm) of order m satisfying E
[
g2(X1, . . . , Xm)

]
< ∞ and let us denote θ = θ(F ) =

E [g(X1, . . . , Xm)]. For c = 1, . . . ,m− 1, we define

gc(x1, . . . , xc) = E [g(x1, . . . , xc, Xc+1, . . . , Xm)] ,

and set gm := g. Note that E [gc(X1, . . . , Xc)] = θ for c = 1, . . . ,m. Additionally, we set ζ0 = 0 and

define for 1 ≤ c ≤ m,

ζc = Var [gc(X1, . . . , Xc)] = E
[
(gc(X1, . . . , Xm)− θ(F ))2

]
.

The following theorem gives us then the U-statistic’s finite sample variance. The proof can be

found in the work of Hoeffding [27].

Theorem 15. If E
[
g2(X1, . . . , Xm)

]
<∞, then the variance of Un is given by

Var [Un] =

(
n

m

)−1 m∑
c=1

(
m

c

)(
n−m
m− c

)
ζc.
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Finally, let us state the asymptotic normality of U-statistics in the following theorem. For the

proof, we again refer to [27].

Theorem 16. If E
[
g2(X1, . . . , Xm)

]
<∞ and ζ1 > 0, then as n→∞

n1/2 (Un − θ(F ))
D−→ N

(
0,m2ζ1

)
.

2.5 Kernel Regression Estimation

In this section, we introduce the notion of kernel regression for the construction of nonparametric

conditional estimators. The presented derivations follow [21]. Let us be interested in the estima-

tion of the expectation of a random variable Y conditional on some covariate Z ∈ Z . Then, in the

case of a continuously distributed covariate, we will almost surely never observe that Z = z, for

any z ∈ Z . Therefore a method is needed with which it is still possible to compute reasonable

estimates. Most natural is the concept of kernel regression, also known as kernel smoothing. That

is, to consider adjacent observations in which the variate Z is close to the point z at which we

want the estimate.

Let us start by considering the definition of conditional expectation

m(z) = E [Y |Z = z] =

∫
yfY |Z=z(y)dy =

∫
yfZ,Y (z, y)dy

fZ(z)
. (7)

In kernel regression the estimates of fZ,Y (z, y) and fZ(z) are computed by kernel density esti-

mation. That is, the density functions are approximated by adjacent observations of Z in the

following way

f̂Z,Y (z, y;h) :=
1

n

n∑
i=1

1

hd
K1

(
z− Zi
h

)
1

h
K2

(
y − Yi
h

)
(8)

f̂Z(z;h) :=
1

n

n∑
i=1

1

hd
K1

(
z− Zi
h

)
, (9)

where K1 : Rd → R and K2 : R → R are kernel functions, i.e. assumed to be symmetric,

unimodal at zero and satisfying
∫
K = 1, the parameter h is a tuning parameter known as the

bandwidth and n is the sample size. The bandwidth controls the sensitivity of the density esti-

mates towards observations further away from z, whereas the kernel function defines the form of

the dependency. Commonly used kernels are the Gaussian and Epanechnikov kernels. Note that

for U-statistics the term kernel has a different meaning.

The smoothed estimate of m(x) is obtained by replacing fZ,Y (z, y) and fZ(z) in (7) with their
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respective kernel density estimates (8) and (9). This gives,

m̂(z;h) : =

∫
yf̂Z,Y (z, y;h)dy

f̂Z(z;h)

=

∫
y 1
n

∑n
i=1

1
hd
K1

(
z−Zi
h

)
1
hK2

(
y−Yi
h

)
dy

1
n

∑n
i=1

1
hd
K1

(
z−Zi
h

)
=

1
n

∑n
i=1

1
hd
K1

(
z−Zi
h

) ∫
y 1
hK2

(
y−Yi
h

)
dy

1
n

∑n
i=1

1
hd
K1

(
z−Zi
h

) . (10)

Then, by a change of variable ui = y−Y1

h we find

∫
y

1

h
K2

(
y − Yi
h

)
dy =

∫
(hu+ Yi)K(u)du

= h

∫
uK2(u)du+ Yi

∫
K2(u)du

= Yi, (11)

where we have used that K2 is symmetric and that
∫
K2 = 1. By combining (11) and (10) we

obtain

m̂(z;h) : =
1
n

∑n
i=1

1
hd
K1

(
z−Zi
h

)
Yi

1
n

∑n
i=1K1

(
z−Zi
h

)
=

n∑
i=1

1
hd
K1

(
z−Zi
h

)∑n
i=1

1
hd
K1

(
z−Zi
h

)Yi.
The resulting estimator can be seen as a weighted average of Y1, . . . , Yn by means of the so-

called Nadaraya-Watson weights

m̂(z;h) :=

n∑
i=1

wi,n(z)Yi,

where

wi,n(z) :=
Kh(Zi − z)∑n
k=1Kh(Zk − z)

with Kh := h−dK(·/h). Again, note that the bandwidth h controls the estimate’s sensitivity

towards observations Zi that are further away from point z. It will have a strong influence on the

characteristics of the estimator and is closely related to the sample size. Reducing the bandwidth

will decrease the estimator’s bias and increase its variance, which is known as the bias-variance

tradeoff. Hereby, larger sample sizes will allow for a smaller choice of the bandwidth. Further

note that the volume of the space Z grows exponentially fast when increasing the dimensionality

of Z. As such, the density of observations within that space decreases at the same rate, calling for
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an exponentially increasing bandwidth. In practice, this so-called curse of dimensionality means

that we can only consider covariates of a few dimensions at most.

We conclude with introducing Bochner’s lemma. This will be useful for further proofs involv-

ing kernel based estimators. The lemma and proof are multivariate adaptions of those found in

[49].

Lemma 17 (Bochner’s Lemma). Let f be a bounded function on Rd, continuous in a neighborhood of

the point z ∈ Rd and let K be a function on Rd such that∫
|K(u)|du <∞.

Then,

lim
h→0

∫
K (u) f(z + hu)du = f (z)

∫
K(u)du.

Proof. For every h > 0, we have∣∣∣∣∫ K (u) f(z + hu)du− f (z)

∫
K(u)du

∣∣∣∣ =

∣∣∣∣∫ (f(z + hu)− f (z))K (u) du

∣∣∣∣
≤
∫
|f(z + hu)− f (z)| |K| (u) du

≤ sup
|u|≤h−1/2

|f (z + hu)− f (z)|
∫
|K|(u)du

+

∫
|u|≥h−1/2

|f (z + hu)− f (z)| |K|(u)du

≤ sup
|u|≤h−1/2

|f (z + hu)− f (z)|
∫
|K|(u)du

+ 2 sup
u
|f |((u)

∫
|u|≥h−1/2

|K|(u)du

≤ sup
|v|≤h1/2

|f (z + v)− f (z)|
∫
|K|(u)du

+ 2 sup
u
|f |((u)

∫
|u|≥h−1/2

|K|(u)du.

and the result follows by letting h tend to 0.
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3 Improved Estimation of Kendall’s Tau
This chapter is devoted to the improved estimation of the (unconditional) Kendall’s tau matrix

under our structural assumption. First, we formalise the proposed model in Section 3.1. Then in

Section 3.2, we construct new estimators that take advantage of the underlying structural pattern

of the population Kendall’s tau matrix by averaging over pairwise Kendall’s taus. In Section 3.3

we show how the variances of our new estimators are reduced compared to the usual sample

Kendall’s tau matrix.

3.1 The Structural Assumption

For the remainder of this work, we letXj,i denote the ith observation (i = 1, . . . , n) of the jth vari-

able (j = 1, . . . , p). We assume that all Xi = (X1,i, . . . , Xp,i) are i.i.d. and we denote the marginal

CDFs by (F1, . . . , Fp). As such, the p × p Kendall’s tau matrix T of all pairwise Kendall’s tau of

Xi is independent of i. The task of estimating T becomes particularly challenging in the high-

dimensional setting when p is large. The number of free parameters increases quadratically with

p and therefore simple use of the sample Kendall’s tau matrix can lead to noisy estimates, due

to the accumulation of the sheer inaccuracies of all sample Kendall’s taus [13]. As discussed in

the Introduction, several regularisation techniques have been considered for reducing the num-

ber of free parameters to estimate. However, our interest lies in a particular model that has not

been studied before: we assume that the set of variables can be grouped in such a way that the

Kendall’s taus between elements of different groups is only depending on group numbers. Let us

formalise this in the following assumption. Here, 1 denotes the matrix with all components equal

to 1.

Assumption A1 (Structural Assumption). There exists a K > 0 and a partition G = {G1, . . . ,GK} of

{1, . . . , p}, such that for all distinct k1, k2 ∈ {1, . . . ,K},

[T]Bk1,k2
= τk1,k21,

for some constants τk1,k2 ∈ [−1, 1]. Here, Bk1,k2 = {(j1, j2) ∈ (Gk1 × Gk2)}, for all k1, k2 ∈ {1, . . . ,K}.

It should be noted that τk1,k2 = τk2,k1 for all distinct k1, k2, making the Kendall’s tau ma-

trix symmetric. Further, note that after reordering of the variables by group, the corresponding

Kendall’s tau matrix is block-structured having constant values in each of the off-diagonal blocks.

The interest in investigating this structural assumption originates from applications in stock

return modelling. In this context, the clustering of the variables could for instance be considered

as grouping companies by sector or economy. It then seems at least intuitive to assume that



3 Improved Estimation of Kendall’s Tau 18

companies from different groups have correlations that depend only on the groups they are in,

without making any assumptions on the correlations between companies from the same group.

Obviously, the structural assumption is satisfied for any set of variables by using only groups

of length 1. Therefore, assuming larger groups will make the assumption more constraining.

Indeed, in this framework, Kendall’s tau matrix depends on

1

2
K(K − 1) +

1

2

K∑
k=1

|Gk|(|Gk| − 1)

free parameters. For a dimension of 100, assuming we can split into K = 10 groups of equal

size, this translates to a reduction by factor of 10 of the number of free parameters to estimate

(from 4950 to 495). Such a reduction suggests that the use of appropriate estimators can lead to

significant estimation improvements.

As mentioned in the Introduction, Perreault et al. (2019) [40] proposed a similar model with

a more restrictive version of Assumption A1 by assuming that the variables could be partitioned

into K clusters with exchangeable dependence. Their assumption is referred to as the Partial

Exchangeability Assumption (PEA).

Assumption A2 (Partial Exchangeability Assumption). For j ∈ {1, . . . , p}, let Uj = Fj (Xj). For

any partition G = {G1, . . . , GK} of {1, . . . , p}, let π(G) be the set of permutations π of {1, . . . , p} such

that for all j ∈ {1, . . . , p} and all k ∈ {1, . . . ,K}, π(j) ∈ Gk if and only if j ∈ Gk. A partition

G = {G1, . . . , GK} satisfies the PEA if for any u1, . . . , up ∈ [0, 1] and any permutation π ∈ π(G), one

has

C (u1, . . . , up) = C
(
uπ(1), . . . , uπ(p)

)
or equivalently, (U1, . . . , Up)

law
=
(
Uπ(1), . . . , Uπ(p)

)
.

Note that the PEA imposes restrictions on the underlying copula, whereas Assumption A1

only does so on the underlying Kendall’s tau matrix, making it a lot less restrictive. Additionally,

under Assumption A2, the Kendall’s tau matrix is fully block-structured including constant di-

agonal blocks as well, after reordering of the variables. This further restricts the number of free

parameters to estimate. In contrast to Perreault’s work [40], we are more interested in a model

where we do not consider partial exchangeability nor constant interdependence of marginal vari-

ables within the same cluster. Particularly in view of the aforementioned application of stock

returns, the PEA is seems too restrictive and a model without partial exchangeability in which

companies from the same cluster have different mutual dependence is more plausible. For these

reasons, we opt for a more flexible variant of Perreault’s simpler model.
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3.2 Construction of Estimators

In this section, we define estimators of the Kendall’s tau matrix T under Assumption A1 for some

known partitions G of {1, . . . , p}. Note that such partition can also be inferred from the data, see

[40, 41]. First, let us define the group membership function κ : {1, . . . , p} → {1, . . . ,K}, κ(j) = k,

when j ∈ Gk. Without loss of generality we assume that the ordering of variables is such that

j1 < j2 ⇒ κ(j1) ≤ κ(j2), i.e. the variables are ordered by group and thus T has the proper

block-structure. Naturally, we use the sample version of Kendall’s tau as a first step statistic.

Following Definition 8, the sample Kendall’s tau between X1 and X2 is given by

τ̂1,2 :=
2

n(n− 1)

∑
i1<i2

sign ((X1,i1 −X1,i2) (X2,i1 −X2,i2)) , (12)

but following any of the equivalent expressions for Kendall’s tau in (2) and (3), we might as well

choose to define the sample statistic as

2

n(n− 1)

∑
i1<i2

41 {X1,i1 < X1,i2 , X2,i1 < X2,i2} − 1, (13)

or
2

n(n− 1)

∑
i1<i2

1− 41 {X1,i1 < X1,i2 , X2,i1 > X2,i2} , (14)

where 1 denotes the indicator function. For continuous random variables, the properties of (12),

(13) and (14) are all identical and we could choose any one of them. For convenience, we will use

in the proofs the symmetrical version of expression (13), given by

2

n(n− 1)

∑
i1<i2

2 (1 {X1,i1 < X1,i2 , X2,i1 < X2,i2}+ 1 {X1,i2 < X1,i1 , X2,i2 < X2,i1})− 1.

We denote the corresponding Kendall’s tau matrix estimator by T̂ = [τ̂j1,j2 ]p×p, which serves as

a first step estimator for obtaining a better estimator of the Kendall’s tau matrix. The sample

Kendall’s tau matrix does not make any use of the underlying structure and will therefore be a

rather naive tool in practice. Since we assume that the Kendall’s taus in each of the off-diagonal

blocks are equal, the idea of averaging the pairwise sample Kendall’s tau follows naturally. Let

us introduce the block estimator T̂B that averages all sample Kendall’s tau within each of the

off-diagonal blocks. Formally, we have

T̂B :=
[
T̂Bj1,j2

]
p×p

=

τ̂j1,j2 , if κ(j1) = κ(j2)

τ̂Bk1,k2 , for distinct κ(j1) = k1 and κ(j2) = k2,
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where

τ̂Bk1,k2 :=
1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

τ̂j1,j2 .

Under the PEA, [40] proposed a similar estimator that computes the average within each of the

blocks, both off-diagonal and diagonal. It was shown that this estimator was asymptotically nor-

mal and optimal under the Mahalanobis distance. However, in terms of computational efficiency,

the block estimator T̂B does not show any improvement over the usual estimator T̂, as both esti-

mators require the computation of the usual Kendall’s tau between all pairs of variables anyway.

To reduce the computation time, we propose not averaging over all Kendall’s taus in the block

but only over some of them. Naturally, the question arises over which elements then to average

over. For this purpose, we introduce several estimators that average over different subsets of

elements within each of the off-diagonal blocks.

We introduce two estimators that each average Nk1,k2 ∈ {1, . . . , |Gk1 | ∨ |Gk2 |} pairs per off-

diagonal block Bk1,k2 , so that we can compare estimators that either average pairs in the same

row/column, or pairs on the diagonal. For averaging pairs on the diagonal, it is moreover re-

quired that Nk1,k2 ≤ |Gk1 | ∧ |Gk2 |. The number of Kendall’s tau estimates is then reduced to

scaling linearly with group size, which is a significant improvement over the previous quadratic

growth. For distinct groups k1, k2 ∈ {1, . . . ,K}, we set

τ̂Rk1,k2 :=
1

Nk1,k2

∑
(j1,j2)∈(Bk1,k2 )R

τ̂j1,j2 ,

τ̂Dk1,k2 :=
1

Nk1,k2

∑
(j1,j2)∈(Bk1,k2 )D

τ̂j1,j2 ,

where (Bk1,k2)R is the set of the Nk1,k2 first pairs in the first line along the largest side of block

Bk1,k2 and (Bk1,k2)D is the set of the Nk1,k2 first pairs on the first diagonal of the block. For

example, if N1,2 = 3, G1 = {1, 2, 3, 4} and G2 = {5, 6, 7}, then (B1,2)R = {(1, 5), (2, 5), (3, 5)} and

(B1,2)D = {(1, 5), (2, 6), (3, 7)}. Then, analogously to the definition of TB , we define the row

estimator T̂R and the diagonal estimator T̂D as

T̂R :=
[
T̂Rj1,j2

]
p×p

=

τ̂j1,j2 , if κ(j1) = κ(j2)

τ̂Rk1,k2 , for distinct κ(j1) = k1 and κ(j2) = k2,

T̂D :=
[
T̂Dj1,j2

]
p×p

=

τ̂j1,j2 , if κ(j1) = κ(j2)

τ̂Dk1,k2 , for distinct κ(j1) = k1 and κ(j2) = k2.

As such, for each of the off-diagonal blocks T̂R averages only the pairs on the first line along the

largest side, whereas T̂D averages only the pairs along the first diagonal.
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Lastly, we introduce the estimator that randomly selects pairs to average over per block. We

denote the (deterministic) number of averaged pairs per block Bk1,k2 by Nk1,k2 ∈ {1, . . . , |Gk1 | ×
|Gk2 |} and the corresponding estimator by TU . The pairs are selected with uniform probability

and without replacement. For distinct k1, k2 ∈ {1, . . . ,K}we define

τ̂Uk1,k2 =
1

Nk1,k2

∑
(j1,j2)∈Bk1,k2

Wj1,j2 τ̂j1,j2 ,

where W is a p × p matrix of random weights that selects Nk1,k2 pairs per off-diagonal block

Bk1,k2 with uniform probability and without replacement. Wj1,j2 = 1 corresponds to selecting

pair (Xj1 , Xj2) andWj1,j2 = 0 corresponds to passing over it. The corresponding matrix estimator

is then given by

T̂U =
[
T̂Uj1,j2

]
=

τ̂j1,j2 , if κ(j1) = κ(j2)

τ̂Uk1,k2 , for distinct κ(j1) = k1 and κ(j2) = k2.

3.3 Comparison of their Variances

Before we proceed with the main theoretical results on the estimators’ variances, let us introduce

some auxiliary notations. For every distinct k1, k2 ∈ {1, . . . ,K}we set

Pk1,k2 := P ((Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0) ,

where the pair (j1, j2) lies within block Bk1,k2 . The quantity Pk1,k2 is equal to the probability of

concordance of the variables Xj1 and Xj2 and thus τk1,k2 = 2Pk1,k2 − 1. As such, the structural

assumption ensures that Pk1,k2 is independent of the choice of pair (j1, j2) ∈ Bk1,k2 . Alternatively

we can write Pk1,k2 in terms of the copula Cj1,j2 of (Xj1 , Xj2) by

Pk1,k2 = 2

∫
[0,1]2

Cj1,j2(u1, u2)dCj1,j2(u1, u2).

Further, for every pair (j1, j2) ∈ {1, . . . , p}2 we define

Qj1,j2 := P ((Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0, (Xj1,1 −Xj1,3) (Xj2,1 −Xj2,3) > 0) .

To derive the copula expression, we write

Qj1,j2 = P
(
(Xj1 , Xj2)1 < (Xj1 , Xj2)2, (Xj1 , Xj2)1 < (Xj1 , Xj2)3

)
+ P

(
(Xj1 , Xj2)1 < (Xj1 , Xj2)2, (Xj1 , Xj2)1 > (Xj1 , Xj2)3

)
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+ P
(
(Xj1 , Xj2)1 > (Xj1 , Xj2)2, (Xj1 , Xj2)1 > (Xj1 , Xj2)3

)
+ P

(
(Xj1 , Xj2)1 > (Xj1 , Xj2)2, (Xj1 , Xj2)1 < (Xj1 , Xj2)3

)
where (Xj1 , Xj2)i denotes the pair (Xj1,i, Xj2,i). Let us write these probabilities in terms of the

copula Cj1,j2 of (Xj1 , Xj2). This gives

Qj1,j2 =

∫
[0,1]2

∫ (1,1)

(u1,u2)

∫ (1,1)

(u1,u2)

dCj1,j2(u5, u6)dCj1,j2(u3, u4)dCj1,j2(u1, u2)

+

∫
[0,1]2

∫ (u1,u2)

(0,0)

∫ (1,1)

(u1,u2)

dCj1,j2(u5, u6)dCj1,j2(u3, u4)dCj1,j2(u1, u2)

+

∫
[0,1]2

∫ (1,1)

(u1,u2)

∫ (u1,u2)

(0,0)

dCj1,j2(u5, u6)dCj1,j2(u3, u4)dCj1,j2(u1, u2)

+

∫
[0,1]2

∫ (u1,u2)

(0,0)

∫ (u1,u2)

(0,0)

dCj1,j2(u5, u6)dCj1,j2(u3, u4)dCj1,j2(u1, u2)

=

∫
[0,1]2

C̄2
j1,j2(u1, u2)dCj1,j2(u1, u2) +

∫
[0,1]2

C̄j1,j2(u1, u2)Cj1,j2(u1, u2)dCj1,j2(u1, u2)

+

∫
[0,1]2

Cj1,j2(u1, u2)C̄j1,j2(u1, u2)dCj1,j2(u1, u2) +

∫
[0,1]2

C2
j1,j2(u1, u2)dCj1,j2(u1, u2)

=

∫
[0,1]2

(Cj1,j2(u1, u2) + C̄j1,j2(u1, u2))2dCj1,j2(u1, u2),

where C̄ denotes the survival copula of variables (Xj1 , Xj2). For symmetric copulas, C̄(u1, u2) =

C(1− u1, 1− u2). Additionally, for all distinct k1, k2 ∈ {1, . . . ,K} and for every (j1, j2), (j3, j4) ∈
Bk1,k2 such that |{j1, j2} ∩ {j3, j4}| = 1 we define

Rj1,j2,j3,j4 := P ((Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0, (Xj3,1 −Xj3,2) (Xj4,1 −Xj4,2) > 0)

Sj1,j2,j3,j4 := P ((Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0, (Xj3,1 −Xj3,3) (Xj4,1 −Xj4,3) > 0) .

and for every (j1, j2), (j3, j4) ∈ Bk1,k2 such that {j1, j2} ∩ {j3, j4} = ∅, we set

Tj1,j2,j3,j4 := P ((Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0, (Xj3,1 −Xj3,2) (Xj4,1 −Xj4,2) > 0) ,

Uj1,j2,j3,j4 := P ((Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0, (Xj3,1 −Xj3,3) (Xj4,1 −Xj4,3) > 0) .

