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Abstract

The thermal analysis of small satellites (SmallSats) is often given a low priority compared to other sub-

systems, due to the short timelines and small budgets associated with SmallSats. However, the satellite’s

temperature is crucial for preventing mission failures. In this thesis, a new, open-source, modular software

for thermal analysis of SmallSats is created with the Python coding language, to simplify and speed up

the thermal analysis process. This modularity is achieved by: ensuring that any thermal model can be

connected to any other thermal model with a single connect function, allowing a hierarchical model structure

that is easily mutable and re-usable; integrating a material database into the software, allowing frequent

re-use of common materials, coatings, and contact connections; and including a dedicated sensitivity

analysis tool in the software to allow the user to assess the sensitivity of the model’s temperatures on

various input parameters. To assess the quality of the software’s computations, they were verified with the

commercial ESATAN-TMS software, and validated with flight data from the FUNcube-1 CubeSat. The

validation showed Root-Mean-Square Errors ranging from 1.4°C to 7.1°C for the outside panels of the

satellite. With a sensitivity analysis performed on FUNcube-1, it was found that the solar absorptivity

of the spacecraft demonstrates the greatest influence on simulation outputs: the largest risk may be its

degradation throughout time, due to ultra-violet and atomic oxygen exposure. If the satellite would have

had white paint, a year-long degradation could lead to a 17.1°C temperature increase of the maximum

achieved temperature in the satellite, depending on the type of paint used. Further development into this

software should aim to validate the model even further with different satellites, which will be an important

step towards making this tool a standard for SmallSat thermal analysis.
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1
Introduction

The thermal subsystem of small satellites (SmallSats1) is often given low priority by engineers, even though

it is critical for the functioning of the satellite [3, 4]. The goal of the thermal subsystem is to keep the satellite’s

temperature within predefined bounds, thereby ensuring optimal performance of all electronic components.

Since the main goal of SmallSats often is to perform Earth-observation measurements, the thermal design

in itself is not a mission objective, but serves the rest of the satellite. As a result, the thermal design chosen

by engineers often lacks sophistication, which shows in the fact that at least 5% of all SmallSat failures is

due to a flawed thermal design [5]. This is touched upon in more detail in the literature review in Section 2.2.

As the thermal subsystem is highly dependent on the design of the rest of the spacecraft, the thermal design

process is case-specific and time-consuming. Furthermore, thermal analysis tools such as ESATAN-TMS

require specialised engineers, who are not always available in SmallSat design teams. Attempts have

been made at developing modular thermal design tools for SmallSats [4, 6, 7]. Such modular tools employ

the similarities between all SmallSats to simplify the thermal design process, but they compromise on

quality. These compromises include: neglecting radiative heat transfer [7]; assuming optical properties

instead of determining them experimentally [6]; and lacking system-level verification [3].

This thesis project aims to bridge the gap between the complexity of thermal design and the simplicity that

is desired for SmallSats. An open-source software is developed, with an orbital module based on the work

by C. Ruiz [7], and a newly created thermal (nodal) module. Modularity is the key to this software: the

code is object-oriented, and allows to copy-paste different models and connect them to each other as

desired. Furthermore, a significant amount of effort is dedicated to improving the user-friendliness of this

software; part of that includes extensive documentation.

1.1. Research Formulation
The literature review will show that there are still numerous fields of improvement regarding thermal

analysis specialised for SmallSats. The main challenge is that existing tools are complicated to learn and

use, which can act as a barrier when choosing the thermal analysis method. Furthermore, SmallSats are

different compared to traditional large satellites, due to their different requirements, tendency towards

modularity, and the difference in resources of the designers. The thermal analysis procedure could be

greatly simplified if it is specialised for SmallSats specifically, thereby discarding its use case for large

satellites. The research question is therefore:

1SmallSats are all satellites with a mass below 180 kg (NASA: https://www.nasa.gov/what-are-smallsats-and-cubesats/).
In this thesis, the term SmallSats is used because CubeSats and PocketQubes are differently sized satellites, and they may not fall

under the same satellite category (nanosatellites (1-10 kg) or picosatellites (0.01-1 kg)). Since the terms CubeSats, PocketQubes,

nanosatellites, and picosatellites all refer to slightly different satellite types, the term SmallSats is preferred for this thesis.

1
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Research Question

How can thermal analysis tools be optimised for SmallSats, while maximising user-friendliness and

maintaining the reliability of results?

This is a high-level question, and can be divided into a number of more detailed questions, which are

stated below:

1. Since modularity is such an important aspect of SmallSats, it should be investigated how it could be

included in analysis tools, and what the advantages and disadvantages are, compared to traditional

analysis methods. This aspect is captured in Research Sub-Question 1.

2. It was also seen in the literature review that experimental and flight data are often missing in low-

budget SmallSat missions. This makes it difficult to predict of which order of magnitude the modelling

errors might be. This issue also has a relationship with modularity, as standardised/simplified modules

or values might have been verified and validated for one case, but not for the other. What would be

the overall impact of all these factors, when comparing an example spacecraft thermal model with

real flight data?

3. The last topic to discuss is the sensitivity of thermal analysis to assumptions. For example, internal

radiation in the satellite could be neglected, but such an assumption must be supported properly.

Additionally, if radiation can indeed not be neglected, would Monte Carlo ray tracing be necessary, or

are simplified view factor methods sufficient? Such questions are to be answered within this research

sub-question.

Research Sub-Question 1

What is the impact of implementing modularity in a SmallSat thermal modelling software on the

user experience and reliability of results?

Research Sub-Question 2

What level of accuracy can be achieved when validating a simplified, modular SmallSat thermal

model with flight data?

Research Sub-Question 3

Which elements within a SmallSat thermal model demonstrate the greatest influence on simulation

outputs?

1.2. Research Methodology Overview
In this section, a brief overview of the research methodology is given; a more extensive documentation of

the methodology is provided in Chapter 3.

A significant part of this thesis is spent on developing all the computations for the thermal analysis,

and developing the software’s architecture around it. However, besides developing the software, its

performance will also be evaluated using flight data from a 1U CubeSat: FUNcube-1. With this data, a

thorough sensitivity analysis is also performed. All of this is further explained in the chronological list below:

1. The first month consists of reviewing existing literature; the focus was set on SmallSat failures, a

high-level overview of spacecraft thermal control, and a more in-depth review of types of thermal

analysis computational schemes. This literature review was used as the guideline for defining the

research questions and providing the direction of this thesis, as well as allowing the formulation of

requirements.

2. Since C. Ruiz [7] has developed a MATLAB tool for the thermal analysis of SmallSats, her tool is

thoroughly investigated and checked for errors or room for improvement.
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3. The methods by C. Ruiz are an inspiration for many computations within the new Python software, but

some computations were improved, and especially, the software’s architecture is vastly different. The

new Python tool is focused on modularity, and hence takes an object-oriented approach. Developing

ideas on which types of objects would be useful, how a user should be able to construct a model,

and other questions are discussed with professors who have experience the field.

4. A ”draft” version of the software is developed, and has the aim of performing all thermal computations

correctly. The object-oriented approach is integrated, since that forms the backbone of the tool, but

extra features related to the user experience are not yet included. The computations are verified by

comparing the results with literature and the commercial ESATAN-TMS software. The FUNcube-1

spacecraft is modelled, and the results are compared with flight data.

5. Extra features are implemented, such as a material database and a sensitivity analysis tool. Con-

structing the material database consists of a small literature study that acquires physical properties

of materials that are commonly used in SmallSats. Developing the sensitivity analysis tool is done

while keeping user-friendliness in mind: not only does the sensitivity analysis on FUNcube-1 provide

estimations on FUNcube-1-specific sensitivities, but the sensitivity analysis tool should also be easily

accessible by future users. A user should be able to make their own thermal model, import it into the

sensitivity analysis tool, and immediately generate results.

6. Supplementary tasks are performed such as creating an extensive user manual (Appendix C),

uploading the software on GitLab and GitHub [8, 9], and improving the user-experience aspect of the

software. The combination of these tasks make it significantly easier for new users to get started, or

for more interested users to deeply understand the software. The latter is important in case other

people aim to improve this software (recommendations are present in Chapter 7).

1.3. Document Overview
The structure of this thesis report is as follows. Chapter 2 is a literature review concerning small satellites,

their failure mechanisms, how they relate to thermal analysis, and some general theory on thermal analysis.

Next, Chapter 3 shows the methodology behind the software, including the overall software structure,

as well as detailed descriptions of the computations that the software performs. Chapter 4 presents the

verification and validation performed on this software. The validation is done with the FUNcube-1 satellite.

Furthermore, a sensitivity analysis is presented in Chapter 5. Not only is this a general sensitivity analysis

of an example satellite, it also is part of the software, where the user can apply the sensitivity function

on their own thermal model. A conclusion is given in Chapter 6 and recommendations on future work in

Chapter 7. For future users of the software, a detailed user’s manual is provided in Appendix C, and the

source code is available on GitLab and GitHub [8, 9].



2
Literature Review

This literature review investigates the current status of thermal analysis for small satellites (SmallSats1).

This helps in understanding the big picture, and identifying knowledge gaps in the field. An extension of

this review is provided in Appendix A, showing common thermal control technologies used in SmallSats.

This information is not directly applied in this thesis, but it serves as a general understanding of spacecraft

control, which is a must when working with thermal analysis software.

2.1. The Popularity Rise of SmallSats
There has been a rapid rise in of SmallSats since the early 2010s, which can be seen in Figure 2.1.

Traditional spacecraft development has always been based on highly complex vehicles, optimised for

performance and reliability [3]. Most spacecraft were application-specific, designed for a single use case,

and therefore there is a limited amount of design that can be transferred directly to new missions. All these

large missions are costly, and require much expertise and development time to be successful.

Figure 2.1: Increase in popularity of small satellites, grouped by type [10].

1SmallSats are all satellites with a mass below 180 kg (NASA: https://www.nasa.gov/what-are-smallsats-and-cubesats/).
In this thesis, the term SmallSats is used because CubeSats and PocketQubes are differently sized satellites, and they may not fall

under the same satellite category (nanosatellites (1-10 kg) or picosatellites (0.01-1 kg)). Since the terms CubeSats, PocketQubes,

nanosatellites, and picosatellites all refer to slightly different satellite types, the term SmallSats is preferred for this thesis.

4
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Recently, smaller companies and institutes such as universities have shown interest in launching their

own satellites, but the traditional approach was simply not feasible, due to the associated high costs and

development times [11]. SmallSat developments pushed towards these requirements, by employing a

modular design philosophy, and using Commercial-Off-The-Shelf (COTS) components [11]. SmallSats

are also much smaller than conventional spacecraft, generally standardised in size by means of CubeSat

units (1 U = 10x10x10 cm) or PocketQube units [11]. This small form factor, combined with the modular

design, results in a reduction of mass, cost, and development time of spacecraft; overall, the consequence

of mission failure is significantly reduced compared to traditional spacecraft. This is of great benefit for

technology demonstrations, educational purposes, and constellations/swarming.

2.2. SmallSat Failures
As anticipated, the simplicity of SmallSats comes at a cost: low reliability. Although the consequences of

a mission failure are much lower than for traditional missions, the likelihood is much higher. In fact, it is

estimated that university-built CubeSats have a likelihood near 50% of failing within the first six months

after launch [3]; note that industry-built CubeSats are more reliable [12].

2.2.1. CubeSat Mission Fulfilment Status
Figure 2.2 from [13] shows the mission status for CubeSats launched between 2000 and 2015, after their

End-of-Life, where the subcategories are:

• Prelaunch: the mission has been aborted before launch;

• Launch fail: the mission has launched, but not successfully inserted into orbit;

• Dead-On-Arrival (DOA): the spacecraft has undergone successful orbit insertion, but no communica-

tion link can be established between the spacecraft and ground station;

• Early Loss: the spacecraft can be communicated with, but did not perform the commissioned tasks;

• Partial Mission: the spacecraft has been able to perform a number of operations;

• Full Mission: the minimum number of requirements has been met to deem the mission a success;

• Unknown: the status is unknown to the developers, or the developers did not announce it publicly.

[14] show a similar type of mission status figure, see Figure 2.3, but up until 2018. Furthermore, the cate-

gories are slightly different. In the legend, for example, launched means that the spacecraft has successfully

been launched, but no further information has been received afterwards. Similarly, deployed means

that deployment was confirmed, but that no telemetry data has been available yet for the phases afterwards.

Figure 2.2 only looks at missions which have come to an end, while Figure 2.3 also includes all CubeSats

still in operation (”Primary Operations”). Nevertheless, a similar trend in both figures is that near 40-50%

of the missions are essentially failed, of which the majority of failures occur early in the mission.
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Figure 2.3: Distribution of all CubeSat mission

statuses as of 31 May 2018 (adapted from [14]).

A more general trend on SmallSat failures is shown by [12] and [14]. [12] compare missions from 1990-2009

with 2010-2019; Table 2.1 clearly shows an improvement in mission success rates. [14] agree with this

statement, see Figure 2.4. However, it is also clear that, throughout time, it will take longer to keep

improving these success rates (the curve flattens).

Table 2.1: Failures of ”small” satellites between 40-500 kg, where censored indicates that the spacecraft

monitoring was stopped or that the spacecraft was turned off before it failed [12].

Launch year Launched Failed Censored

1990-2009 441 228 213

2010-2019 425 56 369

Figure 2.4: Increasing CubeSat success rate as a function of launch year [14].
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2.2.2. Causes of Failure
Several authors [3], [12], and [15] dove deeper into the technical causes of mission failures has been done,

although the exact cause of failure is not always known. Some important conclusions are:

• According to [3] and [15], the smaller the satellite, the more quickly after launch the reliability drops;

for example, Figure 2.5 shows that picosatellites (such as PocketQubes) are almost half as reliable as

nanosatellites (such as CubeSats), for a given time after launch. However, if the mission objectives

of picosatellites are based on shorter lifetimes, they can still be met.

Figure 2.5: Reliability of different SmallSat form factors [3].

• There are often not enough system-level functional tests to verify proper functioning of the integrated

system [3]. This is related to the high costs associated with testing campaigns, and such budgets are

often not available. On one hand, it can be worth it to invest in developing novel testing/qualifying

strategies [4]. On the other hand, the focus could be shifted to improving the reliability of analysis

software, e.g. by more extensive validation with flight data of either a predecessor spacecraft, or

similar other spacecraft.

• The distributions of the reliability of several subsystems are shown in Figure 2.6. Overall, the most

failures occur in the Electrical Power System (EPS), On-Board Computer (OBC), and communications

[3, 15]. It should be noted that the majority (40-80%, depending on the lifetime) of the failures has

an unknown cause [3]. In all cases, the reliability drops the most severely at the beginning of the

mission, which is known as the ’infant mortality’ [15]. The telecommand (TT&C), mechanical (M&S),

and thermal (TCS) subsystems relatively show the fastest drop, corresponding to the most severe

infant mortality [15]. In other words, if these subsystems survive the initial phase after launch, they

are unlikely to cause more issues.

This is understandable for the mechanical and thermal subsystem: firstly, if the mechanisms survive

the launch and any possible deployments are successful, the mechanical system remains rather

passive during the rest of the flight; secondly, most SmallSat thermal systems are passive [16], so

they are likely to experience cyclic behaviour once the initial steady-state has been reached after

deployment from the launcher. The latter was seen with Delfi-PQ, where the actual temperature was

15°C lower than expected, after which the temperature remained cyclic [17]. This resulted indirectly

in a performance reduction of other subsystems, as the performance of electronics heavily depends

on temperature [5].
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Figure 2.6: Reliability of different subsystems on CubeSats over time. Notice that the x-axes of the

subfigures are not identical [15]. AD&C is Attitude Determination & Control; Pay is payload; OBC is

On-Board Computer; EPS is Electrical Power System; M&S is Mechanisms & Structures; TCS is Thermal

Control System; and TT&C is Telemetry, Tracking, & Command.

Limited information on the specific failures due to a dysfunctional thermal subsystem has been found,

besides the information shown before. A reason for this could be that the thermal subsystem often has an

indirect impact on the spacecraft’s performance: e.g., if the temperature is too high, the batteries might fail,

so the failure is attributed to the electrical power system [18]. The study by [18] indeed categorises failures

in this manner, by including the thermal subsystem indirectly in all other subsystems. This makes it difficult

to know to what extent the thermal subsystem really is the cause of failure.

A final comment can be made on the failed battery example. [19] presents a database of failed missions

between 2001-2016. Newer, similar information on such a database could not be found. Regardless, there

are three instances where failed thermal management was directly related to issues with the battery. They

are mentioned below. This suggests that the batteries could be a sensitive element on the spacecraft

when it comes to temperature discrepancies.

• QuakeSat, 3U CubeSat, Stanford University: ”both batteries were lost, allowing the mission to

continue on solar power only. Loss of batteries thought due to high battery temperatures (120

degrees Fahrenheit) which may have caused the electrolyte to bake out since the batteries were not

sealed beyond the normal factory packaging.” [19, p.20].

• SpriteSat (Rising) Tohoku University of Sendai, Japan: ”The battery charging system allowed the

temperature of the battery to reach critical levels.” [19, p.24].

• TET-1 (DLR): ”The temperature within the satellite was higher than predicted, causing the battery

voltage to be slightly exceeded. Re-orienting the attitude of the satellite remedied this problem.” [19,

p.31].
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2.2.3. Delfi-PQ Example
The Delfi-PQ (PocketQube) is a picosatellite launched in January 2022 by Delft University of Technology

(TU Delft) [10]. After approximately two years of operation, the spacecraft de-orbited [20]. An image of

Delfi-PQ in the lab is shown in Figure 2.7.

The thermal behaviour of the spacecraft was more than 15°C below the expected values [7, 17, 21], and

this was immediately visible after launch [21]. This thermal anomaly is indeed a case of infant mortality,

since the issue manifested itself immediately after launch. This indicates a severe shortcoming in the

thermal balance analysis which was done pre-flight, and it is possible that these shortcomings are due to a

lack of validation/experimental data. Although TU Delft has launched other satellites before this, Delfi-PQ

was the first PocketQube format sent by the university. A lack of familiarity with the PocketQube format

and hence a lack of experimental data could be the reason for the unexpected behaviour in orbit.

The acquired thermal data is discontinuous, due to unforeseen circumstances, and looks like Figure 2.8.

The difference between eclipse and in sunlight is clearly seen, but since the data has long gaps in between

the acquired points, this data by itself would be insufficient to correlate the analytical model to, and hence,

[17] proposed machine learning methods to fill in the gaps in this data.

Figure 2.7: Delfi-PQ PocketQube by TU Delft [10].

Figure 2.8: Delfi-PQ flight data of the spacecraft temperatures over the course of 5 days ([17] adapted

from [21]).
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2.2.4. Fault Detection, Isolation, and Recovery (FDIR)
Failures can also happen when there is an incorrect reading of sensory data, which is called a fault [22,

23]. Sensory data with respect to the thermal control entails temperatures and power flows; if any of those

telemetry data are wrong, it becomes extremely difficult to use the flight data for monitoring and validation

purposes.

FDIR is used on spacecraft since there is no opportunity for maintenance or manual check-ups [22]. To

solve this issue, an automated system with detectors and monitors is used to perform regular check-ups

on the system health. Properties of these detectors and monitors are [23]:

• Detectors: evaluate the value of a specific measurement on-board the spacecraft as either a True

or False; for example, a detector could be a thermistor on a critical spacecraft component such as

the battery, where the boolean value is determined by a pre-defined temperature range. When the

temperature is within the range, the detector returns True, and otherwise, it reports False. Data

filters, such as a low-pass filter [23], can be applied to avoid unstable responses.

• Monitors: identify patterns in the detector outputs. For example, in Figure 2.9, monitor A trips if

detector 1 and either 2 or 3 return True. The activity of monitors can be defined by ground control, in

the states depicted in Figure 2.10: in the bypass state, the monitor will never trip; in the check state,

the monitor is active and will trip if a pattern, as mentioned before, is identified; lastly, the command

state is entered after a trip, with the aim of mitigation/recovery.

Figure 2.9: Example of the relationship between FDIR detectors and monitors [23].

Figure 2.10: Possible states of FDIR monitors [23].
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The connections between detectors and monitors can be visualised in a configuration matrix, such as the

one in Figure 2.11. The detectors are given an ID and a pre-defined range (which could be temperature, for

example). The filter coefficient is related to a low-pass filter, if this is decided to be applied. The coloured

columns at the top are the monitors, which are given a checking period and a persistence. The persistence

means that the same fault should be detected multiple times before the monitor trips. Finally, ”O1” and

”A1” in the matrix indicate OR and AND relationships between the multiple detectors, similarly to what was

shown in Figure 2.9. For example, monitor Unit A Health trips if either Unit A Temp 1 OR Unit A Temp 2 is

False (out of the defined bounds), AND Unit A Msg Index is True (constant, where the change is 0).

Figure 2.11: FDIR configuration matrix with the detectors on the left rows and the monitors on the top

columns [23].

2.3. Spacecraft Thermal Control
As seen in the Delfi-PQ example, the thermal subsystem is a crucial part of designing a functional

spacecraft. The harsh space conditions result in large temperature gradients if the thermal subsystem

is not designed properly: the lack of an atmosphere results in strong solar irradiation, heating up the

spacecraft; the darkness of an eclipse results in severe temperature drops; the lack of convective heat flow

in space limits the way in which the spacecraft temperature can be controlled, as the only heat exchange

with the environment is radiative. The combination of these conditions makes the thermal control of

spacecraft a unique challenge.

This section functions as a general introduction to spacecraft thermal control, but for the interested reader,

some example thermal control technologies are mentioned in Appendix A.

2.3.1. Simplified Heat Balance
The heat exchange of the spacecraft with the space environment consists of the following aspects [24,

p.202][25, pp.21-33], which are also depicted in Figure 2.12:

• Solar heat (Q̇solar): the solar spectrum spans a wide range of wavelengths, but the intensity peak is

around the visible spectrum. The spacecraft’s surface properties related to sunlight are therefore

tailored to visible light, and are notated as the solar absorptivity α.

• Albedo (reflected solar heat, Q̇albedo): a fraction of the incoming sunlight reflects off the Earth, towards

the spacecraft. The albedo factor a ranges from 0-1, where 0 means that all radiation is absorbed by
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Earth, and 1 means that all radiation is reflected. Again, the solar absorptivity α is used to denote

the spacecraft’s absorptivity of albedo.

• Earthshine (infrared, Q̇Earthshine): infrared (IR) radiation emitted by the Earth itself. These are longer

wavelengths than Sunlight (and albedo), so the absorptivity α does not apply, but instead the IR

emissivity ε is used as a spacecraft surface parameter. It is therefore possible to have a material
that emits/absorbs well in the Solar spectrum, but poorly in the IR, or vice versa.

• Spacecraft internal heat (Q̇internal): internal electronics generate heat, depending on the activity of

the satellite.

• Spacecraft outgoing heat (Q̇out): IR radiation emitted by the spacecraft itself. These are a similar

wavelength compared to Earthshine, so also the emissivity ε applies.

Spacecraft
Q̇ solar

Q̇ albedo Q̇ Earthshine

Q̇ out

Q̇ internal

Sun

Earth

Figure 2.12: Incoming and outgoing heat for a spacecraft orbiting Earth.

The balance between the incoming and outgoing heat determines the change in temperature of the

spacecraft. The net heat flux is related to the temperature change via the spacecraft’s heat capacity: mass

(m) times specific heat capacity (ccap). Therefore, the heat balance equation can be formulated as shown

in Equation 2.1 follows (adapted from [24, p.202]). Here, all heat Q̇ has the unit [W], the mass m is in [kg],

the specific heat capacity ccap is in [J/(kg·K)], and the temperature change dT/dt is in [K/s] or [°C/s].(
m · ccap ·

dT

dt

)
spacecraft

= Q̇solar + Q̇albedo + Q̇Earthshine + Q̇internal − Q̇out (2.1)

This model is denoted as ”simplified” since there are a few other components that could have a (small)

effect. These components are:

• Free molecular (aerothermal) heating due to the atmosphere [25, pp.32-33]. This could be modelled

by an analytical equation such as [25, p.32], or by using Direct Simulation Monte Carlo (DSMC)2.

q̇aero = α

(
1

2

)
ρV 3 (2.2)

where q̇aero is the heat flux in [W/m2], α is the accommodation coefficient (which is related to gas-

surface interaction [26]), ρ is the surrounding gas density in [kg/m3], and V is the relative velocity

between the atmosphere and spacecraft in [m/s].

2Wikipedia: https://en.wikipedia.org/wiki/Direct_simulation_Monte_Carlo

https://en.wikipedia.org/wiki/Direct_simulation_Monte_Carlo
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For example, at an altitude of 350 km (such a low altitude is common for PocketQubes [27]), the

mean density is 8.33·10−12 kg/m3 [28, p.1031]. In the worst-case scenario where α = 1 [25, p.32],
the aerothermal heating would be approximately 1.9 W/m2. This value greatly increases for lower

altitudes, since the atmospheric density and spacecraft velocity both increase. Hence, this simple

analysis should be done in every case to avoid neglecting this heat flux without a solid justification.

• Charged-particle heating [25, pp.34-36]. Charged particles are trapped in the Van Allen belts, and

their abundance also depends on solar activity. According to [25, pp.34-36], these particles mainly

cause heating when the spacecraft contains cryogenic parts; the lower the temperature, the more

charged-particle heating occurs. For instance, a radiator at 100 K at 3200 km altitude can heat up by

2 K due to this effect [25]. If the spacecraft is near room temperature, the heating is negligible [25].

2.3.2. The Difference Between SmallSats and Large Satellites
The temperature band in which the spacecraft must stay is usually dependent on the sensitivity of the

components on board. These can be high-end solar cells, or sensitive payloads. Generally, ”better”

payloads require a stricter temperature range. This is related to the complexity of the payload; optical

components may have nanometre precision, which would be ruined by inconsistent temperatures. Up

to now, SmallSats have not had any advanced temperature control, which means that their temperature

fluctuates a lot, thereby drastically limiting the payload capabilities [29]. More advanced thermal control

concepts from conventional satellites could be adapted for SmallSats, or completely new technologies

could be developed. This would all be beneficial in increasing the scientific potential of SmallSats.

Some major differences between the thermal control of SmallSats and that of large satellites are:

• SmallSats have smaller masses than large satellites, which leads to them having smaller thermal

capacities. This means that their temperatures fluctuate more when the thermal fluxes change. As a

result, it is more difficult to maintain a constant temperature without active thermal control [16] .

• SmallSats have a limited external surface area, making it more difficult to have radiators to reject

heat to outer space [16]. In the case of Delfi-PQ, the solar cells take up so much space that there are

no dedicated radiators in the current design [6], but only small areas in between the solar cells act as

radiators. Since the emissivity of the solar cells cannot be changed for thermal control purposes, it

severely restricts the possibilities of sophisticated thermal control.

• Most SmallSats do not have sufficient power to employ active thermal control techniques [16]. This

is especially true for satellites with body-mounted solar panels [30], such as Delfi-PQ, since these

panels are not pointed continuously at the Sun.

• Most SmallSats do not have a stable attitude, but are freely tumbling. This tumbling complicates the

use of radiators; radiators reject heat from the spacecraft to space, but they ideally point away from

the Sun, to limit incoming heat. If the radiator points at the Sun unexpectedly, it starts absorbing

heat instead of rejecting heat, which is the opposite effect of what is desired.

Another negative effect of freely tumbling spacecraft is that the exact attitude cannot be predicted in

advance; it is determined by the separation of the satellite from the mother-vehicle, which is difficult

to predict. An average expected angular velocity may be available during the analysis/design phase

[6], but it still limits the reliability of the temperature predictions.

2.4. Thermal Analysis
The very basics of thermal analysis were explained in Section 2.3: the net difference between incoming

and outgoing heat results in a temperature change of the satellite, and the internal heat transfer occurs

through radiation and conduction. However, a lot more complexity arises when implementing the theory

into a computational program.

The entire thermal analysis procedure consists of multiple steps, which are mostly universally agreed upon

by thermal engineers. This section describes this analysis architecture, closely following ECSS guidelines

[31] and the Spacecraft Thermal Control Handbook (Gilmore) [25]. An overview of the whole thermal

analysis process is shown in Figure 2.13. The main importance is the separation between the left and

right branches of the diagram. The left branch represents the Geometrical-Mathematical Model (GMM),

and the right branch represents the Thermal-Mathematical Model (TMM).
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Figure 2.13: Thermal modelling process example by the ECSS [31].
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2.4.1. Geometrical-Mathematical Model (GMM)
The GMM is a type of model that consists of geometrical shapes and surfaces, each having their own

radiative properties. The goal of this model is to calculate radiative exchange factors between all surfaces

(both the external radiation from the Sun and Earth, and the internal radiation). Therefore, this model does

not contain inner conductive couplings within the spacecraft, and does not predict any temperatures [25,

pp.536-552] [31].

Within the GMM, an orbital model must be included, which is also seen in Figure 2.13. The orbital model

calculates the spacecraft’s attitude with respect to the Sun and Earth throughout the mission lifetime,

hereby also simulating eclipse times. This is not further discussed here, but details can be found in [7, 17,

25]. Furthermore, a method for internal radiative exchange factors must be included, which is generally

either using (simplified) view factor calculations from the ECSS standard [32], or using numerical Monte

Carlo ray tracing (MCRT) [31, 33].

Internal Radiation

Not only is radiation the single heat transfer phenomenon by which heat enters and leaves the spacecraft,

it also plays a large role internally. The smaller the satellite, the more important radiation becomes, up to

80% for PocketQubes, which is shown in Figure 2.14 [4].

Figure 2.14: Worst-case scenario for relative thermal conductance of the internal heat transfer within

Delfi-PQ and SMOG-1 [4, p.44].

The radiation exchange between two objects can analytically be defined using view factors (Fij) and

Gebhart factors (Bij). The former describes what fraction of the total field of view of one surface the other

surface occupies. The latter is similar, but also takes multiple reflections into account. The heat flow from

body 1 to body 2 can then be defined as [34]:

Q̇12 = ε1A1B12

(
σT 4

1 − σT 4
2

)
= R12

(
σT 4

1 − σT 4
2

)
(2.3)

where Q̇12 is the heat flow from body 1 to body 2 in [W], ε1 is the emissivity of body 1, A1 is the surface

area of body 1 in [m2], B12 is the Gebhart factor from body 1 to 2, σ is the Stefan-Boltzmann constant

(σ = 5.670374419 · 10−8 W/(m2K4) [1]), T1 is the temperature of body 1 in [K], T2 is the temperature of body
2 in [K], and R12 is commonly referred to as the radiative exchange factor. The Gebhart factor is in turn

defined as [34]:

Bij = Fijεj +

n∑
k=1

[(1− εk)FikBkj ] (2.4)
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where Fij is the view factor from surface i to surface j. The index i is the emitting surface, the index j
is the receiving surface, and the indices k are all surfaces in the system off which the rays can reflect.

The emitting surface itself is also included in the summation over k, since a ray can reflect off its original
surface when that surface is concave. The exact definition of the view factor is [32]:

F12 =
1

A1

∫
A1

∫
A2

cos (β1) cos (β2)

πS2
dA2dA1 (2.5)

where β are the angles in [rad] between the normal of the surface and the line between the two surfaces,

and S is the distance between the two surfaces in [m].

The view factor Fij is coupled to the view factor Fji via the reciprocity relation [34]:

FijAi = FjiAj (2.6)

Similarly, the Gebhart factors Gij and Gji are related to each other via another version of the reciprocity

relation [34]:

εiAiBij = εjAjBji = Rij = Rji (2.7)

Another property of view factors and Gebhart factors is that, for a given emitting surface, they must add up

to unity, since all emitted energy is conserved [34]. These summations include j = i.

n∑
j=1

Fij = 1 (2.8)

n∑
j=1

Gij = 1 (2.9)

The aforementioned can be implemented in software in two ways:

1. Simplified method using analytical view factors: as described before, and only using a standard

set of view factor expressions from ECSS. This limits the types of geometries that can be used, but

also greatly simplifies the calculations. For example, it could be assumed that all surfaces within

the spacecraft are parallel or perpendicular [33]. These are the two cases from ECSS shown below:

Figure 2.15 and Equation 2.10 are for two perpendicular plates, and Figure 2.16 and Equation 2.11

are for two identical parallel plates.

Φ

A2

A1

 b 

 a 

 c 

a/b=N
c/b=L

Figure 2.15: View factor geometry for two angled plates (adapted from [32, p.37]). Φ = 90°C is the case

for perpendicular plates.
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F12 =
1

πL


Larctan

(
1
L

)
+Narctan

(
1
N

)
−
√
N2 + L2arctan

(
1√

N2+L2

)
+

+ 1
4 ln

[
(1+N2)(1+L2)
(1+N2+L2) ·

(
L2(1+N2+L2)
(1+L2)(N2+L2)

)L2

·
(

N2(1+N2+L2)
(1+N2)(N2+L2)

)N2]
 , where: N =

a

b
;L =

c

b

(2.10)

A2

A1

b

a

c

Figure 2.16: View factor geometry for two identical parallel plates

(adapted from [32, p.35]).

F12 =
2

πXY
·

 ln
[ (

1+X2
)(

1+Y 2
)

1+X2+Y 2

]1/2
+X

√
1 + Y 2arctan

(
X√
1+Y 2

)
+

+Y
√
1 +X2arctan

(
Y√

1+X2

)
−Xarctan (X)− Y arctan (Y )

 , where: X =
a

c
;Y =

b

c

(2.11)

2. Monte Carlo Ray Tracing (MCRT): ESATAN-TMS uses Monte Carlo ray tracing to approximate

the radiative exchange between all surfaces. A Monte Carlo method is a stochastic computation

technique to numerically solve problems. Ray tracing is simply to follow a beam of radiation as it

reflects off of different surfaces. Hence, Monte Carlo ray tracing refers to firing random rays from

a surface, checking which other surfaces it hits, and hence determining the view factors / Gebhart

factors between surfaces [35]. The number of reflections of each beam can be determined by the

user, or could be based on a minimum beam energy threshold (e.g., the beam could be stopped

when the energy is below 1% of its original value). A sample algorithm is shown in Figure 2.17; this

algorithm does not compute the view factor separately, but immediately assesses the heat transfer.

In case only the view factor is to be calculated, Equation 2.12 is used. Here, Nij is the number of

emitted rays from surface i hitting surface j, and Ni is the total number of rays emitted from surface

i. Depending on whether multiple reflections are taken into account, the view factor would instead be

the Gebhart factor.
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Figure 2.17: Example of a Monte Carlo ray tracing algorithm [36].

Fij =
Nij

Ni
(2.12)

A comparison of the two methods for radiative calculations is shown in Table 2.2. The judgements for the

scores on analytical view factors are speculative, since [33] appears to be one of the few to elaborate on

the use of the ECSS equations [32] for view factor determination.

• Simplicity is considered highly important, especially when the analysis tool is to be developed by

students. Ray tracing is complicated and a lot of effort can be spent optimising the algorithms3. The

view factor approach simply uses a standardised set of equations from ECSS [32].

• Computational Cost has a low priority, as long as the computation times are not unreasonably long

(which could entail waiting hours for a single radiative case). From the author’s experience using

ESATAN-TMS, the ray tracing approach does not exceed a few minutes per entire orbital analysis.

Custom-built algorithms are likely to be less efficient, and it could be something to investigate in

more detail.

• Reliability is moderately important, since SmallSat missions have less strict tolerances [29, 7], but it

is still suggested by [4] that radiation could account for up to 80% of all internal radiation in a CubeSat.

The view factor approach is less reliable than Monte Carlo ray tracing, since it is based on numerous

assumptions, which were explained in the previous section [33]. It is also expected (but not yet

proven) that the reliability of the view factor approach depends on the conditions, such as satellite

size and distance between panels.

• Flexibility is considered highly important, and is essentially referring to modularity. The view factor

approach would only be valid under a fixed number of circumstances for which the equations [32]

are defined, which could restrict the satellite’s design, while the ray tracing approach does not

depend on such assumptions. However, the ray tracing approach is not highly flexible, since a

simple non-geometric approach such as the one from [7] would not suffice, and a completely different

geometrical model definition would have to be implemented.

3Wikipedia: https://en.wikipedia.org/wiki/Path_tracing

https://en.wikipedia.org/wiki/Path_tracing
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Table 2.2: Comparison of simplified view factor analysis and Monte Carlo ray tracing, from the point of

view of SmallSats. The column width represents their importance for SmallSats; ”L”, ”M”, and ”H” are for

”low”, ”medium”, and ”high”; and the cell colours represent whether the property is desirable (green),

neutral (yellow), or undesirable (red).

Radiative com-

putation
Simplicity

Computa-

tional Cost
Reliability Flexibility

View factors H L M L

Monte Carlo ray

tracing
L H H M

2.4.2. Thermal-Mathematical Model (TMM)
After the GMM has produced the external heat loads and the internal radiative exchange factors, those

results can be fed into the TMM [31]. The TMM is a lumped parameter model, which means that the

spacecraft is discretised into a finite number of nodes, where each node has its own thermal capacitance

[J/K] and conductance [W/K] to other nodes [31] [25, pp.536-552]. The nodal model can be drawn as a

thermal network, which has similar properties and calculation rules as electrical resistance-capacitance

networks [37] [25, pp.536-552].

The result of the TMM calculation is the expected temperatures of all nodes [31]. For one set of input/output

heat values, one temperature distribution results. As also shown in Figure 2.13, a numerical solver is

needed for complex networks (although hand calculations can be done on simplified networks [37]).

Conduction

Conduction is the heat transfer method for TMM networks, and there are two types of conduction: through

a single material, and contact interface conductance between two materials. The following formulas are

adapted from [34].

The heat flux from point 1 to point 2 through a single material is calculated with Equation 2.13, and the

heat flux through a contact interface is calculated with Equation 2.14:

q̇12through
= k · T1 − T2

L
(2.13)

q̇12contact
= h · (T1 − T2) (2.14)

where q̇12through
is the heat flux from 1 to 2 in [W/m2], k is the thermal conductivity of the material in

[W/(m·K)], T is the temperature in [K], L is the distance between the nodes in [m], q̇12contact
is the contact

heat flux from 1 to 2 in [W/m2], and h is the heat transfer coefficient in [W/(m2·K)].

The conductance Ccon in [W/K] can also be defined for these two types of conduction:

Ccon,through =
k ·A
L

(2.15)

Ccon,contact = h ·A (2.16)

where A is the cross-sectional/contact area in [m2].

2.4.3. Alternative Analysis Architectures
Traditionally, the GMM and TMM are separate software, and have separate models, even though they

represent the same mission. However, there is a trend towards other architectures, where data flow

between the GMM and TMM could be improved, or where the data flow between other subsystem analyses
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could be improved, such as:

• Combined GMM & TMM: [31] claims that the line between the GMM and TMM blurs in some cases,

when the TMM is immediately calculated during the GMM calculation. Not much literature is available

on this topic, but it could be valuable to investigate this option experimentally. One argument for a

single integrated software could be that the user experience improves, since one model would be

sufficient for the entire analysis.

• Modularity approach: modularity is highly relevant for SmallSats, considering that SmallSats are

often built with COTS and are standardised in terms of size [11, 33, 6]. In that sense, the thermal

analysis process can also be very different from largemissions, since those aremuchmore specialised

and require specialised analysis. However, several authors [6, 33, 7] display their concern for this

complexity of traditional thermal analysis, since university SmallSats are often worked on by students

or engineers who are not specifically experts in thermal analysis.

Firstly, a modular analysis tool would include a component database [6, 33]: many parts in SmallSats

are commonly used, such as the PCB type, structural rods, solar cells, etc. If each SmallSat

developer would have to experimentally verify all the thermal capacitance and conductance values

of all components, it would complicate and slow down the thermal analysis. Instead, if the thermal

properties of those commonly used parts are included in the software, it provides a much simpler

solution, which could be good enough depending on the application. Previous authors [38, 4] have

conducted such experiments (or invented methods to simplify those experiments) to determine the

thermal properties of common SmallSat components.

Secondly, a modular tool would include some capability from the software side to easily connect

components together. [33] uses ”potential connectors”, which are pre-defined on the database

components. They correspond to the physical connections in a SmallSat.

• Digital twin approach: in the context of spacecraft, a digital twin is virtual copy of the physical

spacecraft (”physical twin”), that exchanges data with the physical twin [39, 40], and it is intrinsically

related to Model-Based Systems Engineering (MBSE). It is not specifically related to the thermal

subsystem, but more to the entire spacecraft. Nevertheless, a similar architecture could be used to

improve the thermal design by means of this one-on-one data flow between the physical and digital

twin. Furthermore, it would allow to easily spot discrepancies between the model and reality during

operation, since the flight data is immediately fed into the digital twin.

As seen in Figure 2.18, a digital twin can already be created during the conceptual phase. Since

not all spacecraft data is known yet at that stage, it is important to make the model robust [39],

preventing singularities and other errors. Furthermore, it is crucial that the digital twin and physical

twin have a number of fixed reference points which are monitored [40, 39], to allow for one-on-one

data comparison.

Figure 2.18: Digital twin concept for a spacecraft [39].

A summary of the aforementioned thermal analysis architectures is shown in Table 2.3. The importance

(width) of each column and the scores in all cells, for SmallSats specifically, are judged based on common

remarks from several authors:
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• Simplicity has a high priority, since it is the design philosophy of SmallSats [11], and since the

complexity of commercial thermal analysis tools is disliked by non-experts in the thermal analysis

field [6, 33, 7].

