
Integer Programming Models for the Class Constrained
Multi-Level Bin Packing Problem

Agata Natalia Kordyl
Supervisor(s): Neil Yorke-Smith, Matthias Horn

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1



Abstract

The Multi-Level Bin Packing problem is a generalisation of the widely-known NP-hard Bin
Packing problem. This work aims to investigate approaching this problem, as well as a ver-
sion including Class Constraints, through integer programming. By modelling the problems in
two ways: standard, and with a network flow approach. The studying of the performance of
these formulations on various instances, provides a greater insight into the possibilities of inte-
ger programming for this purpose. Furthermore, evaluating the two approaches gives an initial
suggestion for developing effective models for solving the aforementioned problems.

1 Introduction
This report will detail the solving and exploration of the Multi-Level Bin Packing problem, as well
as of a variation of it with added Class Constraints.

The Multi-Level Bin Packing (MLBP) problem is a generalisation of the Bin Packing (BP) prob-
lem which is a well-known NP-hard optimisation problem [2]. In the BP problem, a set of items
and an infinite set of bins is considered. Each item is characterised by a size and all bins have the
same maximum capacity. The challenge is to insert all the items into the smallest possible amount
of bins such that no bin’s capacity is exceeded. The MLBP considers the same problem but with
multiple levels of bins, where, firstly items are packed into bins on the first level, then, bins of the
first level must be inserted into those on the next level. This is repeated until all items (in bins) are
packed into bins on the top-level. The bins in MLBP also have different capacities which need to be
accounted for, as well as costs, where the total cost of used bins has to be minimised. As opposed
to the standard BP problem, which has been extensively studied, the Multi-Level generalisation has
been hardly considered in literature [1], which is why it is worth solving. This problem can describe
multiple real-life scenarios, such as, in the field of logistics where products are packed into packets
or boxes before they are loaded into containers for shipping.

The Class Constrained Multi-Level Bin Packing problem (CCMLBP) is a variation of the afore-
mentioned MLBP, with the addition of a "Class" constraint, where each item belongs to some class
and the number of classes allowed in a bin is bounded on each level. This problem, similarly to
MLBP has not been explored in literature, however, it’s BP counterpart has [4]. Among others, the
Class Constrained Bin Packing problem is useful in the context of allocating resources in multimedia
storage systems [12]. The challenge in this sub-problem is to find a packing that minimises the total
cost of the used bins such that every bin at level i ∈ M satisfies the capacity constraints and contains
items from no more than Qi classes.

This work aims to explore approaching the MLBP and CCMLBP problems using Integer Pro-
gramming. This is a worthwhile contribution due to the many possible applications of these prob-
lems, and since popular problems such as BP can be reduced to them.

The next section of this paper will provide a formal description of the problem and the method-
ology of solving it. This will be followed by a study of related problems in the literature. Next will
be discussed the experimental setup and results, followed by a section on responsible research. The
final section will be dedicated to conclusions and future work.

2



Figure 1: Visualisation of the MLBP problem being solved on an instance with 5 items and 2 levels.

2 Methodology

2.1 Formal Problem Description
The MLBP problem can be described as follows:

1. Given a set of items B0 = {B0,1, B0,2, ..., B0,n0} with size sk,j ∈ N>0, 1 ≤ j ≤ n0.

2. Given a set of bins Bi = {Bi,1, Bi,2, . . . , Bi,n0
} , 1 ≤ i ≤ m, with m levels. Each bin

having a size si,k ∈ N>0, a capacity wi,k ∈ N>0, and cost ci,k ∈ N>0, where 1 ≤ k ≤ ni,
1 ≤ i ≤ m.