Note that these quantities R,S, T, U can all be written as 8-dimensional integrals involving the

copula of X(j1,j2,j3,j4). As a consequence, they are all functions of the joint law P(j1,j2,j3,j4) of the

random vector X(j1,j2,j3,j4), as well as Q. Note further that under Assumption A1, the quantities

Qj1,j2 , Rj1,j2,j3,j4 , Sj1,j2,j3,j4 , Tj1,j2,j3,j4 and Uj1,j2,j3,j4 are all depending on the choice of pairs

within the off-diagonal block Bk1,k2 .

Let QBk1,k2 , QRk1,k2 , QDk1,k2 denote the average among all Qj1,j2 of combinations of pairs within
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Bk1,k2 , (Bk1,k2)R and (Bk1,k2)D respectively. Accordingly, we will denote the average among all

Rj1,j2,j3,j4 and all Sj1,j2,j3,j4 of pairs within Bk1,k2 and (Bk1,k2)R by respectively RBk1,k2 , RRk1,k2
and SBk1,k2 , SRk1,k2 . Likewise, we set TBk1,k2 , TDk1,k2 and UBk1,k2 , UDk1,k2 for the averages among all

Tj1,j2,j3,j4 and all Uj1,j2,j3,j4 of pairs within Bk1,k2 and (Bk1,k2)D.

Now that we have all auxiliary notations in place, let us start by showing that each of the

estimators is in fact a U-statistic.

Lemma 18. For distinct k1, k2 ∈ {1, . . . ,K} and all (j1, j2) ∈ Bk1,k2 , the estimators τ̂j1,j2 , τ̂Bk1,k2 , τ̂
R
k1,k2

, τ̂Dk1,k2

and τ̂Uk1,k2 are all second order U-statistics.

Proof. First check that, trivially, the sample Kendall’s tau τ̂j1,j2 is a U-statistic of order 2 with

(symmetric) kernel

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) =21 {Xj1,i1 < Xj1,i2 , Xj2,i1 < Xj2,i2}

+21 {Xj1,i2 < Xj1,i1 , Xj2,i2 < Xj2,i1} − 1.

Consequently,

τ̂Bk1,k2 =
1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

τ̂j1,j2

=
1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

2

n(n− 1)

∑
i1<i2

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2)

=
2

n(n− 1)

∑
i1<i2

1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) ,

and it follows that τ̂Bk1,k2 is a U-statistic with kernel

gBk1,k2 (Xi1 ,Xi2) =
1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) .

In a similar manner, it is easily seen that τ̂Rk1,k2 , τ̂Dk1,k2 and τ̂Uk1,k2 are all U-statistics as well with

respective kernels

gRk1,k2 (Xi1 ,Xi2) =
1

Nk1,k2

∑
(j1,j2)∈(Bk1,k2 )R

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) ,

gDk1,k2 (Xi1 ,Xi2) =
1

Nk1,k2

∑
(j1,j2)∈(Bk1,k2 )D

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) ,

gUk1,k2 (Xi1 ,Xi2) =
1

Nk1,k2

∑
(j1,j2)∈Bk1,k2

Wj1,j2g
∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) .

Note that the kernel gUk1,k2 is random by depending on the weights W.
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From Lemma 18 and the fact that E [g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2)] = τk1,k2 when (j1, j2) ∈
Bk1,k2 , it follows that T̂, T̂B , T̂R, T̂D and T̂U are all unbiased estimators of the Kendall’s tau

matrix. The finite sample variances are given in the following theorem.

Theorem 19. Under Assumption A1, for distinct k1, k2 ∈ {1, . . . ,K} and all (j1, j2) ∈ Bk1,k2 , the

variances of τ̂j1,j2 , τ̂Bk1,k2 , τ̂
R
k1,k2

, τ̂Dk1,k2 and τ̂Uk1,k2 are given by

(i)

Var [τ̂j1,j2 ] =
8

n(n− 1)

(
Pk1,k2 − P 2

k1,k2 + 2(n− 2)
(
Qj1,j2 − P 2

k1,k2

))
,

(ii)

Var
[
τ̂Bk1,k2

]
=

8

|Bk1,k2 |n(n− 1)

(
Pk1,k2 − P 2

k1,k2 +
(
|Gk1 | − 1

)(
|Gk2 | − 1

)(
TBk1,k2 − P

2
k1,k2

)
+
(
|Gk1 |+ |Gk2 | − 2

)(
RBk1,k2 − P

2
k1,k2

)
+ 2(n− 2)

(
QBk1,k2 − P

2
k1,k2 +

(
|Gk1 | − 1

)(
|Gk2 | − 1

)(
UBk1,k2 − P

2
k1,k2

)
+
(
|Gk1 |+ |Gk2 | − 2

)(
SBk1,k2 − P

2
k1,k2

)))
,

(iii)
Var

[
τ̂Rk1,k2

]
=

8

Nk1,k2n(n− 1)

(
Pk1,k2 − P 2

k1,k2 +
(
Nk1,k2 − 1

)(
RRk1,k2 − P

2
k1,k2

)
+ 2(n− 2)

(
QRk1,k2 − P

2
k1,k2 +

(
Nk1,k2 − 1

)
(SRk1,k2 − P

2
k1,k2)

))
,

(iv)
Var

[
τ̂Dk1,k2

]
=

8

Nk1,k2n(n− 1)

(
Pk1,k2 − P 2

k1,k2 +
(
Nk1,k2 − 1

)(
TDk1,k2 − P

2
k1,k2

)
+ 2(n− 2)

(
QDk1,k2 − P

2
k1,k2 +

(
Nk1,k2 − 1

)(
UDk1,k2 − P

2
k1,k2

)))
,

(v)
Var

[
τ̂Uk1,k2

]
=

8

Nk1,k2n(n− 1)

(
Pk1,k2 − P 2

k1,k2 +
Nk1,k2 − 1

|Bk1,k2 | − 1

×
((
|Gk1 | − 1

)(
|Gk2 | − 1

)(
TBk1,k2 − P

2
k1,k2

)
+
(
|Gk1 |+ |Gk2 | − 2

)(
RBk1,k2 − P

2
k1,k2

))
+ 2(n− 2)

(
QBk1,k2 − P

2
k1,k2 +

Nk1,k2 − 1

|Bk1,k2 | − 1

((
|Gk1 | − 1

)(
|Gk2 | − 1

)(
UBk1,k2 − P

2
k1,k2

)

+
(
|Gk1 |+ |Gk2 | − 2

)(
SBk1,k2 − P

2
k1,k2

))))
.
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The variance of the sample Kendall’s tau estimator is in fact already known, see [22]. We will

still prove it for self-completeness and to compare it with the other estimators. Let us proceed

with the proof of Theorem 19.

Proof. Recall from Lemma 18 that τ̂j1,j2 , τ̂Bk1,k2 , τ̂
R
k1,k2

, τ̂Dk1,k2 , τ̂
U
k1,k2

can all be written as U-statistics

of order 2 with the following symmetric kernels respectively

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) = 21 {Xj1,i1 < Xj1,i2 , Xj2,i1 < Xj2,i2}

+ 21 {Xj1,i2 < Xj1,i1 , Xj2,i2 < Xj2,i1} − 1

gBk1,k2 (Xi1 ,Xi2) =
1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2)

gRk1,k2 (Xi1 ,Xi2) =
1

Nk1,k2

∑
(j1,j2)∈(Bk1,k2 )R

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) ,

gDk1,k2 (Xi1 ,Xi2) =
1

Nk1,k2

∑
(j1,j2)∈(Bk1,k2 )D

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) ,

gUk1,k2 (Xi1 ,Xi2) =
1

Nk1,k2

∑
(j1,j2)∈Bk1,k2

Wj1,j2g
∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) .

We will use Theorem 15 which gives an expression for the variance of U-statistics. For a second

order U-statistic Un with symmetric kernel g(X1,X2) satisfying E|g(X1,X2)| < ∞, the variance

is given by

Var[Un] =

(
n

2

)−1 2∑
c=1

(
2

c

)(
n− 2

2− c

)
ζc

=
2

n(n− 1)
(2(n− 2)ζ1 + ζ2) , (15)

where ζ1 = Var [g1(Y)] and ζ2 = Var [g2(Y1,Y2)]. As before, we have set g1(x) = E[g(X1,x)] and

g2 := g. Further, note that E [g1(X)] = E [g1 (X1,X2)] = E [UT ].

We proceed to evaluate ζ1 and ζ2 for the different kernels, and then substitute them into (15).

Since the kernels g∗, gB , gR and gD are all deterministic, this leaves us with the variances of the

corresponding estimators. The variance of τUk1,k2 , however, cannot be calculated directly because

of its random kernel gU . First we proof items (i)-(iv) and then proceed with the proof of (v), where

we deal with the randomness of gU .

(i) Under Assumption A1, we have for every distinct k1, k2 ∈ {1, . . . ,K} and all (j1, j2) ∈
Bk1,k2 ,

E[g∗ ((Xj1 , Xj2)1, (Xj1 , Xj2)2)] = τk1,k2 = 2Pk1,k2 − 1.
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Also,

g∗1(xj1 , xj2) = E [2 (1 {xj1 < Xj1,1, xj2 < Xj2,1}+ 1 {Xj1,1 < xj1 , Xj2,1 < xj2})− 1]

= 2P c(xj1 , xj2)− 1,

where P c(xj1 , xj2) denotes the probability of concordance of two versions of (Xj1 , Xj2)

given that one pair equals (xj1 , xj2). Then,

ζ1 = Var [g∗1(Xj1 , Xj2)]

= E
[
(2P c(Xj1 , Xj2)− 1− τk1,k2)2

]
= 4E

[
P c(Xj1 , Xj2)2

]
− 4(1 + τk1,k2)E [P c(Xj1 , Xj2)] + (1 + τk1,k2)2.

Note that E [P c(Xj1 , Xj2)] = Pk1,k2 and E
[
P c(Xj1 , Xj2)2

]
= Qj1,j2 . Furthermore, substitu-

tion of τk1,k2 = 2Pk1,k2 − 1 gives us

ζ1 = 4(Qj1,j2 − P 2
k1,k2). (16)

For ζ2 we find

ζ2 = Var [g∗ ((Xj1 , Xj2)1, (Xj1 , Xj2)2)]

= E
[(

2 (1 {Xj1,1 < Xj1,2, Xj2,1 < Xj2,2}+ 1 {Xj1,2 < Xj1,1, Xj2,2 < Xj2,1})

− 1− τk1,k2
)2]

= 4E
[
(1 {Xj1,1 < Xj1,2, Xj2,1 < Xj2,2}+ 1 {Xj1,2 < Xj1,1, Xj2,2 < Xj2,1})

2
]

− 4(1 + τk1,k2)E [1 {Xj1,1 < Xj1,2, Xj2,1 < Xj2,2}+ 1 {Xj1,2 < Xj1,1, Xj2,2 < Xj2,1}]

+ (1 + τk1,k2)2.

Furthermore, note that

1 {Xj1,1 < Xj1,2, Xj2,1 < Xj2,2}+ 1 {Xj1,2 < Xj1,1, Xj2,2 < Xj2,1} ∈ {0, 1}

and that therefore the expression is equal to its square. We obtain

ζ2 = 4E
[
(1 {Xj1,1 < Xj1,2, Xj2,1 < Xj2,2}+ 1 {Xj1,2 < Xj1,1, Xj2,2 < Xj2,1})

2
]
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− 4(1 + τk1,k2)E [1 {Xj1,1 < Xj1,2, Xj2,1 < Xj2,2}+ 1 {Xj1,2 < Xj1,1, Xj2,2 < Xj2,1}]

+ (1 + τk1,k2)2

= −4τk1,k2E [1 {Xj1,1 < Xj1,2, Xj2,1 < Xj2,2}+ 1 {Xj1,2 < Xj1,1, Xj2,2 < Xj2,1}]

+ (1 + τk1,k2)2

= −4(2Pk1,k2 − 1)Pk1,k2 + (1 + 2Pk1,k2 − 1)2

= 4(Pk1,k2 − P 2
k1,k2), (17)

where in the second step we have used that

E [1 {Xj1,1 < Xj1,2, Xj2,1 < Xj2,2}+ 1 {Xj1,2 < Xj1,1, Xj2,2 < Xj2,1}] = Pk1,k2 .

Substitution of (16) and (17) into (15) gives us the final expression

Var [τ̂j1,j2 ] =
8

n(n− 1)

(
2(n− 2)

(
Qj1,j2 − P 2

k1,k2

)
+ Pk1,k2 − P 2

k1,k2

)
.

(ii) Here, the following applies

E[gBk1,k2 (X1,X2)] = τk1,k2 = 2Pk1,k2 − 1,

and

gBk1,k2,1(x) = E

 1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

h ((Xj1 , Xj2)1, (xj1 , xj2))− 1


=

1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

2P c(xj1 , xj2)− 1.

For ζ1 we then obtain

ζ1 = Var
[
hBk1,k2,1(X)

]
= E


 1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

2P c(Xj1 , Xj2)− 1− τk1,k2

2


=
1

|Bk1,k2 |2
∑

(j1,j2)∈Bk1,k2

(
E
[
(2P c(Xj1 , Xj2)− 1− τk1,k2)

2
]

+
∑

(j3,j4)∈Bk1,k2
{j1,j2}∩{j3,j4}=∅

E
[

(2P c(xj1 , xj2)− 1− τk1,k2) (2P c(Xj3 , Xj4)− 1− τk1,k2)
]
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+
∑

(j3,j4)∈Bk1,k2
|{j1,j2}∩{j3,j4}|=1

E
[

(2P c(xj1 , xj2)− 1− τk1,k2) (2P c(Xj3 , Xj4)− 1− τk1,k2)
])
.

Now check that when (j1, j2), (j3, j4) ∈ Bk1,k2 such that |{j1, j2} ∩ {j3, j4}| = 1, then

E [P c(Xj1 , Xj2)P c(Xj3 , Xj4)] = Sj1,j2,j3,j4 ,

and if {j1, j2} ∩ {j3, j4} = ∅, then

E [P c(Xj1 , Xj2)P c(Xj3 , Xj4)] = Uj1,j2,j3,j4 .

This gives

ζ1 =
1

|Bk1,k2 |2
∑

(j1,j2)∈Bk1,k2

(
4(Qj1,j2 − P 2

k1,k2) +
∑

(j3,j4)∈Bk1,k2
{j1,j2}∩{j3,j4}=∅

4(Uj1,j2,j3,j4 − Pk1,k2)2

+
∑

(j3,j4)∈Bk1,k2
|{j1,j2}∩{j3,j4}|=1

4(Sj1,j2,j3,j4 − P 2
k1,k2)

)
. (18)

Recall the definitions of QBk1,k2 , S
B
k1,k2

and UBk1,k2 and note that

QBk1,k2 =
1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

Qj1,j2 ,

SBk1,k2 =
1

|Gk1 |+ |Gk2 | − 2

∑
(j1,j2)∈Bk1,k2

∑
(j3,j4)∈Bk1,k2

|{j1,j2}∩{j3,j4}|=1

Sj1,j2,j3,j4 ,

UBk1,k2 =
1

(|Gk1 | − 1)(|Gk2 | − 1)

∑
(j1,j2)∈Bk1,k2

∑
(j3,j4)∈Bk1,k2
{j1,j2}∩{j3,j4}=∅

Uj1,j2,j3,j4 .

We combine them with (18) and obtain

ζ1 =
4

|Bk1,k2 |
(
QBk1,k2 − P

2
k1,k2 + (|Gk1 | − 1) (|Gk2 | − 1) (UBk1,k2 − P

2
k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (SBk1,k2 − P
2
k1,k2)

)
. (19)

For ζ2 we have

ζ2 = Var
[
gBk1,k2 (X1,X2))

]
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= E


 1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

g∗ ((Xj1 , Xj2)1, (Xj1 , Xj2)2)− τk1,k2

2


=
1

|Bk1,k2 |2
∑

(j1,j2)∈Bk1,k2

(
E
[
(g∗ ((Xj1 , Xj2)1, (Xj1 , Xj2)2)− τk1,k2)

2
]

+
∑

(j3,j4)∈Bk1,k2
{j1,j2}∩{j3,j4}=∅

E
[

(g∗ ((Xj1 , Xj2)1, (Xj1 , Xj2)2)− τk1,k2)

× (g∗ ((Xj3 , Xj4)1, (Xj3 , Xj4)2)− τk1,k2)
]

+
∑

(j3,j4)∈Bk1,k2
|{j1,j2}∩{j3,j4}|=1

E
[

(g∗ ((Xj1 , Xj2)1, (Xj1 , Xj2)2)− τk1,k2)

× (g∗ ((Xj3 , Xj4)1, (Xj3 , Xj4)1)− τk1,k2)
])
.

Note that when (j1, j2), (j3, j4) ∈ Bk1,k2 such that |{j1, j2} ∩ {j3, j4}| = 1, then

E [h ((Xj1 , Xj2)1, (Xj1 , Xj2)2)h ((Xj3 , Xj4)1, (Xj3 , Xj4)2)] = 4Rj1,j2,j3,j4 ,

and if {j1, j2} ∩ {j3, j4} = ∅, then

E [h ((Xj1 , Xj2)1, (Xj1 , Xj2)2)h ((Xj3 , Xj4)1, (Xj3 , Xj4)2)] = 4Tj1,j2,j3,j4 .

This yields

ζ2 =
1

|Bk1,k2 |2
∑

(j1,j2)∈Bk1,k2

(
4(Pk1,k2 − P 2

k1,k2) +
∑

(j3,j4)∈Bk1,k2
{j3,j4}∩{j1,j2}=∅

4(Tk1,k2 − P 2
k1,k2)

+
∑

(j3,j4)∈Bk1,k2
|{j1,j2}∩{j3,j4}|=1

4(Rk1,k2 − P 2
k1,k2)

)

Further, note that

RBk1,k2 =
1

|Gk1 |+ |Gk2 | − 2

∑
(j1,j2)∈Bk1,k2

∑
(j3,j4)∈Bk1,k2

|{j1,j2}∩{j3,j4}|=1

Rj1,j2,j3,j4 ,

TBk1,k2 =
1

(|Gk1 | − 1)(|Gk2 | − 1)

∑
(j1,j2)∈Bk1,k2

∑
(j3,j4)∈Bk1,k2
{j1,j2}∩{j3,j4}=∅

Tj1,j2,j3,j4 .
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Therefore,

ζ2 =
4

|Bk1,k2 |

(
Pk1,k2 − P 2

k1,k2 + (|Gk1 | − 1) (|Gk2 | − 1) (Tk1,k2 − P 2
k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (Rk1,k2 − P 2
k1,k2)

)
(20)

Finally, by substituting (19) and (20) into (15) we find

Var
[
τ̂Bk1,k2

]
=

8

|Bk1,k2 |n(n− 1)

(
2(n− 2)

(
QBk1,k2 − P

2
k1,k2

+ (|Gk1 | − 1) (|Gk2 | − 1) (UBk1,k2 − P
2
k1,k2) + (|Gk1 |+ |Gk2 | − 2) (SBk1,k2 − P

2
k1,k2)

)
+ Pk1,k2 − P 2

k1,k2 + (|Gk1 | − 1) (|Gk2 | − 1) (TBk1,k2 − P
2
k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (RBk1,k2 − P
2
k1,k2)

)
.

(iii) In a similar manner to the proof of (ii) we obtain

ζ1 =
1

N2
k1,k2

∑
(j1,j2)∈(Bk1,k2 )R

(
4(Qj1,j2 − P 2

k1,k2) +
∑

(j3,j4)∈(Bk1,k2 )R
{j1,j2}∩{j3,j4}=∅

4(Uj1,j2,j3,j4 − P 2
k1,k2)

+
∑

(j3,j4)∈(Bk1,k2 )R
|{j1,j2}∩{j3,j4}|=1

4(Sj1,j2,j3,j4 − P 2
k1,k2)

)
,

Note that for all (j1, j2) ∈ Bk1,k2 , the set {(j3, j4) ∈ (Bk1,k2)R : {j1, j2} ∩ {j3, j4} = ∅} is in

fact empty and that

SRk1,k2 =
1

Nk1,k2(Nk1,k2 − 1)

∑
(j1,j2)∈(Bk1,k2 )R

∑
(j3,j4)∈(Bk1,k2 )R
|{j1,j2}∩{j3,j4}|=1

Sj1,j2,j3,j4

Therefore,

ζ1 =
4

Nk1,k2

(
QRk1,k2 − P

2
k1,k2 + (Nk1,k2 − 1) (SRk1,k2 − P

2
k1,k2)

)
.

