
Implications of LLMs4Code on Copyright Infringement
An Exploratory Study Through Red Teaming

Begüm Koç1

Supervisor(s): Prof. Dr. Arie van Deursen1, Dr. Maliheh Izadi1, ir. Ali Al-Kaswan1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Begüm Koç
Final project course: CSE3000 Research Project
Thesis committee: Prof. Dr. Arie van Deursen, Dr. Maliheh Izadi, ir. Ali Al-Kaswan, Dr. Kaitai Liang

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Large Language Models (LLMs) have experienced
a rapid increase in usage across numerous sectors in
recent years. However, this growth brings a greater
risk of misuse. This paper explores the issue of
copyright infringement facilitated by LLMs in the
domain of software engineering. Through the cre-
ation of a taxonomy and prompt engineering, we in-
vestigate how alignment, structure and language of
prompts affect the behavior of LLMs against copy-
right infringing prompts, assessing their willing-
ness to engage in copyright violation. Our findings
underscore the critical role of model alignment in
identifying potentially infringing inputs, irrespec-
tive of model complexity or modality. Notably,
prompts that are crafted to avoid overtly malicious
language, especially those that instruct the model
to complete the input given, tend to yield more
responses that could facilitate malicious activities.
This research provides a preliminary understanding
of copyright infringement by LLMs in software en-
gineering and suggests avenues for future research.

1 Introduction
Advancements in Natural Language Processing and machine
learning, particularly through the development of Large Lan-
guage Models (LLMs), have significantly impacted various
fields, including software engineering. Developers now use
LLMs for Code (LLMs4Code) to assist with tasks such as
code generation [14], code completion [18], code summa-
rization [1], test generation [9], vulnerability detection [7],
and program repair [5], which essentially involve data, code,
or text analysis [17].

However, as LLM capabilities and usage grow, the poten-
tial for misuse becomes increasingly urgent to address. Ad-
versaries might exploit LLMs using adversarial prompts or
by manipulating model weights [11], leading to harmful out-
comes like phishing, malware creation, propaganda dissem-
ination, identity theft, and the leakage of sensitive or copy-
righted information.

To prevent such attacks, it is essential that LLMs are
aligned with human values and natural language norms, of-
ten referred to as Helpful, Honest, and Harmless (HHH) [20].
As LLMs are trained on unsupervised corpora collected from
the internet, they are inherently exposed to unaligned values
and require proper alignment procedures.

This paper specifically explores the issue of copyright in-
fringement facilitated by LLMs through red teaming. Red
teaming is a structured approach to uncovering vulnerabilities
in a system by adopting the perspective of potential attack-
ers [4]. Research in this area proves to be difficult as com-
panies often refrain from disclosing their training data due to
competitive reasons [12]. Nevertheless, previous studies have
documented instances of copyright infringement, conduct-
ing experiments with popular books across various language
models to demonstrate the replication of copyrighted mate-
rial through verbatim copying, paraphrasing, or idea replica-
tion [19, 22, 26].

While existing research has addressed copyright concerns
related to literary works, less attention has been paid to intel-
lectual property within the domain of software engineering.
Given the rapid advancements in LLM technology, there is
a pressing need to understand how LLMs4Code can infringe
on copyright and ensure their alignment to prevent such is-
sues, especially as developers increasingly depend on them.
These issues present significant legal repercussions for com-
panies, as exemplified by the lawsuit against GitHub Copi-
lot for infringement, underscoring the need for clearer legal
boundaries and ethical guidelines [8]. Understanding how
LLMs4Code infringe on copyright is the first step in align-
ing them for legal compliance.

Considering the aforementioned challenges and gaps in
research, the main research question guiding this paper is:
“How do LLMs4Code infringe on the copyright of intel-
lectual property?” To answer this question, we utilize red
teaming through prompt engineering. We establish a taxon-
omy that encompasses code copyright violation and utiliz-
ing code to infringe upon other copyrighted content. Subse-
quently, we use this taxonomy to craft prompts. We evaluate
the responses generated by both unaligned and aligned mod-
els to these prompts, assessing their willingness to engage in
copyright infringement.

Our key finding is that alignment procedures improve the
ability of an LLM to reject prompts urging copyright infringe-
ment. Yet models encounter more challenges with attacks on
topics that may not invariably involve malicious intent, par-
ticularly when these involve prompting the model to complete
the input. The parameter count or modality of the model do
not influence the tendency to output copyrighted code or code
aimed at infringing copyrighted content. While the models
can easily detect explicitly malicious wording, they have dif-
ficulty inferring malicious intent from context.

To summarize, our main contributions with this research
are:

• A sample taxonomy related to copyright infringement in
software engineering (Section 3.1)

• An empirical assessment of the tendency of unaligned
and aligned LLMs4Code to infringe on copyright (Sec-
tion 5.1 and Section 5.2)

• Evaluation of model behavior in response to different
prompt types (targeted and untargeted) and language
promoting copyright infringement to assess their sensi-
tivity to alignment (Section 5.3 and Section 5.4)

2 Background and Related Works
This section presents preliminary information regarding the
field and previous research conducted, outlining their ap-
proaches and key findings.

2.1 Memorization
One main enabling factor for attacks on LLMs is their innate
ability of memorization, allowing them to effectively remem-
ber and assign high likelihoods to their training data, crucial
for tasks like correct spelling. Carlini et al. [6] introduce
the concept of eidetic memorization, which is the ability to



remember data after seeing it once, and formulate k-eidetic
memorization for data seen k times.

Their definition is as follows: “A string s is k-eidetic mem-
orized (for k ≥1) by an LM f if s is extractable from f
and s appears in at most k examples in the training data X.”
This definition allows memorization to be seen as a spectrum.
There are no definitive values for k that make memorization
harmless while keeping it at necessary levels, though the pa-
per suggests larger values are safer [6].

Relating this to our research, copyrighted code snippets
typically appear on a few sites with proper attribution or li-
censing. Outputting such code, especially if proper attribu-
tion is omitted, suggests a low k value and harmful memo-
rization, according to Carlini et al.’s definition.

While some memorization is necessary, adversaries exploit
this property through membership inference attacks, formally
defined as determining whether a given data record was part
of the model’s training dataset or not [29]. Shokri et al.
demonstrate that such attacks can be trained with only black-
box access to the target model, without prior knowledge of its
training data [29]. This, combined with memorization, can be
used to output copyrighted material from the model’s training
data.

2.2 Copyright Infringement of Literature

As stated in Section 1, previous research on copyright in-
fringement by LLMs has primarily focused on literature.
Karamolegkou et al. [19] conduct experiments to investigate
how memorization in LLMs depends on content engagement
and popularity indicators, using verbatim replication as a ba-
sis for evaluation. They conclude that large language models
memorize substantial repositories of copyrighted text frag-
ments. However, their experiments focus on popular books
and lack an exploration of copyright issues in software engi-
neering. The only related aspect they examine is the verbatim
replication of LeetCode’s problem descriptions, which do not
include any code snippets.