The simplicity of the modular approach is the highest of all, since it is essentially a traditional

approach, but with a number of simplifications such as the component database [6, 33]. The

combined GMM&TMM and digital twin approaches are complex, since they both rely on large

all-encompassing models.

• Heritage has a low priority, since it would mostly be an advantage for expensive, large satellites, but

SmallSats generally have less strict tolerances [29, 7] and a lower consequence associated with

failure [11].

The heritage is the worst for the digital twin, due to its novelty [40], and moderate for the modular

approach. The traditional GMM&TMM approach is by far the most commonly used [31].

• Data flow refers to data management within the thermal model, and with data from other subsystems.

It is moderately important, since good data flow results in greater simplicity for the user of the tool.

The data flow of the traditional approach is relatively poor, since multiple models are needed (GMM

& TMM separately). The digital twin has the best data flow, since it is possible to represent the entire

spacecraft (to some extent) as a single digital entity; N2-charts can be used to represent the data

flow between all subsystems [39].

• Verification and validation has a high priority, since this is an area where previous projects lack

resources or experience [3, 4].

The verification and validation is the worst for the modular approach, since many assumptions are

made in the process, which may not always be perfectly justifiable [6, 33]. The digital twin has the

best verification and validation potential, due to the great data flow with the physical twin.

Table 2.3: Summary of thermal analysis architectures. The column width represents their importance for

SmallSats; ”L”, ”M”, and ”H” are for ”low”, ”medium”, and ”high”; and the cell colours represent whether the

property is desirable (green), neutral (yellow), or undesirable (red).

Architecture Simplicity Heritage Data Flow
Verification/

Validation

Traditional

GMM&TMM
M H L M

Combined

GMM&TMM
L M M M

Modular Ap-

proach
H M M L

Digital Twin L L H H

2.4.4. Example Thermal Analysis Software
The most commonly used commercial thermal analysis tools are ESATAN-TMS4, Airbus Thermica5, Ansys

Thermal Desktop6, and COMSOL Heat Transfer Module7. There have also been open-source alternatives

such as the MATLAB code developed by C. Ruiz [7], and the MATLAB app developed by B. Mattos [41],

which are free to use (although MATLAB is paid). Limitations of commercial tools are that they can feel

like a black box: it is never fully known what happens exactly when you run the simulation, and, if even

possible, adding personalised features requires a very deep dive into the software. On the other hand,

limitations of the open-source software are often that they lack full functionality:

4ESATAN-TMS: https://www.esatan-tms.com/
5Airbus Thermica/Thermisol: https://www.airbus.com/en/products-services/space/customer-services/systema/

thermica-and-thermisol
6Ansys Thermal Desktop: https://www.ansys.com/products/fluids/ansys-thermal-desktop
7COMSOL: https://www.comsol.com/heat-transfer-module

https://www.esatan-tms.com/
https://www.airbus.com/en/products-services/space/customer-services/systema/thermica-and-thermisol
https://www.airbus.com/en/products-services/space/customer-services/systema/thermica-and-thermisol
https://www.ansys.com/products/fluids/ansys-thermal-desktop
https://www.comsol.com/heat-transfer-module


2.4. Thermal Analysis 22

• The tool by Ruiz calculates the environmental radiation and internal conduction, but does not include

internal radiation inside the spacecraft. This could be a severe issue, as it was previously suggested

(Section 2.4.1) that internal radiation can be up to 80% of the total internal heat flow. If radiation is

to be added in this tool, the nodal definitions should also be changed, because they are currently

non-geometric, only having a total surface area and distance to other nodes;

• The tool by Mattos calculates the environmental radiation and has a few additional features such as

deployable solar panels (including the shadows they cast). However, the tool only supports standard

CubeSat dimensions, and the model of the CubeSat itself is only the nodes of the outer surfaces,

and a single inner node.

Advantages and disadvantages of the aforementioned types of tools are summarised below in Table 2.4.

It should be noted that some scores depend on the exact tool, but the scores given here are what is

generally expected from either commercial or open-source software:

• Cost is moderately important for university projects. The main reason why it is not highly important

is that licenses for these tools are in some instances already available for other purposes within the

university.

Open-source software are free, while commercial software are not. However, some software such

as ESATAN-TMS are already available at the university or other institutes.

• Learning Curve is highly important, since the timelines for SmallSats are rapid, and the engineers

may not be experts in the field [3, 11].

The learning curve of commercial software is generally really high [6], and the black box type of

workflow can make the understanding of the program even more challenging. Open-source code is

usually simpler and can be made for a specific purpose [41].

• Modularity is moderately important, as it does influence simplicity, but it is not as crucial as the tool

having a reasonable learning curve.

Open-source tools allow for modularity, since the possibilities are literally endless when the tool can

be completely modified to your liking [41]. Commercial tools can have custom-made plug-ins, but

they must comply with all the software’s interfaces, still limiting the user’s freedom.

• Reliability has a low priority, since it would mostly be an advantage for expensive, large satellites,

but SmallSats generally have less strict tolerances [29, 7] and a lower consequence associated with

failure [11]. Still, the reliability can be optimised by performing adequate verification and validation.

Commercial tools have the main advantage of a high reliability. ESATAN-TMS has been extensively

used in previous mission analysis [31], and has undergone years of refinement by experts. Open-

source tools have less development time and fewer developers, while also often lacking ”flight

heritage”, not having been widely used in the past [7, 41].

Table 2.4: Summary of spacecraft thermal analysis tools, from the point of view of a university project.

The column width represents their importance for SmallSats; ”L”, ”M”, and ”H” are for ”low”, ”medium”, and

”high”; and the cell colours represent whether the property is desirable (green), neutral (yellow), or

undesirable (red).

Type of software Cost Learning Curve Modularity Reliability

Commercial M H M H

Open-source L M H L



3
Methodology

This chapter aims to provide a complete overview of the computations behind the thermal analysis software,

starting from the high-level computation architecture, to the low-level algorithms and formulas. The

overview of the thesis methodology was explained in the introduction, in Chapter 1.

First, Section 3.1 presents the requirements and their rationale. Second, a broad overview of the software

and a number of functional block diagrams are given in Section 3.2. Third, Section 3.3 explains how all

external heat sources are computed in the orbital model. The computations of the external heat sources

are based on the Matlab code from C. Ruiz [7], but there are some differences, which are indicated clearly.

Moreover, the overall software architecture of the tool by Ruiz is vastly different from the newly developed

Python tool, mainly because the Python tool is more modular and object-oriented. Fourth, the computation

of all the heat flows in the nodal model is explained in Section 3.4. Finally, Section 3.5 gives an example

case of the FUNcube-1 satellite, where the most important aspects of the software are shown from the

user’s perspective.

3.1. Requirements
The thermal analysis software is designed specifically for CubeSats and PocketQubes, and hence, the

requirements for such a software are vastly different from larger satellites. Some requirements are related

to the accuracy of the computations, while others are related to the user experience. For REQ-TH-06,

Figure 3.1 provides a rationale, showing that most SmallSats operate in LEO.

Table 3.1: Requirements for the thermal analysis software.

Require-

ment ID

Description Rationale

High-Level Requirements

REQ-TH-01 The software shall be centered

around modularity.

This means that it is easy to copy-paste existing nodal

models, change them on the fly, attach certain models

to others, etc. This all speeds up and simplifies the

making of a thermal model.

REQ-TH-02 The software shall be verified

with ESATAN-TMS.

ESATAN-TMS is the industry standard thermal analy-

sis tool (in Europe), and the TU Delft has licenses for

this software.

REQ-TH-03 The software shall be validated

with flight data of at least one

small satellite.

More validation data can always be compared with the

software at a later stage, but for this thesis, validating

the software with just one set of flight data shall be

sufficient for the prove-of-concept of this software.

23
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REQ-TH-04 The software’s orbital module

and thermal (nodal) module

shall be able to function indepen-

dently of each other.

To model in-orbit thermal behaviour of a satellite,

the orbital and thermal module should evidently be

smoothly interfacing with each other. However, it

should not be forgotten that on-ground validation tests

do not require an orbital model, but only function as

a thermal (nodal) model. Hence, for validation pur-

poses, it is crucial that the orbital and thermal models

can function independently of each other.

REQ-TH-05 The software shall contain easy-

to-use functionalities for non-

specialists.

In many cases, SmallSat design teams do not have

dedicated thermal engineers, so there should be fea-

tures present that allow intuitive model building.

REQ-TH-06 The software shall be able to

perform orbital analysis for cir-

cular Low-Earth Orbits (LEO).

Most SmallSats orbit in LEO (see Figure 3.1), and

hence the code can be kept simple by avoiding com-

plex orbit propagators. One should look at the sensi-

tivity analysis in Chapter 5 to find the consequences

of the LEO assumption. The maximum allowed alti-

tude is likely limited by de-orbiting guidelines; these

may be checked for the mission, after which the LEO

assumption could be re-assessed.

REQ-TH-07 The source code shall have

fully documented functions and

classes with the standard doc-

string definition.

This is extremely important to ensure an easy use of

the software without always having to refer to external

user manuals and examples, or worse, if the user

does not have access to the user manual.

REQ-TH-08 The source code shall have a

documentation on GitLab as a

wiki page.

The GitLab wiki page is similar to a readme file, where

the project is described and a file overview is given.

Information can be easily accessed and changed, not

being limited to local PC files.

REQ-TH-09 The material database shall be

available online, open-source,

and users must be able to eas-

ily add their own data to the

database.

The database can be an Excel sheet included in the

GitLab repository of the code; such a sheet is easily

modifiable by the user. Ideally, different users could

share their findings such that the entire scope of the

database can be increased beyond that of a single

user. However, a control group or mechanism would

be required to ensure that no faulty data is added.

REQ-TH-10 The software shall contain a sen-

sitivity analysis module that can

be applied to an arbitrary nodal

model.

The sensitivity analysis should not only be performed

once for this thesis, but it is a type of analysis that is

useful for any SmallSat developer. Hence, it should

be possible to apply the software for the sensitivity

analysis to any custom-made nodal model.

Low-Level Requirements

REQ-TH-11 The software shall be written in

the Python coding language.

One of the main goals of this software is to be easily

accessible to SmallSat engineers (amongst which

many are students), in terms of coding language and

the need for licenses. Python is extremely popular

among engineers and students, it is open-source, and

completely free. Furthermore, it is specifically taught

at the Aerospace Engineering faculty at TU Delft. This

is why Python is preferred over similar alternatives

such as MATLAB; it has a larger audience and no

licenses are needed.
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REQ-TH-12 The software shall use pre-

defined default parameters for

variables that the user does not

enter.

Detailed parameter definition should be optional for

the user, such that the user can make the model as

simple or complex as they desire. For example, if a

node has no input power, the code should use zero

power as a default parameter, instead of requiring the

user to manually define it as zero. A downside of this

is that the user should read the docstrings in detail to

be aware of these assumptions.
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Figure 3.1: Number of small satellites launched per type of orbit [10]. As seen, most orbits are in

Low-Earth Orbit, below approximately 600 km.

3.2. Software Overview & Block Diagrams
The code is object-oriented, and most of the functionalities and computations are embedded in these

objects. Block diagrams of the three largest objects are shown in Figure 3.2, Figure 3.3, and Figure 3.4.

Many features in the software were greatly simplified in these block diagrams, so it is recommended to visit

the source code for more details. The code contains elaborate docstrings that explain what each function

does and what the inputs and outputs are.

Furthermore, the ”external functions” mentioned in the diagrams are not given a detailed diagram, but

the computations are simply explained in the remaining part of this chapter. One exception is the

heat_received function, which is written in a separate Python file due to its complexity and functional-

programming-style. This function is visualised in Figure 3.5.

Details about the actual usage of all classes and functions are given in the user’s manual in Appendix C,

and Section C.6 specifically shows the meaning of all classes, functions, and their inputs and outputs.
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3.2.1. Class OrbitalModel
The OrbitalModel class (Figure 3.2) defines the orbital parameters of the spacecraft, and provides a

function to compute the Solar flux, albedo flux, and Earth infrared flux on the given surface or collection

of surfaces (for the orbital model, a SmallSat is essentially a collection of 6 surfaces, see Figure 3.7 and

Figure 3.8). The following functions are available:

• __init__: initialises an OrbitalModel object. Not all input parameters are mandatory to be entered
by the user, but that is specified in more detail in the user manual (Appendix C).

• modify: allows the user to modify any parameter of the orbital model. If any parameter related to the
time array or surfaces is changed, any previously computed heat fluxes (outputs of compute) will
be erased. The modify function is mainly useful for the sensitivity analysis, when an existing model

must be changed frequently.

• compute: computes the external heat on the surface(s) throughout time, and the results are stored in
the OrbitalModel object itself. If the inputs for the surfaces are actual Node objects (instead of only

strings such as ’x+’), the heat fluxes are automatically stored in there as well.

• animate_attitude: shows a 3D animation of the attitude of the surface(s) throughout time. This is

useful to verify whether the angular rates are as desired, and it can be a useful visual feedback on

why the external heat fluxes are a certain way. For example, if the ’x+’ face is much hotter than the

other faces, even though it is rotating, it might be that the eigenaxis of the rotation is approximately

through the ’x+’ face, hence it faces the Sun a lot more than the other plates.

• get_heat: after the compute function has been run, this returns the external heat fluxes. This can
be used to assign the heat fluxes to the appropriate Node objects. If the Node objects were directly

entered in the OrbitalModel, this is done automatically within the compute function.
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User inputsExternal functions called class OrbitalModel

animate_attitude

compute

get_heat

__init__

convert surface
input to tau &

phi angles

convert user
inputs to correct

data types

use step size to
construct the

time array

compute beta
angle from RAAN

& inclination
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received

theta_to_t,
t_to_theta

beta_angle

tau_phi

spherical_to_cartesian,
cartesian_to_spherical

nonzero
angular
rates?

beta given?

scipy.spatial.
transform.Rotation

heat_received

altitude,
direction of plate,

beta angle (or RAAN &
inclination),
day in year,

# of orbits to compute,
step size (of time or true

anomaly),
angular rates

no

yes

no

plot3dframe,
plot3dline

t_to_theta
plot reference

coordinate
system

plot attitude &
eigenaxis of

rotation

scipy.spatial.
transform.Rotation

boolean whether to print
progress in the console

speed of displayed
animation, boolean

whether to display in real
time

desired node
convert user

input to correct
data type

return (q_pla,
q_alb, q_s)

of the specified
node

save to
self

yes

save to
self

modify

new values for any of the
parameters entered for

__init__

convert user
inputs to

correct data
types

update time array
and re-define heat
arrays (with value

zero)

change
altitude or

time?

yes

no

theta_to_t,
t_to_theta

beta_angle

save to
self

RAAN &
inclination

given?

compute beta
angle from RAAN

& inclination

yes

no

Figure 3.2: Overview of the OrbitalModel Python class, showing its functional flow, and the external

functions or user parameters used. Refer to Section C.6 for details on all the functions and parameters.
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3.2.2. Class Node
Class Node (Figure 3.3) is used to define a single node (lumped mass), with a reference name, thermal
mass, optical properties, etc. (see Figure 3.3, ’User inputs’) to fully define that one node. The node itself

cannot be solved on its own, but has to be assigned to a NodalModel first. Then, it can be solved for a

given time and for given heat inputs.

• __init__: initialises a Node object. The powers (external heat fluxes and internal power) may be
a constant value, or varying throughout time (a NumPy array of values). Not all parameters are

mandatory to be given by the user, but that is specified in more detail in the user manual (Appendix C).

• modify: allows the user to modify all parameters of a pre-existing Node object. The modify function
is mainly useful for the sensitivity analysis, when an existing model must be changed frequently.

User inputsExternal functions
called

class Node

modify

__init__

name,
material & mass or volume (or

C_cap),
coating (or alpha & epsilon),

initial temperature,
external heat (tuple(q_pla, q_alb,

q_s),
internal power,

boolean whether the node is on
the outside of the spacecraft,

position & dimensions (or
manually defined surface area)

new values for any of the
parameters entered for __init__

convert user
inputs to

correct data
types

C_cap
entered
directly?

compute C_cap
from material

properties

alpha
& epsilon
entered
directly?

compute alpha
& epsilon from

coating
properties

geometry
assigned? compute area save to

self

no no

yes

yes

yes

no

convert user
inputs to

correct data
types

material
given?

compute C_cap
from material

properties

coating 
given?

compute alpha
& epsilon from

coating
properties

geometry
assigned? compute area save to

self

yes yes

no

no

yes

no

None

Figure 3.3: Overview of the Node Python class, showing its functional flow, and the external functions or

user parameters used. Refer to Section C.6 for details on all the functions and parameters.

3.2.3. Class NodalModel
The class NodalModel (Figure 3.4) is a collection of Nodes or other NodalModels, with all connections

between the nodes. The NodalModel object is the foundation of the thermal simulation, and can be used

completely independently from the OrbitalModel. In that case, custom power inputs can be used.

In principle, a simple NodalModel can have a number of Node objects assigned, and that can be sufficient.

However, to achieve a more modular approach, it is possible to add a NodalModel (e.g., a PCB with

numerous nodes) to another NodalModel (e.g., the full satellite). While adding one NodalModel to

another, it keeps all the properties of the models and copies them to one big matrix used for the calcula-

tions. In this manner, a hierarchical tree is created within the NodalModel, and this can be of arbitrary depth.

For example, it is perfectly possible to have a PCB NodalModel (including e.g. 5 nodes for the PCB and 1

node for a battery), embedded in a stack NodalModel (all PCBs and spacers in between them), embedded

in the spacecraft NodalModel (the stack and outer panels etc.). This keeps the model modular and also

makes it easier to keep track of all the nodes. The hierarchical tree would be of the following form (such a

tree is always printed with the show_plots function):
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• NodalModel Spacecraft

– Node Structural ring A
– Node Structural ring B
– ...
– NodalModel Stack

* Node Spacer A

* Node Spacer B

* ...

* NodalModel PCB A

· Node PCB A centre
· Node PCB A corner 1
· Node PCB A corner 2
· Node PCB A corner 3
· Node PCB A corner 4
· Node PCB A battery

* NodalModel PCB B

· Node PCB B centre
· ...

* ...

The NodalModel object contains the following functions:

• __init__: initialises a NodalModel object. Not all parameters are mandatory, but that is specified in
more detail in the user manual (Appendix C).

• add_node: add another Node or NodalModel to the main NodalModel. Adding the node does not yet
assign any thermal connections between nodes; that is done with the connect function. It should

always be ensured that, if the Nodes or NodalModels have a time array of a certain length, that array

must be identical to the model to which it is added. If they are different (e.g., one array ends at t=100

seconds and another ends at t=200 seconds), they are not compatible, and the software will print a

warning in the console.

• set_time: define a time array in case it does not exist yet. Usually, the OrbitalModel is defined first,
which generates a time array. That array can then be assigned to the NodalModel. However, it is

also possible to define the NodalModel without a time array. Then, it cannot be solved, but it makes

it easier to exchange different models between each other, since there are no incompatible time

arrays assigned.

• connect: connect multiple nodes with a conductive and/or radiative connection. There are many
ways to define a connection, for example, using the material database, or manually defining the

number of Watts per Kelvin. More details on this are shown in the user manual (Appendix C).

• modify_node: allows the user to modify all parameters of a pre-existing Node in the NodalModel.
The Node object also has its own modify function, but since the NodalModel contains many matrices

with the information of all nodes, simply updating the Node itself is not sufficient. The modify_node

function takes this into account, and changes both the Node itself, as well as all the matrices in the

NodalModel.

• solve: solves the NodalModel for temperatures and heat flows throughout time. It stores all results
in the NodalModel itself. It can also perform a steady-state computation to use as initial condition, if

no initial temperature is given.

• show_plots: shows a drawing of the NodalModel, and plots of all temperatures, heat inputs, and
heat exchanges between all nodes.



3.2. Software Overview & Block Diagrams 30
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boolean whether Celsius should

be used (or Kelvin if False),
title of the NodalModel

node to be changed, and new
values for any of the parameters

entered for __init__ of class Node

convert user
inputs to

correct data
types

compute dt & initiate
parameters with same

length as t array save to
self

convert user
inputs to

correct data
types

C_cap
entered
directly?

compute C_cap
from material

properties

alpha
& epsilon
entered
directly?

compute alpha
& epsilon from

coating
properties

geometry
assigned? compute area

save to self
and to the

Node object

no no

yes

yes

yes

no

time array
given?

yes

keep all time-related
parameters as None

no

Node.modify

add_node

set_time

connect

solve

show_plots

Node or NodalModel

convert user
inputs to correct

data types

convert Node
properties to
matrix form

added
Node/Nodal

Model has time
array?

yes
are the

time arrays
the same

size?

yes

no
discard time-

related properties
of added Node/

NodalModel
no

save to
self

time array,
boolean to erase previous time

data
assign time

array

time
array already

present?

no compute time
step from time

array

perform
set_time

recursively on
sub-models

nodes to be connected,
type of connection (radiative,
contact cond., through cond.),

properties of connection
(conductance, or contact object &

heat transfer coeff. & area,
through conductivity & through

distance & area)

view_factor_par,
view_factor_perp

convert
user inputs
to correct
data types

compute
view factors
& radiative

links

save to
self

both
nodes same

material?

C_con
entered
directly?

use given
L, area, &

k

use given L
& area,

and
material k

through
connection?

contact
connection?

contact
object
given?

compute
C_con

yes

no

yes

no yes

use given
area & h

use given area, and
contact object h

no

yes

no

yes

no

no
no

yes yes
radiative?

nodes are
perpendicular or

parallel?

dT_dt

solver name,
initial temperature,

boolean to print progress in
console,

boolean to limit scipy time
stepping to not skip dt,

boolean to interpolate external
heat

T0
available?

convert user
inputs to correct

data types

compute
steady-state

compute
transient
response

save to
self

no

yes

plot_plate,
plot_point,

plot_connections

boolean to show external
radiation,

boolean to show nodal structure,
boolean to show temperatures,

boolean to show inner heat
flows,

which nodes are to be shown

convert user
inputs to correct

data types

show all plots &
nodes which the
user requested

any errors
in Nodal
Model?

print extra warning
statement in

console

yes

Figure 3.4: Overview of the NodalModel Python class, showing its functional flow, and the external

functions or user parameters used. Refer to Section C.6 for details on all the functions and parameters.
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3.3. Computation of External Heat Sources
The first step of a thermal analysis model is to compute the external heat sources on the spacecraft. For

now, this will be done for a flat oriented plate, but the plate’s surface area and properties are not considered

yet. An overview of the calculation scheme is presented in the N2-chart in Figure 3.5. This methodology

builds upon the previous work by C. Ruiz [7], but a number of adjustments and improvements have been

incorporated, which will be explicitly noted where relevant.
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albedo albedo
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Figure 3.5: Python functions N2 chart of the external heat flux calculation EnvironmentRadiation.py.
The functions are used starting from the top left to the bottom right.

3.3.1. Reference Frames and Assumptions
The reference frames used for this analysis are depicted in Figure 3.6, Figure 3.7, and Figure 3.8. Further-

more, the following assumptions are applied (the validity of these assumptions is thoroughly assessed in

Section 5.3):

• The satellite is in Low-Earth Orbit (LEO). This results in the assumption that the Sun-Earth vector is
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equal to the Sun-satellite vector.

• The Sun rays are assumed to be parallel at Earth, also resulting in the eclipse volume being a

cylinder.

• The entire Earth surface has a uniform, constant outgoing infrared flux.

• The entire Earth surface has a uniform, constant albedo.

• There is no aerothermal heating and charged-particle heating present (see Section 2.3.1).

Figure 3.6: Reference system for a flat plate in orbit [7]. θ is the true anomaly in [rad], β is the solar angle

(also referred to as beta angle) in [rad], ~s is the Sun-Earth vector, ~n is the orbiting surface’s outward
normal vector, and γ is the angle between the surface normal and Sun vector in [rad].

Figure 3.7: Reference system for the satellite

position, where x points zenith and z points in the
flight direction [7].

Figure 3.8: Reference system for the orientation of

the plate [7].

3.3.2. Earth-Sun Distance
First, the Earth’s distance with respect to the Sun throughout the year must be calculated. A day in the year

(1-365) is given by the user, and the distance in metres is returned by the function. The orbit is assumed
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to be Keplerian, which has the following equation for distance [42, p.165]:

r =
a ·

(
1− e2

)
1 + e · cos(θ)

=
a ·

(
1− e2

)
1 + e · cos(day−dayperigee

T · 2π)
(3.1)

where the variables are (for the Earth-Sun obit):

• r is the distance in [m] between the central and orbiting body.

• a is the semi-major axis in [m]. For the Earth-Sun orbit, a = 1.00 AU = 1.495978707·1011 m [2].

• e is the orbit eccentricity. For the Earth-Sun orbit, e = 0.01671 [43].

• θ is the true anomaly [rad]. This notation will not be used further for the Earth-Sun orbit, but it will be
used to indicate the true anomaly of the spacecraft’s orbit.

• day is the day of interest starting at 1 on January 1st.

• dayperigee is the day of perigee, which is on average January 3rd for the Earth-Sun orbit [44].

• T is the orbital period, which is approximately 365.25 days for Earth [43].

In reality, the orbit is not perfectly Keplerian, due to external perturbations such as the Moon and other

planets. The effect of this is seen in the stochastically varying day of perigee by about 1-2 days [44], and

in the different possible reference systems for the orbital period (sidereal/tropical) [43]. The effect of this

will be studied in the sensitivity analysis in Chapter 5.

3.3.3. Solar Flux at Earth
Based on the Earth-Sun distance, the solar flux at Earth can be estimated. The flux at 1 AU (solar constant

S0) is currently (April 2024) accepted as 1361 W/m2 [43, 45], but since it is not an absolute constant of

physics, it may be subject to change based on changes throughout time, or after acquiring newer, better

data.

Assuming the Sun radiates as a point source, the emitted power is spread uniformly as a sphere through

space; hence, the flux at any distance can be estimated from the known solar constant at 1 AU:

q̇solar = S0

(
1AU

r

)2

(3.2)

where q̇solar is the solar heat flux in [W/m2], S0 is the solar constant in [W/m2], and r is the distance from
the Sun in [m]. Logically, r is retrieved from the Earth-Sun distance calculation, where the satellite-Sun

distance is approximated as the Earth-Sun distance.

The total solar heat flow to the spacecraft also depends on the spacecraft’s surface area, absorptivity α in

the solar spectrum, and view factor F :

Q̇solar = q̇solar ·Asat · FSun→sat · αsat (3.3)

The view factor is a simple case when the solar rays are assumed parallel, and hence:

FSun→sat = max(cos(γ), 0) (3.4)

where the max function is applied to account for the case where the plate faces away from the Sun

(otherwise the cosine will turn negative). The satellite and Earth are so close that the Sun-Earth vector

and Sun-satellite vector are almost parallel (e.g., for a 500 km LEO orbit, the angle between the vectors

would only be arctan((RE + h)/AU) = 0.0026 degrees), that the following approximation is valid:
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cos(γ) ≈ ~s · ~n =

sin(τ)cos(φ)sin(τ)sin(φ)

cos(τ)

 ·

 cos(β)cos(θ)

−sin(β)
−cos(β)sin(θ)


= cos(β)cos(θ)sin(τ)cos(φ)− sin(β)sin(τ)sin(φ)− cos(β)sin(θ)cos(τ)

(3.5)

It is important to note the minus sign in the second entry of ~n, which was not present in the definition by
Ruiz [7]. It appears because a positive β angle (Sun ’above’ the orbit) is in the negative y-direction (y

points down in Figure 3.6 when Figure 3.7 is used).

3.3.4. Planet Infrared Flux
The planetary heat flux is the infrared radiation emitted from Earth due to its temperature. The temperature

can either be assumed constant throughout the year, or it can be assumed that the Earth is always in

thermal equilibrium (Q̇in = Q̇out). In the latter case, the Earth’s temperature would change throughout

the year due to the changing Earth-Sun distance. This method was implemented by C. Ruiz [7], and the

corresponding IR flux of Earth would be as demonstrated in Figure 3.9. The radiation is higher in northern

winter (day 1 is January 3rd) and lower in summer, corresponding to the changing Earth-Sun distance.

It is debatable how accurate this assumption is, because the locally emitted temperature depends a lot on

the local surface temperature (hence on the solar flux) and cloud coverage [25, p.24] [46]. Furthermore,

flight data from 2007-2011, see Figure 3.10 [46], indicates a slight opposite trend compared to Figure 3.9,

showing a higher average IR flux in northern summer compared to winter. The average flux throughout

the year is 239 W/m2, similar to the prediction by Rickman [47].

Another variation is the diurnal cycle, as it was just explained that the emitted IR also depends a lot on

the Earth’s surface temperature. [48]. The variance between the day and night heat flux is shown in

Figure 3.11. The ocean has an almost constant outgoing IR flux, while continental areas deviate more [48].

The variation in W/m2 is in the same order of magnitude as the seasonal changes from Figure 3.10.

Since the seasonal changes from Ruiz [7] conflicts with the measurements from CERES [46], a constant

239 W/m2 is assumed for now. The diurnal variations are neglected for now, since the majority of Earth’s

surface is ocean, which shows the lowest diurnal temperature variations. In Chapter 5, the effects of these

assumptions will be evaluated.
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Figure 3.9: Earth infrared radiation through the year based on a heat balance with the incoming solar and

outgoing infrared radiation.
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Figure 3.10: Earth infrared heat flux measurements (NOTE: values in W/m2) between 2007-2011 by the

CERES spacecraft [46].

Figure 3.11: Variation in Earth IR flux between day and night, in W/m2, during northern summer [48].

Having assumed a constant Earth IR radiance of 239 W/m2 at the Earth’s surface, this must be translated

into the flux at the spacecraft. Unlike the assumption of parallel Sun rays, satellites in LEO are too close to

the Earth to assume parallel rays. Instead, the view factor between the spherical Earth and the spacecraft

is used. More on this is explained in Section 3.3.6. The heat flux from the Earth to the satellite is then

computed with (still excluding the spacecraft’s surface properties):

q̇Earthshine =
q̇E,tot ·AE · FE→sat

Asat
= q̇E,tot · Fsat→E (3.6)

where q̇Earthshine is the heat flux on the satellite in [W/m2], q̇E,tot is the 239 W/m2 value for the Earth IR at

the Earth’s surface, A are the Earth and satellite surface areas in [m2] FE→sat is the view factor from Earth

to the satellite, and Fsat→E is the view factor from the satellite to Earth. Furthermore, the area reciprocity

relation Equation 2.6 for view factors is used. Finally, this is converted to the actual heat in [W] with:
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Q̇Earthshine = q̇Earthshine · εsat ·Asat = q̇E,tot · Fsat→E · εsat ·Asat (3.7)

where εsat is the infrared emissivity/absorptivity of the satellite’s outer surface.

3.3.5. Albedo Flux via Earth
The albedo coefficient of Earth depends on the Earth’s surface characteristics, such as land, sea, or ice

caps. On average, the albedo of Earth is 0.294 [43]. This value can be used for a simplified analysis,

where the Earth is assumed to have a uniform surface with an albedo of 0.294, and as a consequence, the

orientation of the Earth is of no influence. Such a computation would use the following equation [47]:

q̇albedo,tot = max (a · q̇solar · cos(ξ), 0) = max (a · q̇solar · cos(β)cos(θ), 0) (3.8)

where a is the albedo coefficient, q̇albedo,tot is the albedo flux in [W/m2] at the Earth’s surface in the direction

of the given orbital position, max indicates that the maximum value between both entries is taken, β is the

angle [rad] between the Earth-Sun line and the spacecraft’s orbital plane, θ is the true anomaly [rad] of the
satellite, and ξ is the solar zenith angle [rad]. When the cos(ξ) < 0, the Earth’s surface beneath the satellite
does not receive any sunlight, and hence the albedo is approximately zero (assuming a low-Earth-orbit).

The cosines are a special case of spherical trigonometry where the two angles β and θ are in perpendicular
planes [49]:

cos(ξ) = cos(β)cos(θ) + sin(β)sin(θ)cos(90°) = cos(β)cos(θ) (3.9)

where ξ is the solar zenith angle (between the Earth-Sun and Earth-spacecraft lines) in radians [47]. To
achieve the albedo received at the spacecraft, a similar computation as in Section 3.3.4 may be used,

since both cases of radiation are considered diffuse:

Q̇albedo = q̇albedo,tot · Fsat→E · αsat ·Asat (3.10)

where α is the absorption of the satellite in the solar spectrum.

If more detail is desired for the albedo variation over the Earth’s surface, the Earth’s orientation must be

included in the model, and a database for albedo values at different longitudes and/or latitudes must be

used [46].

3.3.6. View Factor of a Flat Plate and a Sphere
From the perspective of the satellite, the Earth IR and albedo radiation originate from the Earth’s surface,

and since a Low-Earth Orbit is so close to the Earth, the outgoing beams cannot be assumed to be parallel.

Instead, the sphere-to-infinitesimal-plate view factor case from ECSS [32] is used, see Figure 3.12. The

associated equations are given in Equation 3.11–3.18, where p stands for ’plate’ and s stands for ’sphere’.
Note that the fourth power in the B3 term is found in the original source by Clark & Anderson [50], and the

ECSS standard [32] incorrectly wrote a third power instead. This formula was tested with both the third

and the fourth power, and only the fourth power (from [50]) yielded correct result.
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aL

R

λh

Figure 3.12: View factor case for an angled flat plate nearby a sphere (adapted from [32]).

Fp→s = B0 +B1cos(λ) +B2cos
2(λ) +B3cos

4(λ) +B4cos
6(λ) (3.11)

B0 =
2

7π

(
577

105
− 7cos(aL) +

4

3
cos3(aL)−

2

5
cos5(aL) +

4

7
cos7(aL)

)
(3.12)

B1 =
1

2
sin2(aL) (3.13)

B2 =
8

7π

(
cos(aL)− 2cos3(aL) + 4cos5(aL)− 3cos7(aL)

)
(3.14)

B3 =
4

7π

(
−cos(aL) +

40

3
cos3(aL)−

91

3
cos5(aL) + 18cos7(aL)

)
(3.15)

B4 =
8

35π

(
5cos(aL)− 35cos3(aL) + 63cos5(aL)− 33cos7(aL)

)
(3.16)

aL = arcsin

(
1

1 + h/RE

)
(3.17)

Furthermore, the angle λ can be defined in terms of the angle η (Equation 3.18). η is the angle between
the x-axis and ~n (Figure 3.8), and since τ and φ are in perpendicular planes, the same simplification of
spherical geometry applies as in Equation 3.9.

λ = 180° − η (3.18)

cos(η) = cos(φ)sin(τ) (3.19)

Finally, Equation 3.11 can end up slightly negative in some instances, when the plate is pointing away

from the sphere, but the formulas show some oscillations in those cases [50]. To prevent any future errors

due to slightly negative view factors (which is by definition impossible), the ViewFactor function will return

zero instead. A visualisation of Equation 3.11 is depicted in Figure 3.13.
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Figure 3.13: Visualisation of Equation 3.11, where each line is a different orbit altitude. The graph would

be mirrored horizontally when λ would be used instead of η.

3.3.7. Eclipse Characteristics for a Circular Orbit Around Earth
For the estimation of the eclipse entry and exit points, the LEO assumption results in a cylindrical shadow.

The difference between umbra and penumbra is thereby ignored.

For a given orbit altitude, there is a maximum (limit) beta angle for which there is still an eclipse; if β
exceeds this, there is no eclipse for the given orbit. The associated figures are Figure 3.14 and Figure 3.15

(the xyz-coordinates are different from Figure 3.8). The limit beta angle can be calculated as follows:

βlim,ecl = arccos

(
RE

RE + h

)
(3.20)

where RE is the Earth’s mean radius (6,371 km [43]) and h is the orbit height. In case the absolute value
of β is below this limit, there will be an eclipse.

Figure 3.14: Side view of the beta angle and eclipse region [51].

Figure 3.15 is used to find an expression for the eclipse angle given an altitude and beta angle.
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Figure 3.15: Top view of the beta angle and eclipse region [51].

The method from [51] uses the statement that for the following position vector, the satellite is in eclipse,

provided that β < βlim and that π/2 < θ < 3π/2:

|~r ′| < RE (3.21)

The vector ~r ′ is defined as:

~r ′ = (rE + h)

 0

sin(θ)

cos(θ)sin(β)

 (3.22)

The magnitude of ~r ′ is:

|~r ′| = (RE + h)
√
sin2(θ) + cos2(θ)sin2(β) (3.23)

Setting this equal to RE to find the limit of Equation 3.21:

RE = (RE + h)
√
sin2(θ) + cos2(θ)sin2(β)(

RE

RE + h

)2

= sin2(θ) +
(
1− sin2(θ)

)
sin2(β)(

RE

RE + h

)2

= sin2(θ)
(
1− sin2(β)

)
+ sin2(β)(

RE

RE + h

)2

= sin2(θ)cos2(β) + sin2(β)

sin(θecl) =

√√√√ 1

cos2(β)

[(
RE

RE + h

)2

− sin2(β)

]
(3.24)

where θecl [rad] is the true anomaly of the onset of the eclipse. Note that θecl is by definition larger than π/2,
but if the arcsine is to be taken of Equation 3.24, only values below π/2 will be returned. However, due to
the sine’s symmetry around π/2, sin(π − θecl) = sin(θecl), the value returned by the arcsine is going to be
π − θecl, which can be defined as the eclipse half-angle ψecl/2. The total eclipse angle is then ψecl. Hence:
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θecl = π − ψecl

2
= π − arcsin


√√√√ 1

cos2(β)

[(
RE

RE + h

)2

− sin2(β)

] (3.25)

From this, the eclipse fraction (Equation 3.26) and duration (Equation 3.27) can be found:

ratioecl =
ψecl

2π
(3.26)

Tecl = ratioecl · T = ratioecl · 2π

√
(RE + h)

3

µE
(3.27)

where a circular orbit is assumed, T is the orbital period of the satellite, and µE is the gravitational parameter

of Earth (=3.986·1014 [m3/s2] [43]).

3.3.8. Beta Angle from Orbital Parameters
In reality, the beta angle (solar declination) is not a design parameter for the satellite’s mission, but it

follows from another set of orbital parameters, which can then be converted to β.

Geocentric Orbits

For geocentric orbits, i.e. the orbit is fixed with respect to the vernal/march equinox, the orbital parameters

used are often the Right Ascension of the Ascending Node (RAAN) Ω, the inclination i, and the ecliptic
true solar longitude Γ. A celestial sphere with Ω and i is shown in Figure 3.16. Similarly to this, Γ can be

defined for the Sun, but the Sun’s inclination with respect to the Earth’s equator (obliquity of the ecliptic) is

approximately constant at ε = 23.44° [43]. Γ is then the solar angle on the ecliptic (between 0 and 360°),

and is zero when the Sun is at the vernal equinox, which is around 20 March (on average, day 79.25

starting at January 1st [52]).

Figure 3.16: Illustration of the celestial sphere around Earth [53].

Hence, Γ can be computed with Equation 3.28, and β follows from Equation 3.29 [51]. The last equation

originates from the dot product of the satellite’s orbit vector and the solar vector.
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Γ = 2π
day − daymarch−equinox

T
(3.28)

β = arcsin(cos(Γ)sin(Ω)sin(i)− sin(Γ)cos(ε)cos(Ω)sin(i) + sin(Γ)sin(ε)cos(i) (3.29)

where day is the number of days after January 1st, daymarch−equinox is the day of the vernal equinox

(=79.25), T is the orbital period of Earth around the Sun in days (365.25), β is the solar declination [rad], Γ
is the ecliptic true solar longitude [rad], Ω is the RAAN of the satellite’s orbit [rad], i is the inclination of the
satellite’s orbit [rad], and ε is the obliquity of the ecliptic [rad].

It is important to note that in this thesis, β is always assumed to be positive in the direction of the north
pole. This is also illustrated in Figure 3.6, but it appears that it is sometimes confused in the paper by Ruiz

[7] and the lecture by Rickman [47]. The sign convention of positive β northward is also followed by the
ESATAN software, see Figure 3.17.

Figure 3.17: Example of the beta angle sign convention in ESATAN-TMS, where β is set to +45°. The

solar vector indeed points northward.

3.3.9. Angular Rates on a Flat Plate
An additional feature is included, where the plate can be given angular rates about the x-, y-, or z-axis.

This is extremely useful for the thermal analysis of tumbling spacecraft. Rotational rates were also present

in the MATLAB tool by Ruiz [7], but the implementation was quite different (surface areas were multiplied

by a correction factor, instead of directly performing matrix rotations on the attitude). In this Python tool, the

Rotation object from SciPy is used to perform the rotations [54]. It transforms various types of coordinate

systems into quaternions, computes the rotations, and transforms the angles back to the original coordinate

system.

The spherical τ and φ angles are not supported by SciPy, so those have to be manually converted to

another coordinate system. The simplest coordinate system that is compatible with SciPy is a Cartesian

coordinate system, consisting of a unit vector in the 3-dimensional xyz space. The spherical angles are

converted to Cartesian coordinates using the standard from_euler function in SciPy, where the spherical

angles are represented as an Euler rotation: τ is first applied on the y-axis, and then φ is applied on the
z-axis. The rotation is calculated automatically by SciPy.
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However, converting the Cartesian coordinates back to τ and φ after SciPy has computed the desired
rotation, would be less trivial using SciPy, since there are multiple possible combinations of Euler angles

possible. Therefore, this step is performed manually. The simplest method to find τ and φ is to compute a
standard case, and then use some logic to set the singularities. If this is not done in the correct order,

attempting to take arccosines and arctangents might not be possible.

