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Abstract

In offshore engineering complex simulation models are constructed for design optimization using Monte
Carlo methods. These models incur large computational costs. Multi-Level Multi-Fidelity Monte Carlo is
proposed as a method to reduce the computational cost of these simulations. In addition, research is con-
ducted on the use of porous media as passive damping systems. Hence, an analysis on the effect of porosity
on the vortex shedding frequency is conducted. This thesis is an exploratory investigation on the applica-
tion of Multi-Level Multi-Fidelity Monte Carlo in fluid dynamics topics and its particular use for analysis of
the effect of porosity on the vortex shedding frequency on a porous circular cylinder. Three case studies are
conducted. Firstly, applying Multi-Level Multi-Fidelity Monte Carlo on a solid circular cylinder case, which
is deemed as a successful application, based on the estimated quantity of interest, variance reduction and
computational cost reduction. Furthermore, two parametric studies are conducted: 1) to discover empirical
relationships (low-fidelity models) and 2) forward uncertainty propagation with Multi-Level Multi-Fidelity
Monte Carlo using a uniform input distribution. Both parametric studies consist of a number of equally dis-
tributed points of porosity on a case setup of flow past a porous circular cylinder. The parametric studies use
a frequency detection algorithm, which approximates the vortex shedding frequency using the frequency of
lift force oscillation. The results of the first parametric study indicate there is a drop in vortex shedding fre-
quency as experienced by the cylinder for increasing porosity. The hypothesis is that for increasing porosity
the formation length of vortex shedding increases. Two empirical relationships are derived from the results
by curve fitting the Strouhal number (dimensionless form of the vortex shedding frequency) versus porosity.
These empirical relationships are incorporated in the Multi-Level Multi-Fidelity Monte Carlo method and
applied to a similar parametric study on the effect of porosity on the vortex shedding frequency. The results
indicate the presence of systemic errors in the high-fidelity model. The conjecture is that the major influence
on these errors is due to the resolution of the frequency detection algorithm being too low. For this reason,
no clear conclusion on the validity of the empirical relationships is obtained and further research is required.
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"Essentially, all models are wrong, but some are useful."
- George E.P. Box, statistician
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1
Introduction

In the offshore environment increasingly complex simulation methods are being developed, coming closer
and closer to approximating reality [1]. These methods are complex in nature, due to the uncertainties inher-
ent to the offshore environment (e.g. uncertainty in wind and waves) and due to the coupling of models in
order to correctly simulate the behaviour of an offshore structure. An example of a complex model is the float-
ing offshore wind turbine [2], which in general is subject to separate models for mooring, hydrodynamics and
aerodynamics. The downside of highly realistic models is the increase in computational resources required
for simulation and subsequent increase in costs. Because of the inherent uncertainty in offshore, many sim-
ulations have to be run in order to correctly capture the reaction of the structure due to environmental forces.
It is not known in advance how many simulations are required to be run for appropriate results.

This combination of high costs and unknown number of simulations for sufficient results requires a new
approach of simulation. In this work the Multi-Level Multi-Fidelity Monte Carlo method is proposed as a
solution to this problem. In order to study and subsequently apply the Multi-Level Multi-Fidelity Monte
Carlo method [31] a simple fluid dynamics topic is chosen. To actively contribute to the research field of fluid
dynamics, the case of flow past a porous circular cylinder is applied. Porous media have been the subject
of research in coastal engineering for some time now, since there are many coastal applications in which
porosity plays a clear role, e.g. mangroves [3] and breakwater rubble mounds [4]. However in the offshore
environment research is also conducted in order to study the possible reduction of environmental forces by
applying partially porous cylinders [5] [6] [7] [8]. Moreover, research is conducted on porous media for passive
damping systems [16] [18]. Therefore, this work focuses on advanced Monte Carlo methods on the one hand
and flow past a porous circular cylinder on the other.

1.1. Scope & research objectives
The aim of this research is to understand the process of applying Multi-Level Multi-Fidelity Monte Carlo on
a fluid dynamics topic. The fluid dynamics topic is chosen in such a way that a contribution to research is
made, whilst under the restriction that the fluid dynamics case is relatively simple. This simplicity is quanti-
fied as simple geometries and simple fluid flow effects. Initially the plan was to study the effect of porosity on
the drag coefficient for a porous circular cylinder. However, after validation this plan was changed to focus
on the effect of porosity on the vortex shedding frequency for a porous circular cylinder. Therefore, the main
research question posed is:

How can Multi-Level Multi-Fidelity Monte Carlo be applied in fluid dynamics topics and what is the
contribution of its application on the effect of porosity on the vortex shedding frequency for a porous
circular cylinder?
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1.2. Research strategy 1. Introduction

Sub-questions
Furthermore the following sub-questions are addressed in this study to accomplish the main research goal.

1. What is a low-fidelity model and are there low-fidelity models available from literature for application
in the parametric study?

2. What steps are taken when applying Multi-Level Multi-Fidelity Monte Carlo methods on a simple fluid
dynamics case and how do the computational cost, estimated quantity of interest and estimated vari-
ance compare to general Monte Carlo methods?

3. What is the effect of varying porosity on the vortex shedding frequency of a porous circular cylinder
and can an empirical relationship be discovered?

4. How can low-fidelity models be applied using Multi-Level Multi-Fidelity Monte Carlo and how do these
reflect on the validity of this approach?

1.2. Research strategy
In order to answer the posed research questions, eight research objectives are set. These are the milestones
of this work and serve as an overview of the research approach.

Research objectives
1. Literature review on fluid dynamics and CFD;

2. Literature review on parameter uncertainty and Monte Carlo methods;

3. Obtaining low-fidelity models that could qualify for application using Multi-Level Multi-Fidelity Monte
Carlo from theory;

4. Application of Multi-Level Monte Carlo and Multi-Level Multi-Fidelity Monte Carlo on a benchmark
case to validate algorithm functionality;

5. Literature review on porous cylinders and porosity modeling;

6. Setting up a parametric study to study the effect of porosity on the vortex shedding frequency;

7. Deriving low-fidelity models by curve-fitting data resulting from the parametric study for a porous cir-
cular cylinder;

8. Application of the Multi-Level Multi-Fidelity Monte Carlo approach for the case of a porous circular
cylinder with varying low-fidelity models.

1.3. Thesis outline
In chapter 2 the background is presented on the two generalized categories of this study, namely the flow
around a porous circular cylinder and uncertainty quantification using Multi-Level Multi-Fidelity Monte
Carlo methods. In chapter 3 the implementation of algorithms, software used and relevant functions from
software are summarized. In chapter 4 the experimental setup of all three numerical experiments conducted
in this study are described: 1) application of Multi-Level Multi-Fidelity Monte Carlo, 2) parametric study
on flow past a porous circular cylinder and 3) parametric study on flow past a porous circular cylinder us-
ing Multi-Level Multi-Fidelity Monte Carlo. In chapter 5 the results of the first experiment on application of
the Multi-Level Multi-Fidelity Monte Carlo method are described and analysed. In chapter 6 the paramet-
ric study on flow past a porous cylinder is presented and an in-depth analysis is conducted. In chapter 7 a
new -but comparable- parametric study is conducted using the third experimental setup in order to explore
the possibilities of Multi-Level Multi-Fidelity Monte Carlo. In chapter 8 the key findings are summarized and
recommendation are given on future research topics.
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2
Literature research

The literature research part of this study is split up in two separate categories namely, the physical problem
formulation in both the real and computational domain and the statistical aspect, which focuses on uncer-
tainty quantification and means to reduce computational cost of simulations. In Figure 2.1 the two categories
are denoted by the dashed line boxes. Both categories will unite when implementing the case studies.

Figure 2.1: Overview of the layout of the literature review.

In section 2.1 the relevant physics of fluid dynamics are described, starting with the general equations
for fluid dynamics and the assumptions which reduce those general equations to the incompressible Navier-
Stokes and continuity equations in subsection 2.1.1 and subsection 2.1.2 respectively. In subsection 2.1.3 the
flow around a circular cylinder is described, since this is the base case for the case studies conducted in this
work. Therefore, it is important to have a proper notion on the drag and lift forces and the corresponding drag
and lift coefficients for analysis in the studies. Furthermore a number of relevant dimensionless numbers -
Reynolds and Strouhal number- and a short summary of a study on porous circular cylinders are described.
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In section 2.2 the discretization of the physical problem is described. The finite volume method is briefly
described with focus on the discretization of the Navier-Stokes equations for incompressible flows in subsec-
tion 2.2.1. Then, in subsection 2.2.2 a porosity model is described which is used in the parametric and final
case study to simulate a thinly walled porous circular cylinder, instead of simulating the pores of the cylinder
using a high resolution mesh in OpenFOAM.

In section 2.3 the process of uncertainty quantification related to this work is described. Starting with
subsection 2.3.1 to introduce parameter uncertainty, including formal definitions of aleatoric and epistemic
uncertainty. Next, in subsection 2.3.2 uncertainty quantification using forward uncertainty propagation is de-
scribed. Concluding with subsection 2.3.3 on Multi-Level Multi-Fidelity Monte Carlo methods, in which reg-
ular Monte Carlo Methods are introduced. Furthermore two variance reduction techniques, namely: Multi-
Level Monte Carlo and Control Variates are described separately and these are later combined to form the
Multi-Level Multi-Fidelity Monte Carlo method.

In section 2.4 Multi-Fidelity models explained in more detail. In subsection 2.4.1 fidelity is defined and
multi-fidelity models are properly defined as high-fidelity and low-fidelity models. Lastly, in subsection 2.4.2,
a number of low-fidelity models are presented from literature which are applicable for the case of fluid flow
around a circular cylinder.

2.1. Physics of fluid dynamics
The fundamental equations of fluid motion and the Navier-Stokes equation for incompressible Newtonian
fluids are described, since these equations lie at the basis of any fluid dynamics topics. Furthermore, a section
is dedicated to describing flow around a circular cylinder, as all case studies conducted in this work are in their
essence studies of flow around a circular cylinder. This includes a description of flow patterns, relevant forces,
like the drag and lift force, the corresponding dimensionless drag and lift coefficients and the dimensionless
Reynolds and Strouhal numbers. Lastly, results from a recent published study on the effect of porosity on the
drag coefficient for a porous circular cylinder are briefly summarized.

2.1.1. Relevant equations of fluid motion
Starting from a physics point of view the three most fundamental conservation principles for fluid dynamics
are: the conservation of mass, conservation of linear momentum and conservation of energy. The conser-
vation of energy equation is neglected in this work, since the focus is on incompressible flows. In that case
the energy equation can be rewritten into a temperature equation which is completely decoupled from the
conservation of mass and conservation of momentum equations, assuming that the viscosity of the fluid is
temperature independent [9].

∂ρ

∂t
+∇· (ρu) = 0 (2.1)

∂ρu

∂t
+∇· (ρuu) = F−∇p +µ∇2u (2.2)

The equations of conservation of mass and conservation of momentum are presented in Equation 2.1
and Equation 2.2 respectively. Here, ∂

∂t is the time derivative and ∇ is the differential operator in Cartesian
coordinates on three dimensional Euclidean space. Furthermore ρ is the water density; u is the three dimen-
sional velocity vector; F is the force vector consisting of external forces; p is the pressure and µ is the dynamic
viscosity.

2.1.2. Navier-Stokes for incompressible Newtonian fluids
The next step is to derive the Navier-Stokes equations for incompressible Newtonian fluids. For simplicity,
the density and viscosity differences in water are assumed to be negligible. For this case, the density and
viscosity are assumed to be constant, therefore Equation 2.1 and Equation 2.2 are reduced to the continuity
equation and the Navier-Stokes equations for incompressible Newtonian fluids.{ ∇·u = 0

∂u
∂t + (u ·∇)u = F− ∇p

ρ + µ
ρ∇2u

(2.3)

The upper equation in Equation 2.3 is the continuity equation and corresponds to the conservation of
mass equation and the lower equation corresponds to the conservation of momentum equation. For the
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momentum equation the first two terms on the left-hand side of the equation correspond to the inertial
force. The pressure term and viscosity term on the right-hand side correspond to the pressure force and
viscous force respectively [9].

2.1.3. Flow around a circular cylinder
A goal of flow analysis is to solve the Navier-Stokes equations and determine a relationship between the pres-
sure and flow velocity, whilst subjected to certain geometric boundary conditions. Computational Fluid Dy-
namics (CFD) is a tool implemented to solve the Navier-Stokes equations numerically, which is applied in
this study to the case of flow around a circular cylinder. The case is depicted in Figure 2.2 and it consists of a
submerged circular cylinder placed in water with unidirectional flow.

Figure 2.2: Flow around a circular cylinder denoted by purple flow lines with inflow from the left side. The cylinder diameter is denoted
by D (blue double headed arrow) and the lift force Fl in the vertical direction (red arrow) and drag force Fd in the horizontal direction
(green arrow).

The cylinder has diameter D and the drag and lift forces are denoted by Fd and Fl respectively. The lift
force is the force that is perpendicular direction of incoming flow. The drag force is a force acting in the
opposite direction of the relative motion of the object. Noteworthy, the lift force is always perpendicular
with the drag force. In this case the cylinder is stationary and the fluid moves past the cylinder. The drag
force differs from regular friction in the sense that the drag force has a dependency on the flow velocity. This
dependency is either linear or quadratic, depending on the cylinder diameter, fluid viscosity, flow velocity and
fluid density. Another way to summarize the aforementioned parameters in a singular variable is by using the
Reynolds number.

Reynolds number
The Reynolds number (Re) is the ratio of the inertial forces over the viscous forces.

Re = U L

ν
= U D

ν
(2.4)

The Reynolds number is given in Equation 2.4. Here U is the inflow velocity, L is a characteristic length
scale, which is equal to the diameter of the cylinder D for the case of a circular cylinder and ν is the kinematic
viscosity. In addition to the Reynolds number, the law of similarity states that for equal Reynolds number,
the flow patterns should be the same. Hence when the geometry and the flow velocity are changed, but the
Reynolds number remains constant, then the flow pattern should remain the same. The Reynolds number
can be seen as a dimensionless flow velocity. A selection of the observed flow patterns are presented in Fig-
ure 2.3 [11].
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Figure 2.3: Several flow patterns for flow around a circular cylinder for varying ranges of Reynolds numbers (Goharzadeh et al. [11]).

At very low Reynolds number the flow is laminar and symmetrical (Figure 2.3 a). For increasing Reynolds
number, two bound vortices will start to appear, which are initially stable and symmetrical (Figure 2.3 b).
However at Re = 40 these vortices become instable and will start to detach from the back of the cylinder,
which is called vortex shedding. This process of vortex shedding forms a so called Von Kármán vortex street
in which the upper and lower vortex are shed from the back of the cylinder periodically and in an asymmetri-
cal manner Figure 2.3 c & d). The frequency at which the vortex shedding occurs is of interest, since the vortex
shedding causes lateral forces on the cylinder due to the asymmetrical flow pattern and thus asymmetrical
pressure distribution. This could cause resonance in case the vortex shedding frequency and natural fre-
quency of the cylinder are similar.

Strouhal number
The frequency of vortex shedding is also represented in a dimensionless form as the Strouhal number (St ).
The Strouhal number is used to describe oscillating flow mechanisms [9].

St = fv s D

U
(2.5)

In Equation 2.5 the Stouhal number is given. Here, fv s is the vortex shedding frequency, D is the cylin-
der diameter and U is the flow velocity. Research has been conducted towards a relationship between the
Reynolds and the Strouhal number for flow around a circular cylinder with smooth and rough surfaces, as is
depicted in Figure 2.4 [12]. Interestingly, the Strouhal number remains about constant around St = 0.2 for a
range of Reynolds numbers: 1.5 ·102 < Re < 105.
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Figure 2.4: Relationship between the Reynolds and the Strouhal number for circular cylinders with smooth and rough surfaces (Aderne
[12]).

Drag & lift coefficient
In general, the drag and lift force can be represented in a dimensionless form as the drag, Cd , and lift, Cl ,
coefficient respectively.

Cd = 2Fd

ρA∥U 2 (2.6)

Cl =
2Fl

ρA⊥U 2 (2.7)

In Equation 2.6 and Equation 2.7 A is the reference area with the subscript denoting whether it is in the
direction parallel or perpendicular to the flow. For the case of a circular cylinder, the reference area is equal
for both drag and lift coefficient and is calculated as: A∥ = A⊥ = Lc D . Here, Lc is the length or height of the
cylinder and D is the cylinder diameter.

Furthermore the textbook by Tritton [13] presents the following figure, in which the relation between the
drag coefficient Cd and the Reynolds number Re for a circular cylinder is depicted. The curve is based on
experimental work (for a list of references of the experiments, see Tritton [13] chapter 3.4: drag on page 33).

Figure 2.5: Relation between drag coefficient Cd and Reynolds number Re for a circular cylinder with a smooth surface, based on exper-
imental data. (Tritton [13]).
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For the region Re < 1 the drag coefficient is inversely proportional to the Reynolds number, from 1 < Re <
2000 the drag coefficient decreases to about Cd = 1. Then for the region 2000 < Re < 3·105 the drag coefficient
appears to remain constant around Cd = 1, after which a steep decrease in drag coefficient occurs to Cd = 0.3,
which increases thereafter as the Reynolds number increases.

Porous cylinder and drag coefficient
Lastly, the results of a study on flow past a porous circular cylinder [14] are summarized in order to provide a
validation case for the implementation in later sections. The effects of porosity and pore shape on the drag
coefficient is studied for fully submerged square and circular cylinders with steady laminar flow in a water
basin. The porosity is varied from 0 to 60 % and varying values for cylinder diameter and pore diameter were
used. The results of this experiment for a circular cylinder are depicted in Figure 2.6 [14].

Figure 2.6: Relation between drag coefficient Cd and porosity β for a circular cylinder depicted by the circular dotted line. (Steiros et al.
[14]).

The Reynolds number for this experiment is Re = 6700 with an inflow velocity of U = 0.2 m/s and cylin-
der diameter of D = 0.0335 m. Initially at porosity β = 0 the drag coefficient is at a maximum of Cd = 1.3,
which decreases to a value of Cd = 1 for increasing porosity up to a porosity of β = 0.4, after which the drag
coefficient decreases even more down to about Cd = 0.7.

2.2. Numerical implementation
The Navier-Stokes equations as stated before need to be discretized in order to be applicable in a virtual
environment. There are several ways of achieving this discretization, however for CFD the norm is usually
to apply the Finite Volume Method. Secondly, in preparation for the parametric and second case study, a
porosity model is introduced for thinly walled porous circular cylinders.

2.2.1. Finite Volume Method
One of the most applied discretization methods used in CFD is the Finite Volume Method (FVM) [9]. At
the basis of this discretization method lies the integral form of a conservation law. The goal is to divide the
entire domain into many smaller domains named control volumes, then for each control volume the integral
conservation law is approximated.

ρ
∂

∂t

Ñ
Vp

udV +ρ
Ñ
Vp

∇· (uu)dV =
Ñ
Vp

FdV −
Ñ
Vp

∇pdV +µ
Ñ
Vp

∇2udV (2.8)

Applying the integral form to the momentum equation part of Equation 2.3 results in Equation 2.8. The
FVM applies Gauss’ theorem to the integral conservation laws [9]. The definition of Gauss’ theorem is pre-
sented in Equation 2.9. It states that the volume integral over the divergence of some vector field A is equal
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to the closed surface integral of some vector field A. In other words, the net flux out of the volume is given by
the sum of all sources of the vector field within that same volume.Ñ

V

(∇·A)dV =
Ó

S(V )

A ·dS (2.9)

ρ
∂

∂t

Ñ
Vp

udV +ρ
Ó

S(Vp )

u(u ·dS) =
Ñ
Vp

FdV −
Ó

S(Vp )

pdS+µ
Ó

S(Vp )

∇u ·dS (2.10)

Applying Gauss’ theorem to all terms with the nabla operator in Equation 2.8 results in Equation 2.10. The
integral

Ð
Vp

dV corresponds to volume integrals over control volume Vp and
Ò

S(Vp )
dS corresponds to closed

surface integrals over the closed surface of the control volume S(Vp ). The next step in the discretization is the
approximation of the integrals, derivatives, gradients and divergence.

lim
n→∞

n∑
i=1

f (mi )∆x =
b∫

a

f (x)d x (2.11)

For the integrals the midpoint rule is often applied [9], which is given in Equation 2.11 with ∆x = b−a
n . On

the left-hand side it states that the sum of function f (x) taken in each point x = mi is equal to the integral of
function f (x) when the number of points taken approaches infinity. For a full list of possible schemes for the
temporal derivative, gradient and divergence the reader is referred to the OpenFOAM User Guide1.