The task of this problem, as described in Section 1, is to firstly fit all the items into first level
bins and then all used bins on level i, for 1 ≤ i ≤ m, into a bin on level i + 1 until the top level
is reached. This must be accomplished while not surpassing any bin’s capacity and minimising the
overall cost of used bins. An illustration of a small instance of this problem can be seen in fig. 1

The CCMLBP problem has the same description as MLBP only with the addition of classes,
which can be formalised as follows:

1. Each Item B0,j ∈ B0 belongs to a class κj ∈ {1, 2, ..., q} where q is a positive integer.

2. Each level i ∈ M is associated with a bound Qi ∈ N>0 for the number of different classes
within bin Bi,k ∈ Bi

The challenge in this sub-problem is to find a packing that minimises the total cost of the used bins
such that every bin at level i ∈ M satisfies the capacity constraints and contains items from no more
than Qi classes.

2.2 Method
These problems can be approached in a variety of ways, however due to the limitations of this
project, this paper will focus on a method of mathematical optimization called Integer Programming
(IP) to model the problems as. An Integer Program is a mathematical model which consists of an
objective function which has to be minimized or maximized, and a finite number of constraints, both
of which are "linear in a finite number of decision variables" [10, p.5]. In addition, as opposed to
linear programming models, in integer programming models the decision variables are restricted to
integer values.

3



Although IP problems are NP-hard, there exist powerful general purpose solvers that can solve
a wide range of these problems in reasonable time. Therefore, it is a valuable method for modeling
the problems at hand. Even when considering only IP, the MLBP and CCMLBP problems can
be approached at different angles which will be explored in this work. The performance of these
models w.r.t their efficacy in solving different instances of the MLBP and CCMLBP problems will
be evaluated. For the implementation and testing of the Research Question, the C++ framework
provied by the supervisor will be used. The CLPEX Optimization Studio will be used as the solver
for the IP formulations.

2.3 Research Question
The following research question can be formulated based on these problems:

Which of the considered IP models of the MLBP and CCMLBP problems perform best?

In addition to finding the most effective models, other issues will be considered, such as:

1. How far can Integer Programming can be used to solve instances of the MLBP and CCMLBP
problems?

2. How well does the CPLEX solver perform on these MLBP/CCMLBP formulations?

3. How large instances can be solved by CPLEX before having to resort to approximation algo-
rithms?

3 Background

3.1 Related Work
As described in Section 1, the Bin Packing problem is a well-studied optimization problem, as
opposed to it’s Multi-Level generalisation. The literature that exists on the MLBP problem, namely
[1], proposes a dynamic programming approach for normal-size instances and a heuristic multi-level
fuzzy-matching algorithm for large instances, as opposed to the integer programming strategy found
in this work.

There also exist multiple variations of the BP problem which incorporate some of the charac-
teristics of MLBP and CCMLBP problems. One of them is the Variable-Size Bin Packing problem
[5, 6], which is a generalised formulation of the BP problem, which considers a "finite collection of
bin sizes and an inexhaustible supply of bins of each size" [5, p. 222]. This problem has been mainly
tackled in the literature using approximation algorithms and heuristics. Another relevant problem
is the Class Constrained Bin Packing (CCBP) problem, which considers the same scenario as the
BP, however, each item belongs to some class and there are constraints as to the possible number of
classes in each bin. This problem has been studied w.r.t both online and offline algorithms [4, 12],
which were mostly approximation methods.

Studying the Multi-Level Bin Packing problem from an integer programming perspective can be
a beneficient contribution to the existing literature because this approach has not yet been explored.
In addition, not many similar works focus on exact algorithms and the extent of their usefulness.
The problem is valuable because it is a generalisation of the BP and related problems. This means
that these other problems can be formulated as the MLBP, and also new problems can be solved.
Similarly, the Class Constrained MLBP is an even greater generalisation. The addition of layers can
be helpful in expanding the possibilities of various applications. For instance, the CCBP problem

4



is useful in the context of "data placement on video-on-demand servers" [12, p. 242], where a goal
would be to store as many movies of one genre on one server as possible. In turn, the CCMLBP
could be applied to a case where there are multiple layers to this storage system and the goal would
be not to gave too many movies of different genres up to the top-level structure to make retrieval and
searching more efficient.