Using Figure 3.8, the polar angle τ is always defined as:

τ = arccos (z) (3.30)

where z is the z-component of the unit vector. The azimuth angle φ cannot always be accurately computed
using simply an arctangent (although NumPy.arctan2 could also fix the issue); therefore, the following

logic was implemented:

if  = 0° or 180°
or

 = 0 and  >= 0
else

else if
 = 0 and  < 0

if  < 0

Figure 3.18: Logic diagram for determining the value of the azimuth angle φ from Cartesian x, y, and z

components.

3.3.10. Total Heat Flux on Flat Plate in Orbit
The final Python function heat_received combines the aforementioned calculations and returns the final

solar, albedo, and planetary flux on the plate in orbit. These outputs are in [W/m2] and are not yet multiplied

by the spacecraft’s surface area and absorptivity/emissivity; this is done later in the code.

For an entire spacecraft, multiple plates (orientations) can be entered in the OrbitalModel object, and all

their heat fluxes will simply all be computed using a for-loop over the plates.

3.4. Computation of Heat Flows
Originally, the tool by Ruiz [7] only considers conductive heat flow for the internals of the satellite. For the

new software, internal radiation shall also be considered, of which the effects are analysed in more detail

in Chapter 5. Furthermore, the matrices and computational methods used in this thesis are different from

those used by Ruiz.

Differently to the external heat computation, the nodal model is mainly defined as an object (Python class)

called NodalModel. This object is the entire model with all its nodes, powers, conductances, etc. Figure 3.4
gives an overview of the class.

Note that the object does not need to be initialized all at once with all vectors and matrices defined.

NodalModel can be initialized with just a title name, essentially starting as a zero-node model. The nodes

can then be added later with the add_node function.
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3.4.1. Transient Calculation Assumptions
Besides the assumptions from Section 3.3.1 on the environmental radiation analysis, some more assump-

tions apply for the transient calculation. The following assumptions are applied (justifications are argued

in-text, and a sensitivity analysis can be found in Chapter 5):

• The satellite has a constant mass and constant material properties throughout time. Hereby, e.g.

degradation of paint, degradation of thermal conductance, loss of propellant, etc. are neglected. A

manual workaround can be to split up the analysis into multiple subsequent runs.

• Rays of thermal radiation are only calculated once when they leave their original surfaces; multiple

reflections are not included. For emissivities of unity, the two cases are identical. For emissivities

lower than one, errors start to build up as the reflection of (1-ε) is ignored. This is further explored in
Chapter 5.

• SmallSat components are assumed to either have no geometry, or to be a flat plate at parallel or

orthogonal angles with respect to the rest of the spacecraft.

• There is no convection in/around the entire spacecraft.

3.4.2. Heat Balance Equation
The backbone of the transient solver is the heat balance equation. For the entire spacecraft as a whole

system, this is essentially Equation 2.1, which is repeated here:

(
m · ccap ·

dT

dt

)
spacecraft

= Q̇solar + Q̇albedo + Q̇Earthshine + Q̇internal − Q̇out (3.31)

Here, all heat Q̇ has the unit [W], the mass m is in [kg], the specific heat capacity c is in [J/(kg·K)], and the
temperature change dT/dt is in [K/s] or [°C/s]. The mass and specific heat capacity are often combined
into the absolute heat capacity C in [J/K] (capital C instead of lowercase).

The only unknown in this equation is the temperature change dT/dt, so the equation can be rewritten
to be explicit for dT/dt. Moreover, the terms on the right-hand side can be expanded into the individual
components which are used in the computational algorithm. Furthermore, when considering a single

node i, there are also heat fluxes to and from other nodes due to a temperature difference. In reality,

telecommunications also emit power away from the spacecraft; it would require a sophisticated analysis if

this were to be implemented into the thermal model, so it is ignored here.

(
dT

dt

)
i

=
1

Ccap,i

{
Ai [αi (q̇i,solar + q̇ialbedo

) + εiq̇iEarthshine
] + Q̇iinternal

+

+
∑

[Ccon,ij (Tj − Ti)] +
∑[

Rijσ
(
T 4
j − T 4

i

)]
− outer ·Aiεiσ

(
T 4
i − T 4

space

)} (3.32)

where the lowercase q̇ represents the heat flux in [W/m2], which is the output of the orbital radiative

analysis, uppercase Q̇ is the absolute power input in [W], Ccap,i is the heat capacity of node i in [J/K],
Ccon,ij is the conductance between nodes i and j in [W/K], Rij is the radiative coupling between nodes

i and j in [m2], and outer is a Boolean (True/False) indicating whether the node radiates to space or

not. In essence, it is a ”zero” or ”one” view factor of the plate with respect to space. For more com-

plicated geometries, such as deployable solar panels, this method is not as reliable. Tspace is set to 3 K [55].

The calculation of the conductive couplings Ccon,ij and radiative couplings Rij is performed using Equa-

tion 2.15, Equation 2.16, and Equation 2.7. To find the Gebhart factorGij in Equation 2.7, it is approximated

that Gij ≈ Fij by neglecting multiple reflections. Then, the view factors are determined with Equation 2.10

and Equation 2.11. Although these equations only apply for perfectly parallel and perpendicular plates,

they are exact in those cases.
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3.4.3. Numerical Implementation
In reality, the spacecraft has three-dimensional elements and continuous features. The geometry can be

arbitrarily shaped, and the material/electrical/thermal properties may change throughout time and can be

unpredictable. This complex system can be simplified into a finite number of nodes, with a finite number

of fixed properties. This process of building a numerical model from a physical model is illustrated in

Figure 3.19.

The heat equation, Equation 3.32, is based on a finite number of nodes interacting with each other. As the

number of nodes increases, the method of numerical implementation will become more important, since

the computational time might rise drastically if an inadequate framework is used. Vectors and matrices are

often used, since matrices can easily be expanded when nodes are added, while keeping the computation

scheme identical. Moreover, Python libraries such as NumPy are optimised for the use of vectors and

matrices, improving the model’s scalability.

Ccap,2

Ccap,1

Ccap,0

Ccon,12

Ccon,01

R12

R01

SPACECRAFT SIMPLIFIED GEOMETRY THERMAL NETWORK

Figure 3.19: Visualisation of the discretisation of a real spacecraft (Delfi-PQ), to a simplified model, to a

thermal network. Adapted from [10].

Parameter Definitions

For a single-node system, Equation 3.32 can be used directly, although the terms with Ccon,ij and Rij

would disappear. For a multi-node system, this becomes a system of equations, which is more easily

solved using matrices and arrays. The parameters in Equation 3.32 are categorised as follows:

• Constants: Ccap,i, Ai, αi, εi, Ccon,ij , Rij , σ, Tspace, outer. The variables Ccon,ij and Rij come from

nxn size matrices (n is number of nodes), which are also symmetric (Ccon,ij = Ccon,ji and Rij = Rji):
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Ccon =



Ccon,1,1 Ccon,1,2 · · · Ccon,1,n−1 Ccon,1,n

Ccon,2,1 Ccon,2,2 · · · Ccon,2,n−1 Ccon,2,n

...
...

. . .
...

...

Ccon,n−1,1 Ccon,n−1,2 · · · Ccon,n−1,n−1 Ccon,n−1,n

Ccon,n,1 Ccon,n,2 · · · Ccon,n,n−1 Ccon,n,n

 (3.33)

=



0 Ccon,1,2 · · · Ccon,1,n−1 Ccon,1,n

Ccon,2,1 0 · · · Ccon,2,n−1 Ccon,2,n

...
...

. . .
...

...

Ccon,n−1,1 Ccon,n−1,2 · · · 0 Ccon,n−1,n

Ccon,n,1 Ccon,n,2 · · · Ccon,n,n−1 0

 (3.34)

R =



R1,1 R1,2 · · · R1,n−1 R1,n

R2,1 R2,2 · · · R2,n−1 R2,n

...
...

. . .
...

...

Rn−1,1 Rn−1,2 · · · Rn−1,n−1 Rn−1,n

Rn,1 Rn,2 · · · Rn,n−1 Rn,n

 =



0 R1,2 · · · R1,n−1 R1,n

R2,1 0 · · · R2,n−1 R2,n

...
...

. . .
...

...

Rn−1,1 Rn−1,2 · · · 0 Rn−1,n

Rn,1 Rn,2 · · · Rn,n−1 0

 (3.35)

• Time-varying parameters: all instances of q̇, Q̇, Ti, Tj . To ensure that the temperature gradients
(Tj −Ti) and (T 4

j −T 4
i ) are compatible with Ccon,ij and Rij , the following is done: the vector T (length

n) is converted into a matrix of size nxn and subtracted with its transpose. The result is the gradient
resulting in a heat flow towards each node. So a positive entry means heat flow to the node, and a

negative entry means heat flow away from the node. The same process is done for (T 4
j − T 4

i ). The

result is a matrix which is symmetric in magnitude, but the signs of the entries below the diagonal are

opposite to the signs of the entries above the diagonal.

∇T =



T1 T2 · · · Tn−1 Tn

T1 T2 · · · Tn−1 Tn
...

...
. . .

...
...

T1 T2 · · · Tn−1 Tn

T1 T2 · · · Tn−1 Tn

−



T1 T1 · · · T1 T1

T2 T2 · · · T2 T2
...

...
. . .

...
...

Tn−1 Tn−1 · · · Tn−1 Tn−1

Tn Tn · · · Tn Tn



=



0 T2 − T1 · · · Tn−1 − T1 Tn − T1

T1 − T2 0 · · · Tn−1 − T2 Tn − T2
...

...
. . .

...
...

T1 − Tn−1 T2 − Tn−1 · · · 0 Tn − Tn−1

T1 − Tn T2 − Tn · · · Tn−1 − Tn 0



(3.36)
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∇T 4 =



T 4
1 T 4

2 · · · T 4
n−1 T 4

n

T 4
1 T 4

2 · · · T 4
n−1 T 4

n

...
...

. . .
...

...

T 4
1 T 4

2 · · · T 4
n−1 T 4

n

T 4
1 T 4

2 · · · T 4
n−1 T 4

n

−



T 4
1 T 4

1 · · · T 4
1 T 4

1

T 4
2 T 4

2 · · · T 4
2 T 4

2

...
...

. . .
...

...

T 4
n−1 T 4

n−1 · · · T 4
n−1 T 4

n−1

T 4
n T 4

n · · · T 4
n T 4

n



=



0 T 4
2 − T 4

1 · · · T 4
n−1 − T 4

1 T 4
n − T 4

1

T 4
1 − T 4

2 0 · · · T 4
n−1 − T 4

2 T 4
n − T 4

2

...
...

. . .
...

...

T 4
1 − T 4

n−1 T 4
2 − T 4

n−1 · · · 0 T 4
n − T 4

n−1

T 4
1 − T 4

n T 4
2 − T 4

n · · · T 4
n−1 − T 4

n 0



(3.37)

Geometry Definition

The conductive heat flows can be calculated without the definition of any geometry. In some cases,

geometry and material properties could be used to compute the conductive couplings, but it is not strictly

needed. On the other hand, geometry is essential for determining the internal radiation couplings Rij , for

Equation 2.10 and Equation 2.11.

The geometry strictly needed to perform the internal radiative analysis are the dimensions of the flat plate

(width and height) and the origin coordinates of the plate, see Figure 3.20. With this information, the

relative position between two plates can be extracted by the software to convert those dimensions into the

ones needed for Equation 2.10 and Equation 2.11. The Python software automatically generates a 3D plot

of the nodal model, if the nodes are assigned a geometry, see Figure 3.21.

The radiative couplings are calculated semi-automatically. The user must define which nodes are connected

to which, after which the view factors are calculated automatically based on the pre-assigned geometry.

x
y

z

(x, y, z)

origin = (x, y, z)

len y

len z

geom = (0, len y, len z)

Figure 3.20: Example definition of a flat plate

in the y-z plane, where the outward normal of

the plane must be defined as zero thickness.
Figure 3.21: 3D plot showing each node’s origin (grey

dots), the outlines of all nodes/plates (solid black lines),

the conductive (solid red lines) and radiative (dashed

green lines) radiative connections, and the node names

such as ”x+” etc.
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Integration Scheme

The heat equations for all nodes (Equation 3.32) must be integrated to find the transient response. The

SciPy library scipy.integrate contains a number of integration schemes [56]:

• Explicit Runge-Kutta 5(4) (RK45): Fifth-order explicit Runge-Kutta method using fourth-order error

estimations to determine the required time step resulting in the desired error tolerance.

• Explicit Runge-Kutta 8 (DOP853): Eighth-order explicit Runge-Kutta method using seventh-order

error estimations to determine the required time step resulting in the desired error tolerance.

• Implicit Runge-Kutta 5 (Radau IIA): Fifth-order implicit Runge-Kutta method, belonging to the Radau

IIA family, using third-order error estimations to determine the time step resulting in the desired error

tolerance.

Runge-Kutta methods are commonly used, and their order can be increased simply by adding more terms.

The explicit methods follow the Runge-Kutta following form [57, pp.907-935]:

yn+1 = yn + h

s∑
i=1

biki, where

ki = f(tn + cih, yn + h

i−1∑
j=1

aijkj), i = 1, 2, · · · , s
(3.38)

while the implicit methods have a slightly different form for ki, following:

ki = f(tn + cih, yn + h

s∑
j=1

aijkj) (3.39)

where it can be noticed that the sum now goes up to j = s instead of only j = i− 1. The coefficients aij
form the Runge-Kutta matrix, bi are the weights, and ci are the nodes. Depending on the order (and type,
explicit vs implicit) of the method, this matrix will vary.

A great advantage of using either of these methods from the SciPy library is that they all include variable

time-stepping. In essence, the regular Runge-Kutta algorithms are used, but low-order error estimations

are used to vary the time step accordingly. This is especially valuable for thermal models, since their

stiffness depends on the physical properties of the model. Specifically, the time constant τ of the system
determines how small the time step must be for the integration. For a purely conductive model, the time

constant can be calculated with [58]:

τ =
Ccap

Ccon
(3.40)

where τ is the time constant in [s], Ccap is the thermal capacity in [J/K], and Ccon is the thermal conductivity

in [W/K]. A slow system has a large τ because it has a large mass and low conductivity; a fast system has

a small τ because it has a small mass and high conductivity. For models that include both conduction
and radiation, the exact time constant is more difficult to compute, as the radiative transfer adds a fourth

order (T 4) to the equations. However, the physical meaning of the time constant remains the same.

Consequently, the adaptive time-stepping from the SciPy library allows to solve both slow and fast thermal

systems, without the user requiring to manually tweak the time step.

The previously indicated methods were tested for convergence with a sample thermal model. This sample

model is described in more detail in Chapter 5, and it is a simplified version of a satellite in orbit. The

implicit method (Radau) was chosen as a benchmark; all other methods will be compared to the benchmark

as if it is the absolute truth.
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It should be noted that the variable time-stepping in SciPy can sometimes result in inaccurate results, since

it may skip a number of time steps and interpolate the results in between. If the user notices oscillatory

behaviour in the output, they can set the user parameter limit_step to True, preventing SciPy from

making large jumps in time. Evidently, this also increases the computational time.

Lastly, the Python implementation of the heat balance equation only has external heat data (solar flux etc.)

at the fixed time steps. When SciPy varies the time step dynamically, either the closest value of the input

data can be used, or the input data can be interpolated. The user of the software can indicate this with the

Boolean interp_inputs.

The results of the integrator convergence analysis are shown in Figure 3.22 and Figure 3.23. Firstly,

”non_rot” refers to a non-rotating spacecraft. If a rotating spacecraft were used for this benchmark,

numerical effects such as aliasing would have corrupted the consistency of the RMS errors. Secondly, it is

clear that the implicit methods (all versions of Radau) perform better than the explicit methods (RK45 and

DOP853), as the explicit methods reach a plateau beyond a time step of 100 seconds. Thirdly, it appears
that the interpolation of the external heat inputs does not have a large effect on convergence, while the

limitation of SciPy’s variable time stepping does have an effect.

The Python code has the default integrator set to Radau, with the interp and limstep commands set to

False. If the simulation is especially slow, the switch could be made to DOP853 or RK45, possibly with the

limstep command set to True. DOP853 shows stronger, higher frequency, oscillations than RK45, if both

interp and limstep are False.
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Figure 3.22: Convergence (RMS error) of

numerous integrators from the SciPy library,

compared to the benchmark Radau method.

”non_rot” indicates that the spacecraft is not

rotating.
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Figure 3.23: Convergence (RMS error) of the

benchmark Radau method, where the variable

time-stepping is constrained to be maximally the

fixed time step, and where the external heat inputs

are interpolated for the variable time steps.

”non_rot” indicates that the spacecraft is not

rotating.

3.5. Example Case - FUNcube-1 Satellite
An example case to illustrate the workflow of the software is shown in this section, using the model of

FUNcube-1 which will also be used for the validation and sensitivity analysis. All Python files are also

found on GitLab [8], and a backup repository is also found on GitHub [9]; it is recommended to refer to

those files when getting started with the software. Furthermore, the user manual, see Appendix C, is also

a useful reference, providing more detail on the required syntax etc.
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When creating a thermal model, it is recommended to initiate a separate Python file, and use the import

statements as shown below. Moreover, it is recommended to use the show_available_materials function
to print a summary of the material database in the Python console. The material names can then be easily

copied into the material assignment of thermal nodes.

1 import numpy as np
2 from ThermalBudget import Node, NodalModel, OrbitalModel, show_available_materials
3 from CommonNodalModels import make_5node_pcb, assign_q_ext_to_pcb
4

5 show_available_materials()

3.5.1. Example Orbit & Environment Radiation
Most of the time, the analysis starts with the orbital heat flux analysis, which was explained in Section 3.3.

The Python class responsible for this is OrbitalModel. The class’ functions were also visualised in

Figure 3.2. One of the ways to define an orbit and the surfaces receiving heat is as shown below.

outer_nodes are the directions of the outer panels of the spacecraft, using the coordinates from Figure 3.7.

The beta angle can also be indirectly defined by providing the inclination and RAAN. If the angular rates

are not provided, they are assumed to be zero; if they are provided, they should be formatted as shown

below, where the rates are [ωx, ωy, ωz] in deg/s. After defining the model, it can be computed, and the time
array is assigned as shown, to be used later when defining the NodalModel.

1 outer_nodes = ['x+', 'y+', 'z+', 'x-', 'y-', 'z-']
2 FUNcubeOrbit = OrbitalModel(h=596e3, surfaces=outer_nodes, beta=30, day=226, n_orbits=2, dt=5,

angular_rates=[0., 0., 0.])
3 FUNcubeOrbit.compute()
4 t = FUNcubeOrbit.t

The heat fluxes are now stored inside the FUNcubeOrbit (OrbitalModel) object. Next, the outer surfaces

are defined, after which the heat fluxes of FUNcubeOrbit are assigned to those outer surfaces. In this

case, the outer surface is a PCB. Use can be made of the make_5node_pcb function to create a 5-node
PCB, after which the assign_q_ext_to_pcb function assigns the heat fluxes to the PCBs. If the outer

node is not a PCB but a ”standard” node, the syntax is slightly different, see Appendix C.

”xplus” is the NodalModel of the PCB, while ”xplusA”, ”xplusB” etc. are the nodes inside of the xplus

NodalModel. It can be nice to have both the NodalModel objects and the Node objects separately available,

therefore, they are both returned by the make_5node_pcb function. As seen below, the PCB is defined

with a mass and geometrical properties (origin is the xyz location of the centre of the PCB; geom is

the geometry of the PCB in xyz directions (thickness is set to zero there, and is defined separately)).

Furthermore, t=t assigns the FUNcubeOrbit.t time array to the PCB. The coating is taken from the material

database, and the outer argument states that these nodes are on the outside of the spacecraft, and thus

receive environmental heat, and also lose heat radiatively to space.

1 xplus, xplusA, xplusB, xplusC, xplusD, xplusE = make_5node_pcb(title='x+', mass=0.02, origin
=(0.05, 0, 0), geom=(0, 0.1, 0.1), thickness=0.0016, t=t, coating='
solar_cell_mix_black_paint', outer=True)

2 # (...) same for the other 5 outer panels
3

4 assign_q_ext_to_pcb([xplus, yplus, zplus, xmin, ymin, zmin], FUNcubeOrbit)

3.5.2. Example Thermal Nodal Model & Transient Solution
Defining Individual Nodes and NodalModels

Next, the other nodes of the nodal model can be defined using the Python class Node, as in Figure 3.3.
The inner PCBs are defined similarly as the outer PCBs shown before. If any extra nodes are desired to

be added, such as a battery to one of the PCBs, that is done as shown below. First, the battery node is

created, after which it is added to the PCB, and connected to the centre PCB node (’PCB2A’) as a contact

conduction, using the material database and a contact surface area.

1 PCB2, PCB2A, PCB2B, PCB2C, PCB2D, PCB2E = make_5node_pcb(title='PCB2', mass=mass_PCB, origin
=(0., 0., -0.02), geom=(0.1, 0.1, 0.), thickness=thickness_PCB, t=t, power=0.160)

2 # Also give this PCB a battery
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3 PCB2bat = Node(name='PCB2bat', material='copper', coating='black_paint', mass=0.05, origin=(0.,
0., -0.015))

4 PCB2.add_node(PCB2bat)
5 PCB2.connect('PCB2A', PCB2bat, contact_obj='graphite', A=0.05**2)
6 # (...) similar for the other inner PCBs, but without the battery.

Non-PCB nodes are easier to create, and a separate function such as make_5node_pcb is not needed.

The example below shows how to define a structural rod, simply as one node, and also how to define

aluminium spacers between the PCBs; they could all be defined as just Nodes, but they can be added to a

NodalModel as a bookkeeping tool. NodalModel spcr12 contains the four spacers between PCB1 and
PCB2, NodalModel spcr23 between PCB2 and PCB3, etc.

1 rodB = Node(name='rodB', material='al7075', coating='al_unpolished', mass=0.08, origin=(0.05,
0.05, 0.))

2

3 spcr12 = NodalModel(title='spcr12')
4 spcr12B = Node(name='spcr12B', material='al7075', coating='al_unpolished', mass=0.02, origin

=(0.04, 0.04, -0.03))
5 spcr12C = Node(name='spcr12C', material='al7075', coating='al_unpolished', mass=0.02, origin

=(-0.04, 0.04, -0.03))
6 spcr12D = Node(name='spcr12D', material='al7075', coating='al_unpolished', mass=0.02, origin

=(-0.04, -0.04, -0.03))
7 spcr12E = Node(name='spcr12E', material='al7075', coating='al_unpolished', mass=0.02, origin

=(0.04, -0.04, -0.03))
8 spcr12.add_node([spcr12B, spcr12C, spcr12D, spcr12E])
9 # (...) similar for the spacers between the other PCBs.

Defining Main NodalModel, Connect Nodes, and Solve

Now that all the nodes have been defined, the main NodalModel must be created, and all nodes should be

added to this model. If an entire NodalModel is added instead of just one Node, all Nodes of that model

will be added. Next, some nodes need to be thermally connected. A radiative connection is simply defined

with rad=True, assuming that the geometry is defined properly. Appendix C provides more details on

how to define the geometry for radiative connections. A conductive connection can be either a contact

or through connection (or a manually defined value in W/K). Contact connections can use the material

database, and a contact area must be provided. Through connections need a distance between nodes,

and a perpendicular surface area. For a through connection, both nodes must have the same material,

and that material’s properties are automatically used.

The simulation is run with the solve command, which stores the results within the FUNcubeModel object.

The results can be plotted in a standardised format using show_plots, but custom plots can also be made

by manually extracting data such as FUNcubeModel.T for the temperatures, etc. If the model contains

many nodes, it is recommended to use the whichnodes argument. With this argument, the desired nodes

are entered in a list, and only those nodes and their connections are shown in the plots. The arguments

showrad, shownodes, showtemps, and showflows are by default True, but they can be used to turn off

certain plots if they are not needed.

The animate_attitude command shows a 3D animation of the spacecraft’s attitude, which can be a good

sanity check when giving the spacecraft nonzero rotational rates.

1 FUNcubeModel = NodalModel(t=t, title='FUNcubeModel')
2 FUNcubeModel.add_node([PCB1, PCB2, PCB3, PCB4, PCB5, xplus, yplus, zplus, xmin, ymin, zmin,

spcr12, spcr23, spcr34, spcr45, ring_zm, ring_z, rodB, rodC, rodD, rodE])
3 FUNcubeModel.connect(PCB1A, [zminA, PCB2A], rad=True) # radiative
4 FUNcubeModel.connect(PCB1B, spcr12B, contact_obj='al_al', A=1e-5) # contact
5 FUNcubeModel.connect(ring_zm, [rodB, rodC, rodD, rodE], L_through=0.05, A=0.05**2) # through
6 # (...) more connections
7

8 FUNcubeModel.solve()
9 FUNcubeModel.show_plots(showrad=True, shownodes=True, showtemps=True, showflows=True,

whichnodes=['z-A', 'z-B', 'z-C', 'z-D', 'z-E'])
10 FUNcubeOrbit.animate_attitude()
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3.5.3. Example Plots
After calling show_plots, 5 different plots are created. They are explained in the following sub-sections,
according to the nicknames used in the show_plots function.

”shownodes” Plots

The first plot is a 3D visualisation of the nodes in the NodalModel. This plot refers to the aforementioned

shownodes argument. If the model contains many nodes, the plot would look like Figure 3.24. This is

unreadable, unless the plot is zoomed in. To fix this, the whichnodes argument in the show_plots function

can be used to select the desired nodes. The result is Figure 3.25; a more readable plot.

These plots show nodes that have geometrical properties (radiative nodes that appear as a flat plate), but

they also show nodes that just are a point in space. The latter type of node does not actually have any

geometry, but the point in the 3D plot still gives a useful overview of which nodes are approximately where

in the model.

The structure of a 5-node PCB (explained in Section 4.2.2) can also be seen in Figure 3.25. The solid

black outline represents the geometry of the centre node ”A”, while the other nodes B-E represent the

corners of the PCB that are usually connected to aluminium spacers that are in between the PCB stack.
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Figure 3.24: Unreadable plot if whichnodes is not

used. 3D plot showing the NodalModel’s nodes and
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Figure 3.25: Readable plot using whichnodes to

select fewer nodes. 3D plot showing the

NodalModel’s nodes and connections.

”showrad” Plots

Next, the incoming heat on the outer nodes is shown in a plot as Figure 3.26. This plot refers to the

aforementioned showrad argument. The incoming planet (Earth) IR heat, albedo heat, solar heat, and

internal powers are shown. It should be noted that these are not the heat fluxes as output by the

OrbitalModel, but the actual powers in Watt.
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Figure 3.26: Incoming heat on a number of outer nodes of FUNcube-1.

”showtemps” Plots

The next plot are the selected nodes’ temperatures, as shown in Figure 3.24. This plot refers to the

aforementioned showtemps argument. This plot may still be useful if all nodes are shown, since the general
temperature profile can be seen even with many lines in the plot. However, it would be difficult to determine

which line belongs to which node, since the colours in the Python plot repeat after a number of lines have

been plotted.
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Figure 3.27: Transient temperatures of a number of selected nodes of FUNcube-1.
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”showflows” Plots

Next, two more plots show the heat flows between the selected nodes. Figure 3.28 displays the heat flows

of all conductive connections present, while Figure 3.29 displays the radiative heat flows. These plots

refer to the aforementioned showflows argument.

Such figures may be useful during testing campaigns; for some types of testing setup, the heat flow

through a certain part of the setup is known. For such tests, that heat flow can be compared to the values

shown in these heat flow plots

The arrows in the legend indicate that the graph is positive when the heat flows from node A → B. E.g.,

the first element in Figure 3.28 shows nodes 11 → 14 (which are the nodes PCB3A and PCB3D). If that

line is above zero, heat flows from node 11 to node 14; if it is negative it flows from node 14 to node 11.
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Figure 3.28: Conductive heat flows between a number of selected nodes of FUNcube-1.
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Figure 3.29: Radiative heat flows between a number of selected nodes of FUNcube-1.

Animate Attitude

Finally, the OrbitalModel.animate_attitude function can be used if the spacecraft has nonzero angular

rates. A screenshot is shown in Figure 3.30. This plot is most likely just use to visually confirm whether the

angular rates appear to be the same as input by the user.

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00

0.25

0.50

0.75

1.00

Zenith
Orbit Normal
Velocity
Eigenaxis
x+
y+
z+
x-
y-
z-

Time passed: 0 hrs, 10 mins, 25.00 seconds
Orbit angle (true anomaly from solar vector): 40.5 degrees

Figure 3.30: Screenshot of the 3D animation shown with OrbitalModel.animate_attitude. The
eigenaxis refers to the axis around which the spacecraft is effectively rotating.



4
Verification & Validation

In this chapter, the outputs from the software are compared with results from ESATAN-TMS, and with

flight data from the FUNcube-1 satellite. This type of verification and validation analysis is crucial for the

reliability of the software. The verification ensures that the software performs the computations as intended,

and that the results line up reasonably well with other, validated software (such as ESATAN-TMS). The

validation uses real flight data to test the software’s accuracy for real missions, and not just other simulations.

For this software, the verification is done with component-level and tests (view factors, eclipse, and beta

angle) and system-level tests (external heat fluxes, non-orbiting thermal model, and an orbiting spacecraft).

The validation is done with flight data from the FUNcube-1 spacecraft; data is available from 2016 and

from 2024. The temperatures in both years are substantially different, which allows to test the software

two different scenarios.

4.1. Verification
The software is verified on two different levels: component-level and system-level. First, component-level

tests are performed to ensure that computations work in an isolated environment. For example, the view

factors for different geometries are plotted and compared to reference data. Second, system-level tests

verify that the computation as a whole works as expected; these computations are compared with ESATAN.

4.1.1. Component-Level Tests
Each test that does not contain numerous interrelated computations is considered a component-level test.

In essence, the computation is isolated and can thus be tested relatively easily for its accuracy. In this

sub-section, the view factors, eclipse, and beta angle computations are tested and compared to literature.

View Factors

Verification data is used from ECSS-E-HB-31-01 Part 1A [32], where many different formulas are given for

different types of radiating geometries. Three different view factors are calculated in the software:

• From a flat plate to a sphere: the flat plate is a face of the spacecraft in orbit, and the sphere

represents the Earth. This view factor is used for the Earth IR heat and albedo heat computations. The

computation uses the equations from Section 3.3.6. Figure 4.1 and Figure 4.2 show the results from

Python and ECSS, respectively. It should be noted that Figure 4.1 is almost identical to Figure 3.13,

but the x-axis is defined differently.

• Between two parallel plates: one of the two formulas implemented to estimate the internal radiation

in the spacecraft, using Equation 2.11. Figure 4.3 and Figure 4.4 show the results from Python and

ECSS, respectively.

• Between two perpendicular plates: one of the two formulas implemented to estimate the internal

radiation in the spacecraft, using Equation 2.10. Figure 4.5 and Figure 4.6 show the results from

Python and ECSS, respectively.

The figures below are visually identical between the Python plots and the ECSS plots. The plots show

identical shapes and identical values on the x- and y-axis, so the computations are considered verified.

55
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Figure 4.1: View factors from a flat plate to a

sphere, generated by the Python software.

H = h/REarth, as shown in Figure 3.12.

Figure 4.2: View factors from a flat plate to a

sphere, taken from ECSS [32, p.19]. The grey area

is the region for which a simplified formula can be

used (not used in the Python software).
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Figure 4.3: View factors for parallel plates,

generated by the Python software. X = a/c and
Y = b/c, as shown in Figure 2.16.

Figure 4.4: View factors for parallel plates, taken

from ECSS [32, p.36].
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Figure 4.5: View factors for perpendicular plates,

generated by the Python software. N = a/b and
L = c/b, as shown in Figure 2.15.

Figure 4.6: View factors for perpendicular plates,

taken from ECSS [32, p.40].



4.1. Verification 57

Eclipse Characteristics

The eclipse fraction of a circular Low-Earth Orbit was computed in Section 3.3.7. Depending on the altitude,

there is a certain cut-off beta angle, after which the orbit is completely illuminated. In this case of an orbit

of 408 km altitude, Figure 4.7 and Figure 4.8 show that the cut-off angle is β ≈ 70°. Furthermore, the
maximum eclipse fraction, when β = 0°, is 0.39 in both plots. The function is considered verified.
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Figure 4.7: Fraction of the orbit that is in eclipse,

for all positive beta angles (the plot mirrors around

β = 0 for negative β), at 408 km altitude, computed

by the Python software.

Figure 4.8: Fraction of the orbit that is in eclipse,

for all positive beta angles (the plot mirrors around

β = 0 for negative β), at 408 km altitude, taken from

Rickman’s online lecture [51].

Beta Computation from Orbital Parameters

Section 3.3.8 discussed a way of computing the beta angle if the Right Ascension of the Ascending Node

(RAAN) and inclination are known. Besides performing a check on the equation written in the software,

some visual feedback in a number of figures would also improve the level of verification. Since no reference

data was found on this (besides Equation 3.29 itself), logical reasoning will be performed to ensure that

the overall behaviour of the equation is correct. Values cannot be verified exactly.

Figure 4.10 shows the beta angles for different combinations of inclination and RAAN. This figure corre-

sponds to March in Figure 4.9. Evidently, if RAAN = 0°, β = 0° regardless of the inclination. When the

RAAN is increased, see also Figure 4.9, β becomes positive, and attains its maximum value for a polar

orbit (incl. = 90°). This once again makes sense when Figure 4.9 is consulted.

A similar plot is made for an orbit in the month December, shown in Figure 4.11. For an inclination of 0°,

the beta angle is -23.44° regardless of the RAAN. The equatorial orbit (black colour) in Figure 4.9 is that

orbit, and indeed shows that the Sun points ”below” the orbit and is therefore negative, and its value is

equal to the obliquity of the ecliptic. Once again observing Figure 4.11, increasing the RAAN results in

smaller beta angles, regardless of inclination. This makes sense when imagining the December orbit in

Figure 4.9 to have a change in RAAN.
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Figure 4.9: Schematic diagram showcasing the effect of orbital parameters on the beta angle. This figure

aids the understanding of Figure 4.10 and Figure 4.11. β is indicated as negative, since it is positive when

it looks ”onto” the orbit, see also Figure 3.6.
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Figure 4.10: Beta angle for numerous combinations

of the RAAN and inclination. On day 79, the vernal

equinox points directly towards the Sun.
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Figure 4.11: Beta angle for numerous

combinations of the RAAN and inclination, for the

month December.

4.1.2. System-Level Tests
This sub-section displays the results of numerous system-level tests. Since the software essentially

contains two modules, the orbital module and the thermal module, both are tested separately, and then as

a whole.

External Heat Fluxes

The first system-level test to be performed is the external heat flux analysis. It combines the functions that

were tested in the component-level tests, and computes meaningful results. For now, a single plate is

put in an orbit at 408 km altitude, which is the altitude used by L. Rickman [47, 51], so the results at this

altitude can also be verified with Rickman’s examples. Different orientations of the plate were tested and

compared with results from ESATAN-TMS. The main case will be a plate pointing towards the velocity

vector (τ, φ = 0), with β = 0. However, both of these parameters are varied to test a few different scenarios:



4.1. Verification 59

• A ”default” case where the face is pointing in the flight direction and the altitude is 408 km. This is

Figure 4.12 and Figure 4.13.

• A case with a different face orientation (nadir), at 408 km. There are six of these cases possible,

since there are six flight directions (x+, y+, z+, x-, y-, z-, see Figure 3.7), which were all tested, but

for conciseness are not shown here. This is Figure 4.14 and Figure 4.15.

• Two cases with different beta angles (45° and 80°), still based on the default case with the plate

facing the flight direction, at 408 km. This is Figure 4.16, Figure 4.17, Figure 4.18, and Figure 4.19.

• Two cases with different altitudes (300 km and 1000 km), still based on the default case with the plate

facing the flight direction, with β = 0°. This is Figure 4.20, Figure 4.20, Figure 4.22, and Figure 4.23.

The plots on the left side of the page show the heat fluxes on the plate by the Earth IR, albedo, and solar

radiation. The solid lines are the Python simulation, while the scattered icons are from ESATAN. The plots

appear to match well, although the albedo shows slightly larger errors than the other heat fluxes. To really

show the errors better, error plots are shown on the right-hand side of the page. Finally, a table with all the

error values are shown in Table 4.1.

The plots on the right side of the page show the difference between the ESATAN and Python simulations.

For example, when Figure 4.13 shows a positive error, it means that the Python simulation estimated

a too high heat flux, where ESATAN is considered the truth. If it is a negative error, the heat flux was

underestimated by Python. The Root-Mean-Square Error (RMSE) errors were converted to a percentage

by dividing them by the mean heat flux of the corresponding variable; the percentages were not calculated

using the time-varying heat fluxes, since those are occasionally zero, making it impossible to calculate a

percentage.

The right-hand side plots also show an ”x” for outliers, but those are cropped out of the frame to improve

the plot’s readability. Such an outlier occurs when the satellite is entering or leaving the eclipse. If the

eclipse time is slightly off, a large ”error” is detected, but the error is not valid since it is a time-shift issue,

not a heat flux issue. Hence, the outliers are marked and not considered in the RMSE computations.

• The Earth IR error is essentially a constant value, dependent on the orientation of the plate. This

is likely due to the fact that the Earth IR is assumed to be constant in both the Python code and in

ESATAN, but the actual value used may be slightly different. The error is negligible; the largest

error is seen in the nadir-facing case, Figure 4.14 and Figure 4.15, yet the error is still only (2.19

W/m2)/(209 W/m2)≈1%.

• The albedo error shows large percentage errors, although the actual error in W/m2 is comparable

to the solar flux error. As also seen in Table 4.1, the error increases with increasing altitude. With

increasing beta angle, the actual error decreases, but the percentage increases.

It appears that, in most cases, the albedo is underestimated by the Python code. Figure 4.19 shows

a clear trend where the error magnitude is the largest near the dark side of Earth (not necessarily

in eclipse, since the case of Figure 4.18 and Figure 4.19 does not have an eclipse). An educated

guess is that this error may occur due to a perfect ”cut-off” situation as the spacecraft passes a true

anomaly of 90° (see Section 3.3.5). However, in reality, there is some albedo that reaches beyond

this point, simply due to sunlight being reflected further. This is not taken into account in the Python

simulation. The albedo error is more significant than the Earth IR error, and the physical mechanism

that causes the albedo error is more complicated, as well.

• Finally, the solar flux error is the same order of magnitude as the albedo error. The two are related,

since albedo is simply a reflection of sunlight. Figure 4.13, Figure 4.17, Figure 4.19, Figure 4.21,

and Figure 4.23 all show an underestimation of the solar flux in the second half of the orbit, and the

albedo shows the same trend. If the error were from the solar constant used, it would be directly

proportional, a constant percentage, to the value of the solar heat flux. However, especially from

Figure 4.19, the error appears to have a sinusoidal shape. It is unsure what the source is of this

error, but due to the sinusoidal nature, it is expected that it may be related to the attitude of the plate.
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Figure 4.12: Python simulation compared with

ESATAN results of the Earth infrared, albedo, and

direct solar heat flux for a single plate oriented

towards its velocity vector, for β = 0°.
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Figure 4.13: Errors between Python and ESATAN

simulations, for a single plate oriented towards its

velocity vector, for β = 0°. An outlier is present near
the eclipse point, and cropped out of view.
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Figure 4.14: Python simulation compared with

ESATAN results of the Earth infrared, albedo, and

direct solar heat flux for a single plate oriented nadir

Earth, for β = 0°.
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Figure 4.15: Errors between Python and ESATAN

simulations, for a single plate oriented nadir Earth,

for β = 0°. Two outliers are present near the eclipse
points, and cropped out of view.
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Figure 4.16: Python simulation versus ESATAN

results of the Earth infrared, albedo, and direct solar

heat flux for a single plate oriented towards its

velocity vector, for β = 45°.
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Figure 4.17: Errors between Python and ESATAN

simulations, for a single plate oriented towards its

velocity vector, for β = 45°. An outlier is present
near the eclipse point, and cropped out of view.
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Figure 4.18: Python simulation versus ESATAN

results of the Earth infrared, albedo, and direct solar

heat flux for a single plate oriented towards its

velocity vector, for β = 80°.
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Figure 4.19: Errors between Python and ESATAN

simulations, for a single plate oriented towards its

velocity vector, for β = 80°. No outliers are present
due to the absence of an eclipse.
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Figure 4.20: Python simulation versus ESATAN

results of the Earth infrared, albedo, and direct solar

heat flux for a single plate oriented towards its

velocity vector, for β = 0° at an altitude of 300 km.
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Figure 4.21: Errors between Python and ESATAN

simulations, for a single plate oriented towards its

velocity vector, for β = 0° at an altitude of 300 km.
An outlier is present near the eclipse point, and

cropped out of view.

0 50 100 150 200 250 300 350
True anomaly [deg]

0

200

400

600

800

1000

1200

1400

He
at

 fl
ux

 [W
/m

2 ]

Heat Flux on an Oriented Plate
: 0 deg, : 0 deg, : 0 deg, h: 1000000 m

Earth IR, sim.
Albedo, sim.
Direct solar, sim.
Earth IR, ESATAN
Albedo, ESATAN
Solar, ESATAN

Figure 4.22: Python simulation versus ESATAN

results of the Earth infrared, albedo, and direct solar

heat flux for a single plate oriented towards its

velocity vector, for β = 0° at an altitude of 1000 km.
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Figure 4.23: Errors between Python and ESATAN

simulations, for a single plate oriented towards its

velocity vector, for β = 0° at an altitude of 1000 km.
An outlier is present near the eclipse point, and

cropped out of view.
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Table 4.1: RMSE between the environmental fluxes computed by the Python software and computed by

ESATAN-TMS. The Earth IR errors are negligibly low. The solar errors are moderately high, but low in

percentage. The albedo errors are high.