Similarly, Liu et al. [26] use the popular copyrighted book
“Harry Potter and the Philosopher’s Stone” as a test cor-
pus. They extract text through prompting and measure the
percentage of output text similarity with the original. They
find that popular models such as davinci and GPT-4 have ap-
proximately a 20% probability of producing text with over
90% similarity to the original, raising concerns about poten-
tial copyright infringement.

Extending the study of verbatim replication, Lee et al. [22]
highlight infringement through paraphrasing and idea plagia-
rism. They systematically study the plagiarism behavior of
fine-tuned LLMs, examining how factors such as model size,
decoding strategy, and fine-tuned corpus influence these be-
haviors. They conclude that all three types of plagiarism ex-
ist in LLMs, revealing that models tend to reuse words, sen-
tences, and ideas in generated texts. Like previous research,
this study does not explore copyright issues related to soft-
ware engineering. Addressing this research gap is the aim of
our investigation.

2.3 Frameworks for Detecting Copyright
Due to concerns surrounding copyright infringement by
LLMs, researchers have developed various frameworks for
detecting copyrighted content. Duarte et al. [12] introduce
DE-COP, a method to determine whether copyrighted con-
tent was included in a model’s training data. DE-COP probes
an LLM with multiple-choice questions, including both ver-
batim text and paraphrases. They tested DE-COP on a corpus
of 165 books and 50 research articles, achieving a staggering
72% accuracy on black-box models, compared to approxi-
mately 9% accuracy with previous methods.

Another method is described by Li et al. [23]. Their frame-
work, Digger, differentiates between learned and unlearned
content by analyzing changes in loss. They concluded that
the size of the LLM and the length of the tokens, mean-
ing a unit of text that the model processes, greatly influence
the model’s capacity to remember previous information, with
larger model architectures showing better retention.

3 Approach
We aim to answer our research question through red teaming
by prompt engineering. This section describes our method-
ology, which involves creating a taxonomy for copyright in-
fringement in software engineering, generating prompts from
this taxonomy, and evaluating these prompts on both aligned
and unaligned language models.

3.1 Taxonomy
Copyright infringement in software engineering encompasses
various aspects. To systematically address these aspects, it is
essential to develop a comprehensive taxonomy. This taxon-
omy will later be used as classifications for our prompts.

At the time of writing, there is no standard taxonomy for
harmful behaviors of LLMs. Researchers have approached
this issue from different perspectives, developing their own
taxonomies [28, 30, 31]. That said, to the best of our knowl-
edge there are no taxonomies for copyright infringement in
the field of software engineering, necessitating the develop-
ment of our own to support our research.

While creating our taxonomy, we examined relevant lit-
erature to understand intellectual property in software en-
gineering, definition of infringement, and use cases of
LLMs4Code [2, 3, 13, 15, 19, 21, 22]. Drawing from these
sources, we structured our taxonomy. We cover copyright in-
fringement in software engineering across different aspects.
This includes the violation of copyrighted software engineer-
ing content, like code, as well as the use of code to infringe
upon other copyrighted materials such as watermarks, digital
content, and more.

Below are the categories included in our taxonomy, orga-
nized by general fields, along with their explanations:

• Copy protection methods

1. Digital Rights Management (DRM): Techniques
used to control access to digital content and prevent
unauthorized distribution or copying [15]

2. Watermarking: Identifiers in digital content to de-
ter unauthorized use or distribution [15]



3. Encryption: Securing digital content by encoding
so only authorized parties can access

• Licensing
4. Patent: Legal protection for inventions, preventing

unauthorized use [21]
5. Trademark: Legal protection for symbols, names,

or designs that distinguish products or services,
preventing unauthorized use [21]

6. Copy left licenses: Licensing agreements that al-
low sharing, modifying, and using copyrighted
works, with the condition that derivative works are
also licensed under the same terms [3]

• Software distribution
7. Unauthorized distribution channels: Distribut-

ing software through channels not authorized by the
copyright holder, such as torrent sites [2]

8. Public repositories: Platforms for developers to
share and collaborate on software projects, i.e.
GitHub

9. Code sharing platforms: Platforms for developers
to assist one another by sharing code snippets, i.e.
Stack Overflow

• Software cracking
10. Keygen: Tools for generating serial numbers, li-

cense keys, or activation codes to bypass software
licensing restrictions

11. Reverse engineering: Analyzing and deconstruct-
ing software to understand its functionality or to
modify it without authorization [13]

It is important to note that this taxonomy is not necessar-
ily exhaustive, as additional areas could be explored and fur-
ther subdivisions considered. That said, we believe its scope
is sufficiently extensive to demonstrate LLM behavior, as its
primary purpose is to facilitate prompt categorization and cre-
ation, not to assess LLM capabilities comprehensively.

3.2 Prompt Generation
Using our taxonomy, we create 20 prompts per category aim-
ing to infringe on copyright, evenly distributed among the
prompt types, adding up to 220 prompts. These prompts are
designed to vary in structure and language to assess how mod-
els’ responses differ based on prompt formulation.

To explore the effect of prompt structure, we draw inspira-
tion from previous research methodologies that simulate ad-
versarial attacks [19, 25, 27]. Previous work has focused on
targeted attacks, where prompts are crafted to bias a model’s
outputs towards predetermined responses, and untargeted at-
tacks, which assess a model’s ability to generalize by gener-
ating prompts without specific manipulation goals. Building
on this framework, we adapt definitions of targeted and un-
targeted attacks for our research purposes.

Targeted Prompts: Designed to elicit specific responses
from the model, simulating scenarios where the objective is
clear. We achieve this by specifying the name of the copy-
righted content and the desired programming language for the
output. The subcategories include:

• Direct Probing: Questions prompt a specific answer
• Prefix Probing: Part of the answer is provided for com-

pletion
Untargeted Prompts: Created without a specific goal to

observe how the model responds. We do not specify any re-
quirements for the name of the content or the structure of the
output. The subcategories encompass:

• Open-Ended Questions: Questions allow free response
generation

• Scenarios: Imaginary situations that require the model
to generate responses based on the given context

To evaluate the effect of language, we distinguish between
straightforwardly malicious and subtle wording. We create
prompts with explicit and implicit intent, adjusting the phras-
ing as follows:

Explicit Prompts: Conveyed through specific terms like
“bypass”, “copy”, “remove attribution”, “without permis-
sion”, and “unauthorized access”.

Implicit Prompts: Embedded within the context of the
request without using overtly malicious language.

