
Influence of the metal

inter-layer on resistive

random access memory

forming voltage

by

Jiaze Li
Student number: 5700124

to obtain the degree of Master of Science at the Delft University of Technology

Affiliation: Department Materials Science and Engineering

Faculty of Mechanical Engineering, TU Delft

Thesis committee: Prof. Dr. M.H.F. Sluiter (Chair Supervisor), TU Delft

Prof. Dr. Ryoichi Ishihara (Daily Supervisor), TU Delft

Prof. Dr. Sid Kumar, TU Delft

Prof. Dr. Sten Vollebregt, TU Delft



Abstract

Neuromorphic computing, a novel computing configuration inspired by the brain,

aims to perform calculations based on physical neurons and synapses, attracting

significant attention in recent years. Resistive random access memory (RRAM)

shows great potential in this field, demonstrating high operation speed, nanoscale

scalability, long retention time, non-volatile performance, and a simple structure.

Despite the promising performance of RRAM, a high forming voltage potentially

hinders the widespread application of the device. This thesis aims to diminish

and eliminate the forming voltage. To achieve this, different metals were inserted

between the insulator layer and the bottom electrode of the RRAM, serving as

an interface metal layer. The interface metal was expected to introduce oxygen

vacancies to the insulator, thereby decreasing the forming voltage. Advanced

nanofabrication processes were employed in the cleanroom, and a related recipe

was developed. The influence of layer thickness and device area was also studied

to gain a comprehensive understanding. Among all the samples, Ru-based devices

were observed to be forming-free.

Data analysis methods were applied to model the data, with the random forest

method found to be the most suitable, achieving an accuracy of 82.4%. The model

was verified by measurements of 10 nm Ru-based devices. Feature importance

was then calculated to interpret the model. The four most important features

determining the forming voltage are the thickness, standard electrode potential,

area, and work function of the interface metal. This work adopts a new approach

to eliminating the forming voltage, not only providing a forming-free device but

also offering a guideline for future research on forming voltage.
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1
Introduction

1.1. Research motivation

Semiconductor materials, being among the most important functional materials in

today’s society, significantly shape our daily lives. The unexpected rapid growth

of information technology, along with electrical and electronics engineering, has

created a demanding need for advanced devices. The ever-evolving information

technology system has revolutionized computers, smartphones, automobiles, and

more, leading to numerous achievements. However, this system has also become

incredibly complex, integrating hardware, software, data storage, and connectivity

within products [1].

Conventional computers adopt the Von Neumann architecture, in which

memory units and computing/processing units are physically separate, requiring

data transfer between the processor and memory (Fig. 1.1). This architecture

consumes energy and introduces latency to the system [1], [2], a phenomenon

known as the “Von Neumann Bottleneck” [3], [4]. This bottleneck has become an
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Chapter 1. Introduction 1.1. Research motivation

unignorable problem in the face of today’s large data and high-speed tasks.

Facing the aforementioned problems, neuromorphic computing has been

proposed. The concept is inspired by the human brain (Fig. 1.1), which improves

energy efficiency and reduces latency while enhancing parallelism [5], [6].

It is important to note that although conventional Von Neumann computers

may perform calculations faster and with higher accuracy, human brains are far

superior in terms of energy efficiency. For example, AlphaGo, a Google-developed

computer that defeated one of the best human players in the game of Go, consumes

tens of thousands of times more energy than the human player to accomplish the

task [5].

Figure 1.1: A Comparison between Human Brain and Computer [7]. (a) Human

brain architecture. (b) Conventional computer architecture.

Considering all the discussed hardware architectures for neuromorphic com-

puting, in-memory computing (IMC), also referred to as computing in memory

(CIM), is one of the most promising candidates [8]. Its core principle is computing

in situ, meaning computation tasks are performed within the memory unit [9]. By

2



Chapter 1. Introduction 1.1. Research motivation

integrating the functions of the memory and computing units, IMC reduces or even

eliminates the energy consumption associated with data transfer. Furthermore,

the diminished physical gap between the memory and processor, known as the

memory wall [10], [11], significantly improves system performance in terms of

latency [11], [12].

In spite of the strengths of the new architecture, IMC requires advanced mem-

ory devices that can store information and perform computing simultaneously.

Memory is the heart of IMC. Unfortunately, the most well-developed comple-

mentary metal–oxide–semiconductor (CMOS) memory devices to date are not

deemed suitable for neuromorphic computing applications. For instance, both

static random access memory (SRAM) and dynamic random access memory

(DRAM) are types of volatile memory, which fail to retain training data once power

is discontinued. NOR flash memory exhibits relatively low density [13], while

NAND flash memory features a highly condensed string structure that complicates

its integration into neuromorphic computing [14]. An overview can be seen in the

following Table 1.1.

Table 1.1: CMOS-based memory limitations in IMC

Type of Memory Limitations

SRAM Volatile and large cell size

DRAM Volatile

NOR Flash Low density

NAND Flash Complicated to integrate

Based on this, an alternative form of memory has emerged beyond conventional

charge-based memory, distinguished by its switchable resistance that encodes

information. This type of memory represents information based on its resistance

states and can be termed ’memristive devices’ in accordance with the definition

in memristive systems [15]. Some examples of memristive devices include phase

change memory (PCM) [16], magnetic random-access memory (MRAM), and

3



Chapter 1. Introduction 1.2. Problem to solve

ferroelectric field-effect transistors (FeFET) [17]. Among all memristive devices,

resistive random access memory (RRAM or ReRAM), sometimes referred to as

a memristor, is particularly attractive due to its simple structure, outstanding

scalability, fast operation speed, long retention time, and high compatibility with

the modern CMOS industry.

However, despite these advantages, there is still a considerable distance to

traverse before RRAM can be applied on a mass scale. Among all the efforts to

improve device stability, eliminating electroforming is an important approach.

Typically, a high voltage is applied to the device initially to enable resistive

switching (’2-forming’ in Fig. 1.2) [18]. The presence of high voltage forming is

unfavorable for circuit design, as it may damage the RRAM device and degrade its

lifetime [19]. The high forming voltage is also incompatible with advanced CMOS

technology nodes [20]. Therefore, developing a device that can operate without

forming (referred to as forming-free) becomes essential [21], [22].

Figure 1.2: I-V curve for a typical RRAM device.

1.2. Problem to solve

The RRAM typically has a metal–insulator–metal (MIM) structure (Fig. 1.3), where

the resistance of the insulator can be manipulated by the electric input to perform

information storage. The two metal layers act as the top electrode and bottom

electrode. Due to its vital role, much attention has been drawn to the insulator

layer [23]. Various models [24]–[26] have been established to describe the RRAM

4



Chapter 1. Introduction 1.2. Problem to solve

working process.

Figure 1.3: Metal-insulator-metal RRAM structure.

Among all the insulators, 𝐻 𝑓 𝑂2 offers the advantages of a high dielectric

constant, wide band gap, and compatibility with the modern CMOS industry [27],

[28], making it one of the most researched materials for RRAM.

