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Abstract

For my Master’s thesis, I developed and trained an audio-based localization system for indoor localization
called AudioLocNet. AudioLocNet is based on convolutional neural networks and maps recordings from a
small(10 cm diameter) microphone array to a grid of locations around said array. AudioLocNet was made to
be used by swarms of small robots to locate each other using audio signals. AudioLocNet was trained using
orthogonal chirp signals which have a low cross-correlation. Said signals can also be used for simultane-
ous communications between multiple robots. These signals were recorded in indoor environments ranging
from simple line-of-sight environments to reverberant non-line-of-sight ones. Audio signals are used since
they form a propagational middle class when compared to radio frequency (RF) and light-based signals for
localization. Whereas light requires a line of sight, audio can bend around corners; and whereas RF signals
pass through walls, reaching robots that are outside of each other’s spheres of influence, audio will not.

AudioLocNet reaches high accuracies for both a coarse grid (99.96 %) and a fine grid (99.89 %) of possible
locations, where only the final layer of the network architecture must be changed to account for the increased
resolution of the fine grid.

Casper van der Horst
Delft, November 2022
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1
Introduction

Swarm robotics is a field that focuses on methods of solving robotic problems by using large numbers of
small, non-complex robots instead of large highly specialized ones. Although each individual robot is unable
to complete the task efficiently or (often) at all, the interactions between them result in a behavioural pattern
that can not only complete the task at hand but can also result in more efficient solutions than what a single
(more complex) robot would be capable of. These so-called emergent behaviours emerge from interactions
between members of a group, and can often be found in nature, which is where this field of study finds much
of its inspiration. Ants are well known for showing swarming behaviours. They can use themselves to build
structures like bridges [50] and scaffolding [40] in order to make resource collection more efficient, where
the ants collectively find an optimum between increasing the foraging performance of the workers and the
workers lost as building materials for the structures. Bees also show impressive feats of emerging behaviours.
Clusters of bees are capable of regulating the internal temperature of clusters spanning more than 10,000
individual bees. This is achieved by expanding or contracting the cluster size. This way the swarm can hold a
constant internal temperature over a large range of outside temperatures [47]. Not all examples of emergent
behaviour come from the world of insects, as illustrated by the flocking/schooling of birds and fish [29]. These
communal movements are governed by individual members balancing avoidance, alignment and attraction
behaviours between themselves and nearby neighbours based on how close they are to those neighbours.

The main attributes of a robotic swarm are its scalability, flexibility and robustness, which, respectively,
means that swarms can deal with various numbers of members, can adapt to changing environments and are
able to operate even as individual members break down. This results in swarms acting in decentralised and
local manners in regard to communication, localization and decision-making.

For a swarm to function, it is important that the members can locate each other. Popular inter-robot lo-
calization methods for swarm robots include (infrared) light [1, 4, 5, 20, 25, 42, 45, 52, 65] and radio frequency
(RF) based [11, 16, 43, 46, 57, 60] methods. Although there are papers on audio localization on robots [48],
these focus mainly on locating other sources around the robot or on self-localization based on locating a
beacon source with a known location [6].

1.1. Motivation
This thesis investigates whether audio signals can be used for inter-robot localization for small microphone
arrays. The main motivation for audio as a localization medium comes from how it has a different observation
space than RF or light-based signals. The following properties show how this observation space is different:

• Low communication range.
In the open air, two phenomena work on sound to decrease its intensity, firstly the geometric decrease
due to the inverse square law, according to which the sound intensity is inversely proportional to the
square of the distance to its source; and the attenuation from the air itself. The attenuation of the
amplitude of a signal is determined by Equation 1.1, with A0 the initial amplitude and x the distance
travelled. The attenuation factor is determined using Equation 1.2, where η and ηv are the dynamic and
volume viscosity, respectively, ω is the angular frequency of the sound, ρ is the density of the medium
and V is the speed of sound in said medium. For RF signals under 10 GHz attenuation due to the air is
negligible [30], meaning that (barring obstacles), radio frequency signals can travel further than audio
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2 1. Introduction

signals.
Since swarm robots work on local data, a signal which reaches too far can result in a robot using pro-
cessing resources to decode messages from other robots which are outside of its sphere of influence
and which it has no use for.

A(x) = A0 ∗exp−ax (1.1)

a = 2
(
η+ηv

)
ω2

3ρV 3 (1.2)

• High attenuation by walls.
Another major contributor to the differences between communication ranges between RF and audio
signals in indoor environments comes from how they respond to walls. [23, 27] give partition losses
for double plasterboard walls in the range of 3.4–3.8 dB, whereas research from the National Research
Council Canada [26] on sound propagation through a plethora of different indoor wall materials and
constructions had the following results (Figure 1.1) for a dual plasterboard wall with no insulation. This
shows that after passing an indoor wall, the power of an RF signal is 10–70 dB less attenuated than a
sound signal. This would make the RF signal 16–107 times stronger than an audio signal transmitted at
the same power level. This means that two robots utilizing audio localization on opposite sides of a wall
will have a much harder time detecting each others presence when compared to RF based localization.
Since these robots are unable to interact (due to the presence of the wall), there is no need to have to
use computational resources on locating said other robot.

• Bending around obstacles.
The above two properties showed how the use of audio helps in reducing the observation space when
compared to RF signals. However, by using audio the observation space may acctually be increased
when compared to light-based signals (that behave similarly to audio in regards to the previously stated
properties). Audio signals bend around the corners of walls or other obstacles. Light rays, however, do
not demonstrate this behaviour. The advantage of such bending behaviour of audio signals becomes
clear with the following scenario. Imagine two robots approaching each other at right angles and a
wall blocking the line of sight between them. If these robots were locating each other using light-based
signals, then they would only learn of each other’s existence right before a possible collision when it
might be too late to prevent a crash! If, on the other hand, these robots were using audio signals, they
could notice each other in advance. After locating each other they could use a communication method
or a set of traffic rules to determine which robot passes first.
Another advantage that comes from bending around obstacles instead of going through them, is that
when two robots locate each other. The determined sound direction points towards the path the sound
took around the obstacle.

There are two more advantageous properties to the use of audio over light or RF. Firstly, unlike light-based
signals, audio is not influenced by environmental lighting conditions. IR-based sensors can be influenced
by other IR sources like sunlight as shown by [49]. Another lighting concern comes up when using cameras,
since these require light to hit the sensor, it forces a user to illuminate the operational area or equip each
robot with lighting of its own. By using audio a hypothetical swarm-powered warehouse could operate in the
dark, saving on the total energy consumption of the building. Lastly, when audio signals with frequencies
in the human audible range (20 Hz–20 kHz) are used, humans may use their own ears to locate (or at least
determine the presence of) robots in their surroundings. Simultaneously, a robot equipped to locate things
based on sound could locate an operator based on sound signals made by said operator. This human-robot
awareness can aid in making systems where humans and robots work together on a task.

1.2. Problem Statement
With the stated properties of sound it becomes an interesting localization medium when the focus is on short
range, indoor localization where one only wants robots to interact if the traversable distance between them
is low, but when there is no line of sight between them. As such the main research question is:

• How can we leverage audio and AI to create a localization method for inter-robot localization?
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Figure 1.1: Transmission loss for sound signals with different frequencies, for a double plasterboard wall with no insulation in between
the panels [26].

1.3. Key Contributions
For this thesis, I designed and trained a neural network-based audio source localizator which uses a small
(10 cm diameter) microphone array consisting of six microphones to locate sources up to 250 cm away. This
network, called AudioLcoNet, was also used in [68] where we made a complete system for inter-robot audio-
based communication and localisation, where the communication were also used to facilitate localization.
The novelties of this AudioLocNet lie in:

• the use of orientation-aware input padding to account for the circular nature of the microphone array;

• that AudioLocNet outputs both distance and direction from a small microphone array; and

• that the network is able to localize signals from sources without a line of sight between the source and
the microphones.

Additionally, the recordings used to train the networks were made in the real world using actual hardware.
These recordings are made available to others to use to train their own networks.

1.4. Limitations
• This study doesn’t consider the computing power of the robots, as such timing and real time perfor-

mance are outside of the scope of this work.

• No research was done into the effects of outside noise, Although the recordings were made in the real
world with no additional noise was added to decrease the signal to noise ratio of the recordings.