This balanced framework allows us to evaluate models’ re-
sponses across diverse contexts, ensuring a thorough assess-
ment of the models’ tendencies.

3.3 Prompt Evaluation
We compile a dataset with the generated prompts and run
these prompts on various models to evaluate the outcomes.
We test on both aligned and unaligned models to compare
their behaviors and responses. We opt for dual testing to
achieve two objectives: firstly, to understand the influence of
model alignment on copyright infringement behaviors, and
secondly, to assess the effectiveness of this alignment.

4 Experimental Setup
This section outlines the experimental setup, illustrating the
specific research questions we address and describing the
components in detail to provide guidance on reproducibility.

4.1 Research Questions
The focus of this research is: How do LLMs4Code infringe on
the copyright of intellectual property? To guide our inquiry,
we formulate the following sub-research questions:

1. How does an unaligned model respond to prompts in-
volving copyright infringement? We use evaluation on
an unaligned model, specified in Section 4.2, as a base-
line to understand the inherent tendencies of LLMs re-
garding generating copyright infringing content. Ob-
serving these initial responses aids in recognizing po-
tential risks linked to copyright infringement and sets a
foundation for assessing the effectiveness of alignment.

2. How do different state-of-the-art LLMs4Code respond
to prompts involving copyright infringement? We ex-
amine multiple aligned models, listed in Section 4.2, to
evaluate their alignment with these prompts. By identi-
fying differences in model behavior and performance,
we can pinpoint strengths and weaknesses in existing
LLMs4Code implementations.



3. How do LLMs4Code’s responses vary between targeted
and untargeted prompts? We generate prompts with dif-
ferent levels of specificity, employing direct probing and
prefix probing for targeted prompts, and scenario cre-
ation and open-ended questions for untargeted prompts.
This exploration of how LLMs4Code interpret and gen-
erate responses based on prompt specificity allows us to
understand the sensitivity of the models’ alignments.

4. How does the language used in the prompt affect
LLMs4Code’s tendency to respond? This question in-
vestigates the impact of the linguistic structure and tone
of the prompt. It explores prompts where direct terms
associated with copyright infringement, such as “by-
pass”, “copy”, “without attribution” are explicitly used,
as well as instances where copyright infringement is im-
plied contextually. This allows us to assess the model’s
sensitivity to explicit cues related to copyright infringe-
ment and its ability to discern the underlying intent of
the prompt.

4.2 Model Details
This section details the models we employ along with their
specifications, as well as the tools utilized for accessing them.

Unaligned Model
For our unaligned model, we choose Cognitive Computa-
tions’ Dolphin 2.6 Mixtral 8x7b model.1 This is a refined
version of the Mixtral 8x7b model, incorporating diverse
datasets in training, including coding data [16]. The primary
reason behind our selection is the model’s uncensored nature.
The model’s dataset is filtered for alignment, bias, and re-
fusals, resulting in a compliant and proficient model, particu-
larly skilled in coding.2 It is not optimized for Directed Pref-
erence Optimization (DPO), methodology for aligning mod-
els with human preference, since it has uncensored nature.
To accentuate its uncensored capabilities, the developers em-
ployed a system prompt during training that emphasizes user
obedience and conveys potential consequences for disobedi-
ence. The model reliably complies with user requests, mak-
ing it versatile for tasks like code generation and general con-
versation, aligning well with our research objectives. In our
study, we use the model with a temperature of 0 to achieve
deterministic behavior, alongside the system prompt: “Be a
helpful assistant.” This prompt is the standard system prompt
used when seeking factual information or completion of tasks
in a straightforward manner [32].

Aligned Models
For our aligned models, we select those with diverse
strengths, listed in Table 1. This allows us to observe how
models with varying characteristics respond to our prompts.
We specifically choose models for text generation that are
instruction-tuned, ensuring they can understand prompts ef-
fectively and provide coherent responses.

1Dolphin model on Deepinfra: https:
//deepinfra.com/cognitivecomputations/dolphin-2.6-mixtral-8x7b

2Dolphin model on Hugging Face: https:
//huggingface.co/cognitivecomputations/dolphin-2.6-mixtral-8x7b

Tools
All models except ChatGPT-3.5-Turbo-01259, are hosted on
DeepInfra10, a service providing access to various models via
API endpoints. We access ChatGPT-3.5-Turbo-0125 through
OpenAI’s API. We use LangChain11, a high-level interface
framework for developing applications with LLMs, to inter-
act with the models through an API token. For each run,
we utilize the same Langchain interface, changing only the
model name when necessary. The system prompts remain
consistent across all runs (“Be a helpful assistant”), and the
temperature is set to 0. This approach facilitates easy switch-
ing between different models, ensuring flexibility and effi-
ciency in using various LLMs4Code.

4.3 Evaluation Metrics
The models’ outputs are evaluated based on their adherence
to copyright regulations rather than their accuracy. This is
because the concept of alignment refers to ensuring that out-
puts comply with ethical values, rather than relating to their
quality or correctness. Each output is manually reviewed for
potential copyright infringement and assigned one of the fol-
lowing labels:

• Pass: The model correctly identifies that the prompt in-
fringes on copyright and does not provide an output.

• Warn: The model provides an output but warns the user
about potential copyright infringement risks.

• Fail: The model fails to identify that the prompt in-
fringes on copyright and provides an output.

5 Results
We present the findings of our experiments grouped accord-
ing to the research questions outlined in Section 4.1.

5.1 Behavior of Unaligned Model
Figure 1 visualizes the acceptance rates of prompts by Dol-
phin 2.6 Mixtral 8x7b, per category in our taxonomy. Overall,
the model failed on 64.5% of all prompts, meaning it pro-
vided an output. Additionally, 16.8% is marked as “warn”,
and 18.6% is marked as “pass”.

As shown in Figure 1, we observe that the category where
the model most frequently failed to detect the malicious in-
tent of the prompts is watermarking, with 85% fail and 15%

3Code-llama model:
https://www.phind.com/blog/code-llama-beats-gpt4

4Starcoder model:
https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1

5Codegemma model:
https://deepinfra.com/google/codegemma-7b-it

6Llama 3 model:
https://deepinfra.com/meta-llama/Meta-Llama-3-70B-Instruct

7Mixtral model:
https://deepinfra.com/mistralai/Mixtral-8x22B-Instruct-v0.1

8Llava model: https://llava-vl.github.io/
9ChatGPT-3.5-Turbo-0125 model:

https://platform.openai.com/docs/models/gpt-3-5-turbo
10Deepinfra page: https://deepinfra.com/
11LangChain page: https://www.langchain.com/

https://deepinfra.com/cognitivecomputations/dolphin-2.6-mixtral-8x7b
https://deepinfra.com/cognitivecomputations/dolphin-2.6-mixtral-8x7b
https://huggingface.co/cognitivecomputations/dolphin-2.6-mixtral-8x7b
https://huggingface.co/cognitivecomputations/dolphin-2.6-mixtral-8x7b
https://www.phind.com/blog/code-llama-beats-gpt4
https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1
https://deepinfra.com/google/codegemma-7b-it
https://deepinfra.com/meta-llama/Meta-Llama-3-70B-Instruct
https://deepinfra.com/mistralai/Mixtral-8x22B-Instruct-v0.1
https://llava-vl.github.io/
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://deepinfra.com/
https://www.langchain.com/