To achieve forming-free operation in 𝐻 𝑓 𝑂2-based devices, one method is to

prepare multi-layer devices. For instance, a tri-layer RRAM has been fabricated

to achieve forming-free operation, with its mode of operation identified as bulk

switching [20]. 𝐻 𝑓 𝑂𝑥/𝑇𝑖𝑂𝑥/𝐻 𝑓 𝑂𝑥/𝑇𝑖𝑂𝑥 multi-layer devices have also been

observed to be forming-free, where the titanium-rich layer may induce oxygen

vacancies in the device, facilitating the formation of a conductive path in the

material [29].

Another approach to lowering the forming voltage towards forming-free

operation is decreasing the insulator thickness (Fig. 1.4). It has been confirmed

that reducing the thickness of the insulator may lead to a lower forming voltage,

with forming-free operation observed at 3 nm 𝐻 𝑓 𝑂2 [30].

Figure 1.4: Forming voltage versus 𝐻 𝑓 𝑂2 thickness for the

𝑇𝑖𝑁/𝑇𝑖𝑂𝑥/𝐻 𝑓 𝑂𝑥/𝑇𝑖𝑁 device [30].

5
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However, the multi-layer device is complicated to fabricate, and the tri-layer

or even quad-layer structure also increases fabrication costs. On the other hand,

RRAM devices with very thin insulators exhibit limited stability [31], while devices

with higher 𝐻 𝑓 𝑂2 thickness, such as 5 nm 𝐻 𝑓 𝑂2, require a forming process at

approximately 2V (Fig. 1.4) [30]. Fabricating an RRAM device with a simplified

structure and higher 𝐻 𝑓 𝑂2 thickness remains a challenge.

1.3. Project content

It is understood that the bottom electrode plays an important role in manipulating

the forming voltage [32]. The bottom electrode may introduce oxygen vacancies,

which facilitate the forming process. Additionally, the bottom electrode can

determine the interface barrier. For example, tungsten has been confirmed to

achieve forming-free operation by lowering the oxide-metal interface barrier [33].

Based on the aforementioned research, a special metal interlayer, termed the

’bottom metal’ layer, is implanted beneath the insulator in this project. Specifically,

a 5 nm 𝐻 𝑓 𝑂2 layer is deposited as the insulator. Both the top and bottom electrodes

are composed of 30 nm platinum, a widely reported electrode material used in

RRAM applications [34]. Six different metals are used as the bottom metal: gold,

ruthenium, nickel, niobium, tantalum, and titanium. The control group consists of

devices without the bottom metal, where the 30 nm platinum bottom electrode

directly contacts the insulator. Additionally, a 5 nm titanium layer is added on

top of the insulator layer to introduce oxygen vacancies from the top. The device

structure is illustrated in Fig. 1.5.

Figure 1.5: Implantation of an additional bottom metal layer.

6



Chapter 1. Introduction 1.3. Project content

The six experimental bottom metals can be roughly divided into two groups

based on their standard electrode potential, which describes how easily the metal

can be oxidized, thus evaluating the chemical activity of the metal. Gold and

ruthenium are categorized as inert metals, while the other four metals are expected

to have moderate to high chemical activity. It is expected that active metal

interlayers under the 𝐻 𝑓 𝑂2 may be oxidized and absorb the oxygen from 𝐻 𝑓 𝑂2,

introducing oxygen vacancies into the insulator. This will also modify the interface

barrier. Thus, the inserted metal layer assists the forming process and lowers the

forming voltage.

It is important to note that the chemical activity of metals can be assessed from

various aspects, and the standard electrode potential is merely one method rather

than the only method to interpret metal activity. Many factors together determine

the properties of a metal. For example, although tantalum appears active based on

its standard electrode potential, it is, in fact, inert and stable in reality because it

forms a thin layer of tantalum pentoxide as a protective layer.

By varying the metal species, layer thicknesses, and device areas, multiple

factors that may affect the device forming are investigated. The thickness of the

bottom metal is expected to determine the amount of oxygen vacancies introduced

into the insulator, while the metal’s chemical activity indicates how easily the

oxygen vacancies can be produced. A prediction of the possible understanding

of the method by which the bottom metal determines the forming voltage is

summarized in Table 1.2.

Table 1.2: Predicted parameters of the bottom metal that may affect the forming voltage

Factor Influence

Chemical activity Introduction of oxygen vacancies into the insulator

Work function Modification of the interface barrier

Layer thickness Amount of oxygen vacancies implanted

Device area Number of spots for forming CF

7



Chapter 1. Introduction 1.4. Influence of interlayer on other aspects

All devices in this project are personally handmade and measured in the

cleanroom. Machine learning is employed to uncover the intrinsic relationships

between distinct factors.

1.4. Influence of interlayer on other aspects

It is worth mentioning that, apart from the forming voltage, interlayer metal

insertion has been found to change device performance in many other aspects.

Ismail et al. [35] added an aluminum layer in the middle of the CeO2 insulator

layer (Fig. 1.6a), improving the device’s lifetime and operating voltage. TiN was

inserted between the top electrode and the insulator (Fig. 1.6b), acting as a barrier

layer to stabilize device operation and prevent failure [36]. Additionally, MoOx

was developed as an oxygen buffer layer (Fig. 1.6c) to improve device retention

[37]. Furthermore, a titanium capping layer (Fig. 1.6d) was found to improve the

device’s linearity [38], [39]. Hence, the application of the ’bottom metal’ interlayer

may not only modify the forming voltage but also influence a wide range of other

aspects.

Notably, many of the interlayers are inserted between the top electrode and

the insulator (Fig. 1.6), while the study of the interlayer at the bottom electrode-

insulator interface is much less common [32], [40]. Investigating the interlayer at

the bottom electrode-insulator interface may not only enhance our understanding

of how metal influences the RRAM forming voltage but also provide an approach

to improve RRAM devices.

8



Chapter 1. Introduction 1.5. Thesis structure

(a) (b)

(c) (d)

Figure 1.6: interlayer insertion in RRAM devices. (a) Al interlayer in the RRAM

device [35]. (b) TiN interlayer in between the top electrode and insulator [36]. (c)

MoOx interlayer as barrier layer [37]. (d) Ti interlayer as capping layer [39].

1.5. Thesis structure

This thesis is structured as follows:

• Chapter 2 introduces the background of neuromorphic computing and

RRAM devices.

• Chapter 3 details the fabrication steps undertaken to prepare RRAM devices

in the cleanroom.

• Chapter 4 outlines the measurement process and offers a brief interpretation

of the results.

• Chapter 5 discusses the application of machine learning analysis.

• Chapter 6 presents the conclusion and future outlook.
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2
Background Study

This chapter introduces the background of neuromorphic computing and RRAM

devices. The first part explains why we study RRAM, and the second section

details what RRAM is.

2.1. Von Neumann architecture

The Von Neumann architecture is widely adopted for today’s computing systems,

where the memory units and processing units are physically separated (Fig. 2.1).

This design endows modern computers with high versatility, making them useful

in our daily lives for handling various kinds of tasks [41]. However, with the advent

of the ’big data era,’ the amount of information that computers need to process is

increasing rapidly [42], making the latency induced by data transfer between the

memory and processor a serious problem. Additionally, contemporary computers

place significant emphasis on the processor, demonstrating a processor-centric

nature, which can be at odds with the prevailing trend of a data-centric approach

10



Chapter 2. Background Study 2.2. In memory computing

[5], [12], [43]. A mismatch between the speed of the processor and the speed of the

memory (mostly DRAM) is observed, known as the ’memory wall’ [10], which

limits the overall performance of computers. Energy consumption is another

issue. A significant amount of energy is dissipated in moving data rather than in

computation itself [11], [44], increasing the demand for cooling systems.

