<]
TUDelft

Delft University of Technology

Preliminary uncertainty and sensitivity analysis of the Molten Salt Fast Reactor steady-
state using a Polynomial Chaos Expansion method

Santanoceto, Mario; Tiberga, Marco; Perkd, Zoltan; Dulla, Sandra; Lathouwers, Danny

DOI
10.1016/j.anucene.2021.108311

Publication date
2021

Document Version
Final published version

Published in
Annals of Nuclear Energy

Citation (APA)

Santanoceto, M., Tiberga, M., Perkd, Z., Dulla, S., & Lathouwers, D. (2021). Preliminary uncertainty and
sensitivity analysis of the Molten Salt Fast Reactor steady-state using a Polynomial Chaos Expansion
method. Annals of Nuclear Energy, 159, Article 108311. https://doi.org/10.1016/j.anucene.2021.108311

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.anucene.2021.108311
https://doi.org/10.1016/j.anucene.2021.108311

Annals of Nuclear Energy 159 (2021) 108311

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene ==

Preliminary uncertainty and sensitivity analysis of the Molten Salt Fast N
Reactor steady-state using a Polynomial Chaos Expansion method

updates

Mario Santanoceto *°, Marco Tiberga ?, Zoltan Perké **, Sandra Dulla”, Danny Lathouwers *

2 Delft University of Technology, Department of Radiation Science and Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
b politecnico di Torino, Dipartimento Energia, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 26 October 2020

Received in revised form 4 March 2021
Accepted 29 March 2021

In this work, we present the results of a preliminary uncertainty quantification and sensitivity analysis
study of the Molten Salt Fast Reactor (MSFR) behavior at steady-state performed by applying a non-
intrusive Polynomial Chaos Expansion (PCE) approach. An in-house high-fidelity multi-physics simula-
tion tool is used as reactor reference model. Considering several thermal-hydraulics and neutronics
parameters as stochastic inputs, with a limited number of samples we build a PCE meta-model able to
reproduce he reactor response in terms of effective multiplication factor, maximum, minimum, and aver-
age salt temperatures, and complete salt temperature distribution. The probability density functions of
the responses are constructed and analyzed, highlighting strengths and issues of the current MSFR
design. The sensitivity study highlights the relative importance of each input parameter, thus providing
useful indications for future research efforts. The analysis on the whole temperature field shows that the
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heat exchanger can be a critical component, so its design requires particular care.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Thanks to its low-carbon energy production, the nuclear sector
can play a vital role in accommodating the world’s rising energy
demand while fighting climate change (Brook et al., 2014). How-
ever, over the last few decades concerns of accidents, proliferation,
and waste management have led to a general public and political
opposition to the technology and the construction of new power
plants, and subsequently the share of nuclear power in the global
electricity supply has decreased (International Energy Agency,
2019). In order to address these issues, in 2001 the Generation IV
International Forum (GIF) proposed a roadmap aimed at designing
Generation IV (Gen-IV) nuclear reactors, which excel in sustain-
ability, safety, reliability, and proliferation resistance, and are eco-
nomically attractive (Generation IV International Forum, 2002).

Among these, the Molten Salt Fast Reactor (MSFR) (Allibert
et al., 2016; Gerardin et al., 2017) offers many advantages thanks
to the adoption of a liquid fuel (LeBlanc, 2010; Serp and Allibert,
2014). The high operating temperatures and the excellent salt ther-
mal properties guarantee high thermodynamic performances,
while the low operating pressure and the strongly negative tem-
perature feedback coefficient improve stability and safety.
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However, due to the lack of know-how and operational experience
with the technology, the development of the MSFR design needs
extensive research from a number of viewpoints. To aid these
efforts, Sensitivity Analysis (SA) and Uncertainty Quantification
(UQ) play a vital role by evaluating how uncertain physical/chem-
ical properties or unknown design specifications impact key oper-
ational and safety parameters. The need for accurate SA and UQ is
further emphasized by the fact that design and licensing proce-
dures for nuclear power plants increasingly rely on Best Estimate
Plus Uncertainty approaches, applying the most precise and com-
plete computational system models accompanied by thorough
evaluation of the computed results’ variability and sensitivity
(Wilson, 2013).

Assuming an uncertain set of data, models and tools, UQ esti-
mates the statistical information of system responses. This work
focuses only on aleatory variables related to data, assuming that
parameters have an accurate, but unknown value. The propagation
of aleatory input data uncertainties to the outputs (i.e., the system
responses) can be performed in multiple ways. Historically, UQ has
been carried out using Monte Carlo (MC) methods or Latin Hyper-
cube Sampling, which consists of generating a sufficiently large
number of input parameter realizations according to their known
(or assumed) statistical properties, followed by evaluating the cor-
responding system responses using the computational model of
the system (Le Maitre and Knio, 2010). Finally, the statistical

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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information of the outputs, such as means, standard deviations, or
the complete probability density functions (pdfs), is obtained using
appropriate estimators based on the large number of calculated
responses. However, since the design of novel nuclear reactors
requires accurate high-fidelity simulations that are typically com-
putationally expensive, traditional sampling based methodologies
are infeasible in these situations (Sudret, 2008). As a result, novel
methodologies have been developed to mitigate the computational
burden, such as stochastic collocation (Sankaran and Marsden,
2011), response surface approximation, or spectral projection
(Cavallo and Sinha, 2007; Shih and Williams, 2009; Roy and
Oberkampf, 2011).

The Polynomial Chaos Expansion (PCE) method adopted in this
work belongs to the latter class. It consists of constructing a poly-
nomial approximation of the responses as function of the stochas-
tic inputs (Le Maitre and Knio, 2010), and it is potentially capable
of strongly reducing the number of model evaluations with respect
to MC analyses. Moreover, we opted for a non-intrusive approach,
which treats the reference model as a “black-box”, thus requiring
no modifications of the underlying equations. These characteristics
make the adopted PCE approach particularly attractive for nuclear
applications (see, for example, Fichtl and Prinja, 2011; Gilli et al.,
2012, 2013; Perké et al., 2014b; Turati et al., 2018; Peng et al,,
2019; Skarbeli and Alvarez-Velarde, 2020), where the reference
models are typically coupled multi-physics simulations often
implemented in difficult to manipulate legacy codes and - in gen-
eral - are computationally expensive.

The published literature on UQ/SA approaches applied to mol-
ten salt reactor systems is limited. Monte-Carlo based UQ analyses
were performed for solid-fueled fluoride-salt cooled reactor
designs, but the studies were limited to thermal hydraulics inputs,
without taking into account neutronics uncertainties (Wang et al.,
2017; Yang et al., 2017; Romatoski and Hu, 2019). The propagation
of nuclear data uncertainty to the effective multiplication factor of
the MSFR was preliminarily studied by Abrate et al. (2019) using an
extended generalized perturbation theory approach implemented
in the MC neutron transport code Serpent 2 (Aufiero et al.,
2016); however, the effects of temperature feedback and fuel
motion were neglected. Coupling effects between neutronics and
thermal-hydraulics were taken into account in the adjoint-based
sensitivity analysis of the MSFR steady-state by Jeong et al.
(2020); however, strongly simplifying assumptions were adopted
for the reactor model (e.g, 1D geometry, constant mass flow rate,
single-group diffusion). Finally, a non-intrusive reduced order
model approach was recently proposed and applied for UQ and
SA of both a simplified liquid-fueled reactor system (Alsayyari
et al.,, 2020) and the full MSFR.