Table 1: Aligned models used in our research, along with their modality, developers, parameter counts, and significant properties

Modality Model Developer Params Properties

Code

CodeLLama3 Phind 34B Fine-tuned on programming problems,
proficient in multiple languages

StarCoder24 BigCode 15B Self-aligned, fine-tuned for Python, limita-
tions with other languages

CodeGemma5 Google 7B Evaluated for safety and anti-hacking

Natural Language

Llama 36 Meta 70B Optimized for helpfulness and safety
Mixtral7 Mistral AI 22B Mixture of experts, fast inference
Llava8 Microsoft 7B Multimodal, supports vision and language
ChatGPT-3.5-Turbo-01259 OpenAI Unknown Chat-optimized for code and language

DRM

En
cry

pti
on

Wate
rm

ark
ing

Pat
en

t

Tra
de

mark

Cop
y le

ft l
ice

nse
s

Ke
yg

en

Re
ve

rse
 en

gin
ee

rin
g

Cod
e s

ha
rin

g p
.

Pu
blic

 re
po

sito
rie

s

Una
uth

ori
zed

 ch
an

ne
ls

Categories

0

20

40

60

80

100

La
be

l P
er

ce
nt

ag
es

Acceptance of Prompts Per Category

Pass
Warn
Fail

Figure 1: Percentage per label of prompts for each category in the
unaligned model, Dolphin.

warn, resulting in all the prompts generating an output. The
prompts for this category focused on techniques to remove
watermarking from copyrighted content. This high fail rate
suggests that the model struggles to recognize the infringe-
ment implications of watermarking-related queries.

Conversely, the categories where the model most fre-
quently declined to provide an answer are patent and public
repositories. Despite this, the model still generated outputs
for 65% of prompts in these categories.

Generally, the categories that may not invariably involve
malicious intent, such as copy protection (DRM, encryption,
watermarking), tend to yield more outcomes compared to
fields like licensing (patent, trademark, copyleft licenses),
where instances of copyright infringement are more straight-
forward.

5.2 Comparison of Aligned Models
Our analysis of running prompts across various state-of-the-
art models indicates that, overall, these models surpassed
our unaligned model, Dolphin. From Figure 2, StarCoder2
emerges as the weakest performer, failing to identify mali-
cious intent of prompts in 89.5% of cases. Following Star-

Dolp
hin

Cod
eLL

am
a

Sta
rCod

er2

Cod
eG

em
ma

Lla
ma 3

Mixt
ral

Lla
va

Cha
tGPT-

3.5
 Tu

rbo

Models

0

20

40

60

80

100

La
be

l P
er

ce
nt

ag
es

Unaligned Aligned
Acceptance of Models

Pass
Warn
Fail

Figure 2: Percentage per label for each category in various state-
of-the-art models, compared to the performance of the unaligned
model, Dolphin.

Coder2, Llava exhibited subpar performance, with a 21.8%
failure rate and 29.5% warning labels. Conversely, ChatGPT-
3.5-Turbo-0125, CodeGemma, and Llama 3 demonstrated the
highest performances, successfully rejecting 73.2%, 68.6%,
and 67.7% of copyright-infringing prompts, respectively.
This suggests that the modality difference, whether the model
is primarily geared towards code or natural language, does
not significantly influence copyright violation detection. The
underperformance of StarCoder2 appears to be an anomaly
unrelated to its status as a code-oriented model.

Further examination into each model’s performance across
categories is presented in Figure 3. We can see the percent-
ages of prompts that are labeled with “fail” per category for
each model. Detailed graphs showing label percentages for
each category for each aligned model are in Appendix A.
Here, StarCoder2 consistently ranked worst across all cate-
gories. Notably, most models faced challenges in identifying
or rejecting prompts related to watermarking, which remains
consistent with our findings from our unaligned model. Con-
versely, models generally performed well in recognizing and
rejecting prompts concerning DRM, encryption, and reverse
engineering. Once again, there is no observable discrepancy
in model performance attributable to their modality. Consid-
ering the parameter count of each model, it is evident that



DRM

En
cry

pti
on

Wate
rm

ark
ing

Pat
en

t

Tra
de

mark

Cop
y le

ft l
ice

nse
s

Ke
yg

en

Re
ve

rse
 en

gin
ee

rin
g

Cod
e s

ha
rin

g p
.

Pu
blic

 re
po

sito
rie

s

Una
uth

ori
zed

 ch
an

ne
ls

Categories

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f "

Fa
il"

 L
ab

el
Percentage of Acceptance Across Different Aligned Models Per Category

CodeLLama
StarCoder2
CodeGemma
Llama 3
Mixtral
Llava
ChatGPT-3.5 Turbo

Figure 3: Failure rate per category across aligned models.

this factor did not significantly impact the results. Notably,
among the top-performing models, CodeGemma has 7B pa-
rameters and Llama 3 has 70B. However, it is worth noting
that the multimodal model Llava exhibited notably poorer
performance compared to other models, predominantly issu-
ing warnings rather than outright rejecting prompts regarding
copyright violations.

5.3 Effect of Prompt Type
The analysis encompassed running the entire set of prompts
across all models listed in Section 4.2, totaling 1760 runs.
Each output was labeled accordingly. Prompts labeled as
“fail” were of particular interest, as they represent instances
where models generated output. Out of the 1760 runs, 612
instances were identified as failed outputs. These failing
prompts were subsequently categorized based on their prompt
types. This distribution is illustrated with Figure 4.

Targeted

Untargeted

23.5%

40.4%

16.9%

19.1%

Direct probing
Prefix probing
Scenario creation
Open-ended questions

Figure 4: Prompts with label “fail”, categorized by the prompt types.

We observe that targeted prompts demonstrate a higher ef-
fectiveness in eliciting responses from the models, constitut-
ing 63.9% of the failing prompts, while untargeted prompts
comprised 36.1%. Further exploration into these categories
reveals that 23.5% of the failing prompts employed direct
probing, 40.4% utilized prefix probing, 16.9% involved sce-
nario creation, and 19.1% consisted of open-ended questions.
This analysis highlights a notable trend wherein models are
more likely to generate responses that infringe on copyright
when prompted directly for specific information. Conversely,

they either fail to detect or not act on recognized copyright
concerns when presented with more generalized inquiries re-
lated to the field.