3.2 Integer Programming
An Integer Program (IP) is a mathematical model which consists of an objective function which has
to be minimized or maximized, a finite number of constraints, both of which are "linear in a finite
number of decision variables" [10, p.5]. Integer Programs, as opposed to Linear Programs (LP),
contain decision variables which are restricted to integer values. This small difference introduces a
lot of complexity, as IP has been shown to be NP-complete [9], while one of the most widely used
algorithms for solving LP, Simplex, is shown to usually perform in polynomial time [11]. A general
form for an integer program is as follows:

min(c⊺x) (1)
s.t.Ax ≥ b (2)

x ≥ 0 (3)
x ∈ Rn (4)

Although NP-hard, there exist many algorithms and solvers which utilise these algorithms for
solving these problems in reasonable time. These include three main types: exact algorithms, ap-
proximation algorithms, and heuristic algorithms. In this work, we are interested in the extent of
the performance of exact algorithms before having to employ approximation algorithms. The two
main classes of exact algorithms for solving integer programs are the Cutting Plane methods and the
Branch-and-Bound algorithms. A combination of these is called a Branch-and-Cut algorithm. [7].

The main idea of cutting plane methods is to solve the integer programming problem by solving
a sequence of linear programming problems, This involves solving the LP relaxation of the problem.
If the solution is integral then the problem is solved, otherwise a "cut" is performed. A "cut" means
finding a linear constraint that excludes the LP solution but does not exclude any integer points. The
cut constraint is added to the problem and the process is repeated until until an integral solution is
found. To most efficiently find a solution defining constraints to help strengthen the LP relaxation is
necessary.

On the other hand, the branch-and-bound algorithm is a tree-based search heuristic to aid in the
search of the large solution space. This is done by keeping track of the upper and lower bounds
of the optimal solution. Branches of the tree can be pruned to limit what needs to be searched. An
advantage of the branch-and-bound algorithm is that it can be terminated early as long as at least one
integral solution has been found, even though it may not be optimal. This method can also return
multiple optimal solutions.

In reality many solvers, such as CPLEX, use a combination of these two methods to solve IP
problems. A more detailed introduction to IP and various algorithms can be found in [8].

CPLEX Optimization Studio The CPLEX optimizer, which will be used in this work to solve
instances of the MLBP and CCMLBP problems, is a powerful developed by IBM for solving a wide
range of optimization problems including large linear programming problems, integer programming
problems, and even quadratic programming problems. To solve integer programs, CPLEX uses a

5



branch-and-bound algorithm coupled with "modern features like cutting planes and heuristics" 1.
Since CPLEX is such a powerful commercial solver with a number of features which are mostly
a "black box", it is difficult to assess which heuristic or tactic was applied to each instance. This
somewhat complicates the evaluation and comparison of different formulations.

4 Mathematical Model
This section will detail the two mathematical formulations for MLBP which were conceived. Since
the Class constraints can be added interchangeably to both formulations, they will only be described
once. The common instance variables used in all implementations are as follows:

1. The number of levels is m.

2. nk is the number of items/bins on level k for all k = 0, . . . ,m.

3. Bk is a set of all bins/items on level k for all k = 0, . . . ,m.

4. ck,j is the cost for bin j on level k for all k = 1, . . . ,m and j ∈ Bk.

5. wk,j is the capacity for bin j on level k for all k = 1, . . . ,m and j ∈ Bk.

6. sk,j is the size of item/bin j on level k for all k = 0, . . . ,m and j ∈ Bk.