Case (altitude, beta, attitude) Earth IR Albedo Solar

W/m2 % W/m2 % W/m2 %

408 km, β = 0°, toward velocity 0.07 0.1 5.34 14.1 4.76 1.6

408 km, β = 0°, nadir 2.19 1.0 6.70 5.8 2.32 8.7

408 km, β = 45°, toward velocity 0.07 0.1 3.79 14.2 3.36 1.4

408 km, β = 80°, toward velocity 0.07 0.1 1.42 21.7 0.87 1.1

300 km, β = 0°, toward velocity 0.23 0.3 4.86 11.7 4.74 1.6

1000 km, β = 0°, toward velocity 0.08 0.2 6.00 23.4 4.75 1.4

Temperature Response of Non-Orbiting Nodes

To test the thermal computations in an isolated way, a number of nodes are connected to each other via

conductive couplings, and the power inputs are manually defined and unrelated to an orbit. A graphical

representation of the example model used in this verification case is shown in Figure 4.24. The parameters

were chosen such that the model is not symmetrical, and such that numerous sanity checks could be

performed. A higher conductivity should result in the temperatures being close together; a large mass

should result in a more constant temperature; different initial temperatures should show how the most

extreme temperatures are pulled towards the average temperature.

Node 0
Ccap = 1 J/K
T0 = 20°C

Node 1
Ccap = 2 J/K
T0 = 30°C

Node 3
Ccap = 4 J/K
T0 = 50°C

Node 2
Ccap = 3 J/K
T0 = 40°C

Node 4
Ccap = 103 J/K

T0 = 0°C

Ccon =
10 W/K

Ccon =
1 W/K

Ccon =
5 W/K

Ccon =
2 W/K

Figure 4.24: Five thermal nodes with their properties and connections, used for a transient analysis

verification case.

The resulting temperatures are shown in Figure 4.25, and the temperature errors of the Python simulation

compared to ESATAN are shown in Figure 4.26. As expected, the node with the largest heat capacity,

node 4, has a nearly constant temperature compared to the other nodes. Moreover, nodes 0 and 1 have

very similar temperatures, due to their high conductance value. The errors shown in Figure 4.26 are

extremely small, and it was found that these errors depend on the solver chosen. The optimal solver

is Radau (more information is available in Section 3.4.3), as shown in the figure. The error magnitude

is proportional to the node’s thermal mass. The lightest node, node 0, has the largest errors, while the

heaviest node, node 4, has the smallest errors. Regardless, all errors are of negligible magnitude.
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Figure 4.25: Temperatures of five nodes that are

have conductive couplings, computed by a Python

simulation and ESATAN.
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Figure 4.26: Errors in temperature of five

conductively connected nodes. There are no

outliers present.

Temperatures of Orbiting Box

After having verified the orbital module and the thermal module separately, they are combined into one

model of a simple orbiting box. The box has dimensions of 1x1x1 metre, each node (face) having a

thermal capacitance of 1000 J/K. The plates are connected radiatively, and conductively with 1 W/K to

their neighbouring nodes. These dimensions are much larger than small satellites, but units of 1 m are

easy to work with, and as long as all relative dimensions are the same, the size does not influence the

thermal behaviour, as long as the conductances are held constant. In reality, size does evidently influence

the behaviour, since the conductances usually decrease with increasing size.

Simultaneously with assessing a combined orbital & thermal model, the effect of internal radiation is

assessed. The view factors were already verified in Section 4.1.1, but now, the radiation is tested within

the context of a full simulation. Therefore, one simulation (in both Python and ESATAN) is conducted with

internal radiation, and one without.

The results for the test with radiation are shown in Figure 4.27 and Figure 4.28, while the tests without

radiation are shown in Figure 4.29 and Figure 4.30. Only two nodes are shown, to prevent the plots from

becoming unreadable, but the RMSE values of the other nodes are still summarised in Table 4.2. The

model without internal radiation shows larger errors, which is likely due to the more extreme temperatures

attained. The internal radiation pulls the temperatures of the nodes closer together, hence resulting in

slightly more mild temperatures.

Furthermore, it can be seen in the figures hat the Python simulation, on average, estimates the heat

transfer between nodes to be slightly too large, compared to ESATAN. This shows in the orange, dashed

lines of the x- node in Figure 4.28 and Figure 4.30; the Python temperatures are too low compared to

ESATAN during the hotter periods, and the Python temperatures are too high during the colder periods. In

other words, Python estimates a stronger thermal connection between the nodes. It is not due to radiation,

because the same effect is seen for both cases (with and without radiation). This would suggest that the

conduction is the source of error, but it was already shown in Section 4.1.2 that purely conductive nodes

only exhibit extremely low temperature errors. It is therefore assumed that the errors are a result of the

errors in the environmental heat flux computations, as shown in Section 4.1.2.

To conclude, the temperature errors in the combined orbital & thermal model are most likely due to the

environmental heat flux computation. There is no data to suggest that the assumptions on internal radiation
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for the Python code result in large errors in temperature, even for this extreme case where temperatures

of ±100°C were reached.
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Figure 4.27: Temperatures of nodes x+ and x-, with

internal radiation, computed by a Python simulation

and ESATAN.
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Figure 4.28: Errors in temperatures of nodes x+

and x-, with internal radiation. There are no outliers

present.
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Figure 4.29: Temperatures of nodes x+ and x-,

without internal radiation, computed by a Python

simulation and ESATAN.
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Figure 4.30: Errors in temperatures of nodes x+

and x-, without internal radiation. There are no

outliers present.
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Table 4.2: Root Mean Square Error of all nodes of the box, for both the case with and without internal

radiation.

Node RMSE with rad. RMSE without rad.

0, x+ 0.55°C 0.57°C

1, y+ 0.59°C 0.89°C

2, z+ 0.69°C 0.80°C

3, x- 0.84°C 0.95°C

4, y- 0.50°C 0.83°C

5, z- 0.70°C 0.80°C

4.2. Validation
After having verified the software with literature and ESATAN-TMS on component and system level,

a realistic satellite model is created, and compared to flight data. The validation is performed using

flight data from the FUNcube-1 satellite. This satellite was chosen over the Delfi-PQ spacecraft, since

FUNcube-1 has whole-orbit flight data available, instead of the less frequent data points available from

Delfi-PQ. Unfortunately, the hardware of the FUNcube-1 is not readily available, so the thermal model is

based on all the information mentioned in the FUNcube handbook [59] and information from S. Speretta.

Numerous images were used to acquire information on the satellite’s architecture, as shown in Figure 4.31,

Figure 4.32, and Figure 4.33. Finally, data on parameters such as internal power was acquired via oral

communication with professor S. Speretta. The Python file defining the nodal model of FUNcube-1 can be

found on GitLab [8] and GitHub [9].

Two different sources with whole-orbit flight data of FUNcube-1 were found:

• The first source is the AMSAT-UK online data warehouse [60]. This website shows very recent data

(update frequency of a few hours) of a single orbit. The data from this source therefore dates 13

August 2024; the website underwent maintenance afterwards. Unfortunately, the data could not be

directly downloaded, so an online plot digitiser was used to trace the data points1.

• The second source is again whole-orbit flight data, but provided via e-mail communication with

S. Speretta2. This data is from 4 February 2016; since it is much earlier data than the almost

real-time 2024 data, the spacecraft’s orbital properties are also different. This is discussed more in

Section 4.2.4 and Section 4.2.5.

For the purpose of this analysis, and due to a lack of data of the hardware, a pragmatic approach was

used for constructing the thermal model. Hence, parts such as the antennas and specific components on

the PCBs are not modelled, since there is no such specific temperature data available anyway. However,

the batteries are included due to their large mass and strong sensitivity to temperatures.

1PlotDigitizer: https://plotdigitizer.com/
2Acquired via e-mail communication with S. Speretta in August 2024.

https://plotdigitizer.com/
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Figure 4.31: Engineering model of

FUNcube-1 without the outer panels attached

[61].

Figure 4.32: FUNcube-1 schematic diagram of the

internal layout and the board names [59].

Figure 4.33: FUNcube-1 with the outer panels attached and the antennas deployed [61].

4.2.1. Modelling Approach
As mentioned in the introduction of this section, some elements such as the antennas and specific PCB

structures were neglected in this model. The flight data of only a select number of components is known,

so it would have no additional benefit to add even more detail to the model. Figure 4.34 shows which parts

of the satellite are included in the thermal model. Additionally, Figure 4.35 shows a schematic diagram of

the modelling method. Finally, a summary of all components and their properties is shown in Table 4.3.
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Figure 4.34: FUNcube-1 including text that indicates which parts are included in the thermal model

(adapted from [61]).

Heat capacity
Ccap

PCB

battery

structural
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Pout, IR
Pin, env

Structural
interface

Conductance
Ccon

Radiative
coupling

R

Heat capacity
Ccap

Legend

outer plates
(with solar cells)

Figure 4.35: Schematic diagram of the method in which FUNcube-1 was modelled. The main building

blocks (modules) are the outer plates, the inner PCBs (one includes a battery), the structure, and the rods

and spacers.

Looking at Table 4.3, each component contains a number of key parameters. The mass values are

estimations based on the available pictures and material properties, and they are also correlated with the

flight data. The names under ”material” and ”coating” are the item names from the material database [8],

see also Appendix B. Each component is given at least a mass and a material. The material assignment

allows the software to convert the mass in kg to a heat capacity in J/K. A coating assignment, or manual

assignment of the optical properties, is only needed if the node is either on the outside of the spacecraft

(the outer PCBs), or has radiative connections with other nodes (the inner PCBs). The total power of 1.2

W (3) is distributed equally over the internal nodes. The battery pack is given the properties of copper for

now, but due to the complex chemistry of a battery, it is recommended to either perform a more in-depth

literature search, or thermal tests with an actual battery.

The total mass of the model is 1070 grams, which is slightly higher than the approximate 980 grams

mentioned by S. Speretta4. However, the mass of 1070 grams was found while correlating the results with

3See footnote 2
4See footnote 2.
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the flight data; in a thermal model, it is the heat capacity that influences the system, not the mass itself.

Since some assumptions were made, such as lumping the steel rod mass into the aluminium spacers,

slight mass discrepancies are likely to occur. The total heat capacity of the spacecraft is 1029.25 J/K.

The thermal connection between all components (except the through-conduction of the PCBs) is assumed

to be similar to an aluminium-aluminium contact conduction, defined as ”al_al” in the material database.

This assumption relies on the fact that the PCBs have copper rings around the corner holes, resulting in a

copper-aluminium contact conduction between the PCBs and the spacers. Since contact conductances

are very hard to predict analytically, the ”al_al” connection is used, since it is based on research (see

Appendix B; this appendix also includes all sources used), while data for copper-aluminium connections

specifically was not found. It is recommended that such thermal contacts are determined experimentally.

Table 4.3: All components in the FUNcube-1 thermal model. The masses are estimated from Figure 4.34,

and the heat capacities are computed using the material database [8]. Each PCB is split into nodes A-E,

as further described in Section 4.2.2. The coatings and their corresponding properties are stored in the

material database [8], and are also shown in Appendix B. Non-radiative nodes do not need to have a

coating assigned.

Name Mass [g]
Heat Capacity

[J/K]
Material Coating

Outer PCBs [6x] 6x 20 6x 22 ”PCB”

”solar_cell_mix

_black_paint”

(α = 0.75,

ε = 0.88)

Inner PCBs [5x] 5x 20 5x 22 ”PCB”

”PCB_green”

(α = 0.88,

ε = 0.70)

Battery pack 50 19.25 ”copper” -

Spacers [16x] 16x 20 16x 19.2 ”al7075” -

Structure

Upper &

lower rings [2x]
2x 80 2x 76.8 ”al7075” -

Corner rods [4x] 4x 80 4x 76.8 ”al7075” -

Total 1070 1029.25
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Table 4.4: FUNcube-1 PCB power distribution. The numbers are from S. Speretta (see footnote 2),

except the CCT board power that was found in the FUNcube-1 handbook [59].

Board name

(& name in Python)
Power [mW]

AntS (z+) 40

CCT (5) 15

RF (4) 190

PA (3) 303

EPS (2) 160

ASIB (1) 462

Total 1170

4.2.2. Defining the PCBs
As explained in the user’s manual in Appendix C, there are two standardised ways to define a PCB: a

5-node PCB or a 9-node PCB. These two types can be easily defined using a custom Python function, but

all parameters can be adjusted to the user’s liking. For example, extra nodes can be added to the PCB,

such as a battery.

A 5-node PCB was chosen for all FUNcube PCBs, since it is an easier model to compute (fewer nodes),

while still representing the four rods and spacers on the corners of all PCBs (see Figure 4.31). The PCB

model is shown in Figure 4.36. Details on how the masses, distances, areas, conductances etc. were

calculated can be found in Section C.3.2.

A

BC

D E

A

CE

G I

D

BF

H

Figure 4.36: Schematic diagram of the template for a 5-node PCB, with a main central node (node A) and

a node near each corner (nodes B-E).

4.2.3. Defining the Outer Surfaces
The outer surfaces are also defined as PCBs, as explained in the previous sub-section. However, since

all outer surfaces have solar cells mounted on them (see Figure 4.33), their optical properties require

dedicated calculations.

Figure 4.33 shows that the majority of FUNcube-1’s outer surface is covered by the solar cells, but a

reasonable fraction is the exposed panel covered in black paint. The optical properties from the black
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paint are taken from the material database [8]: εblackpaint = 0.85 and αblackpaint = 0.95.

The solar cells convert part of the solar energy into electrical energy. This lowers the ”effective” absorptivity

of the surface. A method from T. van Boxtel [38] was adopted, where the solar cell efficiency was used to

compute αeff :

αeff = αsolarcell − ηmppt · ηconversion = 0.91− 0.9 · 0.28 = 0.66 (4.1)

where ηmppt is the efficiency of the Maximum Power Point Tracker (MPPT), and ηconversion is the efficiency
of converting the solar energy into electrical energy. The emissivity is independent of the solar cell

efficiency, and is εsolarcell = 0.89 The values were also taken from Boxtel, but may vary depending on the

type of solar cell used and the environmental conditions. Finally, the absorptivity that is given to the outer

surfaces is a combination between the black paint and the solar cells. The solar cells cover approximately

2/3 of the surface, while the black paint covers 1/3. Hence, αouterpanel ≈ 0.75 and εouterpanel ≈ 0.88.

4.2.4. Orbital Model
The orbital model is challenging to replicate, mainly due to uncertainties in attitude and/or rotational rates.

According to the FUNcube handbook [59], the attitude is passively stabilised by means of two hysteresis

rods that dampen the angular rates in two axes, and by means of a permanent magnet that aligns itself with

the Earth’s magnetic field. The effect of the permanent magnet on the spacecraft’s attitude is illustrated in

Figure 4.37. On the contrary, the attitude in the Python software is as shown in Figure 4.38. These figures

do not show any possible spin of the spacecraft.

Since the Python software does not yet allow for such complicated attitude behaviour, simplifications

must be made. For the 2024 data, it is assumed that the spacecraft’s attitude is fully stabilised, as in the

coordinate system in Figure 3.7. For the 2016 data, the spacecraft is assumed to be stabilised with its z+

face (see Figure 3.7) toward its velocity vector, but spinning with 2°/s about its z-axis. This value was deter-

mined by comparing the simulation output with the flight data. This will become clear in the next sub-section.

Figure 4.37: Spacecraft attitude throughout

an orbit when one axis is aligned with the

Earth’s magnetic field. This represents

FUNcube-1’s actual orbit.

Figure 4.38: Spacecraft attitude throughout

an orbit when the attitude follows the velocity

vector, and is unaffected by the Earth’s

magnetic field. This represents FUNcube-1’s

orbit as simulated with Python.
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Since the flight data was taken from the frequently updated AMSAT-UK data warehouse [60], the orbital

data should also be as recent as possible. The N2YO.com website [62] shows real-time orbital parameters

of the satellite. An example screenshot of the real-time orbital position is shown in Figure 4.39. The beta

angle can also be found from this figure, by comparing the spacecraft’s position with the Sun icon as it

passes over the equator. The difference in longitude is approximately the beta angle.

Figure 4.39: Orbit path and real-time orbital position of FUNcube-1, shown on N2YO.com [62].

A summary of all orbital data and attitude data is shown in Table 4.5. As explained before, the angular

rates are not perfectly be zero, because the spacecraft rotates along with the Earth’s magnetic field. This

will result in some discrepancies in the final validation results.

Table 4.5: All orbital/attitude data of FUNcube-1 entered into the Python software.

Name Value & Unit Source

2024 data

Altitude 596 km Actual orbit is 629x563 km on 13 August 2024 [62]

Beta angle 30° Estimated from Figure 4.39

Day 225 13 August is day 225

Angular rates 0°/s Attitude is passively stabilised [59]

2016 data

Altitude 644 km Computed using the orbital period seen in the 2016

flight data (consists of 14 orbits)

Beta angle 30° Approximately constant in Sun-Synchronous orbit;

similar as in 2024

Day 35 4 February is day 35

Angular rates 2°/s in z+ Correlating with the flight data suggests 2°/s along

the z+ axis
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4.2.5. Validation Results
In this sub-section, the results from the Python simulation are compared with the flight data from 2024

and 2016. The data set from 2024 is presented first, since it appears that the spacecraft is not tumbling

quickly, while the data from 2016 suggests that the spacecraft was spinning at a much faster rate at that time.

2024 Flight Data

The simulation is compared with the 2024 data in Figure 4.40, and the errors are displayed in Figure 4.41.

Only the temperatures of the x+, x-, y+, and y- panels were available, aside from a number of chassis

temperatures that would be difficult to validate with the simplified Python model. The coordinate system for

an orbiting spacecraft used in this Python code (Figure 3.7) is not necessarily equal to that of FUNcube-1.

By comparing the data in Figure 4.40, it is likely that the coldest temperatures (green data) belong to the

y+ face of the Python coordinate system. Simultaneously, the hottest temperatures appear to belong to

the y- face; it makes sense that the two opposing faces have opposing temperature levels as well. The x+

and x- faces are not completely enshadowed or illuminated; hence, they have more moderate temperatures.

As seen in Figure 4.40 and Figure 4.41, there is a difference in the shape of the temperature curves. The

largest difference appears to be right before the eclipse, near the fortieth minute, and right after the eclipse,

near the ninetieth minute. This may be due to (at least) two effects:

1. One axis (z+) is oriented differently throughout the orbit: it follows the magnetic field in the flight data,

as in Figure 4.37, but the simulation assumes that it follows the velocity vector, as in Figure 4.38.

This discrepancy is the strongest near the poles, as seen in the two aforementioned figures, while

the attitude near the equator is roughly equal for both cases.

2. The other axes (x and y) are oriented differently. In the Python simulation, x+ faces perfectly zenith,

z+ towards the velocity vector, and y+ completes the right-handed system, as in Figure 3.7. However,

the actual FUNcube-1 may be angled differently, e.g. angled 45°around the z-axis. In that case,

the temperature profile would look different than in the simulation, since all faces would receive

different amounts of environmental radiation compared to the simulated attitude. More software

features would have to be implemented to allow for more control over the attitude of the spacecraft;

it is recommended to read Chapter 7.
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Figure 4.40: Flight data temperatures of four outer panels of FUNcube-1, from the live broadcast

AMSAT-UK data warehouse [60], 2024. The eclipse region is between 51-84 minutes.
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Figure 4.41: Errors in temperatures of four outer panels of FUNcube-1, from the live broadcast

AMSAT-UK data warehouse [60], 2024. There are no outliers present.

2016 Flight Data

The data from 2016 is compared with a Python simulation in Figure 4.42 and Figure 4.43. The data looks

vastly different from the 2024 data. The eclipse period, from the 65th minute onward, looks similar as the

2024 data. However, the rest of the data shows clear oscillatory behaviour. The only logical explanation

for this is the fact that the spacecraft is spinning.

The spin rate of 2°/s about the z+ axis was determined looking at the frequency of oscillation, and the

amplitude. Combining these two arguments results in a solid suggestion that the rotational rate was indeed

≈ 2°/s.

• The oscillation frequency in the flight data appears to be 21 rotations in 63 minutes, which is 1/3

rotation per minute. This translates to 2°/s. However, the sampling rate is in the same order of

magnitude, so it is possible that the actual frequency is higher, but not captured in the sampled data.

• The second criterion to observe is the amplitude of the oscillation. For a slowly tumbling spacecraft,

the illuminated face becomes very hot, and the enshadowed face becomes very cold: the temperature

extremes are large. For a more quickly rotating spacecraft, the faces do not have as much time to

heat up or cool down, so the temperature swing is much smaller. Assigning a rotational rate of 2°/s

to the Python simulation resulted in a temperature amplitude of approximately 5-8°C outside of the

eclipse. Any faster oscillation makes the temperature swing smaller, so it is unlikely that those were

really the rotational rates of FUNcube-1 in orbit.

Looking at Figure 4.42 and Figure 4.43, there are not as many severe temperature drops or increases

as there were in the 2024 data; the overall heating trend in the out-of-eclipse period follows a relatively

predictable path. However, the simulation especially shows discrepancies right before entering the eclipse

(minute 50) and after leaving the eclipse (minute 0). This could be due to the same reasoning as in

argument 1 of the 2024 data: the real spacecraft follows the Earth’s magnetic field, while the simulation

follows the velocity vector.

The temperatures of the simulation are also overall colder than the flight temperatures. It was observed

that the simulation always shows a decrease in temperature when the spacecraft is tumbling, compared to
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when it is not tumbling and only rotating along with the velocity vector. This is discussed in more detail in

Chapter 5, using Figure 5.11. Depending on the exact rotational axis of the spacecraft, the ”effective area”

receiving sunlight might differ. This could explain a different average temperature.
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Figure 4.42: Flight data temperatures of four outer panels of FUNcube-1, from 2016 data provided by S.

Speretta. The spacecraft is rotating at approximately 2°/s. The eclipse region is between 65-96 minutes.
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Figure 4.43: Errors in temperatures of four outer panels of FUNcube-1, from 2016 data provided by S.

Speretta. The spacecraft is rotating at approximately 2°/s. There are no outliers present.
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Summary and Conclusion

The root-mean-square errors (RMSE) were already displayed in Figure 4.41 and Figure 4.43, but are also

tabulated below in Table 4.6. The case from 2024 shows lower errors than the 2016 case. In both cases, it

is expected that a large part of the uncertainty is due to the attitude and rotational rates. When the software

is extended with more attitude controllability, this hypothesis can be investigated more thoroughly.

Table 4.6: RMSE values for the validation cases of FUNcube-1 in 2024 and 2016.

Spacecraft Face 2024 RMSE [°C] 2016 RMSE [°C]

x+ 5.78 6.20

x- 2.76 7.08

y+ 1.38 6.58

y- 4.59 6.83

These validated temperatures are only the outer panels of the spacecraft. Flight data on, e.g., the battery

temperatures was not available. While the outer panels experience extreme temperature changes, the in-

side of the spacecraft remains more stable, since the thermal resistance between the inside and outside act

as dampers. To know the temperatures of the vital internal components, it is advised to perform a sensitivity

analysis specifically on those components; this is thoroughly explained in Chapter 5. It will be clear that

the internals of the spacecraft are much less sensitive to the environmental heat fluxes than the outer panels.

Finally, having access to actual hardware, having more orbital/attitude information, and possibly performing

thermal tests would also increase the accuracy of the simulation. Most of all, it would narrow down the

possible causes for wrongly estimated temperatures. To conclude, the simulation errors are most likely

due to modelling errors; not due to the inaccuracy of the simulation, as was already shown in the ESATAN

comparison at the start of this chapter.



5
Sensitivity Analysis

For all types of theoretical analysis, the sensitivity of the outputs to certain input parameters is of high

importance. Not only does it highlight which outputs are most likely to be (in)accurate; it also shows which

inputs could be considered more influential than others. The sensitivity analysis included in this software

has two purposes: making general order-of-magnitude predictions on the accuracy of the software; and

allowing the user to perform a sensitivity analysis specifically on their own model.

This chapter explains the sensitivity analysis tool that is part of the thermal analysis software. The first

part of this chapter will elaborate on the basic principles behind this sensitivity analysis, and shows plots

of some arbitrary simulations (these plots are just used to show how to read them). The second part will

show the results of performing a sensitivity analysis on FUNcube-1, and it will show the general trends of

all the sensitivity plots. Finally, the third part will use the sensitivity tool to assess the assumptions made in

the calculations, and it will show realistically what order of magnitude all sensitivities will be.

5.1. Types of Sensitivity Analysis
Sensitivity analyses can be visualised in many different ways, since there is always a very large data set

involved. The software splits up the sensitivity analysis in the following categories (all ”sensitivities” refer

to the effect on spacecraft temperatures; more details follow in the rest of this chapter):

1. All-encompassing plots, showing the sensitivity of all parameters in essentially a single plot. These

figures are useful to understand the orders of magnitude associated with certain input parameters.

Such a plot can show you, for example, whether the altitude or the internal power has a larger effect

on the spacecraft’s temperature profile.

2. Variable-specific plots, showing the sensitivity of a single parameter in high detail. Such a plot

cannot give a quick overview of all the different parameters, but it can give you more insight in the

behaviour of a single parameter.

3. Internal radiation plots, providing similar information as the variable-specific plot Figure 5.7. Since

there is only an ’on’ and ’off’ option, all can be plotted in a single figure.

4. Time step & angular rates plots: showing similar information as Figure 5.3, but the peculiarity is

that the time step and angular rates are interrelated; if they are not compatible, numerical effects

such as aliasing may occur.

All of these analysis types rely on the same principle, where a baseline case is entered, and subsequently,

a single input parameter is changed, and the case is run again. The baseline case is the unchanged nodal

model (and orbital model) that the user entered. The baseline should be the most likely scenario to occur;

it should be as close to reality as possible. Then, by varying all input parameters, it can be seen how

stable that baseline is when the inputs are changed.

Furthermore, not all parameters can be given absolute values for the sensitivity analysis. For example, the

conductance varies all throughout the model, so a more logical way to perform the sensitivity analysis is to

apply a multiplication factor to the existing values. Therefore, this is done for all parameters except the

beta angle, day in the year, and time step (percentages do not make much sense for those parameters).
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5.1.1. All-Encompassing Plots
The all-encompassing plots provide a complete sensitivity analysis of the whole simulation, varying (almost)

all input parameters by two user-specified percentages (for example, ±X-Y%), compared to a pre-defined

baseline. Two example graphs are shown in Figure 5.1 and Figure 5.2. Figure 5.1 shows the sensitivity

of all input parameters on the average spacecraft temperature, while Figure 5.2 shows the effect on the

difference between maximum and minimum temperature throughout the orbit. The two figures (average

temperature and temperature swing) are always shown together, since they show the same data set, but

with a different output parameter. The all-encompassing plot should be interpreted as follows:

• The abbreviations used are: ABS (absorptivity); ALB (albedo heat flux); ALT (altitude); CAP (heat

capacity); CON (conductance); EMI (emissivity); IR (Earth infrared heat flux); POW (internal power);

SOL (solar heat flux). Some input parameters are missing, which is explained in Section 5.1.2.

• The baseline case (as explained in the introduction of Section 5.1) is taken as the relative zero-value

(dashed black line) for both of the plots shown below. The actual baseline value is shown in the

figure’s title (e.g., the average temperature of the baseline case is 3°C, but the graph itself shows the
relative deviation from this 3°C when the inputs are changed).

• The blue and orange lines indicate the relative change that occurs to the average temperature (or

temperature swing, for Figure 5.2), when the input parameter is changed by ±X-Y%. In this case,

blue represents a 10% change and orange a 20% change. The triangular-shaped arrows indicate the

direction of a positive input change (+10 or +20% in this figure). For example, when the emissivity

(EMS) is changed by +10 or +20%, the average temperature (or temperature swing in Figure 5.2)

decreases, because the arrow points down.
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Figure 5.1: Sensitivity of a non-rotating spacecraft’s average temperature on various input parameters.
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Figure 5.2: Sensitivity of a non-rotating spacecraft’s temperature envelope on various input parameters.

An advantage of this analysis is that all input parameters can be easily compared in a single figure. For

this example case, the emissivity and absorptivity have a strong impact on the average temperature, see

Figure 5.1. However, the emissivity does not have a significant impact on the temperature swing, see

Figure 5.2. A disadvantage of this plot is that it only shows the baseline case, and four percentage changes

(-Y%, -X%, +X%, +Y%). More information can be extracted by running more cases with more values for

each input parameter. That is done with the variable-specific plots.

5.1.2. Variable-Specific Plots
The all-encompassing plots show only five values per input variable (-Y%, -X%, baseline, +X%, +Y%), and

furthermore, the transient behaviour throughout the orbit is not seen in the plots such as Figure 5.1 and

Figure 5.2. Therefore, different plots are created as well: the variable-specific plots. The variable-specific

plots in this section show more information of a specific input variable. This may reveal details such as the

type of trend when the variable is changed (exponential, linear, logarithmic). Furthermore, it can improve

the engineer’s understanding of what happens when the parameter is changed, as opposed to the few

numbers presented in the all-encompassing plots. There are two types of variable-specific plots (the

following examples are for the solar absorptivity α):

• Temperature variance (y-axis) versus parameter value (x-axis) (see Figure 5.3): for this plot, a

number of cases are ran with different values (multiplication factors) of the desired input parameter.

This can be a list of arbitrarily many numbers. Unfortunately, the absolute values of the parameter

that is changed cannot be plotted, since they may vary throughout the model. One should look in the

code where the model is defined, to find the original (baseline) values.

The plot shows the minimum, mean, and maximum temperatures within the entire model throughout

the orbit for each case. Hence, time-varying information is still compressed into single values, similar

to the all-encompassing plots. However, due to the arbitrary point density, any trends can be seen

more clearly. For the absorptivity plot, see Figure 5.3, all temperatures increase logarithmically

as the absorptivity is increased. Moreover, the difference between the maximum and minimum

achieved temperature also increases as the absorptivity is increased. This makes sense, since a

higher absorptivity results in more solar heat absorption, and hence a stronger difference between

illuminated and eclipse conditions. For a beta angle where the orbit is always illuminated, there is no

eclipse, and hence the aforementioned trends might differ.
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Figure 5.3: Variable-specific plot example for the absorptivity. It shows the minimum, mean, and

maximum temperature of the spacecraft versus the multiplication factor on the absorptivity. A too high

multiplication factor could result in α > 1, which is impossible.

• Temperatures or heat fluxes (y-axis) versus time (x-axis) (see Figure 5.4, Figure 5.5, Figure 5.6,

Figure 5.7): these types of plots are the most detailed of all the sensitivity plots; they show the

transient temperatures or heat fluxes for all values of the input parameter (in this case the absorptivity

α). Figure 5.4, Figure 5.5, and Figure 5.6 show the solar heat, albedo heat, and Earth IR heat,

respectively. Each line is the temperature for a certain value of α, of a certain node. This node can
be chosen by the user, and is ”x+” (or ”x-” for the albedo and Earth IR plots) in the cases below.

This is also indicated in the title of the figures. Depending on the chosen node, the figures will look

different. The x+ node is facing zenith (see Figure 3.7), hence, it does not receive any albedo or

Earth IR heat. Therefore, Figure 5.4 and Figure 5.5 show the nadir-facing x- face instead.
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Figure 5.4: Variable-specific plot example for the absorptivity. It shows the solar heat on a selected node

(here: ’x+’) of the spacecraft versus time, for different multiplication factors on the absorptivity.
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Figure 5.5: Variable-specific plot example for the absorptivity. It shows the albedo heat on a selected

node (here: ’x-’) of the spacecraft versus time, for different multiplication factors on the absorptivity. X-

faces nadir, as opposed to the x+ face (zenith) that does not receive any albedo.
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Figure 5.6: Variable-specific plot example for the absorptivity. It shows the Earth infrared heat on a

selected node (here: ’x-’) of the spacecraft versus time, for different multiplication factors on the

absorptivity. The Earth IR heat is independent of α, since α determines the absorbed heat only in the

visible spectrum.

Figure 5.7 shows the temperature of the selected node for all multiplication values of α. It is essentially
a more complete version of Figure 5.3, showing the time-aspect as well. It can be seen that the

temperature indeed increases as α increases, and the max-min difference also increases. However,

be aware that the values in Figure 5.7 are not exactly equal to those in Figure 5.3, since the latter

contains minimum, mean, and maximum values of the entire nodal modal, not just one node.
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Figure 5.7: Variable-specific plot example for the absorptivity. It shows the temperature of a selected

node (here: ’x+’) of the spacecraft versus time, for different multiplication factors on the absorptivity.

5.1.3. Internal Radiation Plots
Internal radiation plots simply show the different behaviour between models with, and without internal radi-

ation. It is only possible to execute such an analysis if the original model has all the radiative connections

defined. For the sensitivity analysis, all of these are then set to zero.

Figure 5.8 shows the effect of internal radiation when the spacecraft is not rotating (constant attitude with

respect to the velocity vector), and Figure 5.9 shows when it is rotating about all axes. Extra plots are

available to see the exact difference values (see Section 5.2.2). Evidently, internal radiation plays a larger

role for attitude-stabilised spacecraft, since the thermal gradients from one side (strongly illuminated)

of the spacecraft to the other (less illuminated) are much stronger than when the spacecraft is rotating.

Furthermore, the thermal gradients along the spacecraft are also larger when the components are less

well thermally connected; hence, the smaller the conductive couplings are (more resistance), the larger

the effect of internal radiation would be.
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Figure 5.8: Internal radiation plot for a non-rotating spacecraft.
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Figure 5.9: Internal radiation plot for a rotating spacecraft.

5.1.4. Time Step & Angular Rate Plots
When the spacecraft is given a nonzero angular velocity, the choice of time step becomes very important.

The time step should be small enough such that the rotating motion of the spacecraft is sufficiently resolved.

If the time step is too large, the simulation will become unpredictable and unreliable.



5.1. Types of Sensitivity Analysis 84

An example of this numerical behaviour is shown in Figure 5.10. It shows an example of a temperature

versus time step plot generated by the run_dt_rot and plot_dt_rot functions. The time step should

ideally not affect the simulation outputs (i.e., the temperatures), but it does. The temperatures drop as the

time step reaches integer multiples of 9 seconds. This is because the angular velocity in Figure 5.10 is 10

deg/s, and therefore, a time step of 9 seconds results in a 90 degree rotation of the spacecraft, per time

step. As a result, the simulation does not perceive the spacecraft rotating gradually, but it perceives an

instant 90 degree rotation. Similarly, for time steps of 18, 27, and 36 seconds, the simulation perceives

instant rotations of 180, 270, and 360 degrees per time step. The point where the time step size results in

the spacecraft rotating 90 degrees per time step, is hereby referred to as the ”critical time step”:

dtcr =
90

ω
(5.1)

These equations give an idea of the time step needed to resolve the rotating motion of the spacecraft. The

time step chosen for the simulation should not be near this value, but significantly lower, as the time step

sizes nearby the critical time step are also unreliable.
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Figure 5.10: Minimum/mean/maximum temperature versus time step, where all axes of the spacecraft

have an angular velocity of 10 deg/s (mentioned above the plot).

One cube surface
facing the Sun

Two cube surfaces
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degrees

Figure 5.11: Schematic diagram showing how the attitude and/or angular rates of a spacecraft can impact

the amount of solar power received. This cube has the dimensions wxwxh.
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5.2. FUNcube-1 Example
This section applies the aforementioned types of sensitivity analysis to the FUNcube-1 model that has

been created in Chapter 4. It gives an ”order-of-magnitude” idea of the sensitivities that can be expected

when performing a thermal analysis on a small satellite. Details on how to run these cases are shown in

the user manual, Section C.5.

The multiplication factors applied on the input variables in this analysis are quite large, to show the type of

relationship between the parameter value and temperature. If only small deviations would be shown, all

trends are likely to appear linear. For example, the Earth IR heat flux will never be off by a factor 2, but

it is included in the results to show the type of trend present. In the last section, Section 5.3, the actual

uncertainties and assumptions are linked to the sensitivities.

5.2.1. All-Encompassing Plots
The result of changing all input parameters by ±10-20% is shown in Figure 5.12 and Figure 5.13.

• For the average spacecraft temperature, the absorptivity, emissivity, and solar heat are the most

important. Changing the absorptivity has a comparable effect to changing the solar heat: increasing

either increases the temperature. On the contrary, increasing the emissivity results in a temperature

decrease (as seen by the downwards pointing arrow on the line at EMI). Hence, having an accurate

determination of the solar heat flux, as well as the absorptivity and emissivity of the spacecraft’s outer

surfaces, is crucial to improving the simulation’s accuracy. For the satellite’s average temperature,

the least important are the altitude, heat capacity, and thermal conductivity.

• For the temperature swing (maximumminusminimum temperature), the absorptivity, heat capacity,

thermal conductivity, and solar heat are critical. The absorptivity and solar heat affect the temperature

swing by changing the difference between eclipse and non-eclipse conditions. The heat capacity

determines the ”speed” of the system, so a higher heat capacity results in a more stable temperature.

Finally, the conductivity impacts the temperature swing because it determines how isolated the outer

panels are. If the panels are thermally insulated from the rest of the spacecraft, the panels will

heat up and cool down tremendously, compared to when they are connected well to the rest of the

spacecraft.

Overall, the optical properties of the spacecraft and the solar heat flux are the most important parameters

when it comes to simulation accuracy in terms of minimum, mean, and maximum temperatures experienced

by the spacecraft. The orbital altitude appears to be the least influential.
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Figure 5.12: Sensitivity of FUNcube-1

(non-rotating) average temperature on various input

parameters.
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Figure 5.13: Sensitivity of FUNcube-1
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input parameters.
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5.2.2. Internal Radiation
The internal radiation plots for FUNcube-1 are shown in Figure 5.14 and Figure 5.15. The left figure are

the temperatures of two different nodes, the middle node of the outer z- face (”z-A”), and a battery placed

on one of the internal PCBs (”PCB2bat”). The dotted lines show the temperatures when radiation is turned

off, while the solid lines show the temperatures when internal radiation is turned on. The right figure shows

the difference between the ”on” and ”off” radiation setting. The internal radiation allows the heat to spread

more evenly throughout the satellite, compared to having no internal radiation. Moreover, inner PCBs that

generate a lot of heat can radiate this heat away, which is the case for the battery node on PCB2, as seen

inFigure 5.14. It does not seem to affect the outer node (z-A) much, only by 1.5°C at the peaks, but the

battery node is approximately 5°C colder with internal radiation.
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Figure 5.14: Temperatures of two nodes of

FUNcube-1, for internal radiation turned off and on.
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Figure 5.15: Temperature differences of two nodes

of FUNcube-1, where the temperature of no internal

radiation is subtracted from the internal radiation

turned on case.

5.2.3. Beta Angle
The beta angle has a very nonlinear effect on the spacecraft’s temperatures, as seen in Figure 5.16 and

Figure 5.17. Around an angle of approximately 70 degrees, the behaviour appears to suddenly change.

This is because, as β increases, the eclipse duration shortens. At a certain point, the orbit has no eclipse

anymore, and is in continuous sunlight. For FUNcube-1’s orbit altitude of approximately 600 km, this value

lies close to 70 degrees. This was explained elaborately in Chapter 4.

Below this ”cut-off’ angle, the eclipse time decreases as β is increased. Hence, the satellite receives more

solar heat, and the temperatures increase. After the cut-off point has been passed, the temperatures

drop again. This could be due to the spacecraft’s attitude (the effective area receiving sunlight changes,

see Figure 5.11), because the temperature drop after the cut-off is not really seen if the spacecraft were

rotating (Figure 5.18).

The temperature profiles seen in Figure 5.17 also change a lot after the cut-off point. With β > 70°, there is
no eclipse present, and hence the temperature profile is rather flat. At β = 90°, the temperature is constant,
because with a non-rotating spacecraft, only one face (perpendicular to the orbit) receives sunlight.
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Figure 5.16: FUNcube-1’s minimum, mean, and

maximum temperature for different values of β.
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Figure 5.17: FUNcube-1’s transient temperatures

for different values of β. The node shown is the
battery on one of the internal PCBs.
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Figure 5.18: FUNcube-1’s minimum, mean, and maximum temperature for different values of β, if the
satellite were rotating at 1°/s around all axes.

5.2.4. Day of the Year
The day of the year impacts the amount of solar radiation received, and it may impact the beta angle as

well. The latter is only impacted if the user defines the orbit with the RAAN and inclination angles; the day

in the year will affect the computed beta angle, following Equation 3.29. If the beta angle is defined directly,

and not via the RAAN and inclination, that beta angle will simply stay as the user defined it, regardless of

the day. That is the case in Figure 5.19 and Figure 5.20. Since β does not change, only the solar radiation

changes, according to the inverse-square law (Equation 3.2). During the months near January, the Earth

is closer to the Sun than during the months near July, hence the higher temperatures near January.
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Figure 5.19: FUNcube-1’s minimum, mean, and

maximum temperature for different days in the year.

Day 1 is January 1st.
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Figure 5.20: FUNcube-1’s transient temperatures

for different days in the year. The node shown is

the battery on one of the internal PCBs.