In this paper, we present the use of PCE to perform uncertainty
quantification and sensitivity analyses of complex, multi-physics
molten salt reactor models, assuming that both neutronics and
thermal-hydraulic input data are stochastic. The approach — whose
validity was proven in an earlier work of the authors (Santanoceto
et al., 2021) where a simplified liquid-fuel nuclear reactor was con-
sidered - is here extended to analyze the MSFR under steady-state
conditions. The considered MSFR design is that investigated within
the H2020 SAMOFAR project (http://samofar.eu/), while its refer-
ence model is constituted by a three-dimensional, multi-physics
solver recently developed at Delft University of Technology
(Tiberga et al., 2020b). Given the high computational cost of the
model, the use of PCE techniques - able to minimize the number
of simulations - is crucial to make UQ analysis feasible. We present
preliminary statistical information on key neutronics and thermal-
hydraulics design aspects and rank the stochastic input parameters
according to their contribution to the responses’ variance, thus
providing useful indications for future research efforts.
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The reminder of the paper is outlined as follows. 2 presents the
adopted PCE method, providing details on the mathematical for-
mulation of the problem and the post processing step necessary
to derive the sensitivity indices for the system responses. Section 3
is devoted to the description of the MSFR design under investiga-
tion along with the neutronics and thermal-hydraulics simulation
tool used as reference model. Section 4 lists the considered system
responses and the sources of uncertainties. Section 5 describes the
procedures adopted to reduce the computational cost of the anal-
ysis. 6 reports and discusses the results of our work. Finally, 7
draws the main conclusions and gives suggestions for future
research.

2. Polynomial Chaos Expansion method

Polynomial Chaos Expansion (PCE) is a technique based on the
approximation of a response with a set of polynomials up to an
appropriate order. After having determined each expansion coef-
ficient by performing sufficient model evaluations, the obtained
expression contains the response’s analytical dependence on the
stochastic inputs. Consequently, the complete statistical informa-
tion of the response (such as mean, standard deviation, full pdf)
can be obtained by random sampling of the cheap polynomial
model rather than the full model itself, requiring only seconds
for even millions of samples. PCE was originally developed by
Wiener (Wiener, 1938) with the application of Hermite polynomi-
als suitable for normally distributed parameters alone, but later
was generalized as generalized Polynomial Chaos (gPC) to many
other distributions, using different kinds of polynomial (Xiu and
Karniadakis, 2002). PCE offers the possibility to greatly reduce
the number of model evaluations compared to MC analyses. How-
ever, widening the input parameter space increases the number
of simulations rapidly, which can become comparable with con-
ventional analyses. This issue is known as “curse of
dimensionality”.

In the following, we present a short theoretical background of
the PCE method adopted in this work, which is implemented in
the OpenGPC code developed at Delft University of Technology
(Perko et al., 2014a,b; Perkd, 2020). This tool is able to build PCE
approximation for a large number of system responses and uses
Smolyak sparse grids to alleviate the “curse of dimensionality”.

2.1. Problem definition

We define the probability space (®, %, P), where ® is the sam-
ple space, containing the set of 0 € ®, random events, X is the -
algebra (collection of subsets of ®), and P is the probability mea-
sure. Stochastic inputs parameterizing the random events are
£(0) € Y, where Y is the support of the joint probability density
function p,(¢). The present work focuses only on independent ran-
dom variables, so the joint pdf is

N
p:(¢) = [ [p: (&), (1)
i=1
where N is the number of stochastic inputs and & = (&;,&; ... &y).
The system responses (outputs) are defined as functionals
R(£(6)) : ® — R and are assumed to belong to the L,(®,P) space
of second order random variables with finite variance, equipped
with the usual inner product

(Ri,Ry) = / Ry (&)Ry ()p.(&)de. )

Following the Riesz representation theorem, any response can
then be expressed in the form of
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RE) = aWi(e) = o Wi(o), 3)
i=0 i=0

where q; are the expansion coefficients and ¥;(¢) are the orthogonal
basis functions. For practical reasons, the infinite sum has to be
truncated, and so the approximation contains only the first 2 + 1
terms.

2.2. Basis set definition

In PCE, the Y¥;(¢) basis functions are defined as multi-
dimensional polynomials. The i basis is built by tensorization of
one dimensional polynomials, according to

N
¥i(9) = [ v, (9), (4)
j=1

where y; = (91, Vi2,---»Vin) 1S the multi-index in which each com-
ponent is the polynomial order of the j* random variable - Y, is
the polynomial type corresponding to the random variable ¢&; of
order y;; and it can belong to different families (e.g., Hermite, Legen-
dre, Laguerre) depending on the probability density function of the
random variable according to the Wiener-Askey scheme (Le Maitre
and Knio, 2010; Xiu and Karniadakis, 2002).

As customary, we considered basis functions up to a maximum
polynomial order O. Hence, their set is defined by

N
I'(0) = {‘Pf(i) PBRTTES 0}- (5)
j=1
Consequently, the number of polynomial terms is
- _(N+0)!
Z+1= “NIOT (6)

which is also equal to the number of a; coefficients to be calculated
for each response.

2.3. Non-Intrusive Spectral Projections

If the response approximation is obtained by a projection on the
basis (Wo, W1, ..., ¥»), the approach is called Non-Intrusive Spec-
tral Projections (NISP). Since the one dimensional polynomials
Wi, (&) are orthogonal for each input variable, the obtained multi-
dimensional basis functions ¥;(¢) are also orthogonal with respect
to joint pdf of the inputs, thus

W) = [ WO b0 = oy )
holds, where ;.2 is a (positive) constant and §;; is the Kronecker

delta. The advantage of using orthogonal polynomials is that the
coefficients can be computed via the ratio

(R, i) 1
a = == (R ¥y, 8
1 <‘Iji7q’i> C,2< l> ( )
where

RW) - / R(2)W:(8) p.(&)de.

The problem is therefore shifted to the efficient calculation of
the integrals in Eq. (8). We performed these calculations through
a deterministic approach using Gauss quadrature. The advantage
of Gauss formulae is that they ensure exact integral evaluation
for high polynomial orders, up to order 2ng, — 1, where ny, is
the number of quadrature points associated with quadrature level
lev. The values of weights and abscissas depend on the kind of
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polynomial used for the variable representation. A disadvantage
of Gauss quadrature is that they are only merely nested. Since
the calculation of expansion coefficients now only requires the
evaluation of responses corresponding to prescribed realization
of the inputs, this method can be applied without any alteration
of the original computational model, thus is “non-intrusive”.

2.4. Smolyak sparse grids

In this work, the “curse of dimensionality” is tackled by combin-
ing Gauss formulae with Smolyak sparse grids. Let Q{)) be the
quadrature rule of level lev. The superscript “(1)” indicates that
the quadrature rule is applied to a single variable ¢&; as

Qs =3 S ()w ~ [ @m0,
=1

where éj’-‘ and wk are the abscissas and weights according to the
Gauss quadrature rule. We define the following special notation
for sparse grids:

Aef = Quef = Qieyof with Qg'f =0. 9)

Thus, A})f is a quadrature rule itself, having the nodes of both

Q) and Q\!)_,, with weights equal to the difference between the
weights of grid lev and lev — 1. From (9), it follows that

lev
1 1
Qef = D Aot (10)
levr=1
We then introduce the level multi-index | = (I, ..., ly) to extend

the quadrature definition to N variables, signaling the level of
quadrature used to integrate along the different dimensions for a
given N dimensional cubature. Adopting Smolyak sparse grids
and assuming that the maximum integration level lev is the same
in each direction, the set of level multi-indices included in the
approximation of the integrals of 8 is given by

N
js(lev)_{l:leglewrN—l}. (11)
=
Thus, the Smolyak sparse grid of level lev can be expressed as
Q= > (Aeale. .ol (12)
le.s5(lev)

where we used tensorization to construct the multi-dimensional
cubatures approximating the multi-dimensional integrals of 8 from
the one dimensional quadratures. In this way, a considerable num-
ber of function evaluations f(¢) (i.e., model runs) can be eliminated
without significant degradation of accuracy.