Figure 2.1: A conventional Von Neumann computing system structure, where

’ALU’ stands for arithmetic logic unit.

Efforts have been made to solve the problem. The graphics processing unit

(GPU), for instance, connects several cores with the memory, improving parallelism

[45]. Units dedicated to specific computing tasks, such as the tensor processing

unit (TPU) for accelerating multiply-accumulate (MAC) operations, have also been

designed [46]. Nonetheless, re-engineering within the Von Neumann system is

unlikely to thoroughly address the challenges.

2.2. In memory computing

Compared with modern computers, biological nervous systems may process

information more energy-efficiently [7]. Unlike a Von Neumann computer with

separate memory and processing units, biological systems perform data computa-

tion within the synapses and neurons, which are also the fundamental elements

for information storage.

Inspired by the brain, a new approach called neuromorphic computing has been

proposed. Instead of attempting to ’improve’ conventional systems, neuromorphic
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computers adopt a non-Von Neumann architecture. In-memory computing (IMC)

is one of the widely accepted hardware structures for neuromorphic systems

[47]–[49], where the basic components are essentially memory devices. Mimicking

biological systems, IMC integrates processing and storage functions in one unit

[11], [50], allowing computational tasks to be completed within memory arrays.

Compared to another concept, near-memory computing, where processing is

carried out close to the memory, IMC completes computational tasks within the

memory unit without the need to read back the content [9]. An illustration of IMC

is shown in Fig. 2.2.

Figure 2.2: In-memory computing architecture. Note that computational tasks are

completed within memory arrays.

IMC offers several advantages. By conducting calculations within memory, IMC

eliminates the gap between the processor and memory, thereby reducing latency

and energy consumption. Additionally, it significantly increases parallelism by

performing calculations within the dense array of memory devices [2], [9], [12].

The unique design of IMC provides strengths in operations such as multiply-

accumulate (MAC) and matrix-vector multiplication (MVM) [12], [51], [52], which

enhances its application in artificial intelligence (AI), particularly in the area of

machine learning [53], [54].

The key to "brain learning" is widely believed to be the updating of the

connection strength between neurons, also referred to as the "weight" of the

synapse. This feature is imitated by artificial systems and becomes the core of
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machine learning [55]. To achieve this, non-volatile memory (NVM) devices

are specially arranged to form crossbar arrays. In this architecture, input and

output lines are arranged perpendicularly, connected by a memristor at each node,

whose conductances are programmable. These memristors act as synaptic devices,

with their resistance representing the "weight" concept in biological synapses.

This architecture enables optimization on a hardware basis and offers a potential

solution to accelerate machine learning (Fig. 2.3), though it comes at the cost of

losing the generality provided by conventional computing systems.

Figure 2.3: An illustration of crossbar performs MVM operation.

The property of changing the weight of the synapses to fit the learning task is

known as synaptic plasticity [55]. This efficient MVM operation can be extremely

attractive for offline machine learning. The use of NVMs ensures that once training

is completed, the model can operate independently for the assigned task, while the

specially designed crossbar arrays optimize the calculation from the very bottom

hardware level.

As the heart of IMC, memories are expected to demonstrate fast operation

speeds, low working voltages, low power consumption, high on/off ratios, and

other characteristics. The RRAM device is one of the most promising candidates

that fulfill these requirements and is thus selected as the research objective of this

project. The device utilizes Ohm’s law and Kirchhoff’s law to execute calculations

within IMC, greatly facilitating the training of neuromorphic models [56], offering

a bright future.
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2.3. RRAM design and operation

Resistive random access memory (RRAM), offering advantages such as a simple

structure, high compatibility with CMOS manufacturing, outstanding scalability,

long retention time, low power consumption, and fast operation speed [1], [34],

[57], is now one of the most heavily studied non-volatile devices. These benefits

make RRAM a strong candidate for neuromorphic computing, with relevant

demonstrations seen in [58] and [59].

The structure of a typical RRAM device is metal-insulator-metal (MIM), where

the insulator layer provides the switching function. A bird’s-eye view of a

single RRAM device can be seen in Fig. 2.4. The resistance of the RRAM can

be manipulated by applying suitable electrical pulses, and the resistance state

will be retained unless another signal is given, demonstrating the non-volatile

characteristic of RRAM.

(a) (b)

Figure 2.4: A bird’s-eye view of a single RRAM device in (a) optical microscopy

with MIM structure in the black circle; and (b) scanning electron microscopy.

The mechanism of RRAM resistive switching is not yet fully understood. It is

generally accepted that the formation and rupture of a conductive filament (CF)

present the resistive switching property [60], [61].

Typically, RRAM devices exhibit two states: a Low-Resistance State (LRS),

corresponding to data ’1’, and a High-Resistance State (HRS), corresponding to

data ’0’. Consequently, the measurement of RRAM devices can be divided into two

principal components: set and reset. Initially, the RRAM remains in its original
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Chapter 2. Background Study 2.4. RRAM switching mechanism

HRS state until the first electrical signal triggers the formation of the CF in the

device, transitioning the RRAM into LRS; this voltage is referred to as the forming

voltage. The process that turns RRAM back to HRS is called ’RESET,’ with a

RESET voltage (𝑉𝑟𝑒𝑠𝑒𝑡), while the process ’SET’ describes the switching from HRS

to LRS, applying a SET voltage (𝑉𝑠𝑒𝑡). Current compliance is usually employed

in the SET process to protect the RRAM from potential damage, such as thermal

effects. Specifically, if it is the first time the device is set, this process is referred to

as ’forming’.

2.4. RRAM switching mechanism

Two kinds of RRAM devices are introduced in this section: oxide-based random

access memory (OxRAM) and conductive bridge random access memory (CBRAM).

Notably, apart from these two types of RRAM, there are many other kinds, such

as RRAM based on phase transition-based CFs. Scientists have studied silicon

oxide (𝑆𝑖𝑂𝑥) devices and observed silicon enrichment during the electroforming

process [62], [63]. The subsequent transition between amorphous silicon and

semi-metallic silicon is believed to be the reason for the resistive switching. This

filament switching is considered an intrinsic property of silicon oxide, as it occurs

independently of the electrode [64].

Interfaces also play a significant role in determining the switching properties

of RRAM devices [65].

2.4.1. Forming

An idealized I-V curve of the device cycle is shown in Fig. 2.5, with the forming

process highlighted. The working sequence is illustrated in the graph from steps 1

to 8. Current compliance is added at the forming stage to prevent overshooting.

During the forming process, a conductive filament (CF) is formed in the device.

According to the types of CF, RRAM devices can be divided into two main kinds:

oxide-based random access memory (OxRAM, Fig. 2.6a) and conductive bridge
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Figure 2.5: Idealized I-V curve with forming highlighted

random access memory (CBRAM, Fig. 2.6b).