1.5. Thesis Structure
The remainder of this work is structured as follows: firstly, Chapter 2 will discuss existing works and back-
ground in the fields of swarm robotics and different localization systems. Chapters 3 and 4 explain how the
different parts of the system work and the data gathering and training process, respectively. Chapter 5 dis-
cusses the results of testing the network and its performances. Lastly, in Chapter 6, I will give some closing
remarks on the system as a whole.





2
Background and related work

This section discusses the state of the art in terms of audio source localisation and swarm robotics

2.1. Swarm robotics
In nature social insects like ants, bees and birds show an ability to perform complex tasks which are far be-
yond the capabilities of individual swarm members. These tasks are performed by the group without any
centralised oversight [9] and their execution is the result of each swarm member following relatively simple
rules. The group behaviour following from these individual rules is called an emergent behaviour [39]. Swarm
robotics is focussed on how to coordinate swarms of simple robots and the emergent behaviours resulting
from the interactions between them [54].

Such swarms, whether natural or robotic, poses the following main advantageous properties [15]:

• Robustness. Robustness encompasses the ability of the swarm to continue operation in the face of
losing members, this can be achieved in many different ways, such as having enough redundancy in
the number of robots that a failed individual can be replaced by another. Another aspect of robustness
comes from the decentralised nature of the swarm, this means that there isn’t a specific "brain" of the
swarm which would render the swarm useless when lost. Lastly, the low complexity of the individual
swarm members helps in preventing errors in individual robots.

• Flexibility. Flexibility refers to the ability of the swarm to adapt to new, different or changing require-
ments of the environment. In nature, redundancy, behavioural simplicity and task allocation promote
the flexibility of a swarm [7].

• Scalability. A scalable swarm is able to function with differing numbers of members, and their be-
haviours should support large groups of members. The use of local communication and sensing meth-
ods is therefore important for a scalable swarm. As global communication methods can start to struggle
when large numbers of swarm robots try to use them.

In order to solve a complex task using a single robot, that robot needs to be designed with a complicated
structure and control modules which results in a high cost of design, construction and maintenance [63].
This may also result in a single point of failure for the task, where if a part of the robot breaks down, the entire
task completion process could be at risk. When using a robotic swarm for such a task, many of such problems
can be mitigated, as illustrated by the following advantages.

• Parallelism. When a task comprises multiple parts distributed over an environment, the size and dis-
tributed nature of a swarm allows it to complete the multiple parts simultaneously, speeding up the
process. Search tasks also greatly benefit from a swarm’s parallel capabilities, as the swarm can search
at multiple places at once.

• Scalability. The locality of the interactions within a swarm enables it to handle changes in the swarm
size without disturbing the operation of the swarm as a whole. This also means that it is not required
to change the hardware or software when robots join or leave the swarm.
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6 2. Background and related work

• Cost. The individual swarm robots can be made simpler which helps to reduce the cost of the entire sys-
tem. Additionally, since a swarm consist of large numbers of robots it can benefit from the economies
of scale to reduce the cost even further.

• Stability. The scalability of a swarm gives it a matter of redundancy. This means that it remains able
to complete tasks (albeit with reduced performance) when members malfunction or break down. This,
in combination with the cost advantage, makes swarm robots well-suited for environments which are
dangerous to the robots themselves, as the cost of losing a robot is low and isn’t detrimental for task
completion.

• Energy efficiency. Another advantage of their small scale and simplicity is that smaller robots are usu-
ally more energy efficient than large ones. Also, when a swarm requires fewer members its scalability
principles allow it to shut down members which do not have a task, to reduce the total energy usage.

2.2. Relative localization
In order to work together, each swarm member needs to know where the other members are. This is both for
collaboration (e.g. not checking the same area multiple times in a search task) and for collision avoidance.
Therefore a swarm robot system requires some localization method such that each robot can localize the
other swarm members. Localization techniques can be split into two types, global and relative localization
techniques.

Global localization techniques are techniques where the locations of all robots are determined by a cen-
tral/global entity which transmits the coordinates to the robots. Examples of such a system include having
robots equipped with markers and motion capture cameras with accompanying software to communicate
the locations to the robots [18, 31], and using ultra-wideband (UWB) localization systems comprising fixed
anchors and tags [75]. Although these methods give good localization accuracies and speeds for smaller
numbers of robots, their reliance upon global communication methods and centralised localization systems
means that they do not match well with the scalability property of a swarm robotic system.

In relative localization methods, each robot localizes the other robots in its direct vicinity, these methods
are also referred to as local localization methods. These methods are more suitable for scalable swarms since
they do not use global communications or centralised systems. The method described in this thesis is such
a relative method, as all robots make their own sounds which the surrounding robots can detect. As such
there is no single entity running the calculations to locate all members, nor is this method reliant on beacons
which have known locations.

2.2.1. Light based
The most popular localization methods include infrared (IR) light transmitters and receivers. Like the Kobots
[65] which use a sensing scheme to which comprises a kin-detection phase and a proximity-sensing phase.
In the proximity-sensing phase the robot transmits directed modulated IR light at varying power levels and
receives reflections using directed IR receivers. Based on the power of the recorded reflections, the robot
determines that there are obstacles in certain directions and at certain distances. During this phase, other
robots which are in the kin-detection phase would receive the IR signal from the first robot and use that to
determine the location of the first robot. In order to prevent cross-talk, a carrier sense multiple access with
collision avoidance (CSMA-CA) scheme is used.

The robots from the Jasmine project [1], AMiR [4], Colias [5] and R-One [42] use similar techniques for
neighbour localization where a ring of IR transceivers outputs signals to be detected by the IR transceivers
of the neighbouring robots. These systems determine the direction towards the transmitting robot based on
which transceiver receives the signal. Therefore the accuracy of such systems depends on the number of
transceivers used. Often these systems also include local communications into the transmitted IR signals,
merging localization and communication. The popularity of this method is expressed further by works like
[25] where an open-source localization and communication system was developed which could be added to
any swarm robot to enable IR-based localization and communication.

Another implementation of IR for relative localization comes from the Kilobots [52], these robots are able
to manoeuvre over a 2D plane to form shapes. In order to keep the size small (each robot is 3.3 cm in diameter)
and the cost low, the designers decided to work with only the distance to and not the direction towards the
other swarm members. Therefore only a single IR transceiver is required per kilobot. This transceiver is
pointed downwards and the other kilobots receive the IR signal reflected from the ground (Figure 2.1). The
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Figure 2.1: Localization via reflected IR from Kilobots[52]

signal strength (i.e. light intensity) of the received signal is used to determine the distance. Similar to the
Kobots, Kilobots use CSMA-CA to prevent cross-talk.

Another light-based localization system can be seen in the SWARM-BOTS project [20]. This system com-
prises S-bots which are, along with other sensors, equipped with LED rings and omnidirectional cameras.
The cameras are used to localize the illuminated led rings. Nouyan et al. [45] show two methods with which
S-bots can use their cameras and LED rings to form paths from a nest location to a prey location, where nei-
ther location is known beforehand. In the first method, the robots first need to find the nest or an existing
path. After which they either form a new path or move to the end of the path to join it. Robots that are part
of the path have one of three colours (blue, yellow or green) and said colour is determined by the colour of
the robot in front of it in the path. This creates a cyclic colour pattern which can be used by other robots to
navigate towards the end of the chain. In the second method robots which are part of a path form a vector
field that points along the path towards the nest. This pointing is done by lighting up specific sectors of the
LED ring. Any robot finding a path can then use the vector field to navigate to the end and extend the path.

Apart from the popular light-based localization methods, other relative localization methods can also be
observed, some of which are discussed below.

2.2.2. Ultra-wideband
UWB communication methods use radio frequency (RF) signals to communicate data between transmitters
and receivers. These signals cover a large frequency bandwidth which enables the use of a large total signal
power without interfering with narrowband signals. UWB-based localization techniques are gaining in pop-
ularity, especially in environments where satellite-based localization methods (like GPS) struggle. Above, it is
mentioned how UWB-based localization may be used as a global localization method requiring fixed anchors
which localize moving tags. However, works like those of Morón et al. [43] and Stier et al. [60] are based on
different methods where robots locate themselves and others relative to movable anchors, which are also part
of the robot swarm.