2.5. Post Processing: Sensitivity analysis

Due to orthogonality of the basis vectors, the response mean
value can be expressed as

E(R) = /)_R(f)P:(f)diza@ (13)

Independently from the polynomial type, Wo(¢) =1 and thus
the integral in (13) is the projection of the response on the Oth
order polynomial, equal to a,. Similarly, the variance V can be com-
puted as

V(R) = A (R(®) — ) *po(&)de = ia?c? ~ ia?z?- (14)
i=1 i=1
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It is important to note that, unlike in MC estimators, the mean
value and the variance are not explicitly related to the number of
evaluations, since they are calculated directly from expansion
coefficients.

To study the sensitivity of different responses to the uncertain
input parameters, we adopted a variance-based global sensitivity
analysis performed with Sobol sensitivity indices. This approach
is model-independent and it can quantify inter-dependencies
among inputs (Saltelli et al., 2008). Sobol indices split the variance
of the response into contributions from each input (and combina-
tions of them). This approach is therefore extremely useful to iden-
tify which uncertain parameters are the most critical and which
have negligible effects on the considered system responses.

Assuming a set of independent and uniformly distributed inputs
&=(&,...,&y) in the interval & € [0,1]Vi=1,...,N, they combine
to give the responses R(¢) through the general function f, such that
R(&) = f(¢). Following Saltelli et al. (2010), the response R(¢) can be
written as

N N
R(E) =fo+ § fi(&) + E fi(&i &)+
p i<

+fia. w18, G, (15)

where

1
| it i)de, =0, (16)
forV1<i;<i;<...<is<N,iy € {i1,iz,...,is} and N is the prob-

lem dimensionality. Correspondingly, the functions f;(&;),f; (&),
etc., in (15) are defined as

fo=ER®), (17)
fi(&) =E.,(RI&) = fo, (18)
fii(&, &) = B ;(RI&, &) — fi(&) = f(&) — fo (19)

and so on. E;: ; indicates the conditional expected value computed
considering each input except for ¢;. E: ; and the other terms follow
analogous definitions. Subsequently, the variance contributions are
defined as

Vi=V(fi(&)), (20)
Vij=Veg(Ee (RIS, &) — ViV, (21)
and so on. Thus, V; is the variance relative to the input &, after hav-

ing averaged the contributions of other inputs. The variance of R can
be then decomposed as

N N
VR)=> Vi+> Vij+...4+Via (22)
i=1 i<j

The first order sensitivity index relative to the input ¢; is finally
computed by normalization with respect to the total variance as

(23)

It is therefore clear that S; provides a measure of the influence
on the variance of each input singularly. However, the response
variance can have non negligible higher-order contributions
related to the combination of variables. We define a total sensitiv-
ity index for each input, which contains all the contributions to the
variance related to the input &; including the interactions with any
other variable as well. It is defined mathematically as

E:,(Va(RIEW) o Ve (Es(RI))

Stot‘i = V(R) =1 V(R) . (24)

Annals of Nuclear Energy 159 (2021) 108311

The sum over the inputs of the total sensitivity indices is always
> 1, since higher order contributions are accounted for more than

once. If z;’:lsm,,- =1, the model is purely additive and the contri-
bution of inter-dependencies is zero.

With a PCE meta-model, all Sobol sensitivity indices can easily
be evaluated using analytic expressions of the PCE expansion coef-
ficients (Saltelli et al., 2008; Perké et al., 2014b).

3. MSFR design and reference model

In this section, we briefly describe the MSFR design and the
main characteristics of the multi-physics computational model
used in this work.

3.1. Reactor design

Fig. 1 shows a schematic cross section of the MSFR fuel circuit.
The current design is a 3000MW,, fast reactor operating with a lig-
uid fluorides mixture (of lithium, thorium, 13% molar enriched ura-
nium, and other fissile nuclides). The salt, which is both fuel and
coolant, freely flows upwards within a toroidal core cavity, without
any moderator or control rod. Then, it exits towards sixteen iden-
tical sectors where a pump and a heat exchanger are placed. Treat-
ment units are also present to separate the helium bubbles
dispersed in the salt, used to remove gaseous and metallic fission
products and to control reactivity (Delpech et al., 2009). The core
is surrounded by a fertile blanket and by reflectors to improve neu-
tron economy. The main nominal design parameters considered in
this study are summarized in Table 1.

The power plant is completed by an intermediate circuit where
an inert salt circulates transferring the thermal energy from the
fuel circuit to an energy conversion system consisting of a Joule-
Brayton cycle.

3.2. Multi-physics reactor model

To model the MSFR steady-state behavior, we employed a high-
fidelity multi-physics simulation tool recently developed at Delft
University of Technology. Fig. 2 schematically shows its structure.
A Reynolds-Averaged Navier-Stokes and k — € equations solver
(DGFlows) is coupled with PHANTOM-Sy, a multi-group neutron
transport solver. PHANTOM-Sy is a discrete ordinates solver based
on the discontinuous Galerkin finite element method and is cap-
able of handling steady state and time dependent problems on
three-dimensional unstructured meshes. It is also capable of per-

He bubbles

Pumps
separators

Core cavity
Reflectors

Fertile
Heat blanket
exchangers

Fig. 1. Schematic cross section of the MSFR fuel circuit. Dashed arrows indicate the
direction of the salt flow.
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Table 1
MSFR design parameters considered for the nominal, non-stochastic case (Allibert
et al., 2016; Gerardin et al., 2017).

Annals of Nuclear Energy 159 (2021) 108311

Table 2
Properties of the fuel salt mixture considered for the nominal, non-stochastic case
(Benes et al., 2013). In " UF,, enriched uranium is used with 13% molar enrichment.

Parameter Unit Value Property Unit Value/Equation of state
Thermal power MW 3000 Composition % mol LiF(77.5)-ThF4(6.6)-¢" UF4(12.3)~(Pu-
Total fuel salt volume m? 18 MA) F3(3.6)
Fuel salt circulation time s 4 Density kg m3 4306.7
Average fuel salt temperature K 973.15 Thermal expansion K4 1.9119 x 1074
Minimum fuel salt temperature K 923.15 coefficient
Average intermediate salt temperature K 908.15 Dynamic viscosity Pas 6.187 x
Pressure drop across heat exchanger bar 4.5 10~%exp(772.2/(T(K) — 765.2))
Volumetric heat transfer coefficient in heat MWm 3K 1995 Specific heat capacity Jkg! 1594
exchanger K!
Thermal conductivity w 1.7
m'K!
Melting point K 854.15
Table 3

Tg (1)
- 2(T) (e EC

DGFlows | 0. %)
T s | PHANTOM-S,

Fig. 2. Computational scheme of the multi-physics tool employed to model the
MSEFR steady-state behavior. DGFlows is the CFD code, while PHANTOM-Sy, is the
neutronics code. The steady-state solution is sought by iterating the two solvers
until convergence, exchanging data to model the coupled physics phenomena
characterizing a liquid-fuel reactor.

forming criticality and time-eigenvalue problems. More details can
be found in (Koph'azi and Lathouwers, 2012). The DGFlows CFD
code is a Navier-Stokes solver for low-Mach number flows includ-
ing RANS turbulence models. The code uses a pressure correction
method for momentum-pressure coupling. The viscous terms are
discretized with the Symmetric Interior Penalty method and con-
vection with Lax-Friedrichs fluxes. Its geometric capabilities are
the same as of PHANTOM-Sy. Details can be found in (Tiberga
et al,, 2020a; Hennink et al., 2021).