(a)

(b)

Figure 2.6: Schematic diagram of the internal structure of an RRAM forming

process: (a) OxRAM forming process, where the yellow layer is the insulator. (b)

CBRAM forming process, where the blue layer is the insulator.

In OxRAM, the insulator layer is usually an oxide. There are oxygen vacancies

in the material (white circles in Fig. 2.6a). When a positive voltage is applied to

the top electrode, the oxygen atoms may be displaced from their original positions,

creating defects known as oxygen vacancies. Under a high electric field, oxygen
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ions move toward the top electrode, and the resulting oxygen vacancies drift to

form a CF [66]. The oxygen may be discharged at the top electrode or react with

the electrode, so the electrode acts as an "oxygen reservoir" [67]. The formation of

the CF significantly decreases the device’s resistance, causing the transition from

HRS to LRS (Fig. 2.5).

On the other hand, in the CBRAM device, the CF is composed of metal atoms

(Fig. 2.6b). In this case, a negative voltage is applied to the top electrode (or a

positive voltage applied to the bottom electrode). The active metal is oxidized

at the bottom electrode, and the ions migrate along the electric field towards the

cathode. The ions are reduced at the top electrode and deposited, growing the CF.

The formation of the CF marks the presence of LRS.

2.4.2. Reset

In the reset process, a reverse voltage is applied to the bipolar RRAM devices,

changing the device from LRS to HRS (Fig. 2.7).

Figure 2.7: Idealized I-V curve with reset highlighted

In the reset process, a negative voltage is applied to the top electrode of the

OxRAM. The reverse electric field drives the oxygen ions back into the bulk material

from the interface, where they recombine with the vacancies. The loss of oxygen

vacancies disrupts the CF, transitioning the device from LRS to HRS (Fig. 2.8a).

In CBRAM, a positive voltage applied to the top electrode oxidizes the metal

atoms in the CF near the bottom electrode. The ions move in the opposite direction
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due to the reverse electric field compared to the forming process. Consequently,

the CF dissolves, and the loss of contact at the bottom electrode increases the

device’s resistance, turning the device into HRS (Fig. 2.8b).

(a)

(b)

Figure 2.8: Schematic diagram of the internal structure of an RRAM reset process:

(a) OxRAM reset process, where the yellow layer is the insulator. (b) CBRAM reset

process, where the blue layer is the insulator.

2.4.3. Set

The set process is very similar to the forming process, during which the device

changes from HRS to LRS. However, the set operation voltage is usually smaller

than that of the forming process (Fig. 2.9). This is because, in a fresh device, the

defects in the material are randomly arranged (as shown in the HRS images in Fig.

2.6a and Fig. 2.6b). A high forming voltage is required to build the filament and

initiate the switching. After the device is formed, a base of the CF is constructed,

and the reset process only disrupts part of the filament (as shown in the HRS

images in Fig. 2.8a and Fig. 2.8b). Hence, a smaller voltage is needed in the set

process compared to the forming process.
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Figure 2.9: Idealized I-V curve with set highlighted

In both OxRAM and CBRAM, the CF is re-formed similarly to the forming

process. The difference is that only a portion of the CF needs to be rebuilt at

this time, rather than forming the entire filament. The schematic for the whole

operation can be seen in Fig. 2.10. Note the difference between set and forming.

(a)

(b)

Figure 2.10: Schematic diagram of the internal structure of an RRAM during the

operation: (a) OxRAM forming process, where the yellow layer is the insulator. (b)

CBRAM forming process, where the blue layer is the insulator.
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2.5. Challenges and outlook

Research on RRAM began early in the last century, and numerous devices exhibiting

resistive switching have been demonstrated [68], [69]. Companies such as Samsung

[70], Micron, and TSMC have all invested in RRAM [1]. Fig. 2.11 briefly shows

the historical development of RRAM. Current studies of RRAM focus on 3D

integration [71], [72], embedded memory [73], and chip-level integration [74].

Figure 2.11: RRAM development in history [1]

RRAM has many advantages and is currently one of the hottest topics in the

field of memory devices. However, there is still a long way to go before the mass

application of RRAM. One of the biggest challenges for RRAM is the control of

variability, both cycle-to-cycle and device-to-device [60], [75], [76]. It is also notable

that, although some devices may show superiority in one or several aspects, a

device that demonstrates comprehensive excellence has yet to be seen [34]. Despite

many groups claiming that their devices exhibit outstanding endurance, the

measuring methods may not be convincing enough [77], and device durability

remains a significant concern for RRAM [60]. Additionally, a transistor/selector is

commonly adapted for the crossbar array with RRAM to address the sneak current

problem, limiting the device’s 3D integration scalability [78]. Further study of

the RRAM switching mechanism may also aid the development of RRAM, as the

current understanding is still under debate, and applying certain repeatable and

reliable methodologies is necessary [79].
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To summarise, although this thesis attempts to address the forming issue,

there is still a need for work in areas such as device reliability, endurance, and

mechanism study.
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3
Device Fabrication

From the previous chapter, we learned that the working mechanism of RRAM

devices largely depends on the properties of the electrode. This discovery prompted

my interest in studying how electrode properties affect device performance. In

this chapter, the fabrication process for preparing RRAM devices is detailed. The

devices are categorized into seven groups, each with a distinct electrode metal,

resulting in the investigation of seven different electrode materials. Within each

group, samples are fabricated with two different thicknesses and four different

areas to examine additional influencing factors.

3.1. Facilities

The primary fabrication processes were conducted in the Kavli Nanolab cleanroom,

located in the Faculty of Applied Sciences at TU Delft. The lab is equipped with

facilities for lithography, dry etching, materials deposition, inspection, and more,

providing the necessary environment for high-resolution fabrication.
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Chapter 3. Device Fabrication 3.2. Pattern design

3.2. Pattern design

An RRAM device typically has three layers. To investigate the influence of the

device area, devices are designed with areas of 2 * 2 𝜇m, 5 * 5 𝜇m, 10 * 10 𝜇m, and

20 * 20 𝜇m. The first layer is defined as the bottom electrode, and a depiction of

the first layer pattern can be seen in Fig. 3.1.

(a) (b)

(c) (d)

Figure 3.1: The pattern design for RRAM fabrication. The side lengths for the

nodes in (a), (b), (c), and (d) are 2 𝜇m, 5 𝜇m, 10 𝜇m, and 20 𝜇m, respectively. The

purple and orange colors correspond to the first and second layers.
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In Fig. 3.1, the purple square, which is the lower unit in the illustration and

represents the first layer, is designed as the bottom electrode. The orange square,

representing the upper layer, is designated as the top electrode. The two large

squares extend and eventually intersect, forming a small overlapping area that

constitutes the desired device. Devices in four different areas are integrated on a

single chip. These devices are formed by overlapping squares with side lengths

of 2 𝜇m, 5 𝜇m, 10 𝜇m, and 20 𝜇m, respectively. For each area, the devices are

arranged in twenty columns and two rows, forming a 20 by 2 array, resulting in a

total of forty devices.

3.3. Wafer cleaning

The designed device is prepared on a silicon wafer. To ensure a clean surface and

remove possible contamination, an acid cleaning process was performed as the

first step, using fuming nitric acid (𝐻𝑁𝑂3) as the etchant. Photographs of me

performing the acid cleaning process can be seen in Fig. 3.2.