2.2.2. Porosity modeling
There are several possibilities for modeling porous media, the most intuitive being creating a mesh in which
the case is realistically modeled one to one with the physical case (constructing each pore in the mesh).
However, this leads to extreme local refinement in the mesh and high computational costs. In an effort to
model porous media with lower computational costs, several porosity models have been proposed using
general fluid modeling methods. These fluid modeling methods are the relatively novel Lagrangian method
named Smoothed Particle Hydrodynamics (SPH) [15] and the relatively more established Eulerian methods
based on Reynolds-Averaged Navier-Stokes (RANS) equations.

In this work the latter is implemented using the porosity model, as originally described by del Jesus et al.
[16]. Moreover, the original porosity model has been implemented in OpenFOAM by Higuera et al. [4] in an
external package named olaFlow [17]. Another implementation of this method in OpenFOAM for thin walled
porous structures has been done by Feichtner et al. [18]. This porosity model for thin walled porous structures
in OpenFOAM is implemented in this study.

The porosity model is based on the RANS equations with the additional step of volume averaging, which
is called Volume-Averaged Reynolds-Averaged Navier-Stokes (VARANS). In other words: the porosity model
implements an averaged pressure loss over the porous media by adding sink terms to the momentum equa-
tion. Furthermore, it incorporates porosity in the convective, diffusive, external force and pressure terms in
the region of the porous medium.

∂uD

∂t
+ (uD ·∇)

uD

β
=βF− β

ρ
∇p + βµ

ρ
∇2 uD

β
− I (A,B ,C ) (2.12)

I (A,B ,C ) = AuD +BuD |uD |+C
∂uD

∂t
(2.13)

The rewritten momentum equation (from Equation 2.3) is presented in Equation 2.12. Here, uD is the
Darcy velocity, which is related to the intrinsic velocity in the pores by ui = uD

β , where β is the porosity and
the pressure sink terms are summarized in the term I (A,B ,C ). This is presented in Equation 2.13 and depends
on coefficients A, B and C .

A =ψ (1−β)3

β2

µ

D2
50

(2.14)

1A categorized list of schemes is located at https://www.openfoam.com/documentation/guides/latest/doc/guide-schemes.
html. Last accessed on: 12-08-2021
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B =χ(1+ 7.5

KC
)

1−β
β3

ρ

D50
(2.15)

C = c

∆x
(2.16)

The coefficients A, B and C are defined in Equation 2.14, Equation 2.15 and Equation 2.16 and these terms
correspond to a linear, quadratic and temporal sink terms respectively. The mean nominal diameter of the
porous material is represented by D50; KC is the Keulegan-Carpenter number, which relates the drag and
inertial forces for bodies in oscillatory flow, c is an inertial coefficient and ∆x is the wall thickness.

ψ= β2

l∆x(1−β)3 (2.17)

χ= β3C f

17∆x(1−β)
(2.18)

The coefficients ψ and χ are denoted in Equation 2.17 and Equation 2.18 respectively, where l is a length

coefficient related to the hole size of the porous medium and C f is a coefficient, given as C f = 1−β
δβ2 with an

assumed value of δ= 0.5. For this work D50 = 1, KC = 1, ψ= 0 and c = 0 as is done by Feichtner et al. [18].

2.3. Uncertainty quantification
According to Gabriel Terejanu uncertainty quantification is:

"The theoretical and computational fabric that connects the three pillars of science – theory, experimen-
tation, and computation – through which uncertainties are characterized and informed to guide the scientific
discovery and decision-making process.". 2

Due to this broad definition there are many applications for uncertainty quantification. In order to work
with uncertainty quantification, a general description on parameter uncertainty is presented in subsection 2.3.1.
In subsection 2.3.2 forward propagation of uncertainty is described, since this is part of the uncertainty quan-
tification process. Often, sampling is used for propagation of uncertainty and therefore Monte Carlo Methods
and more advanced Monte Carlo implementations are explained in subsection 2.3.3.

2.3.1. Introduction to parameter uncertainty
In physics and engineering, uncertainty usually refers to a range of values in which the true value is some-
where present: this is also known as uncertainty of measurement. Other ways to express uncertainty are by
error, mean squared error, standard uncertainty, Type A evaluation or Type B evaluation [19]. When intro-
ducing modeling uncertainties, it is favorable to categorize all uncertainties as either aleatory or epistemic,
these are known as irreducible and reducible uncertainty respectively [20]. Aleatoric uncertainty is the in-
trinsic uncertainty due to the non-deterministic nature of the phenomenon, these phenomena can only be
reduced to a probabilistic model. On the other hand, epistemic uncertainty is due to a lack of knowledge
or incomplete information about the topic. It is possible to obtain more information about epistemic un-
certainty from existing data, which can be used to decrease uncertainty used for simulation [20]. Epistemic
uncertainty does not have to be modelled using a probabilistic model and it can for some cases be seen as
knowing the range of values in which the true value is present. Thus it is favorable to separate the uncertain-
ties into aleatory and epistemic categories for modeling, since epistemic uncertainty could be reduced using
extra information. Furthermore, epistemic uncertainty could be introduced to a simulation due to coupling
of components, modeling assumptions and modeling approximations [21].

2This quote is obtained from the webpage by Gabriel Terejanu -associate professor of computer science at the university of North Car-
olina Charlotte- active in the uncertainty quantification research group. The URL is located at:
https://www.uncertaintyquantification.org/ Last accessed on 25-08-2021
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2.3.2. Forward propagation of uncertainty
According to Geraci et al. [22] the basic framework of uncertainty quantification is identifying and character-
izing uncertain input parameters using forward propagation of uncertainty. Forward propagation of uncer-
tainty is described as representing the uncertainty of the input parameters using a probability distributions.
Then drawing a number of samples from the distributions of the input parameters and executing the simula-
tions using those drawn samples. Lastly, the output quantities corresponding to those samples are analyzed
in order to understand the statistics of these output quantities. Using probability distributions to represent
uncertain input parameters suggests that the uncertainty being quantified or propagated is aleatoric. How-
ever, this does not have to be true. According to Swiler et al. [23] it is possible to propagate epistemic uncer-
tainty. One of the methods implemented for propagation of epistemic uncertainty is interval analysis using
sampling. Here, it is assumed that nothing is known about the epistemic uncertain input parameters, except
that these parameters are enclosed in a certain interval. Uncertainty is introduced to this interval -usually us-
ing a uniform distribution- and the process of forward propagation of uncertainty is conducted. Drawbacks
of this form of interval analysis are:

1. No cumulative distribution function of the output can be constructed; and

2. due to sampling the true bounds of epistemic uncertainty are often underestimated [23].

2.3.3. Multi-Level Multi-Fidelity Monte Carlo theory
The goal of this section is to describe and derive a Multi-Level Multi-Fidelity Monte Carlo (MLMFMC) ap-
proach. According to Sin et al. [24] Monte Carlo Methods (MCM) are becoming more accepted and estab-
lished as a research approach. However, currently one of the main drawbacks is that the highly realistic mod-
els require a lot of computational resources for a single simulation. Hence a suggestion is made to implement
an MLMFMC approach to reduce this drawback of MCM [25]. Firstly, there is a short description regard-
ing MCM. Then both the Multi-Level Monte Carlo (MLMC) method and the Multi-Fidelity Control Variate
(MFCV) method are described separately. In the last subsection, the MLMFMC approach is constructed by
combining the MLMC and MFCV methods.

Monte Carlo Methods
The Monte Carlo Methods (MCM) are algorithms using repeated random sampling in order to solve mathe-
matical problems [26]. Currently, MCM are used extensively for uncertainty quantification [27]. In general,
an MCM algorithm behaves according to the process described in Figure 2.7.

Figure 2.7: General format of a Monte Carlo Methods (MCM) algorithm. A range of possible input values is selected, from which N
samples are taken using the probability density function (PDF). For each input value a model evaluation is then executed and the outputs
from each evaluation are aggregated to obtain the results of the Monte Carlo Methods algorithm.

The first step consists of defining the range of possible inputs on the domain and assigning a Probability
Distribution Function (PDF) to these ranges of inputs. Secondly, N random samples are selected from the
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PDF. At the third step, for each input value an output is calculated, using a single model realization. At last,
the results are aggregated in the fourth step in order to estimate the true output value [26]. A review as to
when and why MCM should be used is described by Kroese et al. [28]. The main arguments for the usage of
the MCM for this work are as follows:

1. MCM work well with high input dimensionality and highly complex and/or coupled systems; and

2. MCM are easy to implement, since a pre-defined number of samples are taken and for each sample a
model simulation is performed.

In preparation for the next sections, the mathematical description of the Monte Carlo estimator is pre-
sented.

E[Q] =
∫
Ω

Q(ω)p(ω)dω (2.19)

Q̂MC
N = 1

N

N∑
i=1

Q(ω(i )) (2.20)

The expected value E[Q] of a generic quantity of interest Q is determined using Equation 2.19. Here Ω is
the sample space, p(ω) is the probability of event ω happening. Using MCM to estimate the expected value
of Q results in Equation 2.20, where Q̂MC

N is the Monte Carlo estimator of Q for N samples. Other relevant
features of Monte Carlo estimators are the estimator variance, Mean Squared Error (MSE) and the estimator
bias.

Var(Q̂MC
N ) = E[(Q̂MC

N −E[Q̂MC
N ])2] (2.21)

MSE(Q̂MC
N ) = E[(Q̂MC

N −Q)2] =Var(Q̂MC
N )+Bias2(Q̂MC

N ,Q) (2.22)

Bias(Q̂MC
N ,Q) = Q̂MC

N −Q (2.23)

The former corresponds to the spread of a set of points around their estimated mean value and the latter is
the averages squared difference between the estimated and true values. Both features are represented in their
mathematical form in Equation 2.21 and Equation 2.22 respectively. The MSE can be expanded and rewrit-
ten into the sum of estimator variance and the estimator bias squared. The estimator bias is the difference
between the estimated value and the true value as given in Equation 2.23.

Multi-Level Monte Carlo
The goal of the Multi-Level Monte Carlo (MLMC) method is to estimate the value of a quantity of interest
with a predefined target variance. This is achieved by redistributing samples to lower resolution realizations
and reconstructing the estimator of the high resolution model using the differences in estimated quantities
of interest between the resolution levels [30]. The general process is depicted in Figure 2.8.
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Figure 2.8: The general idea of the Multi-Level Monte Carlo approach is substituting a single resolution of a single model in the Monte
Carlo simulation by a group of multiple resolutions.

Next, the mathematical derivation of the MLMC method is described. The algorithmic implementation
of the MLMC approach is described in chapter 3.

QL =Q0 +
L∑

l=1
[Ql −Ql−1] (2.24)

The basis of the MLMC method is given by the telescoping sum identity [30] as is presented by Equa-
tion 2.24. The values of Q are determined at each resolution level l = 0,1, ...,L with L as the highest resolution
level. The MCM estimator of Q is estimated by combining Equation 2.20 and Equation 2.24.

Q̂MLMC
NL

=
L∑

l=0
Ŷl =

L∑
l=0

1

Nl

Nl∑
i=1

Y (i )
l (2.25)

Y (i )
l =

{
Q(i )

0 , l = 0

Q(i )
l −Q(i )

l−1, l > 0
(2.26)

The resulting estimator using MLMC is then calculated using Equation 2.25, where difference function

estimator is Ŷl = 1
Nl

∑Nl
i=1. For clarity in later derivations, the difference function Y (i )

l is introduced. In Equa-
tion 2.25 Nl is the number of samples of the MC estimator at each resolution level.

MSE(Q̂MLMC
NL

) =Var(Q̂MLMC
NL

)+Bias2(Q̂MLMC
NL

,Q) = ε2

2
+ ε2

2
= ε2 (2.27)

Var(Q̂MLMC
NL

) = E[(Q̂MLMC
NL

−E[Q̂MLMC
NL

])2] =
L∑

l=0

1

Nl
Var(Yl ) (2.28)

C =
L∑

l=0
Cl Nl (2.29)

The next step is to find an optimal number of samples for each level Nl by achieving a minimum total
computational cost C for a set target variance ε2 [31]. Here, ε2 is equal to the MSE of the MLMC estimator.
It is assumed that contribution between the variance and the bias term of the MSE is equal with respect to
distribution of the computational burden [31], as is displayed in Equation 2.27. Hence, it is assumed that the
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variance of the MLMC estimator (Equation 2.28) is equal to Var(Q̂MLMC
NL

) = ε2

2 . The total computational cost

is given by Equation 2.29. Here Cl is the computational cost at level l for each realization of Ŷl .

Nl =
1

ε2

L∑
k=0

√
Var(Ŷk )Ck

√
Var(Ŷl )

Cl
(2.30)

The optimal number of samples per level is determined using a minimization of the computational cost
under variance constrain as is done by Geraci et al. [31]. The resulting optimal number of samples per level
is determined using Equation 2.30.

Multi-Fidelity Control Variates
The goal of the Multi-Fidelity Control Variates (MFCV) is to reduce the variance of the high-fidelity model
estimator by using the variance of the low-fidelity models and the covariance between the high- and low-
fidelity models [25]. High- and low-fidelity models are explained in more detail in section 2.4. The general
process of MFCV is depicted in Figure 2.9. The MCM simulation provides the random input values, which
are then calculated using multi-fidelity models and a new estimator is constructed with -in theory- smaller
variance.

Figure 2.9: The general idea of the Control Variates Monte Carlo approach is substituting a single model in the Monte Carlo simulation
by a group of multi-fidelity models.

Q HF,CV =Q HF +α(QLF −E[QLF ]) (2.31)

In control variate theory the quantity of interest resulting from a high-fidelity model Q HF,CV is described
using Equation 2.31. The quantities of interest resulting from high-fidelity and low-fidelity models are de-
noted by HF and LF respectively and the variable α is yet undetermined. It is assumed that the expected
value of each low-fidelity model E[QLF ] is known before evaluating each low-fidelity model [25].

Q̂ HF,CV
N = Q̂ HF

N +α(Q̂LF
N −E[QLF ]) (2.32)

The same relation as Equation 2.31 holds for the estimators of the quantities of interest as presented in
Equation 2.32. The additional subscript N denotes the number of samples taken. The next part of this section
is dedicated to deriving a value for α for which the variance is minimized.
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dVar(Q̂ HF,CV
N )

dα
= 0 (2.33)

Var(Q̂ HF,CV
N ) =Var(Q̂ HF

N )+2αCov(Q̂ HF
N ,Q̂ HF

N )+α2Var(Q̂LF
N ) (2.34)

dVar(Q̂ HF,CV
N )

dα
= 2Cov(Q̂ HF

N ,Q̂ HF
N )+2αVar(Q̂LF

N ) = 2ρ
√
Var(Q̂ HF

N )
√
Var(Q̂LF

N )+2αVar(Q̂LF
N ) = 0 (2.35)

The minimization is stated in Equation 2.33, hence the first step is to obtain the variance of the MFCV
estimator, which is depicted in Equation 2.34. Next the variance of the MFCV estimator is filled into the
minimization equation, resulting in Equation 2.35. Here ρ is the Pearson correlation coefficient.

α=−ρ
√
Var(Q̂ HF

N )√
Var(Q̂LF

N )
(2.36)

Var(Q̂ HF,CV
N ) = (1−ρ2)Var(Q̂ HF

N ) (2.37)

Rewriting the filled in minimization (Equation 2.35) and solving for α results in a definition of α (Equa-
tion 2.36). Finally, in order to prove variance reduction,α is substituted into the variance of the MFCV estima-
tor (Equation 2.34). This results in Equation 2.37, which proves the variance reduction, since for the Pearson
correlation coefficient it holds that −1 ≤ ρ ≤ 1 or equivalently 0 ≤ ρ2 ≤ 1.

Multi-Fidelity Control Variates with estimated control means
The expected value of the low-fidelity models E[QLF ] used here (see Equation 2.31) might not be known a pri-
ori. However this is required for control variate theory. Hence an additional step is added, called estimated
control means [32]. This technique is also applied in the works of [31] [33] [34] [35]. The goal of this additional
step is to estimate the expected value of a low-fidelity model using more than N samples. In the aforemen-
tioned works the number of samples taken for the low-fidelity models depends on the number of samples
N , namely (1+ r )N samples for the low-fidelity model with r an unknown parameter that corresponds to the
increase in samples for the low-fidelity model.

E[QLF ] ≈ E[Q̂LF ] = 1

(1+ r )N

(1+r )N∑
i=1

Q̂LF,(i ) (2.38)

Var(Q̂ HF,CV
N ) =Var(Q̂ HF

N )+2αCov(Q̂ HF
N ,Q̂ HF

N )+α2Var(Q̂LF
N )+α2

∗Var(Q̂LF
r N ) (2.39)

α∗ =−ρ
√

1

1+ r

√
Var(Q̂ HF

N )√
Var(Q̂LF

N )
(2.40)

The expected value of a low-fidelity model is then estimated using Equation 2.38. Due to the estimation of
the expected value of the low-fidelity model an additional bias termα2∗Var(Q̂LF

r N ) is introduced to the variance
of the MFCV estimator (Equation 2.34). This variance of the MFCV estimator with estimated control means
is depicted in Equation 2.39. The α∗ in the bias term is a modified α factor and is described by Equation 2.40.

Var(Q̂ HF,CV
N ) =

(
1− rρ2

1+ r

)
Var(Q̂ HF

N ) (2.41)

The equation for the variance of the control variate theory with estimated control means is derived by fill-
ing in both α and α∗ into the variance of the MFCV estimator with estimated control means (Equation 2.40),
resulting in Equation 2.41. From literature [31] [33] [34] [35] an optimal value of the parameter r is determined
when taking into account the cost of both high- and low-fidelity models. The relationship between the cost
values is denoted using an equivalent cost C EQ in Equation 2.42 with corresponding optimal parameter r
given in Equation 2.43.
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C EQ =C HF +C LF (1+ r ) (2.42)

r =−1+
√

ρ2C HF

1−ρ2C LF
(2.43)

Multi-Level Multi-Fidelity Monte Carlo method
The MLMC and MFCV approaches are combined in order to achieve even greater variance reduction. The
idea is to use the same approach as is described for MLMC with the additional step of MFCV added to the
difference function (Equation 2.26). So for each resolution level the variance is reduced by using MFCV. The
general idea of the MLMFMC approach is depicted in Figure 2.10.

Figure 2.10: The general idea of the Multi-Level Multi-Fidelity Monte Carlo Monte Carlo approach is substituting a single model in the
Monte Carlo simulation by a group of multi-fidelity models with varying resolution levels for the high-fidelity model and low-fidelity
models if applicable for the low-fidelity model.

E[Q HF,MLMF MC ] =
L∑

l=0
[Ŷ HF

l +αl (Ŷ LF
l − Ê[Y LF

l ])] (2.44)

Combining the telescoping sum identity (Equation 2.24), the difference function (Equation 2.26) from
MLMC with the base definition (Equation 2.31) from MFCV, results in Equation 2.44. Again the optimal num-
ber of samples per level is calculated, however now there is an additional term present due to the addition of
MFCV. This extra term should force a large part of the computational burden towards the lower-fidelity model.
The following equations are the solutions from the constrained optimization using Lagrange multipliers as
derived by Geraci et al. [31]

rl =−1+
√√√√ ρ2

l C HF
l

1−ρ2
l C LF

l

(2.45)

Λl = 1− rlρ
2
l

1+ rl
(2.46)
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N HF
l = 1

ε2

L∑
k=0

√√√√Var(Y HF
k )C HF

k

(1−ρ2
k )

Λk

√√√√Var(Y HF
l )(1−ρ2

l )

C HF
l

(2.47)

N LF
l = (1+ rl )N HF

l (2.48)

Here rl is the parameter from MFCV (Equation 2.43), ρl is the Pearson correlation coefficient andΛl is the
additional term due to the introduction of the MFCV method. For all these cases the subscript l denotes the
resolution level at which the variables are determined. The optimal number of samples for the high-fidelity
model N HF

l and for the low-fidelity model N LF
l are denoted by Equation 2.47 and Equation 2.48 respectively.