4.1 Standard Integer Programming MLBP Formulation
The following integer program (IP) models solutions to the MLBP problem in terms of two binary
decision variables x and y. Where xk,i,j ∈ {0, 1} signifies if a bin/item i from level k − 1 has been
inserted into bin j on level k, in which case it is 1. While the variable yk,j ∈ {0, 1} signifies if bin j
on level k was used or not.

min

m∑
k=1

nk∑
j=0

yk,j · ck,j (5)

∑
j∈B1

x1,i,j = 1 i ∈ B0 (6)

∑
j∈Bk

xk,i,j = yk−1,i i ∈ Bk−1, k = 1, . . . ,m (7)

n∑
i=1

xk,i,j · sk−1,i ≤ yk,j · wk, j j ∈ Bk, k = 1, . . . ,m (8)

xk,i,j ∈ {0, 1} j ∈ Bk, i ∈ Bk−1, k = 1, . . . ,m (9)
yk,j ∈ {0, 1} j ∈ Bk, k = 1, . . . ,m (10)

Hereby, equation (6) ensures that on level 1, each item is packed into one bin, while equation (7)
ensures that for all other levels, if a bin was used on level k − 1, it must be inserted into a bin on
level k. The capacity constraints are ensured by equation (8) by summing over the sizes sk−1,i of
items, if they were added to bin j on level k, and limiting that total size to the capacity wk,j of bin j
at level k. The objective function (5) aims to minimize the total cost C by accounting, for all bins,
for all levels, for the cost ck,j of bin j on level k, if it was used.

1https://documentation.aimms.com/platform/solvers/cplex.html Accessed 9-06-2022

6

https://documentation.aimms.com/platform/solvers/cplex.html


Figure 2: A generalised network flow representation of the MLBP problem.

Figure 3: A representation of a small instance (3 items, 2 levels of bins) of the MLBP problem as a network
flow problem.

7



4.2 MLBP Network Flow Formulation
The following integer program (IP) models solutions to the MLBP problem similarly to the first
formulation (4.1), with the same decision variables and constraints for capacity, etc.

However, this formulation approaches the problem through a network flow lens. Here, items are
nodes which are connected to a source which emits one unit of flow to each of them. Then, each
item node is connected to each first level bin node with a connection of capacity of one unit of flow.
After this, all bin nodes on level k are connected to all bin nodes on level k + 1 with connections of
capacity n0 (number of items). On the last level, each node corresponding to a bin is connected to a
sink with a connection of capacity n0.

This representation of the MLBP problem can be seen in a generalised form in Fig.2. A visuali-
sation of a small instance can be seen in Fig.3. In this integer program, an additional integer variable
fk,i,j ∈ {0, n0} is present to signify the amount of ’flow’ passing from item/bin i to bin j on level
k.

min

m∑
k=1

nk∑
j=0

yk,j · ck,j (11)

∑
j∈B1

x1,i,j = 1 i ∈ B0 (12)

∑
j∈Bk

xk,i,j = yk−1,i i ∈ Bk−1, k = 1, . . . ,m (13)

n∑
i=1

xk,i,j · sk−1,i ≤ yk,j · wk, j j ∈ Bk, k = 1, . . . ,m (14)∑
j∈B1

f1,i,j = 1 i ∈ B0 (15)

∑
p∈Bk−1

fk,p,j =
∑

q∈Bk+1

fk+1,j,q k = 1, . . . ,m− 1 (16)

∑
j∈Bm

∑
i∈Bm−1

fm,i,j = n0 (17)

fk,i,j ≤ xk,i,j · n0 k = 1, . . . ,m, i ∈ Bk−1, j ∈ Bk (18)
xk,i,j ≤ fk,i,j k = 1, . . . ,m, i ∈ Bk−1, j ∈ Bk (19)
0 ≤ fk,i,j ≤ n0 k = 1, . . . ,m, i ∈ Bk−1, j ∈ Bk (20)
xk,i,j ∈ {0, 1} j ∈ Bk, i ∈ Bk−1, k = 1, . . . ,m (21)
yk,j ∈ {0, 1} j ∈ Bk, k = 1, . . . ,m (22)