Similarly, we find that

ζ2 =
4

Nk1,k2

(
Pk1,k2 − P 2

k1,k2 + (Nk1,k2 − 1) (RRk1,k2 − P
2
k1,k2)

)
.
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Hence,

Var
[
τ̂Rk1,k2

]
=

8

Nk1,k2n(n− 1)

(
2(n− 2)

(
QRk1,k2 − P

2
k1,k2 + (Nk1,k2 − 1) (SRk1,k2 − P

2
k1,k2)

)
+ Pk1,k2 − P 2

k1,k2 + (Nk1,k2 − 1) (RRk1,k2 − P
2
k1,k2)

)
.

(iv) Again, analogous to the proof of (ii) we obtain

ζ1 =
1

N2
k1,k2

∑
(j1,j2)∈(Bk1,k2 )D

(
4(Qj1,j2 − P 2

k1,k2) +
∑

(j3,j4)∈(Bk1,k2 )D
{j1,j2}∩{j3,j4}=∅

4(Uj1,j2,j3,j4 − P 2
k1,k2)

+
∑

(j3,j4)∈(Bk1,k2 )D
|{j1,j2}∩{j3,j4}|=1

4(Sj1,j2,j3,j4 − P 2
k1,k2)

)

We note that the set {(j3, j4) ∈ (Bk1,k2)D : |{j1, j2} ∩ {j3, j4}| = 1} is empty for all (j1, j2) ∈
Bk1,k2 and that

UDk1,k2 =
1

Nk1,k2(Nk1,k2 − 1)

∑
(j1,j2)∈(Bk1,k2 )D

∑
(j3,j4)∈(Bk1,k2 )D
{j1,j2}∩{j3,j4}=∅

Uj1,j2,j3,j4 .

Consequently,

ζ1 =
4

Nk1,k2

(
QDk1,k2 − P

2
k1,k2 + (Nk1,k2 − 1) (UDk1,k2 − P

2
k1,k2)

)
.

In a similar manner we obtain ζ2

ζ2 =
4

Nk1,k2

(
Pk1,k2 − P 2

k1,k2 + (Nk1,k2 − 1) (TDk1,k2 − P
2
k1,k2)

)
.

Hence,

Var
[
τ̂Dk1,k2

]
=

8

Nk1,k2n(n− 1)

(
2(n− 2)

(
QDk1,k2 − P

2
k1,k2 + (Nk1,k2 − 1) (UDk1,k2 − P

2
k1,k2)

)
+ Pk1,k2 − P 2

k1,k2 + (Nk1,k2 − 1) (TDk1,k2 − P
2
k1,k2)

)
.
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(v) Lastly, for obtaining the variance of τ̂Uk1,k2 we need to deal with the random kernel gUk1,k2 . To

this end, we use the law of total variance and find

Var
[
τ̂Uk1,k2

]
= Var

[
E
[
τ̂Uk1,k2 |W

]]
+ E

[
Var

[
τ̂Uk1,k2 |W

]]
= Var [τk1,k2 ] + E

[
Var

[
τ̂Uk1,k2 |W

]]
= E

[
Var

[
τ̂Uk1,k2 |W

]]
.

We can thus obtain the desired variance by first evaluating the variance of τUk1,k2 under a

given W and then by taking the expectation with respect to W. Note that τ̂Uk1,k2 |W is a

U-statistic with (deterministic) kernel gUk1,k2 |W. Therefore,

Var
[
τ̂Uk1,k2

]
= E

[
Var

[
τ̂Uk1,k2 |W

]]
=

2

n(n− 1)
(2(n− 2)E [ζ1] + E [ζ2]) . (21)

With similar steps as before we obtain the corresponding ζ1 and ζ2

ζ1 =
1

N2
k1,k2

∑
(j1,j2)∈Bk1,k2

(
4W 2

j1,j2(Qj1,j2 − P 2
k1,k2)

+
∑

(j3,j4)∈Bk1,k2
{j1,j2}∩{j3,j4}=∅

4Wj1,j2Wj3,j4(Uj1,j2,j3,j4 − P 2
k1,k2)

+
∑

(j3,j4)∈Bk1,k2
|{j1,j2}∩{j3,j4}|=1

4Wj1,j2Wj3,j4(Sj1,j2,j3,j4 − P 2
k1,k2)

)
,

ζ2 =
1

N2
k1,k2

∑
(j1,j2)∈Bk1,k2

(
4W 2

j1,j2(Pk1,k2 − P 2
k1,k2)+

∑
(j3,j4)∈Bk1,k2
{j1,j2}∩{j3,j4}=∅

4Wj1,j2Wj3,j4(Tj1,j2,j3,j4 − Pk1,k2)2

+
∑

(j3,j4)∈Bk1,k2
|{j1,j2}∩{j3,j4}|=1

4Wj1,j2Wj3,j4(Rj1,j2,j3,j4 − P 2
k1,k2)

)
.

Inserting them into (21) gives us

Var
[
τ̂Uk1,k2

]
=

8

N2
k1,k2

n(n− 1)

(
2(n− 2)

( ∑
(j1,j2)∈Bk1,k2

E
[
W 2
j1,j2

]
(Qj1,j2 − P 2

k1,k2)

+
∑

(j1,j2)∈Bk1,k2

∑
(j3,j4)∈Bk1,k2
{j1,j2}∩{j3,j4}=∅

E [Wj1,j2Wj3,j4 ] (Uj1,j2,j3,j4 − P 2
k1,k2)
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+
∑

(j1,j2)∈Bk1,k2

∑
(j3,j4)∈Bk1,k2

|{j1,j2}∩{j3,j4}|=1

E [Wj1,j2Wj3,j4 ] (Sj1,j2,j3,j4 − P 2
k1,k2)

)

+
∑

(j1,j2)∈Bk1,k2

E
[
W 2
j1,j2

]
(Pk1,k2 − P 2

k1,k2)

+
∑

(j1,j2)∈Bk1,k2

∑
(j3,j4)∈Bk1,k2
{j1,j2}∩{j3,j4}=∅

E [Wj1,j2Wj3,j4 ] (Tj1,j2,j3,j4 − P 2
k1,k2)

+
∑

(j1,j2)∈Bk1,k2

∑
(j3,j4)∈Bk1,k2

|{j1,j2}∩{j3,j4}|=1

E [Wj1,j2Wj3,j4 ] (Rj1,j2,j3,j4 − P 2
k1,k2)

)
(22)

Recall that we select Nk1,k2 pairs out of the |Bk1,k2 | possible pairs with uniform probability

and without replacement. Therefore, for every distinct (j1, j2), (j3, j4) ∈ Bk1,k2 we have the

following expectations

E
[
W 2
j1,j2

]
= E [Wj1,j2 ] =

Nk1,k2
|Bk1,k2 |

,

E [Wj1,j2Wj3,j4 ] =
Nk1,k2(Nk1,k2 − 1)

|Bk1,k2 |(|Bk1,k2 | − 1)
.

Lastly, by inserting these and the expressions of QBk1,k2 , RBk1,k2 , SBk1,k2 , TBk1,k2 and UBk1,k2 from

the proof of item (ii) into (22), we establish the desired formula

Var
[
τ̂Uk1,k2

]
=

8

Nk1,k2n(n− 1)

(
2(n− 2)

(
QBk1,k2 − P

2
k1,k2

+
Nk1,k2 − 1

|Bk1,k2 | − 1

(
(|Gk1 | − 1) (|Gk2 | − 1) (UBk1,k2 − P

2
k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (SBk1,k2 − P
2
k1,k2)

))
+ Pk1,k2 − P 2

k1,k2 +
Nk1,k2 − 1

|Bk1,k2 | − 1

(
(|Gk1 | − 1) (|Gk2 | − 1) (TBk1,k2 − P

2
k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (RBk1,k2 − P
2
k1,k2)

))
.

Remark 20. If the stronger Assumption A2 holds, all quantitiesQj1,j2 ,Rj1,j2,j3,j4 , Sj1,j2,j3,j4 , Tj1,j2,j3,j4
and Uj1,j2,j3,j4 are independent of the choice of pairs (j1, j2), (j3, j4) ∈ Bk1,k2 for every distinct k1, k2 ∈
{1, . . . ,K}. It then follows that QBk1,k2 = QRk1,k2 = QDk1,k2 = Qi,j and the same equality holds for

quantities R,S, T and U .
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Remark 21. Under Assumption A1, for distinct k1, k2 and all (j1, j2) ∈ Bk1,k2 , it holds that as n→∞

n1/2 (τ̂k1,k2 − τk1,k2)
law−→ N (0, Vk1,k2) ,

where τ̂k1,k2 denotes any of the estimators τ̂j1,j2 , τ̂Bk1,k2 , τ̂Rk1,k2 , τ̂Dk1,k2 , τ̂Uk1,k2 , and the corresponding asymp-

totic variances Vk1,k2 are respectively given by

Vj1,j2 = Vj1,j2(PX) := 16(Qj1,j2 − P 2
k1,k2), (23)

V Bk1,k2 = V Bk1,k2(PX) :=
16

|Bk1,k2 |

(
QBk1,k2 − P

2
k1,k2 +

(
|Gk1 | − 1

)(
|Gk2 | − 1

)
(UBk1,k2 − P

2
k1,k2)

+
(
|Gk1 |+ |Gk2 | − 2

)(
SBk1,k2 − P

2
k1,k2

))
, (24)

V Rk1,k2 = V Rk1,k2(PX) :=
16

Nk1,k2

(
QRk1,k2 − P

2
k1,k2 + (Nk1,k2 − 1)

(
SRk1,k2 − P

2
k1,k2

))
, (25)

V Dk1,k2 = V Dk1,k2(PX) :=
16

Nk1,k2

(
QDk1,k2 − P

2
k1,k2 +

(
Nk1,k2 − 1

)(
UDk1,k2 − P

2
k1,k2

))
, (26)

V Uk1,k2 = V Uk1,k2(PX) :=
16

Nk1,k2

(
QBk1,k2 − P

2
k1,k2 +

Nk1,k2 − 1

|Bk1,k2 | − 1

×
((
|Gk1 | − 1

)(
|Gk2 | − 1

)(
UBk1,k2 − P

2
k1,k2

)
+
(
|Gk1 |+ |Gk2 | − 2

)(
SBk1,k2 − P

2
k1,k2

)))
,

(27)

where PX denotes the law of the random vector X. This can straightforwardly be derived by combining

Theorem 16 and the computations of the corresponding ζ1’s in the proof of Theorem 19.

From the lengthy expressions in Theorem 19 we can derive the asymptotic variances in the

setting where n, |Gk1 |, |Gk2 |, Nk1,k2 → +∞.

Remark 22. Under Assumption A1, as n, |Gk1 |, |Gk2 |, Nk1,k2 → +∞, we have the following equivalents

• Var [τ̂j1,j2 ] ∼ 16

n

(
Qj1,j2 − P 2

k1,k2

)
=

1

n
× Vj1,j2(PX),

• Var
[
τ̂Bk1,k2

]
∼ 16

n

(
UBk1,k2 − P

2
k1,k2

)
=

1

n
× lim
|Gk1 |,|Gk2 |→+∞

V Bk1,k2(PX),

• Var
[
τ̂Rk1,k2

]
∼ 16

n

(
SRk1,k2 − P

2
k1,k2

)
=

1

n
× lim
Nk1,k2→+∞

V Rk1,k2(PX),

• Var
[
τ̂Dk1,k2

]
∼ 16

n

(
UDk1,k2 − P

2
k1,k2

)
=

1

n
× lim
Nk1,k2→+∞

V Dk1,k2(PX),

• Var
[
τ̂Uk1,k2

]
∼ 16

n

(
UBk1,k2 − P

2
k1,k2

)
=

1

n
× lim
|Gk1 |,|Gk2 |,Nk1,k2→+∞

V Uk1,k2(PX),
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Surprisingly, note that the variances do not depend on the block dimensions as soon as they

are large enough. In the limit, the quality of the estimator will therefore not improve by averag-

ing over additional elements. Moreover, for large sample sizes, only the quantities S,U and Q

determine the levels of variance. Whether the asymptotic variance contains either S or U is de-

termined by which terms (corresponding to the overlapping and non-overlapping combinations

of pairs) get the overhand in the summing of the proof of Theorem 19 when dimensions tend to

infinity. For the diagonal, random and block estimators the number of terms corresponding to

non-overlapping combinations grow faster than the number of overlapping combinations. How-

ever, for the row estimator only pairs within the same row are averaged, and thus the limiting

variance contains the quantity S (instead of U ).

Furthermore, it should be noted that for every distinct k1, k2 we have UBk1,k2 ≤ QBk1,k2 and

SRk1,k2 ≤ QRk1,k2 with equality if and only if the Kendall’s taus within the diagonal blocks corre-

sponding to k1 and k2 are equal to 1. This follows from the fact that averaging among several un-

biased estimates reduces the total variance when compared to no averaging. Moreover, it would

seem natural from the definitions of Qj1,j2 , Sj1,j2,j1,j3 and Uj1,j2,j3,j4 that

Uj1,j2,j3,j4 ≤ Sj1,j2,j1,j3 ≤ Qj1,j2 , (28)

for all pairs (j1, j2), (j1, j3), (j3, j4) such these quantities are all well defined, i.e. (j1, j2), (j1, j3),

(j3, j4) ∈ Bk1,k2 such that k1, k2 are distinct. The intuition behind this is the following: the proba-

bility that both pairs of observations (1, 2) and (1, 3) are concordant should be naturally greater if

the corresponding pairs of variables {j1, j2} and {j3, j4} overlap (assuming some kind of positive

dependence). If so, then the row estimator performs worse than the block, diagonal and random

estimator. Empirically, we indeed observe that this is the case. However, a proof of this inequality

seems very difficult. For instance, even in the case of Gaussian copulas with constant correlation

r, this would require the computation of involved integrals such as∫ ∞
−∞

∫ ∞
−∞

e−rx1x2− 1
2x

2
1− 1

2x
2
2

× erf (x1 + x2 + a) erf (x1 + x2 + b) erf (x1 + x2 + c) erf (x1 + x2 + d) dx1dx2,

for some constant a, b, c, d, r, where erf is the Gauss error function. Using integration by part, a

necessary condition would be the computation of the indefinite integral
∫

exp(−x2)erf(α+βx)dx

for α, β ∈ R. Except when α = β = 0, this integral does not appear in usual tables of integrals;

the Computer algebra system Maple was also unable to compute this integral and we conjecture

that it cannot be expressed using standard functions.

Interestingly, the block estimator, the diagonal estimator and the random estimator perform
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(almost) equally well in the limit, assuming that the averages UB and UD are not far apart. Hence,

we can greatly reduce computation time by using either one of the diagonal or random estima-

tor instead of the block estimator, while still maintaining a low asymptotic variance. This is

summarised in the following corollary. Furthermore, we set additional conditions to derive an

ordering of the three estimators.

Corollary 23. Under Assumption A1 we have the following:

(i) Assume that the quantity U does not depend on the choice of pairs within the off-diagonal block

Bk1,k2 . Then, the asymptotic variances of the block, diagonal and random estimators are equal:

lim
n→+∞

|Gk1 |,|Gk2 |→+∞

nVar
[
τ̂Bk1,k2

]
= lim

n→+∞
Nk1,k2→+∞

nVar
[
τ̂Dk1,k2

]
= lim

n→+∞
|Gk1 |,|Gk2 |,Nk1,k2→+∞

nVar
[
τ̂Uk1,k2

]
= Uk1,k2 − P 2

k1,k2 := σ2
A.

(ii) Further, assume that quantities Q and S do not depend on the choice of pairs within Bk1,k2 and that

U < S < 1
2Q+ 1

2U . Then, there is a natural ordering between the estimators, given by:

0 < lim
n→+∞

|Gk1 |,|Gk2 |→+∞

n (|Gk1 | ∧ |Gk2 |)
(
Var

[
τ̂Bk1,k2

]
− σ2

A

)
< lim

n→+∞
Nk1,k2→+∞

nNk1,k2
(
Var

[
τ̂Dk1,k2

]
− σ2

A

)
< lim

n→+∞
|Gk1 |,|Gk2 |,Nk1,k2→+∞

nNk1,k2
(
Var

[
τ̂Uk1,k2

]
− σ2

A

)
,

(iii) Assume, moreover, that quantities R and T do not depend on the choice of pairs within Bk1,k2 and

that T < R < 1
2P + 1

2T . Then, there is a natural ordering for finite sample sizes and block

dimensions, given by:

Var
[
τ̂Bk1,k2

]
< Var

[
τ̂Dk1,k2

]
< Var

[
τ̂Uk1,k2

]
.

Proof. (i) This follows from Remark 22 and the assumption that UBk1,k2 = UDk1,k2 := Uk1,k2 are

independent of block dimensions.

(ii) We further have that QBk1,k2 = QDk1,k2 := Qk1,k2 and SBk1,k2 := Sk1,k2 are all independent of

block dimensions. From the the expressions in Theorem 19 we then obtain

0 < lim
n→+∞

|Gk1 |,|Gk2 |,Nk1,k2→+∞

n (|Gk1 | ∧ |Gk2 |)
(
Var

[
τ̂Bk1,k2

]
− σ2

A

)

= 8 lim
|Gk1 |,|Gk2 |,Nk1,k2→+∞

(|Gk1 | ∧ |Gk2 |) (|Gk1 |+ |Gk2 | − 2)

|Bk1,k2 |
(
(Sk1,k2 − Uk1,k2)− P 2

k1,k2

)
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≤ 16
(
(Sk1,k2 − Uk1,k2)− P 2

k1,k2

)
< 16

(
(
1

2
Qk1,k2 +

1

2
Uk1,k2 − Uk1,k2)− P 2

k1,k2

)

= 8
(
(Qk1,k2 − Uk1,k2)− P 2

k1,k2

)
= lim

n→+∞
Nk1,k2→+∞

nNk1,k2
(
Var

[
τ̂Dk1,k2

]
− σ2

A

)

< 8
(
(Qk1,k2 − Uk1,k2)− P 2

k1,k2

)
+ lim
|Gk1 |,|Gk2 |,Nk1,k2→+∞

Nk1,k2(Nk1,k2 − 1)

|Bk1,k2 |
(|Gk1 |+ |Gk2 | − 2)

(
(Sk1,k2 − Uk1,k2)− P 2

k1,k2

)
= lim

n→+∞
|Gk1 |,|Gk2 |,Nk1,k2→+∞

nNk1,k2
(
Var

[
τ̂Uk1,k2

]
− σ2

A

)
,

where we have used that Uk1,k2 < Sk1,k2 <
1
2Qk1,k2 + 1

2Uk1,k2 .

(iii) Additionally, we have that TBk1,k2 = TDk1,k2 := Tk1,k2 and RBk1,k2 = Rk1,k2 are independent

of block dimensions. Further, let us use the notations C1,n := 16(n − 2)/(n(n − 1)) and

C2,n := 8/(n(n− 1)). Following the expressions of Theorem 19 we then obtain

Var
[
τ̂Bk1,k2

]
=

C1,n

|Bk1,k2 |

(
Qk1,k2 − P 2

k1,k2 + (|Gk1 | − 1) (|Gk2 | − 1) (Uk1,k2 − P 2
k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (Sk1,k2 − P 2
k1,k2)

)
+

C2,n

|Bk1,k2 |

(
Pk1,k2 − P 2

k1,k2 + (|Gk1 | − 1) (|Gk2 | − 1) (Tk1,k2 − P 2
k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (Rk1,k2 − P 2
k1,k2)

)
,

<
C1,n

|Bk1,k2 |

(
Qk1,k2 − P 2

k1,k2 + (|Gk1 | − 1) (|Gk2 | − 1) (Uk1,k2 − P 2
k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (
1

2
Qk1,k2 +

1

2
Uk1,k2 − P 2

k1,k2)
)

+
C2,n

|Bk1,k2 |

(
Pk1,k2 − P 2

k1,k2 + (|Gk1 | − 1) (|Gk2 | − 1) (Tk1,k2 − P 2
k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (
1

2
Pk1,k2 +

1

2
Tk1,k2 − P 2

k1,k2)
)
,
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=
C1,n

|Bk1,k2 |

(
1

2

(
|Gk1 |+ |Gk2 |

)
(Qk1,k2 − P 2

k1,k2) +
(
|Bk1,k2 | −

1

2

(
|Gk1 |+ |Gk2 |

))
(Uk1,k2 − P 2

k1,k2)

)

+
C2,n

|Bk1,k2 |

(
1

2

(
|Gk1 |+ |Gk2 |

)
(Pk1,k2 − P 2

k1,k2) +
(
|Bk1,k2 | −

1

2

(
|Gk1 |+ |Gk2 |

))
(Tk1,k2 − P 2

k1,k2)

)

≤ C1,n

Nk1,k2

(
Qk1,k2 − P 2

k1,k2 + (Nk1,k2 − 1)(Uk1,k2 − P 2
k1,k2)

)

+
C2,n

Nk1,k2

(
Pk1,k2 − P 2

k1,k2 + (Nk1,k2 − 1)(Tk1,k2 − P 2
k1,k2)

)

= Var
[
τ̂Dk1,k2

]
=

C1,n

Nk1,k2

(
Qk1,k2 − P 2

k1,k2 +
Nk1,k2 − 1

|Bk1,k2 | − 1

(
(|Gk1 | − 1) (|Gk2 | − 1) (Uk1,k2 − P 2

k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (Uk1,k2 − P 2
k1,k2)

))

+
C2,n

|Bk1,k2 |

(
Pk1,k2 − P 2

k1,k2 +
Nk1,k2 − 1

|Bk1,k2 | − 1

(
(|Gk1 | − 1) (|Gk2 | − 1) (Tk1,k2 − P 2

k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (Tk1,k2 − P 2
k1,k2)

))

<
C1,n

Nk1,k2

(
Qk1,k2 − P 2

k1,k2 +
Nk1,k2 − 1

|Bk1,k2 | − 1

(
(|Gk1 | − 1) (|Gk2 | − 1) (Uk1,k2 − P 2

k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (Sk1,k2 − P 2
k1,k2)

))

+
C2,n

|Bk1,k2 |

(
Pk1,k2 − P 2

k1,k2 +
Nk1,k2 − 1

|Bk1,k2 | − 1

(
(|Gk1 | − 1) (|Gk2 | − 1) (Tk1,k2 − P 2

k1,k2)

+ (|Gk1 |+ |Gk2 | − 2) (Rk1,k2 − P 2
k1,k2)

))

= Var
[
τ̂Uk1,k2

]
,

where we have used that Uk1,k2 < Sk1,k2 <
1
2Qk1,k2 + 1

2Uk1,k2 and that Tk1,k2 < Rk1,k2 <

1
2Pk1,k2 + 1

2Tk1,k2 .