There are other optimization settings implemented to the MLMFMC in Dakota, although fully describing
these would be out of the scope of this work and therefore a reference is made to the work of Geraci et al. [31].

2.4. Multi-fidelity models
In this section multi-fidelity models -which were mentioned in subsection 2.3.3- are explained in more detail.
In this study multi-fidelity models consist of high-fidelity and low-fidelity models. Firstly, a formal definition
is described, accompanied with several examples for the description of low-fidelity models. Secondly, an
overview is presented for low-fidelity models for the circular cylinder cases as used in this thesis.

2.4.1. Definition
The definition of fidelity in the fields of modeling and simulation refers to the degree of a model to reproduce
the behaviour of its real life target. Fidelity can be seen as a measure of realism of a model or the degree of
similarity [36].

Low-fidelity models is a term used to describe models with a low measure of realism. The concept of low
is rather abstract though and could lead to a discussion on what qualifies as a low measure of realism. To
abstain from this discussion the following definition is deemed appropriate for this thesis: the low-fidelity
models are described as all implemented models, which are not the high-fidelity model. The high-fidelity
model is defined as the most realistic model, which for this work, is the 3D CFD simulation implemented in
OpenFOAM. Ideally, low-fidelity models have the following two properties:

1. A general trend, which is also present in the real-world situation

2. Low computational cost with respect to the high-fidelity model

Lastly, the current description of low-fidelity models is fairly broad and could be split into three cate-
gories according to Peherstorfer et al. [25], two of which are relevant to this study: simplified models and
data-fit models. Simplified models are models which are derived from a high-fidelity model by applying do-
main expertise and knowledge of implementation of a high-fidelity model. For example with respect to CFD,
direct numerical simulation corresponds to a high-fidelity model and models including large eddy simula-
tions, Reynolds-averaged Navier-Stokes or potential flow correspond to low-fidelity models. Data-fit models
are based on input-output related data without necessarily understanding the inner workings of a model.
Examples are empirical relationships based on experiments or numerical simulations.

2.4.2. Low-fidelity models for flow around a circular cylinder
As stated above, the goal is to obtain a number of empirical relationships from literature, which could be
applied as low-fidelity models in the final experiment. Due to the limited literature available with respect
to empirical relations between the Reynolds number and Strouhal number for the case of a porous circular
cylinder, the case of a non-porous circular cylinder is considered. For the porous circular cylinder relations
are derived using a parametric study in section 4.2. Since literature based on a non-porous circular cylinder is
considered, the assumption is made that the introduction of porosity will not have a severely negative impact
on the trend of empirical relationships for a circular cylinder. It is expected that the Pearson correlation co-
efficient will demonstrate the validity of this assumption for each low-fidelity model. The relevant empirical
relationships for this study are relations between the Strouhal number and the Reynolds number.

17



2.4. Multi-fidelity models 2. Literature research

Low-fidelity models: Strouhal number
The oldest relationship between the Strouhal number and Reynolds number is proposed by Lord Rayleigh
[37].

St = a(1− b

Re
) (2.49)

The fit coefficients a and b for this relation are also derived by Roshko [38] and the relationship is then
given in Equation 2.50, which is applicable for the laminar Von Kármán vortex street range of Reynolds num-
bers.

St = 0.21(1− 21

Re
), 40 < Re < 200 3D (2.50)

However, according to Roushan et al. [40] the relationship in Equation 2.49 is valid for a larger range of
Reynolds numbers up to several thousand for a 2D case, since the vortex street remains laminar for a larger
range of Reynolds numbers. The relationship for a 2D case is given in Equation 2.51.

St = 0.18(1− 28

Re
), 40 < Re < 3000 2D (2.51)

Another relation is derived by Williamson et al. [39], which is presented in Equation 2.52. It should be
noted that the upper boundary of Re = 1200 is not necessarily the upper boundary of validity of this empirical
relation, since the authors suggested further research on the range of validity of Reynolds numbers.{

St = 0.2698− 1.0271p
Re

40 < Re < 260 3D

St = 0.2234− 0.3490p
Re

260 < Re < 1200 3D
(2.52)

In the study by Roushan et al. [40] a 2D empirical relation using this
p

Re relation has also been presented
and is given in Equation 2.53.

St = 0.21− 0.825p
Re

, 40 < Re < 3000 2D (2.53)

Furthermore the work by Roushan et al. [40] provides a new general fit function plus the fit coefficients
based on their own experiment and that of three other studies. The general fit function is presented in Equa-
tion 2.54 and the corresponding fit coefficients A and B are presented in Table 2.1

St = 1

(A+ B
Re )

(2.54)

Experiments by A B range of Re dimension

Williamson et al. [39] 4.18 193 40 < Re < 180 3D
Norberg [41] 4.15 197 40 < Re < 180 3D

Henderson [42] 4.03 202 40 < Re < 1000 2D
Roushan et al. [40] 5.12 313 40 < Re < 3000 2D

Table 2.1: Overview of fit parameters A and B as derived by Roushan et al. [40]

In Figure 2.11 all eight described empirical relationships are depicted. The empirical relationships appear
to be categorized into two groups for smaller Re as seen in Figure 2.11a, whereas for larger Re the fits tend
to spread as seen in Figure 2.11b. Furthermore as is expected the Strouhal number remains about constant
for increasing Reynolds number. Yet, depending on which empirical relationship is taken, this constant value
differs on a relatively large range of 0.17 < St < 0.24.
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(a) Smaller range of Reynolds numbers

(b) Larger range of Reynolds numbers

Figure 2.11: Eight empirical relations from theory between the Strouhal and Reynolds numbers. The names in between the brackets
denote the data set on which the fit function was applied to.

All theory described in this chapter serves as the basis for the algorithms described in chapter 3 and the
experiments described in chapter 4.
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3
Methodologies

In this chapter the implementation of algorithms for MLMC and MLMFMC are described. This includes
schematics covering from the inner working of the algorithms from input to output and this first section is to
be used as a reference in the next chapter when referring to MLMC and MLMFMC in both case studies.

Furthermore the software packages used in this work are described, including features and functions
used, as well as external packages. For the fluid dynamics part of this thesis the open-source software Open-
FOAM is used, with an additional package olaFlow for the porosity modeling. The meshes are constructed
using GMSH and imported to OpenFOAM. For the statistics and implementation of MLMC and MLMFMC,
the software package Dakota by Sandia Labs is used. Lastly, a short section regarding Fourier transforms and
curve fitting is added in which the implemented functions are mentioned and explained briefly.

3.1. Algorithms
This section contains the schematic overviews of the MLMC algorithm and the MLMFMC algorithm. The pur-
pose of these schematics is to portray the algorithm using general input and output variables, which can be
substituted in the next chapters so only the inputs and outputs will have to be described in the next chapters.

Multi-Level Monte Carlo
The MLMC procedure is depicted in Figure 3.1. The bold black arrow on the left depicts the input parameters
of the MLMC, ω is used for the single or multiple general Monte Carlo simulation input variables in the form
of a probability density function, Npi l ot is the number of pilot samples, ε is the tolerance which is related to
the target variance ε2 and Cl denotes the computational cost of the general Monte Carlo simulation at each
resolution level l . The bold black arrow on the right depicts the output value which is the MLMC estimator
at the highest resolution level. The working of the algorithm is as follows, first a number of samples equal
to Npi l ot are taken using general Monte Carlo simulation at each resolution level. The resulting sets of esti-
mators denoted by {Q̂0}, {Q̂1}, ..., {Q̂L} each have size equal to Npi l ot and these sets are used to calculate the
optimal number of samples at each resolution level Nl . The difference function Yl for each level l is calcu-
lated, the resulting sets of differences are then used to calculate the optimal number of samples Nl The other
parameters used to calculate Nl are ε and C0,C1, ...,CL . Next a general Monte Carlo simulation is executed
using Nl at each resolution level, from which finally the estimator of the MLMC at the highest resolution level
is calculated.
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Figure 3.1: Scheme of the Multi-Level Monte Carlo (MLMC) algorithm.

The tolerance ε should be minimized, since it is related to the target variance and a smaller target variance
means smaller errors in the quantities of interest. Pilot samples Npi l ot are a set of samples taken to calculate
the optimal number of samples per resolution level as can be seen in Equation 2.30 and Figure 3.1. There
is no clear method for calculating the number of pilot samples and thus a trade-off has to be made since
a high number of pilot samples will yield statistically more accurate quantities of interest, but the higher
resolution samples have a higher computational cost. Lastly the computational cost of each resolution level
is required, a possible way of assigning a cost to each resolution level is by using relative computational cost.
Here the lowest resolution level gets a number assigned to it, in this case C0 = 1 and the higher resolution
computational costs are calculated with respect to this lowest computational cost. The computational costs
here are based on the average execution time of the general Monte Carlo simulations at each resolution level
in combination with the assumption that the lowest resolution has relative computational cost of C0 = 1.

Multi-Level Multi-Fidelity Monte Carlo
A similar process as described for the MLMC is applied to the MLMFMC as depicted in Figure 3.2. Like the
MLMC, a number of pilot samples are run first. The difference function between resolution levels is calcu-
lated, be mindful that for a single resolution low-fidelity model the difference function is equal to the model
output, since this is the lowest resolution level. Moreover, for each resolution level higher than the lowest res-
olution level, the pilot sample is simulated at the current resolution level and for one resolution level lower,
since the difference function needs to be calculated.

The main workload of the MLMFMC is conducted in the next steps. Firstly, the variance of the differ-
ence function of both high- and low-fidelity at each resolution level are calculated. Then the covariance is
calculated between the model fidelities at each resolution level in order to calculate the Pearson correlation
coefficient ρl (step 1 in the top right box). Then the term rl (step 2) which is used in order to estimate the
required number of samples of the low-fidelity model is calculated using the relative computational cost of
the model fidelities and the Pearson correlation coefficient. Using the term rl and the Pearson correlation
coefficient the variance reduction factor Λl is calculated. In step 4 the term αl is calculated using the Pear-
son correlation coefficient ρl and the variance of high- and low-fidelity models. The additional number of
low-fidelity samples N LF

l that are to be calculated in order to estimate the value of the low-fidelity difference
function is calculated in step 5 and the optimal number of high-fidelity samples are calculated in step 6 using
the relative computational costs, variances of the difference functions and the tolerance. Step 4, 5 and 6 have
purple color coding since these are required for the final step in the bottom left box in which the estimator
is constructed. The expected value of the difference function of the low-fidelity model E [Y LF (i )

l ] (last term in
the summation of the estimator) is estimated using the additional number of low-fidelity samples.
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Figure 3.2: Scheme of the Multi-Level Multi-Fidelity Monte Carlo (MLMFMC) algorithm.

3.2. General methodologies
In this section, the software is presented from an implementation point of view. The fluid dynamics are
solved using OpenFOAM, simulation control and statistics are applied using Dakota, post processing and
visualization are done using Python and Paraview respectively and the mesh is constructed using Gmsh.

3.2.1. OpenFOAM
OpenFOAM is an open source C++ toolkit developed for solving partial differential equations [43]. It has
many functions related specifically to the topic of solving fluid dynamics problems. For this study OpenFOAM
version 2012 is used, including the olaFlow toolkit [17]. For visualization of the results Paraview [44] is used.
In this study the pimpleFoam (case study 1) and olaFlow (case study 2 and 3) solvers are used.

3.2.2. Gmsh
Gmsh is an open source finite element mesh generator [45]. In this study the geometry and mesh modules
are used to construct and generate the mesh. The mesh is then converted for usage in OpenFOAM using the
gmshToFoam function. No mesh convergence studies are conducted in this work, the meshes are checked
visually for incorrect features and using the checkMesh function.

3.2.3. Dakota
Dakota is developed by Sandia National Laboratories as a tool used for iterative mathematical and statistical
methods, which interface to computational models. In short, Dakota provides a practical way of analysing
iterative parametric black-box simulations by providing answers to questions related to: sensitivity, uncer-
tainty, optimization, calibration, verification and validation [46]. For this study, the goal is uncertainty quan-
tification using Multi-Level Multi-Fidelity Monte Carlo. The building blocks of which are available in Dakota.
In the next sections an overview is presented of the Dakota input file and interface driver file.
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Input file
The Dakota input file consists of six code blocks in general, namely: environment, method, model, variables,
interface and responses. For clarity, the code blocks of the input file are described separately below. Starting
with the environment code block.

################################################################################
environment

tabular_data
t a b u l a r _ d a t a _ f i l e = ’ table_out . dat ’

################################################################################

The environment code block denotes the top level settings of the Dakota simulation. In this case only the
output file is defined here as table_out.dat. Next, the method code block is defined as:

################################################################################
method

model_pointer = ’HIERARCH’
multilevel_sampling

seed = 1234
pilot_samples = 10
convergence_tolerance = . 1
a l l o c a t i o n _ t a r g e t = variance

################################################################################

Here, the model applied is multilevel_sampling, which corresponds to Multi-Level Monte Carlo. The
HIERARCH model_pointer is a special case only applicable for Multi-Level Monte Carlo and Multi-Fidelity
Control Variates. In case HIERARCH is used with multiple model blocks and varying resolution levels, the
Multi-Level Multi-Fidelity Monte Carlo method is applied. The seed is the input value used for random num-
ber generation. The pilot_samples and convergence_tolerance are mentioned before in section 3.1 and cor-
respond to Npi l ot and ε respectively. The allocation_target specifies the quantity used for optimal sample
allocation or redistribution, which is the variance for this case. Since, the Multi-Level Multi-Fidelity Monte
Carlo approach in this study applies a high- and a single low-fidelity model, there are three code blocks for
the model specification as displayed below.

################################################################################
model

id_model = ’HIERARCH’
surrogate h i e r a r c h i c a l

ordered_model_fidelit ies = ’LF ’ ’HF’
################################################################################

################################################################################
model

id_model = ’LF ’
variables_pointer = ’LF_VARS ’
simulation

solut ion_level_control = ’ key ’
solut ion_level_cost = 1 .

################################################################################

################################################################################
model

id_model = ’HF’
variables_pointer = ’HF_VARS’
simulation

solut ion_level_control = ’ key ’
solut ion_level_cost = 64800000. 174048000. 348288000.

################################################################################
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The upper code block describes the Multi-Level Multi-Fidelity Monte Carlo model as an overarching
model which is denoted using the surrogate key word in combination with the hierarchical tag. The or-
dered_model_fidelities lists the models from low- to high-fidelity models from left to right. The id_model
assigns a tag to each model block so these can be distinguished. The variables_pointer assures each model
is assigned the correct input variables. The solution_level_control and solution_level_cost are the name tag of
the estimated computational cost and the values of the computational costs respectively. Next the variables
blocks are described, which assign variables to each model block using the pointers. There are two variables
block, one for the high- and for the low-fidelity model.

################################################################################
variables

id_variables = ’LF_VARS ’
uniform_uncertain = 1

lower_bounds = 0.245
upper_bounds = 0.255
descriptors ’ beta ’

d i s c r e t e _ s t a t e _ s e t
integer = 1
num_set_values = 1
set_values = 91050
i n i t i a l _ s t a t e = 91050
descriptors ’ key ’

################################################################################

################################################################################
variables

id_variables = ’HF_VARS’
uniform_uncertain = 1

lower_bounds = 0.245
upper_bounds = 0.255
descriptors ’ beta ’

d i s c r e t e _ s t a t e _ s e t
integer = 1
num_set_values = 3
set_values = 30 31 32
i n i t i a l _ s t a t e = 30
descriptors ’ key ’

################################################################################

The variables code blocks first denote to which model these variables are applied using the id_variables
keyword. For this study, there is one uniform uncertain variable, which requires a lower and upper bound.
The descriptors keyword assigns a name to the parameter. The level of each model are setup using dis-
crete_state_set. For the high-fidelity model there are three resolution levels, hence there are three set_values.
For the low-fidelity model there is only one.

################################################################################
i n t e r f a c e

fork
asynchronous
evaluation_concurrency = 48
a n al y s i s _ d r i v e r = ’ simulator_script ’
parameters_fi le = ’params . in ’
r e s u l t s _ f i l e = ’ r e s u l t s . out ’
work_directory directory_tag
copy_f i les = ’ templatedir / * ’
named ’ workdir ’ f i l e _ s a v e directory_save
aprepro

################################################################################
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The interface code block specifies asynchronous parallel execution of 48 processes using the tags fork,
asynchronous and evaluation_concurency. The interface driver file is called using analysis_driver and pa-
rameters_file and results_file create the input parameters and results file for each case. The last number of
commands state that a new working directory is constructed for each case, that all files in the templatedir/
directory are copied to the working directory and that the input and output files are saved inside this working
directory. Lastly, the responses code block describes the format of the output file.

################################################################################
responses

response_functions 1
no_gradients
no_hessians

################################################################################

This code block states there is only 1 output value. The keywords of no_gradients and no_hessians are
required and state that no gradient or Hessian information is used for this simulation. These are all the code
blocks required to setup a simple case of Multi-Level Multi-Fidelity Monte Carlo method using OpenFOAM.

Interface driver file
The interface driver file is called in the input file in the interface code block using analysis_driver. For this
study the job of the interface driver file is to setup the OpenFOAM case, run the case, do post processing and
forward the simulation output back to Dakota. For this thesis, the interface driver file is setup using a pre
processing, analysis and post processing section. The pre processing code sets up each case and fills in the
correct input values to the files.

################################################################################
key=$ ( head −n 4 $1 | cut −d"=" −f2 | cut −d" } " −f1 | t a i l −n 1 | xargs )
l e v e l ="$ { key : 1 : 2 } "
f i d e l i t y ="$ { key : 0 : 1 } "
################################################################################

First the resolution level and model fidelity are extracted from the input file params.in. Then these values
are used to setup the case for a low-fidelity model (lowfidelity.py) or high-fidelity model (3D OpenFOAM case).

################################################################################
i f [ $ f i d e l i t y == "9" ] ; then

pwd
cp . . / l o w f i d e l i t y . py .
python3 l o w f i d e l i t y . py
mv tmp . t x t $2

f i
i f [ [ $ f i d e l i t y == "3" ] ] ; then

meshdir="mesh${ l e v e l } "
casedir ="casebase$ { f i d e l i t y } "
dprepro $1 porosityDict . template porosityDict . in
dprepro $1 U. template3 U. in
dprepro $1 forceCoeffs . template3 forceCoeffs . in
pwd
cp −r . . / $ { casedir } / * .
cp −r . . / meshes/$ { f i d e l i t y } / $ { meshdir } / polyMesh constant /
cp . . / meshes/$ { f i d e l i t y } / $ { meshdir } / porosityIndex 0/ porosityIndex
cp U. in 0/U
cp forceCoeffs . in system/ forceCoeffs
cp porosityDict . in constant / porosityDict
cp . . / postprocess . py .
cp . . / OFjob . sh .
decomposePar −fi leHandler col lated > log . decomposePar

f i
################################################################################
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The low-fidelity model simply copies a file named lowfidelity.py, executes it and exports it to the output
file denoted by $2. The high-fidelity model first needs to setup the correct mesh and casebase variables. Then
the dprepro function is used to fill in the variables from params.in to the correct OpenFOAM files. Lastly, the
case is setup by copying all files to the working directory and decomposing the mesh. The analysis and post
processing of the high-fidelity model is condcuted using this last code block.