Explicit coupling is realized via exchange of data between the
two tools: the fission power density (Pges) is transferred to
DGFlows as it is a source term in the energy equation. The inverse
route is followed by the velocity and eddy viscosity fields (u and v;)
that influence the distribution of delayed neutron precursors.
Finally, the average temperature in each element (Tg) is used to
correct the element-wise macroscopic cross sections (X), taken
from a reference library, in order to properly model density and
Doppler feedback. The exchange of data is effected by the Galerkin
projection between the meshes used in the neutron transport and
flow codes. As our meshes are chosen to be hierarchic (hence both
the fluid mesh and the neutron transport mesh result from refine-
ment of a common master mesh), such projections are straightfor-
ward. Note that both codes support local refinement to be able to
focus on relevant physics, hence in some locations the radiation
transport mesh may be finer whereas in other regions the reverse
may be true. In the present paper, local refinement was not used
though.

The steady-state solution is found by iterating the two solvers
until convergence. For each iteration, DGFlows seeks the new
steady solution through a pseudo-transient, while PHANTOM-Sy
solves a criticality eigenvalue problem using the desired total reac-
tor power as normalization criterion. As only the steady-state
behavior of the MSFR was investigated in this work, decay heat
was not modeled.

Table 2 reports the composition of the fuel salt mixture along
with the properties considered for the nominal, non-stochastic
case. Neutronics data were condensed into six-energy groups
(whose structure is reported in Table 3, together with the average

Energy group structure used for the MSFR neutronics calculations and average scalar
fluxes in each group at nominal conditions for the non-stochastic case.

Group Upper energy bound (keV) Average scalar flux (1/cm?s)
1 2.000 x 10* 5.157 x 10"
2 2.231 x 10° 2.046 x 10"
3 4.979 x 10? 5.130 x 10™
4 2.479 x 10! 3.504 x 10"
5 5.531 x 10° 2.196 x 10"
6 7.485 x 107! 4.652 x 10'3

scalar fluxes in the 6 groups under nominal, non-stochastic condi-
tions) and evaluated at temperature Ty, = 900K with Serpent
(Leppanen et al., 2015) starting from the JEFF-3.1.1 nuclear data
library (Santamarina et al., 2009). Eight families of delayed neutron
precursors were considered.

In this work, all calculations were performed considering only a
single recirculation loop as computational domain, thus exploiting
the symmetry of the problem. The geometry used is illustrated in
Fig. 3. The complete domain was meshed into 52869 tetrahedra
for neutronics calculations. As heat transfer within blanket and
reflectors was not modeled, these regions were removed from
the CFD mesh, which therefore consists of fewer elements
(46793). Fig. 4 shows the two meshes employed. A second-order
polynomial discretization was used for the velocity field, while
all other unknowns were discretized with first-order polynomials.

The pump was modeled as a momentum source, and buoyancy
was taken into account adopting the Boussinesq approximation
(Table 2 reports the salt density and thermal expansion coefficient

Pump

~— Reflector

Heat
exchanger

-<— Core

Blanket <— Reflector

Fig. 3. MSFR geometry used simulations, showing the main regions considered in
the model. Only one recirculation loop was modeled, given the symmetry of the
problem. From Tiberga et al. (2020b).
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(a) Neutronics mesh

(b) CFD mesh

Fig. 4. Mesh adopted for the MSFR model. The neutronics mesh (left) consists of 52869 tetrahedra, while the CFD mesh (right).

evaluated at the reference temperature of 973.15 K). A friction fac-
tor was imposed in the heat exchanger region to reproduce the
resistance to flow, while salt cooling was modeled by a volumetric
heat sink term equal to (T, — T) where y and Ty, are a volumetric
heat transfer coefficient and the average temperature of the inter-
mediate salt whose nominal values are reported in Table 1.

The interested reader is referred to (Tiberga et al., 2020b) for a
more detailed description of the multi-physics code and the MSFR
modeling approach.

4. Sources of uncertainty and considered responses

In this work, the PCE method described in Section 2 was
employed to analyze key neutronics and thermal-hydraulics
design aspects of the MSFR in steady-state conditions. Regarding
the thermal-hydraulics part, emphasis was put on the thermal per-
formance, considering the maximum, minimum and average salt
temperatures (Tmax, Tmin, Targ) along with the complete tempera-
ture field. The reactor’s neutronics response was studied in terms
of the effective multiplication factor (k). The reference responses,
obtained with the nominal, non-stochastic input data, are reported
in Table 4 and Fig. 5.

The considered set of stochastic input parameters included sev-
eral neutronics and thermal-hydraulics data, which are described
in Sections 4.1 and 4.2 and are summarized in Table 5.

4.1. Neutronics uncertainties

We focused the analysis on the 6-group fission cross sections
(Zfg, where g is the group index) and the 8-family precursor decay
constants and delayed neutron fractions (f;, 4;, where i indicates
the family). This choice was made since X, are expected to have

Table 4
Values of the reactor responses of interest in nominal conditions for non-stochastic
case.

Tinax (K) Tmin (K) Tave (K)
1082 924 966

kegr (=)
1.00998

T (K)
1090
1080
1070
1060
1050
1040
1030
1020
1010
1000
990

Fig. 5. Salt temperature distribution obtained in nominal conditions for non-
stochastic case (reactor mid-plane cut).

a large effect on the k., being directly related to the production
of neutrons, whereas the contribution of g; and /; may be relevant
due to the precursors’ drift in the complex reactor geometry and
turbulent flow, which can affect ke in an unpredictable way. Since
capture and scatter are less affected by the precursors’ drift, they
were not considered in this preliminary uncertainty analysis study
in order to keep the number of stochastic parameters limited.

These parameters are material properties and are generally
measured with a sufficiently high number of experiments. There-
fore, their statistics can be approximated with a normal distribu-
tion (Oberkampf et al., 2000; Roy and Oberkampf, 2011). We
assumed the mean value to be equal to the nominal value adopted
in non-stochastic simulations, while the relative standard devia-
tion (RSD) was set to 5% (with respect to the mean value) in
absence of more precise data.
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List of input parameters considered for the MSFR analysis and their
statistical information. Relative Standard Deviation (RSD) has to be
interpreted as half width of variation for uniformly distributed

parameters.
Symbol Distribution Mean Value Units RSD
c normal 1594 % 10° Jkg ' K! 5%
Ksaic normal 1.700 x 10° W m~'K! 23%
y uniform 1.995 x 107 W m—3K! 20%
P uniform 1.875 x 108 w 20%
PP normal 4446 x 1072 cm™! 5%
PP normal 2517 x 103 cm™! 5%
T3 normal 1.805x102 cm™! 5%
%4 normal 2618x103 cm™! 5%
s normal 5200 x 103 cm™! 5%
%6 normal 1.395 x 102 cm! 5%
B normal 1230x 1074 () 5%
B2 normal 7145 x10*  (9) 5%
B3 normal 3596 x 1074 () 5%
B4 normal 7941 x10%  (9) 5%
Bs normal 1474x10° (9) 5%
Bs normal 5145 x10°% () 5%
Bz normal 4655x104 () 5%
Bs normal 1511 x10%  (9) 5%
Py normal 1.247 x 102 s7! 5%
72 normal 2.829 x 102 s7! 5%
3 normal 4.252 % 102 s7! 5%
4 normal 1330 x 10! s7! 5%
s normal 2.925 % 10~ s7! 5%
6 normal 6.665 x 10~ s7! 5%
27 normal 1.635 x 10° s7! 5%
8 normal 3.554 % 10° s7! 5%

4.2. Thermal-hydraulics uncertainties

Generally, the salt thermodynamic properties and the reactor
operational conditions have the biggest effect on the salt tempera-
ture distribution. For this reason, we chose the salt thermal con-
ductivity (ksi), the specific heat capacity (c,), the heat transfer
coefficient describing the heat exchanger () and the reactor power
(P) as uncertain inputs.