5.2.5. Altitude
As seen in Figure 5.21 and Figure 5.22, the altitude does not have a large impact on the simulation

outputs. For higher altitudes, the temperatures decrease slightly, and the eclipse fraction decreases as

well. The latter would suggest a temperature increase, but simultaneously, the Earth IR flux and albedo

flux decrease with increasing altitude.

It should be known that the simulation will become less accurate for higher altitudes, due to the Low-Earth

Orbit assumption.
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Figure 5.21: FUNcube-1’s minimum, mean, and

maximum temperature for varying altitude.
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Figure 5.22: FUNcube-1’s transient temperatures

for varying altitude. The node shown is the battery

on one of the internal PCBs.

5.2.6. Earth Infrared Heat Flux
The Earth infrared heat flux varies depending on the Earth’s radiating temperature (see Section 3.3.4).

The actual power received also depends on the orbit and the spacecraft’s attitude. In the sensitivity

analysis, the heat flux emitted by the Earth is the varied parameter. Hence, this is not an uncertainty in

the spacecraft design, but an uncertainty in the Earth’s assumed radiating temperature. More on this
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assumption is presented in Section 5.3.

As seen in Figure 5.23 and Figure 5.24, there is a nearly linear trend between the spacecraft’s temperatures

and the Earth IR flux. More IR heat from the Earth results in a higher temperature. The shape of the

temperature profile, which is seen in Figure 5.24, remains nearly identical, since the Earth IR power is

constant throughout the orbit.
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Figure 5.23: FUNcube-1’s minimum, mean, and

maximum temperature for a varying Earth IR power.

0 2000 4000 6000 8000 10000 12000
Time [s]

5

0

5

10

15

20

25

30

Te
m

pe
ra

tu
re

 [°
C]

Temperature For Varying Earth IR
folder: "FUNir"

node: "PCB2bat"
0.25 Ppla

0.5 Ppla

0.75 Ppla

1.0 Ppla

1.25 Ppla

1.5 Ppla

1.75 Ppla

2.0 Ppla

Figure 5.24: FUNcube-1’s transient temperatures

for varying Earth IR power. The node shown is the

battery on one of the internal PCBs.

5.2.7. Albedo Heat Flux
As seen in Figure 5.25, the spacecraft’s temperature varies nearly linearly with albedo power. Furthermore,

it can be seen in both Figure 5.25 and Figure 5.26 that the temperature swing become slightly more strong

as well; more albedo results in a stronger temperature increase during the non-eclipse period of the orbit.
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Figure 5.25: FUNcube-1’s minimum, mean, and

maximum temperature for varying albedo. A too

high multiplication factor could result in a > 1, which

is impossible.
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Figure 5.26: FUNcube-1’s transient temperatures

for varying albedo. The node shown is the battery

on one of the internal PCBs.
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5.2.8. Solar Heat Flux
The temperature variations due to a varying solar flux, as seen in Figure 5.27 and Figure 5.28, are very

strong. The temperatures rise with solar flux, and the temperature swing increases as well. As the

temperature rises, the spacecraft also loses more heat to space, and hence cools down faster during the

eclipse. Moreover, the solar flux also indirectly impacts the albedo flux via a linear relationship.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Multiplication Factor on Solar Flux

40

20

0

20

40

60

80

M
in

im
um

/M
ea

n/
M

ax
im

um
 T

em
pe

ra
tu

re
 [°

C]

max
mean
min

Temperature Variance Per Solar Flux
folder: "FUNsol"

Figure 5.27: FUNcube-1’s minimum, mean, and

maximum temperature for varying solar heat.
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Figure 5.28: FUNcube-1’s transient temperatures

for varying solar heat. The node shown is the

battery on one of the internal PCBs.

5.2.9. Internal Power
Similar to the Earth IR power, varying the internal power results in an almost linear increase temperature,

see Figure 5.29 and Figure 5.30. Furthermore, the shape of the temperature profile also does not change

significantly, since the internal power (in this case) is constant throughout the entire orbit.

However, there is a change in slope of the maximum temperature (Figure 5.29) around a multiplication

factor of 1.5. This was found to be due to a different node becoming the hottest. For low internal powers,

the outer nodes receiving sunlight reached the highest temperatures. However, as the internal power

increases, the internal nodes (PCBs) become hotter, and surpass the outer nodes in terms of temperature.
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Figure 5.29: FUNcube-1’s minimum, mean, and

maximum temperature for varying internal power.
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Figure 5.30: FUNcube-1’s transient temperatures

for varying internal power. The node shown is the

battery on one of the internal PCBs.
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5.2.10. Absorptivity
Figure 5.31 and Figure 5.32 show the impact of the solar absorptivity on the spacecraft’s temperatures. It

can be seen that they are identical to the Figure 5.27 and Figure 5.28, which showed the temperatures for

varying solar power. The impact of absorptivity is identical to that of the solar power, since they are always

multiplied with each other in the heat balance equation, Equation 3.32. However, the absorptivity is more

likely to vary compared to the solar power, and therefore, its importance during the design is higher than

estimating the solar heat flux exactly correctly.
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Figure 5.31: FUNcube-1’s minimum, mean, and

maximum temperature for varying absorptivity. A

too high multiplication factor could result in α > 1,

which is impossible.
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Figure 5.32: FUNcube-1’s transient temperatures

for varying absorptivity. The node shown is the

battery on one of the internal PCBs.

5.2.11. Emissivity
Figure 5.33 and Figure 5.34 show that the temperatures decrease significantly as the emissivity is increased.

This effect is strongest for low emissivities. As demonstrated by Figure 5.34, the transient temperature

profile remains almost identical, except that the temperature shifts up or down. Hence, the temperature

swing (maximum minus minimum temperature) does not change with the emissivity.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Multiplication Factor on Emissivity

50

25

0

25

50

75

100

125

M
in

im
um

/M
ea

n/
M

ax
im

um
 T

em
pe

ra
tu

re
 [°

C]

max
mean
min

Temperature Variance Per Emissivity
folder: "FUNemi"

Figure 5.33: FUNcube-1’s minimum, mean, and

maximum temperature for varying emissivity. A too

high multiplication factor could result in ε > 1, which
is impossible.

0 2000 4000 6000 8000 10000 12000
Time [s]

20

0

20

40

60

80

100

Te
m

pe
ra

tu
re

 [°
C]

Temperature For Varying Emissivity
folder: "FUNemi"
node: "PCB2bat"

0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0

Figure 5.34: FUNcube-1’s transient temperatures

for varying emissivity. The node shown is the

battery on one of the internal PCBs.
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5.2.12. Heat Capacity
Evidently, the heat capacity of the satellite (its thermal mass) mostly impacts the temperature swing, and

not the average temperature. This is demonstrated by Figure 5.35 and Figure 5.36. As the spacecraft

becomes more lightweight, the temperature reacts much more quickly to environmental changes; the

spacecraft heats up more quickly in sunlight, and cools down more quickly in eclipse.
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Figure 5.35: FUNcube-1’s minimum, mean, and

maximum temperature for varying heat capacity.
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Figure 5.36: FUNcube-1’s transient temperatures

for varying heat capacity. The node shown is the

battery on one of the internal PCBs.

5.2.13. Thermal Conductance
The thermal conductance between all nodes has a less ”predictable” effect on the spacecraft’s tempera-

tures, as it is not as simple as adding more power to the system. Investigating Figure 5.37, the average

temperature is not much affected by the conductance. Moreover, the temperature swing becomes narrower

with increasing conductance, since the temperature gradients will be flattened due to more internal heat flow.

Since the conductance impacts different nodes differently, two nodes are shown here. Figure 5.38

shows the battery temperatures. The temperatures decrease with increasing conductance, likely because

the internal power dissipates more easily through the PCBs. On the contrary, Figure 5.39 shows the

temperatures for the zenith-facing outer panel, x+. In contrast to the battery, the mean temperature does

not increase or decrease, but the swing decreases as the conductance increases. This is because the

outer panel receives direct solar radiation, and also radiates heat to space. Increasing the conductance

connects the outer panel better with the rest of the spacecraft, making its temperature more stable.
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Figure 5.37: FUNcube-1’s minimum, mean, and

maximum temperature for varying thermal

conductance.
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Figure 5.38: FUNcube-1’s transient temperatures

for varying thermal conductance. The node shown

is the battery on one of the internal PCBs.
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Figure 5.39: FUNcube-1’s minimum, mean, and maximum temperature for varying thermal conductance.

The node shown is the central node of the outer panel x+ (facing zenith).

5.3. Assessment of Assumptions & Sensitivity Results
This final section of the sensitivity analysis will reflect on assumptions made to perform the thermal analysis

with the software, and assess to what extent the assumptions are valid. Moreover, all other input parameters

are also tested for their estimated input deviations and the resulting output deviations. All sensitivity plots

for FUNcube-1 were already shown in Section 5.2, but now, the results will be summarised into a single

table.

5.3.1. Revisiting Assumptions
The assumptions made at the beginning of this project (Section 3.3.1 and Section 3.4.1) are repeated

below. The expected effect of this assumption is also mentioned.

1. The satellite is in LEO; hence, the Sun-Earth vector is equal to the Sun-satellite vector. As explained

in Section 3.3.3, a 500 km LEO orbit would result in a 0.0026 degree angle between the Sun-Earth

and Sun-satellite vector. This angle would result in a slightly different angle of incidence on the

spacecraft’s faces. For example, if a face would be parallel to the Sun, it would not receive any
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radiation. If it were rotated by 0.0026°, it would receive sin(0.0026°) = 4.5 · 10−5 → 0.0045% of the

maximum possible heat; assuming 1361 W/m2 of solar radiation [43, 45], the difference would be

0.061 W/m2. This is far lower than any other deviations caused by differences in attitude or beta

angle.

2. The Sun rays are parallel at Earth, resulting in a cylindrical eclipse volume. Hereby, the penumbra

region is ignored. To give an order-of-magnitude idea of the size of the penumbra region, Figure 5.40

and Figure 5.41 are used to derive some approximations for the time that a spacecraft experiences

in penumbra. The angles θ1 and θ2 are computed with:

θ1 = arctan

(
RSun −REarth

1 AU

)
= 4.608 · 10−3 rad = 0.264 deg (5.2)

θ2 = arctan

(
RSun +REarth

1 AU

)
= 4.693 · 10−3 rad = 0.269 deg (5.3)

Hence, one penumbra region is approximately 0.533 degrees.

EarthUmbra

Penumbra

Penumbra

Sun

+

Figure 5.40: Schematic diagram showing the penumbra regions.

Using Figure 5.41, assuming an altitude of 500 km, distance d is:

d =

√
(REarth + h)

2 −R2
Earth = 6871 km (5.4)

Hence, for one penumbra region, using a small-angle approximation from point X to distance d, the
distance that the spacecraft travels through the penumbra region is in the order of:

spenumbra ≈ d · (θ1 + θ2) ≈ 64 km (5.5)

Finally, the orbital velocity of a circular orbit at 500 km is approximately 7.6 km/s, resulting in a

penumbra duration of roughly 8 seconds. The penumbra happens twice in one orbit, so the satellite

is in penumbra for roughly 16 seconds per orbit. This is totally negligible considering the orbit period

of 5668 seconds, and looking at the FUNcube-1 simulation (Figure 4.40), extending or shortening

the eclipse by 16 seconds would result in an approximate temperature difference of ±0.14°C.
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Figure 5.41: Schematic diagram showing an approximation for estimating the penumbra duration.

3. The Earth IR flux is uniform over the Earth’s surface and constant throughout time. The flux at the

Earth’s surface was assumed to be 239 W/m2, following from [46], see Section 3.3.4. The envelope

of the Earth IR flux values throughout day- and nighttime and throughout the seasons is realistically

between 200-260 W/m2, which is close to a 15% deviation from the mean. With ”realistically” it is

meant that some outliers, such as the 90° latitude value is ignored, since it shows a very low value,

but the surface area of this latitude is very small compared to lower latitudes. This 15% deviation is

entered into the sensitivity analysis module of the software, and the results are shown in Table 5.1.

4. The albedo is uniform over Earth’s surface and constant throughout time. This assumption has a

similar character as assumption 3. The albedo is assumed to be 0.297, using [46], see Section 3.3.5.

The variations throughout the year and for different latitudes are illustrated in Figure 5.42.

Figure 5.42: Earth albedo variation throughout the year, for different latitudes [46].

The latitudes 45-90 degrees have an average albedo of approximately 0.40, while the albedo near

the equator (0-45 degrees) is closer to 0.20. This is a 30% deviation from the assumed value of 0.3.

This value will be entered into the sensitivity analysis, and the result is entered in Table 5.1. The

worst-case scenario would be an equatorial orbit, where the albedo can be assumed to always be low.

In that case, one may consider permanently changing the albedo value in the software. However, in
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most cases of a Sun-synchronous orbit, the effects of the low albedo near the equator and the high

albedo near the poles, will average each other out through the orbit.

5. Free molecular (aerothermal) heating is ignored. As explained in Section 2.3.1, the expected heat

flux received at a very low orbit (350 km) is roughly 1.9 W/m2. As a simplification, this value will be

added onto the Earth IR flux to compute a reasonably similar temperature increase, since the Earth

IR flux is also constant throughout the entire orbit (unlike albedo an Sunlight). The result is shown in

Table 5.1.

6. Charged-particle heating is ignored. As explained in Section 2.3.1, the magnitude of this type of

heating depends on the spacecraft’s temperature. The colder, the more heating occurs. A heating of

2 K could occur at temperatures near 100 K [25]. However, SmallSats will likely never experience

such temperatures (except perhaps for specialised scientific experiments), and according to [25], the

charged-particle heating is completely negligible for conditions near room temperature.

7. The satellite’s mass and material properties are constant throughout time. For this sensitivity analysis,

the loss of mass via propellant, and the change of optical properties due to Ultra-Violet (UV) exposure

and atomic oxygen (AO), are considered. The solar absorptivity of white paints is the most prone

to degradation (the well-known ”yellowing” of white paints), where the absorptivity increases with

increasing UV radiation and AO [63]. The degradation of the emissivity can be disregarded [63].

These parameters may be time-varying, and the simulation assumes them to be constant. However,

if some data is available on the expected changes over time, one could always conduct multiple

thermal simulations with those different parameters, to attain a low-fidelity indication of the thermal

changes throughout the years.

The propellant loss can be in the order of 50 grams [64] (which would be a 5% decrease from the 1

kg of FUNcube-1), while the absorptivity may increase 14-39% in one year [63, 65] (a mean increase

of 27% is assumed). The mass loss is simulated as a change in heat capacity, and the absorptivity

change is simulated directly. The results are shown in Table 5.1.

8. Multiple reflections are not included. The internal radiation analysis is complicated to simulate

within this Python software, so good comparisons can only be made by comparing the software with

ESATAN. Chapter 4 shows a number of such comparisons between the software and ESATAN. This

will not be further discussed in this section, although the effect of all internal radiation on or off is

shown in Section 5.3 to get an idea of the order of magnitude of internal radiation.

9. Internal radiation is only computed for perfectly orthogonal or parallel plates. This assumption ties

into assumption 7. It is recommended to visit Chapter 4 to assess this effect.

10. There is no convection in/around the entire spacecraft. Convection outside the spacecraft could

occur if the altitude is low enough. This is already considered in assumption 5. Convection inside the

spacecraft would occur if elements such as heat pipes are used. The simulation of such elements is

very complicated, and H.S.B. Brouwer has written a MSc thesis about this topic [66]. This investigation

is entered as a recommendation for future work in Chapter 7.

5.3.2. Sensitivity Results
As explained in the previous sub-section, assumptions 3, 4, 5, 7, and partly 10 are assessed by means of

simulation of FUNcube-1. The results are presented in Section 5.3. The other assumptions were shown to

be completely negligible, and assumptions 8 and 9 are dealt with in Chapter 4.

Furthermore, the other input parameters for FUNcube-1, as discussed in Section 5.2, are also included in

Table 5.1, using realistic uncertainties for those inputs. It is crucial to note that these uncertainties can be

reduced by performing more tests on the spacecraft. More optical tests can increase the accuracy on the

absorptivity, more thermal tests can increase the accuracy on the conductances, etc.

Moreover, it should be noted that all the values below are related to performing a single simulation before

launch. This would not take time-varying parameters into account. However, it is possible to split up the

simulation into multiple simulations, for example, one right after launch, and then a new simulation for

each year after that. This could mainly be useful for predicting the effects of absorptivity degradation, and
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similar time-varying effects.

The estimated uncertainty in all other input parameters besides the assumptions was determined using

the following reasoning:

• Internal radiation: In this case, the only simulation options available are an ”on” and ”off” setting.

For more details, Chapter 4 can be visited, where ESATAN-TMS was used to compare the results

with.

• Beta angle: Since most SmallSat orbits are Sun-synchronous (Figure 3.1, notice the 98° inclination

for most orbits, indicating a Sun-synchronous orbit (SSO)), the beta angle remains almost constant

throughout the year. 10:00 to 11:00 orbits are very common amongst Sun-Synchronised orbits, since

they are optimal for Earth observation satellites, due to the presence of clear shadows on the Earth at

that particular LTAN [28, pp.221-223]. A 10:00 orbit has a beta angle of 30 degrees, which is similar

to FUNcube-1’s orbit. It is difficult to know the accuracy of this, since it mostly depends on orbit

injection accuracy, which depends on the launcher, and it may then depend on orbit maintenance

capabilities. For now, an uncertainty of β±10 degrees is assumed; the results are shown in Table 5.1.
• Day of the year: The day of the year is influenced by the launch vehicle, and especially for smaller

missions, the launcher availability is not always predictable. Therefore, the uncertainty is considered

to be the entire year.

• Solar flux: The solar flux varies with the day of the year, but that effect is already included in the

day parameter. Now, the solar ”constant” is assessed (it is not really a constant) based on the solar

activity [67]. The variability purely due to Sun spots etc. is maximally 0.34%, for short time scales of

days to weeks [67]. As seen in Table 5.1, the day has a far larger impact than the solar activity.

• Internal power: This value can be tested extensively on-ground, and if the different power modes

(eclipse versus non-eclipse) are entered properly into the simulation, the uncertainty is expected to

be fairly low; approximately 10% is assumed.

• Absorptivity: As seen in assumption 7, the absorptivity can vary greatly for white paints, as it

degrades over time. However, assuming solely the knowledge of the absorptivity value at launch, it

is dependent on the measurement technique. Regardless, looking at the material database of the

software, the absorptivity varies much more than the emissivity (e.g., white paint and black paint

have similar emissivities, but vastly different absorptivities). Hence, a rather large uncertainty of 10%

is assumed. This excludes the degradation effect, which is shown as its own separate parameter.

• Emissivity: For different paints, the emissivity remains fairly constant. Hence, it is assumed to be

known with a higher confidence than the absorptivity; 5% uncertainty is assumed.

• Heat capacity: The mass of the spacecraft can be known with essentially arbitrary accuracy, due to

commonly available good weight scales. However, this does not immediately relate to the thermal

capacity, since that depends on the materials used, as well. Thermal tests can be performed to

estimate the time constant of the system, and hence correlate the thermal capacity of the simulation

with the tests. However, this is less accurate than the scale, so an uncertainty of 10% is assumed.

• Conductance: The thermal conductance is much more difficult to determine than the capacity. An

integrated satellite has so many connections that they are basically impossible to derive from one

thermal test. Many smaller tests, or reliable databases, have to be used to gather better information.

However, due to the unreliable nature of this parameter, a larger uncertainty of 20% is assumed.

• Rotational rates: It was shown in Section 5.1.4 of this chapter that there can be large differences

in thermal behaviour depending on the attitude and/or tumbling rates. After running numerous

simulations with different angular rates, it was found that the speed of the rotation does not have a

significant impact on the average temperatures, but the most important factor is whether it is spinning

or not, and in which direction. Hence, the rotational rates are simply compared as ”rotating” versus

”non-rotating”. The worst-case scenario was taken (positive spin about the x-axis, and negative spin

about the y- and z-axes), 5°/s each (is not a high nor low freely tumbling rate; for the temperatures,

the main importance is not the rates, but more whether it is spinning or not at all).
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Table 5.1: Effect of variable uncertainty (& assumptions) on simulation output.

Variable Variable Uncertainty Temperature Uncertainty [°C]

Tmin

-22.2°C

Tmean

5.0°C

Tmax

23.8°C

Assumptions

3. Earth IR Flux 15% ±2.3 ±2.3 ±2.2

4. Albedo Flux 30% ±1.0 ±1.7 ±2.3

5. & 10. Aerothermal/

Convection

Earth IR

+1.9 W/m2

(=0.8%)

+0.1 +0.1 +0.1

7.A. Propellant Loss Ccap: -5% -0.7 0.0 +0.4

7.B. Absorptivity

Degradation (1 year)
+27% +7.0 +11.7 +17.1

Input Variables

Internal Radiation on/off ±0.3 ±2.4 ±1.1

Beta Angle

(rotating satellite)
±10° ±1.6 ±1.4 ±0.6

Day of the Year any day ±2.0 ±3.1 ±4.5

Earth IR Flux

(assumption 3.)
15% ±2.3 ±2.3 ±2.2

Albedo Flux

(assumption 4.)
30% ±1.0 ±1.7 ±2.3

Solar Flux

(Solar Activity)
0.34 % ±0.1 ±0.2 ±0.2

Internal Power 10% ±0.5 ±1.0 ±0.5

Absorptivity 10% ±2.8 ±4.5 ±6.6

Emissivity 5% ±2.8 ±2.7 ±2.8

Heat Capacity 10% ±1.6 ±0.1 ±0.8

Conductance 20% ±1.0 ±0.8 ±2.2

Rotational Rates
non-rotating/

rotating
±1.2 ±2.7 ±5.3
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Conclusion

The research question of this thesis was:

Research Question

How can thermal analysis tools be optimised for SmallSats, while maximising user-friendliness and

maintaining the reliability of results?

Three research sub-questions were formulated to assist in answering the main research question:

Research Sub-Question 1

What is the impact of implementing modularity in a SmallSat thermal modelling software on the

user experience and reliability of results?

Research Sub-Question 2

What level of accuracy can be achieved when validating a SmallSat thermal model with flight data?

Research Sub-Question 3

Which elements within a SmallSat thermal model demonstrate the greatest influence on simulation

outputs?

First, the research sub-questions will be answered, after which a general conclusion is made by answering

the main research question.

6.1. Answering the Research Questions
6.1.1. Research Sub-Question 1
Firstly, allowing a thermal model (NodalModel in Python context) to be connected to another thermal model
with a single connect statement is the gateway to modularity. This allows to create hierarchical models of

arbitrary depth, and easily re-use pre-made models, such as PCBs.

Secondly, a material database showed to be an effective way of introducing modularity into the software. It

is a significant time-saver to store numerous materials, coatings, and contact connections in one database,

compared to defining them on-the-fly in Python. However, optical properties vary between different brands

of paint, and contact conductances vary depending on the applied pressure. The uncertainty in those

properties should always be assessed.
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6.1.2. Research Sub-Question 2
FUNcube-1 flight data from 2016 and data from 2024 was used for the validation; the Root-Mean-Square

Errors for a number of outer panels of the satellite are summarised in Table 6.1. The internal temperatures

of the spacecraft are more stable than these outer panels, and therefore will likely show lower errors. In

2016, FUNcube-1 had was spinning at approximately 2°/s, while in 2024, the spin rate was close to zero.

In both cases, the z-axis of the spacecraft was aligned with the Earth’s magnetic field.

If the spacecraft’s attitude is known in advance of the launch, the temperature errors are likely to be much

smaller, and the uncertainties easier to predict. If the attitude is not known, multiple different thermal

simulations could be performed, each investigating a different attitude/tumbling scenario.

Table 6.1: RMSE values for the validation cases of four outer panels of FUNcube-1 in 2024 and 2016.

Spacecraft Face 2024 RMSE [°C] 2016 RMSE [°C]

x+ 5.78 6.20

x- 2.76 7.08

y+ 1.38 6.58

y- 4.59 6.83

6.1.3. Research Sub-Question 3
By performing a sensitivity analysis on FUNcube-1, it was found that the solar absorptivity, and absorptivity

degradation in particular, result in the largest temperature uncertainties (±6.6°C uncertainty regardless of

degradation, and +17.1°C for degradation):

• The absorptivity in general appears to be an uncertain parameter, since it varies muchmore depending

on the type of paint etc. compared to the emissivity, which tends to vary less for different kinds of

paint. Therefore, the combination of the absorptivity being uncertain and also having a strong impact

on the spacecraft’s temperatures, makes it perhaps the most important input parameter for thermal

analysis.

• The absorptivity degradation mainly occurs in white paints; hence, if white paint is used, data on

degradation due to UV and atomic oxygen exposure should ideally be provided by the manufacturer.

If the level of degradation is known, the effect on the spacecraft’s temperatures can be predicted by

performing different simulations with different levels of degradation.

6.1.4. Main Research Question
Firstly, an issue of large, commercial thermal analysis tools is their steep learning curve and black-box

appearance in terms of calculations. The learning curve can be flattened by:

• Including modularity into the software. A material database showed to increase the speed of making

a thermal model, while also providing a comprehensive overview of all values used in a single file.

Re-usable thermal models allow to easily connect existing models to new models.

• Making assumptions and not including each possible feature in the software. In this way, unnecessary

complexity is avoided. If more complex features do need to be included, it should be done in such a

way that it does not unnecessarily cross the user’s path if they do not want to use the feature.

• Having an object-oriented software with most functions embedded in the objects. With this approach,

the user does not need to perform any computations by hand. However, this might introduce a

black-box feeling, so thorough documentation is essential. Moreover, the software should always

maintain an ”overrule” function, where the user can overrule any automatically computed values with

their own values.

Secondly, the software should maintain a sufficiently high reliability of results. This does not just mean to

perfectly estimate the temperatures when a lot of information about the satellite is known, but also to know
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the uncertainties when not all information about the satellite is known. In reality, especially with SmallSats,

there is always information missing. A sensitivity analysis is a solution for cases with missing information:

if the uncertainties are known, the model does not need to be perfect.

6.2. Lessons Learnt
This final section focuses on a number of important lessons that developing this software has brought to

light. They are not conclusions of the results of this thesis, but conclusions of the process. The following

lessons are considered of great importance:

• The user experience for any software is critical. One of the aims of developing this Python software

was to increase the speed of performing a thermal analysis. However, if the documentation is

confusing or lacking, if the syntax is convoluted, and if important features are missing, the user may

decide to not use the software at all.

• Even if the software is ”perfect”, the results would only be reliable if the model is properly defined and

verified. The software computes what the user defines, so if the user defines a model of poor quality,

the results will be poor. In systems engineering terms, this is referred to as ”garbage in, garbage

out”.

• Verification and validation are key to gaining confidence in the software and showing this to the

user. It has happened during this thesis project that errors of certain computations were only found

weeks after initially developing those computations. Some small sanity checks are important, but not

sufficient.

• The computational time of a single simulation may be small (1-10 seconds), but in a sensitivity

analysis, this time will add up to much larger numbers. For this reason, even if the computational

efficiency seems to be an unimportant parameter, it may still be worth it to improve the computational

scheme.



7
Recommendations

The thermal analysis software developed in this thesis offers reliable results for heat analyses in orbit, and

for nodal thermal models of arbitrary complexity. Furthermore, the software has been written in Python,

and has a particular focus on modularity; this leaves room for future students or engineers to expand or

adapt the software to their liking.

This chapter provides an overview of some recommendations for the future continuation of this research

project. The recommendations will be presented in no particular order; their relative importance and

simplicity of implementation are shown in a matrix in Table 7.1. This table was also used during the thesis

project as a rough guideline on which features to work on first. For the same purpose, the table is presented

here. As expected, the recommendations mentioned here all fall in the lower right corner of the matrix,

since the really important points have been tackled in this thesis.

1. Include a tool for test correlation. The unknown parameters (such as conductances) would be varied

by, e.g., Monte-Carlo analysis or an artificial intelligence (AI) model, converging to a best fit. Such a

tool would prevent the user from having to manually tweak each parameter and see what happens

to the results. It is expected that this would be especially beneficial for complex models with many

interrelated unknown parameters.

2. Provide more detailed control over the spacecraft’s attitude throughout the orbit. Currently, the

attitude is either fixed along the velocity vector, or it is assigned constant angular rates. It would be

beneficial to allow for time-varying angular rates or very specific angular positions. Additionally, a

Sun-pointing mode might be relevant if the spacecraft has some type of Sun-tracker.

3. Besides the RAAN and inclination orbit parameters, it could be useful to be able to define the orbit

using the Local Time of the Ascending Node (LTAN). The software would have to convert this

parameter to a beta angle.

4. Find more detailed flight data to validate the model with a higher certainty. With FUNcube, the

validation shows that the general, approximate behaviour of the spacecraft can be estimated by the

tool. However, due to many unknowns regarding the FUNcube hardware, as well as its exact attitude

in orbit, it is not possible to validate data such as internal temperatures. Data from ground tests could

also be helpful.

5. Adapt the orbital model to allow more general Kepler orbits, instead of only circular orbits. This would

change the formulas for converting between true anomaly and time, the eclipse computation (due to

eccentricity, the orbit may not be symmetrical anymore as seen from the Sun’s perspective), and the

Earth IR and albedo flux computation, since the angles of the cubesat with respect to the Earth’s

horizon change as well.

6. Optimise the code’s integration scheme. Currently, some standard solutions from SciPy are used,

but using other methods may reduce computational cost.

7. Add a functionality to give a node two surfaces with different optical properties. Currently, a node is

assumed to have just one set of optical properties. However, in reality, different paints or coatings

might be used. In the current version of the model, this could be realised by making two distinct

nodes with different optical properties, with a very high conductance between them, connecting them
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to simulate one node with two surfaces. The problem is that such a very high conductance can

severely slow down the computation, since the time constant is reduced (see Equation 3.40). Some

functionality that bypasses this, and just assumes that the two nodes have an identical temperature,

might be a solution.

8. Replace the ECSS view factor-based approach for internal radiation by a Monte-Carlo Ray Tracing

(MCRT) model. This would not only work for internal radiation, but might also allow to compute

shadowing effects for the outside of the satellite (for example, in the case of deployed solar panels).

9. Similar to the plot showing the nodes, make a plot that shows the orbit. It can be good to get a visual

confirmation of the orbit that was defined, especially if the future tool includes generic Kepler orbits.

10. Add a Graphical User Interface (GUI) to improve the user experience, and to minimise the effect of

syntax errors by the user. It will improve the user experience, but also requires a high effort from the

developer’s side. This effort could be used on other, perhaps more important, aspects of the code.

11. Make it possible to define other shapes than only point masses or flat plates. This could be useful

for slightly larger satellites with complicated geometry, but it will require a Monte-Carlo Ray Tracing

implementation for the internal radiation computation.

12. Allow conductive couplings through a material to be computed 100% automatically by using the

distance between nodes. In the current model, this distance is defined manually, but it can become

time-consuming if the model has many nodes.

13. Implement Fault Detection, Isolation, and Recovery (FDIR) into the software, such that real-time flight

data can be monitored more closely. It might not be an immediate implementation in the thermal

analysis software, but it could be an improvement to the thermal subsystem as a whole.

14. Improve the user experience when entering an internal power that varies throughout time. Currently,

the array must entered manually (except if the power is simply constant), but it would be easier if the

array is automatically generated from a few assigned values, along with the times at which those

powers should be assigned.

15. Implement a function to include, as a heat loss mechanism, Radio-Frequency (RF) power that is

emitted by the communications subsystem. The emitted RF power is energy that is being sent away

from the spacecraft, and thus acts as a heat loss mechanism. There is currently no standard function

implemented to allow the user to add this to the model, although a similar effect could be reached by

decreasing the internal power by the amount that is sent away by the communications system.

16. Consider adding a heat pipe simulation module, allowing to make (simplified) representations of heat

pipes, such as the ones developed by H.S.B. Brouwer [66]. At the current technology readiness level,

heat pipes are far away from being common use in SmallSats. However, if the interest changes, it

might be worthwile to add such a functionality.

17. Expand the material database with more common materials, coatings, and contact connections.

18. Investigate the discrepancy between the Python and ESATAN computations for the albedo. Currently,

the error varies between 5.8-23.4%, while the Earth IR and solar flux errors are much lower.

Table 7.1: Importance and simplicity matrix for recommendations for future work. This matrix is subjective

in nature and should be tailored to the developer’s personal skills and needs.
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A
Thermal Control Technologies

This appendix shows some of the most common thermal control technologies, for SmallSats specifically.

The following information may be relevant for readers without much prior knowledge on spacecraft thermal

control, and it can provide a better understanding of the rest of this thesis.

A.1. Thermal Control Technologies
Thermal control technologies are generally divided into two categories: passive and active control. The

former employs thermal management which does not require any input power, while the latter does require

input power. The most common technologies are shown in Figure A.1; this listing is based on [16]. A

number of technologies is listed below; methods which transport heat within the spacecraft are marked

as ”internal transport”, and methods which exchange heat with the space environment are marked as

”external transport”.

Spacecraft Thermal Control Methods

Active Control Passive Control

Heat Pipes

Actively Pumped
Fluid Loop

Variable Conductance
Heat Pipes

Phase Change
Materials

Radiators

Thermal Straps

Thermal Paste /
Conductive Interface

Filler

Thermoelectric
Coolers (Peltier

Device)

Multi-Layer Insulation

Resistance Heaters

Surface Coatings

Louvers

Sun Shield

Thermal Switch

Cryocoolers

Figure A.1: Most common active and passive thermal control methods (based on [16]).

A.1.1. Passive Thermal Control Technologies
Passive thermal control is achieved by altering the satellite’s design in such a way that the desired thermal

behaviour is reached, without requiring any power input [16]. Some of the technologies mentioned below

also have active counterparts (e.g., heat pipes can be both active or passive, which is explained in the

section on heat pipes).
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Thermal Straps (Internal Transport)

Thermal straps consist of a highly conductive material which improves the conductance between two

desired locations. Such straps can be both rigid or flexible, and employ materials such as copper, aluminium,

or Pyrolytic Graphite Sheet (PGS) [16]. They are a passive heat transport method, since the heat flow

originates from a temperature differential between the two outer edges. A common use case is to connect

hot internal components to the radiator via such a thermal strap, to allow the heat to flow from the hot

component to the radiator, and then to space. An example is the HiPeR Flexlink from Airbus Netherlands,

as shown in Figure A.2.

Figure A.2: HiPeR Flexlinks from Airbus Netherlands B.V. [68]. The inner conductive material is PGS,

and the outer sleeve prevents any loose PG particles from escaping.

Radiators and Coatings (External Transport)

Radiators are used to expel heat from the spacecraft, which is why they are highly emissive in the infrared

(IR) wavelengths of the spacecraft and not very absorptive in the visible wavelengths of the Sun. They

are mainly used when the spacecraft has such a high internal power generation, that the heat must be

released to space as efficiently as possible [16]. For low internal powers, such as most PocketQubes, the

issue may not be as prevalent. Instead, coatings can be applied to the outer (or inner) surface to either

retain more heat or reject more heat.

An issue with SmallSats is that there is not always enough space on the outside of the spacecraft to fit a

radiator or apply coatings, since the solar cells can be body-mounted. An example of such a satellite with

body-mounted solar cells is shown in Figure A.3, and a satellite with deployable solar panels is shown

in Figure A.4. The first has almost no area available which can be designed for thermal control (i.e., the

optical properties of the solar cells cannot be changed); the second has significantly more area exposed

on the spacecraft bus, which can be altered for thermal control as desired.
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Figure A.3: Delfi-PQ PocketQube by TU Delft [10]. Figure A.4: Delfi-n3Xt CubeSat by TU Delft [10].

A way to deal with the limited area on the spacecraft available for radiator surfaces, is to use deployable

radiators [16]. This is only really necessary when the spacecraft has a high internal power. Advantages of

deployable radiators are the higher possible internal power of the spacecraft (although the solar arrays

should also scale accordingly), and in some cases the radiator could be stowed/deployed on command

when less/more heat is to be rejected. Disadvantages of deployable radiators are the added mass and

complexity to the system [16].

Since many SmallSats are freely tumbling to some extent, such as the Delfi satellites, the optical properties

of the spacecraft’s outer surface cannot be tailored to a specific irradiation condition, but they must be

designed based on average conditions. Since the requirements for Sun-facing surfaces and non-Sun-facing

surfaces differ, this results in suboptimal thermal control. Additionally, the constant change from eclipse to

non-eclipse conditions also forces the thermal design to be based on the time-average result. There have

been initiatives to solve these problems, in the form of variable emissivity materials (VEMs). There are

two common types of VEMs: materials that change optical properties when an electric current is applied,

and materials that change optical properties when the temperature changes. The former is a category of

active control, requiring a power input. The latter is passive control, in the form of negative thermal feed-

back: the emissivity increases when the spacecraft is hot, and it decreases when the spacecraft is cold [69].

Heat Pipes (Internal Transport)

Heat pipes are hollow pipes with an internal liquid, that transports heat by means of a liquid-gas phase

change. Figure A.5 shows how the evaporator side receives heat, resulting in the internal fluid to evaporate,

and move in the gaseous phase to the other side of the heat pipe. That side is the condenser, where heat

is rejected by the gas condensing. The liquid moves along the wick, see Figure A.6, by means of capillary

force. The heat pipe can transfer heat in both directions, depending on the temperatures of both ends.
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Figure A.5: Schematic diagram of the operating principle of a constant

conduction heat pipe [70].

Figure A.6: Example of an

internal wick structure of a heat

pipe [66].

An alternative to the constant conductance heat pipe (CCHP) shown before is the variable conductance

heat pipe (VCHP). Such a heat pipe includes a reservoir with a Non-Condensable Gas (NCG) which is

used to suppress the condenser. This works by heating the NCG, thereby expanding it to occupy the

condenser, hence blocking part of the condenser. An active control loop can be used in this way to tweak

the conductance of the heat pipe [71].

Phase Change Materials

Phase Change Materials (PCMs) do not transport heat from one location to another, but they are

energy storage devices. The PCM alternates between the solid and liquid phase, where heat is

absorbed when melting and released when solidifying. The phase change allows heat absorption

and rejection at (nearly) constant temperature, which is shown in Figure A.7. The result is a mate-

rial that can store large amounts of heat for a small mass, while staying in a tight temperature envelope [72].

The main issue with PCMs is their complexity. Although the concept appears simple, there are many

difficulties associated with designing a PCM module, such as: limited cycling stability; sensitivity to

spacecraft temperature (i.e., PCMs are ineffective if the spacecraft has a different temperature than

expected, which can occur in SmallSats); complex to model analytically due to multi-phase behaviour [72].

The severity of these issues depends on the type of PCM, but generally, paraffin (wax) is preferred. Such

a paraffin is shown in Figure A.8.

Figure A.7: Heating properties of phase change materials

[73].

Figure A.8: Paraffin by the company

Rubitherm GmbH [73].
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A.1.2. Active Thermal Control Technologies
Active thermal control is achieved by using electrical power to change the spacecraft’s thermal behaviour.

This is less common in SmallSats due to their limited power budget, often related to having body-mounted

solar cells [30, 16]. However, it can be good to investigate the potential of active control, since it could

allow for more complex payloads that operate in tight temperature envelopes.

Resistance Heaters

Resistance heaters are the most simple type of active thermal control device, using power to heat up a

wire. They are often used with batteries to prevent the battery temperature from dropping too much [16].

Because of the low (thermal) mass of SmallSats, a low power often suffices to keep the temperatures as

desired [16].

There are many Commercial-Off-The-Shelf (COTS) heaters available. Some example companies are

Minco [74], and Clayborn Lab [75]. The former makes standardised flexible heaters, see Figure A.9, while

the latter makes heating tape which can be cut and soldered by the user as desired, see Figure A.10.

Figure A.9: Flexible resistance heater from Minco

[74].

Figure A.10: Flexible, customisable resistance

heater by Clayborn Lab [75].

Thermo-Electric Coolers (Peltier Devices)

Thermo-Electric Coolers (TEC) are solid-state heat pumps that absorb heat on one end and reject heat

on the other when an electric current is applied [16, 5]. A TEC is shown in Figure A.11. They can be

beneficial over fluid loops, as they have no moving parts [5] and are significantly smaller.

A complication with TECs is that they generate heat themselves due to the fact that they use input power.

When the heat load to be removed is low, this does not pose any issues, but when the heat load is high,

the TEC uses so much power that it has a net negative effect on the spacecraft temperature [5].

Figure A.11: Thermo-Electric Cooler [76].
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Mechanically Pumped Fluid Loops

Mechanically Pumped Fluid Loops (MPFL) use convective heat transfer to achieve large heat fluxes [16,

29]. MPFLs are uncommon in PocketQubes since there is no need for tens of Watts of heat flow, and

insufficient volume to fit a MPFL system inside. For larger CubeSats, however, MPFLs may be beneficial

[29]. An example of such a miniaturised MPFL is shown in Figure A.12.

Figure A.12: Miniaturised MPFL by NLR, occupying a volume less than 1U [29].

Cryocoolers

A cryocooler is a refrigeration device that uses a cryogenic fluid, such as helium, to cool to temperatures

near 100 K and below [16, 77]. They are only used if they are strictly needed to cool high-precision

instruments, and if the mass, volume, and power budgets allow. A micro-cryocooler by Lockheed Martin is

shown in Figure A.13.

Figure A.13: Micro-cryocooler by Lockheed Martin [16].



B
Material Database

This appendix shows the materials as they appear in the material database CSV file, including the sources

used for all values. This file can also be found on GitLab [8] and GitHub [9]. The file on GitLab contains

all the references used to find the values, and an additional column is present with arbitrary notes about

that particular material, value, or source. An example of what the actual CSV file appears like is shown in

Figure B.1.