The most popular metric for UWB localization is called the time of flight (ToF). ToF-based techniques
firstly determine the propagation time of a ranging message between a transmitting node and a receiving
node, and then use the speed of light to compute the distance between them. Such ranging messages con-
tain timestamps of when they were transmitted. These techniques fall in either of two categories, one-way
ranging (OWR) or two-way ranging (TWR), based on whether clock synchronisation between the two nodes
is required. In OWR the ranging message is transmitted in a single direction and the receiving node computes
the ToF based on the transmission timestamp from the message and the receive time of the message at the
receiving node. OWR requires that both nodes have their clocks synchronised. This makes these techniques
more complex and therefore less popular than the TWR methods. In TWR a response message is returned to
the transmitting node by the receiving node. Said response message carries the required processing time Tp,1

that the receiving node needed to return the message. The transmitting node can then determine the round
trip Tr,1 by comparing the time of when it send the ranging message with the time it received the response.
The transmitting node can then compute the propagation time Tpr op using Equation (2.1). This technique is
referred to as Single-Sided TWR (SS-TWR). If the transmitter sends another response message to the receiver
node with its own processing time Tp,2, then the receiving node can compute its own round trip time Tr,2.
This technique is then referred to as Double-Sided TWR (DS-TWR) and Tpr op can then be determined via
Equation (2.2). DS-TWR tends to result in more accurate estimations than SS-TWR [57]. Figure 2.2 depicts
both the SS-TWR method and the DS-TWR method and illustrates when the different time measurements are
taken.

Tpr op = 1

2
(Tr,1 −Tp,1) (2.1)
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Figure 2.2: Communication process and timing definitions for SS-TWR and DS-TWR

Tpr op = Tr,1 ·Tr,2 −Tp,1 ·Tp,2

Tr,1 +Tr,2 +Tp,1 +Tp,2
(2.2)

One of the main challenges of TWR methods is their lack of scaling. This is due to the time slots required to
perform a TWR exchange which needs to be scheduled to prevent collisions with other transmissions, where
these slots also have limited time bandwidths. This drastically decreases the communication frequency with
each added node [43]. Stier et al. [60] tackle this by developing a dynamic and more localized TDMA-based
slotting system to give the pairs of nodes the required time slots for TWR. The strength of their protocol lies
in how it handles joining and leaving nodes and in that it handles nodes that are in motion. A different
solution comes from Morón et al. [43], who propose a (dynamically allocated) split of active and listener
nodes, wherein the smaller subset of active nodes comprises the nodes which form a convex envelope around
the listener nodes. The active nodes use TWR to locate each other. The listener nodes, on the other hand,
eavesdrop on these TWR exchanges to obtain the distances between the active nodes and to determine a
time difference of arrival (TDOA) between the signals from the active nodes. The listener nodes are then able
to use the TDOA to locate themselves relative to the active nodes.

2.2.3. RFID
Radio-frequency identification (RFID) technology is built around tags and readers. The RFID-tags comprise
radio transponders and small memories to store identifying information. If a reader transmits an RF signal
towards a tag, then the tag automatically responds by returning its identifying information. RFID tags can
be divided into two categories, active and passive, based on their power source. Active tags contain batteries
to supply the energy for the transmission; whereas passive tags harvest the energy received from the signal
transmitted by the reader for the reply. Due to having their own power source, the signals coming from active
tags are stronger than those from passive ones, resulting in larger transmission ranges going up to 100 meters.
The passive tags on the other hand can be a lot smaller and lighter due to not having a battery, this makes
them well suited for integration in other products like library books or identification cards [71]. The low-
powered and cheap nature of RFID tags makes them an appealing option when a large number of products
need to be tracked. Therefore Charléty et al. [11] utilize a network of active RFID tags distributed over a 30× 30
meter area of an active landslide to track the movement of said landslide over a period of 11 months. Here the
motion of the tags was recorded relative to a nearby antenna array. Most RFID localization methods require
complex calibrations of the antennas to produce accurate localization results. Patel and Zawodniok [46] trie
to remove this requirement by implementing a deep learning-based RFID localization method. Their method
uses beam steering with four antenna sections connected to a single RFID reader to create "images" depicting
the phases and signal strengths returned by the passive tags. A convolutional neural network then uses these
images to estimate the location of the tag relative to the antenna. Although the use of low-power tags (even
zero power in the case of passive tags) for localization is very appealing for many fields (like warehouses and
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Figure 2.3: Direction finding methods included since Bluetooth version 5.1

motion tracking), these techniques do not work well with a swarm robotic system. This is because all the
localization calculations take place on the reader device, which should then communicate the calculateed
locations to all swarm robots. This breaks the scalability aspect of swarm robots.

2.2.4. Bluetooth

Bluetooth is a well-known communication standard whose signals occupy the 2.40–2.42 GHz band. Rudi-
mentary localization in the form of distance sensing has been commercially available since 2013 with the
introduction of Apple’s iBeacon and Google’s Eddystone (introduced in 2015) protocols. These protocols are
for locating Bluetooth low energy (BLE) beacons. BLE beacons are Bluetooth transmitters which broadcast
messages which include their own identifier and a reference transmission power. This reference transmis-
sion power tells a Bluetooth receiver (like a smartphone) the expected signal power at a predefined distance
from the transmitter. With this reference and the received signal strength indicator (RSSI), the receiver can
estimate its distance to the beacon.

Coppola et al. [16] show how to use such RSSI measurements to avoid collisions between multiple flying
robots. In their system, Bluetooth advertising messages are used to have each robot broadcast its altitude and
velocity (relative to magnetic North). The RSSI of said message as recorded by a receiver is then merged with
the data using an extended Kalman filter to determine the location of the transmitter relative to the reciever.
This localization scheme powered a collision avoidance system which was able to drastically increase the
time to collision with up to 3 drones in an enclosed space.

Since Bluetooth version 5.1 (January 2019) direction finding capabilities were added to the standard. The
thusly included angle of arrival (AoA) and angle of departure (AoD) methods allow for, respectively, multi-
antenna receiver or transmitter arrays to be used to have the receiver determine the direction that the trans-
mission came from (Figure 2.3). In the AoA case, the receiver samples each antenna to determine the phases
between the recorded signals. In the case of AoD, it is still the receiver that determines the phase differences
resulting from the multi-antenna transmitter. However, this does require that the receiver has knowledge
of the physical configuration of the transmitting antenna array. Using the dimensions of the multi-antenna
array used (by the receiver for AoA or the transmitter for AoD) and the determined phase differences, the
receiver can determine the direction that the received message was transmitted from. In order to facilitate
direction-finding, the BLE standard includes so-called direction-finding signals. These signals contain a con-
stant tone extension (CTE) is a pure tone that the receiver uses to determine the direction of the transmission
[74]

Toasa et al. [64] tested the AoA method and showed that it resulted in RMS errors below 0.5° if the source
was within 30° from the normal of a linear antenna array comprising 4 antennas. Ye et al. [77] showed that
a sub-meter accuracy is possible when using a planar antenna array (12 antennas forming a square border)
facing a plane of BLE transmitters. On the AoD front, Shin et al. [56] show that with only two transmitting
antennas a mean angular error of 2.5° can be reached.
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2.2.5. Wi-Fi
Wi-Fi signals are omnipresent in modern-day indoor environments and, as more and more devices are wire-
lessely connected to the internet, this presence will continue to grow. Since Wi-Fi also uses RF signals, re-
search in localizing these signals is also conducted.

Back in 2018 Soltanaghaei et al. [58] showed that it was possible to use multi-path reflections to enable a
single multi-antenna receiver to locate a transmitter without explicitly communicating with said transmitter.
They firstly estimate the AoA, AoD and ToF of the line of sight path, and also of several reflected paths. The
channel state information (CSI) is used for these estimations. With these parameters for multiple paths, it is
possible to determine not only the location of the transmitter but also its orientation and the location of the
reflecting surface of the reflected path. It is most notable that this method does not require explicit commu-
nications between the initial transmitter and receiver, meaning that the localization can be performed by a
third party listening to Wi-Fi traffic between other nodes.