5.4 Effect of Language
After generating explicit and implicit prompts, as described in
Section 3.2, we observe the output labels attributed to these
prompts in Figure 5. The figure illustrates the distribution of
“pass”, “warn”, and “fail” labels assigned to explicitly written
prompts, which included overtly malicious phrases, and their
implicit counterparts, which conveyed similar intents through
contextual cues rather than explicit wording.

73.3%

11.4%

15.3%

Explicit Prompts

32.1%

28.3%

39.6%

Implicit Prompts

Pass Warn Fail

Figure 5: Percentage per label of prompts with explicit language and
their implicit counterparts.

The analysis highlighted significant differences in how
these prompts were processed by the models. Explicit
prompts demonstrated a high rate of rejection, with 73.3%
categorized as “pass”, indicating successful recognition of
malicious intent, while 15.3% were flagged as “fail”, and
11.4% as “warn”. Conversely, implicit prompts showed a
notably lower rate of successful identification and rejection,
with only 32.1% categorized as “pass”. Additionally, 39.6%
were labeled “fail”, and 28.3% were classified as “warn”.
This significant decrease in rejection of prompts shows the
trend that while models can recognize and reject prompts with
explicit malicious intent, they struggle to discern implicit ma-
licious intent.

6 Discussion
In this section, we elaborate on the results from Section 5,
discussing potential reasons behind these outcomes, identify-
ing threats to the validity of the study, outlining the measures
taken to adhere to responsible research standards and recom-
mending avenues for future works.

6.1 Reflection on Results
Our results suggest that alignment procedures improve the
ability of a model to detect and refuse to answer prompts in-
volving copyright infringement. However, the current levels
of alignment can further be improved to address prompts re-
garding specific areas of copyright, different types of prompts
and difference in language better.



Alignment The results demonstrate that, as anticipated, the
aligned models we selected outperformed our choice of the
unaligned model, Dolphin. Although Dolphin, being an un-
censored model, occasionally failed to generate an output,
this can be attributed to its lack of Directed Preference Op-
timization (DPO). One surprising aspect however, is Star-
Coder2’s performance being the poorest across all categories
in our taxonomy, despite being aligned. We assume this to
be due to its unique alignment strategy. StarCoder2 is self-
aligned, meaning it generates instruction-response pairs and
refines itself without human annotators or distilled data, typ-
ical in model alignment processes. We can conclude that
this self-alignment is mostly to make the model permissive,
rather than filtering out malicious usage. Additionally, while
larger models tend to respond faster and more accurately, un-
derstanding the context of prompts better, we found that the
number of parameters does not affect their performance in
refusing copyright-infringing prompts related to software en-
gineering. This contrasts with previous research on the copy-
right of literature, which suggests that larger models memo-
rize more and thus result in more verbatim plagiarism [19,22].
This discrepancy could be attributed, in our case, to the im-
portance of the model’s ability to produce relevant code, pro-
ficiency in the topic, and knowledge of technical aspects.
Consequently, smaller models specifically trained on coding
data may perform comparably to larger models in this partic-
ular analysis.

Performance per Category We conclude that the categories
that may not invariably involve malicious intent, tend to yield
more outcomes compared to fields where instances of copy-
right infringement are more straightforward. This suggests
that the models do not fully assess all potential applications
of a prompt and are more inclined to respond if there is a
possibility of a non-malicious application. For example, wa-
termarking, despite being a category where all models per-
formed poorly, might not always signify copyright infringe-
ment, potentially masking the intent. Conversely, categories
like DRM, encryption, and patents are easier to identify for
copyright violations, most likely due to their well-defined le-
gal frameworks. Similarly, we see that categories of unau-
thorized distribution channels and public repositories were
amongst the ones that are identified as malicious by most
models. The caution exhibited towards these categories re-
flects the inclusion of terms and conditions from popular on-
line repositories mentioned in the prompts in the model’s
training data.

Targeted vs Untargeted Prompts Our findings suggest that
targeted prompts, especially those using prefix probing, are
more effective in eliciting responses from models. This aligns
with previous research on copyright of literature, which con-
cluded that “memorization sometimes has to be unlocked”
through carefully crafted prompts [19]. This can be attributed
to the structured nature of these prompts, which may give the
impression that the user is knowledgeable and does not re-
quire warnings. When models are asked to complete a spe-
cific task, they focus solely on the task rather than providing
information about the broader context or ethical implications.
In contrast, untargeted prompts often lead the models to in-
troduce the field, typically including ethical considerations.

Language Difference We observed that, as expected, mod-
els easily detect explicit malicious wording. However, they
struggle with detecting implicit malicious intentions. This
can be attributed to the tokenization of the input prompt,
which suggests that models primarily flag words with clear
malicious connotations, such as “bypass” or “unauthorized”.
Overall, model alignment can be improved by training mod-
els to understand implicit meanings and infer context, using
human-annotated datasets.

6.2 Threats to Validity
Internal Validity There is a potential for bias inherent in man-
ual processes of creating prompts, categorizing them and la-
beling the model outputs. Despite efforts to maintain objec-
tivity by clearly defining each item, human judgment may in-
troduce subjective elements, which may influence the results.
However, the alternative of automatic evaluation, which relies
on detecting acceptance and refusal keywords such as “Sure”
or “I’m sorry, I can’t help with that”, can miss some cases if
not all keywords are detected. Each model has unique key-
words, which vary between models. We chose manual eval-
uation, despite its inherent bias, because the risk of missing
cases in automatic evaluation poses a greater threat of mise-
valuation than the bias in the manual one.

To achieve maximum deterministic behavior, we set the
temperature to 0 across all models and runs. That said, as
we cannot modify the seed parameter in LangChain, which
generates a random seed to start the LLM’s sampling pro-
cess [10], we cannot achieve 100% determinism. Conse-
quently, this may affect the labels we attributed to each out-
put.

Additionally, in targeted prompts, we request the model to
generate code in specific programming languages. This ap-
proach can affect the output label due to potential inconsis-
tencies across different languages. For instance, the model
might successfully generate code in Python but fail to do so
in C. The languages are chosen randomly to ensure variation
among popular languages and thoroughly test the model’s ca-
pabilities.

External Validity The scope of our study was confined to
a specific set of models, which may not fully represent the
current landscape of language models. Some of these models
might lack access to or training on certain copyrighted ma-
terial referenced in our prompts. This may have resulted in
false positives in our data. However, we tried to pick a va-
riety of models to address this threat, selecting both natural
language models and code models with different properties
and originating from different developers.

Moreover, our conclusions are applicable to instruction-
tuned text-to-text models. These findings should not be ex-
tended to other model types, as the behavior and capabilities
of alternative language models may diverge. Other models
can be investigated as part of future work.