################################################################################
sbatch OFjob . sh > log . job
python3 postprocess . py
mv tmp . t x t $2
################################################################################

The OFjob.sh script adds a parallel OpenFOAM job to the queue and executes it. The postprocess.py con-
ducts the post procecssing and lastly the output is moved to the output file denoted by $2. The script is written
in the Bash programming language since the Linux programming environment on Ubuntu 20.04 LTS is used.
This concludes the overview of the interface driver file.

3.2.4. Post processing in Python
Post processing of results from the OpenFOAM files is handled using Python. Most noteworthy is the package
SciPy [47], which is used for the Fast Fourier Transform algorithm and provides a 2D curve fitting function.

Fast Fourier Transform
The Fast Fourier Transform (FFT) is an algorithm that computes the discrete Fourier transform of a signal.
The Fourier transform is used to transform a signal in the temporal domain to the frequency domain or the
other way around using the inverse Fourier transform. The FFT algorithm applied in this work is the FFT
implemented with the package SciPy [47] using the following base equation:

X [k] =
N−1∑
n=0

e−2π j kn/N x[n] (3.1)

Interpolation
Since adjustable time stepping is enabled in OpenFOAM, the time signal has a non-constant time step. In
order to apply the FFT, a constant time step is required and therefore the time signal is interpolated. The
interp1d function is applied using linear interpolation.

Curve fitting
For curve fitting, the function curve_fit from the package SciPy [47] is applied. This uses non linear least
squares method to fit a function to the data.
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4
Experimental setup

In this chapter all three experiments conducted in this work are described. It is recommended to the reader
to first read section 4.1 and section 4.2 and the results corresponding to these sections, which are described
in chapter 5 and chapter 6 respectively. This is suggested due to the iterative nature of this study and the
dependency of the final experiment on the results of the first two experiments.

In section 4.1 a case study is conducted regarding benchmark cases for flow around a circular cylin-
der from literature. The cases are reconstructed in OpenFOAM and validated. Thereafter the MLMC and
MLMFMC approaches are implemented on the benchmark cases. Initially the MLMC method is imple-
mented for both 2D and 3D cases, which result in an estimated value for the drag coefficient and an equivalent
number of samples of high resolution samples to reach -in theory- the same estimated value. The resulting
estimations of the drag coefficients are compared and the decrease in computational cost is calculated. In
order to further understanding of the MLMC, the intermediary results are analysed. Next the MLMFMC ap-
proach is implemented on the 3D cases, again intermediary results are analysed, the results of the MLMFMC
approach and general MCM are compared and the computational cost reduction is calculated.

In section 4.2 a parametric study on porous cylinders in the subcritical Reynolds numbers regime is con-
ducted. The experimental setup is taken from literature and reconstructed in OpenFOAM, after which the
case setup is validated. The validation is unsuccessful, since the simulated drag coefficient results do not
correspond to the suggested literature values and curve shape. Therefore, flow patterns were analysed and
the focus of the parametric study is changed to the Strouhal number, porosity and Reynolds number. The
results of the parametric study are analysed using curve fitting to -ideally- obtain one or several empirical
relationships.

In section 4.3 the final experiment is described, which combines the MLMFMC approach on the bench-
mark case setup with the parametric study on flow around a porous circular cylinder. The 3D case description
of section 4.1 is modified to include a porous circular cylinder. And a new parametric study on a smaller range
of parameters is set up, based on the results of the parametric study of section 4.2. The MLMFMC approach
is used to estimate the results of the parametric study in order to -in theory- reduce the effects of epistemic
uncertainty due to the complex nature of the simulation. Moreover, low-fidelity models are implemented and
analysed using the correlation between high- and low-fidelity models.
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Figure 4.1: Overview of the three experiments conducted in this study. First a benchmark case is used to implement the Multi-Level
Multi-Fidelity Monte Carlo method. Then a parametric study using a porous circular cylinder is conducted in order to derive low-fidelity
models. And, finally, these two sections are combined by creating a new case with a porous circular cylinder, to which the Multi-Level
Multi-Fidelity is applied.

4.1. Case study: benchmark cases
The goal of this experiment is to correctly setup the MLMFMC approach and corresponding infrastructure for
fluid dynamics topics in both Dakota and OpenFOAM. Moreover, the intermediary results of the MLMFMC
method are analysed in order to detect possible faults in implementation at an early stage. A fluid dynamics
case using benchmark cases on flow past a circular cylinder in 2D and 3D, is selected from literature in order
to validate the MLMFMC algorithm. Initially the benchmark cases are reconstructed in OpenFOAM and vali-
dated using literature. After validation, the benchmark cases are modified in order to create a 2D and 3D case
for simple uncertainty propagation. This is achieved by assuming an uncertain inflow velocity. The results of
this experiment with uncertainty propagation only have relevance in order to validate a correct implemen-
tation of the MLMFMC method. First the MLMC algorithm is implemented, as this is an intermediate step
of the MLMFMC approach. The MLMC approach is implemented and validated in both 2D and 3D using
the benchmark case with simple uncertainty. Then the MLMFMC method is implemented and validated for
the 3D case, using the 2D case as a low-fidelity model. For both MLMC cases and the MLMFMC case the
intermediary results are analysed. In subsection 4.1.1 the benchmark cases are described, reconstructed in
OpenFOAM and validated. In subsection 4.1.2 the benchmark case with uncertainty is introduced. In sub-
section 4.1.3 the input parameters and the validation technique of both MLMC and MLMFMC methods are
described. An overview of the sections of this first experiment is depicted in Figure 4.2.

Figure 4.2: Overview of the section regarding the implementation of MLMF using the benchmark cases. Starting with the case description
as described in literature, the reconstructed cases in OpenFOAM and the validation of the reconstructed cases. Following with the
implementation of the Multi-Level Monte Carlo method using the benchmark cases and lastly the implementation of the Multi-Level
Multi-Fidelity method using the benchmark cases.
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4.1.1. Case descriptions and validation
The benchmark cases are described by Schäfer et al. [48] and are separated into six cases. Three similar cases
in 2D and in 3D, in which the first case is steady flow and the second and the third cases are unsteady flow.
The drag coefficient is calculated using OpenFOAM’s forceCoeffsIncompressible post processing tool.

2D cases
The geometry of the 2D cases consists of a rectangular plane of (x, y) = (2.2,0.41) m in which flow around a
circular cross-section of a cylinder with a diameter of D = 0.1 m is considered as is depicted in Figure 4.3.
Here Hy = 0.41 m is the height of the plane in the y-direction, U is the velocity in the x-direction and V is the
velocity in the y-direction. The velocity boundary conditions are no slip boundary conditions on the sides,
zero gradient on the outlet and there is a spatial parabolic inflow condition for U at the inlet as defined in the
last column of Table 4.1 and V = 0 m/s for each case.

Figure 4.3: Geometry of all 2D benchmark cases. Total size of rectangular plane is 2.2x0.41 m with a cylinder of 0.1 m diameter and no
slip boundary conditions imposed on the top side, bottom side and the cylinder, zero gradient boundary conditions on the outlet and a
spatial parabolic inflow condition on the inlet.

As depicted in Table 4.1 case 2D-1 is a case with steady inflow conditions (Re = 20) around a cylinder,
case 2D-2 is an exact copy of this case, however now with unsteady inflow conditions (Re = 100) around a
cylinder. Case 2D-3 is a slight modification of case 2D-2, now there is a time dependency added to the inflow
condition. In Table 4.1 the mean horizontal velocity component is given by Ū (t ) = 2

3U (0, H/2, t ).

Case Re [-] Um [m/s] Ū [m/s] Inflow condition [m/s]

2D-1 20 0.3 0.2

U (y) = 4Um y(H − y)

H 2 (4.1)

2D-2 100 1.5 1.0

U (y) = 4Um y(H − y)

H 2 (4.2)

2D-3 0-100 1.5 1.0

U (y, t ) = 4Um y(H − y)

H 2 si n(
πt

8
) (4.3)

Table 4.1: Overview of the relevant parameters for the three benchmarks cases in 2D

2D meshes
For implementation the benchmark cases are discretized and in preparation for the implementation of both
MLMC and MLMFMC, three resolution levels are constructed. In Figure 4.4 the meshes for the benchmark
cases in 2D are presented. The lowest resolution case is depicted at the top of the image, the middle resolution
in the middle and the highest resolution is presented at the bottom of the image. In general the number of
cells in each direction is doubled when the resolution level increases. The meshes are not tested using a mesh
convergence study, but a mesh check is conducted using OpenFOAM’s checkMesh function.
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Figure 4.4: The meshes of the 2D cases with lowest to highest resolution level from top to bottom respectively.

Validation of 2D cases
The benchmark cases are validated using the results as summarized by Schäfer et al. [48], which are presented
in the sixth column of Table 4.2. In the seventh column the drag coefficients resulting from the reconstructed
benchmark cases are presented. For the fist case 2D-1, the drag coefficient is higher than the literature values
for each case. However, the order of magnitude is the same and the difference is slight, therefore case 2D-1
is deemed to be validated and correctly implemented. The same reasoning is used for case 2D-3, since these
values are also all higher than literature, but the differences are a tenth smaller than for the case of 2D-1.
For case 2D-2 the calculated drag coefficients are smaller for resolution levels 0 and 1, whereas for resolution
2 the drag coefficient falls into the range of values from literature. Therefore all three cases are correctly
implemented and validated in accordance with literature.

Case Level Re [-] Um [m/s] Ū [m/s] Drag coefficient [-]: literature | 2D CFD

2D-1
0

20 0.3 0.2 5.5700 - 5.5900 [48]
5.7761

1 5.7663
2 5.7662

2D-2
0

100 1.5 1.0 3.2200 -3.2400 [48]
3.1912

1 3.2129
2 3.2261

2D-3
0

20-100 1.5 1.0 2.9300 - 2.9700 [48]
2.9936

1 2.9879
2 2.9772

Table 4.2: Overview of the results of validation for the three benchmarks cases in 2D

3D cases
The 3D cases are similar to the 2D cases, hence the boundary conditions are almost equal: on the sides and
on the cylinder there is a no slip boundary condition, the outlet has a zero gradient boundary condition and
the inlet has a spatial parabolic boundary condition for U and V = W = 0 m/s. Here W is the velocity in
the z-direction and U and V are as defined for the 2D case. Instead of a rectangular plane, there is now a
rectangular box of (x, y, z) = (2.5,0.41,0.41) m with a cylinder of height Hz = 0.41 m in the z-direction and
diameter of D = 0.1 m as is depicted in Figure 4.5.
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Figure 4.5: Geometry of all 3D benchmark cases. Total size of rectangular plane is 2.2x0.41x0.41 m with a cylinder of 0.41 m height and 0.1
m diameter and no slip boundary conditions imposed on the top side, bottom side, left side, right side and the cylinder, a zero gradient
boundary condition on the outlet and a spatial parabolic inflow condition on the inlet.

As depicted in Table 4.3 case 3D-1 is a case with steady inflow conditions (Re = 20) around a cylinder,
case 3D-2 is an exact copy of this case, however now with unsteady inflow conditions (Re = 100) around a
cylinder. Case 3D-3 is a slight modification of case 3D-2, now there is a time dependency added to the inflow
condition. In Table 4.3 the mean horizontal velocity component is given by Ū (t ) = 4

9U (0, H/2, H/2, t ).

Case Re [-] Um [m/s] Ū [m/s] Inflow condition [m/s]

3D-1 20 0.45 0.2

U (y, z) = 16Um y(H − y)z(H − z)

H 4 (4.4)

3D-2 100 2.25 1.0

U (y, z) = 16Um y(H − y)z(H − z)

H 4 (4.5)

3D-3 0-100 2.25 1.0

U (y, z, t ) = 16Um y(H − y)z(H − z)

H 4 si n(
πt

8
) (4.6)

Table 4.3: Overview of the relevant parameters for the three benchmarks cases in 3D

3D meshes
In Figure 4.6 the meshes for the benchmark cases in 3D are presented. The lowest resolution case is depicted
at the top of the image, the middle resolution in the middle and the highest resolution is presented at the
bottom of the image. In general the number of cells in each direction is doubled when the resolution level
increases. The mesh is checked using OpenFOAM’s checkMesh function.

Validation of 3D cases
In Table 4.4 the results of the validation study conducted on the benchmark cases is presented. In the last
column of the table, the drag coefficient correctly corresponds to the order of magnitude of the drag coef-
ficient from literature. However, it appears that the drag coefficient at each case and at each resolution is
slightly larger than the values from literature, with the exception of case 3D-1 at resolution the lowest res-
olution level, which falls into the range of literature values. The same behaviour is seen for the majority of
the 2D cases as well. Yet the order of magnitude is similar and deemed sufficiently accurate. Therefore, it
is concluded that the 3D cases are correctly reconstructed in OpenFOAM and the correctness of results is
validated.
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Figure 4.6: The meshes of the 3D cases with lowest to highest resolution level from top to bottom respectively.

Case Level Re [-] Um [m/s] Ū [m/s] Drag coefficient [-]: literature | 2D CFD

3D-1
0

20 0.45 0.2 6.0500 - 6.2500 [48]
6.2278

1 6.3084
2 6.3335

3D-2
0

100 2.25 1.0 3.2900 - 3.3100 [48]
3.4318

1 3.3803
2 3.3843

3D-3
0

20-100 2.25 1.0 3.2000 - 3.3000 [48]
3.4251

1 3.3710
2 3.3789

Table 4.4: Overview of the results of validation for the three benchmarks cases in 3D

4.1.2. Uncertain benchmark case in 2D and 3D
Uncertainty has to be introduced into the benchmark cases in order to demonstrate validity of the MLMFMC
method. For simplicity, the range of values of the mean inflow velocity is taken from the first two benchmark
cases. With the first benchmark case as the lower boundary at Ū = 0.2 m/s and the second benchmark case
as the upper boundary at Ū = 1.0 m/s with uniform distribution. It is assumed that the true value that is
being estimated by the MLMFMC method should correspond to the drag coefficient at Ū = 0.6 m/s due to the
uniform distribution of the mean inflow velocity.
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4.1.3. Multi-Level Multi-Fidelity Monte Carlo
The input parameters of both MLMC and MLMFMC algorithms are presented in section 3.1. Both methods
require:

1. Uncertain input parameter (mean flow velocity); and

2. number of pilot samples Npi l ot ; and

3. target variance ε2 or tolerance ε; and

4. relative computational cost of each resolution level Cl and model fidelity.

For this experiment the input parameters for both MLMC and MLMFMC are summarized in Figure 4.7
and Figure 4.8 respectively. The MLMC method is applied to a 2D and a 3D case and the MLMFMC approach
is implemented with the 3D case as the high-fidelity method and the 2D case as the low-fidelity method.

Figure 4.7: Schematic overview of the Multi-Level Monte Carlo approach using a uniformly distributed mean inflow velocity ranging
from 0.2−1.0 m/s to estimate the drag coefficient.

Figure 4.8: Schematic overview of the Multi-Level Multi-Fidelity Monte Carlo approach using a uniformly distributed mean inflow ve-
locity ranging from 0.2−1.0 m/s to estimate the drag coefficient.

The uncertain input parameter is described in subsection 4.1.2. The number of pilot samples is set to
Npi l ot = 10. There is no way to find the optimal number of pilot samples, other than trial and error. Also
increasing the number of pilot samples will increase the computational cost, since more high resolution cases
will be run. On the other hand, the number of pilot samples needs to be large enough to correctly capture
the preliminary statistics required for the MLMFMC. Hence a trade-off should be made when determining
the number of pilot samples. It is assumed that a number of pilot samples equal to Npi l ot = 10 is sufficient.
Although another study could be done to investigate the optimal number of pilot samples. The tolerance is
set to ε = 0.1. The relative computational cost is approximated by running a number of cases and averaging
the simulation time over these cases. It should be noted to the reader that the MLMC requires a relative
computational cost of each resolution level for a single model fidelity, whereas the MLMFMC has costs for
varying model fidelities. The computational cost of the lowest resolution lowest fidelity model is always set
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to C0 = 1. The output of both MLMC and MLMFMC methods is the estimated value of the drag coefficient.
Furthermore, a number of intermediary results are available i.e. all samples, optimal number of samples
per resolution level, number of equivalent samples using high resolution high-fidelity MCM and the Pearson
correlation coefficient for MLMFMC.

The extra steps taken with the MLMFMC approach compared to the MLMC approach depend on the
correlation between both model fidelities. In order to obtain accurate and statistically representative results
using the low-fidelity model, there needs to be high correlation between the high- and low-fidelity model.
There is no easy way to quantify what high correlation entails, especially at this stage of the study. Therefore
the correlation is analysed.

Lastly, the number of equivalent samples Neq of the High resolution Level High-Fidelity Monte Carlo
(HLMC or HLHFMC) are used to estimate the drag coefficient. The estimated drag coefficient of HLMC
is compared with that of MLMC and the estimated drag coefficient of HLHFMC is compared with that of
MLMFMC in order to validate a correct implementation of the MLMFMC method.

4.2. Parametric study on a porous cylinder
The goal of the parametric study is to find a relationship for circular cylinders in the subcritical Reynolds
numbers regime between the porosity and the influence on forces on the cylinder and the vortex shedding
frequency. The subcritical Reynolds numbers regime is denoted by as Re < 2 ·105. The approach to find such
a relation is by applying a parametric study with equally distributed input variables and then curve fitting
the resulting output values. Ideally one or several functioning low-fidelity models, in the form of empirical
relationships, are the result of this parametric study.

For the parametric study, the MLMC approach could be applied, since it also produce a large enough
number of samples, from which a relation could be deduced. Furthermore, the MLMC approach would guar-
antee a certain level of uncertainty in the results. However, based on the previous case study it is likely that
the number of cases that are to be executed for an MLMC approach is in the order of one thousand. Also
including the increased computational cost for these cases, the decision has been made not apply the MLMC
method.

The general overview of this section is depicted in Figure 4.9. First the case for a porous circular cylinder
from literature is described, which is reconstructed in OpenFOAM and a validation is conducted. Then the
specifics of the parametric study are described, after which a short section on curve fitting is added in order
to derive low-fidelity models via data-fitting.

Figure 4.9: Overview of the section regarding the parametric study on a porous circular cylinder. Starting with the case description
as described in literature. Following with the setup of the parametric study and lastly the curve fitting on the resulting data to obtain
low-fidelity models which can be applied in cases for porous circular cylinders.

4.2.1. Case description
The case applied to the parametric study is taken from the paper by Steiros et al. [14], since there is a proposed
relationship between drag coefficient and porosity. Moreover, by implementing this case using the porosity
model as described by Feichtner et al. [18], there is the possibility to implement porosity without the use
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of direct numerical simulation. Thereby avoiding the need of highly refined mesh near the cylinder, which
might pose as a problem for the parametric study due to the number of cases required to be run. Next, the
case setup with porosity model is validated using the results from Steiros et al., which could indicate the
validity of the proposed porosity model for this study.

The case setup consists of a rectangular box with dimensions (x, y, x) = (1.45,0.46,0.27) m with a porous
circular cylinder of radius r = 0.01675 m with wall thickness∆x = 0.001 m. The cylinder is located at a distance
0.21325 m from the inlet and both sides in the y-direction. The case setup is depicted in Figure 4.10.

Figure 4.10: Case setup for the parametric study with a porous circular cylinder of diameter D = 0.0335 m and a wall thickness of 0.001
m.

The inlet has a constant uniform inflow velocity, all four sides have the no slip boundary condition and the
outlet has a zero gradient boundary condition. The pressure boundary conditions are all zero gradient except
for the outlet, which is set to a fixed value of zero. For the porosity model the factor χ from Equation 2.18 is
calculated to be χ= 11.7647. As described in the literature research, it is assumed that both ψ= 0 and c = 0.

Mesh
The mesh of the case description is presented below in Figure 4.11. The mesh has a total number of cells of
103780 and is checked using OpenFOAM’s checkMesh function.

(a) Top view of the mesh. (b) Section of the mesh on the cylinder (porous zone in red).

Figure 4.11: Mesh of the case for the parametric study.