Analogously to the neutronics data, we considered the material
properties ky; and c, as normally distributed, with mean value
equal to the nominal value of non-stochastic simulations. The sta-
tistical information of the former were derived from (Benes et al.,
2013), where ki was found to be 1.7 + —0.4 Wm~'K~". The uncer-
tainty of 0.4 Wm~'K™' can be interpreted as a standard deviation
(i.e., the RSD is about 23%). The RSD of c, was set to 5% in absence
of more precise data. The controllable parameters y and P were
approximated with uniform distributions with mean value equal
to the nominal value and a half width of variation of 20% with
respect to the mean value, and this higher variation was chosen
to be more representative of combined data, design and opera-
tional condition uncertainties.

5. Preliminary calculations

Given the 26-dimensional input parameter phase space consid-
ered and the use of a high fidelity, complex and computationally
expensive multi-physics MSFR model, it was not feasible to per-
form our study with a single PCE analysis considering all 26 inputs
together. Instead, to tackle the “curse of dimensionality”, first pre-
liminary calculations were made to reduce the parameter space
without degrading accuracy. Moreover, it was investigated
whether the MSFR modeling can be simplified to reduce the com-

putational cost of each model evaluation. This section describes
these two aspects in detail.

5.1. Reducing parameter space by single-physics neutronics
simulations

At first, single-physics neutronics simulations were carried out
to reduce the problem dimensionality. To evaluate the contribution
of each stochastic input, or group of inputs to the reactor ks, we
performed decoupled simulations, perturbing only neutronics data
(fission cross sections, delayed neutron fractions or decay con-
stants), while keeping thermal-hydraulics parameters fixed (i.e.,
considering the salt temperature and flow fields fixed at nominal
state). Therefore, in these preliminary calculations we neglected
thermal feedback effects and assumed that the overall neutronics
parameter ranking is the same regardless of the kind of model
evaluation (single-physics or fully-coupled).

To further reduce the number of simulations, we performed
separate PCE analyses on small groups of parameters, called classes
in the following, assuming no interaction among them. According
to the discussion in Section 4, three parameter classes were iden-
tified:  (8-members), 4 (8-members) and X, (6-members). Adopt-
ing level-3 quadrature rules and Smolyak sparse grids (lev = 3 in
11) proved sufficient, requiring 161 and 97 model evaluations for
the 8-member and the 6-member classes, respectively.

Table 6 reports a comparison of the variance of the response kg
relative to each parameter class. The variance due to fission cross
sections is almost five orders of magnitude higher than that caused
by the other 2 classes. Considering that our study focused on ana-
lyzing steady-state conditions, this is not surprising, because the
delayed neutron data primarily affects transients. Therefore, the
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Table 6

Results of single-physics preliminary neutronics calculations showing the key
variance due to each class of input parameters separately. The $ and A classes result
in negligible variance compared to the X class.

Y class p class / class

Variance ke 222 x107* 4.42 x107° 6.08 x 107"

p and A classes were excluded from the set of stochastic input
parameters for the coupled calculations.

Secondly, the importance of different energy groups in the X,
class was computed in order to potentially eliminate groups with
negligible impact on the response variance. The first order and
total Sobol sensitivity indices reported in Table 7 show that groups
2, 3, 4, and 5 are responsible for more than 90% of the class vari-
ance and have similar sensitivity indices. This is well in line with
the reactor spectrum (see the average flux values in each energy
group reported in Table 3), since most of the fission reactions take
place in these energy groups. Moreover, no significant differences
can be seen between the first order and total Sobol indices, indicat-
ing minimal higher interactions between these parameters.

Consequently, the set of stochastic input parameters (Table 5)
was reduced to 4 macroscopic fission cross sections (groups 2 to
5), along with all the thermal-hydraulic parameters previously
described (i.e., reactor power, heat exchanger heat transfer coeffi-
cient, salt specific heat capacity, and salt thermal conductivity),
totaling 8 parameters.

5.2. Reducing the computational cost of coupled simulations

The complex MSFR model described in Section 3 is computa-
tionally expensive due to the number of degrees of freedom neces-
sary to obtain a sufficiently accurate solution. Moreover, the time
step used in DGFlows for the pseudo transient towards the
steady-state solution must be limited to avoid numerical instabil-
ities. Solving for the full set of equations in the CFD model at each
time step, and for each iteration with the coupled neutronics sol-
ver, resulted in an unacceptable computational time needed to
obtain a new steady-state solution for each set of input parameters
required by the PCE analysis.

Therefore, the flow field was fixed assuming it does not change
from the nominal steady-state, which significantly reduced the
computational cost of each model evaluation. This approximation
is reasonable, given that none of the considered stochastic input
parameters has a direct impact on flow field (salt viscosity, turbu-
lence parameters, and pump specifications do not vary), and that
the contribution of natural circulation to the total flow rate is neg-
ligible. Therefore, secondary effects on the flow field induced by
the salt temperature variation, due to perturbations in the reactor
power, the heat exchanger heat transfer coefficient, and the salt
specific heat capacity or thermal conductivity, were considered
negligible too.

To validate this computational cost saving approach, we calcu-
lated a new steady-state MSFR solution both with and without fix-
ing the flow field. This validation was done for an extreme scenario,
considering simultaneous large perturbations to all input parame-
ters at the same time in a manner that could supposedly lead to the

Table 7
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highest salt temperature and the minimum effective multiplication
factor. These perturbed inputs are summarized in Table 8, and rep-
resent a combination of extreme quadrature points along the indi-
vidual parameter axes for all parameters. For the uniformly
distributed P and y the highest and lowest quadrature points were
chosen from a level 2 grid, respectively, while for most normally
distributed parameters the lowest point from a level 3 grid were
taken, in order to yield ~ 15% variation for all parameters. For
the fission cross section of groups 2 and 3 only the second most
extreme (level 3) quadrature point was taken. This choice is a com-
promise between the more extreme scenario (with 5% lower fission
cross sections) and computational speed during the initial phase of
our study, since using the lower cross sections (i.e., 86% instead of
91%) required excessively long times for convergence with the first,
unnecessarily fine computational grids.

Two simulations were performed for the cost saving validation:
one in which the flow field was considered fixed at the nominal
state (indicated with NoFlow in the following); and the second
where the full set of equations was solved for (WithFlow). Fig. 6
shows the evolution of the three thermal-hydraulics responses
during the pseudo-transient necessary to reach the new CFD
steady-state solution for both cases. These results confirm that
considering the flow field fixed at the nominal state has no signif-
icant influence on the considered salt temperatures. Moreover,
they indicate that the adopted approach is conservative, since
the salt maximum temperature is slightly overestimated in the
NoFlow case, with a maximum error of 0.11% with respect to the
WithFlow simulation. Both simulations the resulting reactor ke
was 0.94025.

A posteriori, to ensure that our approach was conservative, we
have also verified that the validation calculation was indeed more
extreme than all 161 simulations used to build the PCE model,
yielding lower effective multiplication factor (0.94025) and higher
maximum temperature (1140 K) than the minimum (0.9815) and
maximum (1123 K) across the 161 cases, respectively.