Hereby, equation (15) ensures that the flow leaving each item node is 1, which also ensures that the
total flow in the system equals to the number of items n0. The equation (16) guarantees that for each
bin j on level k, the incoming flow from bins on level k − 1 is equal to the outgoing flow to bins on
level k+1. Finally, the equation (17) confirms that the total number of flow entering nodes on level
m, and consequently entering the sink, is equal to the number of items n0. Equations (18, 19) are
meant to connect the x variable with the flow variable f so that the problem is correctly recognised
by CPLEX. Equation (18) guarantees that for every item in every bin on each level, the flow must be
less than the total number of items n0. While equation (19) ensures that the flow from bin i on level
k − 1 to bin j on level k is greater than 0 if bin i was inserted into bin j.

8



Since this network flow representation does not account for capacity constraints it also needs the
same variables and constraints as the previous program (4.1). The addition of the flow variable and
other constraints is meant to strengthen the initial formulation, however this relies on speculation and
a proof would be outside the scope of this work. However, some limited performance experiments
can be seen in section 5.

4.3 CCMLBP Formulation
The following formulation can be added to both the classical IP (4.1) for MLBP and the modified
flow formulation (4.2). In it, the class constraint is described using one additional binary decision
variable, ck,r,j ∈ {0, 1}, which signifies if item(s) of class r are present in bin j on level k. In
addition, κi signifies the class of item i, Qk is the upper bound for number of classes allowed in one
bin on level k. The following constraints are in addition considered for the CCMLBP problem:

x1,i,j ≤ c1,κi,j j ∈ B1, i ∈ B0

(23)

IloIfThen((xk,i,j = 1 ∧ ck−1,r,i = 1), ck,r,j = 1) k = 1, . . . ,m, r = 1, . . . , q, j ∈ Bk, i ∈ Bk−1

(24)
q∑

r=1

ck,q,j ≤ Qk · yk,j k = 1, . . . ,m, j ∈ Bk

(25)

yk,j ≤
q∑

r=1

ck,q,j k = 1, . . . ,m, j ∈ Bk

(26)

ck,r,j ∈ {0, 1} r = 1, . . . , q, k = 1, . . . ,m, j ∈ Bk

(27)

Hereby, the equation (23) ensures that on level 1, if item i was inserted into bin j, then the class
of i must be in j. The statement (24) uses an ILOG constraint called IloIfThen 2, which represents
a conditional constraint between the two variables, essentially meaning A =⇒ B. This structure is
similar to a ’Big M ’ constraint3, so it is still a linear constraint. It ensures that on all other levels, if
bin i is packed into bin j constraint on level k, and class r is present in i, then it is also present in j.
Equation (25) ensures the class constraint itself, meaning that the amount of classes in bin j on level
k is less than the upper bound Qk for that level, if the bin is used. Finally, equation (26) ensures that
if a bin is used, then there is at least one class in it.

5 Experimental Setup and Results
Having formulated the MLBP and CCMLBP in two different ways (Section 4) and implemented
them. The performance of these formulations can be evaluated. This section will detail the setup of
experiments performed and their results.

2https://www.ibm.com/docs/en/icos/12.9.0?topic=c-iloifthen-1 Accessed 9-06-2022
3https://www.ibm.com/support/pages/difference-between-using-indicator-constraints-and-big-m-formulation

Accessed 9-06-2022

9

https://www.ibm.com/docs/en/icos/12.9.0?topic=c-iloifthen-1
https://www.ibm.com/support/pages/difference-between-using-indicator-constraints-and-big-m-formulation


formulation no. runs obj. mean median CPU time mean B&B nodes ratio solved
MLBP 550 21222.737 4.2 10976.016 0.772
NFMLBP 550 21099.724 2.5 11117.514 0.658
CCMLBP 2200 13161.746 1.6 2835.116 0.362
NFCCMLBP 2200 18315.824 42.4 8596.704 0.425

Table 1: Summarised results for all four formulations.