Soltanaghaei et al. [59] try to bypass the need for dense RFID antenna networks needed for RFID-based lo-
calization by leveraging existing Wi-Fi infrastructure. They introduce TagFi, a system comprising backscatter
Wi-Fi tags. These tags use backscattering to modulate arbitrary signals coming from a common Wi-Fi access
point. A receiving user device (like a phone or laptop) then receives/eavesdrops on the arbitrary signals and
their modulated counterparts to identify and localize the tag.

2.3. Audio source localisation
Unlike RF and light based signals, which propagate via electromagnetic waves, sound propagates via vibrating
the molecules of the medium it is in. This results in sound waves that struggle with going through solid objects
and that do not propagate far. While at the same time these vibrations are more capable of bending around
obstacles, meaning that the sound traverses the path without obstacles. For these reasons this thesis uses
audio as a medium for localization.

Audio source localisation comprises estimating the location from which an audio signal originates, rela-
tive to the listener. The source positions are generally estimated in two parts: the Direction-of-arrival (DoA)
and the distance. These two parts are handled separately [48].

2.3.1. Classical localization
Most classical methods work in two phases: first they extract specific features from the recordings and then
they apply a feature-to-location mapping in order to estimate the location of the audio source based on
the extracted features. This mapping relation relies on a sound propagation model which models what the
recorded features look like based on the audio source location. Techniques which use such a structure will be
referred to as classical techniques as these do not use machine learning techniques in their localisation.

Feature Extraction
The first step of audio source localisation comprises the extraction of features. The following are some of the
more popular features:

• Time difference of arrival (TDOA). This denotes the time difference between the arrivals of the same
signal at different microphones, where those microphones located closer to the source receive the sig-
nal earlier than those located further away. Based on the signal and the microphone setup this can also
be called the inter-aural time difference (ITD), for systems with 2 microphones using pinnae 1, or the
inter phase difference (IPD) for when a narrowband signal is recorded. A popular way of determining
the TDOA is via cross-correlation, where the GCC-PHAT technique [36] is the most popular.

• Inter-microphone intensity difference (IID). The IID is the energy difference between two signals at
the same point in time. This feature uses the attenuation difference between microphones at different
distances to aid in the localization. If the energy differences at specific frequency components are
extracted, then it is referred to as the Inter-microphone level difference (ILD), in which case the energy
spectra are compared.

• Spectral notches. Microphones which use pinnae will have certain frequencies amplified or attenuated
due to reflections of audio signal against the auricle. The locations of these spectral notches, on the
frequency spectrum, depend on the location of the audio source [32].

1microphones with a synthetic auricle to mimic an ear
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It is also possible to use multiple features in conjunction with each other and when the feature set is a
combination of the IPD and the ILD then it is referred to as binaural or spectral cues. This combination is
mostly used when an artificial head with ears (simulating a human head) is used, where (due to interference
and obstruction of the head) high and low-frequency sounds are primarily localized using the ILD and ITD
features respectively [72].

Feature-to-Location Mapping
The propagation models used in the feature-to-location mapping depend highly on the extracted features,
the geography of the microphone array in relation to the source locations and environmental characteristics
like reverberance and obstructions. The following 3 types of propagation models are used often:

• Free-field/far-field model. This is the most popular model since it works from two simple assumptions.
The free-field assumption states that there are no reverberations or obstacles between each source and
microphone. Therefore every possible source has a single, straight path to each microphone. By using
the far-field assumption the model assumes that the distance between the source and the microphone
array is sufficiently large relative to the diameter of the microphone array that the sound waves can be
modelled as being planar instead of spherical.

• The Woodworth-Schlosberg spherical head model [73] models sound waves propagating over a spher-
ical head and is often used when microphones are placed on robotic heads.

• The near-field model is used when the sound source is expected to be near the microphone array rela-
tive to the diameter of the microphone array. At such distances, the waves propagating from the source
must be modelled as being circular. The circular waves make the computation more complex. This
model is not used too often and there are even works which attempt to modify the far-field model to be
usable in the near field [3, 66]. However, using this model also allows for the simultaneous determina-
tion of both the distance and DOA of a source, as shown by Chen et al. [14]

For some mapping procedures, it is possible to directly map the features to specific locations. However,
for some features, it is required to test for different locations to see whether the expected results match the
recorded features. Such mapping procedures make use of a grid-search to find the source locations and are
especially prevalent when multiple sources are to be located at the same time.

Two other popular sound source localization techniques are MUSIC [55] and the delay-and-sum (DAS)
beamformer [19]. These do not extract specific features as mentioned before but use subspace orthogonal-
ity and steered power response respectively to search for source locations. These methods will be briefly
explained due to their popularity and differing structure when compared to techniques mentioned before,
though it should be noted that these techniques are also used in non-audio-based techniques, as they work
on the recorded signals coming from multiple sensors.

MUSIC
Multiple signal classification (MUSIC) is a subspace method for DOA determination. Instead of extracting
specific features from the recordings, MUSIC works directly from the frequency domain representations of
the recording. MUSIC represents the received signal as Equation 2.3, where X contains the frequency do-
main representations (in F frequency bins) of the recordings from the M microphones in an M ×F matrix;
S represents the frequency domain representations of the D transmitted signals in a D ×F matrix and Ws

represents the TDOAs from each signal to each microphone in an M ×D matrix. Lastly, the M ×F matrix V
represents the noise received on each microphone.

X =WsS+V (2.3)

MUSIC tries to estimate the TDOAs of the D signals with the following steps. First, eigendecomposition is
performed on the sample covariance matrix R̂ ofX . Resulting in the decomposition of R̂=QΛQ−1. HereΛ
is a diagonal matrix containing the eigenvalues of R̂ (in descending order) andQ contains the eigenvectors.

Based on the sizes of the eigenvalues,Q is then split into the matricesQs andQv containing the first λs

and the remaining M −λs columns, and representing the signal and noise subspaces respectively, wherein
the index value λs is chosen as an index of the smallest value of a group of large, non-zero eigenvectors. Here
MUSIC assumes that the large eigenvalues comprise the signal subspace and the small eigenvalues comprise
the noise subspace.



12 2. Background and related work

sin1:     0
sin2:   77
sin3: 100


saw1:  200
saw2:    97
saw3:  212


Steering
direction

Steering
delays 


Figure 2.4: Overview of a delay and sum beamformer, where the beam is steered towards one of the sources.

MUSIC finds the DOA by performing a grid-search with different direction candidates for orthogonality
with the subspace of noise eigenvectors Qv . Each direction candidate θ comprises an M × 1 vector b(θ)
with expected TDOAs for each of the M microphones given the candidate θ, wherein the TDOAs of b(θ) are
computed based on a propagation model like those described above. If b(θ) points into the direction of a
source in the source subspace, then, due to the orthogonality between the eigenvectors of the subspaces,
b(θ) will be orthogonal to Qv . This orthogonality is tested with Equation 2.4. When plotted over multiple
candidates P (θ) will form peaks at the directions which correspond to source locations.

P (θ) = 1

b(θ)HQvQ
H
v b(θ)

(2.4)

Beamforming
The steered response power localization method from [19] is an example of a beamforming-based localiza-
tion method. In beamforming, a sensor array is electronically steered in a specific direction by using spatial
filters on the signal lines of the array elements. For audio localization, these sensors are the microphones, but
beamforming is also used in other fields like signal transmission and reception of RF signals using antennas
[69]. The delay and sum (DAS) beamforming technique is the simplest beamforming technique [48] and has
been shown to work for audio signals [38].

An overview of DAS beamforming is depicted in Figure 2.4. Reciption of a transmitted signal s(t ) at mi-
crophone m of a microphone array can be modelled as xm(t ) in Equation 2.5, where am represents the at-
tenuation of the signal, vm(t ) the noise or other signals received at the microphone, ts the propagation delay
from the sound source to a predetermined reference microphone of the microphone array and τm the TDOA
between microphone m and the reference microphone (which can be either negative or positive).

xm(t ) = am s(t − ts −τm)+ vm(t ) (2.5)

In DAS beamforming the microphone array is steered by delaying or advancing the recorded signals based
on a steering direction θ. Based on a selected propagation model (like those discussed before), the array
dimensions and a steering direction θ the TDOAs for each of the M microphones, relative to the reference
microphone, are computed as τ̂m (where τ̂m = 0 for the reference microphone). The steered recordings are
then as follows:

xm,steer ed (t ) = am s(t − tS −τm + τ̂m)+ v(t + τ̂m) (2.6)

Note that if the steering direction points towards the source the computed TDOAs and the TDOAs of the
recordings are the same, i.e. τ̂m ≈ τm . Therefore the signal part of Equation 2.6 becomes s(t − ts ) which is the
same for each microphone m. Then the DAS beamformer sums the steered recordings from all microphones
together and normalises the output to the number of microphones M (Equation 2.7).

p(t ) = 1

M

M∑
m=1

xm,steer ed (t ) (2.7)
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If the steering direction is pointing towards the source then the signal part s(t ) becomes M times larger
after summing than the noise parts. In order to use DAS for sound source localization, the beamformer grid-
searches through different steering directions until it finds a peak in the energy of the summed recording
p(t ).