6. Results of the multi-physics PCE analysis

After reducing the problem dimensionality and the computa-
tional cost of each reference model evaluation, we constructed
the reactor PCE meta-model by sampling the responses described
in Section 4 performing full multi-physics steady-state simulations
of the MSFR. The total number of model evaluations required to
compute the polynomial expansion coefficients (according to Eq.
8), adopting level-3 quadrature rules and Smolyak sparse grids,
for the set of the eight relevant input parameters, was 161. Each
multi-physics simulation needed approximately 20h on average
on a high performance computing unit to be completed. The full
dataset containing the 161 quadrature points and the correspond-
ing temperature field and neutronic data is openly available (Perko
et al,, 2021).

The PCE approximation was then used to derive uncertainty
estimates, in form of pdfs, for each reactor response. In this work,
every pdf was obtained with 10° samples of the meta-model,
which needed only a few seconds in total. To check the accuracy
of the PCE approximation, we compared the results obtained with
polynomial approximations of order 3 and 4, since the adopted

Single-physics preliminary neutronics calculations: Sensitivity indices for the X, class reported for each energy group. Only groups 2 to 5 give relevant effects on the effective

multiplication factor.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
Si 2.2060 x 1072 9.0883 x 1072 2.5646 x 107! 2.4821 x 107! 3.3326 x 107! 4.9084 x 1072
Stot.i 2.2062 x 1072 9.0889 x 1072 2.5648 x 107! 24823 x 107! 3.3329 x 107! 4.9094 x 1072
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Perturbed inputs for the computational time reduction test case. They were adopted in both the Withflow and NoFlow cases. Values were chosen to maximize the maximum
temperature and minimize the effective multiplication factor, modeling an approximately worst case, highly unlikely scenario. The exact values correspond to the most extreme
quadrature points along the single dimensions yielding ~ 15% perturbations, except for the group 2 and 3 fission cross section, for which the second most extreme point was

chosen to speed up convergence.

Cp Ksaie Y P 2o 23 24 s
Relative variation [%] 86 86 85 115 91 91 86 86
1160 930 990
1140 928 e s
X, [ < / <9801
g [ —NoFlow = / —NoFlow = / —NoFlow
21120 | WithFlow| £ S92 / WithFlow| 2 / WithFlow
— | - — 970
1100 || 9241 )
1080 922 960
0 10 20 0 10 20 0 10 20
Time [s] Time [s] Time [s]

Fig. 6. Evolution of the salt maximum (T ), minimum (T, ), and average (Tq.) temperatures during the pseudo-transient necessary to reach the new CFD steady-state
solution after the input parameters perturbation summarized in Table 8. Considering the flow fixed at the nominal state (NoFlow case) has no significant impact.

level-3 Gauss quadratures offer the opportunity to correctly com-
pute polynomial coefficients up to order 4. Due to the still quite
high computational cost of each MSFR multi-physics simulation,
it was not feasible to validate the PCE results by comparison with
response pdfs generated by separate Monte Carlo sampling of the
reference model. However, this validation study was performed
in an earlier work (Santanoceto et al., 2021), where the same PCE
method was employed for the analysis of a simplified liquid-
fueled nuclear reactor representative of the main characteristics
of the MSFR. In the rest of this section, we analyze in detail the
results obtained for each reactor response.

6.1. Effective multiplication factor uncertainty

Fig. 7 shows the pdfs obtained with third and fourth order poly-
nomial approximations, along with the normal probability plot rel-
ative to the fourth order PCE model. The latter provides an
indication of the degree of deviation of the pdf from a normal
distribution.

Minimal differences can be noticed between the two polyno-
mial approximations, indicating that the adopted PCE approxima-
tion is sufficiently accurate. The k.5 mean value is 1.00977, close

30 : : :
[_IPCE Order 3
[ IPCE Order 4
__20¢
=
©
o
10+

0.96 0.98 1 1.02 1.04 1.06

keff -]

(a) keys pdf

to the nominal value reported in Table 4, with a variance of
2.070 x 10°* (corresponding to a standard deviation of
~ 1440 pcm). One can notice that this variance is lower than the
one found in the preliminary decoupled neutronics calculations
(2.220 x 107*, see Section 5.1). Density and Doppler thermal feed-
back have therefore a stabilizing effect on the system from the
neutronics point of view, reducing the k. variance. This is reason-
able: wherever fission reactions increase, following a perturbation,
the salt temperature increases too, thus introducing negative reac-
tivity which eventually reduces the probability of having fissions.

The normal probability plot (Fig. 7b) shows that the k. pdfis a
nearly perfect normal distribution, indicating that the system has
an almost linear behavior from the neutronics point of view, with
negligible thermal feedback effects on the response. However,
deviations from normality are detected at the tails, probably due
to small contributions of the higher-order feedback effects.

Table 9 reports the ks sensitivity indices. The reactor power,
the heat transfer coefficient, and the salt thermal properties, which
all affect the salt temperature distribution, have indices almost
three orders of magnitude (at least) lower than those of the fission
cross sections, responsible for most of the total variance. This con-
firms that thermal feedback effects have very little influence on the

0.999
2 0.99
= 0.90
_8 0.50
° 0.10
o 0.01

00

+ PCE Order 4
0.96 098 1 1.02 1.04
keff

(b) kefs normal probability plot

Fig. 7. Multi-physics PCE results: (a) ks pdfs obtained with third and fourth order polynomials approximations and 10° samples. The two pdfs are almost superimposed; and
(b) Normal probability plot relative to the fourth order polynomial approximation. Due to the model linearity in terms of neutronics and negligible thermal feedback effects,

the response is almost perfectly normal distributed, except at the tails.
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Table 9
Multi-physics PCE results: Sensitivity indices of k. Fission cross sections are responsible for most of the response variance, whereas other thermal fluid-dynamics parameters
have negligible influence.

P Y Cp Ksaie 2o 23 P s
Si 6.05x 1074 1.73x 1074 2.62x107° 417 x 107" 9.78 x 1072 2.76 x 107" 2.67 x 107! 3.58 x 107!
Stot 6.07 x 1074 1.75x 1074 2.68 x107° 292 x10°8 9.78 x 1072 2.76 x 107" 2.67 x 107" 3.58 x 107!
system neutronics response. Finally, as >~;S;; = 1.000, we deduce Fission cross sections have negligible impact on the salt maxi-

that second or higher order interactions between the parameters mum temperature. This is expected, because they influence only
give negligible contribution to the total k. variance. Higher order mildly the power density distribution, but not the total reactor
interactions are only relevant for the salt thermal conductivity, for power that is considered an independent input parameter. The sig-
which the total sensitivity coefficient is significantly higher than nificant difference between the first order and total Sobol indices is
the first order coefficient due to the interaction with power due to the interaction with power for all fission cross sections. The
(St p =232 x 10°%). contribution of the salt thermal conductivity is also minimal, since

the salt flow is highly turbulent, so any perturbation of the molec-

ular thermal conductivity has negligible influence on the total

6.2. Maximum, minimum, and average temperature uncertainties effective one. Finally, it can be seen that ;S = 1.002 =~ 1, so
overall second and higher-order interactions between parameters
6.2.1. Maximum temperature are not very relevant.