Validation
The case setup is validated using the results presented in Figure 2.6, which displays the drag coefficient versus
porosity. For non-porous media the drag coefficient is at a maximum of Cd ≈ 1.25, then the drag coefficient
drops down at 10% porosity to about Cd ≈ 1.1, which remains stable up to 30% porosity, after which the drag
coefficient decreases to Cd ≈ 0.9 at 50% porosity and to Cd ≈ 0.7 at 60% porosity. The resulting drag coefficient
and Strouhal number for the case here, are presented in Figure 4.12a.
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(a) Drag coefficient versus porosity. (b) Strouhal number versus porosity.

Figure 4.12: Resulting drag coefficient and Strouhal number versus porosity for the validation case with Re = 6700.

The drag coefficient has a shape and range of values that differ from the results from literature. The drag
coefficient does decrease for increasing porosity in a similar way for the porosity values over 30%. It is possible
that the drag coefficient is overestimated, since the thin walled assumption might not hold for this cylinder.
However, even though the drag coefficient values do not correspond to the expected values from literature,
the flow regime appears to be as expected for flow in the subcritical Reynolds numbers regime, meaning there
is a von Kármán vortex street. To demonstrate, several images of developed flow for this case are depicted in
Figure 4.13.

(a) Flow pattern of porous circular cylinder with inflow velocity U = 0.2 m/s and porosity of 20% at experiment
time step t = 11 seconds. There is vortex shedding at this porosity.

(b) Flow pattern of porous circular cylinder with inflow velocity U = 0.2 m/s and porosity of 35% at experiment
time step t = 11 seconds. There is no vortex shedding at this porosity.

Figure 4.13: Flow patterns of validation study on porous circular cylinder for varyin porosity.
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Yet, at a porosity of 27.5%, this flow regime changes and no vortex shedding appears to be present. This
cut-off of vortex shedding is also depicted in Figure 4.12b, where the Strouhal number appears to be slowly
decreasing for increasing porosity with a sharp drop to St = 0 at a porosity of 27.5 %. For a non-porous
cylinder the Strouhal number is expected to remain constant at St = 0.2 for the used subcritical Reynolds
numbers regime. No further publications have been found on the subject of the relationship between the
Strouhal number and porosity. Even though the estimated Strouhal number for a porous cylinder at St = 0.27
can not be validated, it is of the same order as for a non-porous cylinder. Therefore, the decision is made to
accept the problems with the determination of the drag coefficient of this case as is and, instead focus on the
vortex shedding frequency in the form of the Strouhal number.

4.2.2. Parametric study
As stated before, the parametric study consists of taking a number of equally distributed input values. There
are two input values for each case, namely the inlet velocity and the porosity. The range of inlet velocities is
U = 0.1 to U = 1.0 m/s with increments of U = 0.1 m/s, it is taken in such a way that the maximum possible
Reynolds number still falls in the subcritical Reynolds number regime and also includes the single base case
with U = 0.2 m/s as taken from literature [14]. The corresponding range of Reynolds numbers is Re = 3350 to
Re = 33500 in increments of Re = 3350.

The porosity ranges from β = 0.1 to β = 0.5 with increments of β = 0.025. The lower boundary of this
porosity range is set to 10%, because the computational cost increases extremely fast for low porosity, up to
the point where the maximum allowed Courant number has to be reduced to Comax = 0.1 or even Comax =
0.05, which increases the computational cost of the current setup by a factor 4 or 8 respectively. The upper
boundary is set with the idea of structural integrity in mind, based on the assumption that a porosity higher
than 50% will not be realistically feasible to implement.

The parametric study is entirely implemented using Dakota, hence the entire process of case execution
in OpenFOAM up to post processing and data extraction is automated. A total of 170 different input combi-
nations are to be run, from which the vortex shedding frequency is obtained.

Depending on the input values, the flow develops at a minimum after an experimental time of about
t = 5 seconds and at a maximum after an experimental time of about t = 10 seconds. Since it is deemed too
difficult to automatically detect the force oscillations, which are expected in the developed flow, the decision
is made to assume that for each of the 170 cases that the flow is developed after an experimental time of t = 10
seconds. Thus, the vortex shedding frequency is calculated in the time range after t = 10 up to t = 15 seconds.

Forces & coefficients
The total force and drag coefficient are calculated using OpenFOAM’s forces and forceCoeffs post process-
ing tools, which use pressure integration over the boundary layer surface. These are required to in order to
estimate the vortex shedding frequency.

Vortex shedding frequency
The process of estimating the vortex shedding frequency is depicted in Figure 4.14.

The vortex shedding frequency is obtained by applying the Fast Fourier Transform (FFT) to an interpo-
lated time signal of the lift coefficient and finding the largest peak in the frequency spectrum. The FFT re-
quires the time range to consist of a constant time step, which is not the case, since variable time stepping
is implemented (using OpenFOAM’s adjustableTimeStep feature) to decrease computational cost. Hence the
time spectrum with variable time step is fist interpolated to a time spectrum with constant time step of size
∆t = 0.0001 s. The forceCoeffs post processing tool also exports the lift coefficient, which is used to estimate
the vortex shedding frequency. The lift coefficient switches sign in case of oscillations and is averaged around
Clift = 0. The signal should be averaged around 0 in the temporal domain when applying FFT to avoid a static
offset peak at frequency f = 0 Hz in the frequency domain. Lastly, the frequency of the largest peak in the
FFT’s frequency domain is selected as the vortex shedding frequency. Furthermore, a filter is added which
estimates the amplitude of the drag coefficient. If the amplitude of the drag coefficient is smaller than 1% of
the mean drag coefficient, it is assumed that there are no vortices or oscillations and thus the vortex shedding
frequency fv s = 0 Hz.

37



4.3. Parametric study using Multi-Level Multi-Fidelity Monte Carlo 4. Experimental setup

Figure 4.14: Schematic overview of the process of estimating the vortex shedding frequency. First the time signal is interpolated in order
to have constant time step. Then the interpolated time signal is transformed to the frequency domain using the Fast Fourier Transform
(FFT). Lastly, the frequency corresponding to the largest peak is found, which corresponds to the vortex shedding frequency.

4.2.3. Curve fitting
To finalize this section, curve fits are applied to two variations of the results by varying both inflow velocity
and porosity and measure their effects on the vortex shedding frequency. Furthermore the inflow velocity
and vortex shedding frequency can be rewritten into their respective non-dimensional forms, namely the
Reynolds and Strouhal number. In Appendix A a table is presented with all possible curve fit functions that
will be applied and ideally non-polynomial functions will fit the data and can be used as low-fidelity models.

4.3. Parametric study using Multi-Level Multi-Fidelity Monte Carlo
In this section, the final experiment of this thesis is described. Moreover, it combines both the MLMFMC and
the parametric study on a porous circular cylinder. There are three goals of this experiment, namely:

1. Generating more data points to study the effects of porosity on the cylindrical Strouhal number; and

2. indicating validity of the proposed low-fidelity models for flow past a porous circular cylinder by anal-
ysis of the correlation between high- and low-fidelity models using Multi-Level Multi-Fidelity Monte
Carlo; and

3. conducting an interval analysis using Multi-Level Multi-Fidelity Monte Carlo in order to estimate the
bounds of the epistemic uncertainty of the high-fidelity model.

In order to accomplish these three goals, a new -but comparable- fluid dynamics case is proposed. The
benchmark case for flow around a circular cylinder is modified to include porosity. Therefore the case is
for flow around a porous circular cylinder. Moreover, a new parametric study is setup for a smaller range of
porosity values at a singular Reynolds number in the subcritical Reynolds numbers regime. At each point
of the new parametric study, an interval analysis is conducted using MLMFMC. Furthermore, at each point
the correlation between high- and low-fidelity models is analysed. And lastly, inherent to the application
of a parametric study, more data points are generated. In subsection 4.3.1 the proposed case description is
described and constructed. In subsection 4.3.2 the proposed parametric study is described and in subsec-
tion 4.3.3 the interval analysis and settings of the MLMFMC are described. An overview of the subsections is
depicted in Figure 4.15
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Figure 4.15: Overview of the section regarding the interval analysis using Multi-Level Multi-Fidelity Monte Carlo methods on the para-
metric study. First the case description and parametric study are described. Lastly, the interval analysis using Multi-Level Multi-Fidelity
Monte Carlo methods is described.

4.3.1. Case description
The case setup is similar to that of the benchmark cases (subsection 4.1.1) with equal geometry. The differ-
ence being that the cylinder is porous and that the inflow condition is uniform constant instead of parabolic
in space. Since the wall thickness of the porous cylinder may also influence the results, it is decided to main-
tain a constant cylinder diameter over wall thickness ratio as in the previous parametric study. Therefore, the
wall thickness of this porous cylinder is: D/t = 0.0335/0.001 = 0.1/t −→ t = 0.00299 ≈ 0.003 m. A schematic of
the case geometry is depicted in Figure 4.16.

Figure 4.16: Geometry the 3D benchmark case with porous circular cylinder. Total size of rectangular plane is 2.2x0.41 m with a cylinder
with a diameter of 0.1 m and no slip boundary conditions imposed on the top side, bottom side and the cylinder, zero gradient boundary
conditions on the outlet and a uniform constant inflow condition on the inlet.

The boundary conditions for velocity are no slip on the four sides, zero gradient on the outlet and uniform
constant on the inlet. For pressure, the boundary conditions on the sides and inlet are zero gradient and the
outlet is uniform constant zero.

Mesh
The mesh is constructed for three resolution levels, which are presented from lowest to highest resolution
from top to bottom in Figure 4.18. On the right side a close up is depicted of the porous area for each res-
olution level. No convergence study is conducted on the meshes, only OpenFOAM’s checkMesh function is
applied.

4.3.2. Parametric study
The goal of this parametric study is to generate more data points on the effects of increasing porosity on the
cylindrical Strouhal number. The results of the previous parametric study (section 4.2) indicate the largest
change in cylindrical Strouhal number occurs for the porosity range of 0.20 < β < 0.30. Therefore, the new
parametric study consists of eleven equally distributed points in the range 0.20 <β< 0.30 with increments of
∆β= 0.01. The Reynolds is not varied for this parametric study and set to Re = 10000.
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4.3.3. Interval analysis using Multi-Level Multi-Fidelity Monte Carlo
Each value of the parametric study is estimated using the MLMFMC method in order to reduce the suspected
epistemic uncertainty. An overview of the process of MLMFMC is depicted in Figure 4.17.

Figure 4.17: The Multi-Level Multi-Fidelity Monte Carlo method is implemented on the parametric study in order to reduce suspected
epistemic uncertainty by estimating each point using interval analysis.

After analysing the results of the parametric study (section 4.2), several outlier cases were detected. Rea-
sons for the outlier cases vary and these are most likely due to systemic errors in the vortex shedding fre-
quency detection algorithm. Uncertainties of this kind are epistemic uncertainties. Furthermore, the full
simulation process of the parametric study from input to output consists of many separate parts working
together (e.g. Dakota, OpenFOAM, olaFlow and several Python and Bash scripts). In order to quantify the
epistemic uncertainty, the MLMFMC method is combined with the parametric study in order to propagate
epistemic uncertainty. In the paper by Swiler et al. [23] three methods of propagation of epistemic uncer-
tainty are described: interval analysis, Dempster-Shafer Theory of Evidence and second order probability.
The interval analysis is implemented, since it is assumed nothing is known about the uncertain input vari-
ables, except that these values lie in a certain range of values. This range of values coincides with that of the
parametric study. An interval analysis using random sampling is implemented with MLMFMC and the inter-
mediary results are analysed in order to estimate the boundaries of the epistemic uncertainty. Therefore, at
each porosity value of the parametric study, an interval of β±0.005 is assigned with uniform distribution.
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Figure 4.18: The meshes of the 3D cases with lowest to highest resolution level from top to bottom respectively.

The experiments described in this chapter in section 4.1, section 4.2 and section 4.3 serve as the basis for
the results, as described in chapter 5, chapter 6 and chapter 7 respectively.
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5
Results: benchmark cases

In this chapter the results of the first case study: benchmark cases are described. The goal of this chapter
is to demonstrate a successful implementation of the MLMFMC approach using a high-fidelity 3D model
and a low-fidelity 2D model implemented in OpenFOAM. Furthermore the estimator variance reduction and
computational cost reduction of both MLMC and MLMFMC are demonstrated using benchmark cases of flow
around a circular cylinder.

In section 5.1 the relative computational cost of both 2D and 3D cases are estimated using simulation
time averaging. In the second section the MLMC is implemented on a 2D and 3D CFD case, demonstrating
computational cost reduction and furthermore, the results are compared with the results of the respective
equivalent number of high resolution general MCM simulations. In the third section the MLMF is imple-
mented for a 3D CFD case, again demonstrating computational cost reduction and comparing the results
with the results of the equivalent number of high resolution high-fidelity general MCM simulations. Lastly,
the true value is estimated using the data points from all simulations and the results are summarized.

5.1. Relative computational cost
In this section the results of the process of estimating the relative computational cost are described for both
2D and 3D meshes. The computational costs are estimated using simulation time averages of the runs.

As can be seen in Table 5.1 and Table 5.2 there is a large range in computational time values at each
resolution level. As expected for both 2D and 3D cases, the higher resolution levels will take more time than
the lower resolution levels due to the increased number of cells. As a consequence the cell size is decreased as
well, which influences the Courant number and thus indirectly forces the time step to decrease as well. The
range differences in computational times at each resolution level could be attempted to be explained using
the mean inflow velocity, since the mean inflow velocity ranges from 0.2 m/s to 1.0 m/s, this means that at a
maximum the velocity is a factor 5 larger. And although this effect does not one to one explain the differences
between the minimum and maximum values in the same column, it could play a significant role. Especially
in the 2D cases this factor is larger ranging from 4.95 to 6.30, whereas in the 3D cases this factor ranges from
2.99 to 3.47.

low resolution [-] middle resolution [-] high resolution [-]
computational cost 1 6.47 23.54

Table 5.3: Estimated relative computational cost of each resolution level for the 2D benchmark case.

low resolution [-] middle resolution [-] high resolution [-]
computational cost 1 12.15 53.94

Table 5.4: Estimated relative computational cost of each resolution level for the 3D benchmark case.
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Case
number

low resolution [s] middle resolution [s] high resolution [s]

1 198.81 1332.59 4997.63
2 170.55 1149.84 4266.64
3 205.40 1370.87 5123.36
4 43.92 244.28 829.08
5 63.82 364.36 1242.66
6 129.37 876.69 3188.49
7 120.74 780.82 2805.19
8 172.45 1142.69 4275.71
9 51.57 290.12 980.96
10 42.91 245.81 829.47
11 134.88 920.65 3356.31
12 48.32 272.40 920.22
13 99.09 613.30 2127.55
14 101.83 621.40 2206.50
15 109.98 701.19 2497.84
16 212.59 1413.47 5221.65

sum 1906.23 12340.43 44869.26
max 212.59 1413.47 5221.65
min 42.91 244.28 829.08
factor 4.95 5.77 6.30
mean 119.14 771.28 2804.33

Table 5.1: Computational times for 16 benchmark cases at three resolution levels with total summed value, maximum value, minimum
value, multiplicative factor between minimum and maximum value and mean value for the 2D benchmark case.

Using the mean computational time values from Table 5.1 and Table 5.2 the relative computational cost is
calculated for the 2D and 3D benchmark case and presented in Table 5.3 and Table 5.4 respectively. The same
data used for calculating the relative computational costs for the 2D and 3D benchmark cases for MLMC is
used, however since the MLMF uses a low-fidelity model and a high fidelity model the relative computational
cost is re-calculated with respect to lowest resolution of the low-fidelity model. Hence the lowest resolution
of the 2D case will be assigned a relative computational cost of C 2D

0 = 1 and the other relative computational
costs are calculated with respect to this lowest computational cost, as is presented in Table 5.5.

low resolution [-] middle resolution [-] high resolution [-]
2D 1 6.47 23.54
3D 2.24 27.19 120.69

Table 5.5: Total estimated relative computational cost of each resolution level of the low-fidelity (2D) model and the high fidelity (3D)
model for Multi-Level Multi-Fidelity Monte Carlo.

5.2. Multi-Level Monte Carlo
In this section the results from two separate implementations of MLMC are described. The first case is MLMC
in 2D and the second case is MLMC in 3D. The input parameters for an MLMC approach - which are presented
in chapter 3 in Figure 3.1- are the computational cost per resolution level Cl , tolerance ε, the numer of pilot
samples Npi l ot and the random input variable ω = Ū , which is the mean inflow velocity for both MLMC
simulations. For consistency the random variable Ū = 0.2 to Ū = 1.0 m/s, tolerance ε = 0.1 and number of
samples Npi l ot = 10 are used for both 2D and 3D cases.

First the results from the 2D MLMC case are described. Starting with the resulting preliminary statistics
which are used to calculate the optimal number of samples per resolution level. Then, the estimated value
of the drag coefficient and estimator variance from the MLMC are discussed and the computational cost
reduction is calculated. Lastly, a High-Level Monte Carlo (HLMC) simulation is executed and the resulting
estimated value and estimator variance are discussed and compared to the MLMC. Secondly the results from
the 3D MLMC are described, which follows the same procedure as that for the 2D MLMC.
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Case
number

low resolution [s] middle resolution [s] high resolution [s]

1 396.66 4902.49 22631.80
2 351.09 4246.78 18922.90
3 401.34 5002.52 23362.50
4 134.27 1626.02 6727.88
5 185.24 2258.19 9676.08
6 293.56 3602.81 16428.00
7 282.54 3502.94 14838.10
8 354.32 4249.79 19076.80
9 156.70 1902.91 7882.49
10 135.00 1621.88 6878.25
11 297.40 3657.15 16613.90
12 151.80 1779.79 7615.47
13 246.37 3009.67 13012.20
14 246.86 2986.80 13858.60
15 246.80 2864.73 12606.80
16 385.12 4617.68 19924.10

sum 4265.07 51832.15 230055.87
max 401.34 5002.52 23362.50
min 134.27 1621.88 6727.88
factor 2.99 3.08 3.47
mean 266.57 3239.51 14378.49

Table 5.2: Computational times for 16 benchmark cases at three resolution levels with total summed value, maximum value, minimum
value, multiplicative factor between minimum and maximum value and mean value for the 3D benchmark case.

5.2.1. Case in 2D
As described before the MLMC approach requires four input parameters, for the case of 2D MLMC these are
summarized in Table 5.6

Fidelity Level l Cost Cl [-] Random variable Ū [m/s] Tolerance ε [-] Samples Npi l ot [-]
2D 0 1

Uniform: 0.2 - 1.0 0.1 102D 1 6.47
2D 2 23.54

Table 5.6: Summary of input variables of the Multi-Level Monte Carlo simulation in 2D. Displaying the estimated relative computational
cost of each resolution level for a Multi-Level Monte Carlo approach in 2D. The random variable is the mean inflow velocity Um ranging
from Um = 0.2 to Um = 1.0 m/s, samples are drawn from a uniform distribution. The tolerance is set to ε= 0.1 and the number of pilot
samples is set to Npi l ot = 10.

Preliminary statistics from pilot samples
The number of pilot samples is set to Npi l ot = 10, the pilot samples are taken at each resolution level l . More-
over at each resolution level the difference function is calculated. Therefore at resolution level l = 1 and l = 2
twice the number of pilot samples are taken. In total, 50 samples are obtained. In Figure 5.1 a histogram is
presented using a color map to depict which resolution level corresponds to which value of the drag coeffi-
cient.
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Figure 5.1: Histogram of drag coefficient as a result of general Monte Carlo Methods for number of pilot samples Npi l ot = 10 for three
resolution levels, hence 50 total samples. Color coding is applied to demonstrate which resolution level corresponds to which result.

Results from Multi-Level Monte Carlo
The MLMC simulation results in the following histogram in Figure 5.2, again depicting the counts versus the
drag coefficient with the color coding used to denote which resolution level is responsible for which sample.
Clearly, the samples are redistributed to the lower resolution levels. To summarize, the results of the MLMC
are presented in Table 5.7. An interesting observation is that at the middle resolution level there are less
samples taken than at the highest resolution level. This could indicate that the mesh differences lowest and
middle resolution are too small and maybe a more refined mesh should be used.