As a consequence of this result, under the above conditions the variance of the block esti-

mator converges the fastest to the asymptotic variance. This is coherent with Theorem 1 of [40]
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which shows that under Assumption A2 the block averaging estimator is optimal with respect to

the Mahalanobis distance. Furthermore, since the diagonal estimator averages solely over non-

overlapping combinations, note that it should converge faster than that of the random estimator.

Therefore, if computation costs are to be reduced, the diagonal estimator is preferable to both the

random and the row estimator.

Lastly, we note that if only part of the row or diagonal is averaged, the asymptotic variances of

the resulting estimators do not change. By doing so we can further lower computation times, but

at the cost of attaining the limiting variances at slower rates. It therefore makes sense to choose

Nk1,k2 large enough to attain the asymptotic rates, but not too large to keep a low computation

time.
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4 Improved Estimation of Conditional
Kendall’s Tau

We extend the aforementioned setting to the conditional setup, when a d-dimensional covariate

Z is available taking values in Z ⊂ Rd. The objective is now to estimate the p × p conditional

Kendall’s tau matrix T|Z=z =
[
τj1,j2|Z=z

]
. To this end, we study several kernel based estimators

of the conditional pairwise Kendall’s tau in Section 4.1. Then, in Section 4.2 we formalise the

assumptions and construct the estimators adjusted for the conditional setup. Lastly, the main

theoretical results on the estimators’ asymptotic variances are presented in Section 4.3.

4.1 Estimation of Conditional Kendall’s Tau

For construction of nonparametric estimates of the conditional Kendall’s tau, let us start by re-

calling the equivalent expressions (4), (5) and (6) of the conditional Kendall’s tau

τ1,2|Z=z = P ((X1,1 −X1,2) (X2,1 −X2,2) > 0|Z1 = Z2 = z)

− P ((X1,1 −X1,2) (X2,1 −X2,2) < 0|Z1 = Z2 = z)

= 4P (X1,1 < X1,2, X2,1 < X2,2|Z1 = Z2 = z)− 1

= 1− 4P (X1,1 < X1,2, X2,1 > X2,2|Z1 = Z2 = z) ,

Following the approach of [10], we introduce several kernel estimators of τ1,2|Z=z motivated by

each of the equivalent definitions

τ̂
(1)
1,2|Z=z :=

n∑
i1=1

n∑
i2=1

wi1,n(z)wi2,n(z)

(
1 {(X1,i1 −X1,i2) (X2,i1 −X2,i2) > 0}

−1 {(X1,i1 −X1,i2) (X2,i1 −X2,i2) < 0}
)
, (29)

τ̂
(2)
1,2|Z=z :=4

n∑
i1=1

n∑
i2=1

wi1,n(z)wi2,n(z)1 {X1,i1 < X1,i2 , X2,i1 < X2,i2} − 1, (30)

τ̂
(3)
1,2|Z=z :=1− 4

n∑
i1=1

n∑
i2=1

wi1,n(z)wi2,n(z)1 {X1,i1 < X1,i2 , X2,i1 > X2,i2} , (31)

with Nadaraya-Watson weights wi,n as in (12) given by

wi,n(z) :=
Kh(Zi − z)∑n
k=1Kh(Zk − z)

, (32)

for some kernel K on Rd and bandwidth sequence h = h(n) converging to zero as n→∞.
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Further, let us define

g1((X1, X2)i1 , (X1, X2)i2) :=1 ((X1,i1 −X1,i2) (X2,i1 −X2,i2) > 0)

−1 ((X1,i1 −X1,i2) (X2,i1 −X2,i2) < 0) ,

g2((X1, X2)i1 , (X1, X2)i2) :=41 (X1,i1 < X1,i1 , X1,i2 < X1,i2)− 1,

g3((X1, X2)i1 , (X1, X2)i2) :=1− 41 (X1,i1 < X1,i2 , X2,i1 > X2,i2) .

Then τ̂ (s)1,2|Z=z is a smoothed estimator of τ1,2|Z=z = E [gs(Xi,Xj)|Z1 = Z2 = z], for any choice of

s = 1, 2, 3. However, note that the terms for which i1 = i2 are treated differently by each of the

estimators. Consequently, the estimators τ̂ (s)1,2|Z=z, s = 1, 2, 3 all take values in different subsets of

[−1, 1] given by

1 + sn ≤ τ̂ (1)1,2|Z=z ≤ 1− sn,

−1 ≤ τ̂ (2)1,2|Z=z ≤ 1− 2sn,

−1 + 2sn ≤ τ̂ (2)1,2|Z=z ≤ 1,

where we denote by sn the sum of squared weights

sn :=

n∑
i=1

w2
i,n(z).

Furthermore, it was proved in [10] that in fact almost surely

τ̂
(1)
1,2|Z=z = τ̂

(2)
1,2|Z=z + sn = τ̂

(3)
1,2|Z=z − sn.

Consequently, we can define a rescaled version taking values in [−1, 1] by

τ̃j1,j2|Z=z :=
τ̂
(1)
j1,j2|Z=z

1− sn
=
τ̂
(2)
j1,j2|Z=z

1− sn
+

sn
1− sn

=
τ̂
(3)
j1,j2|Z=z

1− sn
− sn

1− sn
. (33)

Naturally, we prefer the rescaled version over the other estimators since it takes values in the

whole interval [−1, 1].

4.2 The Conditional Setup

In the conditional setup we need adapted versions of the structural assumption as well as adapted

versions of each of the estimators. We adapt the structural assumption by assuming that the

underlying structural pattern applies to the conditional Kendall’s tau matrix for any value of the

covariate Z. We formalise this in the following assumption.
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Assumption A3 (Conditional Structural Assumption). There exists a K > 0 and a partition G =

{G1, . . . ,GK} of {1, . . . , p}, such that for all distinct k1, k2 ∈ {1, . . . ,K} and all z ∈ Z ,

[
T|Z=z

]
Bk1,k2

= τk1,k21

for some constants τk1,k2 ∈ [−1, 1]. Here, Bk1,k2 = {(j1, j2) ∈ (Gk1 × Gk2)}, for all k1, k2 ∈ {1, . . . ,K}.

In terms of stock return modeling, Assumption A3 has the following interpretation: condi-

tionally on a given market state or portfolio movement, the stocks of companies from different

sectors/countries have equal rank correlations with every other pair from the respective groups.

This could for instance be used for the computation of conditional risk measures. Note that we

then also assume that the blocks do not change as a function of the conditioning variables, which

seems reasonable in our perspective of groups chosen from sectors or countries. For any fixed

z ∈ Z , the number of free parameters is again reduced from 1
2p(p− 1) to

1

2
K(K − 1) +

1

2

K∑
k=1

|Gk|(|Gk| − 1),

allowing for an improved estimation based on the averaging principle. Note that here the free

parameters are a function of z and therefore live in an infinite-dimensional space, contrary to the

previous section where each parameter was a real number.

Let us denote the (unaveraged) conditional Kendall’s tau matrix estimator as T̂|Z=z =
[
τ̃j1,j2|Z=z

]
p×p

with τ̃j1,j2 as in (33). As in the unconditional framework that was studied previously, we define

conditional versions of the averaging estimators by

τ̂Bk1,k2|Z=z =
1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

τ̃j1,j2|Z=z

τ̂Rk1,k2|Z=z =
1

Nk1,k2

∑
(j1,j2)∈(Bk1,k2 )R

τ̃j1,j2|Z=z,

τ̂Dk1,k2|Z=z =
1

Nk1,k2

∑
(j1,j2)∈(Bk1,k2 )D

τ̃j1,j2|Z=z,

τ̂Uk1,k2|Z=z =
1

Nk1,k2

∑
(j1,j2)∈Bk1,k2

Wj1,j2 τ̃j1,j2|Z=z,

using the same notations Bk1,k2 , (Bk1,k2)R, (Bk1,k2)D, Nk1,k2 and W as before. The corresponding

conditional Kendall’s tau matrix estimators are denoted by T̂B
|Z=z, T̂R

|Z=z, T̂D
|Z=z, T̂U

|Z=z.

Next, let us define auxiliary notations P,Q,R, S, T and U for the conditional setup. Under



4 Improved Estimation of Conditional Kendall’s Tau 44

Assumption A3, we define the conditional version of Pk1,k2 for each distinct k1, k2 ∈ {1, . . . ,K}
and all z ∈ Z as

Pk1,k2|Z=z := P ((Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0|Z1 = Z2 = z) ,

where (j1, j2) is a pair in block Bk1,k2 . Note that Assumption A3 ensures that Pk1,k2|Z=z is inde-

pendent of the choice of pair (j1, j2) ∈ Bk1,k2 . Alternatively we can write Pk1,k2|Z=z in terms of

the conditional copula Cj1,j2|Z=z of (Xj1 , Xj2) by

Pk1,k2|Z=z = 2

∫
[0,1]2

Cj1,j2|Z=z(u1, u2)dCj1,j2|Z=z(u1, u2).

Let the conditional version of Qj1,j2 for every (j1, j2) ∈ {1, . . . , p}2 and all z ∈ Z be given by

Qj1,j2|Z=z := P( (Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0,

(Xj1,1 −Xj1,3) (Xj2,1 −Xj2,3) > 0|Z1 = Z2 = z).

or alternatively in terms of copulas

Qj1,j2|Z=z =

∫
[0,1]2

(
Cj1,j2|Z=z(u1, u2) + C̄Z=z(u1, u2)

)
dCj1,j2Z=z(u1, u2),

where C̄j1,j2Z=z denotes the survival copula of variables (Xj1 , Xj2) conditional on Z = z. The

derivation is analogous to the unconditional case. For all z ∈ Z all distinct k1, k2 ∈ {1, . . . ,K}
and for every (j1, j2), (j3, j4) ∈ Bk1,k2 such that |{j1, j2} ∩ {j3, j4}| = 1, we define

Rj1,j2,j3,j4|Z=z := P( (Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0,

(Xj3,1 −Xj3,2) (Xj4,1 −Xj4,2) > 0|Z1 = Z2 = z)

Sj1,j2,j3,j4|Z=z := P( (Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0,

(Xj3,1 −Xj3,3) (Xj4,1 −Xj4,3) > 0|Z1 = Z2 = z),

and for every (j1, j2), (j3, j4) ∈ Bk1,k2 such that {j1, j2} ∩ {j3, j4} = ∅, we define

Tj1,j2,j3,j4|Z=z := P( (Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0,

(Xj3,1 −Xj3,2) (Xj4,1 −Xj4,2) > 0|Z1 = Z2 = z),

Uj1,j2,j3,j4|Z=z := P( (Xj1,1 −Xj1,2) (Xj2,1 −Xj2,2) > 0,

(Xj3,1 −Xj3,3) (Xj4,1 −Xj4,3) > 0|Z1 = Z2 = z).

As before, the superscripts QB ,QR and QD are used to denote the auxiliary quantities averaged
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over the whole block, row or diagonal respectively.

We will examine estimators’ performances when the sample size n → ∞, as finite sample

results depend heavily on the bandwidth and the covariate’s underlying distribution. Hence,

the conditional versions of quantities R and T will turn out to be superfluous. Similar to the

unconditional setting, these are only useful for presenting finite sample results.

4.3 Comparison of their Asymptotic Variances

Before proceeding with the asymptotic results, we need to formalise some regularity assumptions

on the kernel K, the covariate Z and the bandwidth sequence h = h(n). Since we follow the

proof strategy of Derumigny et al. in [10], Proposition 9, we use an adapted version of their

assumptions.

Assumption A4. (a) The kernel K is bounded, compactly supported, symmetrical in the sense that

K(u) = K(−u) for every u ∈ Rd and satisfies
∫
K = 1,

∫
|K| <∞,

∫
K2 <∞.

(b) The kernel is of order α for some integer α > 1, i.e. for all k = 1, . . . , α − 1 and every indices

j1, . . . , jk in {1, . . . , d}, ∫
K(u)uj1 . . . ujkdu = 0.

(c) In addition, E [Kh(Z− z)] > 0 for every z ∈ Z and h > 0.

Assumption A5. For every x ∈ Rp, z 7→ fX,Z(x, z) is continuous and almost everywhere differentiable

on Z up to the order α. For every 0 ≤ k ≤ α and every 1 ≤ j1, . . . , jα ≤ d, let

Hk,~ (u,v,x1,x2, z) := sup
t∈[0,1]

∣∣∣∣ ∂kfX,Z
∂zj1 . . . ∂zjk

(x1, z + thu)
∂α−kfX,Z

∂zjk+1
. . . ∂zjα

(x2, z + thv)

∣∣∣∣
denoting~ = (j1, . . . , jα) .Assume thatHk,~ (u,v,x1,x2, z) is integrable and there exists a finite constant

CXZ,α > 0 such that, for every z ∈ Z and every h < 1,

∫
|K|(u)|K|(v)

α∑
k=0

(
α

k

) p∑
j1,...,jα=1

Hk,~ (u,v,x1,x2, z)
∣∣uj1 . . . ujkvjk+1

. . . vjα
∣∣ dudvdx1dx2

is less than CXZ,α.

Assumption A6. nhd →∞ and nhd+2α → 0 as n→∞.

Assumption A4 is satisfied for the commonly used Epanechnikov kernel. It should however

be noted that the Gaussian kernel does not meet the requirements of Assumption A4 due to its

infinite support. Furthermore, under the above assumptions, the asymptotic distributions of the

averaging estimators are in fact independent of the choice of the pairwise conditional Kendall’s
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tau estimator τ̂j1,j2|Z=z or τ̃ (s)j1,j2|Z=z, s = 1, 2, 3 on which the averaging is based. We formalise this

in the following lemma.

Lemma 24. Under Assumptions A4-A6, for any z ∈ Z and any j1, j2 ∈ {1, . . . , p}, the asymptotic

laws of the pairwise estimators τ̃j1,j2|Z=z and τ̂ (s)j1,j2|Z=z, s = 1, 2, 3 are all equal as n → ∞. As such,

the asymptotic laws of the averaging estimators τ̂Bk1,k2|Z=z, τ̂Rk1,k2|Z=z, τ̂Dk1,k2|Z=z and τ̂Uk1,k2|Z=z are all

invariant under interchanging τ̃j1,j2|Z=z for any of the τ̂ (s)j1,j2|Z=z, s = 1, 2, 3 in their respective definitions.

Proof. Let us study the behaviour of

sn =

n∑
i=1

w2
i,n(z) =

1
n2

∑n
i=1K

2
h (Zi − z)(

1
n

∑n
i2=1Kh (Zi2 − z)

)2 ,
as n→∞. Under Assumption A4(a) and by Bochner’s lemma, we have

E

[
1

n2

n∑
i=1

K2
h (Zi − z)

]
=

1

n

∫
1

h2d
K2

(
z1 − z

h

)
fZ(z1)dz1

=
1

nhd

∫
K2(u)fZ(z + hu)du

−−−→
h→0

1

nhd
fZ(z)

∫
K2 = O((nhd)−1). (34)

Similarly, we find by Assumption A4(a) that

E

[
1

n

n∑
i=1

Kh (Zi − z)

]
= O (1) .

As a consequence, by dominated convergence E [sn] = O((nhd)−1) for any z ∈ Z , or equivalently

using Markov’s inequality, sn = OP ((nhd)−1). By Assumption A6, this converges to zero. Recall

from (33) that almost surely

τ̃j1,j2|Z=z =
τ̂
(1)
j1,j2|Z=z

1− sn
=
τ̂
(2)
j1,j2|Z=z

1− sn
+

sn
1− sn

=
τ̂
(3)
j1,j2|Z=z

1− sn
− sn

1− sn
. (35)

It then follows by Slutsky’s theorem that the limiting laws of τ̃j1,j2|Z=z and τ̂ (s)j1,j2|Z=z, s = 1, 2, 3 are

all equivalent as n → ∞. As such, the asymptotic laws of the averaging estimators are therefore

invariant under interchanging τ̂j1,j2|Z=z for any of the τ̃ (s)j1,j2|Z=z, s = 1, 2, 3.

We now present our main theoretical result on the joint asymptotic normality at different

points of the conditioning variable Z.
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Theorem 25. (Joint asymptotic normality at different points). Let z′1, . . . , z
′
n′ be fixed, distinct points in

the set Z ⊂ Rd and assume Assumptions A3-A6. For all distinct k1, k2 ∈ {1, . . . ,K} and all (j1, j2) ∈
Bk1,k2 , as n→∞

(
nhd

)1/2 (
τ̂k1,k2|Z=z′

j′
− τk1,k2|Z=z′

j′

)
j′=1,...,n′

law−→ N (0,Hk1,k2) ,

where τ̂k1,k2|Z=z′ denotes any of the estimators τ̃j1,j2|Z=z′ , τ̂Bk1,k2|Z=z′ , τ̂
R
k1,k2|Z=z′ , τ̂

D
k1,k2|Z=z′ , τ̂

U
k1,k2|Z=z′ ,

and the corresponding n′ × n′ diagonal matrices Hk1,k2 are respectively given by

(i)

[Hj1,j2 ]j′1,j′2
=

∫
K21{j′1=j′2}

fZ

(
z′j′1

) Vj1,j2

(
PX|Z=z′

j′1

)
,

(ii)

[
HB
k1,k2

]
j′1,j
′
2

=

∫
K21{j′1=j′2}

fZ

(
z′j′1

) V Bk1,k2

(
PX|Z=z′

j′1

)
,

(iii)

[
HR
k1,k2

]
j′1,j
′
2

=

∫
K21{j′1=j′2}

fZ

(
z′j′1

) V Rk1,k2

(
PX|Z=z′

j′1

)
,

(iv)

[
HD
k1,k2

]
j′1,j
′
2

=

∫
K21{j′1=j′2}

fZ

(
z′j′1

) V Dk1,k2

(
PX|Z=z′

j′1

)
,

(v)

[
HU
k1,k2

]
j′1,j
′
2

=

∫
K21{j′1=j′2}

fZ

(
z′j′1

) V Uk1,k2

(
PX|Z=z′

j′1

)
,

for every 1 ≤ j′1, j′2 ≤ n′, where the asymptotic variances V are as defined in Equations (23)-(27).

Proof. In [10] (see p. 299) it was already shown that the conditional Kendall’s tau estimator de-

fined in (33) is asymptotically normal at different points of the conditioning variable. We can

use this result directly for the proof of (i). However, the asymptotic normalities of the averaging

estimators remain to be proven. To this end, we follow their approach of studying the joint distri-

bution of U-statistics at several conditioning points. The asymptotic covariance matrices are then
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obtained by combining the results with the appropriate kernels under Assumption A3.

(i) Let us start with restating the result from [10] on the joint asymptotic normality of the con-

ditional Kendall’s tau estimator at different points. That is, as n→∞

(
nhd

)1/2 (
τ̃j1,j2|Z=z′

j′
− τj1,j2|Z=z′

j′

)
j′=1,...,n′

law−→ N (0,Hj1,j2) ,

where Hj1,j2 is a n′ × n′ diagonal matrix given by

[Hj1,j2 ]j′1,j′2
=

4
∫
K21{j′1=j′2}

fZ

(
z′j′1

)
(
E
[
g∗ ((Xj1 , Xj2)1, (Xj1 , Xj2)2) g∗ ((Xj1 , Xj2)1, (Xj1 , Xj2)3) | Z1 = Z2 = Z3 = z′j′1

]
− τ2j1,j2|Z=z′

j′

)
,

where 1 ≤ j′1, j′2 ≤ n′, and

g∗ ((Xj1 , Xj2)1, (Xj1 , Xj2)2) = 21 {Xj1,1 < Xj1,2, Xj2,1 < Xj2,2}

+21 {Xj1,2 < Xj1,1, Xj2,2 < Xj2,1} − 1.

Then, by similar algebraic steps as in the derivation of ζ1 from the proof of Theorem 19(i),

we obtain

[Hj1,j2 ]j′1,j′2
=

16
∫
K21{j′1=j′2}

fZ

(
z′j′1

) (
Qj1,j2|Z=z′

j′1
− P 2

k1,k2|Z=z′
j′1

)
.