Because DAS-beamforming searches in specific directions it is possible to localize multiple sources at
once. However, the power peaks of a DAS search tend to be quite wide, which results in a low resolution of the
search grid [21]. Valin et al. [67] tackle this by whitening the signal and processing the delay in the frequency
domain, which results in narrower peaks. They then introduce spectral weights to aid in the detection of
narrow-band signals and to increase the robustness against noise.

2.3.2. Machine learning-based localization
Machine learning excels when the relationship between the input and output is non-linear. This makes it an
effective tool for sound source localization. Machine learning can be applied in the sound source localization
process in different ways. First, machine learning can be used in the feature mapping stage of the classical
localisation methods mentioned above. In such a case a network is trained on extracted features as inputs
with known source locations, thereby removing the need for using explicit propagation models and the as-
sumptions they bring. This is especially advantageous when the features are difficult to map, like when using
spectral notches resulting from pinnae [44]. This use of learned mapping is also popular when using multiple
features, like the binaural or spectral cues used by Saffari et al. [53] and Deleforge et al. [17]. Additionally,
Rodemann et al. [51] and Youssef et al. [78] show this mapping’s robustness against reverberations. He et al.
[28] used a Deep Neural Network (DNN) to enable a humanoid robot to localize up to two simultaneous
speakers. As an input feature, they used the generalized cross-correlation with phase transform (GCC-PHAT)
[37]. Usually, this feature is used to determine the TDOAs between microphones. However, He et al. [28] used
it as the direct input of their network. The robot that they work with does not fit within existing propagation
models, therefor deep learning was used to learn the required mapping for localization.

Apart from the aforementioned methods of learning the mapping relationships, there are also machine
learning methods which try to handle the entire localization process with the network. These so called end-
to-end methods do not use preprocessed features, but the direct recordings from the microphones (though
in some cases the recordings are first converted to the frequency domain). This allows the neural network to
utilise an input which is much richer in features than a method which uses only a set of extracted features.
Vera-Diaz et al. [70] present an end-to-end localization method that uses the raw recorded signals as inputs
to the network. Firstly, they trained the DNN in simulation and then fine-tuned it with small real-world data
set. Adavanne et al. [2] showed that their proposed DNN is capable of determining the bearings of up to three
overlapping sounds from different sources. They mix both classification and regression to identify the source
for each location. Chakrabarty and Habets [10] presented a DNN that consists of only convolutional and fully
connected layers to determine the DOA of up to 3 speakers. They used a classification network to locate each
of the many sources in one of 37 DOA classes spanning half a circle.

Another promising application of machine learning comes from the field of sensor fusion. In sensor fu-
sion data from different sensors is combined to create a more complete picture than could be done with
the sensors individually [22]. A good example of this comes from Chen et al. [12, 13], who work on the
SoundSpaces project. They present a simulated robot capable of detecting and navigating towards a sound
event using a DNN that processes both visual and audio signals.

Lastly, deep neural networks are very capable to process large amounts of data, as shown by Xu et al. [76],
which uses an array consisting of 64 microphones in order to locate up to 25 simultaneous sources.

This thesis uses machine learning to localize other robots because of it’s ability to handle non-linear rela-
tionships and because it’s able to learn from challenging, environments (like those where there is no line of
sight between the transmitter and the receiver), to be more applicable in real world situations.





3
System Overview

Below the specifics of the recording hardware, sound signals and the architecture of AudioLocNet will be
described.

3.1. Hardware
In my work, I used Raspberry PI 4s to handle any of the audio transmission and recording tasks. These Rasp-
berry Pis were equipped with a ReSpeaker 6-Mic Circular Array from Seeed [61]. This off-the-shelve micro-
phone array contains six microphones equally distributed around a 10 cm diameter circle. The microphone
array is connected to an accompanying PI shield which directly hooks into the Raspberry Pi. This shield also
has a speaker output, to which a 6Ω 2 W speaker [62] is connected. This speaker is attached to the micro-
phone array using a 3D-printed bracket (self-designed). A fully equipped Raspberry Pi can be seen in Fig-
ure 3.1. A full hardware stack containing the Raspberry PI, the microphone array and the speaker is called a
Chirpy. For each Chirpy, a line coming from the centre of the microphone array, through the centre point be-
tween the first and second microphones is defined as the 0° (or forward) direction where the angle increases
when turning clockwise.

3.2. Sound signals
3.2.1. Chirp Signals
The AudioLocNet method focuses on inter-device localization, where the robots use audio for communica-
tion. Such devices can use different types of signals for their communication, such as narrowband signals like
pure sine waves or wideband signals like white noise. However, narrowband signals struggle with construc-
tive and destructive interference which is especially problematic for energy-based distance measurements.
Wideband signals have fewer problems with this as the constructively interfering frequencies balance out the
destructively interfering frequencies [41]. However, noise signals can be difficult to detect as they have, by
definition, bad convolutional qualities. Chirp signals give the best of both worlds, as they are both wideband,
but also show strong correlation properties, which makes them easy to detect.

Chirp signals (sometimes called sweep signals) are signals whose frequency continuously increases or
decreases over time, wherein the way that the frequency changes (e.g. linear or exponential) differs between
different chirp types. Figure 3.2a depicts the spectrogram of a linear chirp 1 which starts at fs = 50Hz and
ends at fe = 300Hz in T = 5 seconds. Figure 3.3 shows correlation plots of the correlations between the
aforementioned chirp 1 and, respectively, itself, another chirp 2 ( fs = 10, fe = 250, T = 5), a pure sine wave
of 175 Hz, and white noise, where all signals have the same mean power. The spectrograms of the three new
signals are depicted in Figures 3.2b to 3.2d. Note the high correlation peak when chirp 1 correlates with itself
and how different it is when compared to the other signals. This peak makes the signal easy to detect.

3.2.2. Orthogonal Chirps
During my work on this thesis, I worked together with another student who was researching Aerial Acoustic
Communication (AAC) [68], where robots communicate using audio signals. In order to facilitate multiple
simultaneous transmissions, we based our signals on orthogonal chirp (Ochirps) signals as introduced by

15
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Figure 3.1: A Chirpy consisting of a Raspberry Pi 4 with the microphone array, accompanying shield and speaker stacked on top. Where
the forward (or 0°) direction is denoted by the blue arrow
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(a) Chirp 1, linearly increasing from 50 to 300 Hz.
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(b) Chirp 2, linearly increasing from 10 to 250 Hz.
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(c) Pure sine 175 Hz
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(d) Gaussian white noise

Figure 3.2: Spectograms for four different signals
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Figure 3.3: Auto and cross-correlations of chirp 1 with 4 signals, split into a full scale and a zoomed-in version. Note the high
autocorrelation peak compared to the crosscorrelation peaks with the other signals.

[34]. Ochirps allow for multiple simultaneous transmissions where each transmission uses the same time-
frequency resources. This is achieved by using a technique similar to frequency hopping. The chirp is divided
into M sub chirps, where each sub chirp comprises a chirp signal spanning 1/M-th of the bandwidth of the
full chirp in 1/M-th of the total time, where none of the sub-chirps have overlapping frequencies. Sub chirps
{1,2, . . . , M } are then reordered to create a signal that spans the entire bandwidth and time as the original
chirp. This process is depicted in Figure 3.4 for M = 8. It is possible to make groupings of M sets of orders
where none of the corresponding signals have overlapping frequencies at the same point in time (Figure 3.5).
Ochirps are generated by selecting M such that the individual Ochirps have low crosscorrelation but relatively
high autocorrelation peaks. This behaviour is depicted in Figure 3.6 for the set of Ochirps from Figure 3.5. This
means that the different Ochirps can be detected, even if they are not neatly aligned (i.e. all starting at the
same time).