Figure 5.2: Histogram of the drag coefficient as a result of a Multi-Level Monte Carlo approach in 2D with three resolution levels, denoted
by res0, res1 or res2. Color coding is applied to demonstrate which resolution level corresponds to which result.

45



5.2. Multi-Level Monte Carlo 5. Results: benchmark cases

Fidelity Resolution level l Computational cost Cl [-] Optimal samples Nl [-] Total cost [-]
2D 0 1 270 270.00
2D 1 6.47 18 116.46
2D 2 23.54 30 706.20

Total summed cost of MLMC: 1092.66

Neq samples according to MLMC: 55.44 → 56 1318.24

Table 5.7: Summary of estimated relative computational cost, optimal number of samples and total cost of each resolution level of the
low-fidelity (2D) model for a Multi-Level Monte Carlo approach.

The estimated drag coefficient is Cd = 3.92 with a standard deviation of σCd = 0.77. The total cost of
the MLMC is calculated to be 1092.66 and the cost of the number of equivalent high resolution samples is
1318.24. Therefore, the cost reduction of MLMC with respect to normal MCM is 17 %. In order to validate the
estimated drag coefficient and standard deviation, the high resolution Monte Carlo simulation is run.

High-Level Monte Carlo
In Figure 5.3 the histogram of the estimated samples are presented. The estimated drag coefficient is Cd =
4.28, which is a relatively large difference with respect to the MLMC. The standard deviation is σCd = 0.77 is
equal to that of the MLMC.

Figure 5.3: Histogram as a result of the high level Monte Carlo run with 56 samples using a 2D case setup.

5.2.2. Case in 3D
In this section, the MLMC is implemented for the 3D case, the MLMC input parameter setup is equal to that
of the 2D MLMC with a difference in relative computational cost. The input parameters are summarized in
Table 5.8.

Fidelity Level l Cost Cl [-] Random variable Ū [m/s] Tolerance ε [-] Samples Npi l ot [-]
3D 0 1

Uniform: 0.2 - 1.0 0.1 103D 1 12.15
3D 2 53.94

Table 5.8: Summary of input variables of the Multi-Level Monte Carlo simulation in 3D. Displaying the estimated relative computational
cost of each resolution level for a Multi-Level Monte Carlo approach in 3D. The random variable is the mean inflow velocity Um ranging
from Ū = 0.2 to Ū = 1.0 m/s, samples are drawn from a uniform distribution. The tolerance is set to ε = 0.1 and the number of pilot
samples is set to Npi l ot = 10.
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Preliminary statistics from pilot samples
In Figure 5.4 the distribution of samples from the pilot samples is depicted. The shape is similar to that of the
pilot samples of the MLMC in 2D. A total of 50 samples are taken and most of these are located at the lower
values of the drag coefficient.

Figure 5.4: Histogram of drag coefficient as a result of general Monte Carlo Methods for number of pilot samples Npi l ot = 10 for three
resolution levels, hence 50 total samples. Color coding is applied to demonstrate which resolution level corresponds to which result.

Results from Multi-Level Monte Carlo
The MLMC results in the histogram in Figure 5.5. As expected, the computational cost is shifted towards
the lowest resolution. The resulting samples per resolution level and the respective computational costs are
presented in Table 5.9. The estimated drag coefficient is Cd = 4.18 with a standard deviation of σCd = 0.79.
Using the MLMC a computational cost reduction of 14.82% is achieved.

Figure 5.5: Histogram of the drag coefficient as a result of a Multi-Level Monte Carlo approach in 3D with three resolution levels, denoted
by res0, res1 or res2. Color coding is applied to demonstrate which resolution level corresponds to which result.

47



5.3. Multi-Level Multi-Fidelity Monte Carlo 5. Results: benchmark cases

Fidelity Resolution level l Computational cost Cl [-] Optimal samples Nl [-] Total cost [-]
3D 0 1 270 270
3D 1 12.15 47 571.05
3D 2 53.94 27 1456.38

Total summed cost of MLMC: 2297.43

Neq samples according to MLMC: 49.55 → 50 2697

Table 5.9: Summary of estimated relative computational cost, optimal number of samples and total cost of each resolution level of the
low-fidelity (2D) model for a Multi-Level Monte Carlo approach.

High-Level Monte Carlo
The High-Level Monte Carlo simulation for the 3D case requires 50 samples to be taken. The resulting his-
togram is depicted in Figure 5.6, with an estimated drag coefficient of Cd = 4.29 with a standard deviation of
σCd = 0.81.

Figure 5.6: Histogram of High-Level Monte Carlo simulation of 50 samples using a 3D case setup.

5.3. Multi-Level Multi-Fidelity Monte Carlo
In this section the results from the process of implementing the MLMFMC approach are described. As de-
picted in Figure 3.2 the MLMFMC has four different input parameters, which are displayed in Table 5.10. The
relative computational cost per model fidelity and per level are taken from section 5.1. One random variable
is chosen, namely the mean inflow velocity, which is uniformly distributed between U = 0.2 and U = 1.0 m/s.
The tolerance is set to ε= 0.1 and the number of pilot samples is set to Npi l ot = 10.

Fidelity Level l Cost Cl [-] Random variable Ū [m/s] Tolerance ε [-] Samples Npi l ot [-]
2D 0 1

Uniform: 0.2 - 1.0 0.1 10

2D 1 6.47
2D 2 23.54
3D 0 2.24
3D 1 27.19
3D 2 120.69

Table 5.10: Summary of input variables of the Multi-Level Multi-Fidelity simulation. Displaying the estimated relative computational
cost of each resolution level of the low-fidelity (2D) model and the high-fidelity (3D) model for a Multi-Level Multi-Fidelity approach.
The random variable is the mean inflow velocity Um ranging from Ū = 0.2 to Ū = 1.0 m/s, samples are drawn from a uniform distribution.
The tolerance is set to ε= 0.1 and the number of pilot samples is set to Npi l ot = 10.
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Firstly, the results from the general MCM for the pilot samples are discussed, including the correlation
between the high- and low-fidelity models per resolution level. Afterwards, the results from the MLMFMC
approach are discussed and the computation cost reduction is calculated. Lastly, the results of the MLMFMC
approach are compared with the results from the High-Level High-Fidelity Monte Carlo (HLHFMC) simula-
tion.

Preliminary statistics from pilot samples
Before the variance reduction aspect of MLMF is applied, several parameters (ρl ,rl ,Λl ,αl and Nl , see Fig-
ure 3.2 top right corner) need to be calculated using estimated values from general MCM with a number of
samples equal to the number of pilot samples Npi l ot = 10. Since there are only two model fidelites, namely
high- and low-fidelity with three resolution levels each, 60 samples are taken. Moreover, to calculate the dif-
ference between two resolution levels, the random input variables of both levels need to be the same, hence
for resolution level 1 and 2, 10 additional samples have to be taken for both model fidelities. In total, 100 pilot
samples are taken in order to setup the MLMF approach. The resulting histogram with corresponding color
coding to depict resolution level and model fidelity is depicted in Figure 5.7.

Figure 5.7: Histogram of drag coefficient as a result of general Monte Carlo Methods for number of pilot samples Npi l ot = 10 for two
model fidelities with three resolution levels each, hence 100 total samples. Color coding is applied to demonstrate which model fidelity
and resolution level corresponds to which result.

Correlation between models
The correlation between models is determined during the preliminary statistical analysis and corresponds
to the Pearson correlation coefficient. In Figure 5.8 three scatter plots of the difference function of the low-
fidelity model (CFD 2D disk) versus the high-fidelity model (CFD 3D) are depicted for each resolution level l .
The red line is a best fit applied to the scatter plot, which indicates if there is positive or negative correlation.
For the lowest and highest resolution level there is positive correlation. For the middle resolution the corre-
lation is negative. This indicates that at the middle resolution level, the difference between the middle and
lower resolution levels is negative. From the scatter plots the correlation matrices are calculated. As expected
from the scatter plots there is high correlation. More specifically the Pearson correlation coefficients at each
resolution level are calculated as:

• ρ0 = 0.999690

• ρ1 =−0.996981

• ρ2 = 0.94865
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(a) Resolution level l = 0. (b) Resolution level l = 1.

(c) Resolution level l = 2.

Figure 5.8: Scatter plot of high-fidelity model (CFD 3D) vs low-fidelity model (CFD 2D) for varying resolution levels l = 0,1,2 with a best
fit line in red.

The Pearson correlation coefficient at the highest resolution appears to be the lowest. This is expected,
since the highest resolution level should provide the most accurate results. So, at the highest resolution level
the model fidelity differences should be more noticeable than at the lower resolution cases. The Pearson
correlation coefficient at the lowest and middle resolution level lie closer together in absolute value, but the
correlation coefficient at the middle resolution level is negative.

Results from Multi-Level Multi-Fidelity Monte Carlo & computational cost reduction
In Figure 5.9 the histogram of the drag coefficient resulting from the MLMFMC simulation is depicted with
an estimated drag coefficient of Cd = 3.89 and standard deviation ofσCd = 0.73. Both the estimated value and
the standard deviation of the drag coefficient are reduced with respect to the histogram of the pilot samples.
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Figure 5.9: Histogram of the drag coefficient as a result of a Multi-Level Multi-Fidelity approach with two model fidelities with three
resolution levels each. The estimated drag coefficient is Cd = 3.89 with a standard deviation of σCd

= 0.73

Figure 5.10: Histogram of the drag coefficient as a result of a Multi-Level Multi-Fidelity approach with two model fidelities, denoted by
2D or 3D, with three resolution levels each, denoted by res0, res1 or res2.
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Figure 5.11: Zoomed in histogram of the drag coefficient as a result of a Multi-Level Multi-Fidelity approach with two model fidelities,
denoted by 2D or 3D, with three resolution levels each, denoted by res0, res1 or res2.

Figure 5.9 is presented in both Figure 5.10 and Figure 5.11 with color coding to demonstrate how the
computational burden is redistributed to the lower resolution and lower-fidelity model. The lowest resolu-
tion low-fidelity model denoted by a blue color, clearly corresponds to the largest number of samples taken.
Followed by the middle resolution low-fidelity model in purple and the highest resolution low-fidelity model
in red. Relatively, there are so little cases run by the high-fidelity model that these are quite difficult to see in
Figure 5.10. For visibility Figure 5.11 is added, which is the same histogram with a lower bound on the drag
coefficient (starting at Cd = 4.0) and an upper bound on number of counts (ending at Counts = 65). Here,
the high-fidelity model samples from lowest to highest resolution are depicted by orange, green and cyan
respectively. The number of samples of each model fidelity and resolution are summarized in Table 5.11.
Furthermore the total summed cost of the MLMFMC approach and the number of equivalent high-fidelity
samples Neq are presented.

Fidelity Resolution level l Computational cost Cl [-] Optimal samples Nl [-] Total cost [-]
2D 0 1 601 601
2D 1 6.47 255 1649.85
2D 2 23.54 67 1577.18
3D 0 2.24 10 22.40
3D 1 27.19 10 271.90
3D 2 120.69 10 1206.90

Total summed cost of MLMFMC: 5329.23

Neq samples according to MLMFMC: 52.31 → 53 6396.57

Table 5.11: Summary of estimated relative computational cost, optimal number of samples and total cost of each resolution level of the
low-fidelity (2D) model and the high-fidelity (3D) model for a Multi-Level Multi-Fidelity approach.

For the high-fidelity model only the pilot samples are run, since for each resolution level l the optimal
number of samples per level Nl = 10. This is unsurprising, since the correlation between the model fidelities
is high and thus the MLMFMC approach deems the high-fidelity model cases to expensive to run with respect
to the low-fidelity model cases. The total summed cost of the MLMFMC approach is 5329.23, whereas the
total cost of the equivalent number of high-fidelity samples is 6396.57. This means that there is a decrease
in computational cost of 17%. In order to compare results of the MLMFMC approach with the equivalent
number of high-fidelity samples, a general MCM study is executed.
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High-Level High-Fidelity Monte Carlo
The histogram in Figure 5.12 is determined using general MCM for the equivalent number of high-fidelity
samples or High-Level High-Fidelity Monte Carlo (HLHFMC). The estimated drag coefficient Cd = 4.27 is
larger than the estimated drag coefficient determined using the MLMFMC approach, the same holds for the
standard deviation, which is σCd = 0.79 for the HLHFMC. The shape of the histogram is similar to that of the
MLMFMC approach with a peak at the beginning.

Figure 5.12: Histogram of the drag coefficient as a result of a general Monte Carlo simulation with N = 53 samples using a high-resolution
high-fidelity model. The estimated drag coefficient is Cd = 4.27 with a standard deviation of σCd

= 0.79

5.4. True value of estimated drag coefficient
In order to get an idea of what the ’true’ estimated drag coefficient is, all samples taken are plotted in Fig-
ure 5.13. In green the true value of the drag coefficient according to the 3D case, which is C 3D

d = 3.89 and in

red for the 2D case C 2D
d = 3.64.

Figure 5.13: Scatter plot of all the estimated drag coefficients.
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MLMC 2D HLMC 2D MLMC 3D HLMC 3D MLMFMC HLHFMC
Cd 3.92 4.28 4.18 4.29 3.89 4.27
σCd 0.77 0.77 0.79 0.81 0.73 0.79

Table 5.12: Summary of results of the first case study.

To summarize, the results from both MLMC simulations and the MLMFMC with corresponding high res-
olution high-fidelity simulations are presented in Table 5.12. Every simulation appears to be overestimating
the true value, except for the MLMFMC. This overestimation with respect to the true value is very apparent
in all cases of high resolution and/or high-fidelity. The reason for this overestimation is, presumably due to
the large range of inflow velocities (range of 0.8) and the corresponding large large of drag coefficients (range
of around 4.5). The standard deviation remains relatively constant regardless of simulation method and is
not reduced below 0.73. In hindsight, it might have been better to apply a different case setup. Instead of the
large range of mean inflow velocities, it would possibly have been better to apply a uniform distribution on a
small interval around a point of interest e.g. the first Ū = 0.2 m/s or second Ū = 1.0 m/s benchmark case. The
MLMFMC does estimate the true value correctly, it should be noted though that the relative computational
cost of MLMFMC with respect to MLMC in 2D is a factor five higher.

Concluding, the MLMFMC is correctly applied to a simple fluid dynamics case since the estimated value
corresponds to the true value. The large irreducible standard deviation indicates that the range of input
values used might not be optimal for the application of the MLMFMC and thus smaller ranges could be used
in future studies using interval analysis for example. The computational cost reduction is demonstrated and
results are compared with a general Monte Carlo simulation at high resolution and high-fidelity. The high
resolution high-fidelity simulation overestimates the drag coefficient. It is presumed this overestimation is
due to the large range of mean inflow velocities.
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6
Results: parametric study

In this chapter the results of the parametric study as described in section 4.2 are described. First the be-
haviour of Strouhal number by varying porosity and Reynolds number is presented. In the next section the
described results are fitted using a number of general fit functions. Lastly, a number of fits are selected to be
implemented as low-fidelity models, which are used in the final case study in the next chapter.

6.1. Summarized results of the parametric study
The results of the parametric study are summarized in Figure 6.1 and Figure 6.2. During validation of the
porosity model, the step function-like behaviour of the Strouhal versus the porosity was noticed with the step
at porosity β= 0.275. Now, after the parametric study, it appears this behaviour is near constant for the range
of Reynolds numbers applied with a Strouhal number of around St = 0.26.

Figure 6.1: Scatter plot of the parametric study. With porosity and Reynolds numbers and a colorbar which denotes the estimated
Strouhal number.
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Figure 6.2: Surface plot of the parametric study with Strouhal number versus porosity and Reynolds numbers.

The only exceptions are at the lowest Reynolds number of Re = 3350 and the highest two Reynolds num-
bers at Re = 30150 and Re = 33500. Also noteworthy, there is a sudden jump at Re = 33500 for porosity
β = 0.3. At porosity β = 0.15 and Reynolds number Re = 20100 there is a sharp increase in Strouhal number
to St = 0.79. It is presumed this estimated value is incorrect and a closer inspection of this case is conducted.
The outlier cases that are inspected are depicted in Figure 6.3 using green circles.

Figure 6.3: Scatter plot of the parametric study with green circles indicating the outlier cases, which are inspected.

6.1.1. Outlier case with β= 0.15 & Re = 20100
In Figure 6.4 the time signal and corresponding Fast Fourier Transform (FFT) are depicted. By simply count-
ing the peaks in the time signal, the vortex shedding frequency should be around fv s = 5 Hz. According to the
plot of the FFT the vortex shedding frequency is fv s = 4.81 Hz (green dashed line). Unfortunately it appears
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that the script used to automatically detect the peak corresponding to the vortex shedding frequency failed
and instead it selected the second largest peak, which is denoted by the dashed red line. To confirm this: the
frequency at the peak at the red dashed line is 14.21 Hz. Converting this frequency to the Strouhal number for
this case means: St = 14.21·0.0335/0.6 = 0.79, which means that this peak was indeed marked as the peak cor-
responding to the vortex shedding frequency. Fortunately, this is an outiler case being 1 out of 170 total cases
where the peak detection failed. However, this is indication that a more sophisticated method of peak detec-
tion should be used and that a human factor should also be considered when interpreting results. Lastly, to
determine the correct Strouhal number, the following calculation suffices: St = 4.81 ·0.0335/0.6 = 0.27. This
Strouhal number is expected when taking into account the values of the Strouhal number for surrounding
cases as depicted in both Figure 6.1 and Figure 6.2.

(a) Time signal of the lift coefficient.
(b) Fast Fourier Transform of the time signal with the green dashed line at
frequency of 4.81 Hz and the red line at frequency 14.22 Hz.

Figure 6.4: Time signal and corresponding Fast Fourier Transform of the first outlier case β= 0.15 & Re = 20100.

6.1.2. Outlier case with β= 0.30 & Re = 33500
For this case it is expected, based on the neighbouring cases that the vortex shedding frequency fv s = 0.
However, according to the results the Strouhal number is St = 0.26, which means a vortex shedding frequency
fv s = 7.81 Hz is detected. The order of magnitude of this result corresponds to that of the other results and it
is therefore of great interest to inspect this result. In Figure 6.5 the flow velocity field at experimental time t =
12.5 s is depicted. There is no sign of vortex shedding, further confirming the case that this is an outlier case.
In Figure 6.6 the time signal of the lift coefficient is depicted. The lift coefficient should be averaged around
zero for cases where vortex shedding occurs. For this case the lift coefficient is averaged close to zero, at
Cl = 0.00202, but the irregularity of the time signal indicates that this is not a case with vortex shedding. Lastly,
the FFT is depicted in Figure 6.7 with the red dashed line corresponding to the detected frequency peak. It
should be noted that the frequency signal plot is zoomed in and the FFT amplitude axis is limited from 0 to
1 in order to display the detected peak. Based on the aforementioned observations and the frequency signal,
it is concluded that this outlier case is due to the filter section of the vortex shedding frequency algorithm
failing.
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Figure 6.5: Flow pattern of the second outlier case (β= 0.30 & Re = 33500) at experimental time t = 12.5 s.

Figure 6.6: Time signal of the lift coefficient for the second outlier case (β= 0.30 & Re = 33500).

Figure 6.7: Frequency signal of the lift coefficient for the second outlier case (β= 0.30 & Re = 33500) with the red dashed line correspond-
ing to the detected frequency peak.
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6.1.3. Outlier case with β= 0.25 & Re = 30150
According to the results the Strouhal number is St = 0 for this case, meaning the vortex shedding frequency is
fv s = 0 Hz. Yet, the surrounding cases indicate that this is a possible false negative result. The flow pattern is
depicted in Figure 6.8 and it shows vortex shedding is present, indicating that this case is a false negative. For
further inspection, both time and frequency signals are depicted in Figure 6.9 and Figure 6.10 respectively.
According to a manual reading of the frequency signal the vortex shedding frequency fv s = 5.61 Hz, which
corresponds to a Strouhal number of St = 0.21.

