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Abstract—Understanding the information processing in neu-
ronal networks relies on the development of computational
models that accurately reproduce their activity data. Machine
learning techniques have shown promising results in generating
synthetic neuronal data, but interpretability remains an issue
due to a large number of parameters requiring fitting. Quan-
tum machine learning models, particularly quantum generative
learning, are emerging as more compact alternatives that offer
similar outcomes. This study presents an efficient framework for
generating synthetic neuronal data using a Quantum Generative
Adversarial Network (QGAN), with a quantum generator and a
classical discriminator. We tested the proposed framework for the
minimal case of two neurons, considering the case of single time-
steps. Preliminary results demonstrate the QGAN’s capability to
achieve reliable outcomes with a reduced number of trainable
parameters, scaling efficiently for increasing neuronal network
sizes. The model effectively captures spiking frequencies of real
data, although further refinement is required to incorporate
temporal correlations for more extended time-steps. Despite
certain limitations, this study lays the foundation for future
advancements in using quantum adversarial generative networks
to model neuronal activity. The promising potential of QGANs in
this domain highlights the possibility of gaining valuable insights
into the functioning of complex biological systems through
quantum-inspired computational methods.

Index Terms—quantum machine learning, neuronal activity,
generative models

I. INTRODUCTION

The development of computational models that reproduce
neuronal activity data is an important step towards a better
understanding of how information is processed in neuronal
networks. Several models for neuronal activity achieve out-
standing results in capturing neuronal network correlations [1].
Recently, General Adversarial Networks have been applied
to produce synthetic neuronal data indistinguishable from
real measurements [2], however, they lack interpretability.
Quantum machine learning models are arising as a more
compact alternative to classical methods, with the possibility
of achieving similar results with a reduced number of param-
eters. Specifically, the field of quantum generative learning is
receiving much attention [3]. Since their conception, quantum
generative adversarial networks (QGANs) are being quickly
improved, with higher-dimensional data being produced with
a more stable training routine. Inspired on previous works in
which QGANs are used to produce discrete distributions [4],

and other quantum generative models being tested on neuronal
data [5], we show an efficient framework which enables
the generation of synthetic neuronal data for large neuronal
networks, considering spatial and temporal correlations. We
apply a hybrid QGAN, with a quantum generator that produces
synthetic activity data, and a classical discriminator that tries
to distinguish real from fake data. The outcome is a generator
that can faithfully reproduce neuronal activity data. Compared
to classical alternatives, the quantum generator has the advan-
tage of achieving reliable outcomes with a reduced number
of trainable parameters, that scale efficiently for increasing
systems’ sizes.

II. METHODS

The discriminator is a fully-connected neural network, with
an input size equal to the samples taken from the generator
or from the real data, one hidden layer with 16 units, with a
ReLU activation function, and one output layer with sigmoid
activation, representing the probability of classifying a coming
from the real dataset.

Following the work proposed by [3], the generator is
composed by a series of sub-generators, each one using a
parametrized quantum circuit, with n qubits, of which a ancilla
and f feature qubits, with different sets of trainable parame-
ters. The output of the individual sub-generators is concate-
nated to build the full generator’s output. This setting allows
for a reduced number of resources, since the same quantum
circuit can be used for the different sub-generators. In order
to capture time correlations, in this work, each sub-generator
is used to produce the spiking state of all the neurons for
one specific time-step, and following sub-generators produce
the states for the subsequent times. For each sub-generator,
first, a random state is obtained by encoding a noise vector to
an initial state, so that |z⟩ = Uz |0⟩⊗n. This is achieved by
applying RY (γ) gates to all qubits, with γ being a random
angle uniformly sampled from the interval [0, π]. Then, a final
state is retrieved by applying a parametrized unitary to the
random state, |g⟩ = Uθ |z⟩; this unitary consists of a series
of layers (in this work, 5), each one applying RY (θ

k
i ) and

RZ(θ
l
i) gates to every qubit, and CNOT gates between each

pair of nearest-neighboring qubits. The final state of the circuit
is in the form |g⟩ =