(a) (b)

Figure 3.2: Photographs of the acid cleaning process in the cleanroom. (a) An

overview picture. (b) A close-up image of the wet bench.

After the wafers were acid-cleaned, they were dried and collected in a wafer

box (Fig. 3.3a). A properly cleaned wafer should appear shiny under light (Fig.
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Chapter 3. Device Fabrication 3.4. First layer lithography

3.3b). The wafers were cleaned immediately before the experiment to prevent any

dust contamination.

(a) (b)

Figure 3.3: Wafers after cleaning: (a) Wafers in the wafer box. (b) A cleaned wafer

under light.

3.4. First layer lithography

Lithography was performed after cleaning to create the pattern. A negative

photoresist was applied to the bare wafer by spin-coating (Fig. 3.4a). The wafers

were then baked to drive off solvents, solidifying the films (Fig. 3.4b). The work

was carried out in the yellow light zone to protect the photoresist.

(a) (b)

Figure 3.4: Spin coating: (a) Applying photoresist to the chip. (b) Chip after

spin-coating.
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The coated chips were then exposed under the laser writer (Fig. 3.5a). The

laser operated at a wavelength of 365 nm. With the designed pattern uploaded to

the laser writer, the graph was directly written onto the chip by the laser. The chip

was then developed. The exposed portions of the negative photoresist became

insoluble, while the unexposed parts dissolved in the photoresist developer (Fig.

3.5b).

(a) (b)

Figure 3.5: Laser-writer exposure: (a) An image of the laser writer. (b) Chip after

lithography.

Residual photoresist was commonly seen after development (Fig. 3.6). Noting

that photoresists are usually made of organic materials, gentle oxygen plasma was

used as a photoresist descum to remove the leftovers.

Figure 3.6: Residual photoresist after development.

The surface of the devices was clear after descumming. The optical microscopy

inspection images can be seen in Fig. 3.7.
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Chapter 3. Device Fabrication 3.5. Bottom electrode deposition

(a) (b)

(c) (d)

Figure 3.7: Optical microscopy inspection after first layer lithography: images (a),

(b), (c), and (d) represent the devices with the cross-section side length of 2 𝜇m, 5

𝜇m, 10 𝜇m, and 20 𝜇m, respectively.

3.5. Bottom electrode deposition

After development, the chips were collected to perform the bottom electrode

deposition. This was done using electron beam evaporation deposition. A high

voltage was applied to the electron gun/filament to excite an emission current,

which heated the target material to a very high temperature. The material was

evaporated at such a high temperature, and the vapor was collected as a coating

on the substrate (Fig. 3.8).

The deposition was performed with two distinct pieces of equipment. First, 5

nm of titanium was deposited as the connection/adhesion layer between the silicon-

based semiconductor substrate and the subsequent metal electrode. Platinum,

a common electrode material for RRAM that has been extensively reported in

the literature, was then deposited to a thickness of 30 nm continuously after the

titanium layer (Fig. 3.9a). Experimental bottom metals were then deposited (Fig.

3.9b). They were Au, Nb, Ni, Ru, Ta, and Ti. A control group without a bottom

metal deposition was also fabricated.
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Chapter 3. Device Fabrication 3.5. Bottom electrode deposition

(a) (b)

Figure 3.8: Electron beam evaporation: (a) A schematic diagram of the process.

(b) A view looking into the chamber to see the substrate.

(a) (b)

Figure 3.9: Metal deposition equipment: (a) Deposition equipment for Ti and Pt

deposition. (b) Equipment for experimental deposition.

The experimental bottom metals were chosen based on the limited materials

available in the lab. Ideally, a greater variety of metals would have been tested. To

account for additional variables, the experimental metals were deposited in two

thicknesses: 5 nm and 30 nm. An illustration of the bottom electrode deposition

can be seen in Fig. 3.10.

After the bottom electrode deposition (Fig. 3.11), the chips underwent a liftoff

process. During this step, the chips were soaked in a solvent, which dissolved

the remaining photoresist and simultaneously removed the metal layer above it

while preserving the metal on other parts of the chip. This process ensured that

the desired pattern was achieved.

The result was then inspected under optical microscopy, revealing a clear and

tidy liftoff. Fig. 3.12 shows the inspection results for the four different-sized
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Figure 3.10: Schematic diagram of the deposition structure.

Figure 3.11: Schematic diagram of the liftoff process.

devices.

(a) (b)

(c) (d)

Figure 3.12: Optical microscopy inspection after bottom electrode liftoff: images

(a), (b), (c), and (d) represent the devices with the cross-section side lengths of 2

𝜇m, 5 𝜇m, 10 𝜇m, and 20 𝜇m, respectively.
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3.6. Dielectric sputtering

A layer of 𝐻 𝑓 𝑂2 was then sputtered onto the bottom layer. 𝐻 𝑓 𝑂2 is a commonly

used dielectric material in RRAM applications. During sputtering, argon (Ar) gas

was introduced into the chamber. Electromagnetic excitation was applied to ionize

the argon, forming Ar
+

ions. This plasma was created, and the Ar
+

ions were

accelerated to strike the target material, 𝐻 𝑓 𝑂2. Each ion that struck the target

transferred its momentum, dislodging target atoms. The dislodged atoms gained

energy from the impact and traveled directly to the substrate surface, forming a

thin film. A schematic diagram illustrating the principle of sputtering can be seen

in Fig. 3.13.

Figure 3.13: Schematic diagram of the sputtering process.

A 5 nm layer of 𝐻 𝑓 𝑂2 was sputtered onto the chips. A comparison between

the chips before and after sputtering can be seen in Fig. 3.14. Please note the color

difference between the two states.

(a) (b)

Figure 3.14: Dielectric sputtering: Chips (a) before and (b) after sputtering.
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3.7. Top electrode lithography and deposition

The top electrode was introduced afterward, following a process similar to the

bottom electrode fabrication. Lithography was performed (Fig. 3.15), followed by

deposition.

(a) (b)

(c) (d)

Figure 3.15: Optical microscopy inspection after top electrode lithography:

images (a), (b), (c), and (d) represent the devices with cross-section side lengths of

2 𝜇𝑚, 5 𝜇𝑚, 10 𝜇𝑚, and 20 𝜇𝑚 respectively.

The device was then deposited with 5 nm of titanium, which acted as a capping

layer to introduce oxygen vacancies, and 30 nm of platinum, which is a conventional

electrode metal (Fig. 3.16).

To examine the node, an optical microscopy inspection was performed, focusing

on the cross-section. A clean cross was observed for each of the devices (Fig. 3.17),

and the vertical structure corresponded exactly with that shown in Fig. 3.16.
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Figure 3.16: 3D schematic diagram of the device structure.

(a) (b)

(c) (d)

Figure 3.17: Optical microscopy inspection after top electrode deposition: images

(a), (b), (c), and (d) represent the devices with cross-section side lengths of 2 𝜇𝑚, 5

𝜇𝑚, 10 𝜇𝑚, and 20 𝜇𝑚 respectively.