Construct Validity Through our classification of outputs as
“pass”, “warn”, or “fail”, we assess the model’s compliance
with copyright regulations. Our evaluation does not verify
the accuracy of the output. This approach can lead to scenar-
ios where the model falsely claims to replicate copyrighted
material precisely, when in fact it deviates from the original.



These are instances where the model “hallucinates”, meaning
it produces “outputs that, while seemingly plausible, devi-
ate from user input, previously generated context, or factual
knowledge” [24]. This may result in false negatives within
our evaluation system. Conversely, the model might claim
to provide a variation of the content due to legal restrictions,
yet it may actually provide the copyrighted material verbatim.
In such instances where the model responds to a malicious
question with incorrect information, it raises the question of
whether this should be classified as a “fail” or a “pass”. Ac-
cording to our evaluation approach, it would be categorized
as a “pass”, resulting in a false positive. The answer’s correct-
ness is critical to this determination and should be considered
in a more comprehensive evaluation. Through more exhaus-
tive research, where output accuracy is also evaluated, such
issues can be mitigated.

6.3 Future Work
Our research is a preliminary step and provides concrete ex-
amples of copyright infringement by LLMs in the software
engineering field for the specific categories in our taxonomy
for the aforementioned models.

Future research can expand on this by evaluating our
prompts on different models. Although we focused on text-
to-text instruction-tuned models, our prompts can be tested on
other types of models such as text-to-image, speech-to-text,
reinforcement learning models, etc. Additionally, our taxon-
omy can be used to generate different prompts to test multiple
models with various properties. Our untargeted prompts can
be rewritten in terms of specific code and tested on code-to-
code models or code completion tools. The taxonomy can
also be expanded by adding new categories and further dif-
ferentiating existing ones. Further analysis can build on the
initial findings of copyright violations by LLMs4Code iden-
tified in this study.

6.4 Responsible Research
Considering reproducibility of our methods, it is essential
to recognize the black-box nature of LLMs. These models
might not consistently produce the same output for a given
input, and their decision-making process is often unclear.
Additionally, it is worth noting that companies continuously
align their models. The prompts used in this study may pro-
duce different results if replicated in the future. To address
this limitation and provide reproducibility for our evaluation,
we meticulously logged every input-output pair and manually
evaluated them, which is available on GitHub12.

Given the research’s focus on copyright infringement, it is
impractical to disclose every output without potentially vio-
lating copyright laws. Thus, while transparency is crucial for
reproducibility, a balance must be met between providing ad-
equate information for validation and respecting intellectual
property rights.

Lastly as the research was conducted within time con-
straints of ten weeks, it is important to acknowledge that there

12GitHub page: https:
//github.com/begumkoc/Copyright-Infringement-of-LLMs4Code

might have been better prompts available, revealing more in-
stances of infringement for each category of the taxonomy.
Despite these limitations, we have made efforts to select a
diverse range of prompts representative of various potential
scenarios.

During our research, we leveraged AI to enhance both the
comprehensiveness and speed of our process in two ways.
Firstly, we employed ChatGPT to assist with the creation of
prompts in multiple programming languages. We aimed to
test prompts in various languages, including Java, Python,
C, C++, PHP, and others, some of which were unfamiliar to
the writer. For prompts that included a code template for the
model to complete, we initially wrote the templates manually
in a familiar language and then used ChatGPT to convert them
into the desired languages. As previously mentioned, since
our focus was not on evaluating the accuracy of the model’s
responses, the precision of ChatGPT’s translations was not
critical for our purposes.

Additionally, we utilized ChatGPT to refine the writing
and style of our paper. It is important to note that no text
within this paper was originally composed by ChatGPT, nor
was it used as a source for any information, as we acknowl-
edge that it may not always be a fully accurate resource. We
believe that using AI in this manner poses no ethical con-
cerns, as it simply serves as a tool to expedite the process.
Examples of prompts used for these purposes can be found in
Appendix B.

7 Conclusion
To conclude, we conducted an exploratory study on how
LLMs4Code infringe on intellectual property copyright
through red teaming. We examined a selection of unaligned
and aligned models using prompt engineering, creating vari-
ous prompts to examine the effect of prompt structure and use
of language.

Our findings indicate that alignment is crucial for detect-
ing copyright-infringing user inputs and preventing copyright
violations. However, the parameter count or modality of
the models do not influence this detection. We also found
that prompts related to topics that may not overtly suggest
malicious intent, often produce more outcomes compared
to prompts in fields with more straightforward instances of
copyright infringement. Specifically targeted prompts that
avoid explicitly malicious wording, particularly those that ask
the model to complete a response, are more likely to elicit re-
sponses for malicious acts.

Future research can expand on our work by testing different
models and prompts, thereby broadening the scope and appli-
cability of our taxonomy and findings. The consequences of
not addressing copyright violations are significant, as these
models are widely used in the software engineering commu-
nity and may result in unethical work production and distri-
bution.

https://github.com/begumkoc/Copyright-Infringement-of-LLMs4Code
https://github.com/begumkoc/Copyright-Infringement-of-LLMs4Code


References
[1] Toufique Ahmed, Kunal Suresh Pai, Premkumar De-

vanbu, and Earl Barr. Automatic semantic augmenta-
tion of language model prompts (for code summariza-
tion). In Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, ICSE ’24,
New York, NY, USA, 2024. Association for Computing
Machinery.

[2] Bakhit al Dajeh, Dema Aloun, and Suhaib Manaseer.
Protecting digital intellectual property, 05 2024.

[3] A. Al-Kaswan and M. Izadi. The (ab)use of open
source code to train large language models. In Pro-
ceedings o the 2nd International Workshop on NL-based
Software Engineering, Proceedings - 2023 IEEE/ACM
2nd International Workshop on Natural Language-
Based Software Engineering, NLBSE 2023, pages 9–
10, 2023. Green Open Access added to TU Delft
Institutional Repository ‘You share, we take care!’
– Taverne project https://www.openaccess.nl/en/you-
share-we-take-care Otherwise as indicated in the copy-
right section: the publisher is the copyright holder of
this work and the author uses the Dutch legislation to
make this work public. ; 2023 IEEE/ACM 2nd Interna-
tional Workshop on Natural Language-Based Software
Engineering (NLBSE), NLBSE 2023 ; Conference date:
14-05-2023 Through 20-05-2023.