(ii)-(v) From Lemma 24 we known that the asymptotic distributions of the averaging estimators

are invariant under interchanging τ̂j1,j2|Z=z for any of the τ̃ (s)j1,j2|Z=z, s = 1, 2, 3 in their def-

initions. We continue the proof using the symmetric version of the estimator τ̃ (2)j1,j2
, so that

the proof stays similar to the one of Theorem 19. Again, we set the following notations

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) = 21 {Xj1,i1 < Xj1,i2 , Xj2,i1 < Xj2,i2}

+ 21 {Xj1,i2 < Xj1,i1 , Xj2,i2 < Xj2,i1} − 1

gBk1,k2 (Xi1 ,Xi2) =
1

|Bk1,k2 |
∑

(j1,j2)∈Bk1,k2

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2)

gRk1,k2 (Xi1 ,Xi2) =
1

Nk1,k2

∑
(j1,j2)∈(Bk1,k2 )R

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) ,

gDk1,k2 (Xi1 ,Xi2) =
1

Nk1,k2

∑
(j1,j2)∈(Bk1,k2 )D

g∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) ,

gUk1,k2 (Xi1 ,Xi2) =
1

Nk1,k2

∑
(j1,j2)∈Bk1,k2

Wj1,j2g
∗ ((Xj1 , Xj2)i1 , (Xj1 , Xj2)i2) .
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Furthermore, for any measurable function g : R2d → R, let us define the second order U-statistic

Un,j′(g) :=
1

n(n− 1)

∑
1≤i1 6=i2≤n

g (Xi1 ,Xi2)Kh

(
z′j′ − Zi1

)
Kh

(
z′j′ − Zi2

)
E
[
Kh

(
z′j′ − Z

)]2
=:

1

n(n− 1)

∑
1≤i1 6=i2≤n

gi1,i2 . (36)

It follows easily that the averaging estimators can be written in terms of Un,j′ by

τ̂k1,k2|Z=z′
j′

=
Un,j′(gk1,k2)

Un,j′(1) + εn,j′
, (37)

where we write τ̂k1,k2|Z=z′
j′

for any of the estimators τ̂Bk1,k2|Z=z′
j′

, τ̂Rk1,k2|Z=z′
j′

, τ̂Dk1,k2|Z=z′
j′

, τ̂Uk1,k2|Z=z′
j′

with gk1,k2 given by, respectively, gBk1,k2 , gRk1,k2 , gDk1,k2 , gUk1,k2 . The residual term εn,j′ is given by

εn,j′ :=

∑n
i=1K

2
h

(
z′j′ − Zi

)
n(n− 1)E

[
Kh(z′j′ − Z)

]2 .
Further, we set

τ̃k1,k2|Z=z′
j′

:=
Un,j′(gk1,k2)

Un,j′(1)
(38)

and find that under Assumption A4

E
[

1

εn,j′
(τ̃k1,k2|Z=z′

j′
− τ̂k1,k2|Z=z′

j′
)

]
= E

[
1

εn,j′

(
Un,j′(hk1,k2)

Un,j′(1)
− Un,j′(hk1,k2)

Un,j′(1) + εn,j′

)]
= E

[
1

Un,j′(1)

Un,j′(hk1,k2)

Un,j′(1) + εn,j′

]
= E

[
1

Un,j′(1)
τ̂k1,k2|Z=z′

j′

]
= O(1),

or equivalently τ̂k1,k2|Z=z′
j′
− τ̃k1,k2|Z=z′

j′
= OP (εn,j′) using Markov’s inequality. By Assumption

A4(c) and by the same argument as in (34) we see that εn,j′ = OP ((nhd)−1). It then follows by

Assumption A6 that

(nhd)1/2(τ̂k1,k2|Z=z′
j′
− τ̃k1,k2|Z=z′

j′
) = OP ((nhd)1/2εn,j′) = oP (1).

It therefore suffices to obtain the limiting law of (nhd)1/2(τ̃k1,k2|Z=z′
j′
− τk1,k2|Z=z′

j′
) as n→∞.

Now let us apply the result from [10] (see p. 318) on the joint asymptotic law of U-statistics of

the formUn,j′ . That is, under Assumptions A4-A6 and for any two bounded measurable functions
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g1 and g2

(
nhd

)1/2((
Un,j′ (g1)− E [Un,j′ (g1)]

)
j′=1,...,n′

,
(
Un,j′ (g2)− E [Un,j′ (g2)]

)
j′=1,...,n′

)
law−→ N

0,

 M∞ (g1) M∞ (g1, g2)

M∞ (g1, g2) M∞ (g2)

 , (39)

as n→∞, where

[M∞ (g1, g2)]j′1,j′2
:=

4
∫
K21{z′

j′1
=z′

j′2
}

fZ

(
z′j′1

) ∫
g1 (x1,x) g2 (x2,x) (40)

× fX|Z=z′
j′1

(x)fX|Z=z′
j′1

(x1) fX|Z=z′
j′1

(x2) dxdx1dx2.

Let us investigate the expectation of Un,j′(g). We write by (36)

E [Un,j′(g)] =
1

E
[
Kh(z′j′ − Z)

]2E[g (X1,X2)Kh

(
z′j′ − Z1

)
Kh

(
z′j′ − Z2

) ]
.

Further, by a change of variable we find

E
[
g (X1,X2)Kh

(
z′j′ − Z1

)
Kh

(
z′j′ − Z2

) ]
=

∫
g (x1,x2)Kh

(
z′j′ − z1

)
Kh

(
z′j′ − z2

)
fX,Z(x1, z1)fX,Z(x2, z2)dx1dx2dz1dz2

=

∫
g (x1,x2)K (u1)K (u2) fX,Z(x1, z

′
j′ + hu1)fX,Z(x2, z

′
j′ + hu2)dx1dx2du1du2. (41)

Let us define the function φx1,x2,u1,u2(t) := fX,Z
(
x1, z

′
j′ + thu1

)
fX,Z

(
x2, z

′
j′ + thu2

)
for t ∈ [0, 1].

By Assumption A5, φx1,x2,u1,u2
(t) is α times differentiable, allowing us to apply the Taylor-

Lagrange formula. This gives

φx1,x2,u1,u2
(t) =

α−1∑
k=0

1

k!
φ(k)x1,x2,u1,u2

(0) +
1

α!
φ(α)x1,x2,u1,u2

(t∗), (42)

for some t∗ ∈ [0, 1] and where φkx1,x2,u1,u2
(t) is equal to

k∑
l=0

(
k

l

) d∑
j1,...,jk=1

hkuj1,1 . . . ujl,1ujl+1,2 . . . ujk,2

∂kfX,Z
∂zj1 . . . ∂zjl

(
x1, z

′
j′ + thu1

) ∂k−lfX,Z
∂zjl+1

. . . ∂zjk

(
x2, z

′
j′ + thu2

)
.
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After substituting (42) into (41) we obtain

∫
g (x1,x2)K (u1)K (u2)

(
α−1∑
k=0

1

k!
φ(k)x1,x2,u1,u2

(0) +
1

α!
φ(α)x1,x2,u1,u2

(t∗)

)
dx1dx2du1du2

=

∫
g (x1,x2)K (u1)K (u2)

(
φx1,x2,u1,u2

(0) +
1

α!
φ(α)x1,x2,u1,u2

(t∗)

)
dx1dx2du1du2

=

∫
g (x1,x2)K (u1)K (u2) fX,Z(x1, z

′
j′)fX,Z(x2, z

′
j′)dx1dx2du1du2

+
1

α!

∫
g (x1,x2)K (u1)K (u2)φ(α)x1,x2,u1,u2

(t∗)dx1dx2du1du2

= f2Z(z′j′)E
[
g (X1,X2) | Z1 = Z2 = z′j′

]
+

1

α!

∫
g (x1,x2)K (u1)K (u2)φ(α)x1,x2,u1,u2

(t∗)dx1dx2du1du2,

where we have used the fact that
∫
K(u)uj1 . . . ujkdu = 0 for all k = 1, . . . , α − 1 as stated in

Assumption A4(b).

Furthermore, by Assumption A5 we have

1

α!

∣∣∣∣ ∫ g (x1,x2)K (u1)K (u2)φ(α)x1,x2,u1,u2
(t∗)dx1dx2du1du2

∣∣∣∣
≤
∫
|K| (u1) |K| (u2) |φ(α)x1,x2,u1,u2

|(t∗)dx1dx2du1du2

≤ CX,Zh
α.

Therefore,

E
[
g (X1,X2)Kh

(
z′j′ − Z1

)
Kh

(
z′j′ − Z2

) ]
= f2Z(z′j)E

[
g (X1,X2) | Z1 = Z2 = z′j′

]
+O(hα),

and by the same reasoning we obtain

E
[
Kh(z′j′ − Z)

]
= f2Z(z′j) +O(hα).

Consequently, we find that

E [Un,j′(g)] =
1

E
[
Kh(z′j′ − Z)

]2E[g (X1,X2)Kh

(
z′j′ − Z1

)
Kh

(
z′j′ − Z2

) ]
= E

[
g (X1,X2) | Z1 = Z2 = z′j′

]
+ rn,j′ , (43)

where |rn,j′ | ≤ C0h
α for some constant C0 independent of j′. Then, by Assumption A6

(nhd)1/2 (E[Un,j′(g)]− E[g(X1,X2) | Z1 = Z2 = z′j′ ]) = O((nhd)1/2hα) = o(1).
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Therefore, the asymptotic law of (39) still holds after replacing E[Un,j′(g)] with E[g(X1,X2) | Z1 =

Z2 = z′j′ ]. As such,

(
nhd

)1/2((
Un,j′ (gk1,k2)− τk1,k2|Z=zj′

)
j′=1,...,n′

,
(
Un,j′ (1)− 1

)
j′=1,...,n′

)
law−→ N

0,

 M∞ (gk1,k2 , gk1,k2) M∞ (gk1,k2 , 1)

M∞ (gk1,k2 , 1) M∞ (1, 1)

 , (44)

as n → ∞, where we have used that E[gk1,k2(X1,X2) | Z1 = Z2 = z′j′ ] = τk1,k2|Z=zj′
under

Assumption A3.

In order to derive the asymptotic law of (nhd)1/2(τ̃k1,k2|Z=z′
j′
− τk1,k2|Z=z′

j′
) we apply the

Delta-method on (44) with the function γ(x), := x/y, that divides two real vectors x,y of size

n′ component-wise. The corresponding Jacobian is given by the n′ × 2n′ matrix

Jγ(x,y) =
[
Diag

(
y−11 , . . . y−1n′

)
,Diag

(
−x1y−21 , · · · − xn′y−2n′

)]
.

Hence, as n→∞

(
nhd

)1/2 (
τ̂k1,k2|Z=z′

j′
− τk1,k2|Z=z′

j′

)
j′=1,...,n′

law−→ N (0,Hk1,k2) ,

setting

Hk1,k2 := Jγ(~τk1,k2 , e)

 M∞ (gk1,k2) M∞ (gk1,k2 , 1)

M∞ (gk1,k2 , 1) M∞(1)

 Jρ(~τk1,k2 , e)T ,

where ~τk1,k2 and e denote n′-dimensional vectors filled with respectively τk1,k2 and 1. This gives

Hk1,k2 = M∞ (gk1,k2 , gk1,k2)−Diag(~τk1,k2)M∞ (gk1,k2 , 1)−M∞ (gk1,k2 , 1) Diag(~τk1,k2)

+ Diag(~τk1,k2)M∞(1, 1) Diag(~τk1,k2)

and for 1 ≤ j′1, j′2 ≤ n′, we find

[M∞ (gk1,k2 , gk1,k2)]j′1,j′2
=

4
∫
K21{z′

j′1
=z′

j′2
}

fZ

(
z′j′1

)
E
[
gk1,k2 (X1,X) gk1,k2 (X2,X) | Z = Z1 = Z2 = z′j′1

]
,

[Diag(~τk1,k2)M∞ (gk1,k2 , 1)]j′1,j′2
=

4
∫
K21{z′

j′1
=z′

j′2
}

fZ

(
z′j′1

) τk1,k2E
[
gk1,k2 (X1,X) | Z = Z1 = z′j′1

]
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=
4
∫
K21{z′

j′1
=z′

j′2
}

fZ

(
z′j′1

) τ2k1,k2

= [M∞ (gk1,k2 , 1) Diag(~τk1,k2)]j′1,j′2

= [Diag(~τk1,k2M∞ (1, 1) Diag(~τk1,k2)]j′1,j′2
,

and thus,

[Hk1,k2 ]j′1,j′2 =

4
∫
K21{

z′
j′1

=z′
j′2

}
fZ

(
z′j′1

)
(
E
[
gk1,k2 (X1,X2) gk1,k2 (X1,X3) | Z = Z1 = Z2 = z′j′1

]
− τ2k1,k2|Z=z′

j′

)
.

Lastly, by substituting the appropriate kernels and by similar steps as in the derivation of the

corresponding ζ1’s from the proof of Theorem 19, it is easily seen that under Assumption A3 we

obtain the desired asymptotic covariance matrices.

From Theorem 25 we see that asymptotically the estimators are all unbiased. This is not sur-

prising, as the bandwidth then goes to zero. For finite sample sizes there is a tradeoff between bias

and variance, which we can control by the choice of bandwidth. For more theory on bandwidth

selection methods see [30]. On the variance, we remark the following.

Remark 26. Under the assumptions of Theorem 25, we have for PZ-almost all z ∈ Z ,

lim
n→+∞

(
nhd

)1/2 (
τ̂k1,k2|Z=z − τk1,k2|Z=z

) law
=

∫
K2

fZ(z)
× lim
n→+∞

n1/2
(
τ̂k1,k2(PX|Z=z)− τk1,k2(PX|Z=z)

)
,

where on the left-hand side τ̂k1,k2|Z=z denotes any of the estimators τ̃j1,j2|Z=z, τ̂Bk1,k2|Z=z, τ̂Rk1,k2|Z=z,

τ̂Dk1,k2|Z=z, τ̂Uk1,k2|Z=z, and on the right-hand side τ̂k1,k2(PX|Z=z) denotes the estimated Kendall’s tau if

we had observed a sample of size n from the distribution PX|Z=z and τk1,k2(PX|Z=z) = τk1,k2|Z=z denotes

Kendall’s tau of the distribution PX|Z=z.

Remark 27. Under the same assumptions as in Theorem 25 and by letting the sample size and dimensions

tend to infinity, the following holds for PZ-almost all z ∈ Z ,

• Var
[
τ̃j1,j2|Z=z

]
∼ 16

∫
K2

nhdfZ(z)

(
Qj1,j2|Z=z − P 2

k1,k2|Z=z

)
,

• Var
[
τ̂Bk1,k2|Z=z

]
∼ 16

∫
K2

nhdfZ(z)

(
UBk1,k2|Z=z − P

2
k1,k2|Z=z

)
,

• Var
[
τ̂Rk1,k2|Z=z

]
∼ 16

∫
K2

nhdfZ(z)

(
SRk1,k2|Z=z − P

2
k1,k2|Z=z

)
,
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• Var
[
τ̂Dk1,k2|Z=z

]
∼ 16

∫
K2

nhdfZ(z)

(
UDk1,k2|Z=z − P

2
k1,k2|Z=z

)
,

• Var
[
τ̂Uk1,k2|Z=z

]
∼ 16

∫
K2

nhdfZ(z)

(
UBk1,k2|Z=z − P

2
k1,k2|Z=z

)
,

As seen before, we remark that the asymptotic variances have analogous expressions to that of

their unconditional counterparts. Note that therefore the same ordering as in Corollary 23 holds

under adapted conditions, where the (unconditional) distribution of X is replaced by PX|Z=z.

Since the proof of Corollary 28 is analogous to that of Corollary 23, it is omitted.

Corollary 28. Under the assumptions of Theorem 25 we have the following:

(i) Assume that the quantity U|Z=z does not depend on the choice of pairs within the off-diagonal block

Bk1,k2 . Then, the asymptotic variances of the block, diagonal and random estimators are equal:

lim
n→+∞

|Gk1 |,|Gk2 |→+∞

nhd Var
[
τ̂Bk1,k2|Z=z

]
= lim

n→+∞
Nk1,k2→+∞

nhd Var
[
τ̂Dk1,k2|Z=z

]
= lim

n→+∞
|Gk1 |,|Gk2 |,Nk1,k2→+∞

nhd Var
[
τ̂Uk1,k2|Z=z

]
= Uk1,k2|Z=z − P 2

k1,k2|Z=z := σ2
A|Z=z.

(ii) Further, assume that quantities Q|Z=z and S|Z=z do not depend on the choice of pairs within Bk1,k2
and that U|Z=z < S|Z=z < 1

2Q|Z=z + 1
2U|Z=z. Then, there is a natural ordering between the

estimators, given by:

0 < lim
n→+∞

|Gk1 |,|Gk2 |→+∞

nhd (|Gk1 | ∧ |Gk2 |)
(
Var

[
τ̂Bk1,k2|Z=z

]
− σ2

A|Z=z

)
< lim

n→+∞
Nk1,k2→+∞

nhdNk1,k2

(
Var

[
τ̂Dk1,k2|Z=z

]
− σ2

A|Z=z

)
< lim

n→+∞
|Gk1 |,|Gk2 |,Nk1,k2→+∞

nhdNk1,k2

(
Var

[
τ̂Uk1,k2|Z=z

]
− σ2

A|Z=z

)
,

It again follows that all averaging estimators exhibit a lower asymptotic variance than the

naive conditional Kendall’s tau estimator. Also, the row averaging estimator intuitively performs

less than the block, diagonal and random estimators and for growing dimensions the block, di-

agonal and random estimator perform (almost) equally in the limit, assuming that the averages

of U are not far apart. Again, we can greatly reduce computation time by using either one of the

diagonal or random averaging estimator instead of the block averaging estimator, since then only

part of all conditional Kendall’s taus have to be computed. Under mild assumptions, the block

estimator estimator converges fastest to the U -asymptotic variance, followed by the diagonal and
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then the random estimator. Lastly, it also holds that if only part of the row or diagonal is aver-

aged, the asymptotic variances of the resulting estimators do not change. By doing so we can

further decrease computation time, but at the cost of attaining the limiting variances at slower

rates.
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5 Simulation Study
We perform a simulation study to assess the finite sample properties of our estimators. Firstly,

in Section 5.1, we compare the unconditional estimators by studying their variances and compu-

tation times for varying block and sample sizes. In the unconditional setting, we consider the

row, diagonal, block and sample Kendall’s tau estimators. In Section 5.2, we focus on the con-

ditional versions of the diagonal and block estimators and we let the Kendall’s taus depend on

a one-dimensional covariate. Similarly, we compare their accuracy and computational efficiency

for varying sample size and block dimensions. In addition, we examine the estimators’ optimal

bandwidths under varying conditional dependencies of the Kendall’s tau matrix. The simula-

tions are all executed with the help of the statistical environment R [43]. For simplicity, we choose

Nk1,k2 = |Gk1 |∧|Gk2 |, so that diagonal and row estimators average over the same number of terms.

5.1 Unconditional Kendall’s Tau

In the unconditional framework, we compare the block, row, diagonal and sample Kendall’s tau

matrix estimators. The random estimator is left out as it is mainly of interest from a theoretical

point of view. We will examine how the estimators’ variance changes as a function of the block

dimensions and the sample size. For this purpose, we consider mean squared errors (MSEs),

which is a measure of variance as all unconditional estimators are unbiased. Furthermore, we

measure computation times for comparing the computational efficiency. For computing the pair-

wise sample Kendall’s taus, we use the function cor.fk() in the R package pcaPP [18], which

can efficiently calculate the sample Kendall’s tau with runtime O(n log(n)).

In each of the simulations, data is generated using either the Gaussian distribution or the Stu-

dent’s t distribution with one degree of freedom, with zero mean and unit marginal variances. As

both distributions are elliptical, correlation matrices can be directly obtained from the Kendall’s

tau matrix using Theorem 12. We let the underlying Kendall’s tau matrix be block-structured

corresponding to two groups of equal size, which we will refer to as the block size. This results

in two diagonal blocks and a single distinct off-diagonal block due to symmetry.

As obtained in Theorem 19, the variances depend on the averages of the auxiliary quantities

P,Q,R, S, T and U of pairs either along the row, the diagonal or over the entire block. For a fair

comparison of the different estimators, we need all different averages of these auxiliary quantities

to be equal. As such, in addition to having identical Kendall’s tau values in the off-diagonal block,

we take the values within the diagonal blocks to be identical as well. In that case, all auxiliary

quantities are independent of the choice of pairs within the off-diagonal block, and moreover the

Partial Exchangeability Assumption holds.

In Section 5.1.1 we study MSEs and computation times for different sample sizes. For this,
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we set the diagonal block Kendall’s taus to 0.3 and the off-diagonal block Kendall’s taus to 0.1,

which can be considered realistic for the modelling of stock returns. Similarly, using these values,

we study the estimators’ performances for different block dimensions in Section 5.1.2. To confirm

these results, we are interested in the estimators’ behavior for a different Kendall’s tau matrix: we

now set the diagonal block Kendall’s taus to 0.5 and the off-diagonal block Kendall’s taus to−0.5.

Note that the diagonal blocks need to have a positive value to ensure positive definiteness. For

this data-generating process, we will study the influence of the block dimension on the MSEs in

Section 5.1.2.

For performance analysis, we will focus on estimates of the single off-diagonal block, as all

estimators treat the diagonal blocks equally. As such, computation times and MSEs result from

only estimating the single off-diagonal block.