Table B.1: ”Materials” section of the material database from GitLab [8].

name density

[kg/m3]

ref Specific heat

capacity

[J/(kg.K)]

ref Thermal

conductivity

”k” [W/(m.K)]

ref

al2024 2780 [78] 875 [78] 121 [78]

al5052 2680 [78] 880 [78] 138 [78]

al6061 2700 [78] 896 [78] 167 [78]

al7075 2810 [78] 960 [78] 130 [78]

stainless_steel 8000 [78] 500 [78] 18.5 [78]

copper 8930 [78] 385 [78] 400 [78]

PCB 1850 [79] 1100 [80] 30 [4]

solar_cells 4200 [81] 493 [38] 56.7 [38]

Table B.2: ”Optical properties” section of the material database from GitLab [8].

name Solar

absorptivity [-]

ref IR emissivity

[-]

ref

black_paint 0.95 [25, 82] 0.85 [25, 82]

white_paint 0.25 [25, 82] 0.90 [25, 82]

MLI 0.005 [83] 0.05 [84]

al_unpolished 0.15 [25] 0.09 [85]

al_polished 0.15 [25] 0.05 [25, 85, 86]

al_anodised 0.14 [86] 0.70 [85, 86]
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steel_unpolished 0.47 [25] 0.14 [25]

steel_polished 0.42 [25] 0.11 [25]

copper 0.30 [25] 0.03 [25, 85]

PCB_white 0.21 [87] 0.96 [87]

PCB_black 0.94 [87] 0.97 [87]

PCB_red 0.51 [87] 0.88 [87]

PCB_green 0.88 [88] 0.70 [88]

PCB_blue 0.89 [88] 0.90 [88]

solar_cell 0.66 [38] 0.89 [38]

solar_cell

_mix_black _paint

0.75 [25, 38, 82] 0.88 [38]

Table B.3: ”Contact connections” section of the material database from GitLab [8].

name Heat transfer

coefficient

[W/(m2.K)]

ref

graphite 50000 [89]

al_al 2000 [90]

steel_steel 1000 [90]

al_steel 1000 [90]

PCB_PCB_ perpen-

dicular

188 [79]
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C
Software User Manual

This appendix contains a user manual which specifically aims to elaborate on the user-end of the thermal

analysis tool. Computational methods etc. will not be repeated here, since they have been thoroughly

discussed in the main body of this thesis. The source code of the software can be found on the GitLab

page hosted by TU Delft [8], and an alternative repository is also present on the author’s personal GitHub

page [9]. It is recommended to refer to the official GitLab page.

A simple example using the FUNcube-1 satellite was already given in Section 3.5. Some information in

this appendix might be a repetition of that example case, but the information in this appendix is more

thorough and more focused on demonstrating all the different ways to use the software.

Section C.1 gives a succinct overview of the software, expressing the general idea and work flow. Next,

Section C.2 demonstrates all the ways of defining an orbital model. On the other hand, Section C.3

demonstrates how to define a nodal model. In Section C.4, methods on how to solve and plot the model

will be shown. The sensitivity analysis tool is explained in Section C.5. Finally, a lot of information is

present in the docstrings within the Python code; these are presented in Section C.6.

C.1. General Overview and Workflow
This section will give a brief overview from the user’s perspective of the software. More details are given in

the upcoming sections, but especially if the user uses this software for the first time, it is recommended to

read this section to acquire a general understanding of the workflow.

C.1.1. Simplified File Overview
A detailed file overview is given in the last section of this user manual, in Section C.6. However, for

simplicity, this sub-section will describe which files are the most important to the user, and why. The

following files are present in GitLab [8], and the following order is from most to least ”relevant” for the

average user:

• ThermalBudget.py: contains the definition of the Node, NodalModel, and OrbitalModel classes. It is

important to understand how to use them, and the documentation present in those class definitions

helps a lot with input syntax and troubleshooting.

• CommonNodalModels.py: contains some functions to easily define PCBs with multiple nodes. It is

recommended to expand this file by adding more and more NodalModels that are frequently reused.

• SensitivityAnalysis.py: contains the necessary functions to perform a sensitivity analysis such as

presented in Chapter 5.

• Materials.csv: is the only CSV file, and this file contains the material database. All values can be

viewed or adapted here, and new materials can be added as well.

• FUNcube.py: this file is not directly used, but it can serve as an example that the user can copy and

adapt to fit their own model.
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• Constants.py: Contains universal constants required for various computations. They do not cross

the user’s path, but are indirectly used in the other files. They may be adapted by the user, but it is

recommended to only do so if strictly needed. Each number has a source (url) from which it was

taken.

• VerificationValidation.py: contains numerous thermal and orbital models, for the purpose of

performing verification and validation. Results were shown in Chapter 4.

• EnvironmentRadiation.py: computes the orbit and environmental heat fluxes. However, the file is

not directly accessed by the user, but indirectly via the OrbitalModel object defined in ThermalBud-

get.py.

• Materials.py: defines the Material, Coating, and Contact objects. However, these are likely never

used by the user, but only used indirectly via the Node and NodalModel objects in ThermalBudget.py.

• TestFile.py: may be useful to test some things without messing with important other files.

Moreover, some additional folders are present in the GitLab repository:

• ESATAN: folder use to store thermal simulations made with ESATAN-TMS. Only used for verification

purposes.

• FUNcubeData: folder with FUNcube-1 flight data. Only used for validation purposes.

• SensitivityAnalysis: folder which is used as a default to store results from any sensitivity analyses

performed. The stored files are Python Pickle files, and contain NodalModel objects that have been

solved, i.e., that contain simulation results.

When the user defines their own models, it is recommended to create a completely new file. This

requires the following import statements (not all of them might be needed). Running the function

show_available_materials is optional, but it provides a summary of all materials available in the database,
without having to access the CSV file. It shows the material names as in Figure C.1 (the image is cropped

and the list extends further down).

1 from ThermalBudget import Node, NodalModel, OrbitalModel, show_available_materials
2 from CommonNodalModels import make_5node_pcb, make_9node_pcb, assign_q_ext_to_pcb
3 from SensitivityAnalysis import run_all, run_variable, run_dt_rot, run_intrad, run_integrators,

plot_all, plot_variable, plot_dt_rot, plot_intrad, plot_integrators
4

5 show_available_materials() # optional

Figure C.1: Example print statement in the console after calling show_available_materials(). These
material names can be copy-pasted into Node assignments.

C.1.2. Modelling Workflow
Detailed functional diagrams have been shown in Section 3.2, so they will not be repeated here.

However, a more user-focused overview is presented in Figure C.2, which shows the possible ways

in which the software can be used. It is a highly simplified diagram, but it highlights the fact that

the orbital and nodal model are in principle independent of each other. However, the orbital model
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and nodal model can be linked by entering existing Node objects into the orbital model, and by en-

tering the OrbitalModel’s heat fluxes and time array (explained in the next sub-section) into the NodalModel.

NodalModelOrbitalModel

orbital
parameters

orientation of
orbiting surfaces

heat input

heat fluxes

time array

"x+", "y+", (...)
or (tau, phi)

existing
Nodes

OR

compute

Nodes and/or
NodalModels

OR

manual
definition

heat flux from
OrbitalModel

nodal
parameters

temperatures
solve

Figure C.2: Simplified code overview from the user’s perspective. The left half of the diagram is related to

the orbital model, while the right half is related to the nodal model. The dashed lines are possible

interconnections between the two.

When both dashed lines in Figure C.2 are used, a chicken-and-egg problem appears to arise. The heat

fluxes and time array from the orbital model are required for the nodal model, but the nodes from the nodal

model are used as orbiting surfaces for the orbital model. To avoid such a situation, there are three slightly

different modelling methods. There are likely more methods, but the ones mentioned here have been

tested extensively. Actual code examples are given below as well.

1. Example 1: manual surface definition: First, the surfaces are defined using ”x+”, ”y+”, ... as

identifiers, or sets of (τ , φ) angles as in Figure 3.8 (repeated below for convenience, Figure C.4).

More details are given in Section C.2. The OrbitalModel is run, and the heat fluxes and time array

are stored in the OrbitalModel object. Next, the Nodes and NodalModel can be created, using the

heat fluxes and time array from the OrbitalModel as inputs.

1 surf_list = ['x+']
2

3 MyOrbitalModel = OrbitalModel(surfaces=surf_list, (...))
4 MyOrbitalModel.compute()
5 t = MyOrbitalModel.t
6

7 xplusA = Node(name='x+A', (...), q_ext=MyOrbitalModel.get_heat('x+')) # example node that
receives external heat

8 nodeB = Node(name='nodeB', (...)) # example node that does not receive external heat
9

10 MyNodalModel = NodalModel(t=t, title='MyNodalModel')
11 MyNodalModel.add_node([xplusA, nodeB])
12 MyNodalModel.connect(xplusA, nodeB, (...))
13 # (...)

2. Example 2: using Nodes as surface definition: First, the outer Nodes (i.e., the ones that receive

environmental radiation) are defined, without any heat fluxes assigned. Next, the OrbitalModel is

defined, using the Nodes as inputs. The Nodes must include either of ”x+”, ”y+”, ”z+”, ”x-”, ”y-”, ”z-”

in their names, corresponding to Figure 3.7 (repeated below for convenience, Figure C.3). The

OrbitalModel is run, and the heat fluxes are automatically stored in the Node objects (and also in the

OrbitalModel object). Next, the other Nodes and main NodalModel are created using the time array

from the OrbitalModel as input.
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1 xplusA = Node(name='x+A', (...)) # example node that receives external heat
2

3 MyOrbitalModel = OrbitalModel(surfaces=[xplusA], (...))
4 MyOrbitalModel.compute()
5 t = MyOrbitalModel.t
6

7 nodeB = Node(name='nodeB', (...)) # example node that does not receive external heat
8

9 MyNodalModel = NodalModel(t=t, title='MyNodalModel')
10 MyNodalModel.add_node([xplusA, nodeB])
11 MyNodalModel.connect(xplusA, nodeB, (...))
12 # (...)

3. Example 3: importing a completely separate NodalModel: Now, it is not possible to define the

NodalModel using the OrbitalModel’s heat fluxes and time array, since the model already exists.

Instead, the existing model must be modified.

First, the NodalModel is imported. Next, the surfaces are defined using ”x+”, ”y+”, ... as identifiers, or

sets of (τ , φ) angles. The OrbitalModel is run, and the heat fluxes and time array are stored in the
OrbitalModel object. Since the NodalModel already exists, the time array must be assigned using

the set_time function, and the heat fluxes using modify_node.

1 import model from MyModelFile # model does not have a time array
2

3 surf_list = ['x+']
4

5 MyOrbitalModel = OrbitalModel(surfaces=surf_list, (...))
6 MyOrbitalModel.compute()
7 t = MyOrbitalModel.t
8

9 MyNodalModel.set_time(t=t)
10 MyNodalModel.modify_node('x+A', (...), q_ext_new=MyOrbitalModel.get_heat('x+'))
11 # (...)

Figure C.3: Reference system for the satellite

position, where x points zenith and z points in the
flight direction [7].

Figure C.4: Reference system for the orientation of

the plate [7].

C.1.3. General Notes & Recommendations
This sub-section contains numerous general things to keep in mind when using the software. These

notations are not part of one specific step in the modelling process, but can be considered throughout the

entire process.
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Orbital Model and Nodal Model Independence

In principle, the nodal model can be used independently from the orbital model. This was also illustrated in

Figure C.2. That is, when making a model for a thermal vacuum test on ground, for example, the nodal

model can be created without also having to create an orbital model. The conditions of the thermal test can

be used as inputs for the nodal model, and the thermal simulation can be run. However, when simulating

a spacecraft in orbit, the orbital model can be created and used for the thermal simulation.

Time Arrays and Time-Varying Parameters

An important note on time arrays is given in this sub-section. They were already mentioned before, but to

be more specific, a ”time array” refers to a NumPy array with values that represent the time (x-axis) of the

orbital and thermal simulations. Additionally, ”time-varying parameters” are Node properties that may vary

throughout time: these are the internal power and environmental heat fluxes. Node objects can have

time-varying parameters, but not a time array. A time array can only be assigned to a NodalModel. This is

because the NodalModel class contains all the functionalities to run thermal simulations, but the Node

class just defined a Node, and cannot run thermal simulations.

It becomes clear that time arrays and time-varying parameters should be compatible with each other.

For example, if the time array of a NodalModel is [0, 1, 2, 3, 4], the time-varying parameters of its

Nodes should have the same length, such as P_int = [0, 0, 1, 2, 3]. If the arrays do not have the same

length, they are incompatible with each other; such incompatibility may occur if one Node with a certain

time-varying parameter is added to a NodalModel with a differently sized time array. The software will

throw an error, and erases the parameter and adds an empty array instead. This should always be avoided.

To avoid such conflicts, it is a good idea to always use the time array generated by the OrbitalModel.

When an orbital model is defined, its property OrbitalModel.t contains a time array, and the computed
environmental heat fluxes are compatible with this array. When creating the accompanying NodalModel

and its Nodes, the orbital model’s time array can be used. This ensures that no conflicts occur between

time arrays and/or time-varying parameters.

It is also possible to define a NodalModel without a time array assigned. This could be useful when making

a ”bare-bone” model as an example model that can be copy-pasted into other models. For example, a

PCB can be modelled without any time array, power inputs etc., as a sort of template to be copied into

other models. This is essentially represented by example 3 from the previous sub-section.

Default Arguments

Many function/class inputs contain default parameters (e.g., P_int=None); such parameters with default

values are not required to be given by the user. For example, if the user desires P_int to be zero, one can

leave out the P_int argument, instead of manually defining P_int=0.

Many parameters have ”None” as a default parameter. This is done in case there are multiple ways to define

said parameter, if the parameter is not strictly needed (e.g. initial temperature: if not given, it is estimated

with a steady-state computation), or in case there are complex interactions within the function/class itself.

For example, the beta angle can be defined directly, or indirectly via the inclination and RAAN. The software

notices which parameters the user has entered, by confirming whether the parameter is None or not. If it is

None, the parameter was not entered by the user, and therefore, some other parameters must have been

assigned in order to fully define the property.

Node Parameters versus NodalModel Parameters

Nodes and NodalModels both contain similar parameters, besides a few exceptions. However, to avoid

confusion, the difference between the parameters in Nodes and NodalModels is explained here.

As an example, a property of a Node can be its solar absorptivity α (alpha). This is stored in its attribute
Node.alpha, as a scalar. When it is added to a NodalModel, the value is stored in an array with alpha

values: NodalModel.alpha. This difference is illustrated below:
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1 nodeA = Node((...), alpha=0.8)
2 nodeB = Node((...), alpha=0.5)
3 MyNodalModel = NodalModel((...))
4 MyNodalModel.add_node([nodeA, nodeB])
5

6 print(nodeA.alpha)
7 >>> 0.8
8 print(MyNodalModel.alpha)
9 >>> np.array([0.8, 0.5])

When a property of a Node is a 1-dimensional array, it becomes a 2-dimensional array when added to a

NodalModel. Each column is a node, and each row is a time step.

1 t = np.array([1, 2, 3, 4, 5])
2 powerA = np.array([0, 0, 1, 2, 3])
3 powerB = np.array([2, 1, 0, 0, 0])
4

5 nodeA = Node((...), P_int=powerA)
6 nodeB = Node((...), P_int=powerB)
7 MyNodalModel = NodalModel((...))
8 MyNodalModel.add_node([nodeA, nodeB])
9

10 print(nodeA.P_int)
11 >>> np.array([0, 0, 1, 2, 3])
12 print(MyNodalModel.P_int)
13 >>> np.array([[0, 2], [0, 1], [1, 0], [2, 0], [3, 0]])

Note that, whenever a Node is added to a NodalModel, the entire Node object is stored

in NodalModel.nodes. Thus, it is possible to retrieve the Node’s properties in two ways:

using NodalModel.nodes[index].property or alternatively NodalModel.property[index]. For

the time-varying properties, the NodalModel arrays are 2-dimensional, so one should use:

NodalModel.nodes[index].property or alternatively NodalModel.property[:, index].

Celsius or Kelvin

The default unit for temperature in any NodalModel is degrees Celsius. If the user desires a NodalModel

all based on temperatures in Kelvin, the following argument must be added to the NodalModel (this can

only be set when initialising the NodalModel; it cannot be changed afterwards):

1 # Changing the unit of temperature to Kelvin (celsius=False)
2 MyNodalModel = NodalModel((...), celsius=False)

Error Handling

It was chosen to not use standard Python errors, since they stop the entire program, while in some cases,

that is an unnecessarily harsh measure. Instead, there is an internal error handling feature present in the

NodalModel and Node objects. If an error is thrown, there is always a detailed description about the error,

and how to resolve it.

There are two types of error messages:

1. Errors: are thrown when some task could not be performed, and it invalidates the simulation. An

example is shown in Figure C.5; a Node was not given any form of heat capacity or material, and the

simulation cannot run without it.

Figure C.5: Example error message in the Python console.
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2. Warnings: are thrown when some task could not be performed, but it is not necessarily a crucial

issue. The warning message will describe how critical the issue is. For example, Figure C.6 shows

a warning thrown when no optical properties are given to a certain Node. This may not be critical,

since non-radiative Nodes do not use optical properties in any way.

Figure C.6: Example warning message in the Python console.

Since some other things are printed in the Python console, such as the progress in OrbitalModel and

NodalModel computations, those error messages might get buried and the user misses them. To avoid

this, the NodalModel.show_plots function recognises if any errors have been printed, and prints an extra

statement at the very bottom of the console:

Figure C.7: Attention message at the very bottom of the Python console that appears if any other errors

or warnings have occurred.

C.2. Defining an Orbital Model
Defining an orbital model is not strictly necessary when a thermal model is made. The NodalModel class

can be solved with just manually defined inputs, without an orbital model. This might be the case for thermal

tests on ground. However, for predicting in-orbit satellite temperatures, an orbital model is a requirement.

All the inputs needed to define an OrbitalModel object are also mentioned in Section C.6.5, in great detail.

However, some more details on more potentially confusing parameters and functions are given below.

C.2.1. Beta Angle Definition
The solar declination angle β must be provided directly or indirectly. Providing it directly is possible by

entering the beta angle in degrees into the orbital model. Providing it indirectly requires both the inclination

angle in degrees and the RAAN in degrees. In that case, β will be computed automatically, but it should

be noted that the day in the year will be important as well. If β is provided directly, the day does not play

a role, but if β is computed from the RAAN and inclination, the day takes part of the β calculation. The
formula used for this is Equation 3.29. Below are two examples given on how to define the beta angle.

The other input parameters can be ignored here. Note that the second example does not result in β = 30;
it is just an arbitrary example.

1 surf_list = ['x+', 'y+', 'z+', 'x-', 'y-', 'z-']
2

3 # Example 1: defining beta directly
4 MyOrbitalModel = OrbitalModel(h=500e3, surfaces=surf_list, beta=30, day=100)
5

6 # Example 2: defining beta indirectly via inclination and RAAN
7 MyOrbitalModel = OrbitalModel(h=500e3, surfaces=surf_list, RAAN=45, incl=98, day=100)

If the second method is used, the beta angle can be retrieved and verified for correctness with the following

example print statement (β must be input in degrees, but is automatically converted to radians):

1 print(f'Beta angle: {MyOrbitalModel.beta*180/np.pi:.2f} deg')
2 >>> Beta angle: 24.35 deg
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C.2.2. Angular Rates Definition
The angular rates are to be given as an array or tuple in the form of [x, y, z] or (x, y, z), in degrees per

second (it will be converted to rad/s). For example, (0, 0, 5) means that the spacecraft spins at 5 deg/s

around its z-axis (as defined in Figure C.3). If a value such as (1, 2, 3) is given, where multiple axes have

nonzero angular rates, the rotations are computed using an XYZ-rotation (each time step, the X rotation is

computed first; then Y; and then Z).

Currently, the angular rates can only take constant values. More complex attitude assignments are not

yet possible within a single simulation, but it is possible to run multiple simulations with different angular

rates. Moreover, since the attitude is based on rotations in degrees per second, no actual dynamics are

computed. Realistically, a spacecraft rotates differently with different moments of inertia, but for now,

constant angular rates are assumed. This was done to avoid unnecessary complexity, since values such

as the inertia tensor might not be known at the time of performing thermal analysis.

C.2.3. Surface Definition
As explained in Section C.1.2, the surfaces argument refers to an oriented plate that orbits around Earth,

on which the environmental heat inputs are calculated. The orientation of the plate is essentially a set of

spherical angles, polar angle τ and azimuth angle φ, as also shown in Figure C.4. These angles can be
entered directly by the user, or indirectly. The following methods are available (some information from

Section C.1.2 is repeated here). It can be noted that get_heat returns a tuple with (q_pla, q_alb, q_s),

and q_ext_new takes this tuple, and converts into separate Node properties Node.q_pla, Node.q_alb, and

Node.q_s.

1. Enter τ and φ directly as a tuple. The resulting heat fluxes must be manually stored in the corre-
sponding Nodes. In this case, the get_heat function takes an integer value, showing which index in

the list of τ & φ tuples to take.

1 surf_list = [(90, 0), (90, 90), (...)] # tau and phi angles in degrees
2

3 MyOrbitalModel = OrbitalModel(surfaces=surf_list, (...))
4 MyOrbitalModel.compute()
5 t = MyOrbitalModel.t
6

7 xplusA = Node(name='x+A', (...), q_ext_new=MyOrbitalModel.get_heat(0))

2. Provide strings as inputs, which may be either of ”x+”, ”y+”, ”z+”, ”x-”, ”y-”, ”z-”, according to Figure C.3.

All of those have their unique combinations of τ and φ, which are computed automatically by the
software. The resulting heat fluxes must be manually stored in the corresponding Nodes. In this

case, the get_heat function takes a string, directly referring to the name of the surface direction.

1 surf_list = ['x+', 'y+', 'z+', 'x-', 'y-', 'z-']
2

3 MyOrbitalModel = OrbitalModel(surfaces=surf_list, (...))
4 MyOrbitalModel.compute()
5 t = MyOrbitalModel.t
6

7 xplusA = Node(name='x+A', (...), q_ext_new=MyOrbitalModel.get_heat('x+'))

3. Feed the orbital model actual Node objects. For example, the nodal model contains six outer panels,

called ”panel_x+”, ”panel_y+”, etc. When those nodes are entered into the orbital model, the ”x+” etc.

handles in the node names are recognised automatically and converted into τ and φ angles. This
does mean that those nodes must contain either of ”x+”, ”y+”, etc. The heat fluxes are automatically

stored in the Nodes.

1 xplus = Node('x+A', (...))
2 (...)
3 surf_list = [xplus, (...)]
4

5 MyOrbitalModel = OrbitalModel(surfaces=surf_list, (...))
6 MyOrbitalModel.compute()
7 t = MyOrbitalModel.t
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C.2.4. Modifying an Orbital Model
When an existing OrbitalModel is desired to be changed, the .modify function can be used. Using this
function may be necessary when an orbital model is imported and the original definition cannot be changed,

or to run the sensitivity analysis. For the latter, one orbital model is entered, and its input parameters are

changed. That is all done with the modify function.

The function takes the same arguments as when an OrbitalModel is defined, and the same rules apply

as described in the previous sub-sections, such as β, RAAN, and inclination. The parameters that are
not entered in .modify remain the same as they were before. For example, if the altitude and day are

changed, the following syntax would be sufficient (multiple parameters can be changed within one modify

statement):

1 MyOrbitalModel.modify(h_new=400e3, day_new=100)

C.3. Defining a Nodal Model
The nodal model is the backbone of the thermal simulation. The ”main” NodalModel is a collection of Node

objects and possibly other NodalModel objects. Since a NodalModel can be added to another NodalModel,

a hierarchical model can be created, with an arbitraty ”depth” of NodalModels.

A Node can take many input parameters as properties, which is elaborately shown in Section C.6, but

not all are necessary. It depends on the function of the node, and this will be explained in this section.

Furthermore, it will be explained how Nodes are to be added to NodalModels, and how thermal connections

between the Nodes can be made.

C.3.1. Defining a Node
The Node class is relatively simple and contains only two functions: the initialise function __init__ and
the modify function. Both functions take identical inputs; the only difference is that __init__ has some
mandatory arguments, while modify can take arbitrary arguments depending on which ones the user

desires to change.

Node Names (and Numbers)

An important Node parameter is its name. The name is used throughout the entire software as an ”identifier

handle”. It is therefore crucial that each Node in the NodalModel has a unique name. If the name is not

unique, the software will throw an error and encourage to change the name. If no name is provided by the

user, it will be an automatically generated number as soon as the Node is added to a NodalModel. This

number is also a separate property of Node objects; it is only used in the context of a NodalModel, since a

standalone Node cannot really have a unique identifier number without knowing the numbers of the other

Nodes.

Additionally, it was already mentioned that outer nodes must contain, within their name, one of ”x+”, ”y+”,

”z+”, ”x-”, ”y-”, ”z-”. That shows to the OrbitalModel in what direction the surface points. It is possible that

the name is longer than just those directions, so e.g. ”Node_x+_A” is also correct.

The names of all nodes in a NodalModel are stored in NodalModel.name. The actual name of the

NodalModel itself is stored as a ”title”. The following example shows this more clearly:

1 print(nodeA.name) # name of a Node
2 >>> 'nodeA'
3

4 print(MyNodalModel.name) # names of all Nodes in a NodalModel
5 >>> ['nodeA', 'nodeB', 'nodeC', (...)]
6

7 print(MyNodalModel.title) # title of a NodalModel
8 >>> 'MyNodalModel'
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Heat Capacity (or Material)

The only strictly mandatory parameter to define a Node is its heat capacity C_cap. Without the heat

capacity, it would be impossible to solve a thermal model that includes this node.

There are three methods to define the heat capacity. The second and third method use the material

database, see Appendix B. The material properties from the database CSV file are imported automatically,

and converted to a Material object. This object does not cross the user’s path, but is used by the software

itself. If too many parameters are given, the direct C_cap definition overrules any other definitions. For

more overruling details, the source code should be consulted [8].

1. Define C_cap directly, in J/K. This is the most direct method, and might be useful when performing

thermal tests on ground, since the heat capacity could be measured.

1 nodeA = Node(name='nodeA', C_cap=100, (...))

2. Define both the material and mass (in kg); the software immediately converts this to a heat capacity

in J/K. The material is a string that corresponds to any of the available materials in the material

database, see Appendix B. This is why the show_available_materials() function is so useful,

since it prints those strings in the Python console, as in Figure C.1, and those strings can simply be

copy-pasted into the definition of the Node.

1 nodeA = Node(name='nodeA', material='al7075', mass=0.01, (...))

3. Define both the material and volume (in m3). The idea is the same as method 2, but now, the volume

is entered by the user.

1 nodeA = Node(name='nodeA', material='al7075', volume=0.001, (...))

Optical Properties

Similarly to the heat capacity, the optical properties can be either entered directly by the user, or taken

from the material database. If the properties are both directly defined and a ”coating” (i.e., values from the

database) is also given, the direct definitions of α and/or ε overrule the database values. The two methods
are shown below with example codes:

1. Define α and ε directly. If either is not provided, a default value of 1 is set.

1 nodeA = Node(name='nodeA', alpha=0.8, epsilon=0.9, (...))

2. Define a coating; the α and ε values from that entry in the database are entered automatically into

the Node.

1 nodeA = Node(name='nodeA', coating='black_paint', (...))

The optical properties are not always needed, but only if the Node is radiatively connected with other Nodes,

or if the Node is an outer Node (i.e. receives environmental heat and emits heat to space). However, it is

recommended to apply the properties anyway, to avoid accidentally using incorrect values.

Time-Varying Parameters (Heat Inputs)

It was already highlighted in Section C.1.3 that time-varying parameters may cause issues if the array

length is not the same as the time array from the NodalModel to which the Node is added. It was also

recommended that the time array from the OrbitalModel is used as much as possible, to avoid such

incompatibilities.

Firstly, following methods for defining heat inputs are recommended for the internal power P_int:

1. Giving a single, constant value. The value can be entered as a float or integer value, and is

automatically converted to the correct array size once it is added to the NodalModel. It is the simplest

way to define an internal power.

1 nodeA = Node(name='nodeA', P_int=0.5, (...))
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2. Giving a NumPy array with varying values (using the OrbitalModel time array). Using the OrbitalModel

is not strictly required, but it ensures time array compatibility. The most important thing is that the

time array of the entire NodalModel and Nodes is consistent. The following code is just an example

of how such an array could be constructed.

1 t = MyOrbitalModel.t
2

3 p_int_varying = np.zeros(t.shape)
4 p_int_varying[10:20] = 0.5
5

6 nodeA = Node(name='nodeA', P_int=p_int_varying, (...))

Secondly, the following methods for defining heat inputs are recommended for the environmental heat

fluxes (this was already touched upon in Section C.1.2). Note that the Node should have outer=True.
Additionally, the user may notice that the heat fluxes computed by the OrbitalModel are in [W/m2]. The

actual power in Watts is only computed once the NodalModel.solve function is called. Therefore, the

outer Nodes must have a surface area (or geometry) and optical properties (or coating) assigned.

1. Define the Node before the OrbitalModel, and enter it directly into the OrbitalModel. The heat does

not need to be assigned manually.

1 xplusA = Node(name='x+A', (...), outer=True)
2

3 MyOrbitalModel = OrbitalModel(surfaces=[xplusA], (...))
4 MyOrbitalModel.compute()
5 t = MyOrbitalModel.t
6

7 MyNodalModel = NodalModel(t=t, title='MyNodalModel')
8 MyNodalModel.add_node(xplusA)
9 # (...)

2. Manually assign the heat to the Node, either when defining the Node, or afterwards using

Node.modify.
1 surf_list = (...) # either using tau&phi or x+, y+ etc.
2

3 MyOrbitalModel = OrbitalModel(surfaces=surf_list, (...))
4 MyOrbitalModel.compute()
5 t = MyOrbitalModel.t
6

7 # Option 1: Assigning heat directly when the Node is defined
8 xplusA = Node(name='x+A', (...), outer=True, q_ext=MyOrbitalModel.get_heat('x+'))
9

10 # Option 2: Assigning the heat after having defined the Node
11 xplusA = Node(name='x+A', (...), outer=True)
12 xplusA.modify(q_ext_new=MyOrbitalModel.get_heat('x+'))
13

14 MyNodalModel = NodalModel(t=t, title='MyNodalModel')
15 MyNodalModel.add_node(xplusA)
16 # (...)

Finally, a special case is shown here. Section C.3.2 will show how to make a PCB NodalModel, and

assigning internal power and heat fluxes to them is more complicated. It is possible to follow the usual

method of assigning the heat to each individual Node. However, if a thermal model has, e.g., 10 PCBs,

that is 50 Nodes, assuming each PCB has 5 Nodes. It would be convoluted to manually assign heat to all

those Nodes. Hence, a special function was developed for this. The following methods can be used for

defining the internal power and environmental heat fluxes:

1. When defining internal power P_int: the make_5node_pcb function takes a power argument and

applies the power just at the central node (node ”A”). The user could change the desired node in the

source code of make_5node_pcb.
1 # Option 1: Apply internal power when defining the PCB
2 xplus, xplusA, xplusB, xplusC, xplusD, xplusE = make_5node_pcb(title='x+', power=0.5,

(...)) # power applied to centre node xplusA
3

4 # Option 2: Apply internal power after defining the PCB, using modify
5 xplus, xplusA, xplusB, xplusC, xplusD, xplusE = make_5node_pcb(title='x+', (...))
6 xplus.modify_node(xplusA, P_int_new=0.5) # internal power applied to centre node xplusA
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2. When defining environmental heat fluxes: the time array from the OrbitalModel must be used when

defining the PCB (t=t). Then, the dedicated function assign_q_ext_to_pcb can be used.

1 t = MyOrbitalModel.t
2

3 xplus, xplusA, xplusB, xplusC, xplusD, xplusE = make_5node_pcb(title='x+', t=t, (...))
4 assign_q_ext_to_pcb([xplus], MyOrbitalModel)

Geometrical Properties

Nodes do not need any geometrical properties assigned if they are not radiatively connected to other

nodes. However, even if the node does not radiate, providing it with a location (”origin”) can be useful

when plotting the model in 3D (shown in Section C.4), even though it would not be used in calculations.

The geometry and origin must be defined if the node is radiatively connected to others. The node must

then also have optical properties assigned.

The location of a Node is defined with the origin argument, which are (x, y, z) coordinates (in metres)
of the centre of the Node. If the Node has no geometry, an origin may still be provided such that the

node appears in the 3D plot. The width and height of a Node is defined using (x, y, z) dimensions (in

metres), where one of the 3 dimensions must be zero; in other words, a plate is always assumed to have

no thickness. For example, a 10x10 cm plate in the x-y plane, with its origin at 1 cm in the z-direction:

geom=(0.1, 0.1, 0) and origin=(0, 0, 0.01). This is also illustrated in Figure C.8 (from Section 3.4.3).

When a geometry is specified, the surface area of the Node is automatically calculated by the software.

However, if the user desires to manually overrule the area, a value in [m2] can be entered in the area input

argument when defining or modifying a Node.

x
y

z

(x, y, z)

origin = (x, y, z)

len y

len z

geom = (0, len y, len z)

Figure C.8: Example definition of a flat plate in the y-z plane, where the outward normal of the plane must

be defined as zero thickness.

Outer Nodes

Nodes that face outer space and therefore receive environmental radiation, as well as emit infrared

radiation toward space, are called ”outer nodes”. This distinction between outer nodes and non-outer

nodes (inner nodes) is made such that the transient solver knows which nodes lose heat to space and/or

receive environmental heat. When defining a Node, outer is simply a boolean:

1 nodeA = Node(name='nodeA', outer=True, (...))

The default setting is outer=False, so the parameter is only required as an input when defining outer
nodes. However, if the user forgets to define outer=True, the software still automatically assigns it in case
the Node is given environmental heat fluxes. This is always correct, since a Node that receives external

heat will also always lose heat to space.
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Initial Temperature

Another optional parameter is the initial temperature T0 of a Node. If all Nodes are given a T0, they are
used as initial values for the simulation. Otherwise, the software will compute an initial steady-state instead,

after which the transient simulation begins. This steady-state computation is based on the average power

throughout the simulation. Additionally, it is possible to enter a T0 in the solve function of a NodalModel,

which sets the initial temperature of all Nodes to that value.

1 # Example 1: all nodes have a T0
2 nodeA = Node(name='nodeA', (...), T0=5)
3 nodeB = Node(name='nodeB', (...), T0=10)
4

5 MyNodalModel.add_node([nodeA, nodeB])
6 MyNodalModel.connect(nodeA, nodeB, C_con=1)
7 MyNodalModel.solve()
8 (...)
9

10 # Example 2: not all nodes have a T0, so a steady-state computation will be the initial guess
11 nodeA = Node(name='nodeA', (...))
12 nodeB = Node(name='nodeB', (...), T0=10)
13

14 MyNodalModel.add_node([nodeA, nodeB])
15 MyNodalModel.connect(nodeA, nodeB, C_con=1)
16 MyNodalModel.solve() # will automatically compute an initial steady-state
17 (...)
18

19 # Example 3: no nodes have a T0, but the solve() function defines T0 of all nodes
20 nodeA = Node(name='nodeA', (...))
21 nodeB = Node(name='nodeB', (...))
22

23 MyNodalModel.add_node([nodeA, nodeB])
24 MyNodalModel.connect(nodeA, nodeB, C_con=1)
25 MyNodalModel.solve(T0=20) # all nodes will start at this T0
26 (...)

C.3.2. Defining a PCB
As also previously shown in Section 3.5 and Section 4.2, it may be beneficial to define a PCB with multiple

Nodes, instead of just having a single node represent the whole PCB. This could be done manually, but

since it is expected that PCBs will be very common in spacecraft thermal models, two templates were

made: one with five nodes, and one with nine nodes. They are shown in Figure C.9.

A

BC

D E

A

CE

G I

D

BF

H

Figure C.9: PCB templates available in the software. The left PCB nodal model contains five nodes, and

the right PCB contains nine nodes. The green dashed lines show the physical boundaries of all nodes,

and the white rectangles are conductive connections between the nodes.

Both types of PCB have a dedicated function in the file CommonNodalModels.py that can be used as shown
below. Not all input arguments are required to be given, since some of them have default parameters set

(Section C.6). The first return argument (here: PCB1) is the NodalModel object of the PCB, while the other
returns are the Node objects.
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1 t = MyOrbitalModel.t
2

3 # 5 nodes
4 PCB1, PCB1A, PCB1B, PCB1C, PCB1D, PCB1E = make_5node_pcb(title='PCB1', mass=0.02, origin=(0.,

0., -0.04), geom=(0.1, 0.1, 0.), thickness=0.0016, t=t, power=0.5, material='PCB', coating=
'PCB_green', outer=False)

5 # as an example, additional nodes can be added as follows:
6 PCB1battery = Node(name='PCB1battery', material='copper', coating='black_paint', mass=0.05,

origin=(0., 0., -0.05))
7 PCB1.add_node(PCB1battery)
8

9

10 # 9 nodes
11 PCB1, PCB1A, PCB1B, PCB1C, PCB1D, PCB1E, PCB1F, PCB1G, PCB1H, PCB1I = make_9node_pcb(title='

PCB1', mass=0.02, origin=(0., 0., -0.04), geom=(0.1, 0.1, 0.), thickness=0.0016, t=t, power
=0.5, material='PCB', coating='PCB_green', outer=False)

12

13 # add to NodalModel
14 MyNodalModel.add_node(PCB1) # adding the NodalModel adds the entire PCB (all Nodes)
15 MyNodalModel.connect('PCB1A', 'PCB2A', rad=True) # example connection

If the PCB template is desired to be changed, or if more user control is desired, the end of

CommonNodalModels.py contains the same PCB NodalModels, but written out in a ”manual defini-

tion” style; these templates can be copy-pasted into the user’s own model. It will take up more code lines,

but all values can be manually tweaked easily.

The automatic PCB definition (as in the example code above) uses numerous geometric calculations to

define the Nodes and their connections. These computations are done using the following equations (all

based on Figure C.9). Also note that the PCB does not need to be a square; it may also be rectangular.

Additionally, a special case occurs with the surface area of the Nodes in the PCB. The default implemen-

tation in the make_5node_pcb and make_9node_pcb functions is: if the PCB has outer=True (it receives

environmental heat and radiates heat to space), the area is divided over all Nodes with the same ratios

as the mass; if the PCB has outer=False (it is inside the spacecraft), the area is ”lumped” in the centre
node A, even though the mass is spread evenly over the Nodes. This is done because internal radiation

is estimated using simplified view factor expressions from ECSS (see Section 2.4.1 and Section C.3.5).

Lumping the surface area in the centre node A allows any radiation between PCBs to be computed properly

using those view factor expressions. It is recommended to read Section C.3.5 to better understand the

radiative connections.

5-Node PCB

As indicated by Figure C.9, the PCB is divided into five Nodes with all their own surface area, marked by

the dashed green boundary lines. Based on that geometry, the mass of the PCB is divided amongst the

five nodes with the following ratios:

mA =
1

2
mtot (C.1)

mB = mC = mD = mE =
1

8
mtot =

1

4
mA (C.2)

The distance between the nodes, used for calculating the conductance, is:

LAB = LAC = LAD = LAE =
3

4

√(x
2

)2

+
(y
2

)2

(C.3)

To compute the conductance between nodes, the cross-sectional area is also needed (i.e. the area through

which the heat flows). At the dashed line boundary, it is:
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Acon,AB = Acon,AC = Acon,AD = Acon,AE = t ·
√(x

2

)2

+
(y
2

)2

(C.4)

With these properties, together with the PCB’s thermal properties, the conductance in [W/K] is computed

automatically, using Equation 2.13.

9-Node PCB

As indicated by Figure C.9, the PCB is divided into five Nodes with all their own surface area, marked by

the dashed green boundary lines. Based on that geometry, the mass of the PCB is divided amongst the

five nodes with the following ratios:

mA = mB = (...) = mH = mI =
1

9
mtot (C.5)

The distance between the horizontal nodes, used for calculating the conductance, is:

LED = LFA = LAB = (...) =
x

3
(C.6)

The distance between the vertical nodes, used for calculating the conductance, is:

LFE = LAD = LHA = (...) =
y

3
(C.7)

To compute the conductance between nodes, the cross-sectional area is also needed (i.e. the area through

which the heat flows). Horizontally, it is:

Acon,ED = Acon,FA = Acon,AB = (...) = t · y
3

(C.8)

Vertically, it is:

Acon,FE = Acon,AD = Acon,HA = (...) = t · x
3

(C.9)

With these properties, together with the PCB’s thermal properties, the conductance in [W/K] is computed

automatically, using Equation 2.13.

C.3.3. Defining a NodalModel Object & Adding Nodes
All the individual nodes do not yet form one nodal model that can be computed. Hence the ”main”

NodalModel must be generated.

Initialising a NodalModel

Initialising a NodalModel is very simple, as shown below. Generally, the time array from the OrbitalModel

is used. Moreover, the parameter celsius is True by default, so does not need to be entered when using

degrees Celsius. When using Kelvin, celsius should be set to False.