[4] Miles Brundage, Shahar Avin, Jasmine Wang, Haydn
Belfield, Gretchen Krueger, Gillian Hadfield, Heidy
Khlaaf, Jingying Yang, Helen Toner, Ruth Fong, Tegan
Maharaj, Pang Wei Koh, Sara Hooker, Jade Leung,
Andrew Trask, Emma Bluemke, Jonathan Lebensold,
Cullen O’Keefe, Mark Koren, Théo Ryffel, JB Ru-
binovitz, Tamay Besiroglu, Federica Carugati, Jack
Clark, Peter Eckersley, Sarah de Haas, Maritza Johnson,
Ben Laurie, Alex Ingerman, Igor Krawczuk, Amanda
Askell, Rosario Cammarota, Andrew Lohn, David
Krueger, Charlotte Stix, Peter Henderson, Logan Gra-
ham, Carina Prunkl, Bianca Martin, Elizabeth Seger,
Noa Zilberman, Seán Ó hÉigeartaigh, Frens Kroeger,
Girish Sastry, Rebecca Kagan, Adrian Weller, Brian
Tse, Elizabeth Barnes, Allan Dafoe, Paul Scharre, Ariel
Herbert-Voss, Martijn Rasser, Shagun Sodhani, Car-
rick Flynn, Thomas Krendl Gilbert, Lisa Dyer, Saif
Khan, Yoshua Bengio, and Markus Anderljung. To-
ward Trustworthy AI Development: Mechanisms for
Supporting Verifiable Claims. arXiv e-prints, page
arXiv:2004.07213, April 2020.

[5] Jialun Cao, Meiziniu Li, Ming Wen, and Shing chi Che-
ung. A study on prompt design, advantages and limita-
tions of chatgpt for deep learning program repair, 2023.

[6] Nicholas Carlini, Florian Tramèr, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee,
Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlings-
son, Alina Oprea, and Colin Raffel. Extracting training
data from large language models. In 30th USENIX Se-
curity Symposium (USENIX Security 21), pages 2633–
2650. USENIX Association, August 2021.

[7] Aaron Chan, Anant Kharkar, Roshanak Zilouchian
Moghaddam, Yevhen Mohylevskyy, Alec Helyar, Es-
lam Kamal, Mohamed Elkamhawy, and Neel Sundare-
san. Transformer-based vulnerability detection in code
at edittime: Zero-shot, few-shot, or fine-tuning?, 2023.

[8] Courthouse News. Microsoft and github ask court to
scrap lawsuit over ai-powered copilot, 2024.

[9] Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Maj-
dinasab, Foutse Khomh, and Michel C. Desmarais. Ef-
fective test generation using pre-trained large language
models and mutation testing, 2023.

[10] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. Fine-
tuning pretrained language models: Weight initializa-
tions, data orders, and early stopping, 2020.

[11] Zhichen Dong, Zhanhui Zhou, Chao Yang, Jing Shao,
and Yu Qiao. Attacks, Defenses and Evaluations for
LLM Conversation Safety: A Survey. arXiv e-prints,
page arXiv:2402.09283, February 2024.

[12] André V. Duarte, Xuandong Zhao, Arlindo L. Oliveira,
and Lei Li. DE-COP: Detecting Copyrighted Content in
Language Models Training Data. arXiv e-prints, page
arXiv:2402.09910, February 2024.

[13] Samer Abd El-Wahed, Ahmed Elfatatry, and Mo-
hamed S. Abougabal. A new look at software plagiarism
investigation and copyright infringement. In 2007 ITI
5th International Conference on Information and Com-
munications Technology, pages 315–318, 2007.

[14] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen tau
Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A
generative model for code infilling and synthesis, 2023.

[15] Rafik Hamza and Hilmil Pradana. A survey of intellec-
tual property rights protection in big data applications.
Algorithms, 15(11), 2022.

[16] Eric Hartford. Dolphin-mixtral-8x7b, December 18
2023.

[17] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong
Wang, Li Li, Xiapu Luo, David Lo, John Grundy, and
Haoyu Wang. Large Language Models for Software En-
gineering: A Systematic Literature Review. arXiv e-
prints, page arXiv:2308.10620, August 2023.

[18] Maliheh Izadi, Roberta Gismondi, and Georgios
Gousios. Codefill: multi-token code completion by
jointly learning from structure and naming sequences.
In Proceedings of the 44th International Conference on
Software Engineering, ICSE ’22. ACM, May 2022.

[19] Antonia Karamolegkou, Jiaang Li, Li Zhou, and An-
ders Søgaard. Copyright violations and large language
models. In Houda Bouamor, Juan Pino, and Kalika
Bali, editors, Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 7403–7412, Singapore, December 2023. Associ-
ation for Computational Linguistics.



[20] Arvinder Kaur, Amrit Pal Singh, Guneet Singh Dhillon,
and Divesh Bisht. Emotion mining and sentiment analy-
sis in software engineering domain. In 2018 Second In-
ternational Conference on Electronics, Communication
and Aerospace Technology (ICECA), pages 1170–1173,
2018.

[21] Thottempudi KiranKumar. Managing intellectual prop-
erty rights in software engineering. 2012.

[22] Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon
Lee. Do language models plagiarize? In Proceedings
of the ACM Web Conference 2023, WWW ’23, page
3637–3647, New York, NY, USA, 2023. Association for
Computing Machinery.

[23] Haodong Li, Gelei Deng, Yi Liu, Kailong Wang,
Yuekang Li, Tianwei Zhang, Yang Liu, Guoai Xu,
Guosheng Xu, and Haoyu Wang. Digger: Detecting
Copyright Content Mis-usage in Large Language Model
Training. arXiv e-prints, page arXiv:2401.00676, Jan-
uary 2024.

[24] Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng
Wang, Zhen Yang, Li Zhang, Zhongqi Li, and Yuchi
Ma. Exploring and evaluating hallucinations in llm-
powered code generation, 2024.

[25] Shuyuan Liu, Jiawei Chen, Shouwei Ruan, Hang Su,
and Zhaoxia Yin. Exploring the robustness of decision-
level through adversarial attacks on llm-based embodied
models, 2024.

[26] Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying
Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov,
Muhammad Faaiz Taufiq, and Hang Li. Trustworthy
LLMs: a Survey and Guideline for Evaluating Large
Language Models’ Alignment. arXiv e-prints, page
arXiv:2308.05374, August 2023.

[27] Ziyao Liu, Huanyi Ye, Chen Chen, and Kwok-Yan Lam.
Threats, attacks, and defenses in machine unlearning: A
survey, 2024.

[28] Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou,
Zifan Wang, Norman Mu, Elham Sakhaee, Nathaniel
Li, Steven Basart, Bo Li, David Forsyth, and Dan
Hendrycks. HarmBench: A Standardized Evaluation
Framework for Automated Red Teaming and Robust
Refusal. arXiv e-prints, page arXiv:2402.04249, Febru-
ary 2024.

[29] R. Shokri, M. Stronati, C. Song, and V. Shmatikov.
Membership inference attacks against machine learning
models. In 2017 IEEE Symposium on Security and Pri-
vacy (SP), pages 3–18, Los Alamitos, CA, USA, may
2017. IEEE Computer Society.