5.1.1 Effect of the Sample Size

In the first experiment, we study the dependency of the MSE on the sample size. To this end,

the sample size is varied and the block size is fixed to 10, resulting in a block size of 10 × 10. We

examine data generated from both the Gaussian distribution and the Student’s t-distribution. For

each estimator, the MSEs and 95% confidence intervals are calculated using 4000 replications. The

results can be found on a log-log scale in Figure 1.

Figure 1: Log-log plots of the estimators’ mean squared error as a function of the sample size
including 95% confidence intervals, calculated using a block size of 10. The diagonal block
Kendall’s taus are set at 0.3 and the off-diagonal block values at 0.1.
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Figure 1 shows that for each estimator the MSEs generated from the Gaussian distribution are

slightly lower than those generated from the Student’s t distribution, but apart from that there is

little difference. In the figure we clearly observe straight lines for all of the estimators, with slopes

indicating an inverse relationship. This not only confirms that the limiting variances are inversely

proportional to the sample size, but that this also applies accurately for small sample sizes. In

addition, we see that averaging the sample Kendall’s taus does indeed lead to better estimates.

This applies to any given sample size, as all estimates depend equally on it. As expected, the

block estimator behaves best, only closely followed by the diagonal estimator.

Next, we study the dependency of the computation times on sample size. For this experiment,

we set the block size to 40 and for each estimator we calculate the average of the computation time

by performing 400 replications. The results are shown in Figure 2 on log-log scale. It shows that as

the sample size increases, the computation times gradually increase to a point where they appear

to scale linearly with each other. These observations are in line with the runtime of the pairwise

sample Kendall’s tau estimator used of O(n log(n)). As expected, the computation times of the

block and sample Kendall’s tau matrix estimator are very similar, as are the computation times

of the row and diagonal estimators, with the latter two being significantly more efficient for any

given sample size.

Figure 2: Log-log plot of the estimators’ mean computation time [s] as a function of the sample
size, calculated using a block size of 40.
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5.1.2 Effect of the Block Size

We first study the behaviour of the MSE with respect to varying block sizes with off-diagonal

block Kendall’s taus of 0.1 and diagonal block Kendall’s taus of 0.3. In this experiment, we set the

sample size to 4 to reduce the computational cost of running a sufficient number of replications.

Again, we examine data generated from the Gaussian and the Student’s t distributions. The MSEs

and 95% pointwise confidence intervals are calculated using 4000 replications. See Figure 3 for a

log-log plot of the MSEs as a function block size.

Figure 3: Log-log plots of the mean squared error as a function of the block size including 95%
confidence intervals, calculated using a sample size of 4. The diagonal block Kendall’s taus are
set at 0.3 and the off-diagonal block values at 0.1.

Figure 3 shows that all of the averaging estimators perform increasingly better than the sam-

ple Kendall’s tau estimator for growing block dimensions. For large block dimensions the MSEs

seem to reach constant values, confirming that the asymptotic variances do not depend on block

dimensions. As expected, the block and diagonal averaging estimators both converge to the low-

est limiting variance, approached fastest by the block averaging estimator. The row averaging

estimator performs considerably less. The only difference we observe between the Gaussian and

the Student’s t distribution is again that that the MSEs of the latter are slightly higher. This is not

surprising as all of the variances depend on the underlying copula.

To better visualise the difference in order of magnitude between the MSEs of the estimators

τ̂ , we plot the ratio MSE(τ̂)/MSE(τ̂B) as a function of the block size, where τ̂ denotes any of the

row, diagonal and naive estimators. The results are depicted in Figure 4 including 95% confidence

intervals.
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Figure 4: Log-log plots of the ratio MSE(τ̂)/MSE(τ̂B) as a function of the block size including 95%
confidence intervals, calculated using a sample size of 4. The diagonal block Kendall’s taus are
set at 0.3 and the off-diagonal block values at 0.1.

On Figure 4, we see that for both the Gaussian and Student’s t distributions the averaging

estimators seem to improve on the sample Kendall’s tau estimator by roughly the same order of

magnitude. Note, however, that these improvements do theoretically depend on the underlying

copula. This result thus indicates that the exact choice of copula makes little difference to the

improvement on the sample Kendall’s tau matrix estimator when it resembles to some extent

the Gaussian and Student’s t copulas. Furthermore, we find that the relative difference between

the diagonal and block estimator is largest for small dimensions, but here there they are still

well within a factor of 1.5 of each other. As the dimensions increase, the MSEs of the diagonal

estimator converge rapidly to that of the block estimator, again confirming that the block and

diagonal estimators have similar variances for large block dimensions.

Next, let us investigate the estimators’ MSEs under the less realistic target values of −0.5 in

the off-diagonal block and 0.5 in the diagonal blocks. Similarly, we set the sample size to 4 and

examine data generated from both the Gaussian and Student’s t distributions. The MSEs and 95%

confidence intervals are calculated using 4000 replications. See Figure 5 for a plot of the MSEs as

a function of the block size and see Figure 6 for the corresponding ratio plot.
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Figure 5: Log-log plots of the estimators’ mean squared error as a function of the block size
including 95% confidence intervals, calculated using a sample size of 4. The diagonal block target
Kendall’s taus are set at 0.5 and the off-diagonal block values at −0.5.

On Figure 5, we observe analogous results to the more realistic target values: all estimators are

improvements over the naive estimator, the block and diagonal estimators have the best limiting

variance, with the block estimator having the fastest convergence. Also, the MSEs generated

from the student’s t distribution are slightly higher than for the Gaussian distribution, but the

order of magnitudes with which the averaging estimators improve are comparable again. It is

however noticeable that these order of magnitudes are considerably lower when compared to the

setting with the more realistic target Kendall’s tau values, i.e. roughly 4 versus 8 for the block

and diagonal estimators. This comes as no surprise; the diagonal block Kendall’s tau are higher,

reducing the degree of independence of the pairwise estimates of the off-diagonal block’s, and

thus reducing the effect of averaging.

For comparison of the computation efficiency, we perform 1000 replications with the same

parameters as before. In Figure 7 the averages of the computation times can be found on log-log

scale. As expected, we observe that both the sample Kendall’s tau matrix estimator and the block

estimator scale quadratically with block size and that the row and diagonal estimators both scale

linearly with block size. Consequently, for larger block dimensions one may prefer the diagonal

estimator over the block estimator to gain substantial computational efficiency and lose only little

precision.
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Figure 6: Log-log plots of the ratio MSE(τ̂)/MSE(τ̂B) as a function of the block size including 95%
confidence intervals, calculated a sample size of 4. The diagonal block Kendall’s taus are set at
0.5 and the off-diagonal block values at −0.5.

Figure 7: Log-log plot of the estimators’ mean computation time [s] as a function of the block size,
calculated using a sample size of 4.
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5.2 Conditional Kendall’s Tau

In this section, we study the conditional versions of the block and diagonal estimators. Since

the estimators make use of kernel regression, a larger sample size is needed for obtaining stable

results. We therefore consider only a one-dimensional covariate Z, so that we do not need to

increase the sample size even further and can run a sufficient number of replications. Kernel

estimation is carried out on the basis of the Epanechnikov kernel and simulations are performed

with the help of the R package CondCopulas [5].

In each of the experiments, we let the covariate Z be uniformly distributed on the interval

[0, 1]. We will estimate conditional Kendall’s taus for points z ranging from 0 to 1 in steps of

0.1. We generate data with the Gaussian distribution, as the student’s t distribution yields similar

results. All variables will have a mean of Z and variance of 1 + Z2. The Kendall’s tau matrix is

again block-structured corresponding to two groups of equal size. Similarly to the unconditional

case, we focus on the estimates of the single off-diagonal block. We set all Kendall’s taus within

the diagonal blocks to a constant value of 0.3, which is independent of Z. Finally, we let the

Kendall’s taus within the off-diagonal block depend on the covariate Z.

In Section 5.2.1 and Section 5.2.2, we examine the accuracy and computational efficiency of the

estimates under varying sample size and block dimensions. To this end, we set Kendall’s tau in

the off-diagonal blocks to 0.1Z. As Z is distributed on [0, 1], the conditional Kendall’s taus range

from 0 to 0.1. As such, the underlying variables are again partially exchangeable conditional on

any z ∈ [0, 1]. It follows that the biases of the pairwise estimates in the off-diagonal block are all

equal and thus that averaging over them does not change the total bias. Furthermore, note that

this property is in fact guaranteed by the structural assumption. Since therefore all estimators

have equal biases, we focus on the sample variances instead of the MSEs for a comparison of

accuracies.

Then, in Section 5.2.3 we study optimal bandwidths where we vary the way in which the off-

diagonal block Kendall’s taus depend on Z. We consider a model in which we let the off-diagonal

block conditional Kendall’s taus be given by

[
T|Z=z

]
B1,2

= 0.1(cos(0.5πωz) + 1)1,

with frequencies ω in {1, 2, 3, 4}. As such, these conditional Kendall’s taus range from 0 until 0.2.

For comparing the accuracies under varying bandwidths, we study mean integrated squared er-

rors (MISE) calculated by averaging the MSEs of conditional estimates computed at conditioning

points ranging from 0 to 1 in steps of 0.1.
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5.2.1 Effect of the Sample Size

In this experiment, we study the dependency of the variances on the sample size. To this end, we

vary the sample size under a fixed block size of 4 and a bandwidth of 0.5. We use this relatively

large bandwidth to ensure stable results even at lower sample sizes. The sample variances and

95% confidence intervals are calculated using 8000 replications. For each grid point z we plot the

resulting sample variances on log-log scale in Figure 10.

Figure 8: Log-log plots of the estimators’ variances as a function of the sample size on several
conditioning points including 95% confidence intervals, calculated using a block size of 4 and a
bandwidth of 0.5.

Unsurprisingly, the conditional variances are also inversely related to the sample size. It fol-

lows that if bandwidths are kept constant, MSEs converge to the bias. As such, appropriate band-
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widths are naturally smaller for increasing sample sizes. Furthermore, it is seen that the estimates

near the edges of the interval [0, 1] are less accurate than those in the middle. This can be at-

tributed to the fact that there are fewer observations of Z near grid points close to the edges than

near grid points in the middle, since the observations can be found there on both sides. Evidently,

a change in the distribution of Z also changes the level of the variances.

Next, let us study the dependency of the computation time on the sample size. We leave

the setting unchanged, though the results correspond to the calculation of the conditional block

estimates on a single grid point. The results are calculated using 500 replications and are repre-

sented on log-log scale in Figure 9. Here it is seen that the computation times gradually increase

with the sample sample to a point where they appear to scale quadratically with each other. This

behaviour follows from the fact that the conditional estimates require the calculation of a dou-

ble sum of n terms. Note that the computation times of the diagonal and block estimators are

relatively close since only a block size of 4 is used here.

Figure 9: Log-log plot of the mean computation time [s] versus the sample size, calculated using
a block size of 4.

5.2.2 Effect of the Block Size

We first study the estimators’ variance under varying block dimensions. In order to run a suffi-

cient number of replications we set the sample size to 20 and consequently the bandwidth to 0.5.

The sample variances and 95% confidence intervals are calculated using 30000 replications. For

each grid point z, the resulting sample variances are displayed on log-log scale in Figure 10.

From the figure we observe that the estimators’ variances behave similarly to the uncondi-

tional setting under varying block dimensions, for each of the grid points. That is, both estimators
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are improvements over the naive estimator, both limiting variances are identical, and the block

estimator converges slightly faster than the diagonal estimator. It further follows that since aver-

aging reduces variance, it also reduces the optimal bandwidth. This will be studied in more detail

in Section 5.2.3. Again, as there are fewer observations of Z near grid points close to the edges of

[0, 1], the variance levels vary slightly over the different grid points.

Figure 10: Log-log plots of the estimators’ variances as a function of the sample size on several
conditioning points including 95% confidence intervals, calculated using a sample size of 20 and
a bandwidth of 0.5.

As for the computation times, there is clearly no fundamental change in how these depend

on the block size when compared to the unconditional setting. However, since the conditional

estimators are kernel-based, it should be noted that they generally require more time than their

unconditional counterparts, as was also seen in Figure 9. For the sake of completeness, we still
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include a plot of the average computation time against the block size, see Figure 11. The results

correspond to estimating the off-diagonal block conditional Kendall’s taus simultaneously on the

11 grid points, and follow from 10000 replications with a sample size of 150. As expected, the

block estimator scales quadratically with block size, while the diagonal estimator scales linearly

with block size. Therefore, as in the unconditional case, one may prefer the diagonal estimator

over the block estimator to gain substantial computational efficiency and lose only little precision.

Figure 11: Log-log plot of the estimators’ mean computation time [s] as a function of the block
size, calculated using a sample size of 150.

5.2.3 Bandwidth Selection

Let us compare the estimators’ MISEs for different bandwidths. In this experiment, we set the

diagonal block Kendall’s taus to 0.3 and the off-diagonal block Kendall’s taus conditionally at

Z = z to

0.1(cos(0.5π ω z) + 1),

with frequencies ω ∈ {1, 2, 3, 4}. The block size is fixed at 8 and the sample size at 200. The MISEs

and 95% confidence intervals are calculated using 100 replications, see Figure 12.

The figure confirms that indeed the averaging estimators have smaller optimal bandwidths

than the naive estimator. It should be noted that only a block size of 8 is used here, and that

the optimal bandwidth decreases with block size until the limit values are reached. Further-

more, the figure shows that as the frequency increases, the optimal bandwidth is reduced. This

is fully consistent with kernel regression theory: increasing the frequency increases the difference

in Kendall’s tau values conditionally on adjacent points of z, and hereby we generally need to

pick a smaller bandwidth. Lastly, it should be noted that as the bandwidth increases the effect of
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averaging is less and less visible. This can be attributed to the fact that by increasing the band-

width, the variance term within the MISE becomes less and less prominent, while the bias term

generally increases.

Figure 12: Log-plots of the estimators’ MISEs as a function of the bandwidth for different fre-
quencies ω including 95% confidence intervals, calculated using a sample size of 200 and a block
size of 8.
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6 Application to Real Data
In this section, we study the behaviour of the estimators under real data conditions and provide

value at risk (VaR) computations of a large stock portfolio as an example of possible applications.

In Section 6.1, we discuss the necessary background on VaR calculations for elliptical distribu-

tions Then in Section 6.2, we describe the methods used to estimate the VaR input parameters.

The results are presented in Section 6.3, where backtesting is applied to asses the viability. All

computations have been done using the R statistical environment [43].

6.1 VaR for Elliptical Distributions

The value at risk is a widely used risk measure in a variety of financial fields, ranging from

auditing and financial reporting to risk management and the calculation of regulatory capital

[35]. It is used to quantify potential losses over a specific time frame of some financial entity

or portfolio of assets. We only discuss the theory necessary for calculating the value at risk for

elliptical distrbutions. For a more comprehensive theory on the value at risk, we refer to [45]. We

will follow the approach of [42, 45], in which explicit expressions for the value at risk of elliptical

distributions was derived.

Let X be a loss function (with negative losses and positive profits), then we define the VaR at

level α ∈ (0, 1) as the smallest number x such that the probability that X does not exceed x is at

least 1− α. More formally,

VaRα(X) := − inf {x ∈ R : FX(x) > α} ,

or equivalently by setting Y := −X ,

VaRα(X) = F−1Y (1− α). (45)

To calculate the VaR of a given portfolio of assets, it is often assumed that the portfolio’s profits

and losses are a linear function of the returns of the individual constituents. More formally, a

portfolio with value Π(t) at time t is called linear if its profit and loss ∆Π(t) = Π(t)−Π(0) over a

time window [0, t] is a linear function of the returns X1(t), . . . , Xp(t):

∆Π(t) = δ1X1(t) + δ2X2(t) + . . .+ δpXp(t).

This clearly applies to any common stock portfolio by using the ordinary returns of the individual

shares and when considering the log returns, this holds to a good approximation provided that

the time window [0, t] is small, e.g. for daily log returns. The time window t will be kept constant
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and will therefore be omitted from future notations.

Furthermore, we will assume that the Xj are elliptically distributed with mean µ, covariance

matrix Σ with Cholesky decomposition Σ = AAT and density generator g:

(X1 . . . , Xp) ∼ Ep(µ,Σ, g).

Thus, the probability density fX of X = (X1, . . . , Xp) is given by

fX(x) = |Σ|−1/2g
(
(x− µ)TΣ−1(x− µ)

)
.

When considering elliptically distributed risk factors, we cannot simply use the well-known

Delta-Normal approach to calculate the VaR, as it relies on the stronger assumption of Gaus-

sianity. A generalisation of the Delta-Normal method was derived for the class of elliptical distri-

butions in [45].

Let us start by noting that the VaR of the portfolio profits and losses ∆Π(t) as given in (45) can

be rewritten as

P (∆Π < −VaRα) = α.

Then, given the linearity of the portfolio and the fact that X follows an elliptical distribution, the

VaR is obtained by solving the following equation:

α = |Σ|−1/2
∫
{δxT≤−VaRα}

g
(
(x− µ)Σ−1(x− µ)T

)
dx,

where δ denotes the vector of weights (δ1, . . . , δp). We change variables to y = (x − µ)A−1,

dy = |A|dx and obtain

α =

∫
{δAyT≤−δµT−VaRα}

g
(
|y|2

)
dy.

Now let R be the rotation matrix such that (|δA|, 0, . . . , 0)R = δA, then by changing to y = zR

we get

α =

∫
{|δA|z1≤−δµT−VaRα}

g
(
|z|2
)

dz.

By writing |z|2 = z21 + |z′|2 with z′ ∈ Rp−1 we have

α =

∫
Rp−1

∫ −δµT−VaRα
|δA|

−∞
g
(
z21 + |z′|2

)
dz1dz′.

Lastly, we change to a hyperspherical coordinate system z′ = rξ with ξ ∈ Sp−2, where Sp−2 is the
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unit sphere in Rp−1. This gives

α = |Sp−2|
∫ ∞
0

rp−2
∫ −δµT−VaRα

|δA|

−∞
g
(
z21 + r2

)
dz1dr, (46)

where

|Sp−2| =
2π

p−1
2

Γ(p−12 )
.

Let us now introduce the function

G(s) =
2π

p−1
2

Γ(p−12 )

∫ −s
−∞

∫ ∞
0

rn−2g(z21 + r2)drdz1

=
π
p−1
2

Γ(p−12 )

∫ ∞
s

∫ ∞
z

(u− z2)
p−3
2 g(u)dudz, (47)

where we have changed variables to u = r2 + z21 and z = −z1. Let us denote by qgα,p the unique

solution of the so-called transcendental equation

α = G(qgα,p). (48)

It then finally follows from expressions (46) and (47) that the Delta-Elliptic VaR is given by

VaRα = −δµT + qgα,p|δA|

= −δµT + qgα,p

√
δΣδT . (49)

Note that this equation has a clear financial interpretation: the portfolio’s average return is given

by δµT and the portfolio’s standard deviation by
√
δΣδT . Further note that the result is analo-

gous to that of the Delta-Normal VaR, in which we simply replace qgα,p with the 1− α quantile of

the standard-normal distribution.

6.2 Estimation Procedure

In order to test the estimators in real data conditions, we consider a portfolio consisting of 240

different stocks. All stocks are listed on the Euronext markets and data is being sourced from

Yahoo Finance. The complete list of all shares involved is available in Appendix A. We will

estimate the portolio’s daily VaR assuming that the price is set at a level of 100 and that all stocks

in the portfolio are equally weighted. To this end, we model the daily log returns of the individual

stocks, assuming they follow an elliptical distribution.

In order to achieve a proper clustering, we compute the pairwise Kendall’s tau matrix over a

long time period from 01 January 2007 to 14 January 2022, after which we reorder the variables in
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order to obtain the intended block structure. Since we have not proposed a clustering method, we

consider several methods for rearranging matrices that are built into the R-package seriation

[25]. On the basis of visual inspection, we have applied the so-called GW_Wardmethod along with

a few manual adjustments. The resulting reordering corresponds to four large groups, which are

specified further in Appendix A. See Figure 13 for a heatmap of the pairwise Kendall’s tau matrix

before and after reordering the variables by group. To indicate the groups, lines have been drawn

around the diagonal blocks. It should be noted that, if studied carefully, the large groups can be

broken down into smaller and more accurate groups. Nevertheless, these large groups already

seem to be quite useful and therefore we will simply use them for our further analysis.

(a) unclustered (b) clustered

Figure 13: Heatmap plots of the sample Kendall’s tau matrix computed on the daily log returns
from 01 January 2007 until 14 January 2022 of all portfolio stocks.

Based on the groups displayed in Figure 13, the objective is to calculate the VaR at 30 June 2017,

leaving sufficient future data for backtesting the results. To this end, we estimate the Kendall’s

tau matrix of the log returns using the block, row, diagonal and sample Kendall’s tau matrix

estimators using data points over the period 01 August 2015 to 30 June 2017. The row, diagonal

and block estimators are now available as part of the package ElliptCopulas [6], and can

be computed using the function KTMatrixEst. See Appendix B for the written code. It also

contains the code for the conditional estimators. To estimate the standard deviations and averages

over the same period, we make use of the sample mean and sample standard deviation statistics.