1 t = MyOrbitalModel.t
2

3 MyNodalModel = NodalModel(t=t, title='MyNodalModel')

It is also possible to define a NodalModel without a time array. As explained before, that may be useful

when creating template models that are to be imported many times into different models. However, once

the user desires to assign time-varying parameters (i.e., heat inputs), the NodalModel should be assigned

a time array. Only once it has this time array, time-varying parameters can be assigned, and the model

can be solved:

1 MyNodalModel = NodalModel(title='MyNodalModel')
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2 MyNodalModel.add_node((...))
3 # (...)
4

5 t = MyOrbitalModel.t
6

7 MyNodalModel.set_time(t=t, erase=True)

This set_time function should be used with care. If the NodalModel and all its nodes have no time array

and no time-varying parameters, the function will work smoothly (the erase parameter is not needed).

However, when the NodalModel and/or its Nodes and/or its sub-NodalModels have a time array or

time-varying parameters assigned, it should be ensured that the added time array is compatible with the

existing ones. If erase=False (that is the default setting), set_time is aborted. If erase=True, the old
data of the NodalModel and its Nodes will be deleted, and new, empty arrays will be initialised according

to the newly set time array.

Adding Nodes or NodalModels

Next, Nodes can be added to the main NodalModel, or other NodalModels can be added. They can be

added as follows:

1 MyNodalModel = NodalModel(title='MyNodalModel', (...))
2

3 nodeA = Node(name='nodeA', (...))
4 nodeB = Node(name='nodeB', (...))
5 MySubNodalModel = NodalModel(title='MySubNodalModel', (...))
6

7 MySubNodalModel.add_node(nodeB) # possible to add a single object
8 MyNodalModel.add_node([nodeA, MySubNodalModel]) # also possible to add multiple at once

When a NodalModel (”submodel”) is added to the main NodalModel, all the Nodes of the submodel are

essentially added individually; the submodel itself is also stored in the main NodalModel, but for the sake

of computations, it is similar to adding all the Nodes of the submodel individually.

Similar issues to the set_time function (explained just before) may occur when adding a NodalModel to
the main NodalModel. The following situations may occur:

• Both NodalModels have the same time array: the new model is added to the main model without

issues.

• Both NodalModels have a different time array: an error is thrown and the addition of the models is

cancelled.

• Themain NodalModel has no time array, but the newly added NodalModel does: the main NodalModel

inherits the time array from the newly added model, and the new model is added. However, since this

time array assignment occurs automatically, possibly without the user’s knowledge, a ”light” warning

is thrown to remind the user of what happened.

• The main NodalModel has a time array, but the newly added NodalModel does not: the newly added

NodalModel inherits the time array from the main model, and the new model is added. However,

since this time array assignment occurs automatically, possibly without the user’s knowledge, a ”light”

warning is thrown to remind the user of what happened.

• Both NodalModels do not have a time array: the new model is added to the main model without

issues, although neither has a time array, so the model cannot be solved yet.

C.3.4. Modifying Nodes
Node objects have a function modify, and NodalModel objects have a function modify_node. The principle
is similar to OrbitalModel.modify, see also Section C.2.4.

The inputs of the modify and modify_node functions are similar to the inputs of initialising a Node or

NodalModel. Only the parameter that is entered into the function will change, while the other parameters
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that have not been entered stay the same as before.

One point of caution is modifying Nodes that are inside a NodalModel. Independent Nodes can just be

modified themselves, but if a Node is inside a NodalModel, the Node should always be modified using

the NodalModel.modify_node function, and NOT Node.modify. This is because a Node’s properties are
entered into the NodalModel’s whole infrastructure, all its matrices, etc. When the Node is changed,

the NodalModel must adapt as well. When using NodalModel.modify_node, not only is the Node itself
being changed (Node.modify is actually automatically called within NodalModel.modify_node), but the
NodalModel adapts accordingly as well. Some examples are given below:

1 # Example 1: Modifying an independent Node
2 nodeA = Node(name='nodeA', (...))
3 nodeA.modify(alpha_new=0.8, epsilon_new=0.85) # can change multiple parameters at once
4

5 # Example 2: Modifying a Node that is part of a NodalModel
6 MyNodalModel = NodalModel((...))
7 nodeA = Node(name='nodeA', (...))
8 MyNodalModel.add_node(nodeA)
9

10 # Option 2A: Using the Node object as identifier
11 MyNodalModel.modify_node(node_mod=nodeA, alpha_new=0.8, epsilon_new=0.85)
12 # Option 2B: Using the Node name (string) as identifier
13 MyNodalModel.modify_node(node_mod='nodeA', alpha_new=0.8, epsilon_new=0.85)

C.3.5. Connecting Nodes
When a NodalModel has a number of Nodes assigned, those Nodes still need thermal connections. The

NodalModel.connect function allows this.

Firstly, it should be known that both Node objects themselves, or their names as strings can be used

to make connections. When a string is used, the connect function automatically finds the Node that

corresponds to this name. This is why Nodes in a NodalModel must never have the same name. The two

methods are shown below:

1 MyNodalModel = NodalModel((...))
2 nodeA = Node(name='nodeAstring', (...))
3 nodeB = Node(name='nodeBstring', (...))
4

5 # Option 1: use the Node objects
6 MyNodalModel.connect(nodeA, nodeB, (...))
7

8 # Option 2: use strings to refer to the Node names
9 MyNodalModel.connect('nodeAstring', 'nodeBstring', (...))

Furthermore, the choice can be made to make one connection at a time, or to make multiple connections

within one statement. The options below can be ”mixed” with each other; for example, options 2 and 3 can

both be used to define a conductive and/or radiative connection between nodeA-nodeB and nodeA-nodeC,

all in a single statement.

1 MyNodalModel = NodalModel((...))
2 nodeA = Node(name='nodeAstring', (...))
3 nodeB = Node(name='nodeBstring', (...))
4 nodeC = Node(name='nodeCstring', (...))
5

6 # Option 1: define connections one at a time
7 MyNodalModel.connect(nodeA, nodeB, C_con=1)
8 MyNodalModel.connect(nodeA, nodeC, C_con=1)
9

10 # Option 2A: define multiple connections at once, with the same value
11 MyNodalModel.connect(nodeA, [nodeB, nodeC], C_con=1)
12 # Option 2B: define multiple connections at once, with different values
13 MyNodalModel.connect(nodeA, [nodeB, nodeC], C_con=[1, 1.5])
14

15 # Option 3: define both a conductive and radiative connection at once
16 MyNodalModel.connect(nodeA, nodeB, C_con=1, rad=True)
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17

18 # Option 2B+3: define multiple connections at once, both conductively and radiatively
19 # If nodeA-nodeC does not want C_con assigned, it can either be zero or None
20 MyNodalModel.connect(nodeA, [nodeB, nodeC], C_con[1, None], rad=[False, True])
21

22 # (...)

One can always quickly check whether the correct thermal connections have been made by printing the

connections property of the NodalModel. The example below has nodeA-nodeB having both a conductive

and radiative connection, and nodeA-nodeC having a conductive connection. The connections can also

visually be checked using the 3D plot, as shown in Section C.4.

1 print(MyNodalModel.connections)
2 >>> [('nodeA', 'nodeB', 'conductive'), ('nodeA', 'nodeB', 'radiative'), ('nodeA', 'nodeC', '

conductive'), (...)]

More details on how to specifically define conductive and radiative connections are given in the two

sub-sections below.

Conductive Connections

As discussed in Section 2.4.2, there are two different types of conductive connections: through-connections

and contact connections. The former is conduction that occurs through a solid piece of material, while the

latter occurs when two materials touch each other. Since the two types of connections are fundamentally

different, there are different parameters to describe their level of conductance. These properties are stored

in the material database, and can be accessed by assigning the desired material or contact connection

to the Node or connection. Alternatively, it is also possible to define all the aforementioned parameters

manually. This is explained below:

• Through-connections are measured using the thermal conductivity k in [W/(m·K)], the cross-sectional
area A in [m2], and the distance between nodes L in [m]. Equation 2.15 is repeated below:

Ccon,through =
k ·A
L

(C.10)

The difference between the automatic definition (option 1) and the manual definition (option 2) is that

the former takes k_through from the database, while the latter has it manually defined. Option 1

only works when the material of the two nodes is identical, since it cannot be a through-connection

when two different materials are involved.

1 MyNodalModel = NodalModel((...))
2

3 # Option 1: auto-definition with material assigned from the database
4 nodeA = Node(name='nodeA', material='al7075', mass=0.01, (...))
5 nodeB = Node(name='nodeB', material='al7075', mass=0.01, (...))
6

7 MyNodalModel.add_node([nodeA, nodeB])
8 MyNodalModel.connect(nodeA, nodeB, L_through=0.01, A=0.001)
9

10 # Option 2: manually defining k_through
11 nodeA = Node(name='nodeA', (...))
12 nodeB = Node(name='nodeB', (...))
13

14 MyNodalModel.add_node([nodeA, nodeB])
15 MyNodalModel.connect(nodeA, nodeB, k_through=50, L_through=0.01, A=0.001)

• Contact connections are measured using the heat transfer coefficient h in [W/(m2K)] and the contact

area A in [m2]. Equation 2.16 is repeated below:

Ccon,contact = h ·A (C.11)

As seen in Appendix B, the database also contains a number of heat transfer coefficients h for

different types of contact connections. These values should ideally be validated using test data,

since they are highly dependent on contact pressure, surface finish, etc.
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1 MyNodalModel = NodalModel((...))
2

3 # Option 1: auto-definition with contact conduction assigned from the database
4 nodeA = Node(name='nodeA', (...))
5 nodeB = Node(name='nodeB', (...))
6

7 MyNodalModel.add_node([nodeA, nodeB])
8 MyNodalModel.connect(nodeA, nodeB, contact_obj='al_al', A=0.001)
9

10 # Option 2: manually defining h_contact
11 nodeA = Node(name='nodeA', (...))
12 nodeB = Node(name='nodeB', (...))
13

14 MyNodalModel.add_node([nodeA, nodeB])
15 MyNodalModel.connect(nodeA, nodeB, h_contact=2000, A=0.001)

Radiative Connections

When a node is radiatively connected to others, the geometry must be assigned, since it is used to compute

the view factors with other plates (see Section 2.4.1). Those figures are repeated in Figure C.10 and

Figure C.11 for convenience. The equations used to compute the view factors are only valid if the plates in

question are exactly perpendicular or exactly parallel. Furthermore, the width b for the perpendicular plates
(Figure C.10) should be equal for both plates, and the lengths a and b for the parallel plates (Figure C.11)
must be identical for both plates.

Φ

A2

A1

 b 

 a 

 c 

a/b=N
c/b=L

Figure C.10: View factor geometry for two angled

plates (adapted from [32, p.37]). Φ = 90°C is the

case for perpendicular plates.

A2

A1

b

a

c

Figure C.11: View factor geometry for two identical

parallel plates

(adapted from [32, p.35]).

A correct and incorrect example of connecting nodes radiatively are shown below. The accompanying 3D

geometry plots are shown in Figure C.12 and Figure C.13. Comparing the correct and incorrect cases:

• For the perpendicular plates: the correct case has the edges of plates A and C perfectly lined up.

The touching edge must be the same length (dimension b in Figure C.10) and placement, but the
other edges (a and c in Figure C.10) may differ.
The incorrect case has correct dimensions, but plate C is not placed correctly; this offset is not

allowed.

• For the parallel plates: the correct case has plates A and B of exactly the same dimensions (a and b
in Figure C.11) and they are perfectly placed under/over each other.

The incorrect case has a correct placement, but incorrect dimensions. Plate B is too large.

In case of an incorrect geometry definition, the software will throw an error, take the values of the first

node, and continue the computations. If the nodes’ geometries are almost the same but not exactly, the

results will likely not be too far off.

1 # -------------------------- CORRECT ----------------------------
2 MyNodalModel = NodalModel(t=MyOrbitalModel.t, title='MyNodalModel')
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3

4 # Node in the x-y plane
5 nodeA = Node(name='nodeA', C_cap=1, coating='black_paint', origin=(0, 0, 0.01), geom=(0.1, 0.1,

0))
6

7 # Parallel Node
8 nodeB = Node(name='nodeB', C_cap=1, coating='black_paint', origin=(0, 0, -0.05), geom=(0.1,

0.1, 0))
9

10 # Perpendicular Node
11 nodeC = Node(name='nodeC', C_cap=1, coating='black_paint', origin=(-0.05, 0, 0.035), geom=(0,

0.1, 0.05))
12

13 MyNodalModel.add_node([nodeA, nodeB, nodeC])
14 MyNodalModel.connect(nodeA, [nodeB, nodeC], rad=True) # radiatively connect both B and C to A
15 # (...)
16

17 # ------------------------- INCORRECT ---------------------------
18 MyNodalModel = NodalModel(t=MyOrbitalModel.t, title='MyNodalModel')
19

20 # Node in the x-y plane
21 nodeA = Node(name='nodeA', C_cap=1, coating='black_paint', origin=(0, 0, 0.01), geom=(0.1, 0.1,

0))
22

23 # Node in the x-y plane that is parallel to can connect radiatively with node A
24 nodeB = Node(name='nodeB', C_cap=1, coating='black_paint', origin=(0, 0, -0.05), geom=(0.15,

0.15, 0))
25

26 # Node in the plane that is perpendicular to and can connect radiatively with nodeA
27 nodeC = Node(name='nodeC', C_cap=1, coating='black_paint', origin=(-0.05, 0.02, 0.035), geom

=(0, 0.1, 0.05))
28

29 MyNodalModel.add_node([nodeA, nodeB, nodeC])
30 MyNodalModel.connect(nodeA, [nodeB, nodeC], rad=True) # radiatively connect both B and C to A
31 # (...)
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Figure C.12: Correct example of radiatively

connecting a plate (A) to a parallel plate (B) and a

perpendicular plate (C).
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Figure C.13: Incorrect example of attempting to

radiatively connect a plate (A) to a parallel plate (B)

and a perpendicular plate (C). Plate B does not

have the same dimensions as plate A, and plate C

is misaligned with plate A (the common axis should

be equal).
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C.4. Running the Model & Generating Results
Now that the model and the appropriate thermal connections have been defined, it can be run, and a

number of results will be generated. It is again emphasised that an orbital model is not strictly required

to run a thermal simulation, so for thermal tests on ground, for example, solely a nodal model with the

appropriate heat inputs would be sufficient. However, in the examples below, the simulation is run using

both the orbital and nodal model.

C.4.1. Running the Model
Using the information from the previous sections, it is assumed that the orbital model and nodal model have

been constructed. To run the orbital model, only the compute statement is required. It was explained in
Section C.2.3 and Section C.3.1 (”Time-Varying Parameters (Heat Inputs)” how the heat fluxes computed

by the orbital model can be assigned to nodes in the nodal model.

1 MyOrbitalModel.compute()

Now that the environmental heat fluxes have been computed and assigned to the outer Nodes in the

NodalModel, the nodal model (thermal) simulation can be run. This is simply done using the solve function.
It can take a number of optional parameters, which are explained in Section C.6.5, but those are generally

not required.

1 MyNodalModel.solve()

C.4.2. Automatically Plotting Results
The computed temperatures are now stored in in the MyNodalModel.T matrix. The show_plots function is

an automatic way of showing numerous plots. These plots were also already shown in Section 3.5 and

explained in great detail, so they are not repeated here. However, some more details on Python syntax

are given.

show_plots takes a number of optional arguments: the first four arguments determine which plots are

shown and which are not, while the last argument (whichnodes) allows the user to select which nodes to
be plotted, instead of all of them. It can either be a string referring to the Node name (such as ’z-A’), or the

actual Node object.

OrbitalModel.animate_attitude can be used if the spacecraft is rotating. If any other figures are shown,
those first need to be closed, after which the animation appears. It is possible to change the speed of the

animation with the optional speed and realtime parameters. The former is a multiplication factor of the
default speed (e.g., speed=2 is twice as fast), and the latter is a boolean where the animation is shown at

”real-time speed”, if the user’s computer is fast enough.

1 # Most basic use of show_plots. All plots and all nodes are shown.
2 MyNodalModel.show_plots()
3

4 # Using show_plots with optional arguments. In this example, only the temperatures are shown,
and only of nodes z-A to z-E. All boolean arguments are by default True.

5 MyNodalModel.show_plots(showrad=False, shownodes=False, showtemps=True, showflows=False,
whichnodes=['z-A', 'z-B', 'z-C', 'z-D', 'z-E'])

6

7 # Three options available for animating the spacecraft:
8 MyOrbitalModel.animate_attitude() # Most basic use of animate_attitude
9 MyOrbitalModel.animate_attitude(speed=0.5) # halves the animation speed
10 MyOrbitalModel.animate_attitude(realtime=True) # animates in real-time (if the computer is

fast)

An additional visualisation shown by show_plots when shownodes=True, is a hierarchical model tree

printed in the Python console. An example of this was shown in Section 3.2.3 as well. Essentially, it prints

out the main NodalModel, all its Nodes, all its sub-NodalModels and their Nodes, etc. There is no ”depth”

limit of how many sub-sub-sub-...-NodalModels there are within the main NodalModel. The example from

Section 3.2.3 is used here, and the model tree would be printed into the console as in Figure C.14.
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1 Spacecraft = NodalModel(title='Spacecraft')
2 Structural_ring_A = Node(name='Structural_ring_A', C_cap=1)
3 Structural_ring_B = Node(name='Structural_ring_B', C_cap=1)
4 Spacecraft.add_node([Structural_ring_A, Structural_ring_B])
5

6 Stack = NodalModel(title='Stack')
7 Spacer_A = Node(name='Spacer_A', C_cap=1)
8 Spacer_B = Node(name='Spacer_B', C_cap=1)
9 Stack.add_node([Spacer_A, Spacer_B])
10

11 PCB_A = NodalModel(title='PCB_A')
12 PCB_A_centre = Node(name='PCB_A_centre', C_cap=1)
13 PCB_A_corner1 = Node(name='PCB_A_corner1', C_cap=1)
14 PCB_A_corner2 = Node(name='PCB_A_corner2', C_cap=1)
15 PCB_A_corner3 = Node(name='PCB_A_corner3', C_cap=1)
16 PCB_A_corner4 = Node(name='PCB_A_corner4', C_cap=1)
17 PCB_A_battery = Node(name='PCB_A_battery', C_cap=1)
18 PCB_A.add_node([PCB_A_centre, PCB_A_corner1, PCB_A_corner2, PCB_A_corner3, PCB_A_corner4,

PCB_A_battery])
19

20 PCB_B = NodalModel(title='PCB_B')
21 PCB_B_centre = Node(name='PCB_B_centre', C_cap=1)
22 PCB_B.add_node(PCB_B_centre)
23

24 Stack.add_node([PCB_A, PCB_B])
25 Spacecraft.add_node(Stack)
26

27 Spacecraft.show_plots(showrad=False, shownodes=True, showtemps=False, showflows=False)

Figure C.14: Hierarchical model tree shown in the Python console after calling Spacecraft.show_tree.

C.4.3. Manually Plotting Results
If the figures above do not suffice, it is possible to manually extract the results and manually plot them.

However, it should be noted that functionalities like the whichnodes argument are not present when

manually making plots, so nodes have to be selected using integer indices. These are the automatically

assigned numbers of all nodes once they are added to a NodalModel. This was briefly explained in

Section C.3.1.

Some examples are shown in this sub-section. The most relevant parameters are:

• Node temperatures: the main output of the thermal simulation is the spacecraft’s temperature.

These can be extracted from the NodalModel in the following way. The whichnodes argument present
in the show_plots function is imitated as shown below.
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1 import matplotlib.pyplot as plt
2

3 whichnodes = ['x+A', 'y+A', 'z+A', 'PCB1A']
4

5 fig = plt.figure()
6 ax = fig.add_subplot()
7 for i, node in enumerate(MyNodalModel.nodes):
8 if node.name in whichnodes:
9 ax.plot(MyNodalModel.t, MyNodalModel.T[:, i], label=f'{node.name}')
10 ax.set_title('Temperatures of Nodes in NodalModel')
11 if MyNodalModel.celsius:
12 ax.set_ylabel(r'Temperature [$\degree$C]')
13 else:
14 ax.set_ylabel(r'Temperature [K]')
15 ax.set_xlabel('Time [s]')
16 ax.legend()
17 ax.grid()
18 plt.show()

• Environmental heat fluxes: these are stored in the orbital model, in OrbitalModel.q_pla,
OrbitalModel.q_alb, and OrbitalModel.q_s, but they can also be retrieved using

OrbitalModel.get_heat. Meanwhile, the heat fluxes are also stored in the NodalModel it-

self, in NodalModel.q_pla, NodalModel.q_alb, and NodalModel.q_s. The example below shows

how to extract this data. The if-statements in option 2 are used to filter out all the Nodes that do not

have any heat fluxes. A similar approach such as the whichnodes variable shown in the temperature

example could also be used.

1 import matplotlib.pyplot as plt
2

3 # Option 1: use OrbitalModel properties
4 fig = plt.figure()
5 ax = fig.add_subplot()
6 for i, surface in enumerate(MyOrbitalModel.surfaces):
7 # Option 1A: use get_heat function
8 q_pla, q_alb, q_s = MyOrbitalModel.get_heat(surface)
9 ax.plot(MyOrbitalModel.t, q_pla, label=f'{surface}, q_pla')
10 ax.plot(MyOrbitalModel.t, q_alb, label=f'{surface}, q_alb')
11 ax.plot(MyOrbitalModel.t, q_s, label=f'{surface}, q_s')
12

13 # Option 1B: manually extract heat flows
14 ax.plot(MyOrbitalModel.t, MyOrbitalModel.q_pla[:, i], label=f'{surface}, q_pla')
15 ax.plot(MyOrbitalModel.t, MyOrbitalModel.q_alb[:, i], label=f'{surface}, q_alb')
16 ax.plot(MyOrbitalModel.t, MyOrbitalModel.q_s[:, i], label=f'{surface}, q_s')
17 ax.set_title('Environmental Heat Flux')
18 ax.set_xlabel('Time [s]')
19 ax.set_ylabel(r'Heat Flux [W/m$^2$]')
20 ax.legend()
21 ax.grid()
22 plt.show()
23

24 # Option 2: use NodalModel properties
25 fig = plt.figure()
26 ax = fig.add_subplot()
27 for i, node in enumerate(MyNodalModel.nodes):
28 # Option 2A: plotting the heat fluxes
29 if np.any(np.abs(MyNodalModel.q_pla[:, i]) > 1e-10):
30 ax.plot(MyNodalModel.t, MyNodalModel.q_pla[:, i], label=f'{node.name}, q_pla')
31 ax.plot(MyNodalModel.t, MyNodalModel.q_alb[:, i], label=f'{node.name}, q_alb')
32 ax.plot(MyNodalModel.t, MyNodalModel.q_s[:, i], label=f'{node.name}, q_s')
33

34 # Option 2B: plotting the heat in Watts
35 if np.any(np.abs(MyNodalModel.q_pla[:, i]) > 1e-10):
36 alpha_area = MyNodalModel.alpha[i]*MyNodalModel.area[i]
37 ax.plot(MyNodalModel.t, MyNodalModel.q_pla[:, i]*alpha_area, label=f'{node.name},

q_pla')
38 ax.plot(MyNodalModel.t, MyNodalModel.q_alb[:, i]*alpha_area, label=f'{node.name},

q_alb')
39 ax.plot(MyNodalModel.t, MyNodalModel.q_s[:, i]*alpha_area, label=f'{node.name},

q_s')
40 ax.set_title('Environmental Heat Flux')
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41 ax.set_ylabel(r'Heat Flux [W/m$^2$]') # Option 2A
42 ax.set_ylabel('Heat [W]') # Option 2B
43 ax.set_xlabel('Time [s]')
44 ax.legend()
45 ax.grid()
46 plt.show()

• Internal power: the internal power is in some ways similar to the heat fluxes, except that it is not

part of the OrbitalModel. The internal power is only defined in the Nodes and NodalModel. The

method of extracting the data is therefore identical to extracting temperatures. Alternatively to the

if-statement below, it would also be possible to filter out nodes with zero power, using the method as

in the example above for the environmental heat fluxes.

1 import matplotlib.pyplot as plt
2

3 whichnodes = ['x+A', 'y+A', 'z+A', 'PCB1A']
4

5 fig = plt.figure()
6 ax = fig.add_subplot()
7 for i, node in enumerate(MyNodalModel.nodes):
8 if node.name in whichnodes:
9 ax.plot(MyNodalModel.t, MyNodalModel.P_int[:, i], label=f'{node.name}')
10 ax.set_title('Internal Power of Nodes in NodalModel')
11 ax.set_ylabel('Internal Power [W]')
12 ax.set_xlabel('Time [s]')
13 ax.legend()
14 ax.grid()
15 plt.show()

• Heat flows: plotting the heat flows requires a slightly different strategy, because a heat flow is

between two nodes. Therefore, simply looping over all nodes and plotting their heat flows will result

in many duplicate entries and a difficult to understand figure. Ideally, one should loop over the actual

connections. A NodalModel has a NodalModel.connection argument that contains all connections

in the form of tuples with (’node1’, ’node2’, ’radiative’) or (’node1’, ’node2’, ’conductive’). The following

example is a simplified version of how the plot is made in show_plots.

1 import matplotlib.pyplot as plt
2

3 whichnodes = ['z-A', 'z-B', 'PCB1A', 'PCB1B']
4

5 fig = plt.figure()
6 ax = fig.add_subplot()
7 ax.set_title('Heat Flow Between Nodes')
8 for i, conn in enumerate(MyNodalModel.connections):
9 node1 = np.argwhere(MyNodalModel.name == conn[0])[0, 0] # index number of first node
10 node2 = np.argwhere(MyNodalModel.name == conn[1])[0, 0] # index number of second node
11

12 if MyNodalModel.name[node1] in whichnodes and MyNodalModel.name[node2] in whichnodes:
13 ax.plot(MyNodalModel.t, MyNodalModel.heatflow[:, i], label=fr'{MyNodalModel.name[

node1]} $\rightarrow$ {MyNodalModel.name[node2]}, {conn[2]}')
14 ax.legend()
15 ax.grid()
16 ax.set_xlabel('Time [s]')
17 ax.set_ylabel('Conductive Power From Node i to j [W]')
18 plt.show()

C.5. Performing a Sensitivity Analysis on the Model
Chapter 5 has elaborately explained the purpose of the sensitivity analysis tool in the Python software,

and it has shown the capabilities of the tool. To briefly summarise the types of sensitivity analysis plots

(integrator performance plots are not included here; visit Section C.6 for details):

1. All-encompassing plots show the temperature sensitivity of all parameters in one plot for the average

spacecraft temperature, and one plot for the minimum and maximum spacecraft temperatures.

2. Variable-specific plots show the temperature sensitivity of a single parameter in high detail.
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3. Internal radiation plots provide similar information as the variable-specific plot, but just showing the

difference between having internal radiation set ”on” or ”off”.

4. Time step & angular rates plots show similar information as the variable-specific plot, but showing

the effect of numerical issues when the time step is not small enough.

C.5.1. Running a Sensitivity Analysis
To start the sensitivity analysis on a model, an OrbitalModel and NodalModel object must be available,

representing the desired spacecraft thermal model. In most cases, these models are likely defined in a

separate Python file. Either those files are imported into SensitivityAnalysis.py, or the functions from
SensitivityAnalysis.py could be imported into the file defining the models.

1 # Option 1: importing model into SensitivityAnalysis.py
2 from MyModel import MyNodalModel, MyOrbitalModel
3

4 # Option 2: importing sensitivity functions into MyModel.py
5 from SensitivityAnalysis import run_all, run_variable, run_dt_rot, run_intrad, plot_all,

plot_variable, plot_dt_rot, plot_intrad

Then, the simulations need to be run for the desired parameters. For most parameters, the values are

multiplication factors (so values=1.0 would mean that the parameter is multiplied by 1, so it represents
the standard baseline case). More details on the function parameters are available in Section C.6.

The run_variable, plot_variable, run_dt_rot, and plot_dt_rot functions take an argument called

name. This argument signals to the software which variable is/was the one being analysed. It is needed for
the run functions so that the software knows which parameters to change, and the plot functions require

the name so that the plot titles etc. are correct. The abbreviations used are: ABS (absorptivity); ALB

(albedo heat flux); ALT (altitude); BETA (beta angle); CAP (heat capacity); CON (conductance); DAY (day

of the year); DT (time step); EMI (emissivity); IR (Earth infrared heat flux); POW (internal power); RAD

(internal radiation on or off); ROT (rotating or non-rotating); SOL (solar heat flux).

Furthermore, the overwrite argument determines, if the desired filename already exists, whether that file

should be overwritten or not. The default setting is False, since overwrite=True could lead to accidentally

deleting important data and overwriting it with other data.

Finally, the subfolders argument defines the file location. There is another input parameter folder, which
is by default set to ”SensitivityAnalysis”. This can be changed, but that is probably not needed. However, the

subfolders argument further specifies the folders inside the main folder. If the results from the sensitivity

analysis are desired to be stored in, e.g., ”PythonFilePath.../SensitivityAnalysis/MySatellite/BetaAngle”,

then folder='SensitivityAnalysis' and subfolders=('MySatellite', 'BetaAngle').
1 # All-encompassing plots
2 run_all(dev1=0.1, dev2=0.2, nodal_model=MyNodalModel, orbital_model=MyOrbitalModel, overwrite=

True, subfolders=('MySatellite', 'AllEncompassing'))
3

4 # Variable-specific plots (only show one example here)
5 run_variable(name='ABS', values=[0.5, 0.75, 1.0, 1.25, 1.5], nodal_model=MyNodalModel,

orbital_model=MyOrbitalModel, overwrite=False, subfolders=('MySatellite', 'Abs'))
6

7 # Internal radiation plots
8 run_intrad(nodal_model=MyNodalModel, orbital_model=MyOrbitalModel, overwrite=True, subfolders=(

'MySatellite', 'Intrad'))
9

10 # Time step plots
11 run_dt_rot(name='DT', nodal_model=MyNodalModel, orbital_model=MyOrbitalModel, overwrite=True,

subfolders=('MySatellite', 'Dt'))

The run functions store the solved NodalModels as Python Pickle1 files. A Pickle file contains an entire

Python object; in this case, it contains the entire NodalModel, including all the computed temperatures etc.

An example folder with the results of one sensitivity analysis are shown in Figure C.15.

1Python Pickle documentation: https://docs.python.org/3/library/pickle.html

https://docs.python.org/3/library/pickle.html
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Figure C.15: Example of how Python Pickle files are stored for a sensitivity analysis case.

C.5.2. Loading & Plotting a Sensitivity Analysis
To show the plots, the following commands are used (the folder input was omitted since the default

”SensitivityAnalysis” folder was used). The use of the whichnode parameter is similar to the one used in
NodalModel.show_plots, as described in Section C.4. Both the Node object or the name (string) of the
Node may be entered. The difference is that some plots can only show one Node at a time, hence the

argument whichnode in singular form.

1 plot_all(subfolders=('MySatellite', 'AllEncompassing'))
2 plot_intrad(subfolders=('MySatellite', 'Intrad'), whichnodes=['z-A', 'PCB2bat'])
3 plot_variable('ABS', subfolders=('MySatellite', 'Abs'), whichnode='PCB2bat')
4 plot_dt_rot(name='DT', subfolders=('MySatellite', 'Dt'))
5 plt.show() # matplotlib.pyplot.show() is always needed at the end of the file

The resulting plots were shown in Chapter 5 and explained in great detail, so they will not be repeated

here. More information can also be found in Section C.6.

C.6. Python Files, Classes, and Functions
This section is a compilation of all the Python files, functions, and classes. ChatGPT2 was used to convert

the Python docstrings to the format shown in this section. All this information can also be found within

the Python files themselves: the docstrings can be viewed in the source code, but in many Integrated

Development Environments (IDEs), if the mouse is hovered over the function, the documentation is

automatically displayed. For example, in PyCharm, the documentation is shown as in Figure C.16 when

hovering the mouse over the function.

Figure C.16: Documentation shown when hovering the mouse over a function in PyCharm.

2ChatGPT: https://chatgpt.com/

https://chatgpt.com/
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Of main interest to the general user are ThermalBudget.py, SensitivityAnalysis.py, and

Materials.csv. Furthermore, FUNcube.py can serve as an example on how to make an orbital

model and nodal model, similarly to CommonNodalModels.py.

Many of the other functions shown here do not cross the general user’s path, but could improve one’s

understanding of how the code works. Those functions that the user generally does not see, are coloured

with a slightly lighter tint of grey.

C.6.1. Constants.py
”Constants.py is a collection of physical constants used for all the computations. Some values are not

actual constants, such as the Solar ’constant’. Please refer to the websites mentioned below. This

file does not cross the general user’s path, since the constants are embedded into the computations in

EnvironmentRadiation.py and ThermalBudget.py.”

This file does not contain any functions or classes that are relevant to the general user, except if the

constants are desired to be changed or updated.

C.6.2. Materials.py
”Materials.py reads the Materials.csv database and converts it to Python objects and dictionaries. This file

does not cross the general user’s path, since this file is embedded into the ThermalBudget.py classes.”

(Hidden) Function: get_file(file)

Returns the path of a file in the same directory as this Python file; works on most operating systems.

Parameters:

• file: Name (str) of the file to be retrieved.

Returns:

• Path of the file.

(Hidden) Function: get_folder_file(folder, file, subfolders=())

Returns the path of a file in a folder within the same directory as this Python file; works on most

operating systems.

Subfolders can be an arbitrary number of sub-folders, such as:

get_folder_file(’folderA’, ’file.txt’, (’folderB’, ’folderC’))

–> C:/...your-directory.../folderA/folderB/folderC/file

Parameters:

• folder: Name (str) of the folder which the file is in.
• file: Name (str) of the file to be retrieved.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.

Returns:

• Path of the file.

Class Material

”Material class with all its properties that are relevant for thermal analysis.”
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(Hidden) Function: __init__(name, density, c_cap, k_through)

Initialise a new Material object. Ensure that the correct units are used!

Parameters:

• name: Name of the material.
• density: Density [kg/m^3].
• c_cap: Specific heat capacity [J/(kg.K)].
• k_through: Thermal conductivity [W/(m.K)].

Class Coating

”Coating to be applied on another material, assigning the optical properties.”

(Hidden) Function: __init__(name, alpha, epsilon)

Initialise a new Coating object.

Parameters:

• name: Name of the coating.
• alpha: Absorptivity in the solar spectrum..
• epsilon: Emissivity in the IR spectrum..

Class Contact

”Approximation of contact conductance for two materials pressed together. It highly depends on the applied

pressure.”

(Hidden) Function: __init__(name, h_contact)

Initialise a new Contact object. Ensure that the correct units are used!

Parameters:

• name: Name of the contact connection.
• h_contact: Heat transfer coefficient [W/(m^2.K)].

C.6.3. CommonNodalModels.py
”CommonNodalModels.py is the beginning of a collection of NodalModels. The modularity of the code

allows for models to be created and copy-pasted into a new model. Hence, a file such as this one can

contain commonly used nodal models (such as a PCB), which can then be used in other models. Currently,

there are functions to make a 5- or 9-node PCB model, but alternatively, the code at the bottom of this file

can be simply copy-pasted and adapted as desired.”

Function: assign_q_ext_to_pcb(nodal_models, orbit_obj)

Since a PCB has multiple nodes, it can be tedious to assign environmental heat fluxes to all of

them. This function does this automatically.

Parameters:

• nodal_models: either one PCB (NodalModel) or a list of PCBs (list of NodalModels). The

nodes that include either of ’x+’, ’y+’, ... are the ones given the heat flux. E.g., the middle

PCB node is ’PCBx+A’, then ’PCBx+B’, etc.
• orbit_obj: OrbitalModel object that has been computed already (hence contains heat fluxes).
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Function: make_5node_pcb(title, mass, origin, geom=(0.1, 0.1, 0.), thickness=0.0016, t=None,

power=None, material=’PCB’, coating=’PCB_green’, outer=False)

Make a 5-node PCB (1 central node + 4 corner nodes).

Ordering of the nodes is first the centre node (A), then counterclockwise starting on the top right (B,

C, D, E).

For outer nodes, the received environment heat is spread out over the nodes, proportional to their

area.

For inner nodes, applied power is concentrated in the centre node A. For internal radiation, node A

is assumed to be the only radiating face, but representing the entire PCB area. This is ensured

automatically.

Parameters:

• title: Title/name that the NodalModel has.
• mass: Mass in kg of the PCB.
• origin: Tuple (x, y, z) of origin coordinates of the node.
• geom: Tuple (x_width, y_width, z_width) of the rectangular shape of the node, in metres.
• thickness: Thickness [m] of the PCB. Default is 0.0016 m (1.6 mm).
• t: Time array [s] of the entire simulation. It is recommended to use OrbitalModel.t as the time

array.
• power: Power (heat) dissipation in W of the PCB. Can be a single value or an array of values

throughout time, as long as it is compatible with the OrbitalModel time array.
• material: Material object or string containing the bulk properties (C_cap) of the node.
• coating: Coating object or string containing the absorptivity (alpha) and emissivity (epsilon)

of the node.
• outer: Whether the node radiates freely to space or not. Default is False.

Returns:

• NodalModel of a 5-node PCB, and all individual Node objects as well.
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Function: make_9node_pcb(title, mass, origin, geom=(0.1, 0.1, 0.), thickness=0.0016, t=None,

power=None, material=’PCB’, coating=’PCB_green’, outer=False)

Make a 9-node PCB (3x3 grid).

Ordering of the nodes is first the centre node, then counterclockwise starting at the centre right node.

For outer nodes, the received environment heat is spread out over the nodes, proportional to their

area.

For inner nodes, applied power is concentrated in the centre node A. For internal radiation, node A

is assumed to be the only radiating face, but representing the entire PCB area. This is ensured

automatically.

Parameters:

• title: Title/name that the NodalModel has.
• mass: Mass in kg of the PCB.
• origin: Tuple (x, y, z) of origin coordinates of the node.
• geom: Tuple (x_width, y_width, z_width) of the rectangular shape of the node, in metres.
• thickness: Thickness [m] of the PCB. Default is 0.0016 m (1.6 mm).
• t: Time array [s] of the entire simulation. It is recommended to use OrbitalModel.t as the time

array.
• power: Power (heat) dissipation in W of the PCB. Can be a single value or an array of values

throughout time, as long as it is compatible with the OrbitalModel time array.
• material: Material object or string containing the bulk properties (C_cap) of the node.
• coating: Coating object or string containing the absorptivity (alpha) and emissivity (epsilon)

of the node.
• outer: Whether the node radiates freely to space or not. Default is False.

Returns:

• NodalModel of a 9-node PCB, and all individual Node objects as well.

C.6.4. EnvironmentRadiation.py
”EnvironmentRadiation.py contains functions to ultimately compute all external heat fluxes (solar, albedo,

and Earth IR) onto an orbiting plate or multiple plates. The heat_received function is the one that computes

the final outputs. This file or any of the functions in this file do not cross the general user’s path, since

these functions are embedded into the ThermalBudget.py classes.”

(Hidden) Function: earth_orbit(day)

Compute Earth-Sun distance, based on the day from January 1. Perigee is on January 3.

Parameters:

• day: Number of days from January 1 (January 1 itself is day 1).

Returns:

• Sun-Earth distance [m] at the given day.

(Hidden) Function: solar_flux(day)

Compute solar flux on Earth based on the Earth-Sun distance on the given day. Solar minima/max-

ima are currently not included.

Parameters:

• day: Number of days from January 1 (January 1 itself is day 1).

Returns:

• Solar flux in W/m^2 at the given day.
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(Hidden) Function: albedo_flux(day, beta, theta)

Compute albedo flux at the Earth’s surface, in the direction of a given orbital position. For the actual

power in Watt, this value must be multiplied by (Re/(Re+h))^2, the area, spacecraft absorptivity,

and the view factor.

Parameters:

• day: Number of days from January 1 (January 1 itself is day 1).
• beta: Angle [rad] between the Sun vector and orbital plane.
• theta: True anomaly [rad] of the spacecraft’s orbit around the Earth, where theta = 0 at the

orthogonal projection of the solar vector.

Returns:

• Albedo flux in W/m^2 at the Earth’s surface in the direction of the given orbital position.

(Hidden) Function: planet_flux()

Average Earth infrared flux at the Earth’s surface. For the actual power in Watt, this value must be

multiplied by the Earth’s surface area and emissivity (assume 1), spacecraft absorptivity, and the

view factor.

Returns:

• Earth total infrared flux in W/m^2 at the Earth’s surface.

(Hidden) Function: view_factor(h, eta)

Returns view factor of a flat surface and a sphere (ECSS-E-HB-31-01 Part 1A 4.2.2 Planar to

spherical). Valid for 0 < eta < 180 degrees. Note that lambda = 180 - eta.

Parameters:

• h: Altitude [m] of the orbit above Earth.
• eta: Angle [rad] between the outward normal of the surface and the zenith direction with

respect to Earth.

Returns:

• View factor between the Earth and a flat plate; is zero when the plate faces away from Earth.

(Hidden) Function: eclipse_time(beta, h)

Calculates eclipse parameters based on a simplified cylindrical shadow behind Earth. Penumbra

effect is neglected.

Parameters:

• beta: Beta angle [rad] of Sun with respect to the spacecraft’s orbital plane.
• h: Orbital altitude [m].

Returns:

• Time of eclipse [s].
• Orbital ratio of eclipse.
• True anomaly of eclipse onset [rad].
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(Hidden) Function: heat_received(day, beta, theta, h, tau, phi)

Compute the solar, albedo, and Earth IR flux received by an oriented flat face of a satellite. This

does not yet include the surface area nor absorptivity.