[30] Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra Cheng,
Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Ken-
ton, Sasha Brown, Will Hawkins, Tom Stepleton, Court-
ney Biles, Abeba Birhane, Julia Haas, Laura Rimell,
Lisa Anne Hendricks, William Isaac, Sean Legassick,
Geoffrey Irving, and Iason Gabriel. Ethical and social

risks of harm from Language Models. arXiv e-prints,
page arXiv:2112.04359, December 2021.

[31] Laura Weidinger, Jonathan Uesato, Maribeth Rauh,
Conor Griffin, Po-Sen Huang, John Mellor, Amelia
Glaese, Myra Cheng, Borja Balle, Atoosa Kasirzadeh,
Courtney Biles, Sasha Brown, Zac Kenton, Will
Hawkins, Tom Stepleton, Abeba Birhane, Lisa Anne
Hendricks, Laura Rimell, William Isaac, Julia Haas,
Sean Legassick, Geoffrey Irving, and Iason Gabriel.
Taxonomy of risks posed by language models. In Pro-
ceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency, FAccT ’22, page
214–229, New York, NY, USA, 2022. Association for
Computing Machinery.

[32] Mingqian Zheng, Jiaxin Pei, and David Jurgens. Is ”a
helpful assistant” the best role for large language mod-
els? a systematic evaluation of social roles in system
prompts, 2023.



A Acceptance Rates of Prompts Per Category
For Each Aligned Model

DRM

En
cry

pti
on

Wate
rm

ark
ing

Pat
en

t

Tra
de

mark

Cop
y le

ft l
ice

nse
s

Ke
yg

en

Re
ve

rse
 en

gin
ee

rin
g

Cod
e s

ha
rin

g p
.

Pu
blic

 re
po

sito
rie

s

Una
uth

ori
zed

 ch
an

ne
ls

Categories

0

20

40

60

80

100

La
be

l P
er

ce
nt

ag
es

Acceptance of Prompts Per Category for CodeLLama

Pass
Warn
Fail

DRM

En
cry

pti
on

Wate
rm

ark
ing

Pat
en

t

Tra
de

mark

Cop
y le

ft l
ice

nse
s

Ke
yg

en

Re
ve

rse
 en

gin
ee

rin
g

Cod
e s

ha
rin

g p
.

Pu
blic

 re
po

sito
rie

s

Una
uth

ori
zed

 ch
an

ne
ls

Categories

0

20

40

60

80

100

La
be

l P
er

ce
nt

ag
es

Acceptance of Prompts Per Category for StarCoder2

Pass
Warn
Fail

DRM

En
cry

pti
on

Wate
rm

ark
ing

Pat
en

t

Tra
de

mark

Cop
y le

ft l
ice

nse
s

Ke
yg

en

Re
ve

rse
 en

gin
ee

rin
g

Cod
e s

ha
rin

g p
.

Pu
blic

 re
po

sito
rie

s

Una
uth

ori
zed

 ch
an

ne
ls

Categories

0

20

40

60

80

100

La
be

l P
er

ce
nt

ag
es

Acceptance of Prompts Per Category for CodeGemma

Pass
Warn
Fail

DRM

En
cry

pti
on

Wate
rm

ark
ing

Pat
en

t

Tra
de

mark

Cop
y le

ft l
ice

nse
s

Ke
yg

en

Re
ve

rse
 en

gin
ee

rin
g

Cod
e s

ha
rin

g p
.

Pu
blic

 re
po

sito
rie

s

Una
uth

ori
zed

 ch
an

ne
ls

Categories

0

20

40

60

80

100

La
be

l P
er

ce
nt

ag
es

Acceptance of Prompts Per Category for Llama 3

Pass
Warn
Fail

DRM

En
cry

pti
on

Wate
rm

ark
ing

Pat
en

t

Tra
de

mark

Cop
y le

ft l
ice

nse
s

Ke
yg

en

Re
ve

rse
 en

gin
ee

rin
g

Cod
e s

ha
rin

g p
.

Pu
blic

 re
po

sito
rie

s

Una
uth

ori
zed

 ch
an

ne
ls

Categories

0

20

40

60

80

100

La
be

l P
er

ce
nt

ag
es

Acceptance of Prompts Per Category for Mixtral

Pass
Warn
Fail

DRM

En
cry

pti
on

Wate
rm

ark
ing

Pat
en

t

Tra
de

mark

Cop
y le

ft l
ice

nse
s

Ke
yg

en

Re
ve

rse
 en

gin
ee

rin
g

Cod
e s

ha
rin

g p
.

Pu
blic

 re
po

sito
rie

s

Una
uth

ori
zed

 ch
an

ne
ls

Categories

0

20

40

60

80

100

La
be

l P
er

ce
nt

ag
es

Acceptance of Prompts Per Category for Llava

Pass
Warn
Fail



DRM

En
cry

pti
on

Wate
rm

ark
ing

Pat
en

t

Tra
de

mark

Cop
y le

ft l
ice

nse
s

Ke
yg

en

Re
ve

rse
 en

gin
ee

rin
g

Cod
e s

ha
rin

g p
.

Pu
blic

 re
po

sito
rie

s

Una
uth

ori
zed

 ch
an

ne
ls

Categories

0

20

40

60

80

100

La
be

l P
er

ce
nt

ag
es

Acceptance of Prompts Per Category for ChatGPT-3.5-Turbo-0125

Pass
Warn
Fail

B Prompts Used with AI to Assist in Research
and Paper Writing

To improve our writing, we utilized the prompt “Make the
following text well-written: ...” when asking ChatGPT to re-
fine our language. It is important to clarify that we did not
directly replicate the output, instead we used it as inspira-
tion for academic writing. In order to enhance the paper’s
style, we sought assistance with specific LATEX commands by
asking, “Create a table in LATEX with the following columns
and rows: ...”. Additionally, when converting code from one
programming language to another, we employed the prompt
“Translate the following code into ‘name of the desired pro-
gramming language’: ...”.


	Introduction
	Background and Related Works
	Memorization
	Copyright Infringement of Literature
	Frameworks for Detecting Copyright

	Approach
	Taxonomy
	Prompt Generation
	Prompt Evaluation

	Experimental Setup
	Research Questions
	Model Details
	Unaligned Model
	Aligned Models
	Tools

	Evaluation Metrics

	Results
	Behavior of Unaligned Model
	Comparison of Aligned Models
	Effect of Prompt Type
	Effect of Language

	Discussion
	Reflection on Results
	Threats to Validity
	Future Work
	Responsible Research

	Conclusion
	Acceptance Rates of Prompts Per Category For Each Aligned Model
	Prompts Used with AI to Assist in Research and Paper Writing