Following the elliptical assumption, we can now obtain covariance matrix estimates from

each of the Kendall’s tau matrix estimates. Subsequently, we can compute nonparametric esti-

mates of the density generator for each of these inputs. To this end, we make use of the function

EllDistrEst within the ElliptCopulas package [6] which implements Liebscher’s proce-
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dure [31]. We improved this function so that it also works for high dimensions, invoking the

package Rmpfr [34] to use multiple precision floating point computations, as a higher degree of

accuracy is needed. This is now also contained in the ElliptCopulas package (see also the

code in Appendix B). For the density generator estimation we require a complete data set with no

missing values. As such, the interval on which we estimate the density generator will be chosen

as shorter (01 June 2016 to 30 June 2017). The kernel function will be chosen as the Epanechnikov

kernel. Further we use Silverman’s rule of thumb for bandwidth selection to estimate elliptical

density generators [42], which for a sample size of n is given by

h = 1.06

√
Var

[
ξ̂
]
n1/5, (50)

where

ξ̂i = −1 +
(

1 + ((xi − µ)Σ̂
−1

(xi − µ))p/2
)2/p

,

for i = 1, . . . , n and p = 240. Here, xi stands for the vector of log returns at the i’th date, Σ̂

stands for one of the covariance matrix estimates and µ stands for the log returns’ sample mean.

It should be noted that this is merely a rule of thumb and can be further optimised, see [26] for

further details. Clearly, by using this bandwidth selection method, the use of different Kendall’s

tau matrix estimators yields different values of the bandwidth. In order to get a better idea of the

effects of the bandwidth choice, we also consider several deterministic bandwidth choices, and

compare the performance of the estimators for each of them.

Finally, we can numerically solve the transcendental equation as given in (46) to arrive at the

corresponding quantiles. As such, we have discussed all ingredients for calculating the VaR as in

(49). In order to test the results, we perform backtesting on two intervals, one in the future from

01 July 2017 to 14 January 2022 and one during the period on which the estimations are based,

from 01 August 2015 to 30 June 2017.

6.3 Results

We compute the portfolio’s 5% and 10% VaR values by following the estimation procedure de-

scribed in Section 6.2. Table 1 shows the quantile estimates obtained by solving the transcendental

equation for each of the different density generator estimates. The density generators were calcu-

lated using each of the block, row, diagonal and naive Kendall’s tau matrix estimators and using

varying values of the bandwidth.

The table shows that the averaging estimators yield very similar quantiles which are all rela-

tively constant for different choices of the bandwidth. In contrast, the quantiles of the naive esti-

mator lie substantially higher and vary significantly for the different bandwidths. In that sense,

the estimates obtained with the averaging estimators seem to be much more stable. Moreover,
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the Silverman’s bandwidths of the averaging estimators are also all very similar, while that of the

naive estimator is again considerably larger.

Table 1: Estimated quantiles corresponding to the 5% and 10% VaRs calculated by estimating an
elliptical distribution for the daily log returns using each of the different Kendall’s tau matrix
estimates and several values of the bandwidth.

Quantiles qĝhα,p Estimated
α Estimator h = 20 h = 40 h = 100 Silverman’s h

5%

Naive 2.11 1.94 1.98 2.12 (h = 586.8)
Block 1.60 1.60 1.60 1.60 (h = 40.8)
Row 1.60 1.60 1.60 1.60 (h = 41.1)
Diagonal 1.59 1.59 1.60 1.59 (h = 40.5)

10%

Naive 1.48 1.38 1.40 1.53 (h = 586.8)
Block 1.23 1.23 1.23 1.23 (h = 40.8)
Row 1.24 1.24 1.23 1.24 (h = 41.1)
Diagonal 1.23 1.23 1.23 1.23 (h = 40.5)

Table 2 shows the VaR estimates for each of the different estimators and bandwidths, and also

the backtested VaR values. As discussed in Section 6.2, backtests were conducted at two intervals,

interval 1 refers to the upcoming interval from 01 July 2017 until 14 January 2022, and interval 2

refers to the interval on which the estimation is based, from 01 August 2015 until 30 June 2017.

Table 2: Estimated 5% and 10% VaRs including the corresponding backtesting results on two
intervals. Interval 1 corresponds to 01 July 2017 until 14 January 2022 and interval 2 to 01 August
2015 until 30 June 2017.

VaR Estimated Backtested
α Estimator h = 20 h = 40 h = 100 Silverman’s h Interval 1 Interval 2

5%

Naive 1.647 1.512 1.544 1.655 (h = 586.8)

1.392 1.262Block 1.320 1.320 1.320 1.320 (h = 40.8)
Row 1.332 1.332 1.332 1.332 (h = 41.1)
Diagonal 1.284 1.284 1.292 1.284 (h = 40.5)

10%

Naive 1.147 1.083 1.068 1.187 (h = 586.8)

0.861 0.839Block 1.008 1.008 1.008 1.008 (h = 40.8)
Row 1.026 1.017 1.026 1.026 (h = 41.1)
Diagonal 0.987 0.987 0.987 0.987 (h = 40.5)

This clearly shows that the averaging estimators have performed significantly better than the

naive estimator when compared to both backtesting intervals. For both α-levels, it can be seen

that the VaRs generated using the naive estimator are considerably larger than those using the

averaging estimators, which themselves produce relatively similar values. Furthermore, it can

be seen that the 5% VaRs of the averaging estimators agree fairly well with the results of the
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backtesting, unlike those of the naive estimator. However, the 10% VaR estimates are not as

accurate and all estimators yield considerably higher VaRs than those obtained by backtesting.

This could indicate that the log returns are not elliptically distributed, or that the interval at which

we generate the density generator is too short. Recall that the interval on which we estimate the

density generator is merely from 01 June 2016 until 30 June 2017.

To get a better understanding of how well the VaR estimates correspond with the backtesting

results, we examine how often the estimates are exceeded by the portfolio’s losses in each of the

backtesting periods. Table 3 and 4 show the number of exceedances in interval 1 and interval 2

respectively.

Table 3: The number of exceedances of the estimated 5% and 10% VaRs during backtesting inter-
val 1, from 01 July 2017 until 14 January 2022.

# Exceedances Estimated Backtested
α Estimator h = 20 h = 40 h = 100 Silverman’s h Interval 1

5%

Naive 47 53 53 46 (h = 586.8)

58Block 58 58 58 58 (h = 40.8)
Row 58 58 58 58 (h = 41.1)
Diagonal 61 61 59 61 (h = 40.5)

10%

Naive 76 85 83 72 (h = 586.8)

116Block 94 94 94 94 (h = 40.8)
Row 91 91 92 91 (h = 41.1)
Diagonal 100 100 100 100 (h = 40.5)

Table 4: The number of exceedances of the estimated 5% and 10% VaRs during backtesting inter-
val 2, from 01 August 2015 until 30 June 2017.

# Exceedances Estimated Backtested
α Estimator h = 20 h = 40 h = 100 Silverman’s h Interval 2

5%

Naive 9 12 12 9 (h = 586.8)

25Block 20 20 20 20 (h = 40.8)
Row 20 20 20 20 (h = 41.1)
Diagonal 22 22 21 22 (h = 40.5)

10%

Naive 30 32 32 30 (h = 586.8)

49Block 35 35 35 35 (h = 40.8)
Row 35 35 35 35 (h = 41.1)
Diagonal 35 35 35 35 (h = 40.5)

Both tables show that the difference between the theoretical and the observed number of ex-

ceedances is much larger when using the naive sample Kendall’s tau matrix estimator than when

using any of the averaging estimators and this applies to both α-levels as well as to all band-
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widths. As such, the averaging estimators are overall significantly better performers than the

naive estimator. In addition, although there are subtle differences in the performance of the block,

row and diagonal estimators, there is no clear winner in this example. This shows that computing

all Kendall’s tau using the block estimators incur no additional benefits compared to using only

the row or diagonal estimators, that are computationally much cheaper.



79

7 Conclusion
In this thesis, we have provided an alternative approach to the generally challenging task of

estimating Kendall’s tau and conditional Kendall’s tau matrices in high-dimensional settings. By

imposing structural assumptions on the underlying (conditional) Kendall’s tau matrix, we have

introduced new estimators that have significantly reduced computational costs without much

loss in performance.

For the unconditional case, a model was studied in which the set of variables could be grouped

in such a way that the Kendall’s taus of variables from different groups depends only on the

group numbers. After reordering the variables by group, the underlying Kendall’s tau matrix

is then block-structured with constant values in the off-diagonal blocks. We have proposed sev-

eral (unbiased) estimators that take advantage of this block-structure by averaging over the usual

pairwise Kendall’s tau estimates in each of the off-diagonal blocks: the block estimator averages

over all pairwise estimates, whereas the row, the diagonal and the random estimators only aver-

age over part of the off-diagonal blocks (respectively, over the pairs on the first row, on the first

diagonal and over a random selection of pairs). This makes them computationally cheaper than

the usual sample Kendall’s tau matrix estimator and the block estimator, for which all pairwise

estimates have to be computed.

We have formally derived variance expressions, which show not only that all estimators are

improvements over the usual sample Kendall’s tau matrix estimator, but also, interestingly, that

the asymptotic variances do not depend on the block dimensions. Furthermore, we have seen

that the block, the diagonal and the random estimators have very similar asymptotic variances,

whereas that of the row estimator was different. The former depend on the auxiliary quantity

U , while the latter depends on S. In each example that has been studied, we saw that the U -

asymptotic variances were lower than the S-asymptotic variances, but a formal characterisation

of the set of copulas to which this applies is left for future work. Nevertheless, we recommend

to avoid using the row estimator. Under light assumptions, we have shown that U -asymptotic

variances are equal, and that it is approached fastest by the block estimator, followed by the

diagonal estimator and then the random estimator. Hence, if the computational costs were to be

reduced, the diagonal estimator is preferable to both the random and the row estimator.

Furthermore, a model was studied in which the Kendall’s taus depend on a conditioning

variable. Here it was assumed that the conditional Kendall’s tau matrix has the above-mentioned

block structure and, moreover, that it is preserved under fluctuations of the conditioning variable.

We have adopted nonparametric, kernel-based estimates of the conditional Kendall’s tau in order

to construct the conditional versions of the block, row, diagonal and random estimators. Under

some additional regularity assumptions, we have shown that the estimators are all asymptotically
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normal conditionally to different values of the covariate. Following from these expressions, we

have seen that the asymptotic variances have analogous expressions to their unconditional coun-

terparts. As such, all estimators are again improvements over the naive estimator, with the block

estimator having the best performance. Similarly, if computational costs were to be reduced, the

diagonal estimator is preferable to both the random and the row estimator. Moreover, the re-

duction of computing costs becomes particularly relevant in the conditional setting, as the use of

kernel smoothing introduces additional complexity.

We have performed a simulation study in order to support the theoretical findings. In the

unconditional setting, simulations were performed with the Gaussian and Student’s t distribu-

tions. It was indeed found that the averaging estimators yield significant improvements over the

naive Kendall’s tau matrix estimator. These improvements were similar for both the Gaussian

and Student’s t distributions. Such a result suggests that the exact form of the underlying data

distribution has little influence. It was furthermore confirmed that the diagonal and the block

estimator indeed have the lowest asymptotic variance, with the block estimator converging the

fastest, though closely followed by the diagonal estimator. This emphasises the practical use of

the diagonal estimator.

We remarked again that the conditional estimators’ variances decrease in a similar fashion

for growing block dimensions. The estimation bias associated with the use of kernel smoothing

techniques is not affected by the averaging principle. As a consequence, the averaging estimators

allow for a reduced optimal bandwidth; this was indeed confirmed in the simulations. This makes

the averaging estimators perfectly suited for practical applications, as reducing the bandwidth

goes hand in hand with reducing the estimation bias.

Lastly, we have demonstrated the use of the estimators in a real world application. The estima-

tors were used to model the daily log returns of a large stock portfolio consisting of 240 Euronext

listed stocks. After restructuring the sample Kendall’s tau matrix, computed on a long time inter-

val, the proposed block structure was clearly visible. Building on these groups, robust estimates

of the correlation matrix were obtained by assuming that the log returns follow an elliptical distri-

bution. Using each of the estimates, the portfolio’s 5% and 10% VaR values were calculated. The

results of the averaging estimators were much more stable under changes in the bandwidth used

for the estimation of the density generator. Moreover, the averaging VaRs were significant im-

provements over the naive estimates when compared to the backtesting results. Although the 5%

VaRs were very accurate, the 10% values turned out to be overestimates. A possible explanation

could be that the log returns are either not elliptically distributed or that the interval on which the

density generator is based is too short. Nevertheless, this example confirmed that the proposed

block structures are well reflected in real data conditions and that the averaging estimators lead

to significantly more stable and accurate results.
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The problem of robustly estimating (conditional) covariance matrices arises in numerous ap-

plications for all types of different data. While the structural assumptions were designed to be ap-

plied to the modelling of (conditional) correlations of stock returns, the results give rise to further

modelling questions. The idea of imposing a structural assumption on the underlying Kendall’s

tau matrix can be applied to any situation in which multiple pairwise Kendall’s taus are assumed

to be constant. The block structure is mere one example of a structural assumption, but there are

of course many other structures that can be considered. In such research, the question remains

of the formal comparison between U (non-overlapping pairs) and S (overlapping pairs), here re-

lated to the question of whether there are copulas for which the row estimator performs better

than the block or diagonal estimators.
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A List of Stocks Used
Group 1

1. Cafom (CAFO)

2. Techstep (TECH)

3. Gold by Gold (ALGLD)

4. Fonciere Inea (INEA)

5. NSC Groupe (ALNSC)

6. Hofseth BioCare (HBC)

7. GC Rieber Shipping (RISH)

8. Aega (AEGA)

9. i2S (ALI2S)

10. Moury Construct (MOUR)

11. Gascogne (ALBI)

12. Thunderbird (TBIRD)

13. Hydratec Industries (HYDRA)

14. Sparebank 1 Ostfold Akershus (SOAG)

15. Altareit (AREIT)

16. Unibel (UNBL)

17. Cheops Technology France (MLCHE)

18. Zenobe Gramme Cert (ZEN)

19. Indel Fin (INFE)

20. Artois Nom (ARTO)

21. IDS (MLIDS)

22. Musee Grevin (GREV)

23. Robertet (CBE)

24. Aurskog Sparebank (AURG)

25. Alliance Developpement Capital (ALDV)

26. Fonciere Atland (FATL)

27. FREYR Battery (FREY)

28. Hotels de Paris (HDP)

29. Phone Web (MLPHW)

30. Maroc Telecom (IAM)

31. Sporting (SCP)

32. MG International (ALMGI)

33. Ucar (ALUCR)

34. Cumulex (CLEX)

35. Televerbier (TVRB)

36. Alan Allman Associates (AAA)

37. Serma Group (ALSER)

38. Planet Media (ALPLA)

39. Philly Shipyard (PHLY)

40. Augros Cosmetic Packaging (AUGR)

41. Sequa Petroleum (MLSEQ)

42. EMOVA Group (ALEMV)

43. Streamwide (ALSTW)

44. Accentis (ACCB)

45. Smalto (MLSML)

46. Signaux Girod (ALGIR)
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Group 2

47. Interoil (IOX)

48. Ensurge Micropower (ENSU)

49. Idex Biometrics (IDEX)

50. SD Standard Drilling (SDSD)

51. SpareBank 1 Nord-Norge (NONG)

52. Bonheur (BONHR)

53. Eidesvik Offshore (EIOF)

54. DOF (DOF)

55. Solstad Offshore (SOFF)

56. Havila Shipping (HAVI)

57. Awilco LNG (ALNG)

58. FLEX LNG (FLNG)

59. Avance Gas Holding (AGAS)

60. Hunter Group (HUNT)

61. Itera (ITERA)

62. Q-Free (QFR)

63. Photocure (PHO)

64. PCI Biotech Holding (PCIB)

65. Hexagon Composites (HEX)

66. Nel (NEL)

67. McPhy Energy (MCPHY)

68. Vow (VOW)

69. Axactor (ACR)

70. Magseis Fair Fairfield (MSEIS)

71. NRC Group (NRC)

72. Petrolia (PSE)

73. Ctac (CTAC)

74. StrongPoint (STRO)

75. Crescent (OPTI)

76. Magnora (MGN)

77. Rec Silicon (RECSI)

78. Questerre Energy Corp (QEC)

79. ElectroMagnetic GeoServices (EMGS)

80. ABG Sundal Collier Holding (ABG)

81. Nekkar (NKR)

82. SeaBird Exploration (GEG)

83. Wilh. Wilhelmsen Holding (WWI)

84. Golden Ocean Group (GOGL)

85. Frontline (FRO)

86. Euronav (EURN)

87. Norwegian Air Shuttle (NAS)

88. Atea (ATEA)

89. Vopak (VPK)

90. Orkla (ORK)

91. Corbion (CRBN)

92. Otello Corporation (OTEC)
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Group 3

93. Aures Technologies (AURS)

94. Keyrus (ALKEY)

95. Nextedia (ALNXT)

96. Cabasse Group (ALCG)

97. Groupe Guillin (ALGIL)

98. Guillemot (GUI)

99. Solutions 30 (S30)

100. Esker (ALESK)

101. Wavestone (WAVE)

102. Groupe Open (OPN)

103. Envea (ALTEV)

104. Stern Groep (STRN)

105. IT Link (ALITL)

106. Lectra (LSS)

107. Groupe CRIT (CEN)

108. Aubay (AUB)

109. Sword Group (SWP)

110. NRJ Group (NRG)

111. Van de Velde (VAN)

112. Hunter Douglas (HDG)

113. Oeneo (SBT)

114. Axway Software (AXW)

115. SES-imagotag (SESL)

116. Ateme (ATEME)

117. Infotel (INF)

118. Sergeferrari Group (SEFER)

119. Umanis (ALUMS)

120. Corticeira Amorim (COR)

121. Pharmagest Interactive (PHA)

122. Asetek (ASTK)

123. ID Logistics Group (IDL)

124. Scana (SCANA)

125. Acheter Louer fr (ALOLO)

126. Adomos (ALADO)

127. Glintt (GLINT)

128. Inapa (INA)

129. Cegedim (CGM)

130. Lavide Holding (LVIDE)

131. TIE Kinetix (TIE)

132. Alumexx (ALX)

133. Ober (ALOBR)

134. Cibox Interactive (CIB)

135. Evolis (ALTVO)

136. Proactis (PROAC)

137. Visiodent (SDT)

138. Fashion B Air (ALFBA)

139. Adthink (ALADM)

140. Innelec Multimedia (ALINN)

141. Herige (ALHRG)

142. Egide (GID)
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143. U10 Corp (ALU10)

144. Mr. Bricolage (ALMRB)

145. Coheris (COH)

146. Pcas (PCA)

147. Rosier (ENGB)

148. Itesoft (ITE)

149. Gea Grenobl.Elect. (GEA)

150. Immobel (IMMO)

151. IGE+XAO Group (IGE)

152. Koninklijke Brill (BRILL)

153. Argan (ARG)

154. Fonciere Lyonnaise (FLY)

155. Covivio Hotels (COVH)

156. Electricite de Strasbourg (ELEC)

157. Robertet (RBT)

158. Norway Royal Salmon (NRS)

159. Olympique Lyonnais Groupe (OLG)

160. GeoJunxion (GOJXN)

161. Hybrid Software Group (HYSG)

162. Cast (CAS)

163. Acteos (EOS)

164. HF Company (ALHF)

165. Vranken-Pommery Monopole (VRAP)

166. Generix Group (GENX)

167. Union Technologies Infor. (FPG)

168. Diagnostic Medical Systems (DGM)

169. Capelli (CAPLI)

170. EXEL Industries (EXE)

171. Groupe LDLC (ALLDL)

172. genOway (ALGEN)

173. CBo Territoria (CBOT)

174. Aurea (AURE)

175. EO2 (ALEO2)

176. RAK Petroleum (RAKP)

Group 4

177. DNO (DNO)

178. Archer Limited (ARCH)

179. Odfjell Drilling (ODL)

180. BW Offshore (BWO)

181. Panoro Energy (PEN)

182. PGS (PGS)

183. TGS (TGS)

184. Subsea 7 (SUBC)

185. Equinor (EQNR)

186. Aker BP (AKRBP)

187. Aker (AKER)

188. Aker Solutions (AKSO)

189. Akastor (AKAST)

190. Etablissements Maurel et Prom (MAU)
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191. Vallourec (VK)

192. CGG (CGG)

193. TechnipFMC (FTI)

194. Fugro (FUR)

195. SBM Offshore (SBMO)

196. Galp Energia (GALP)

197. TotalEnergies (TTE)

198. Royal Dutch Shell B (RDSB)

199. Schlumberger Limited (LSD)

200. Alten (ATE)

201. Capgemini (CAP)

202. Atos (ATO)

203. STMicroelectronics (STM)

204. ASML Holding (ASML)

205. ASM International (ASM)

206. BE Semiconductors (BESI)

207. Banco Comercial Portugues (BCP)

208. Mota-Engil (EGL)

209. Altri (ALTR)

210. The Navigator Company (NVG)

211. Semapa (SEM)

212. Trigano (TRI)

213. Ipsos (IPS)

214. Barco (BAR)

215. TomTom (TOM2)

216. PostNL (PNL)

217. TF1 (TFI)

218. Derichebourg (DBG)

219. Heijmans (HEIJM)

220. Koninklijke BAM Groep (BAMNB)

221. Aegon (AGN)

222. AXA (CS)

223. Agaas (AGS)

224. Bouygues (EN)

225. VINCI (DG)

226. Eiffage (FGR)

227. Faurecia (EO)

228. Valeo (FR)

229. Michelin (ML)

230. Ackermans & Van Haaren (ACKB)

231. Royal Boskalis Westminster (BOKA)

232. Imerys (NK)

233. Solvay (SOLB)

234. Umicore (UMI)

235. AkzoNobel (AKZA)

236. Air Liquide (AI)

237. Koninklijke Philips (PHIA)

238. Aperam (APAM)

239. Eramet (ERA)

240. Norsk Hydro (NHY)
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B R Code
KTMatrixEst()

#’ Fast estimation of Kendall’s tau matrix

#’

#’

#’ @param dataMatrix matrix of size \code{(n,d)} containing \code{n}

#’ observations of a \code{d}-dimensional random vector.