5.1 Experiment Setup
To test the four formulations two sets of non-trivial random instances were generated. The instances
were generated with a script provided by the supervisor. Firstly, for the standard Multi-Level Bin
Packing (MLBP) problem, the set consists of 10 instances of each ’class’, or combination of n items
and m levels. Where n ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100} and m ∈ {1, 2, 3, 4, 5}. While
for the Class Constrained MLBP (CCMLBP), the same n and m were used but with an addition
of q ∈ {25, 50, 75, 100}, which signifies the maximum number of different classes, based on the
number of items in percent (for instance, 25% of 5 items = 2.5, so at most 3 different classes). All
instance sets can be found in the GitHub repository, https://github.com/agatak7/CCMLBP.

The tests were performed on the DelftBlue[3] supercomputer, using one 2x Intel XEON E5-
6248R 24C 3.0GHz CPU per task, with a 900s time limit for each instance. The formulations were
implemented using GCC 10.2.0, and solved with CPLEX 20.1 with default settings.

The four formulations which were tested were: The Standard IP MLBP (MLBP, see 4.1), the
Network Flow MLBP (NFMLBP, see 4.2), the Standard CCMBLP (CCMLBP, see 4.3), meaning the
standard MLBP with added CCMLBP constraints, and the Network Flow formulation with added
CCMLBP constraints (NFCCMLBP, see 4.3). The standard IP formulations without added flow
variables and other constraints for both MLBP and CCMPLBP can be considered the control for-
mulations. The goal is to assess the performance of all these formulations and also the differences
between the standard and NF formulations. The relevant metrics are: the objective value attained for
each instance, the amount of CPU time needed to solve each instance, the number of Branch-and-
Bound nodes used by CPLEX, and the number of instances solved to optimality.

5.2 Results
After running all the aforementioned instances in the DelftBlue[3] cluster, the results for each for-
mulation were processed and aggregated. Firstly, by combining all of the instance classes to obtain
the mean objective value, median CPU time, mean number of branch-and-bound nodes, and the pro-
portion of optimally solved instances for each class. These results can be seen summarised in table
1.

MLBP and NFMLBP With the MLBP formulation, CPLEX was able to optimally solve around
11% more instances. This can be seen in the gaps in NFMLBP compared to MLBP in the graph
in fig. 4. Where missing results signifies that for that instance no feasible solution was found
by CPLEX within the time limit. The objective values obtained from the two formulations also
don’t differ greatly and the difference that exists is possibly caused by the missing instances which
NFMLBP was not able to solve.

The CPU time for both the MLBP and NFMLBP does not differ greatly. For different instances
one performs better than the other without a clear pattern. The time for both formulations grows

10

https://github.com/agatak7/CCMLBP


Figure 4: MLBP and NFMLBP compared on median CPU time and mean number of branch-and-bound nodes.

almost instantly up to the time limit of 900s when the number of items approaches a certain amount
depending on the number of levels. At only one level, the time does not get too high even at 100
items, but as the number of levels grows, the amount of items which can be packed in the appointed
time decreases. At 2 levels, up to 50 items can be efficiently packed, at 3 levels - around 40. At 4
and 5 levels, the increase in time happens around instances with 35 items. This can be seen in fig. 4.

The mean number of branch-and-bound nodes is greater for the NF formulation by 1%, which
is not significant. As can be seen in fig. 4, in places one formulation performs better than the other
without a clear pattern. Generally, more branch-and-bound nodes signifies that a larger space has
to be searched for the optimal solution, ideally, the search space would be as limited as possible.
Interestingly, considering the spike in branch-and-bound nodes around instances with two levels and
50 items in fig. 4, which is higher than for larger instances.

Comparing these two formulations using these metrics shows that, even though they perform
similarly, overall the MLBP formulation appears more robust as it successfully solved more in-
stances. The limits of both can also be clearly observed in the rapid increases in CPU time around a
certain amount of items for each level.