Fig. 8a compares the pdfs of the maximum temperature
obtained with 3™ and 4" order PCE approximations. Only minor 6.2.2. Minimum temperature

differences can be noticed, in the range T € [1050 K, 1070 K]. Ana- The minimum salt temperature is a key parameter for the safety
lyzing the PCE coefficients, fourth order terms derive from interac- and reliability of a molten salt reactor, due to the risk of salt solid-
tion among thermal-hydraulic and neutronics parameters and, ification. However, in this work the average temperature of the

thus, they can be associated to thermal feedback effects. Taking intermediate salt at the secondary side of the heat exchanger
fourth order polynomials, the T,,,, mean value is 1083 K (very close was considered fixed at 908.15 K, which is higher than the salt
to the nominal value reported in Table 4) and has a variance of solidification temperature. As a consequence, the fuel salt mini-
478 K2. The pdf is far from a normal distribution, as evident from mum temperature is limited from below and the presence of
the normality plot reported in Fig. 8b, not only at the tails but also ~ stochastic data can only influence the heat exchanger
in the central region, especially in the interval T € [1050 K, 1100 K], performances.
where the pdf resembles a uniform distribution. Fig. 9 shows the Ty, pdfs obtained with 3" and 4" order PCE
The T Sensitivity indices are reported in Table 10. The salt approximations, again showing almost perfect overlap. The mean
specific heat capacity has a significant impact, since for a given value of Tpin is 924K (equal to the nominal value reported in
reactor power and flow rate it influences the temperature differ- Table 4), while the variance is 26 K>. Given the lower bound
ence across the heat exchanger, and therefore also the maximum imposed on the minimum salt temperature by the boundary con-
salt temperature in the system. Unsurprisingly, the reactor power ditions, the pdf is highly skewed. In fact, for T < 920 K the pdf shar-
P is the most relevant parameter, contributing to almost 85% of ply goes to zero (as heat transfer to the secondary side is hindered

the total variance. In fact, the maximum salt temperature is by the smaller AT). The normality plot reported in Fig. 9b shows
directly influenced by the power-to-flow ratio. On the other hand, that the pdf shape is nearly normal in the central region but not
the contribution of y is limited to less than 5%, despite the param- at the tails.

eter having an obvious impact on the salt temperature distribution. With the given set of inputs, the probability of having a mini-
This is explained by the fact that the maximum salt temperature is mum temperature above 923 K, which is one of the design con-
located close to the core vertical symmetry axis in proximity of the straints considered in the nominal case to have a sufficient safety
upper reflector (Fig. 5), whereas the heat exchanger is located in margin from the salt solidification temperature, is limited to only
the outer-core region, far from this location. 53.2%, which may be concerning.

[ IPCE Order 3 !
0.015 ) [_IPCE Order 4 > 0'09_88 t
= 090
g z
= o001 g 0.50
3 o 0.10¢
0.005 0.01¢
| o001
+ PCE Order 4
0 |
1020 1040 1060 1080 1100 1120 1140 1160 1050 1100 160
max K] Tmax [K]
(a) Trnax pdf (b) Trmaz normal probability plot

Fig. 8. Multi-physics PCE results: (a) Tq pdfs, obtained with third and fourth order polynomials approximations and 10° samples. Only minor differences can be noticed in
the range T € [1050 K, 1070 KJ; and (b) Normal probability plot relative to the fourth order polynomial PCE approximation. The pdf is far from a normal distribution not only
at tails but also in the central region, where it resembles more a uniform distribution.
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Multi-physics PCE results: Sensitivity indices of Tpa. P, 7, and ¢, have the greatest influence on the response, while other thermodynamic properties and neutronics parameters

can be neglected.

P Y Cp Ksale o P! Zrq s
Si 8.56 x 107! 432 %1072 9.92 x 1072 1.02 x 107° 1.82x107° 1.84 x 1077 129 x 1076 237 x10°°
Stot 8.58 x 107! 437 x 1072 1.01x 107! 117 x 107 117 x 107 119 x 107 130x 107° 1.41 x 107
0.1
[ IPCE Order 3 0.999
[ IPCE Order 4 > 0.99
— = 0.90
x 8
=.0.05 8 050
5 (e
° £ 0.10
0.01
oo
+ PCE Order 4
O o
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min [K] Tmin [K]

(@) Trnin pdf

(b) Tmin normal probability plot

Fig. 9. Multi-physics PCE results: (a) T pdfs, obtained with third and fourth order polynomials approximations and 10° samples. The two distributions are almost
superimposed; and (b) Normal probability plot relative to the fourth order polynomial PCE approximation. The pdf follows a normal distribution in the central region whereas

deviates at the tails.

The T, sensitivity indices are reported in Table 11. The mini-
mum temperature is found at the exit of the heat exchanger, far
from the central core region where the fission power density is
the highest. Thus, it is reasonable to see that the ) total sensitivity
index is by far the highest (around 0.8), whereas the reactor power,
despite being still relevant, has only a secondary impact, along
with the c,.

Similarly to Ty, all other parameters have negligible first order
effects, with their total indices of the order of 107*. The sum of the
total indices is > ;Si; = 1.012, which indicates some non-
negligible higher-order effects, mainly coming from the interaction
between the power and y (Sp, = 0.01).

6.2.3. Average temperature
Fig. 10a compares the average temperature pdfs obtained with

3™ and 4™ order PCE approximations. Differences are minimal and
limited to the interval T € [950 K,970 K]. The T,,. mean value is
966 K, while its variance is 73 K% The pdf deviates substantially
from a normal distribution at the tails, as illustrated in Fig. 10b.
The T,,. sensitivity indices are reported in Table 12. As for the
previously analyzed temperature responses, fission cross sections
and thermal conductivity have negligible effects, and just like
before, the difference between total and first order indices are
due to interaction with power. The reactor power and the exchan-
ger heat transfer coefficient together contribute to more than 99%
of the total variance, with the former being almost twice more
important than the latter. This is reasonable, as any perturbation
in the heat transfer coefficient has an impact only on the average

Table 11

salt temperature in the heat exchanger, and therefore acts only
indirectly on the global average salt temperature. The salt ¢, con-
tribution is very limited, as it has an impact mainly on the temper-
ature difference across the heat exchanger but not on the average
salt temperature. Finally, >";S,:; = 1.005, which indicates that, as
for Tpim, higher-order effects due to the interaction between
parameters are small, but non-negligible.

6.3. Complete temperature field uncertainty

An additional study was carried out on the complete salt tem-
perature distribution, outputted by the reference model in form
of volume-averaged temperatures per each mesh finite element
(Tg). A PCE approximation was constructed for each averaged
value, so 46793 separate responses were considered.

Knowing the temperature field is particularly important to
ensure salt chemical stability, satisfactory structural material
properties, and effectiveness of heat exchange between primary
and secondary loop. Since the whole temperature field stochastic,
our probabilistic analysis aims to discover possible variations from
the nominal design condition that pose potential risks. First, it may
be relevant to quantify the probability that the temperature is
lower or higher than a certain threshold in each element. This is
the case for example for the upper and lower thresholds of
1023 K and 923 K, which are the design targets for the outlet
and inlet temperatures in the heat exchanger (Mathieu et al.,
2009; Allibert et al., 2016). Second, it may be important to identify
the parts of the reactor where the temperature is limited below or

Multi-physics PCE results: Sensitivity indices of Tp,,. P and y have strongest influence on the response, whereas ¢, has a secondary effect. Other thermodynamic properties and

neutronics parameters first order interactions can be neglected.

P y Cp Ksaie 2o 23 Py s
Si 1.47 x 107! 7.96 x 107! 450 x 1072 143 x 1078 1.44 x 1078 1.46 x 1078 143 x 1078 149 x 1078
Stot 1.58 x 107! 8.07 x 107! 4.64 x 1072 1.02x 1074 1.02x107* 1.02x 107 1.02x 1074 1.02x 1074

11
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Fig. 10. Multi-physics PCE results: (a) Tu,. pdfs, obtained with third and fourth order polynomials approximations and 10° samples. Only minor differences can be noticed in
the interval T € [950 K, 970 K]; and (b) Normal probability plot relative to the fourth order polynomial PCE approximation. The pdf follows a normal distribution in the central

region whereas discrepancies appear at the tails.