#’

#’ @param averaging type of averaging used for fast estimation.

#’ Possible choices are \itemize{

#’ \item \code{no}: no averaging;

#’ \item \code{all}: averaging all Kendall’s taus in each block;

#’ \item \code{diag}: averaging along diagonal blocks elements;

#’ \item \code{row}: averaging Kendall’s tau along the smallest block side.

#’ }

#’

#’ @param blockStructure list of vectors.

#’ Each vector corresponds to one group of variables

#’ and contains the indexes of the variables that belongs to this group.

#’ \code{blockStructure} must be a partition of \code{1:d},

#’ where \code{d} is the number of columns in \code{dataMatrix}.

#’

#’

#’ @return matrix with dimensions depending on \code{averaging}.

#’ \itemize{

#’ \item If \code{averaging = no},

#’ the function returns a matrix of dimension \code{(n,n)}

#’ which estimates the Kendall’s tau matrix.

#’

#’ \item Else, the function returns a matrix of dimension

#’ \code{(length(blockStructure) , length(blockStructure))}

#’ giving the estimates of the Kendall’s tau for each block with ones

#’ on the diagonal.

#’

#’ }

#’

#’ @author Rutger van der Spek, Alexis Derumigny

#’



B R Code 94

#’ @examples

#’ # Estimating off-diagonal block Kendall’s taus

#’ matrixCov = matrix(c(1 , 0.5, 0.3 ,0.3,

#’ 0.5, 1, 0.3, 0.3,

#’ 0.3, 0.3, 1, 0.5,

#’ 0.3, 0.3, 0.5, 1), ncol = 4 , nrow = 4)

#’ dataMatrix = mvtnorm::rmvnorm(n = 100, mean = rep(0, times = 4),

#’ sigma = matrixCov)

#’ blockStructure = list(1:2, 3:4)

#’ KTMatrixEst(dataMatrix = dataMatrix, blockStructure = blockStructure,

#’ averaging = "all")

#’

#’

#’ @export

#’

KTMatrixEst <- function(dataMatrix, blockStructure = NULL, averaging = "no")

{

d = ncol(dataMatrix)

n = nrow(dataMatrix)

if (averaging == "no"){

estimate <- pcaPP::cor.fk(dataMatrix)

return(estimate)

}

# We now assume that one of the averaging method is used.

if(is.null(blockStructure))

{

stop("To use averaging estimators, a block structure must be specified.")

}

if (length(blockStructure) == 1){

stop("To use averaging estimators, there must be more than one block.")

}

if( sum(1:d %in% unlist(blockStructure)) == d & length(blockStructure) == d)

{

stop(paste0("The block structure is not a partition of 1:", d ))

}

totalGroups = length(blockStructure)
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estimate = matrix(data = 1 , nrow = totalGroups , ncol = totalGroups)

switch(

averaging,

"diag" = {

for (g1 in 2:totalGroups) {

for (g2 in 1:g1) {

diagSize = min(length(blockStructure[[g1]]) ,

length(blockStructure[[g2]]) )

vectorBlockKT = rep(NA, times = diagSize)

for (j in 1:diagSize)

{

vectorBlockKT[j] = pcaPP::cor.fk(

x = dataMatrix[ , blockStructure[[g1]][j] ] ,

y = dataMatrix[ , blockStructure[[g2]][j] ])

}

blockKT = mean(vectorBlockKT)

estimate[g1,g2] = blockKT

estimate[g2,g1] = blockKT

}

}

} ,

"all" = {

for (g1 in 2:totalGroups) {

for (g2 in 1:g1) {

matrixBlockKT = matrix(nrow = length(blockStructure[[g1]]) ,

ncol = length(blockStructure[[g2]]) )

for (j1 in 1:length(blockStructure[[g1]]) )

{

for (j2 in 1:length(blockStructure[[g2]]) )

{

matrixBlockKT[j1,j2] = pcaPP::cor.fk(

x = dataMatrix[ , blockStructure[[g1]][j1] ] ,

y = dataMatrix[ , blockStructure[[g2]][j2] ] )

}

}
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blockKT = mean(matrixBlockKT)

estimate[g1,g2] = blockKT

estimate[g2,g1] = blockKT

}

}

} ,

"row" = {

for (g1 in 2:totalGroups) {

for (g2 in 1:g1) {

g1Size = length(blockStructure[[g1]])

g2Size = length(blockStructure[[g2]])

rowSize = min(g1Size, g2Size)

gSmall = ifelse(g1Size <= g2Size, g1, g2)

gLarge = ifelse(g1Size <= g2Size, g2, g1)

vectorBlockKT = rep(NA, times = rowSize)

for (j in 1:diagSize)

{

vectorBlockKT[j] = pcaPP::cor.fk(

x = dataMatrix[ , blockStructure[[gSmall]][j] ] ,

y = dataMatrix[ , blockStructure[[gLarge]][1] ] )

}

blockKT = mean(vectorBlockKT)

estimate[g1,g2] = blockKT

estimate[g2,g1] = blockKT

}

}

}

)

return(estimate)

}
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CKTmatrix.kernel()

#’ Estimate the conditional Kendall’s tau matrix

#’ at different conditioning points

#’

#’ Assume that we are interested in a random vector \eqn{(X, Z)},

#’ where \eqn{X} is of dimension \eqn{d > 2} and \eqn{Z} is of dimension

#’ \eqn{1}. We want to estimate the dependence across the elements of the

#’ conditioned vector \eqn{X} given \eqn{Z=z}.

#’ This function takes in parameter observations of \eqn{(X,Z)}

#’ and returns kernel-based estimators of \deqn{\tau_{i,j | Z=zk}}

#’ which is the conditional Kendall’s tau between \eqn{X_i} and \eqn{X_j}

#’ given to \eqn{Z=zk}, for every conditioning point \eqn{zk} in \code{gridZ}.

#’

#’ If the conditional Kendall’s tau matrix has a block structure,

#’ then improved estimation is possible by averaging over the kernel-based

#’ estimators of pairwise conditional Kendall’s taus.

#’ Groups of variables composing the same blocks can be defined

#’ using the parameter \code{blockStructure}, and the averaging can be set

#’ on using the parameter \code{averaging=all}, or \code{averaging=diag}

#’ for faster estimation by averaging only over diagonal elements of each

#’ block.

#’

#’ @param dataMatrix a matrix of size \code{(n,d)} containing \code{n}

#’ observations of a \code{d}-dimensional random vector \eqn{X}.

#’

#’ @param observedZ vector of observed points of a conditioning variable

#’ \eqn{Z}. It must have the same length as the number of rows of

#’ \code{dataMatrix}.

#’

#’ @param h bandwidth. It can be a real, in this case the same \code{h}

#’ will be used for every element of \code{gridZ}.

#’ If \code{h} is a vector then its elements are recycled to match the length

#’ of \code{gridZ}.

#’

#’ @param gridZ points at which the conditional Kendall’s tau is computed.

#’ @param typeEstCKT type of estimation of the conditional Kendall’s tau.

#’ @param kernel.name name of the kernel used for smoothing.

#’ Possible choices are: \code{"Gaussian"} (Gaussian kernel)

#’ and \code{"Epa"} (Epanechnikov kernel).

#’
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#’ @param averaging type of averaging used for fast estimation.

#’ Possible choices are \itemize{

#’ \item \code{no}: no averaging;

#’ \item \code{all}: averaging all Kendall’s taus in each block;

#’ \item \code{diag}: averaging along diagonal blocks elements.

#’ }

#’

#’ @param blockStructure list of vectors.

#’ Each vector corresponds to one group of variables

#’ and contains the indexes of the variables that belongs to this group.

#’ \code{blockStructure} must be a partition of \code{1:d},

#’ where \code{d} is the number of columns in \code{dataMatrix}.

#’

#’

#’ @return array with dimensions depending on \code{averaging}:

#’ \itemize{

#’ \item If \code{averaging = "no"}:

#’ it returns an array of dimensions \code{(n, n, length(gridZ))},

#’ containing the estimated conditional Kendall’s tau matrix given

#’ \eqn{Z = z}. Here, \code{n} is the number of rows in \code{dataMatrix}.

#’

#’ \item If \code{averaging = "all"} or \code{"diag"}:

#’ it returns an array of dimensions

#’ \code{(length(blockStructure), length(blockStructure), length(gridZ))},

#’ containing the block estimates of the conditional Kendall’s tau given

#’ \eqn{Z = z} with ones on the diagonal.

#’ }

#’

#’ @seealso \code{\link{CKT.kernel}} for kernel-based estimation of

#’ conditional Kendall’s tau between two variables (i.e. the equivalent of

#’ this function when \eqn{X} is bivariate and \code{d=2}).

#’ \code{ElliptCopulas::\link[ElliptCopulas]{KTMatrixEst}()} for the fast

#’ estimation of Kendall’s tau matrix in the unconditional case (i.e., without

#’ Z and without smoothing).

#’

#’ @examples

#’

#’ # Data simulation

#’ n = 100

#’ Z = runif(n)
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#’ d = 5

#’ CKT_11 = 0.8

#’ CKT_22 = 0.9

#’ CKT_12 = 0.1 + 0.5 * cos(pi * Z)

#’ data_X = matrix(nrow = n, ncol = d)

#’ for (i in 1:n){

#’ CKT_matrix = matrix(data =

#’ c( 1 , CKT_11 , CKT_11 , CKT_12[i], CKT_12[i] ,

#’ CKT_11 , 1 , CKT_11 , CKT_12[i], CKT_12[i] ,

#’ CKT_11 , CKT_11 , 1 , CKT_12[i], CKT_12[i] ,

#’ CKT_12[i], CKT_12[i], CKT_12[i], 1 , CKT_22 ,

#’ CKT_12[i], CKT_12[i], CKT_12[i], CKT_22 , 1

#’ ) ,

#’ nrow = 5, ncol = 5)

#’ sigma = sin(pi * CKT_matrix/2)

#’ data_X[i, ] = mvtnorm::rmvnorm(n = 1, sigma = sigma)

#’ }

#’ plot(as.data.frame.matrix(data_X))

#’

#’ # Estimation of CKT matrix

#’ h = 1.06 * sd(Z) * n^{-1/5}

#’ gridZ = c(0.2, 0.8)

#’ estMatrixAll <- CKTmatrix.kernel(

#’ dataMatrix = data_X, observedZ = Z, gridZ = gridZ, h = h)

#’ # Averaging estimator

#’ estMatrixAve <- CKTmatrix.kernel(

#’ dataMatrix = data_X, observedZ = Z, gridZ = gridZ,

#’ averaging = "diag", blockStructure = list(1:3,4:5), h = h)

#’

#’ # The estimated CKT matrix conditionally to Z=0.2 is:

#’ estMatrixAll[ , , 1]

#’ # Using the averaging estimator,

#’ # the estimated CKT between the first group (variables 1 to 3)

#’ # and the second group (variables 4 and 5) is

#’ estMatrixAve[1, 2, 1]

#’

#’ # True value (of CKT between variables in block 1 and 2 given Z = 0.2):

#’ 0.1 + 0.5 * cos(pi * 0.2)

#’

#’
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#’ @author Rutger van der Spek, Alexis Derumigny

#’

#’ @export

#’

CKTmatrix.kernel <- function(dataMatrix, observedZ, gridZ,

averaging = "no", blockStructure = NULL,

h, kernel.name = "Epa",

typeEstCKT = 4)

{

d = ncol( dataMatrix )

n = nrow( dataMatrix )

nz = length( gridZ )

if(length(observedZ) != n)

{

stop("The length of observedZ and the number of rows in dataMatrix must be

equal.")

}

arrayWeights = array(data = NA , dim = c(n ,n , nz) )

matrixWeights = matrix(data = NA, nrow = n, ncol = nz)

for(i in 1:length(gridZ))

{

matrixWeights[,i] = computeWeights.univariate(vectorZ = observedZ,

h = h,

pointZ = gridZ[i],

kernel.name = kernel.name,

normalization = TRUE)

arrayWeights[,,i] = matrixWeights[,i] %*% t(matrixWeights[,i])

}

if(averaging == "no")

{

estimate = array(data = 1 , dim = c(d , d , nz))

for(j1 in 2:d)

{

for(j2 in 1:(j1-1))

{

vectorX1 = dataMatrix[ , j1]
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vectorX2 = dataMatrix[ , j2]

matrixSigns = computeMatrixSignPairs(vectorX1 = vectorX1,

vectorX2 = vectorX2,

typeEstCKT = typeEstCKT)

estimate[j1,j2,] = apply(X = arrayWeights , MARGIN = 3 ,

FUN = function(x){return(sum(x*matrixSigns))

})

estimate[j2,j1,] = estimate[j1,j2,]

}

}

} else if(averaging == "diag")

{

if(is.null(blockStructure))

{

stop(paste("blockStructure not specified, when averaging = ", averaging)

)

}

if( all.equal( sort(unname(unlist(blockStructure))) , 1:d ) != TRUE )

{

stop("blockStructure must be a partition.")

}

totalGroups = length(blockStructure)

estimate = array(data = 1 , dim = c(totalGroups , totalGroups , nz))

for (g1 in 2:totalGroups)

{

for (g2 in 1:(g1-1))

{

diagSize = min(length(blockStructure[[g1]]),

length(blockStructure[[g2]]) )

matrixBlockCKT = matrix(NA, nrow = diagSize , ncol = nz)

for (j in 1:diagSize)

{

vectorX1 = dataMatrix[ , blockStructure[[g1]][j] ]

vectorX2 = dataMatrix[ , blockStructure[[g2]][j] ]

matrixSigns = computeMatrixSignPairs(vectorX1 = vectorX1,

vectorX2 = vectorX2,

typeEstCKT = typeEstCKT)

matrixBlockCKT[j,] = apply(X = arrayWeights , MARGIN = 3,

FUN = function(x)
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{return(sum(x * matrixSigns))})

}

blockCKT = apply(X = matrixBlockCKT , MARGIN = 2 , mean)

estimate[g1 , g2 ,] = blockCKT

estimate[g2 , g1 ,] = blockCKT

}

}

} else if (averaging == "all")

{

if(is.null(blockStructure))

{

stop(paste("blockStructure not specified, when averaging = ", averaging)

)

}

if( all.equal( sort(unname(unlist(blockStructure))) , 1:d ) != TRUE )

{

stop("blockStructure must be a partition.")

}

totalGroups = length(blockStructure)

estimate = array(data = 1 , dim = c(totalGroups , totalGroups , nz))

for (g1 in 2:totalGroups)

{

for (g2 in 1:(g1-1))

{

arrayBlockCKT = array(NA, dim = c(length(blockStructure[[g1]]),

length(blockStructure[[g2]]), nz) )

for (j1 in 1:length(blockStructure[[g1]]) )

{

for (j2 in 1:length(blockStructure[[g2]]) )

{

vectorX1 = dataMatrix[ , blockStructure[[g1]][j1] ]

vectorX2 = dataMatrix[ , blockStructure[[g2]][j2] ]

matrixSigns = computeMatrixSignPairs(vectorX1 = vectorX1,

vectorX2 = vectorX2,

typeEstCKT = typeEstCKT)

arrayBlockCKT[j1,j2,] = apply(X = arrayWeights , MARGIN = 3,

FUN = function(x)

{return(sum(x * matrixSigns))})

}
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}

blockCKT = apply(X = arrayBlockCKT , MARGIN = 3 , mean)

estimate[g1,g2,] = blockCKT

estimate[g2,g1,] = blockCKT

}

}

} else

{

stop("’averaging’ must be one of: ’no’, ’all’ or ’diag’.")

}

return(estimate)

}

EllDistrEst()

#’ Nonparametric estimation of the density generator of an elliptical

#’ distribution

#’

#’ This function uses Liebscher’s algorithm to estimate the density generator

#’ of an elliptical distribution by kernel smoothing.

#’

#’ @param X matrix of observations.

#’ @param mu (estimated) mean of X.

#’ @param Sigma_m1 (estimated) inverse of the covariance matrix of X.

#’

#’ @param grid grid of values on which to estimate the density generator

#’ @param h bandwidth of the kernel

#’ @param Kernel kernel used for the smoothing

#’ @param a tuning parameter to improve the performance at 0.

#’ See Liebscher (2005), Example p.210.

#’ @param mpfr if \code{mpfr = TRUE}, multiple precision floating point is

#’ set. This allows for a higher accuracy, at the expense of computing times.

#’ It is recommended to use this option for higher dimensions.

#’ @param precBits number of precBits used for floating point precision

#’ (only used if \code{mpfr = TRUE}).
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#’ @param dopb if \code{dopb = TRUE}, a progressbar is displayed.

#’

#’ @return the values of the density generator of the elliptical copula,

#’ estimated at each point of the ‘grid‘.

#’

#’ @references Liebscher, E. (2005).

#’ A semiparametric density estimator based on elliptical distributions.

#’ Journal of Multivariate Analysis, 92(1), 205.

#’ \doi{10.1016/j.jmva.2003.09.007}

#’

#’ @seealso \code{\link{EllDistrSim}} for the simulation of elliptical

#’ distribution samples, \code{\link{EllCopEst}} for the estimation of

#’ elliptical copulas.

#’

#’ @examples

#’ # Comparison between the estimated and true generator of the Gaussian

#’ distribution

#’ X = matrix(rnorm(500*3), ncol = 3)

#’ grid = seq(0,5,by=0.1)

#’ g_3 = EllDistrEst(X = X, grid = grid, a = 0.7, h=0.05)

#’ g_3mpfr = EllDistrEst(X = X, grid = grid, a = 0.7, h=0.05,

#’ mpfr = TRUE, precBits = 20)

#’ plot(grid, g_3, type = "l")

#’ lines(grid, exp(-grid/2)/(2*pi)^{3/2}, col = "red")

#’

#’ # In higher dimensions

#’ \donttest{

#’ d = 250

#’ X = matrix(rnorm(500*d), ncol = d)

#’ grid = seq(0, 400, by = 25)

#’ true_g = exp(-grid/2) / (2*pi)^{d/2}

#’

#’ g_d = EllDistrEst(X = X, grid = grid, a = 100, h=40)

#’

#’ g_dmpfr = EllDistrEst(X = X, grid = grid, a = 100, h=40,

#’ mpfr = TRUE, precBits = 10000)

#’ ylim = c(min(c(true_g, as.numeric(g_dmpfr[which(g_dmpfr>0)]))),

#’ max(c(true_g, as.numeric(g_dmpfr)), na.rm=TRUE) )

#’ plot(grid, g_dmpfr, type = "l", col = "red", ylim = ylim, log = "y")

#’ lines(grid, g_d, type = "l")
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#’ lines(grid, true_g, col = "blue")

#’ }

#’

#’ @author Alexis Derumigny, Rutger van der Spek

#’

#’ @export

#’ @importClassesFrom Rmpfr mpfr mpfrMatrix

#’ @importFrom Rmpfr mean

#’

EllDistrEst <- function(X, mu = 0, Sigma_m1 = diag(d),

grid, h, Kernel = "epanechnikov", a = 1,

mpfr = FALSE, precBits = 100, dopb = TRUE)

{

kernelFun = getKernel(Kernel = Kernel)

d = ncol(X)

n = nrow(X)

n1 = length(grid)

if(mpfr) {

# We don’t need to convert this to higher precision

# -> mpfr is needed only for the exponentiation

# X = Rmpfr::mpfr(X, precBits = precBits)

# mu = Rmpfr::mpfr(mu, precBits = precBits)

# Sigma_m1 = Rmpfr::mpfr(Sigma_m1, precBits = precBits)

# h = Rmpfr::mpfr(h, precBits = precBits)

# s_d = Rmpfr::Const("pi")^(d/2) / Rmpfr::igamma(d/2,0)

a = Rmpfr::mpfr(a, precBits = precBits)

d = Rmpfr::mpfr(d, precBits = precBits)

grid = Rmpfr::mpfr(grid, precBits = precBits)

}

s_d = pi^(d/2) / gamma(d/2)

vector_Y = rep(NA , n)

grid_g = rep(NA, n1)

if (dopb){ pb = pbapply::startpb(max = n + n1) }

for (i in 1:n) {

# The matrix product is the expensive part (in high dimensions)
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# and should not use the mpfr library.

# (mpfr is only used in the exponentiation, after)

vector_Y[i] = as.numeric(

-a + (a ^ (d/2) + ( (X[i,] - mu) %*% Sigma_m1 %*% (X[i,] - mu) )

^ (d/2) ) ^ (2/d) )

if (dopb){ pbapply::setpb(pb, i) }

}

for (i1 in 1:n1){

z = grid[i1]

psiZ = as.numeric( -a + (a ^ (d/2) + z^(d/2)) ^ (2/d) )

psiPZ = z^(d/2 - 1) * (a ^ (d/2) + z^(d/2)) ^ (2/d - 1)

# This should use mean.default() (not the mpfr version) to save

computation time.

h_ny = (1/h) * mean( kernelFun((psiZ - vector_Y)/h) + kernelFun((psiZ +

vector_Y)/h) )

gn_z = 1/s_d * z^(-d/2 + 1) * psiPZ * h_ny

grid_g[i1] = as.numeric(gn_z)

if (dopb){ pbapply::setpb(pb, n + i1) }

}

if (dopb){ pbapply::closepb(pb) }

return (grid_g)

}
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