Parameters:

• day: Number of days from January 1 (January 1 itself is day 1).
• beta: Beta angle [rad] of Sun with respect to the spacecraft’s orbital plane.
• theta: Array of true anomalies [rad] of the spacecraft’s orbit around the Earth, where theta =

0 at the orthogonal projection of the solar vector.
• h: Orbital altitude [m].
• tau: Polar angle [rad] in spherical coordinates (z-axis parallel to velocity direction).
• phi: Azimuth angle [rad] in spherical coordinates.

Returns:

• Earth IR heat flux q_pla [W/m^2].
• Albedo heat flux q_alb [W/m^2].
• Solar heat flux q_s [W/m^2].

(Hidden) Function: t_to_theta(h, t)

Converts orbital time [s] to true anomaly [rad].

Parameters:

• h: Orbital altitude [m].
• t: Time [s] after passing the Sun-Earth vertical plane.

Returns:

• True anomaly [rad].

(Hidden) Function: theta_to_t(h, theta)

Converts true anomaly [rad] to orbital time [s].

Parameters:

• h: Orbital altitude [m].
• theta: True anomaly [rad].

Returns:

• Time [s] after passing the Sun-Earth vertical plane.

(Hidden) Function: beta_angle(day, RAAN, i)

Computes the solar declination angle beta for the given day, for a given orbit.

Parameters:

• day: Number of days from January 1 (January 1 itself is day 1).
• RAAN: Right ascension of the ascending node [rad] of the satellite’s orbit.
• i: Inclination [rad] of the satellite’s orbit with respect to the Earth’s equator.

Returns:

• Solar declination (beta) angle [rad].
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(Hidden) Function: tau_phi(direction)

Converts a direction (’x+’, ’y-’, etc) into spherical coordinates.

Parameters:

• direction: String indicating the direction of a face (one of ’x+’, ’y+’, ’z+’, ’x-’, ’y-’, ’z-’).

Returns:

• Polar angle tau [rad] in spherical coordinates (z-axis parallel to velocity direction).
• Azimuth angle phi [rad] in spherical coordinates.

(Hidden) Function: spherical_to_cartesian(tauphi)

Takes spherical coordinates (tau angle from the z-axis and phi angle from the x-axis) and converts

to a cartesian unit vector.

Parameters:

• tauphi: Tuple of tau (polar angle [rad]) and phi (azimuth angle [rad]) in spherical coordinates,

(z-axis parallel to velocity direction).

Returns:

• Cartesian unit vector.

(Hidden) Function: cartesian_to_spherical(cartesian)

Takes a cartesian unit vector and converts to spherical coordinates (tau angle from the z-axis and

phi angle from the x-axis).

Parameters:

• cartesian: Cartesian coordinates of a point.

Returns:

• Tuple of tau (polar angle [rad]) and phi (azimuth angle [rad]) in spherical coordinates, (z-axis

parallel to velocity direction).

C.6.5. ThermalBudget.py
”ThermalBudget.py is the backbone of this thermal simulation tool. The three major classes (Node,

NodalModel, and OrbitalModel) are defined here. It is recommended to import those classes in a separate

file, and build your models there. Also import the show_available_materials() function and run it at the start

of your code (not obligatory, but useful); it shows a summary of available materials from the Materials.csv

file.”
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(Hidden) Function: dT_dt(t, T_prev, const, n, C_cap, C_con, q_pla, q_alb, q_s, P_int, outer,

alpha, epsilon, area, celsius, rad, t_array, cnt, printing=True, interp_in-

puts=False)

Calculates the derivative of the temperature of all nodes with respect to time, to be integrated

afterward.

Parameters:

• t: Time instance [s], is unused but needed for scipy.integrate.solve_ivp.
• T_prev: Temperatures of the previous time step i-1 in [K] or [deg C].
• const: Dictionary of universal constants or Earth properties.
• n: Total number of nodes.
• C_cap: Heat capacities of the nodes [J/K].
• C_con: Conductance between nodes [W/K].
• q_pla: Earth IR heat flux [W/m^2]. These powers must stay separated since they have

different spectra.
• q_alb: Albedo heat flux [W/m^2].
• q_s: Solar heat flux [W/m^2].
• P_int: Internal power [W] on each node (can be internal, external, or both).
• outer: Boolean array, whether the node radiates freely to space or not.
• alpha: Absorptivities in the solar spectrum of all nodes.
• epsilon: Emissivities in the IR spectrum of all nodes.
• area: Surface area [m^2] of all nodes.
• celsius: Boolean, whether the units are in Celsius (True) or Kelvin (False).
• rad: Radiative exchange factors between nodes. Same matrix shape as C_con, also sym-

metric.
• t_array: Entire time array (numpy array) of the simulation, used to track progress within

scipy.solve_ivp.
• cnt: List with a zero value (as: cnt = [0]), used for printing progress in the console.
• printing: Boolean indicating whether the progress should be printed in the console.
• interp_inputs: Boolean indicating whether the environmental inputs (q_pla, q_alb, q_s, P_int)

should be interpolated during scipy’s variable time stepping. Improves accuracy, but also

increases computational time. Default is False.

Returns:

• Derivative of temperature with respect to time in [K/s].

(Hidden) Function: view_factor_perp(a2, b, c1)

Computes the view factor between two perpendicular plates with a common edge (b).

Parameters:

• a2: Width [m] of the receiving plate.
• b: Length [m] of the common edge of both plates (must be equal).
• c1: Width [m] of the emitting plate.

Returns:

• View factor [-] from plate 1 to 2.
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(Hidden) Function: view_factor_par(a_width, b_depth, c_dist)

Computes the view factor between two parallel plates with the same size, exactly placed

above/under each other. Parameters a_width and b_depth are interchangeable due to the

symmetry in the formula.

Parameters:

• a_width: Width [m] of both plates (must be equal).
• b_depth: Depth [m] of both plates (must be equal).
• c_dist: Distance [m] between both plates (F12 = F21).

Returns:

• View factor [-] between the two plates (F12 = F21).

(Hidden) Function: plot_plate(origin, size, ax, n, name)

Plot the outer lines of a flat, rectangular plate, as well as the origin.

Parameters:

• origin: (x, y, z) position of the centre of the plate.
• size: (x, y, z) dimensions of the plate. The size in the normal direction of the surface must be

set to zero, and the other two dimensions (width and height) must be nonzero.
• ax: Matplotlib axis object (mpl_toolkits.mplot3d.axes3d.Axes3D) which can be defined with:

matplotlib.pyplot.figure().add_subplot(projection=’3d’).
• n: Node number of the drawn plate.
• name: Name (string) of the drawn plate.

(Hidden) Function: plot_point(origin, ax, n, name)

Plot the origin of a node.

Parameters:

• origin: (x, y, z) position of the centre of the plate.
• ax: Matplotlib axis object (mpl_toolkits.mplot3d.axes3d.Axes3D) which can be defined with:

matplotlib.pyplot.figure().add_subplot(projection=’3d’).
• n: Node number of the drawn plate.
• name: Name (string) of the drawn plate.

(Hidden) Function: plot_connections(point1, point2, axis, radiative=False)

Plot a line representing a conductive or radiative link between two nodes.

Parameters:

• point1: (x, y, z) position of the first node.
• point2: (x, y, z) position of the second node.
• axis: Matplotlib axis object (mpl_toolkits.mplot3d.axes3d.Axes3D) which can be defined with:

matplotlib.pyplot.figure().add_subplot(projection=’3d’).
• radiative: Boolean indicating whether it is a radiative (True) or conductive (False) connection.
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(Hidden) Function: plot3dline(point1, point2, axis, colour=’k’, lbl=”, style=’solid’, ordr=None)

Converts two points into a line and plots it on the given axis.

Parameters:

• colour: Colour of the desired plot.
• point1: Starting coordinate.
• point2: Ending coordinate.
• axis: Figure axis to be plotted on.
• lbl: Label of the axis.
• style: Linestyle.
• ordr: Zorder of the line (how far it is above or below others).

(Hidden) Function: plot3dframe(frame, axis, colour1=’k’, colour2=’k’, colour3=’k’, lbl1=”,

lbl2=”, lbl3=”, style=’solid’, ordr=None)

Plots a reference frame with three axes in a 3D plot.

Parameters:

• frame: 3x3 Numpy array containing the three unit vectors in the desired directions.
• axis: Matplotlib axis to be plotted on.
• colour1: Colour of the X-axis to be plotted.
• colour2: Colour of the Y-axis to be plotted.
• colour3: Colour of the Z-axis to be plotted.
• lbl1: Label of the X-axis to be shown in the legend.
• lbl2: Label of the Y-axis to be shown in the legend.
• lbl3: Label of the Z-axis to be shown in the legend.
• style: Linestyle.
• ordr: Zorder of the line (how far it is above or below others).

(Hidden) Function: ensure_list(x, keep_entity=False)

If the input is a list, it will return itself; if the input is not a list, it will return the input as a list.

Parameters:

• x: Arbitrary input.
• keep_entity: Boolean indicating whether tuples/numpy arrays are transformed to a list, or

put into a list.

Returns:

• Input x inside a Python list.

(Hidden) Function: nonzero(x)

Checks whether input x is a nonzero number.

Parameters:

• x: Arbitrary input.

Returns:

• Boolean (True if x is a nonzero number; False if x is 0, 0.0, None, np.nan, ’string’, ...).



C.6. Python Files, Classes, and Functions 154

(Hidden) Function: show_tree(model, depth=0)

Prints a model tree in the command line, showing the order of (sub)NodalModels and Nodes. Only

the model argument should be entered by the user (do not enter a value for depth).

Parameters:

• model: Mother NodalModel object.
• depth: At what sublevel the NodalModel is. Used to automatically track the recursive depth

of this function.

Function: show_available_materials()

Print the available materials, coatings, and contact connections from Materials.csv in the console.

These names can be copy-pasted into the material, coating, and connect arguments of Nodes and

NodalModels.

Class Node

”The Node class is an object that defines one node. It contains the thermal and physical properties of a

node.”

Figure 3.3 can be viewed alongside the following descriptions of the Node class functions.

Function: __init__(name=”, material=None, coating=None, C_cap=None, mass=None, vol-

ume=None, T0=None, q_ext=None, P_int=None, outer=None, alpha=None, ep-

silon=None, area=None, origin=(np.nan, np.nan, np.nan), geom=(np.nan, np.nan,

np.nan))

Initiates a Node object. Beware of over-defining parameters; for example, applying a coating whilst

also manually assigning alpha and epsilon results in two possible values for both alpha and epsilon.

In such cases, the code will always prioritise the manually defined value.

Parameters:

• name: Unique name used to identify the node within a NodalModel. If not provided, it will be

assigned a number when added to a NodalModel.
• material: Material object or string containing the bulk properties (to compute C_cap) of the

node.
• coating: Coating object or string containing the absorptivity (alpha) and emissivity (epsilon)

of the node.
• C_cap: Heat capacity [J/K].
• mass: Mass of the node [kg], only needed if a material is applied and no C_cap is given.
• volume: Volume of the node [m^3], only needed if a material is applied and no C_cap or

mass is given.
• T0: Initial temperature [deg C] or [K].
• q_ext: Tuple (q_pla, q_alb, q_s) of external heat fluxes [W/m^2] throughout time. Will be

converted to three separate Node attributes called Node.q_pla, Node.q_alb, Node.q_s.
• P_int: Internal power [W] throughout time.
• outer: Whether the node radiates freely to space or not. Default is False.
• alpha: Absorptivity in the solar spectrum. Default is 1.
• epsilon: Emissivity in the IR spectrum. Default is 1.
• area: Surface area [m^2] of the added node. Default is 1.
• origin: Tuple (x, y, z) of origin coordinates of the node. Default is (0, 0, 0).
• geom: Tuple (x_width, y_width, z_width) of the rectangular shape of the node. Default is (0,

0, 0).
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Function: modify(name_new=None, material_new=None, coating_new=None,

C_cap_new=None, mass_new=None, volume_new=None, T0_new=None,

q_ext_new=None, P_int_new=None, outer_new=None, alpha_new=None,

epsilon_new=None, area_new=None, origin_new=None, geom_new=None)

Adapt values of the Node object. Beware of over-defining parameters; for example, applying a

coating whilst also manually assigning alpha and epsilon results in two possible values for both

alpha and epsilon. In such cases, the code will always prioritise the manually defined value.

Parameters:

• name_new: Unique name used to identify the node within a NodalModel.
• material_new: Material object or string containing the bulk properties (C_cap) of the node.
• coating_new: Coating object or string containing the absorptivity (alpha) and emissivity

(epsilon) of the node.
• C_cap_new: Heat capacity [J/K].
• mass_new: Mass of the node [kg], only needed if a material is applied and no C_cap is given.
• volume_new: Volume of the node [m^3], only needed if a material is applied and no C_cap

or mass is given.
• T0_new: Initial temperature [deg C] or [K]. Unit must be compatible with the unit of the

NodalModel.
• q_ext_new: Tuple (q_pla, q_alb, q_s) of external heat fluxes [W/m^2] throughout time. Will

be converted to three separate Node attributes called Node.q_pla, Node.q_alb, Node.q_s.
• P_int_new: Internal power [W] throughout time.
• outer_new: Whether the node radiates freely to space or not. Default is False.
• alpha_new: Absorptivity in the solar spectrum. Default is 1.
• epsilon_new: Emissivity in the IR spectrum. Default is 1.
• area_new: Surface area [m^2] of the added node. Default is 1.
• origin_new: Tuple (x, y, z) of origin coordinates of the node. Default is (0, 0, 0).
• geom_new: Tuple (x_width, y_width, z_width) of the rectangular shape of the node. Default

is (0, 0, 0).

Class NodalModel

”The NodalModel class is an object that defines one nodal model. It contains functions to define and

expand the model, and to solve the model.”

Figure 3.4 can be viewed alongside the following descriptions of the NodalModel class functions.

Function: __init__(t=None, celsius=True, title=”)

Initialises the NodalModel object. The temperatures can be defined in either degrees Celsius or

Kelvin; the output unit matches the input.

Parameters:

• t: Time vector [s].
• celsius: Boolean, whether the temperatures are in Celsius (True) or Kelvin (False). Default

is Celsius.
• title: Title/name that the NodalModel has.

Function: add_node(node_or_model)

Adds a node (Node object) or collection of nodes (NodalModel object) to the current NodalModel

object. Can also add multiple objects at once by feeding a list of objects into the function.

Parameters:

• node_or_model: Node or NodalModel object. May also be a list of Nodes and/or NodalMod-

els.
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Function: set_time(t, erase=False, print_err=True)

If the NodalModel did not yet have time-varying parameters assigned, this function adds a time

array and adds zero-valued entries for all other time-varying parameters. Also sets the same time

for sub-NodalModels.

If any previous time data is to be removed and replaced by the new data, provide the input

erase=True.

Parameters:

• t: Time vector [s].
• erase: Boolean to indicate whether previously existing time data is allowed to be erased and

replaced by the new data.
• print_err: To be ignored by the user. Boolean to avoid printing the same error multiple times.

Function: connect(node1, nodes2, contact_obj=None, rad=None, C_con=None,

k_through=None, L_through=None, h_contact=None, A=None)

Defines connections between the first node to be entered (node1) and the specified other nodes

(nodes2). This function can be used to define a single connection between two nodes or define

multiple connections. Multiple connections are defined using a single node1, and a list of nodes2

and corresponding parameters.

The function adds the connections as: [node1<->nodes2[0], node1<->nodes2[1], node1<-

>nodes2[2], ...].

If a list of multiple connections is used, type None for the connections that are not desired

to be made; for example, for two connections (one conductive, one radiative), C_con would look

like C_con=[value, None].

If it is a through-connection and both nodes have the same Material assigned, only L_through and

A need to be provided.

Parameters:

• node1: Node object, string, or integer indicating the first connected node.
• nodes2: (List of) Node object(s), string(s), or integer(s) indicating the second connected

node(s).
• contact_obj: (List of) Contact object(s), using a pre-defined contact interface.
• rad: (List of) Boolean(s) indicating whether the connections include radiative heat transfer.
• C_con: (List of) conductance value(s) [W/K] for the corresponding connections.
• k_through: (List of) thermal conductivity(ies) [W/(m.K)] between the nodes, for a through-

material connection.
• L_through: (List of) distance(s) between nodes [m], for a through-material connection.
• h_contact: (List of) heat transfer coefficient(s) [W/(m^2.K)], for a contact connection.
• A: (List of) orthogonal surface area(s) [m^2] between the nodes.
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Function: modify_node(node_mod, name_new=None, material_new=None, coat-

ing_new=None, C_cap_new=None, mass_new=None, volume_new=None,

T0_new=None, q_ext_new=None, P_int_new=None, outer_new=None, al-

pha_new=None, epsilon_new=None, area_new=None, origin_new=None,

geom_new=None)

Adapt values of an existing Node in the NodalModel. The Node object itself will be changed, as

well as all its values within the NodalModel matrices/arrays.

Parameters:

• node_mod: Node object, string, or integer indicating the node to be modified.
• name_new: Unique name used to identify the node within a NodalModel.
• material_new: Material object or string containing the bulk properties (C_cap) of the node.
• coating_new: Coating object or string containing the absorptivity (alpha) and emissivity

(epsilon) of the node.
• C_cap_new: Heat capacity [J/K].
• mass_new: Mass of the node [kg], only needed if a material is applied and no C_cap is given.
• volume_new: Volume of the node [m^3], only needed if a material is applied and no C_cap

or mass is given.
• T0_new: Initial temperature [deg C] or [K]. Unit must be compatible with the unit of the

NodalModel.
• q_ext_new: Tuple (q_pla, q_alb, q_s) of external heat fluxes [W/m^2] throughout time. Will

be converted to three separate Node attributes called Node.q_pla, Node.q_alb, Node.q_s.
• P_int_new: Internal power [W] throughout time.
• outer_new: Whether the node radiates freely to space or not. Default is False.
• alpha_new: Absorptivity in the solar spectrum. Default is 1.
• epsilon_new: Emissivity in the IR spectrum. Default is 1.
• area_new: Surface area [m^2] of the added node. Default is 1.
• origin_new: Tuple (x, y, z) of origin coordinates of the node. Default is (0, 0, 0).
• geom_new: Tuple (x_width, y_width, z_width) of the rectangular shape of the node. Default

is (0, 0, 0).

Function: solve(solver=’Radau’, printing=True, T0=None, limit_step=False, interp_in-

puts=False)

Solves the nodal model for the given time vector. The solution is stored in the NodalModel.T array.

Parameters:

• solver: Numerical integration method, must be either of: [’rk45’, ’dop853’, ’radau’]. Default is

Radau.
• printing: Boolean indicating whether the progress should be printed in the console.
• T0: Starts the entire model at this T0. Must be the same unit (deg C or K) as the NodalModel.
• limit_step: Boolean used for scipy’s variable time stepping, indicating whether the solver

can use its optimisation algorithms to skip time steps and reduce computational time

(limit_step=False), or whether a higher accuracy is desired and no time steps are allowed to

be skipped (limit_step=True). Default is False.
• interp_inputs: Boolean indicating whether the environmental inputs (q_pla, q_alb, q_s, P_int)

should be interpolated during scipy’s variable time stepping. Improves accuracy but also

increases computational time. Default is False.
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Function: show_plots(showrad=True, shownodes=True, showtemps=True, showflows=True,

whichnodes=None)

Standard method to plot the temperatures, external radiation, heat flows, a 3D plot of the nodes,

and a hierarchical tree of the NodalModel.

Parameters:

• showrad: Boolean whether the external heat fluxes are shown.
• shownodes: Boolean whether the 3D plot with nodes and hierarchical tree (printed in console)

are shown.
• showtemps: Boolean whether the transient temperatures are shown.
• showflows: Boolean whether the conductive and radiative heat flows are shown.
• whichnodes: Node object, string, or integer indicating which nodes are to be shown in all

plots. This also means that only connections between the selected nodes are shown.

Class OrbitalModel

”The OrbitalModel class is an object that defines an orbit, its discretisation, and any (angled) plates that

receive radiation. It can then calculate the planet IR, albedo, and solar fluxes.”

Figure 3.2 can be viewed alongside the following descriptions of the OrbitalModel class functions.

Function: __init__(h, surfaces, beta=None, RAAN=None, incl=None, day=1, n_orbits=1.,

dtheta=None, dt=None, angular_rates=None)

Initialises an OrbitalModel object. Beta angle can be specified directly, or via the RAAN and

inclination. If surfaces is/contains a Node object, its property Node.name must include the direction,

so for example ’x+’ would work, but also ’x+01’ would work.

Parameters:

• h: Orbital altitude [m].
• surfaces: Either a (list of) Node object(s), or string with direction (’x+’ or ’y-’ etc.), or a tuple/list

with the tau and phi spherical angles. If it is a Node object, its property Node.name must

include the direction, so for example ’x+’ would work, but also ’x+01’ would work.
• beta: Solar declination [deg]. MUST BE DEGREES, will be converted to radians.
• RAAN: Right ascension of the ascending node [deg] of the satellite’s orbit. MUST BE

DEGREES.
• incl: Inclination [deg] of the satellite’s orbit with respect to the Earth’s equator. MUST BE

DEGREES.
• day: Number of days from January 1 (January 1 itself is day 1).
• n_orbits: Number of orbits to be calculated. Default is 1.
• dtheta: Step size [deg] in true anomaly (theta). MUST BE DEGREES, will be converted to

radians. Default is 0.01 rad.
• dt: Step size [s] in time. Can be entered instead of dtheta. If both are given, dtheta overrides

dt.
• angular_rates: Angular velocities [deg/s] around the x, y, and z axes. MUST BE DEGREES

/ S.
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Function: modify(h_new=None, surfaces_new=None, beta_new=None, RAAN_new=None,

incl_new=None, day_new=None, n_orbits_new=None, dtheta_new=None,

dt_new=None, angular_rates_new=None)

Adapt values of the OrbitalModel object. Beware that using this function (particularly surfaces_new,

dtheta_new, or dt_new) will reset previously computed outputs, since the shape of the heat

flux array must change to accommodate the changes (hence, the previous results are not discarded).

Parameters:

• h_new: Orbital altitude [m].
• surfaces_new: Either a (list of) Node object(s), string with direction (’x+’ or ’y-’ etc.), or a

tuple/list with the tau and phi spherical angles. If it is a Node object, its property Node.name

must include the direction, so for example ’x+’ would work, but also ’x+01’ would work.
• beta_new: Solar declination [deg]. MUST BE DEGREES, will be converted to radians.
• RAAN_new: Right ascension of the ascending node [deg] of the satellite’s orbit. MUST BE

DEGREES.
• incl_new: Inclination [deg] of the satellite’s orbit with respect to the Earth’s equator. MUST

BE DEGREES.
• day_new: Number of days from January 1 (January 1 itself is day 1).
• n_orbits_new: Number of orbits to be calculated. Default is 1.
• dtheta_new: Step size [deg] in true anomaly (theta). MUST BE DEGREES, will be converted

to radians.
• dt_new: Step size [s] in time. Can be entered instead of dtheta. If both are given, dtheta

overrides dt.
• angular_rates_new: Angular velocities [deg/s] around the x, y, and z axes. MUST BE

DEGREES / S.

Function: animate_attitude(speed=1, realtime=False)

Shows an animation (previous plotting windows must be closed) of a line or collection of lines that

are rotating throughout time.

Parameters:

• speed: Default is 1, showing all time frames. If it is increased, time frames are skipped to

speed up the animation.
• realtime: If True, the duration between each time step is set to the dt of the simulation.

Function: compute(printing=True)

Run the orbital model (func heat_received) and store the results in self.q_pla, self.q_alb, and

self.q_s. If the surfaces are of type Node, the heat fluxes will directly be assigned to the nodes.

However, if those nodes are already in a NodalModel, the heat fluxes must also be assigned to the

NodalModel with:

NodalModel.modify_node(node, q_ext_new=OrbitalModel.get_heat(node)), or alternatively:

NodalModel.modify_node(node, q_ext_new=tuple(node.q_pla, node.q_alb, node.q_s))

Parameters:

• printing: Boolean indicating whether the progress should be printed in the console.
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Function: get_heat(index)

Return the planet, albedo, and solar flux as a tuple, for the given surface.

Parameters:

• index: Surface given as an integer (order in the list self.surfaces), string, or Node.

Returns:

• Tuple (q_pla, q_alb, q_s) in [W/m^2].

C.6.6. SensitivityAnalysis.py
”SensitivityAnalysis.py contains numerous functions to perform a sensitivity analysis on your custommodels.

The ’run_...’ functions compute the cases and store them in Pickle (.pkl) files. The plot_...’ functions read

those files and plot them accordingly.”

(Hidden) Function: get_file(file)

Returns the path of a file in the same directory as this Python file; works on most operating systems.

Parameters:

• file: Name (str) of the file to be retrieved.

Returns:

• Path of the file.

(Hidden) Function: get_folder_file(folder, file, subfolders=())

Returns the path of a file in a folder within the same directory as this Python file; works on most

operating systems.

Subfolders can be an arbitrary number of sub-folders, such as:

get_folder_file(’folderA’, ’file.txt’, (’folderB’, ’folderC’))

–> C:/...your-directory.../folderA/folderB/folderC/file

Parameters:

• folder: Name (str) of the folder which the file is in.
• file: Name (str) of the file to be retrieved.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.

Returns:

• Path of the file.

(Hidden) Function: copy_orbital_nodalmodel(orbital_old, nodal_old)

Makes a deepcopy of an OrbitalModel and NodalModel object, while keeping the links between

them. This is needed for the sensitivity analysis, since the original object should remain unchanged.

Parameters:

• orbital_old: OrbitalModel object to be copied.
• nodal_old: NodalModel object to be copied.

Returns:

• The copied OrbitalModel object.
• The copied NodalModel object.
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(Hidden) Function: calc_rmse(y_short, y_long, multip)

Calculate the Root Mean Square Error (RMSE) between two differently shaped, but overlapping,

arrays. The short array (large time step) only has fewer data points than the long array (small time

step). If multip is 2, y_long is twice as long as y_short, i.e. the time step of y_long is twice as small

as that of y_short. The x-values of y_short must be present in y_long; for example: x_short = [0, 2,

4] and x_long =[0, 1, 2, 3, 4] for multip = 2.

Parameters:

• y_short: Y-values of the short array (large time step).
• y_long: Y-values of the long array (small time step).
• multip: Integer value showing by which multiple the time step differs. See example above.

Returns:

• Root Mean Square Error (RMSE) between y_short and y_long.

(Hidden) Function: read_folder(folder=’SensitivityAnalysis’, subfolders=())

Reads all pickle files available in the given folder.

Parameters:

• folder: Name (str) of the folder where the pickle files are to be read from.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.

Returns:

• List of names of the cases/files.
• List of the solved NodalModels for all cases.
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Function: run_case(variable, value, nodal_model, orbital_model, printing=True,

solver=’Radau’, limit_step=False, interp_inputs=False)

Runs an orbital and transient analysis for the given input parameters.

- The parameter ’value’ is the relative fraction for all parameters (except DAY, BETA, DT,

and RAD), since the use of absolute numbers would potentially alter the entire nature of the

NodalModel.

- If the altitude or time step is changed, the time array changes as well. Hence, the internal power

cannot follow the exact same transient as before (except if it is constant), so an average internal

power will be assumed along the entire timeline. If the power is constant, this is no issue and the

same value is used.

- If any input parameter is by default zero, any multiplications (+-10% etc.) still result in zero; this

could be a reason why the sensitivity analysis has no impact on certain parameters, e.g. if the

internal power is zero.

Parameters:

• variable: Name (string) of the variable which is being changed.
• value: Multiplication factor if the variable is either of: [ALT, CAP, IR, ALB, SOL, POW, CON,

EMI, ABS, ROT], and the actual absolute value if the variable is either of: [DAY, BETA, DT,

RAD]. For RAD, the value should be ’on’ or ’off’ (string).
• nodal_model: NodalModel to be subjected to the sensitivity analysis.
• orbital_model: OrbitalModel to be subjected to the sensitivity analysis.
• printing: Boolean indicating whether progress should be printed in the command line.
• solver: Numerical integration method, must be either of: [’rk45’, ’dop853’, ’radau’]. Default is

Radau.
• limit_step: Boolean used for scipy’s variable time stepping, indicating whether the solver

can use its optimisation algorithms to skip time steps and reduce computational time

(limit_step=False), or whether a higher accuracy is desired and no time steps are allowed to

be skipped (limit_step=True). Default is False.
• interp_inputs: Boolean indicating whether the environmental inputs (q_pla, q_alb, q_s, P_int)

should be interpolated during scipy’s variable time stepping. Improves accuracy, but also

increases computational time. Default is False.

Returns:

• NodalModel object with the solved case.
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Function: run_all(dev1, dev2, nodal_model, orbital_model, overwrite=False, folder=’Sen-

sitivityAnalysis’, subfolders=(), printing=True, solver=’Radau’, limit_step=False,

interp_inputs=False)

Runs all sensitivity analysis cases and writes them to pickle files.

If overwrite is True, existing pickle files with the same name are overwritten.

Subfolders can be an arbitrary number of sub-folders, such as:

run_all(..., folder=’folderA’, subfolders=tuple(’folderB’, ’folderC’))

–> C:/...your-directory.../folderA/folderB/folderC/file

The file name is automatically generated.

Parameters:

• dev1: # +- small deviation (fraction) for ALT, CAP, IR, ALB, SOL, POW, CON, EMI, and ABS.
• dev2: # +- large deviation (fraction) for ALT, CAP, IR, ALB, SOL, POW, CON, EMI, and ABS.
• nodal_model: NodalModel to be subjected to the sensitivity analysis.
• orbital_model: OrbitalModel to be subjected to the sensitivity analysis.
• overwrite: Boolean to determine whether existing pickle files with the same name are to be

overwritten.
• folder: Name (str) of the folder in which the files are to be exported.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.
• printing: Boolean indicating whether progress should be printed in the command line.
• solver: Numerical integration method, must be either of: [’rk45’, ’dop853’, ’radau’]. Default is

Radau.
• limit_step: Boolean used for scipy’s variable time stepping, indicating whether the solver

can use its optimisation algorithms to skip time steps and reduce computational time

(limit_step=False), or whether a higher accuracy is desired and no time steps are allowed to

be skipped (limit_step=True). Default is False.
• interp_inputs: Boolean indicating whether the environmental inputs (q_pla, q_alb, q_s, P_int)

should be interpolated during scipy’s variable time stepping. Improves accuracy, but also

increases computational time. Default is False.
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Function: run_variable(name, values, nodal_model, orbital_model, overwrite=False,

folder=’SensitivityAnalysis’, subfolders=None, printing=True, solver=’Radau’,

limit_step=False, interp_inputs=False)

Runs arbitrary analysis cases for a given variable, using the other default values, and writes

them to pickle files. The difference with the run_all function is that run_variable is not limited to

deviation percentages. Any array with values can be used. Furthermore, it will result in different

plots (plot_variable).

The values for IR, ALB, and SOL parameters must be multiplication factors (actual value is

computed automatically).

If overwrite is True, existing pickle files with the same name are overwritten.

The parameter ’value’ is a list of the relative fractions with which the variable should be

multiplied (except for DAY, BETA, DT, for which the values are the actual absolute values).

Subfolders can be an arbitrary number of sub-folders, such as:

run_variable(..., folder=’folderA’, subfolders=tuple(’folderB’, ’folderC’))

–> C:/...your-directory.../folderA/folderB/folderC/file

The file name is automatically generated.

Parameters:

• name: Name (str) of the variable. Must be one of: [’DAY’, ’ALT’, ’BETA’, ’CAP’, ’IR’, ’ALB’,

’SOL’, ’POW’, ’CON’, ’EMI’, ’ABS’, ’ROT’, ’DT’, ’RAD’]. Internal radiation (RAD) is recom-

mended to be used with its own function (plot_intrad).
• values: List/tuple/array of values. Is a multiplication factor if the variable is either of: [ALT,

CAP, IR, ALB, SOL, POW, CON, EMI, ABS, ROT], and the actual absolute value if the variable

is either of: [DAY, BETA, DT]. RAD would be either ’on’ or ’off’.
• nodal_model: NodalModel to be subjected to the sensitivity analysis.
• orbital_model: OrbitalModel to be subjected to the sensitivity analysis.
• overwrite: Boolean to determine whether existing pickle files with the same name are to be

overwritten.
• folder: Name (str) of the folder in which the files are to be exported.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.
• printing: Boolean indicating whether progress should be printed in the command line.
• solver: Numerical integration method, must be either of: [’rk45’, ’dop853’, ’radau’]. Default is

Radau.
• limit_step: Boolean used for scipy’s variable time stepping, indicating whether the solver

can use its optimisation algorithms to skip time steps and reduce computational time

(limit_step=False), or whether a higher accuracy is desired and no time steps are allowed to

be skipped (limit_step=True). Default is False.
• interp_inputs: Boolean indicating whether the environmental inputs (q_pla, q_alb, q_s, P_int)

should be interpolated during scipy’s variable time stepping. Improves accuracy, but also

increases computational time. Default is False.
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Function: run_dt_rot(name, nodal_model, orbital_model, max_val=None, point_density=1.,

overwrite=False, folder=’SensitivityAnalysis’, subfolders=None, printing=True,

solver=’Radau’, limit_step=False, interp_inputs=False)

Generates data points for a temperature versus angular velocity graph, then executes run_variable.

Those data points (time steps or angular rates) are determined automatically, based on the

expected time step needed to resolve a 90-degree rotation.

For the angular rates analysis (name=’ROT’), set those angular rates to (1., 1., 1.) so that the

multiplication factor matches with the actual degrees per second.

It is recommended to make extra sub-subfolders, such as: subfolders=(’rot’, ’dt10’) or (’dt’,

’rot-z’).

If overwrite is True, existing pickle files with the same name are overwritten.

Subfolders can be an arbitrary number of sub-folders, such as:

run_dt_rot(..., folder=’folderA’, subfolders=tuple(’folderB’, ’folderC’))

–> C:/...your-directory.../folderA/folderB/folderC/file

The file name is automatically generated.

Parameters:

• name: Name (str) of the variable. Must be either ’ROT’ or ’DT’.
• nodal_model: NodalModel to be subjected to the sensitivity analysis.
• orbital_model: OrbitalModel to be subjected to the sensitivity analysis.
• max_val: Maximum value of the angular rate [deg/s] or time step [s] to be computed. Defaults

are 20 deg/s and 100 s.
• point_density: Multiplication factor for the number of points generated. Default of 1.0 means

that the likely most optimal number of points is used. Setting the value to 2.0 computes twice

as many points, or setting it to 0.5 halves the number of points, for example.
• overwrite: Boolean to determine whether existing pickle files with the same name are to be

overwritten.
• folder: Name (str) of the folder in which the files are to be exported.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.
• printing: Boolean indicating whether progress should be printed in the command line.
• solver: Numerical integration method, must be either of: [’rk45’, ’dop853’, ’radau’]. Default is

Radau.
• limit_step: Boolean used for scipy’s variable time stepping, indicating whether the solver

can use its optimisation algorithms to skip time steps and reduce computational time

(limit_step=False), or whether higher accuracy is desired (limit_step=True). Default is False.
• interp_inputs: Boolean indicating whether the environmental inputs (q_pla, q_alb, q_s, P_int)

should be interpolated during scipy’s variable time stepping. Improves accuracy but increases

computational time. Default is False.
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Function: run_integrators(nodal_model, orbital_model, values=None, overwrite=False,

folder=’SensitivityAnalysis’, subfolders=(’dt’, ’integrators’), printing=True)

Run a number of cases with different integrators. Mainly used for thesis report.

If overwrite is True, existing pickle files with the same name are overwritten.

Subfolders can be an arbitrary number of sub-folders, such as:

run_dt_rot(..., folder=’folderA’, subfolders=tuple(’folderB’, ’folderC’))

–> C:/...your-directory.../folderA/folderB/folderC/file

The file name is automatically generated.

Parameters:

• nodal_model: NodalModel to be subjected to the sensitivity analysis.
• orbital_model: OrbitalModel to be subjected to the sensitivity analysis.
• values: Time step values [s] at which to evaluate the models.
• overwrite: Boolean to determine whether existing pickle files with the same name are to be

overwritten.
• folder: Name (str) of the folder in which the files are to be exported.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.
• printing: Boolean indicating whether progress should be printed in the command line.

Function: run_intrad(nodal_model, orbital_model, overwrite=False, folder=’SensitivityAnaly-

sis’, subfolders=(’rad’,), printing=True, solver=’Radau’, limit_step=False, interp_in-

puts=False)

Runs the analysis cases for different internal radiation scenarios, using the other default values,

and writes them to pickle files.

If overwrite is True, existing pickle files with the same name are overwritten.

Subfolders can be an arbitrary number of sub-folders, such as:

run_intrad(..., folder=’folderA’, subfolders=tuple(’folderB’, ’folderC’))

–> C:/...your-directory.../folderA/folderB/folderC/file

The file name is automatically generated.

Parameters:

• nodal_model: NodalModel to be subjected to the sensitivity analysis.
• orbital_model: OrbitalModel to be subjected to the sensitivity analysis.
• overwrite: Boolean to determine whether existing pickle files with the same name are to be

overwritten.
• folder: Name (str) of the folder in which the files are to be exported.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.
• printing: Boolean indicating whether progress should be printed in the command line.
• solver: Numerical integration method, must be either of: [’rk45’, ’dop853’, ’radau’]. Default is

Radau.
• limit_step: Boolean used for scipy’s variable time stepping, indicating whether the solver

can use its optimisation algorithms to skip time steps and reduce computational time

(limit_step=False), or whether higher accuracy is desired (limit_step=True). Default is False.
• interp_inputs: Boolean indicating whether the environmental inputs (q_pla, q_alb, q_s, P_int)

should be interpolated during scipy’s variable time stepping. Improves accuracy but increases

computational time. Default is False.
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Function: plot_all(folder=’SensitivityAnalysis’, subfolders=())

Plot all sensitivity analysis cases from the given (sub)folder.

Parameters:

• folder: Name (str) of the folder where the pickle files are to be read from.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.

Function: plot_variable(name, folder=’SensitivityAnalysis’, subfolders=(), whichnode=None)

Plot temperature data for varying values of the given variable name, from the given (sub)folder.

The default node to be plotted for the transient (temperature-time and heat flux-time) graphs is the

first node of the model (node 0). It is recommended that a node is chosen which is reasonably

representative of the spacecraft temperature. For all other plots, the temperatures of all nodes are

used to extract min/mean/max values.

Parameters:

• name: Name (str) of the variable. Must be one of: [’DAY’, ’ALT’, ’BETA’, ’CAP’, ’IR’, ’ALB’,

’SOL’, ’POW’, ’CON’, ’EMI’, ’ABS’, ’ROT’, ’DT’, ’RAD’]. Internal radiation (RAD) is recom-

mended to be used with its own function (plot_intrad).
• folder: Name (str) of the folder where the pickle files are to be read from.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.
• whichnode: Node object, string, or integer indicating the node to be plotted for the transient

graphs.

Function: plot_dt_rot(name, folder=’SensitivityAnalysis’, subfolders=())

Plot temperature data for varying values of the given variable name, from the given (sub)folder.

Parameters:

• name: Name (str) of the variable. Must be either ’ROT’ or ’DT’.
• folder: Name (str) of the folder where the pickle files are to be read from.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.

Function: plot_integrators(benchmark_filename, benchmark_folder, plot_extra=False,

folder=’SensitivityAnalysis’, subfolders=(’dt’, ’integrators’))

Plot convergence data for different time steps. Mainly used for thesis report.

Parameters:

• benchmark_filename: Name of the file which is considered as the benchmark computation.
• benchmark_folder: Name of the folder in which the benchmark is located (is assumed to be

in the same directory as the subfolders parameter).
• plot_extra: Boolean indicating whether extra figures should be plotted, showing the transient

temperatures for each time step. Each time step is shown in a separate figure (many figures

will appear).
• folder: Name (str) of the folder where the pickle files are to be read from.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.
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Function: plot_intrad(whichnodes=None, folder=’SensitivityAnalysis’, subfolders=())

Plot temperature data for varying internal radiation conditions from the given (sub)folder.

Parameters:

• whichnodes: String or integer (not Node) indicating which nodes are to be shown in all plots.

This also means that only connections between the selected nodes are shown.
• folder: Name (str) of the folder where the pickle files are to be read from.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.

C.6.7. VerificationValidation.py
”VerificationValidation.py computes numerous cases and compares them to ESATAN data and FUNcube

flight data. Mainly used for the thesis report; not intended to be used by the general user.”

This file does not contain any functions or classes that are relevant to the general user. It contains specific

verification and validation functions related to Chapter 4 of this thesis.

(Hidden) Function: get_file(file)

Returns the path of a file in the same directory as this Python file; works on most operating systems.

Parameters:

• file: Name (str) of the file to be retrieved.

Returns:

• Path of the file.

(Hidden) Function: get_folder_file(folder, file, subfolders=())

Returns the path of a file in a folder within the same directory as this Python file; works on most

operating systems.

Subfolders can be an arbitrary number of sub-folders, such as:

get_folder_file(’folderA’, ’file.txt’, (’folderB’, ’folderC’))

–> C:/...your-directory.../folderA/folderB/folderC/file

Parameters:

• folder: Name (str) of the folder which the file is in.
• file: Name (str) of the file to be retrieved.
• subfolders: Tuple/list of names (str) of any sub-folders which the file is in.

Returns:

• Path of the file.

C.6.8. FUNcube.py
”FUNcube.py contains a reconstruction of the thermal model of the FUNcube-1 satellite. This file can also

be considered as an example on how to create orbital models and nodal models. However, there are

generally more ways in which the code can be used, so it is recommended to refer to the user’s manual for

more details.”

This file does not contain any functions or classes.
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