AudioLocNet was trained using the same orthogonal chirps that were used as part of the AAC protocol
and are depicted in Figure 3.5, meaning that the robots could locate each other while communicating.

We also added an envelope over each sub-chirp to reduce the amplitude of the signal at the endpoints of
each sub-chirp. This prevents popping noises and distortions which can occur when the audio signal changes
faster than the loudspeaker can handle. This can be observed in the time series plot of the signal for chirp 1
(Figure 3.7).



18 3. System Overview

0 3 6 9 12 15 18 21 24
Time [ms]

5.5

6

6.5

7

7.5

8

8.5

9

9.5
F

re
qu

en
cy

 [k
H

z]

(a) Base chirp, linearly increasing from 5.5 to 9.5 kHz in 24 ms,
divided into 8 sub chirps each with a bandwidth of 500 Hz and

a duration of 3 ms
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(b) Ochirp 1, constructed of the 8 sub chirps from (a).

Figure 3.4: Process of generating a set or Ochirps with the frequency range of 5.5 to 9.5 kHz with a duration of 24 ms. The full chirp in (a)
is divided into 8 parts. These parts are then reshuffled to form an Ochirp (b). Ochirp 1 from (b) is part of the set of Ochirps depicted in

Figure 3.5.
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(b) Ochirp 2
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(d) Ochirp 4
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(e) Ochirp 5

0 12 24
Time [ms]

5.5

9.5

F
re

qu
en

cy
 [k

H
z]

(f) Ochirp 6
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(h) Ochirp 8

Figure 3.5: Set of 8 Ochirps generated from Figure 3.4
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Figure 3.6: Correlation envelopes for the set of Ochirps from Figure 3.5. Where each Ochirp is correlated with itself (autocorrelation, in
blue) and other Ochirps of the set (cross-correlation, in red). The cross-correlation graphs are superimposed onto each other to show
that none of the cross-correlations gets close to the autocorrelation peak. Note that for all Ochirps, the autocorrelation peak is at least

twice the highest cross-correlation
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Figure 3.7: Time series for Ochirp 1
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3.3. Localization
3.3.1. Location Grid
The localization of the Ochirp sources is done by the deep neural network AudioLocNet. AudioLocNet relates
a 24 ms, 6 microphone recording (made with the microphone array from Figure 3.1) to one of 96 possible
locations around the microphone array. These locations are depicted as the dots in Figure 3.8a where the
microphone array is illustrated as the green hexagon in the centre. The grid locations are constructed out
of 5 concentric circles (with the microphone array at the centre) with radii of 50 cm, 100 cm, 150 cm, 200 cm
and 250 cm, where the two smallest circles are evenly divided into 12 tiles each, and the remaining circles are
divided into 24 tiles per circle. For this grid the distances between locations range from 25.9 to 65.3 cm, with
a mean distance 50.6 cm.

For improved accuracy, a finer grid was made by adding locations in between said 96 locations, as de-
picted in Figure 3.8b. These points inhabit the intermediate rings at 75 cm, 125 cm, 175 cm and 225 cm. The
positions on the ring at 75 cm are spaced 30° apart, but at an offset of 15° from the forward direction. The
other rings have locations spaced 15° apart and at an offset of 7.5°. This finer grid consists of 180 locations
and reduces the maximal distance between two locations to 50 cm and makes the spread of neighbour dis-
tances more equal, as shown by the boxplots in Figure 3.9.

The parameters for the rings which construct the location grids are summarised in Table 3.1.

3.3.2. Deep Neural Network
The architecture of the final version of AudioLocNet is depicted in this subsection. During the research mul-
tiple different architectures were trained and evaluated. This version was selected as it has the best perfor-
mance and uses a smaller network than the different networks that were trained.

AudioLocNet comprises an input layer, three convolutional layers, and a dense (or fully connected) output
layer (Figure 3.10). The input of AudioLocNet consists of a 1060×6 array which, at a sampling frequency of
44.1 kHz, portrays a 24 ms recording window captured by each microphone, matching the length of a single
Ochirp. This length was chosen with the ACC system from [68] in mind. The ACC system crops a recorded
Ochirp of which it wants to know the location and sends this recording to AudioLocNet to perform sound
source localization.

The output layer has, respectively, 96 or 180 nodes depending on whether the coarse or the fine grid is
used. Each output node uniquely relates to one of the, respectively, 96 or 180 possible locations around the
microphone array (Figure 3.8). Therefore AudioLocNet is a classification network which determines both the
DOA and the distance of a sound source as one of 96 or 180 classes.

In the input layer, the 1060×6 input array is toroidally padded around the time axis in order to account for
the physical locations of the microphones. Without this padding, microphones 1 and 6 would be on opposite
ends of the data array even though they are located next to each other on the microphone array. In Figure 3.10,
the padding is illustrated by the copies of the channels at the input. Without this location-aware padding, the
network was more likely to overfit. The padded array is 11 channels by 1060 time samples in size.

The first convolutional layer has a 50× 1 kernel. By going over the individual channels, this layer helps
with finding the Ochirps. The second convolutional layer has a 20×6 kernel. The 20×6 kernel shifts over all
six microphones, where the 20 time steps per kernel ensure that a signal arriving at a first microphone during

Ring Distance [cm] Angle [°] Offset [°]
1 50 30 0
2 (f) 75 30 15
3 100 30 0
4 (f) 125 15 7.5
5 150 15 0
6 (f) 175 15 7.5
7 200 15 0
8 (f) 225 15 7.5
9 250 15 0

Table 3.1: Parameters for the rings of locations which form the location grids. Where the distance denotes the radius of the ring (which
is centred at the microphone array), Angle denotes the angular distance between two subsequent locations on the same ring and Offset

denotes the angular offset from the 0° direction. Note that the even rings (denoted with "(f)") are only used for the fine grid
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Figure 3.8: Two different location grids, with the Chirpy which records the sound at each centre, coarse grid with 96 locations (a) and a
fine grid with 180 locations (b).
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Figure 3.9: Boxplots depicting the different distances between neighbouring cells for the course and fine location grids from
Figures 3.8a and 3.8b respectively.
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Figure 3.10: AudioLocNet architecture, where the size of the final layer ("Dense x") is different depending on the number of
classification locations. For the coarse grid of Figure 3.8a x = 96, and for the fine grid of Figure 3.8b x = 180.

the first time step will be received by a microphone farthest away from said first microphone before the end
of the kernel.It should be mentioned that we intentionally dropped the use of a max-pooling layer after the
convolutional layer, which is a common practice. This is to maintain the time differences between the signals
received via different microphones. The last convolutional layer comprises a 10×3 kernel. All convolutional
layers consist of 64 filters and use rectified linear unit (ReLU) activation functions.

For the output layer, a softmax activation function converts the values of each node to a probability dis-
tribution over all output nodes of the network. The node with the highest value is then taken as the predicted
location by the network.



4
AudioLocNet

This chapter describes the process of producing a trained version of AudioLocNet. Starting from the data
collection, going through the training process and the validation of the network.

4.1. Data collection
In order to train the network to determine the sound location in different indoor environments a set of train-
ing data had to be collected. In order to cover different auditory landscapes, three different environments
were chosen to record sounds from:

• Free space environment;

• Reverberant environment, illustrated in Figure 4.1; and

• Non-line-of-sight (NLOS) environment, illustrated in Figure 4.2.

The recordings were made using two Chirpies: one listener Chirpy, which would be placed on a fixed
location; and one talking Chirpy, which would be placed on locations surrounding the listener, where the
locations surrounding the listener match the locations of the localization grids from Figure 3.8. For the free
space environment, the locations match the grid one-to-one. However, due to the presence of walls in the
reverberant and NLOS environments, partial patterns were used for those locations. After recording signals
from each location of such a partial pattern, the listener was rotated and new recordings were gathered. This
way recordings from all the locations of the full localization grid were gathered. The maps depicting these
partial patter for the talker locations for these environments are depicted in Figure 4.1 (reverberant environ-
ment) and Figure 4.2 (NLOS environment).