3.8. Bottom electrode exposure etching

After the top layer deposition, a dielectric etching was performed. In this step, the

dielectric on top of the bottom electrode was etched away to expose the bottom

electrode for the subsequent measurement. The chips underwent a third-layer

lithography process to create small windows on top of each bottom electrode.

Subsequently, reactive-ion etching with a 𝐶𝐻𝐹3/𝐴𝑟 gas mixture was used to

remove the dielectric. During this process, the 𝐶𝐻𝐹3 reacted with the 𝐻 𝑓 𝑂2, and
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the 𝐴𝑟 etched the chip physically through bombardment. The etching rate had to

be carefully controlled to etch away the covering dielectric while preserving the

underlying metal structure. A three-dimensional schematic diagram showing the

etching process can be seen in Fig. 3.18.

Figure 3.18: Schematic diagram of the dielectric etching process.

At this stage, the preparation process was essentially complete. A view of the

finished chip can be seen in Fig. 3.19.

(a) (b)

(c) (d)

Figure 3.19: Optical microscopy inspection of the finished chip: images (a), (b), (c),

and (d) represent the devices with cross-section side lengths of 2 𝜇𝑚, 5 𝜇𝑚, 10 𝜇𝑚,

and 20 𝜇𝑚 respectively.
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Please note that the vertical structure of the cross-point, shown in Fig. 3.16,

forms a metal-insulator-metal RRAM. Observe the small square in the center of

the bottom electrode, visible as the shiny window in the center of the larger square

on the right in each image. This window exposes the bottom electrode.

3.9. Final device structure

The final device structure is shown in Fig. 3.20. The main difference between the

device I prepared and conventional RRAM devices is the addition of the bottom

metal layer. This bottom metal is expected to modify the device’s performance.

Devices with bottom metal layers of 5 nm and 30 nm thickness were fabricated.

Both the top electrode and bottom electrode consist of a 30 nm platinum layer

(light grey in Fig. 3.20) and a 5 nm titanium layer (dark grey in Fig. 3.20). A control

group without the bottom metal layer was also fabricated.

For each bottom metal at each thickness, two chips were fabricated simultane-

ously in case one failed during the preparation. Consequently, more than 25 chips

were collected during the fabrication process.

Figure 3.20: Three-dimensional image and cross-sectional image of the device.

Light grey: 30 nm platinum layer. Dark grey: 5 nm titanium layer. Insulator layer:

5 nm 𝐻 𝑓 𝑂2.

34



Chapter 3. Device Fabrication 3.10. Device characterization

3.10. Device characterization

3.10.1. X-ray diffraction analysis

Devices were characterized after fabrication. They were first examined by X-ray

diffraction (XRD) to gain phase information (Fig. 3.21, thanks to Mr. Richard

Huizenga). Unfortunately, the phases of the two experimental metals and titanium

layers were not detected due to their thin thickness. However, the presence of

platinum and silicon was confirmed, verifying the successful deposition of the

metal on the wafer.

Figure 3.21: XRD measurement results. Platinum and silicon are detected.

3.10.2. Scanning electron microscopy inspection

Scanning electron microscopy (SEM) was used to inspect the devices. SEM is

a technique that scans a sample with a focused electron beam. These electrons

interact with the sample and carry information about the sample’s topography. By

35



Chapter 3. Device Fabrication 3.10. Device characterization

analyzing these electrons, an image of the sample can be acquired. Due to its very

small wavelength, the electron beam can detect minute structures.

In this thesis, SEM was adopted to image the RRAM cross node (red circled

area on the left of Fig. 3.20). Pictures were taken from a bird’s-eye view, but

the overlapping of the bottom electrode and top electrode can still be seen in the

images.

The inspection of the RRAM node is shown in Fig. 3.22. The horizontal line in

each image represents the bottom electrode, and the vertical line represents the

top electrode. An 𝐻 𝑓 𝑂2 dielectric layer is situated between the electrodes. The

bottom metal layer sits between the bottom electrode and the 𝐻 𝑓 𝑂2 layer. The

device forms an MIM structure RRAM (right image Fig. 3.20).

(a) (b)

(c) (d)

Figure 3.22: SEM inspection of the finished chip: images (a), (b), (c), and (d)

represent the devices with cross-section side lengths of 2 𝜇𝑚, 5 𝜇𝑚, 10 𝜇𝑚, and 20

𝜇𝑚 respectively.
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3.10.3. Energy-dispersive X-ray spectroscopy analysis

Additionally, the electron beam can interact with atoms in the material, exciting

inner electrons and creating inner electron holes. An outer electron may then jump

into the hole, releasing the energy difference in the form of an X-ray. By analyzing

these X-rays, we can determine the elemental composition of the sample. This

technique is known as energy-dispersive X-ray spectroscopy (EDS).

To confirm the success of the metal deposition, EDS was used to analyze the

device. Using the chip with tantalum as the bottom metal layer as an example, the

results are shown in Fig. 3.23. The positive identification of titanium, tantalum,

and platinum confirms the successful deposition of both the experimental metal

and the electrode metal.

(a) (b)

(c) (d)

Figure 3.23: EDS inspection results: (a) Positive identification of silicon, the

substrate material. (b) Positive identification of titanium, the connection layer

between the substrate and electrode. (c) Positive identification of tantalum, the

experimental metal of the chip. (d) Positive identification of platinum, the

electrode material.
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4
Device Measurement

Having completed the fabrication, the chips were collected for electrical measure-

ment. A view of the prepared chip can be seen in Fig. 4.1 below.

Figure 4.1: A view of the fabricated chip.

4.1. Facility and equipment

The measurement was conducted in the measurement room of the Else Kooi

Laboratory at TU Delft. The equipment utilized for this process was the B1500A

38



Chapter 4. Device Measurement 4.2. Measurement process

Semiconductor Device Parameter Analyzer. Notably, the measurement was carried

out in a regular atmosphere room, rather than in a cleanroom environment (Fig.

4.2).

Figure 4.2: An image of B1500A in the measurement room.

4.2. Measurement process

During the measurement process, two metal probes were positioned on the bottom

and top electrodes. The bottom electrode was grounded while a voltage signal was

applied to the top electrode (Fig. 4.3a). Consequently, all the voltages discussed

in this section refer to those applied to the top electrode. An image depicting the

measurement process is shown in Fig. 4.3b.

(a) (b)

Figure 4.3: Illustration of the measurement process: (a) Schematic diagram of the

measuring process. (b) A photograph of the measuring process.
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Chapter 4. Device Measurement 4.3. Measurement result

Chips with different experimental bottom metals deposited in different thick-

nesses were fabricated. In the measurement step, more than 220 devices were

tested, and 2000 cycles were run. The overall results are summarized to provide a

brief overview. A table showing the fabricated samples is listed in the following

Table 4.1.

Table 4.1: Number of chips that fabricated

Metal

Size

2 𝜇𝑚 * 2 𝜇𝑚 5 𝜇𝑚 * 5 𝜇𝑚 10 𝜇𝑚 * 10 𝜇𝑚 20 𝜇𝑚 * 20 𝜇𝑚

Au

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

Nb

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

Ni

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

Ru

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

Ta

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

Ti

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

2 * t=5 nm

2 * t=30 nm

* Note: "t" represents the thickness of the metal layer.