Table 12
Multi-physics PCE results: Sensitivity indices Tq... P and y have the greatest impact on the response, followed by c,, while other thermodynamic properties and neutronics

parameters first order interactions can be neglected. However, total sensitivity indices show importance of second or higher order interactions.

P Y Cp Ksaie PP 23 Py s

Si 6.55 x 107" 329 x 107! 1.18 x 1072 4.46x107° 1.90 x 1078 539 x 1078 352x1078 4.02 x107°

Stot 6.59 x 107" 3.33x 107" 1.21 x 1072 423 x107° 423 x107° 423 x107° 423 x107° 423 x107°
above a threshold with a given confidence level (i.e. with a proba- regions, near the upper reflector in which the probability is far
bility higher than a requested value). For the present study, we below 95% or even null. This is reasonable because, even in the
considered a probability of 0.95, and again 923 K or 1023 K as nominal non-stochastic case, the temperature in that region is
threshold temperatures. higher than 1023 K (Fig. 5). Fig. 11b clearly highlights that in the
Fig. 11 shows the probability in each element of having a tem- entire upper region of the core there is a probability lower than

perature below 1023K. Despite the design criteria that in the 95% that Tr < 1023 K. As known from the nominal case, the pump
domain T¢ cannot be higher than the threshold, there are large and the upper reflector are easily subjected to temperatures higher

Probability
0 0.5 1
N B
(a) Probability that Tp < 1023 K (b) Probability higher than 95% that T < 1023 K

Fig. 11. Multi-physics PCE results: (a) Probability in each element of finding a temperature lower than 1023 K (mid-plane cut). In most of the domain it is impossible that T is
higher than this threshold, but there are wide regions, close to the upper reflector, where the probability is very low or even null; and (b) Distinction between regions in
which the probability is higher (red) and lower (blue) than 95%.
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than 1023 K. Analyzing the inlet of the heat exchanger is more
interesting. Fig. 12 displays multiple cross sections of the heat
exchanger at different heights (measured from the outlet). It can
be noticed that at inlet, and still 5 cm downstream, there is a wide
region in which the probability that Tz < 1023 K is below 95%.
Only at 10 cm from the inlet T is always below 1023 K with the
given confidence level. This highlights that at least the first
10 cm are subject to Tr > 1023 K with high probability, which
was not predicted by the non-stochastic nominal simulations.
Therefore, stronger high-temperature protection is likely required
for this component.

The T, pdf (Fig. 9a) showed that there is a non-negligible
probability to have a minimum temperature below 923 K. For this
reason, following the same approach as above, we investigated the
probability to have a temperature higher than 923 K in each ele-
ment. Ensuring a sufficient safety margin from the salt solidifica-
tion temperature is in fact paramount for the safety of reactor
operations.

Fig. 13 reports the results, which are again influenced by the
fact that the salt temperature is limited from below by the bound-
ary condition on the average intermediate salt temperature
imposed in the reference model. There is a quite extensive area
between the heat exchanger and the core inlet in which elements
can have a Tr < 923 K with a high probability (up to almost 30%).

69 cm (inlet HX)

64 cm
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Focusing on the heat exchanger, the cross sections reported in
Fig. 14 show that the portion between the outlet and 14 cm
upstream can be subjected to temperatures lower than the desired
threshold.

7. Conclusions

In this paper, we have successfully applied a previously vali-
dated Polynomial Chaos Expansion (PCE) method to perform a pre-
liminary uncertainty and sensitivity analysis of the Molten Salt
Fast Reactor (MSFR) behavior at steady-state. We have adopted a
high-fidelity multi-physics simulation tool developed at Delft
University of Technology as reference model. PCE with Non-
Intrusive Spectral Projections and sparse grids has been able to
greatly reduce the number of model evaluations to retrieve the sta-
tistical information on some selected reactor responses, namely
the effective multiplication factor, the maximum, minimum and
average salt temperatures, together with the complete salt temper-
ature field.

Starting from a set of 26 stochastic input parameters, both neu-
tronics and thermal-hydraulics related, we have isolated the ones
that gave relevant contributions on the responses’ variance. Using
these preliminary results to reduce the parameters space, we built

59 ecm

Fig. 12. Multi-physics PCE results: Multiple cross sections of the heat exchanger, at different heights (measured from the outlet), showing the region in which Tr < 1023 K
with a probability higher (red) or lower (blue) than 95%. As energy is progressively transferred to the secondary loop, the salt cools down increasing the probability to have a
T below the threshold. However, the first 10 cm are likely subjected to temperatures higher than 1023 K.

Probability

0.713 0.857

(a) Probability that Tp > 923K

1

1

(b) Probability higher than 95 % that Tk > 923 K

Fig. 13. Multi-physics PCE results: (a) Probability in each element of finding a temperature higher than 923 K (mid-plane cut). A quite large portion between the heat
exchanger outlet and the core inlet might be subjected to lower temperatures, and (b) Distinction between regions in which the probability is higher (red) and lower (blue)

than 95%.
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14 cm

9 cm
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0 c¢cm (outlet HX)

Fig. 14. Multi-physics PCE results: Multiple cross sections of the heat exchanger, at different heights (measured from the outlet), showing the region in which T > 923 K
with a probability higher (red) or lower (blue) than 95%. As energy is progressively transferred to the secondary loop, the salt cools down increasing the probability to have a

temperature below the threshold.

an accurate PCE approximation of the full multi-physics model
with only 161 evaluations.

Results have shown that the quite large standard deviation of
the effective multiplication factor, around 1440 pcm, is mostly
affected by the uncertainties of the macroscopic cross sections. In
particular, group cross sections in the energy range between
0.7 keV and 0.5 MeV have the largest contribution to the total vari-
ance. Therefore, research should focus on reducing as much as pos-
sible the measurement uncertainty of these parameters, in order to
narrow the multiplication factor pdf. This is further underlined by
the fact that our study did not consider capture and scatter cross
section uncertainties, hence most probably represents only a lower
limit on the k-effective uncertainty.

It has been found that the maximum, minimum, and average
salt temperatures are sensitive mainly to the reactor power, the
heat transfer coefficient and only partially to the specific heat
capacity (especially the maximum salt temperature). Unlike the
effective multiplication factor, reducing the variance of these
responses is more related to the better definition of the MSFR oper-
ational conditions and the components design, such as the heat
exchanger. The salt thermal conductivity has proven to have
almost no effect on the considered responses. This indicates that
further improvements on the statistical information of this param-
eter might not be necessary.

Finally, the analysis on the complete salt temperature distribu-
tion has highlighted that the inlet portion of the heat exchanger
can be subjected, with high-probability, to temperatures higher
than the 1023 K (750 °C) currently considered as design parameter.
Therefore, this component should be equipped with stronger high-
temperature protections. At the same time, close to the heat
exchanger outlet, the fuel salt can likely reach temperatures lower
than 923 K (650 °C). In the nominal case, this value is the lower
limit imposed on the salt temperature to guarantee a sufficient
safety margin from salt solidification, whose effects are particu-
larly detrimental for the operations of the heat exchanger (solidi-
fied salt might clog channels, drastically increasing pressure
drops and compromising heat transfer capabilities). Therefore, to
improve the safety and reliability of the MSFR operations, future
efforts should focus on increasing the likelihood that a sufficient
safety margin from salt solidification is guaranteed.
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