Figure 6.8: Flow pattern of the third outlier case (β= 0.25 & Re = 30150) at experimental time t = 12.5 s.

Figure 6.9: Time signal of the lift coefficient for the third outlier case (β= 0.25 & Re = 30150).
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Figure 6.10: Frequency signal of the lift coefficient for the third outlier case (β= 0.25 & Re = 30150) with the red dashed line correspond-
ing to the detected frequency peak.

6.1.4. Outlier case with β= 0.20 & Re = 3350
For this case the Strouhal number is determined to be St = 0, which is indeed possible, however the drop to
zero frequency is at a lower porosity compared to all other cases. Hence it is an interesting case to inspect.
The flow pattern is presented in Figure 6.11 and there is vortex shedding, since several vortices are highlighted
on the image. Therefore there is an indication that this case is a false negative, the time signal and frequency
signal are presented in Figure 6.12 and Figure 6.13 respectively. The increasing amplitude of the time signal in
Figure 6.12 could indicate that the flow is not fully developed yet during the experimental time range of t = 10
to t = 15 s. Moreover, the lift coefficient is not averaged around zero, as is expected. The vortex shedding fre-
quency detection algorithm fails on these points, as it assumes both fully developed flow and a lift coefficient
averaged around zero. The lift coefficient could be higher in this case due to the increased distance at which
the vortices shed off. For this case, it appears that the vortices shed at a distance of 3 times the cylinder diam-
eter. Furthermore, an inspection is conducted on higher porosity cases to find the porosity at which vortex
shedding stops, assuming vortex shedding does stop at a certain porosity.

Figure 6.11: Flow pattern of the fourth outlier case (β= 0.20 & Re = 3350) at experimental time t = 12.5 s.
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Figure 6.12: Time signal of the lift coefficient for the fourth outlier case.

Figure 6.13: Frequency signal of the lift coefficient for the fourth outlier case with the red dashed line corresponding to the detected
frequency peak.

Determining the Strouhal number at Re = 3350
In Figure 6.14 several flow patterns are depicted for varying porosity levels β= 0.225,0.275 and 0.325 at Re =
3350. In all porosity cases up to β = 0.325 vortex shedding is detected, which gives the suggestion that the
vortex shedding frequency detection algorithm needs to be adjusted. Moreover, it appears that for increasing
porosity the distance -at which vortex shedding occurs with respect to the cylinder- increases. In total the
vortex shedding frequency is estimated for six cases, using the frequency signals by applying the FFT and by
visual estimation of the vortex shedding frequency using the video of the flow pattern in Paraview.
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(a) Flow pattern at porosity β= 0.225.

(b) Flow pattern at porosity β= 0.275.

(c) Flow pattern at porosity β= 0.325.

Figure 6.14: Flow patterns with highlighted vortices at experimental time t = 12.5 s of varying porosity β at Reynolds number Re = 3350.

The interesting part is that the vortex shedding does occur and thus the Strouhal number should not be
zero, since the vortices are seen in Figure 6.11. However, at this point there is a crossroads in the definition
of the Strouhal number. Officially the Strouhal number is a dimensionless number used to describe oscillat-
ing flow mechanisms, which -initially- was vortex shedding. Yet in this implementation and for the case of
a non-porous circular cylinder the vortex shedding frequency is of interest due to the possible occurrence of
resonance when the vortex shedding frequency is close to the natural frequency of the cylinder. Therefore,
vortex shedding frequency and frequency of lift force oscillation were the though of as the same and hence
the Strouhal number was used for the frequency of lift force oscillation in non-dimensional form. It appears
that the introduction of porosity to the problem of flow around a circular cylinder causes a divide to the for-
mulation of the Strouhal number as simply a dimensionless form of the vortex shedding frequency. Thus, a
formal definition is proposed:

From here on out,

1. the Strouhal number St refers to the vortex shedding frequency; and

2. the cylinderical Strouhal number Stc yl refers to the frequency with which the lift force on the cylin-
der oscillates.

In an attempt to explain the divide between the two different Strouhal numbers, the time signals of the
lift coefficients corresponding the to flow patterns from Figure 6.14 are depicted in Figure 6.15. Just like
in Figure 6.12 the lift coefficient does not oscillate around Cl = 0 anymore, but instead oscillates around
Cl ≈ 1.86. The same is true for the cases depicted in Figure 6.15. The amplitudes of the time signals increase
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for the case of β = 0.225 and β = 0.275, which could indicate that the flow is not fully developed yet and a
longer experimental time should be used for simulation. The time signal becomes less smooth for increasing
porosity with clear differences between the top and middle plot in Figure 6.15. Also the amplitude of the signal
is decreasing for increasing porosity. For the case of β= 0.325 the trend of increase in amplitude over time is
not present, moreover the oscillations are becoming nearly constant, since the maximum lift coefficient from
peak to valley is Cl ≈ 0.0008 compared to a peak to valley lift coefficient at β= 0.275 of Cl ≈ 0.0035.

(a) Flow pattern at porosity β= 0.225.

(b) Flow pattern at porosity β= 0.275.

(c) Flow pattern at porosity β= 0.325. Be mindful of the term +1.868 added to the ticks on the vertical axis.

Figure 6.15: Time signals of lift coefficient of varying porosity β at Reynolds number Re = 3350. Important note: the bottom image
vertical axis has an added value of +1.868 for the lift coefficient, yet the ticks are presented in this form due to the small differences of the
lift coefficient for this case.
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A possible cause for the divide between Strouhal number and cylindrical Strouhal number could be found
in the increasing length of the wake that is present behind the cylinder. Comparing Figure 6.8 with Figure 6.11
presents a clear difference in length of the wake behind the cylinder. In Figure 6.8 the vortex shedding occurs
nearly directly behind the cylinder, whereas in Figure 6.11 the vortices do not appear until a length of at least
3, possibly 4 times the cylinder diameter is reached.

The idea is that due to the increased porosity the lift force at the top (and bottom) of the cylinder do not
’feel’ the effects of vortex shedding anymore, because the vortex shedding occurs some distance away from
the cylinder. Therefore, there could be some relation between the porosity and the distance between the back
of the cylinder and the point at which vortex shedding occurs. Thus as a result of the parametric study a hy-
pothesis is presented:

For the case of water flow past a porous circular cylinder: increasing porosity results in an increase in
the distance between the back of the cylinder and the point at which vortex shedding occurs.

In order to properly support this hypothesis an in-depth study should be conducted on all results of the
parametric study. However due to time constraints and the goal of the thesis this is not done. A quick review
on literature is conducted in order to find an explanation of this behaviour and two papers were found that
support the hypothesis, both of which are conducted by Sun et al. [49] [50]. To summarize, the results from
[49] are presented in Figure 6.16 and the results from [50] are presented in Figure 6.17.

In Figure 6.16 the flow patterns of the first study are depicted. The top case is for a solid cylinder (a and
f), where vortex shedding occurs at the back of the cylinder. In the images on the right side a length scale
is depicted denoted by x∗, which is a length scale normalized using the cylinder diameter (D = 0.0335 m for
the parametric study). The length scale is then derived as x∗ = x

D and corresponds to the proposed distance
between the back of the cylinder and the point at which vortex shedding occurs. The results for larger porosity
cylinders are presented for porosity β= 0.37 b and g, for porosity β= 0.48 c and h, for porosity β= 0.61 d and
i and for porosity β= 0.67 e and j. The range of porosity values applied here is larger than the one inspected
in the parametric study. But, the proposed hypothesis could be confirmed using this experimental data.
Lastly, the length scale x∗ ≈ 5 for porosity β = 0.37 and x∗ ≈ 2 for the solid cylinder according to [49]. For
the inspected cases of the parametric study -which are at porosity values in between those two mentioned
values- this length scale is also between 2 < x∗ < 5.

A follow-up study [50] was conducted in which three conceptual models for vortex formation and decay
processes in the wake are proposed. In Figure 6.17 these three models are presented. The first model is for
a solid circular cylinder and depicts vortex shedding at the back of the cylinder at length x∗ ≈ 2. The second
model is for porosity ofβ= 0.48 depicts the vortex shedding at length x∗ ≈ 7 and the third model is for porosity
β= 0.61 with a vortex shedding length of x∗ ≈ 18

As a final note on the analysis on outlier cases of the parametric study, there are clear indications that
support the experimental results of Sun et al. [49] [50]. Hence, it is strongly recommended to further pursue
analysis of the results of this parametric study and to possibly set up the experiments of Sun et al. in a virtual
environment to validate the results using CFD. Future improvements on the current setup of the parametric
study are mostly allocated to the mesh and porosity model, as enumerated below.

1. For the mesh: apply a circular structured mesh instead of an unstructured mesh in order to properly
display the propagation of vortices through the mesh, especially further away from the cylinder.

2. For the porosity model: setup a case in which the drag coefficient is properly calculated; and

3. use this setup to also study the effect of porosity on the drag coefficient, as well as on the development
of wake vortices.
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Figure 6.16: Results from a study bySun et al. [49] on wake flow structures of screen cylinders using PIV.
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Figure 6.17: Results from a study bySun et al. [50] on the development of wake flow structures behind screen cylinders.

6.1.5. Interpretation of the physics of flow past a porous cylinder
As stated before, the lift force as experienced on the cylinder decreases for increasing porosity. As depicted
in Figure 6.15 the lift coefficient is not averaged around zero anymore at a porosity of 22.5% for the lowest
Reynolds number. The way the lift force decreases or the shape of a curve of lift force versus porosity is not
analysed in this study. In the results of the parametric study the frequency cuts off to zero at a certain porosity,
which is expected since this is the point at which the cylinder does not experience the lift force anymore due
to the increased wake formation length. The reason for the increased wake formation length is described as
flow bleeding, causing a delay in the interaction between the shear layers. The vortices persist for a longer
distance due to the weak interaction across the center line for a porous cylinder. The way the vortex street is
developed initially is the same as that of a solid cylinder [50].

6.1.6. Remarks on vortex shedding frequency detection algorithm
The vortex shedding frequency detection algorithm is constructed in a simple and low level manner. Based
on the results of the parametric study the algorithm performs fine for cases of high porosity β ≥ 0.4 and for
cases of low porosity β ≤ 0.2. The cases for porosity 0.2 < β < 0.4 the algorithm produced one confirmed
false positive (subsection 6.1.2), one confirmed false negative (subsection 6.1.3) and one true positive, but
with incorrect frequency value (subsection 6.1.1). Resulting in 3 out of 170 cases failure rate. Ideally, the
following improvements or implementations should be added to this algorithm in order to minimize the
need for human intervention.

1. Time signal analysis: determine when the flow is developed and detect oscillations;

2. Frequency signal filtering: more sophisticated method to determine which frequency peak corresponds
to the vortex shedding frequency, instead of using a percentage of the drag coefficient as filter criteria.

6.1.7. Summarized results after inspection of outlier cases
In Table 6.1 the changes made to the data of the parametric study due to the determined outlier cases are
summarized. A total of 3 out of 170 cases were changed. In the fourth and fifth column the re-determined
frequency of lift force oscillation and cylindrical Strouhal number are presented.
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6.1. Summarized results of the parametric study 6. Results: parametric study

Outlier
case

Reynolds number
Re [-]

Porosity
β [-]

Frequency
fl f [Hz]

Cylindrical Strouhal number
Stc yl [-]

1 20100 0.15 4.81 0.27
2 33500 0.30 0 0
3 30150 0.25 5.61 0.21

Table 6.1: Summary of changes to the results of the parametric study due to outlier cases.

After changing the results of these 3 outlier cases, the data is presented in a surface and scatter plot de-
picted in Figure 6.18 and Figure 6.19 respectively.

Figure 6.18: Scatter plot of the parametric study. With porosity and Reynolds numbers and a colorbar which denotes the estimated
Strouhal number.

Figure 6.19: Surface plot of the parametric study with Strouhal number versus porosity and Reynolds numbers.
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6.2. Data-fitting 6. Results: parametric study

It appears that at low porosity β = 0.1 to β = 0.125 and for Reynolds numbers Re > 10000 the cylindri-
cal Strouhal number increases very slightly from Stc yl = 0.22 to Stc yl = 0.26 and remains constant to around
porosity β= 0.2, after which a decrease in cylindrical Strouhal number is detected with the steepest decreas-
ing slope between porosity β= 0.25 and β= 0.275. For the case of Reynolds number Re = 3350 the cylindrical
Strouhal number is already at a maximum for porosity bet a = 0.1 and the steep decreasing slope occurs be-
tween porosity β = 0.175 and β = 0.2. Presumably, at low Reynolds numbers the behaviour as depicted in
Figure 6.19 occurs at lower porosity. However, this is just speculation and a thorough investigation should be
conducted for low Reynods number and low porosity for a proper description of the behaviour.

6.2. Data-fitting
In this section, the data from the parametric study as described in subsection 6.1.7 are data-fitted in order
to find possible empirical relationships between the cylindrical Strouhal number, Reynolds number and/or
porosity. A full list of functions to which the data is fitted, is presented in Appendix A.

According to theory the Strouhal number remains constant at St ≈ 0.21 for the subcritical Reynolds num-
bers regime. The same behaviour is noticed in Figure 6.19 and Figure 6.18. Although now, the interest lies
on the cylindrical Strouhal number, which is equal to the Strouhal number at porosity β= 0. The cylindrical
Strouhal number remains about constant per value of porosity with a maximum oscillation of Stc yl = 0.04
before the cut-off porosity is reached. The cut-off porosity of βco = 0.175 is reached fastest for lowest Reyn-
ods number Re = 3350. For the other Reynolds numbers, this cut-off porosity is βco = 0.25. The results of the
parametric study are data-fitted using 2D curve fits, for the case of cylindrical Strouhal number versus poros-
ity the fit function should have behaviour similar to that of the step function. The fit functions with similar
behaviour are:

• Gompertz function: y(x, a,b,c) = aexp(−exp(−b(x − c)))

• Hill function: y(x, a,b,c) = axc

bc+xc

• Weibull function: y(x, a,b,c,d) = a − (a −b)exp(−c|x|d )

Other functions were fitted as well, but by visual evaluation these were deemed unfit due to the following
arguments. These fits would create non-physical results (e.g. cubic function results in a negative cylindrical
Strouhal number for porosityβ> 0.3), the data could not be fitted to the fit function or the functions provided
very poor goodness of fit. It should be noted that no goodness of fit is calculated, but only a visual evaluation
is conducted since most of the fit functions implemented here are non-linear. Lastly, it is possible to fit a 9th

order polynomial to the data, but the resulting fit will most likely not be relevant as a low-fidelity model due
to overfitting. In the next subsections the results of the three fit functions are presented using 3D scatter plots.
All 2D scatter plots including individual fit functions are presented in Appendix B.

6.2.1. Gompertz function
In Figure 6.20 the scatter plot from the parametric study is curve fitted for cylindrical Strouhal number versus
porosity at each value of Reynolds number. None of the curve fits failed and no non-physical behaviour
is detected. The Gompertz function has the steepest slope at Reynolds number Re = 33500 and the slopes
at Reynolds numbers Re = 3350 and Re = 6700 are the least steep. The other seven functions have almost
identical shapes with little differences.
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6.2. Data-fitting 6. Results: parametric study

Figure 6.20: Scatter plot of the results of the parametric study with a curve fit of cylindrical Strouhal number versus porosity for each
Reynolds number using a Gompertz fit function.

6.2.2. Hill function
In Figure 6.21 the scatter plot is curve fitted using the Hill function, the same behaviour as described for the
Gompertz function is noticed. The main difference between the Gompertz function and the Hill function is
the shape of the curve at the beginning of the steep slope decrease. The slope of the Hill function is consis-
tently steeper, than that of the Gompertz function.

Figure 6.21: Scatter plot of the results of the parametric study with a curve fit of cylindrical Strouhal number versus porosity for each
Reynolds number using a Hill fit function.

6.2.3. Weibull function
In Figure 6.22 the Weibull function is fitted to the results of the parametric study. The shapes of the curve
fits correspond well with those of the Gompertz function. However, as depicted, the curve fit failed at two
Reynolds numbers, namely at Re = 13400 and at Re = 33500.
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6.3. Low-fidelity models 6. Results: parametric study

Figure 6.22: Scatter plot of the results of the parametric study with a curve fit of cylindrical Strouhal number versus porosity for each
Reynolds number using a Hill fit function.

6.3. Low-fidelity models
This section is dedicated to the transformation from a number of individual fit functions to a number of low-
fidelity models. The approach conducted here is simple non-weighted averaging of the fit parameters of the
ten individual fit functions, followed by a visual analysis of goodness of fit.

The Weibull fit function is not regarded as a suitable candidate for a low-fidelity model for several reasons.
The results of the Weibull fit function are incredibly similar to those of the Gompertz fit function, for two out of
ten cases the fit function failed and the Weibull fit function requires more fit coefficients, than the Gompertz
fit function. Therefore only the Gompertz and Hill fit functions are considered for low-fidelity models. In the
next subsection the two proposed low-fidelity models are presented and 3D scatter plots with the low-fidelity
models are depicted. The corresponding fit coefficients are stated and a visual goodness of fit is described. In
appendix Appendix B the 2D scatter plots with low-fidelity models are presented for each Reynolds number
case.

Gompertz model
In Figure 6.23 the Gompertz model is plotted in the 3D scatter plot of the parametric study with the following
fit coefficients: a = 0.26, b =−155.39 and c = 0.26. For most cases the Gompertz model corresponds well with
the results in the scatter plot, again the goodness of fit is worse for the cases of Reynolds numbers Re = 3350,
Re = 6700 and Re = 33500.
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6.3. Low-fidelity models 6. Results: parametric study

Figure 6.23: Scatter plot of the results of the parametric study with a curve fit of cylindrical Strouhal number versus porosity for each
Reynolds number using the calculated Gompertz model with a = 0.26, b =−155.39 and c = 0.26.

Hill model
In Figure 6.24 the Hill model is depicted in the 3D scatter plot of the parametric study with the following fit
coefficients: a = 0.26, b = 0.25 and c = −76.27. The differences between the Gompertz and Hill model are
-visually- almost negligible. The only visual difference is the shape of the curve at porosity β= 0.2.

Figure 6.24: Scatter plot of the results of the parametric study with a curve fit of cylindrical Strouhal number versus porosity for each
Reynolds number using the calculated Hill model with a = 0.26, b = 0.25 and c =−76.27. .

As a short evaluation on the fit coefficients, it is assumed these are constant over the Reynolds numbers.
This is not correct as can be seen in the results, but the differences are small and for a low-fidelity model this
is deemed sufficient and will be evaluated in the next case study. For further research, the data could be fitted
using surface fitting. Another possibility is to assume a dependency of the fit coefficients on the Reynolds
number, since the cut-off in frequency is more influenced by porosity than the Reynolds number.
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7
Results: interval analysis using MLMFMC

The results of the final experiment are described in this chapter. In section 7.1 the computational costs used
for the low-fidelity models and high-fidelity model are summarized. Next the results of the parametric study
with interval analysis are presented, followed by an analysis of the correlation between high- and low-fidelity
models. The case setup is different from that of chapter 6 in order to assess validity of the low-fidelity models
in a general sense without overfitting. Lastly, a short description is added on the determination of bounds of
epistemic uncertainty of the high-fidelity model.

7.1. Relative computational cost
In contrast to the relative computational cost estimation in section 5.1, the computational cost here is not
derived on time averaging after running a number of cases. This decision was made for the reason that these
cases are much more computationally expensive. Therefore it was deemed a better investment of time and
computational resources to estimate the computational cost using an interpolation of the number of cores
used and the number of cells in the mesh. For the case of 3D model fidelity at the lowest resolution level an
average run time of t = 60 s on 48 cores is estimated based on the results of chapter 6. The low-fidelity model
based on fits or simple equations are estimated to take an average run time of t = 0.0005 s. This corresponds
to a relative computational cost of C LF = 1. The relative computational costs are summarized in Table 7.1.

low resolution [-] middle resolution [-] high resolution [-]
LF (equation) 1 - -
HF (3D) 64.800 ·106 174.048 ·106 348.288 ·106

Table 7.1: Total estimated relative computational cost of the low-fidelity model (equation) and the high fidelity (3D) model for Multi-
Level Multi-Fidelity Monte Carlo.