The free space environment has no obstacles between the talker and listener and there are no walls near
the listener to cause echoes. The microphones are 3 cm above the floor, this creates a second path for the
sound to take while travelling from the talker to the listener. This is to be expected for small robots moving
near the floor and was therefore kept constant between all environments.

In the reverberant environment (Figure 4.1) the listener was placed in the corner of two walls, with the
backside of the Chirpy facing a wall at 15 cm and the wall on the right side being at a distance of 40 cm, where
the distances are measured from the centre of the microphone array.

For the NLOS environment (Figure 4.2), the listener is placed 15 cm from its facing wall and 26 cm along
the wall, from the corner of said wall. From the perspective of the listener, the corner behind which the lis-
tener locations are located is 30 cm away at an angle of 30°. With this listener location and the talker locations
from Figure 4.2, the geodesic distance and the initial direction towards the talker match locations on the
location grid of Figure 3.8.

For each recording, the talking Chirpy is placed at one of the locations of one of the environments. At
this location, the talker transmits eight sequences of Ochirps to be recorded by the listener. Each sequence
consists of 200 copies of one of the eight Ochirps of Figure 3.5.

The talking and listening were synchronised using MQTT, where a single message would trigger both the
talker and listener to transmit and record a sequence of Ochirps.

23
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Figure 4.2: Coarse location grid used for the NLOS environment

Table 4.1: AudioLocNet data set, where each recording is from a single source location and contains 200 Ochirps. The entire dataset
consists of

Set Environment Ochirp length Grid Recordings
1 Free space 24 ms Fine 1,632
2 Free space 48 ms Fine 1,632
3 Free space 24 ms Off grid 2,312
4 Reverberant 24 ms Fine 1,568
5 Reverberant 48 ms Fine 1,568
6 Reverberant 24 ms Off grid 2,312
7 NLOS 24 ms Fine 1,440
8 NLOS 48 ms Fine 1,440
9 NLOS 24 ms Off grid 2,312

Data set repository
In addition to the data set mentioned above, two more sets of recordings were collected. One set using the
fine grid with longer Ochirps of 48 ms in length, these were used to train a previous version of AudioLocNet.
In order to support future work with these microphones a third set of recordings with 24 ms Ochirps was
recorded. Unlike the first set, this set uses randomly determined locations for the talker. These locations are
depicted in Figure 4.3.

In order to facilitate further research, these labeled recordings are made available on the 4TU.ResearchData
repository1. In the repository the audio files are grouped in 9 zip files, with per environment one for the 24 ms
recordings, one for the 48 ms recordings (both are on the fine grid), and one for the 24 ms off grid recordings.
The numbers of recordings per set are depicted in Table 4.1. Recordings are made for each of the Ochirp
configurations of Figure 3.5, For the 48 ms Ochirps, the time axis of this plot is stretched to reach 48 ms. Each
recording comprises 200 Ochirps, resulting in a dataset consisting of 3.2 milion samples.

1https://data.4tu.nl/ Full URL to be provided on publication

https://data.4tu.nl/
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Figure 4.3: Speaker locations for the off grid recordings.

4.2. Training
4.2.1. Split Data Sets
AudioLocNet was trained using a data set sampled from the aforementioned samples. This data set comprises
920,000 samples with orthogonal chirps with a duration of 24 ms, sampled randomly from the different lo-
cations. The total sample size was reduced to speed up the training process. This sampled set was split into
a training, validation, and testing set, each containing 70 %, 15 % and 15 % of the samples from the sampled
data set, respectively. Each of these data sets has different a purpose.

The training set contains the recordings which are actually used by the training algorithm to tweak the
network parameters. The training algorithm loads the training data into the network and computes, per batch
of training data, how well the network is predicting the source locations. This is done based on a loss function,
which compares the true source location of each sample in a batch with the corresponding predicted location.
A loss function is a positive function that gets closer to zero as the network improves. Based on the loss, the
training algorithm changes the weights of the connections between nodes in order to reduce the loss function
further.

The validation set is used to check the progress of the network on a set of data it has not seen before.
After each epoch2 the training is paused and the validation data set is run through the current network. The
performance of this validation set is then compared to the performance of the training set. If both reach a
similar performance, then the training process is generalising well, but if the validation performance flattens
below the training performance, then the network is overfitting instead of generalising.

Figure 4.4 depicts the training process on a network that overfits. Where in the beginning the network
is learning and generalising (as seen by the validation and training performances being similar) but after 4
epochs the validation results split apart from the training results (where the validation results level out, but
the training is still improving). This shows that the network is learning how to recognise the specific training
samples, instead of generalising in order to handle new samples. These samples are also used as a way to
determine when to stop training, when the validation results do not improve for 6 validation steps in a row,
the network is deemed done with its training. At this point, the network with the best validation results is
picked as the trained network. The training algorithm never sees this validation data set, nor the results of
the validation step. This way it is prevented that the trainer trains on the validation data set.

Lastly, the testing data set, this data set is held separate from the training process. Only after the trained

2An epoch is one complete pass of the training data set
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Figure 4.4: Training progress of a network that overfits. Note that from epoch 2 onward the validation accuracy starts to flatten out
whilst the training accuracy is improving

Table 4.2: Training parameters

Parameter Value
Learn rate 0.005

Learn rate schedule constant
β1 0.9
β2 0.999
ε 10−8

L2 regularization factor 0.0005
Batch size 256

network shows good results for both its training and validation data, will it encounter the testing data. This
data, which has not been fed to the network during training of the network, is then used to determine the
performance of the network on unknown data. All the claims on the performance of AudioLocNet are done
based on the results from this testing set.

4.2.2. Single Source Training

The network was trained using the Adam training algorithm [35], with cross-entropy loss as its loss function.
The final parameters can be found in the Table 4.2, which generally match the suggestions of the original
paper [35]. Two mechanisms were used to prevent overfitting, L2 regularisation and dropout. During the
training, a dropout layer with a dropout probability of 0.2 was added after the input layer to increase the
network localization robustness. L2 regularization comprises adding a term to the loss function to penalize
high network weights. This incentivizes the trainer to make a simple network over a complex one, thereby
reducing overfitting [8].

The process of training went as follows: First, a new network architecture was trained on a reduced train-
ing set comprising 30% of the samples from the normal training set. During this step the dropout layer and L2
regularization were disabled. The goal of this training process is to see if the network is capable of overfitting
on a small data set. If this is not the case then it could be that the network is not complex enough to capture
all the features.

Then the network is trained on the full training set with the periodic validation checks. Based on the
results the training L2 regularization and dropout parameters are tweaked to train a network that does not
overfit and gets a good localization accuracy. If a network reaches an insufficient validation accuracy while
not overfitting, then the network architecture is altered.

Figure 4.5 depicts the training process both in terms of the classification accuracy in the top graph and
the loss (which is used by the trainer to improve the network) in the bottom graph, where the accuracy is the
mean of the number of correctly identified samples over the total number of samples in a batch. The plot also
shows how the validation accuracy and loss follow the training accuracy and loss respectively, implying that
the DNN is not overfitting.
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Figure 4.5: Plots showing the training process in terms of both the accuracy and loss for the coarse grid

4.2.3. Toroidal padding
Figure 4.6 depicts the training process for when the training for the coarse network was repeated but while
omitting the toroidal padding. I.e. the architecture and data sets are the same. When compared to Figure 4.5,
Figure 4.6 shows that although the performance on the training data is not influenced much, the performance
of the validation data is dramatically worsened. Whereas the network with padded inputs reached an accu-
racy above 90 % after the first epoch, the non-padded network only reached this after 9 epochs (after which it
first dropped down to 80 % before improving further).
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Figure 4.6: Plots showing the training process in terms of both the accuracy and loss for the coarse grid without padding



5
Evaluation

In order to determine how well the trained AudioLocNet functions, it was tested using the aforementioned
testing set (subsection 4.2.1) of recordings that had never been fed to the network before. This chapter goes
over the performances of the different trained networks.