** Note: a control group without bottom metal deposited was prepared as well.

4.3. Measurement result

Devices were measured, and the device with a 30 nm bottom metal of Au serves as

an example (Fig. 4.4). We can clearly observe the forming (red line), set (grey line),

and reset (grey line) processes. The forming voltage is significantly higher than

the set voltage. Specifically, it was observed that there are two forming cycles for

the 2 µm x 2 µm device (Fig. 4.4a), likely due to the complete CF rupture after the
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Chapter 4. Device Measurement 4.3. Measurement result

first reset. The forming voltage remains stable across devices of different sizes.

(a) (b)

(c) (d)

Figure 4.4: 30 nm Au bottom metal measurement results. Red lines: forming

cycles; grey lines: regular set and reset cycles. (a) Device size: 2 𝜇𝑚 x 2 𝜇𝑚. (b)

Device size: 5 𝜇𝑚 x 5 𝜇𝑚. (c) Device size: 10 𝜇𝑚 x 10 𝜇𝑚. (d) Device size: 20 𝜇𝑚 x

20 𝜇𝑚.

Multiple single devices were tested for each bottom metal at each device size.

The average forming voltage was calculated and summarized in Fig. 4.5. The

forming voltage is found to vary among different bottom metals.

The group labeled with Pt is the control group, where no additional bottom

metal was deposited, so the 30 nm Pt electrode directly contacted the insulator.

It is observed that RRAM devices are generally insensitive to the area, especially

when the device size is relatively large, except for those with Nb and Ti bottom

metals. The significant variation in Nb and Ti devices across different areas can be

explained by the transformation of the switching mode. During the measurements,

devices with Nb and Ti bottom metals were observed forming at both positive

and negative voltages. This may be because Nb and Ti absorb oxygen from the

insulator, acting as "oxygen reservoirs" and introducing oxygen vacancies from the

bottom, which reverses the filament growth direction. The larger the device, the

more dominant the role of the bottom metal. Therefore, these devices are more
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Chapter 4. Device Measurement 4.3. Measurement result

likely to display a negative forming voltage.

(a)

(b)

Figure 4.5: Measurement results with area variation. (a) Devices with bottom

metal 5 nm thick. (b) Devices with bottom metal 30 nm thick.
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Chapter 4. Device Measurement 4.4. Forming-free devices

4.4. Forming-free devices

During the measurements, forming-free devices were tested, most of which were

Ru-based. An example is shown in Fig. 4.6, where the red line represents the first

forming cycle. It is clearly seen that there is no forming voltage for the device.

Figure 4.6: A forming-free Ru-based device.

Throughout the measurements, approximately 35% of Ru-based devices were

observed to be forming-free. To explain this observation, the chemical activity of

the bottom metal is suspected to play a key role (Fig. 4.7).

Figure 4.7: Explanation of the forming-free devices.

It is important to note that the bottom metal was expected to be oxidized by

the insulator, causing oxygen vacancies to be implanted into 𝐻 𝑓 𝑂2 to facilitate
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Chapter 4. Device Measurement 4.4. Forming-free devices

the forming process. The hypothesis suggests that metals more active than Ru

could have already been oxidized in the atmosphere during the fabrication process

[80], resulting in no oxygen being absorbed from the 𝐻 𝑓 𝑂2 after compaction.

Conversely, gold might be too inert to attract any oxygen from the insulator, so the

forming voltage was not affected.

Ru likely serves as the optimal point regarding chemical activity, being neither

too active to be oxidized in the atmosphere nor too inert to remain uninfluenced by

the devices. However, it is crucial to remember that the results are multifactorial

rather than solely determined by chemical activity, as will be revealed in the

following chapter.
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5
Data Analysis

Having collected the data, it is crucial to understand how various factors determine

the forming voltage. Computational methods were developed to elucidate these

influences. The coding was accomplished with the assistance of ChatGPT [81].

5.1. Dataset

First, materials data were collected from The Materials Project [82]. The Materials

Project is a "multi-institution, multi-national effort" designed to assist materials

science researchers in reducing uncertainties through theoretical calculations to

enhance research efficiency. The website hosts a vast repository of materials science

information, including but not limited to material density, crystal structure, spatial

arrangement, and band structure. These data provide foundational support for

the machine learning computations in this project.

To obtain material data, it is essential to first register on The Materials Project

website, obtain an API key, and configure the website interface. In this thesis,
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Chapter 5. Data Analysis 5.1. Dataset

material information for the elements Au, Nb, Ni, Ru, Ta, and Ti was collected.

The downloaded data were then imported into Excel to create a foundational

database. An overview of the output data is presented in Table 5.1. It should

be noted that the collected information extends beyond the parameters listed in

the table. Additional factors include work function, energy above the hull, and

formation energy, to name but a few.

Table 5.1: Sample Table of Material Data

Formula Density Volume ... Fermi Energy Total Magnetization

Au 18.03 18.14 ... 5.85 0

Ni 9.22 21.14 ... 7.99 1.51

Nb 8.45 18.26 ... 5.21 4.00E-06

... ... ... ... ... ...

Ru 12.38 27.10 ... 8.37 7.00E-07

Some elements may have multiple allotropes. Among all the possible ele-

ment configurations, only those that have been experimentally observed were

selected. Configurations that are feasible only in calculations but have not been

experimentally observed were excluded from the dataset for this thesis.

The element properties were then combined with the experimental results,

which were the average forming voltages for each experimental group, concluded

from more than 220 device tests (Fig. 5.1).

Figure 5.1: An illustration of the analysis workflow.
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Chapter 5. Data Analysis 5.2. Principal component analysis

5.2. Principal component analysis

Principal component analysis (PCA) is a widely used data analysis method where

the original variables are linearly combined to form new orthogonal variables,

called principal components. These principal components represent the directions

of greatest variance [83]. The inter-relationships of the variables are calculated,

and by analyzing the principal components, we can extract the most relevant

information and simplify complex datasets [84]. An illustration of the PCA method

can be seen in Fig. 5.2.

Figure 5.2: An illustration of principal component analysis [85].

In this project, PCA was initially applied to identify feature importances.

However, the fitting result was quite unsatisfactory. The mean squared error

reached 1.56, and the prediction accuracy was only about 20% with a tolerance

of 30%. This poor result might be due to the small dataset. Although 220 data

sets seem sufficient for an experiment, they are far from adequate for a statistical

model.

5.3. Neural network

The neural network (NN) is inspired by the human brain and is widely applied

in artificial intelligence (AI). Neural networks consist of interconnected layers of
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Chapter 5. Data Analysis 5.3. Neural network

nodes, also known as neurons. The neurons in a neural network are connected

by weights, which determine the strength and direction of the signals passed

between them. Typically, there is an input layer, several hidden layers, and an

output layer. When there is more than one hidden layer, the model is referred to

as deep learning.

In this thesis, an NN model with two hidden layers, each containing 64 neurons,

was built. The two hidden layers were fully connected. Each hidden layer was

followed by a 20

Figure 5.3: Neural network structure illustration.

The model was optimized over 120 epochs. The following Fig. 5.4 depicts the

training process, where the loss is described by mean squared error. The training

loss indicates the model’s performance on the trained data, while the validation

loss evaluates the model’s performance on unseen data. The decreasing trend of

both the training loss and validation loss indicates efficient training of the model.