7.2. Data points from the interval analysis
First the results from the interval analysis using MLMFMC are presented. The results are obtained using
MLMFMC with varying low-fidelity models, namely the Gompertz and Hill model as described in section 6.3.
The estimated cylindrical Strouhal numbers with the corresponding error bars are plotted in Figure 7.1 and
Figure 7.2 for Gompertz and Hill respectively. On first sight the results look equal, which is almost true. The
differences in the estimated value and standard deviation are in the third and fourth decimal respectively.
Therefore, the following analysis applies to both plots.
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7.2. Data points from the interval analysis 7. Results: interval analysis using MLMFMC

Figure 7.1: Estimated cylindrical Strouhal number versus porosity using the Gompertz model as the low-fidelity model.

Figure 7.2: Estimated cylindrical Strouhal number versus porosity using the Hill model as the low-fidelity model.

The points that immediately stand out are the points for which there is no error bar present. These points
are located at β = 0.22, β = 0.28, β = 0.29 and β = 0.30. According to the MLMFMC the variance is zero for
these cases, hence no error bars are present. For further investigation, the correlation between model fideli-
ties is plotted in Figure 7.3. The high- and low-fidelity models are clearly uncorrelated for both low-fidelity
models. Furthermore, it is noted that the difference of the high-fidelity model appears to be constant at
Y HF = 0.2. The same behaviour is detected for the other porosity values, the figures for these are depicted in
Appendix C. Since the values of the difference function for the high-fidelity model are so closely grouped fur-
ther research should be conducted on the frequency detection algorithm. It is suspected that the frequency
resolution is too low to pick up on small differences in frequency, since all samples of the high-fidelity model
result in exactly the same cylindrical Strouhal number, which results in a single value of the difference func-
tion and thus no variance.
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7.2. Data points from the interval analysis 7. Results: interval analysis using MLMFMC

(a) Correlation plot of high-fidelity model 3D CFD with low-fidelity model
Gompertz model.

(b) Correlation plot of high-fidelity model 3D CFD with low-fidelity model
Hill model.

Figure 7.3: Correlation plots of the difference function between high-fidelity 3D CFD and low-fidelity models Gompertz (left) and Hill
(right) for β= 0.22.

Another observation for these points without error bars are the points at β = 0.29 and β = 0.30. These
values have a negative cylindrical Strouhal number. This makes no sense physically, although it could be
explained using the difference function. In case the majority of the difference function terms are negative, the
estimator constructed on these differences is also negative. To follow up this explanation, the output files are
analysed and after inspection this explanation seems to be correct. To clarify, in Figure 7.4a and Figure 7.4b
the difference function of the pilot samples for porosity β = 0.30 are depicted. These plots show that the
difference function is either 0 or −0.2, which means the total sum of the difference function is negative as
well. Moreover, it is apparent here that the high-fidelity model has binary behaviour between 0 and 0.2, since
the difference function is either 0 or -0.2. From the results it is noted that the differences between resolutions
are either 0.2 - 0.2, 0 - 0 or 0 - 0.2. This further solidifies the idea that the frequency resolution is too low.

(a) Difference function of 10 pilot samples for porosity β= 0.30 for the differ-
ence between the lowest and middle resolution.

(b) Difference function of 10 pilot samples for porosity β = 0.30 for the dif-
ference between the middle and highest resolution.

Figure 7.4: Difference functions of pilot samples at porosity β= 0.30.

It could very well be for the case of β≥ 0.3 that the cylindrical Strouhal number truly is Stc yl = 0. And, that
the only reason there is a negative difference function is due to the epistemic uncertainty introduced by the
frequency detection algorithm. Although, no definite conclusion on the true value of the cylindrical Strouhal
number can be drawn from these results. It is also possible that the cut-off behaviour is so extreme due to
the low frequency resolution. The third observation is the large standard deviations of all points with error
bars. With the largest standard deviation being σStc yl = 0.13 at β= 0.25. These deviations are presumably so
large, since there are large variations of cylindrical Strouhal numbers for the selected range of porosity values.
Moreover, due to the binary-like behaviour of the high-fidelity model this variance should remain relatively
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7.3. Pearson correlation coefficient 7. Results: interval analysis using MLMFMC

large. The final observation is on the shape of the curve. There is no clear explanation or idea as to why it has
this shape with two peaks. It could be that the number of samples taken was too little. Another possibility
is that in this range of values the systemic error due to the frequency detection algorithm is at a maximum.
Although, no conclusion like that can be deduced from an interval analysis.

7.3. Pearson correlation coefficient
The Pearson correlation coefficient is analysed in order to investigate the validity of the low-fidelity Gompertz
and Hill models. In Figure 7.5 and Figure 7.6 the Pearson correlation coefficient is plotted versus the porosity
for the Gompertz and Hill model respectively. For the Gompertz model no Pearson correlation coefficient
is calculated at β = 0.3 (NaN is encountered). For the Hill model NaN is encountered at β = 0.20, β = 0.21,
β= 0.22, β= 0.28, β= 0.29 and β= 0.30. It is unclear why this is though, it could be that a division of zero by
zero occurs when the variance of the difference function of either fidelity model is zero. However, due to the
black box usage of Dakota, it is hard to pinpoint exactly why a NaN occurs. For some cases it can be presumed
that, since the variance of the high-fidelity model is zero for the cases with no error bars in Figure 7.1 and
Figure 7.2, that this means that at porosity values β = 0.22, β = 0.28, β = 0.29 and β = 0.30 the variance of
the high-fidelity model is zero. This would result in a division of zero by zero and thus resulting in a NaN.
Yet, in Figure 7.5 the Pearson correlation coefficient does exist for these values with β= 0.30 as the exception.
A thorough investigation on why these values are NaN could be conducted, although it is considered out of
the scope of this research. Moreover, for the Hill model in Figure 7.6, there are also values of the Pearson
correlation coefficient equal to NaN for β = 0.20 and β = 0.21. After an inspection of the pilot samples it
is concluded that the high-fidelity model variance is equal to zero here. The same high-fidelity model pilot
samples are used for the Gompertz model, but there the Pearson correlation coefficient is very close to zero
and not NaN. Therefore, it is unclear why the Pearson correlation coefficient is NaN or very close to zero for
similar data.

Figure 7.5: Pearson correlation coefficient versus porosity using the Gompertz model as the low-fidelity model.
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7.3. Pearson correlation coefficient 7. Results: interval analysis using MLMFMC

Figure 7.6: Pearson correlation coefficient versus porosity using the Hill model as the low-fidelity model.

On the other hand, there are two peaks in Figure 7.5 and Figure 7.6. One at β = 0.25 and the other at
β = 0.27. The peak at β = 0.25 is about equal for both the Gompertz and Hill model at ρ = 0.21. The high-
est Pearson correlation coefficient for the Gompertz model is ρ = 0.45 at β = 0.27. For the Hill model the
maximum Pearson correlation coefficient is also found at β= 0.27 with ρ = 0.58. This means the correlation
between the high- and low-fidelity model is relatively low compared to the results of the first case study in
chapter 5, which were at a minimum ρ = 0.94. The range between β = 0.24 and β = 0.27 could indicate that
the cut-off occurs, since the high-fidelity model samples are not constant and the Pearson correlation coeffi-
cient is not NaN or zero. Concluding, it is not possible to state that either low-fidelity model correctly captures
the physical behaviour, since an issue with the frequency detection algorithm resolution renders a number
of the results as possibly incorrect. There is a range of porosity values for which the Pearson correlation co-
efficient does exist or is larger than zero and the Pearson correlation coefficient is relatively low compared to
results from the previous case study (chapter 5). It is presumed that the epistemic uncertainty in the high-
fidelity model is present in the entire range of porosity values and no clear bounds are determined.
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8
Conclusions & recommendations

Firstly, the general summarized discussion of the experiments and literature research are described. Sec-
ondly, a conclusion is presented in order to answer the main research question. Thirdly, a list with recommen-
dations on future research is presented, also reflecting on technical obstacles and what could be improved
upon for this study.

8.1. Discussion
To answer the main research question, presented in chapter 1, four sub-questions are addressed. The first
one is covered in section 2.4, the second, third and fourth research questions are addressed in chapter 5, 6
and 7 respectively. The discussion of these is provided below.

• What is a low-fidelity model and are there low-fidelity models available from literature for application
in the parametric study?

This sub-question is addressed in the literature review, introducing a formal definition of low-fidelity
models as a model that follows a general trend of realism and has low computational cost. Furthermore,
a list of empirical relationships is presented between the Strouhal number and Reynolds number. No
empirical relationships with respect to the Strouhal number and porosity are found. Therefore, these
relationships are derived from the results of the parametric study (chapter 6).

• What steps are taken when applying Multi-Level Multi-Fidelity Monte Carlo methods on a simple fluid
dynamics case and how do the computational cost, estimated quantity of interest and estimated variance
compare to general Monte Carlo methods?

Chapter 5 is dedicated to the application and validation of Multi-level Multi-Fidelity Monte Carlo on a
fluid dynamics case. From literature a study on benchmark cases is used in order to validate the correct
application of Multi-Level Multi-Fidelity Monte Carlo using a 3D CFD case as the high-fidelity model
and a 2D CFD case as the low-fidelity model. In short, Multi-Level Multi-Fidelity Monte Carlo calculates
an optimal number of samples per resolution level using a pre-defined number of samples and then
reconstructs the estimator using results from varying model fidelities at varying resolution levels. The
pre-defined number of samples are called pilot samples. First, general Monte Carlo is applied using
the pilot samples for each model fidelity and resolution level. Moreover, for each resolution level two
samples are taken for each pilot sample: one sample for the higher resolution level and one for the
lower resolution level. This is important since the difference function is calculated between resolution
levels. If the input values of the two resolution levels differ, then the difference function is statistically
irrelevant. The optimal number of samples per resolution levels are calculated using the results of
the pilot samples. Thereafter, additional samples are taken for the optimal number of samples per
resolution level. The results of the pilot samples and calculated optimal number of samples are then
combined in order to reconstruct the estimated value. The estimator variance and computational cost
of the Multi-Level Multi-Fidelity Monte Carlo should be reduced with respect to general Monte Carlo.
The application is considered successful, since the estimated quantity of interest corresponds to the
expected value, the variance and the computational cost are reduced with respect to general Monte
Carlo.
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• What is the effect of increasing porosity on the vortex shedding frequency of a porous circular cylinder
and can an empirical relationship be discovered?

In chapter 6 the results of the parametric study are described, an in-depth analysis is done in order to
formulate an explanation for the observations. The effect of increasing porosity on the vortex shedding
frequency is conducted using the Strouhal number. According to literature, for a non-porous circu-
lar cylinder, the Strouhal number should remain constant around St = 0.2 for the subcritical Reynolds
numbers regime. According to the results of the parametric study a somewhat similar behaviour is no-
ticed. The Strouhal number remains constant or increases slightly to St = 0.26, but remains about con-
stant around that value. The most interesting observation is the cut-off in Strouhal number at porosity
of around 30%. The Strouhal number has a step function-like behaviour, where for porosities under
30% it remains about constant and around 30% it drops to St = 0 very fast. The suggested physical
explanation for this observation is based on the distance between the back of the cylinder and point
at which vortex shedding occurs. It appears that this distance increases for increasing porosity. There-
fore, the Strouhal number -which is calculated using the oscillations of the lift force as experienced
by the cylinder- differs from the Strouhal number of actual vortex shedding. For increasing porosity,
a point is reached at which the cylinder does not experience or ’feel’ the lateral forces due to vortex
shedding anymore. Lastly, two empirical relationships are proposed from the results which capture the
step function-like behaviour of the Strouhal number for increasing porosity.

• How can low-fidelity models be applied using Multi-Level Multi-Fidelity Monte Carlo and how do these
reflect on the validity of this approach?

In chapter 7, Multi-Level Multi-Fidelity Monte Carlo and a parametric study on the effect of porosity
on the Strouhal number are combined in order to indicate validity of the two proposed low-fidelity
models. From the results, no clear indication of validity can be concluded. No boundaries of the range
in which epistemic uncertainty is prevalent, can conclusively be determined. Since the Multi-Level
Multi-Fidelity Monte Carlo approach cannot be effectively applied for epistemic uncertainty propaga-
tion for the porosity values at which the Strouhal number is zero. This is because the variance of the
high-fidelity model is near zero at these values, resulting in no correlation between model fidelities.
Furthermore, a critical assessment is conducted for the high-fidelity model, since there are some im-
portant observations regarding systemic errors present in this last experiment. Lastly, at this moment
there are no clear final conclusions based on this final experiment. However, the observed trends of the
effects of systemic error in the high-fidelity model on Multi-Level Multi-Fidelity Monte Carlo warrants
further investigation.

8.2. Conclusion
The sub-questions are used to answer the following main research question:

How can Multi-Level Multi-Fidelity Monte Carlo be applied in fluid dynamics topics and what is the
contribution of its application on the effect of porosity on the vortex shedding frequency for a porous cir-
cular cylinder?

The process of applying Multi-Level Multi-Fidelity Monte Carlo to fluid dynamics topics is summarized
in the second sub-question. By applying the Multi-Level Multi-Fidelity Monte Carlo method to the case of
flow past a porous circular cylinder, the goal is to implement the low-fidelity models derived in chapter 6
using the MLMFMC in order to get an impression validity of these low-fidelity models on a case with different
geometries than that of chapter 6. However, the impression was that it could not be validated using the
MLMFMC, due to the presumed systemic errors present in the high-fidelity model. The first indication of
this systemic error was found in the analysis of the results in chapter 6. The bounds in which this error was
most likely to occur, is in the range of porosity values between 20 and 30%. Since this is the range of porosity
values in which the change in Strouhal number is largest. In order to obtain conclusive results, it is especially
necessary to reduce the systemic error in this range of porosity values, albeit the systemic errors should be
reduced in the entire range of values as well. The suspected way to achieve this is to increase the resolution of
the frequency range in the Fourier transform, as this is determined to be the largest influence on the systemic
error.
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8.3. Recommendations
Based on this work the following recommendations are made for further research. These recommendations
are comprised of points for future research and obstacles encountered during this study.

• Dakota
Even though Dakota is a relatively easy to use the black-box like features can be a burden to deal with
when trying to analyze intermediary results. Also the user guide available online by Sandia Labs is
sometimes unclear, not in-depth enough or data is missing or unavailable.

• olaFlow toolbox & porosity modeling
The drag coefficient was not validated and therefore the porosity model should be validated. Since the
force coefficients are calculated using pressure integration handled by OpenFOAM, hence it is likely that
the forces are incorrectly calculated using the setup of the porosity model used in this study. Starting
from the basics of the porosity model, it is quite likely the assumptions used here, were incorrect. The
model assumptions are on thin walled structures and for wave-structure interaction. Meaning, the
linear and temporal term were neglected and only the quadratic term was considered. For the case
setup used in this study, it might have been better to assume the quadratic and temporal terms should
be neglected and use the linear term, due to the absence of waves.

• Study effect of porosity on vortex formation length by validation of experiments & new (numerical)
experiments
Very little publications [49] [50] were found that report on the effect of porosity on the vortex formation
length. Moreover, with the current setup available it would not be a large step to reconstruct the case
setup and to validate the results of the papers by Sun et al. using numerical experiments. This can either
be done using the porosity model or even constructing the porous region in the mesh. After validation
of the porosity model, the parametric study (chapter 6) can be re-done in order to validate the results
of this study. Another possibility is to study the effect of introducing waves to the cylinder or study the
effect of the increased formation length on varying setups of multiple cylinders.

• Frequency detection algorithm
The frequency detection algorithm caused some problems, especially in the last case study. Therefore,
the frequency resolution should be increased and case studies 2 and 3 could be done again. Moreover,
in a general sense of an automatic frequency detection algorithm the following points are of interest for
further research:

– Automatically detected when a flow pattern is fully developed

– Find a way to effectively filter out incorrect frequency peaks in the frequency spectrum.

• Validate proposed empirical relationships/low-fidelity models
Two empirical relationships are proposed with similar behaviour, perhaps it is interesting to validate
these relationships using experiments. Although it is also likely that the currently selected fit coeffi-
cients over- or underestimate the true behaviour, so it is instead suggested to remember the Gompertz
and Hill fit functions when a similar parametric study is conducted.

• Mesh
The meshes used in this study are not checked for convergence or optimized in any way. It is recom-
mended to do a mesh convergence study in the future and maybe use a structured mesh in order to
have better control on the smallest cell that is created, especially near the porous region of the cylinder.

• Low-fidelity models & uncertainty problems
Even though low-fidelity models are described in the literature review, some obstacles were encoun-
tered during the last case study and the definition presented in the literature might not be adequate.
Moreover, when applying methods like MLMFMC more time should be spend on defining the uncer-
tainty problem. In this thesis, quite some mistakes have been made in setting up a ’correct’ uncertainty
problem due to inexperience with the topic. Hence, it is suggested to invest more time in setting up
the uncertainty problem, as well as finding suitable low-fidelity models for the specific case of applying
MLMFMC.
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A
Fit functions

The fit functions applied here are taken from a book by NCSS Statistical Software chapter 351 (page 351-2)
available athttps://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/
Curve_Fitting-General.pdf (last accessed on: 11-06-2021).
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a+bx+cx2

exponential1 y = ea(x−b)

monomolecular y = y = a(1−e−b(x−c))
parameterlogistic3 y = a

1+be−cx

parameterlogistic4 y = d + a−d
1+be−cx

Gompertz y = ae−e−b(x−c)

Weibull y = a − (a −b)e−c|x|d

Morgan-Mercer-Floding y = a − a−b
1+c|x|d

Richards y = a(1+ (b −1)e−c(x−d))
1

1−b

logarithmic y = bln(x −a)
power y = a(1−bx )

powerpower y = axbxc

exponential sum y = ae−bx + ce−d x

exponential type 1 y = axbe−cx

exponential type 2 y = (a +bx)e−cx +d

normal y = a +be−c(x−d)2

log normal y = a + b
x e−c(ln(|x|−d))2

exponential2 y = ae−bx

Michaelis-Menten 2 y = ax
b+x + cx

d+x

Michaelis-Menten 3 y = ax
b+x + cx

d+x + f x
g+x

Hill y = ax
c

bc+xc
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B
Data fit plots

In the first two sections the Gompertz and Hill fit function are fitted to each case. In the last two sections all
plots using a generalized Gompertz or Hill fit function are depicted using averaged fit coefficients.

Gompertz fit function: individual fits
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B. Data fit plots
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B. Data fit plots

Hill fit function: individual fits
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B. Data fit plots

Gompertz fit function: generalized fit
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B. Data fit plots
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B. Data fit plots

Hill fit function: generalized fit
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B. Data fit plots
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C
Correlation plots

(a) Correlation plot of high-fidelity model 3D CFD with low-fidelity model
Gompertz model.

(b) Correlation plot of high-fidelity model 3D CFD with low-fidelity model
Hill model.

Figure C.1: Correlation plots of the difference function between high-fidelity 3D CFD and low-fidelity models Gompertz (left) and Hill
(right) for β= 0.28.

(a) Correlation plot of high-fidelity model 3D CFD with low-fidelity model
Gompertz model.

(b) Correlation plot of high-fidelity model 3D CFD with low-fidelity model
Hill model.

Figure C.2: Correlation plots of the difference function between high-fidelity 3D CFD and low-fidelity models Gompertz (left) and Hill
(right) for β= 0.29.
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C. Correlation plots

(a) Correlation plot of high-fidelity model 3D CFD with low-fidelity model
Gompertz model.

(b) Correlation plot of high-fidelity model 3D CFD with low-fidelity model
Hill model.

Figure C.3: Correlation plots of the difference function between high-fidelity 3D CFD and low-fidelity models Gompertz (left) and Hill
(right) for β= 0.30.
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