∑2n−1
j pj |j⟩, where j runs over all the
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possible basis states. In order to obtain a non-linear output,
partial measurements are performed to the ancilla qubits at
the end of the circuit, and only the amplitudes correspondent
to the feature qubits are saved and used as the output of
the circuit. A constant that depends on the system size, 2N

for N neurons, is subtracted from the feature amplitudes,
and the new values are passed through a sigmoid activation
function. This process clusters the amplitudes close to 0.5,
facilitating training convergence. Fake samples are considered
to be equal to 1 if the final post-processed amplitude is greater
than 0.5, and 0 otherwise. This post-processing step is done to
effectively produce binary outputs for different network sizes.

The dataset used is the recorded spiking activity coming
from the retinal ganglion cells of the salamander retina [?].
Training is performed for 1000 steps, with a batch-size equal
to 8, using Adam optimizer with learning rates set to 7×10−4

for the generator and 4 × 10−4 for the discriminator. During
training, the Jensen-Shannon (JS) divergence is calculated as
a metric of the distance between the estimated and the real
data distributions. In this work we show the preliminary results
where we tested the framework for two neurons sampled from
the dataset, considering a single time-step, thus only using one
sub-generator.

III. RESULTS

In Fig. 1(a) we show the JS divergence as a function of
training steps. The three red lines present in the figure are
specific training steps for which the generated data distribution
and a sample of synthetic spikes (insets) are shown, from
left to right, in figures 1(b), 1(c), and 1(d), respectively. The
untrained generator, Fig. 1(b), produces all states with similar
probabilities, whereas at the optimal training step (minimum of
the JS divergence), Fig. 1(c), the spiking states probabilities
are very similar to the real data distribution. However, for
prolonged training steps the model diverges from the optimal
point, and a typical mode-collapse behavior is observed, with
the generator producing a single state (00 state, Fig. 1(d)).
The inset of Fig. 1(a) shows the activity of 500 training steps
sampled from the real dataset. Comparing this with the three
training steps highlighted, using the generator to produce 500
sequential data points for each, we see that the untrained
model, inset of Fig. 1(b), yields a very dense signal, with
an overestimate of the activity, while the final generator, inset
of Fig. 1(d), shows no activity, since it is always producing
the same silent state. The optimal generator, inset of Fig.
1(c), produces data with a similar spiking frequency to the
real data, however, it lacks temporal correlations, not showing
a characteristic behavior with prolonged periods of spiking
activity, and other periods with no activity at all. This result is
expected, given that we trained the model with single time-step
samples.

IV. CONCLUSION

In this work, we used a QGAN to produce neuronal activity
data. The quantum generator enables the modeling of neuronal
activity using a constrained number of trainable parameters. In

Fig. 1. (a) Jensen-Shannon divergence as a function of training steps. The
inset shows a sample of activity from the real data, for 500 steps. The three
red lines represent highlighted training steps, for which, from left to right,
the model output distributions, and insets showing a sample of 500-steps
activity obtained using the correspondent model, are shown in (b), (c), and
(d), respectively.

the setting built in this work, the number of qubits necessary
scales with the logarithm of the number of biological neurons,
while the number of parameters is estimated to increasing
linearly with the number of neurons, with a direct relation
to the number of sub-generator used.

The preliminary results evidence a promising potential in
using quantum generative adversarial networks to model neu-
ronal activity in an efficient and concise manner. As next steps,
we aim to train models for increasing number of neurons and
time-steps. This is equivalent to increase the number of qubits,
and the number of sub-generators. We expect the training
instability to play a role in modeling larger models, however,
more sophisticated techniques can be adapted to the QGAN
framework, like using the Wasserstein distance to define the
networks’ loss functions.
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