It was found that using fewer or more epochs led to underfitting or overfitting,

respectively. Despite this optimization, the model demonstrated relatively poor

performance. The final mean squared error of the model was 1.32, and the accuracy

was approximately 60% with a 30% tolerance. This result was better than that of

the PCA, but still not satisfactory for the analysis.
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Chapter 5. Data Analysis 5.4. Random forest regression

Figure 5.4: Neural network fitting result, where the loss is described by mean

squared error.

5.4. Random forest regression

Finally, the random forest (RF), a powerful modeling algorithm, was applied. It

was used for the regression task in this thesis with the aim of predicting numerical

values.

A decision tree, named for its tree-like structure (Fig. 5.5a), is a widely adopted

supervised learning algorithm in which the dataset is split into numerous subsets

based on the input features [86]. At each node, a decision is made based on a

selected feature, and each branch represents the outcome of that decision.

Random forest regression [87] is an ensemble learning method that operates by

constructing many decision trees during training (Fig. 5.5b). Each tree is trained on

a distinct subset of the data and makes its own independent prediction. The final

prediction is obtained by averaging the predictions of all the decision trees, which

increases the model’s robustness and provides a more comprehensive estimation

of feature importance.
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Chapter 5. Data Analysis 5.5. Model interpretation

(a) (b)

Figure 5.5: Illustration of (a) a decision tree, and (b) a random forest.

For the random forest (RF) regression training, 100 decision trees were utilized

[88]. The results from these trees were averaged to produce the final output.

Compared to PCA and NN, the RF method yielded significantly better results. The

mean squared error for RF was only 0.401, while the accuracy reached 82.4% (with

30% tolerance). A comparison of the three methods is presented in Table 5.2.

Table 5.2: Comparison of results of PCA, NN, and RF methods

Method Mean Squared Error Accuracy (with 30% tolerance)

PCA 1.56 20%

NN 1.32 60%

RF 0.401 82.4%

To understand why RF produced the best results, several factors can be

considered. First, RF is capable of analyzing non-numeric data, allowing for a more

comprehensive input, which improves the output. Second, while neural networks

perform well with large datasets, PCA is generally not favored for predictive

modeling. Given the relatively small dataset used in this thesis, RF is likely the

most suitable method.

5.5. Model interpretation

To understand the trained model, the importance of each feature was extracted.

The seven most important features of the bottom metal that determine the forming

50



Chapter 5. Data Analysis 5.5. Model interpretation

voltage are listed in Fig. 5.6.

Figure 5.6: Top Seven Important Bottom Metal Features Identified by the RF

Model.

The most relevant feature was determined to be the thickness of the bottom

metal. This can be understood in terms of the amount of absorbed oxygen. Active

bottom metals are expected to react with 𝐻 𝑓 𝑂2 and introduce oxygen vacancies

into the insulator. The bottom metal thickness indicates the amount of metal that

may be oxidized by the 𝐻 𝑓 𝑂2, thereby determining the forming voltage.

The second factor, standard electrode potential, is closely related to chemical

activity. Typically, a more negative standard electrode potential indicates that the

metal is easier to oxidize. Metals with very positive standard electrode potentials,

such as gold, are almost impossible to oxidize. The standard electrode potential

details the feasibility of the oxidation process between the insulator and the bottom

metal.

Thirdly, the influence of the area can be confirmed by previous studies [89]–[91].

Forming voltage is observed to increase as the devices scale down, which is

explained by the reduction of defects [91].
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Chapter 5. Data Analysis 5.6. Model verification

The work function is another important factor. It has been reported that the

interface barrier between the insulator and the metal can affect the forming voltage

[33]. By selecting an appropriate metal, the barrier can be lowered to minimize the

forming voltage (Fig. 5.7), potentially leading to forming-free devices.

Figure 5.7: An illustration of the interface barrier

5.6. Model verification

To verify the model, 10 nm Ru-based devices were fabricated. These devices were

produced using the same process as described in Chapter 3, but with a 10 nm

thick Ru layer as the bottom metal. The device structure of the verification group

is shown in Fig. 5.8.

Figure 5.8: 10 nm Ru verification group

The model predicted a forming voltage of 1.2 V for the 5 × 5 𝜇𝑚 devices and

1.14 V for the 10 × 10 𝜇𝑚 devices, which matched the experimental results well.

The measurement results are shown in Fig. 5.8.

The forming voltages for the 10 nm Ru 5 × 5 𝜇𝑚 and 10 × 10 𝜇𝑚 devices were

very close to the predicted values of 1.2 V and 1.14 V, respectively. Hence, the

trained model was verified by the experimental observations.
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Chapter 5. Data Analysis 5.6. Model verification

(a)

(b)

Figure 5.9: Forming voltage for 10 nm Ru devices in (a) 5 × 5 𝜇𝑚 and (b) 10 × 10

𝜇𝑚.

53



6
Conclusion and Outlook

6.1. Conclusion

In this thesis, RRAM devices with different bottom metal layers were fabricated

and evaluated. Over 220 devices were measured, revealing that the addition of an

inter-layer significantly alters RRAM performance. Notably, forming-free devices

were observed, with the rate of forming-free occurrence reaching up to 35% for

Ru-based devices. It is understood that chip oxidation in the atmosphere during

the fabrication process plays a crucial role.

To investigate the underlying principles and predict the forming voltage,

principal component analysis, neural network, and random forest regression

methods were employed. The first two methods demonstrated poor fitting results,

with mean squared errors of 1.56 and 1.32, and accuracies within a 30% tolerance

at 20% and 60%, respectively. The random forest algorithm exhibited the best

performance, with a mean squared error of 0.401 and an accuracy of 82.4% within

a 30% tolerance.
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Feature importance analysis was conducted to interpret the random forest

model. The top four important features of the bottom metal were identified

as thickness, standard electrode potential, area, and work function. It was

explained that thickness determines the amount of reacted oxygen, standard

electrode potential indicates the feasibility of oxidation, area reveals possible

defects underneath the electrode, and work function affects the interface barrier. It

is important to emphasize that forming voltage is influenced by multiple factors,

making it a complex parameter.

The model was ultimately verified using 10 nm Ru devices. Experimental data

from both 5 × 5 µm and 10 × 10 µm 10 nm Ru devices matched the prediction

results closely, demonstrating the model’s effectiveness.

This work demonstrates the feasibility of combining experimental approaches

with modeling predictions.

6.2. Outlook

However, this thesis has certain limitations. First, all devices were handmade,

which introduces device-to-device variation due to the less stable and reliable

nature of human operation compared to automated industrial processes. This

variation is reflected in the error bars in Fig. 4.5a and Fig. 4.5b. Second, despite

testing over two hundred devices, the dataset remains relatively small, reducing

the reliability of the trained models. Third, it was observed that for some devices,

the forming voltage could be either negative or positive, indicating that averaging

the forming voltage does not perfectly reflect the RRAM’s working mode or the

forming operation. Lastly, machine learning methods, such as neural networks

and random forests, are mathematical algorithms that lack physical meaning.

Developing a physics-based model to analyze and understand the forming process

can improve the model’s reliability.
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