CCMLBP and CCNFMLBP With the two CCMLBP formulations, the results are almost oppo-
site to the MLBP ones. Here, CPLEX given the NFCCMLBP formulation was able to solve 6%
more instances to optimality. However more significant differences can be seen in fig. 6 and fig.
5, where there are a lot of missing results for CMLBP. This is because if at least one feasible, even
sub-optimal, solution is found within the time limit this result is still displayed, as opposed to when
no solution is found.

For CPU time, the results for both formulations where both are present look very similar. How-
ever, looking at the median values in table 1, NFCCMLBP has a lot larger median time. This is
because, with the standard CCMLBP formulation, CPLEX seemingly was not able to find a feasible
solution within the time limit on many of the more difficult instances. It should also be noted that
for instances where no feasible solution was found using the standard formulation, CPLEX was able
to find a sub-optimal solution using the NFCCMLBP formulation, this can be seen on in instances
where the time limit of 900s was reached. Overall, it can be said that there is a slight increase in
number of ’peaks’ as the number of q, so number of classes, grows. However, this does not affect
the CPU time as much as an increase in number of items or levels.

The mean number of branch-and-bound nodes is around three times larger for the NFCCMLBP

11



Figure 5: CCMLBP and NFCCMLBP compared on mean number of branch-and-bound nodes.

Figure 6: CCMLBP and NFCCMLBP compared on median CPU time for each class.

formulation. This, however, is mostly caused by the lack of solutions for CCMLBP. Where results
are present, even for the simple instances, more branch-and-bound nodes are needed for the standard
CCMLBP formulation.

Comparing these two formulations, significant differences can be seen. Here, the network flow
formulation performs notably better than the standard one, as opposed to the MLBP formulations.
The NF formulation seems a lot more robust, since with it CPLEX is able to find sub-optimal solu-
tions for difficult instances which is better than not finding any. For NFCCMLBP the results are also
more consistent in terms of the number of branch-and-bound nodes.

To conclude, a somewhat inconsistent behaviour can be observed between the standard and net-
work flow formulations for the two problems. For MLBP, more results can be found with the
standard formulation, although in general there are no significant differences. For the CCMLBP
problem, however, the standard formulation performs much worse than the network flow one, in
particular when it comes to more difficult instances. Somehow, with the NFCCMLBP formulation,
CPLEX is able to find sub-optimal solutions for almost all of the instances which is not the case
for the other formulation. This can be due to the internal operations of CPLEX, since many op-
timizations are performed by it which can differ based on even the order of adding constraints to

12



the model. This makes determining the reasons for changes in performance difficult, however, it
could be said that there is some potential in the network flow approach. The change in performance
from MLBP to CCMLBP indicates that possibly for MLBP CPLEX perfers a simpler formulation
to which it can apply it’s own optimizations. This, perhaps, is not the case for the more difficult
CCMLBP formulation, where the improvements of the network flow formulation can be observed.

6 Responsible Research
There are little ethical aspects which need to be considered in this work due to the abstract nature
of it. Of course, as with most things, it could possibly be used to cause harm even though there
is nothing inherently dangerous about studying problems like the multi-level bin packing problem.
This, however, is an almost unavoidable consequence of any kind of research.

Reproducibility is a vital aspect of any research. In order to enable the reproducibility of this
work to the fullest extent, a repository with all of the instances and source code was created4. There,
provided are also the scripts used to generate instances and process/aggregate results. In order to
reproduce the results, however, it is necessary to run the experiments on the DelftBlue [3] cluster
using one standard node CPU per task, with a 1 hour total task timeout, and a 900 second CPLEX
timeout. Otherwise, very likely different results would be obtained especially w.r.t CPU time.