5.1. Hop Error
Usually, the performance of a classification network like AudioLocNet is measured using metrics like the
accuracy and the F1-score [24]. However, these metrics only look at the results from a pure classification
perspective and do not take into account that the classes correspond to physical locations. This means that
such metrics would penalize being one class next to the correct class the same as when the correct class
and the wrong prediction are on opposite ends of the location grid. On the other hand, methods like the
mean absolute error between the predicted and true locations are unable fully deal with the coarseness of
the possible outputs. If the network outputs the right class, then the error would be zero, resulting in a lot of
zero-valued errors, which pulls the mean down towards values smaller than the distance between two classes.
It should be noted, however, that other works, like [28], do use the angular equivalent of the mean absolute
error (i.e. the mean angle error) even though their networks only localize in classes 5° in width. Therefore, I
introduce the hop error to more closely reflect the relations between (mis)classifications and the true classes.

The hop error is defined as the number of classes from the true class to the predicted class. It is deter-
mined by drawing a straight line between the true and predicted classes and counting the number of classes
the line passes through (Figure 5.1). The hop error of a correct prediction is zero. Another reason why this
metric works better than the distance error is that the distances between adjacent classes are not constant
due to the circular nature of the location grid. The length equivalences of different numbers of hops are, for
the different grids from Figure 3.8, depicted in Figure 5.2.

29
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Figure 5.1: An example of a hop error of 3 hops.
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5.2. Coarse Grid
For the course grid, AudioLocNet reached a classification accuracy of 99.96 %. With not much difference
between the environments, which reach accuracies of 99.96 %, 99.99 % and 99.92 % for the free space, rever-
berant and NLOS environments respectively. For this localization grid the mean hop error is 0.0029 hops or
(as the mean distance error) 1.18 mm

Firstly, Figure 5.3 shows how well AudioLocNet performs in the different environments in terms of the
cumulative distribution functions (CDF) of the hop errors. Interestingly the reverberant environment is the
best performing.The NLOS environment has the worst performance, which was expected as the amount of
energy in each recording would be the lowest and closer to that of the first incoming reflected signals. Though
it should be mentioned that at these CDF values, Figure 5.3 shows individual mispredictions. Hence there is
not much difference between the different environments.

Figure 5.4 depicts the accuracy and mean hop error for different distances from the microphone array.
This shows that the accuracy of the prediction decreases for further distances and that this decrease in accu-
racy starts sooner for the non-line-of-sight environment.

In order to determine if AudioLocNet had certain preferences or dislikes for specific locations, the mean
hop errors for sources from each location were investigated. Depicted in the form of the heat maps in Fig-
ure 5.5. These figures show that there are no areas where AudioLocNet is constantly making false predictions.

5.3. Fine Grid
For the version of AudioLocNet which was trained on the fine grid, the same analysis was performed. For this
network the total accuracy is 99.89 % with, again, not much difference between the different environments
(99.88 %, 99.92 % and 99.86 % for the free space, reverberant and NLOS respectively). The mean hop error is
0.0079 hops equating to a mean distance error of 2.05 mm.

The CDF plots form Figure 5.6 show that locations from the free space and reverberant environments are
predicted equally well. Again the NLOS environment performs slightly worse.

The accuracy over distance plots from Figure 5.7 show that the fine network seems to have less trouble
with increasing distances. However, as shown by the mean hop error, the size of the errors does increase.
Mostly for the NLOS environment. This increase in the mean hop error for the NLOS environment can mostly
be attributed to a single location at the 0°,250 cm mark as seen in Figure 5.8c. This comes however from three
larger misclassifications with hop errors of 20, 18 and 18 hops out of a total of 74 predictions (where two
mispredictions had hop errors of 2 hops and the remainder was correctly predicted).

The heat maps of Figure 5.8 show that the network does not have dead spots where it is consistently
mispredicting the source location.
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Figure 5.4: Accuracy and mean hop error for the coarse grid for different distances in different environments
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Figure 5.5: Heat maps of the mean hop error for different locations and different environments for the coarse grid.
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Figure 5.7: Accuracy and mean hop error for the fine grid for different distances in different environments
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Figure 5.8: Heat maps of the mean hop error for different locations and different environments for the fine grid.
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Figure 5.9: Performance of the Classic DOA method from [33] using the testing set. With the mean angle error (MAE) on the left axis and
the equivalent mean hop error (MHE), where the conversion between angle to hops is done by setting 30° equal to one hop.

5.4. Comparison with Classic localization
In my work on [68], we compared the performance of AudioLocNet to that of a classical audio localization
method, inspired by Karbasi and Sugiyama [33]. This method was made to be used with circular microphone
arrays and uses the TDOA of the Ochirp at the different microphones to determine the DOA. In order to
compare both methods, the classical method was fed the same testing set of recordings as AudioLocNet.
Since the classical method only delivers the DOA and not the distance, the comparison with AudioLocNet is
made using presumed hops of 30°. This is advantageous for the Classical method as this results in the largest
hop steps. The performance of the classical method is depicted in Figure 5.9, with the mean angle error (MAE)
on the left axis and the equivalent mean hop error (MHE) on the right.

By comparing Figure 5.9 with Figure 5.4 the performance improvements that AudioLocNet delivers be-
come clear. AudioLocNet consistently delivers a better localization accuracy and shows a lower decrease in
accuracy as the distance increases. This shows how a network trained to utilize the characteristics of a certain
microphone array can perform better than a general solution.



6
Conclusions and Future Work

6.1. Conclusion
This work focused on developing a DNN-based method of audio source localization to allow small robots to
locate each other. To this end, AudioLocNet was developed. AudioLocNet is a convolutional classification
network which is capable of locating the sources of communication chirps which are 24 ms in length and are
up to 250 cm away. As a classification network, AudioLocNet returns the predicted source location as one
point (comprising distance and direction) on a localization grid (Figure 3.8). These chirps are recorded using
a small (10 cm diameter) six-microphone array. The input of AudioLocNet comprises these 6 channel record-
ings which are toroidally padded to account for the circular nature of the microphone array. The remainder
of AudioLocNet consists of three convolutional layers and a final fully connected layer whose size depends
on the resolution of the localization grid.

AudioLocNet was trained for two different localization grids, a coarse grid of 96 locations and a finer grid
with 180 locations, while only changing the number of nodes of the output layer, leaving the rest of the archi-
tecture unchanged. This shows that the base of AudioLocNet can easily be adapted for different localization
grids. Since there are no assumptions made on the shape of the localization grid, it is likely that AudioLocNet
could also be trained to handle non-uniform localization grids. This would allow a robot designer to gain a
higher localization resolution in important areas (like in front of the robot) while reducing the resolution for
areas which are of low importance, possibly reducing the processing power required. Further work would be
required to determine the impact of such non-uniform grids.

AudioLocNet reaches high accuracies for different indoor environments including environments without
a line of sight between the source and the microphone array. For each environment and grid, the accuracy
of the predictions is above 99.85 %. Additionally AudioLocNet shows a large improvement a classical method
designed to be used on the same type of microphone array. AudioLocNet shows that by training a network
for a specific microphone array, the small size of the microphone array is not a problem in locating sources in
both the DoA and distance. Because sound travels around obstacles rather than trough them sound can be
used as a method of finding the locations of other robots along a traversable path. This gives more informa-
tion to the robots than learning the locations of other robots through obstacles (as one would get when using
RF based localization), as the robot doesn’t require a map of the environment to reach another robot. It can
simply follow the sound.

Another contribution of this thesis is the introduction of toroidal padding. In toroidal padding (or cylin-
drical padding when only done around one axis) the input matrix is wrapped around its axes to ensure that
data which is spatially close together is not separated due to the borders of the matrix. When using toroidal
padding, the training and validation performances stayed closer together, indicating that the network is not
overfitting. For AudioLocNet this was used to inform the network that microphones 1 and 6 are spatially next
to each other. Toroidal padding can also be useful in other fields where the data is best represented cylindri-
cally and/or is periodic.

6.2. Future Work
The main next step for AudioLocNet is to have it run on the actual, moving, robots and to determine their
performance related to the required resources in terms of (among others) time and computing power.
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36 6. Conclusions and Future Work

Another improvement of AudioLocNet can be made in the direction of multiple source detection, where
the network is able to output multiple grid locations where it predicts a source to be present. The use of
Ochirps already allows for simultaneous communications. Possible multi-localization methods could include
preprocessing steps where the non-interesting Ochirps are first filtered out, and each Ochirp is then located
individually. But it would be more interesting to see if a future version of AudioLocNet can locate the different
sources simultaneously.
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