7 Conclusions and Future Work
In conclusion, as demonstrated by the results, the integer programming approach can be used to
solve a relatively large set of instances of the MLBP and CCMLBP problems. The largest instance
class which can be solved to optimality in under 900 seconds for the MLBP problem was that with
5 levels and 35 items, but on average problems with under 5 levels and around 40 items can be
efficiently solved. For the CCMLBP problem, the largest instance class solved to optimality within
the time limit was that with the number of classes of at most 100% of the number of items, 5 levels,
and 10 items. However, on average configurations with a smaller percentage of classes, under 5
levels, and up to 20 items were solved efficiently.

Comparing the standard and network flow formulations, it can be concluded that the standard
formulation likely due to it’s simplicity is able to be better used by CPLEX in the MLBP scenario.
However, in the more complex CCMLBP problem, the network flow formulation shows it’s strength
and potential. In the CCMLBP case, the network flow formulation performed better on more difficult
instances and using it CPLEX was able to find sub-optimal solutions within the time limit while no
solution was found with the standard version. The results are, nevertheless, too limited to decisively
conclude superiority of the network flow formulation.

More research and experimentation is needed to gain a larger understanding of how CPLEX
interprets the various formulations and which optimizations are applied to each of them. This can be
done by studying the CPLEX node log 5. Furthermore, various CPLEX paramenters can be tuned in
order to possibly obtain better results than those presented in this work. The formulations themselves
can also be further improved. For instance, the constraint described in equation (18) of the network
flow formulation (section 4.2) can be strengthened. In the current model the flow for any bin at any
level is bounded by n0, the number of items. A better estimate could be found by considering the
largest capacity of a bin on each level.

4https://github.com/agatak7/CCMLBP Accessed 19-06-2022
5https://www.ibm.com/support/pages/cplex-performance-tuning-mixed-integer-programs Accessed

18-06-2022

13

https://github.com/agatak7/CCMLBP
https://www.ibm.com/support/pages/cplex-performance-tuning-mixed-integer-programs


References
[1] Lei Chen, Xialiang Tong, Mingxuan Yuan, Jia Zeng, and Lei Chen. A data-driven approach

for multi-level packing problems in manufacturing industry. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1762–
1770, 2019.

[2] EG Coffman Jr, MR Garey, and DS Johnson. Approximation algorithms for bin packing: A
survey. Approximation algorithms for NP-hard problems, pages 46–93, 1996.

[3] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase 1).
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

[4] Leah Epstein, Csanád Imreh, and Asaf Levin. Class constrained bin packing revisited. Theo-
retical Computer Science, 411(34-36):3073–3089, 2010.

[5] Donald K. Friesen and Michael A. Langston. Variable sized bin packing. SIAM journal on
computing, 15(1):222–230, 1986.

[6] Mohamed Haouari and Mehdi Serairi. Heuristics for the variable sized bin-packing problem.
Computers & Operations Research, 36(10):2877–2884, 2009.

[7] John E Mitchell. Branch-and-cut algorithms for combinatorial optimization problems. Hand-
book of applied optimization, 1:65–77, 2002.

[8] George L Nemhauser and Laurence A Wolsey. Integer programming and combinatorial opti-
mization, volume 191. Springer, 1988.

[9] Christos H Papadimitriou. On the complexity of integer programming. Journal of the ACM
(JACM), 28(4):765–768, 1981.

[10] Gerard Sierksma. Linear and integer programming: theory and practice. CRC Press, 2001.

[11] Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.

[12] Eduardo C Xavier and Flávio Keidi Miyazawa. The class constrained bin packing problem with
applications to video-on-demand. Theoretical Computer Science, 393(1-3):240–259, 2008.

14

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

	Introduction
	Methodology
	Formal Problem Description
	Method
	Research Question

	Background
	Related Work
	Integer Programming

	Mathematical Model
	Standard Integer Programming MLBP Formulation
	MLBP Network Flow Formulation
	CCMLBP Formulation

	Experimental Setup and Results
	Experiment Setup
	Results

	Responsible Research
	Conclusions and Future Work

