
 
 

Delft University of Technology

Deconvolution of azimuthal mode detection measurements

Sijtsma, Pieter; Brouwer, Harry

DOI
10.1016/j.jsv.2018.02.029
Publication date
2018
Document Version
Accepted author manuscript
Published in
Journal of Sound and Vibration

Citation (APA)
Sijtsma, P., & Brouwer, H. (2018). Deconvolution of azimuthal mode detection measurements. Journal of
Sound and Vibration, 422, 1-14. https://doi.org/10.1016/j.jsv.2018.02.029

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jsv.2018.02.029
https://doi.org/10.1016/j.jsv.2018.02.029


1 

Deconvolution of Azimuthal Mode Detection Measurements 

Pieter Sijtsma
1,2,*

, Harry Brouwer
3 

 

1  PSA3, Prinses Margrietlaan 13, 8091 AV Wezep, The Netherlands 

2  Aircraft Noise & Climate Effects, Faculty of Aerospace Engineering, Delft University of Technology, 

P.O. Box 5058, 2600 GB Delft, The Netherlands 

3  Department of Helicopters & Aeroacoustics, Netherlands Aerospace Centre NLR, P.O. Box 90502, 

1059 CM Amsterdam, The Netherlands 

*Corresponding author: Pieter.Sijtsma@psa3.nl 

 

 

Abstract 

Unequally spaced transducer rings make it possible to extend the range of detectable azimuthal modes. 

The disadvantage is that the response of the mode detection algorithm to a single mode is distributed over 

all detectable modes, similarly to the Point Spread Function of Conventional Beamforming with 

microphone arrays. With multiple modes the response patterns interfere, leading to a relatively high 

“noise floor” of spurious modes in the detected mode spectrum, in other words, to a low dynamic range. 

In this paper a deconvolution strategy is proposed for increasing this dynamic range. It starts with 

separating the measured sound into shaft tones and broadband noise. For broadband noise modes, a 

standard Non-Negative Least Squares solver appeared to be a perfect deconvolution tool. For shaft tones a 

Matching Pursuit approach is proposed, taking advantage of the sparsity of dominant modes. The 

deconvolution methods were applied to mode detection measurements in a fan rig. An increase in 

dynamic range of typically 10 to 15 dB was found. 

 

 

Nomenclature

a  CB amplitude vector 

ka  CB amplitude 

A  CB Mode Cross-Spectral Matrix  

b  mode amplitude vector 

kb   mode amplitude 

B  Mode Cross-Spectral Matrix  

C   Cross-Spectral Matrix 
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,  kg g  steering vector 

,,  n k ng g   steering vector element 

G   steering matrix 

i   imaginary unit 

j  azimuthal mode order 

J  cost function 

k  azimuthal mode order 

K  number of modes 

n  transducer index 

N   number of transducers 

p   pressure vector 

np  pressure amplitudes 

Q   convolution matrix 

kjQ   Point Spread Function 

S   convolution matrix for incoherent modes 

kjS   elements of S 

ku   CB mode auto-power 

U   CB mode auto-power vector 

kv   mode auto-power 

V   mode auto-power vector 

kw   weight vector 

W   weight matrix 

k   Point Spread Function 

brb(.)   broadband (non-periodic) 

dec(.)   deconvolved 

res(.)   residual 

sub(.)   subset of detectable modes 

ton(.)   tonal (shaft-periodic) 

BPF Blade Passing Frequency 

CB Conventional Beamforming 

CSM Cross-Spectral Matrix 

DFT Direct Fourier Transform 

MCSM Mode Cross-Spectral Matrix 

MP Matching Pursuit 

NNLS Non-Negative Least Squares 

PSF Point Spread Function 

SPL Sound Pressure Level 
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1. Introduction 

Decomposition of the acoustic field into its azimuthal components can reveal valuable information 

about sound generating mechanisms. For that reason so-called “mode detection measurements”, aiming at 

performing such decompositions, are standard tools in experimental engine noise studies with fan rigs [1], 

static full-size engine tests [2], and flight measurements [3]. The distribution of azimuthal (or 

circumferential or spinning) modes of shaft order tones provides insight in phenomena like rotor-stator 

interaction noise [4], steady flow distortion noise [5] and scattering by liner splices [3]. Modal 

information of broadband noise is useful too, for example in combination with phased array beamforming 

[6]. 

Azimuthal mode measurements are typically performed with ring-shaped arrays of microphones (or 

pressure transducers). Such arrays don’t provide information about radial modes. These can be measured 

by means of radial rakes instrumented with pressure transducers [7-10] or by means of a rotating axial 

transducer array mounted flush in the duct wall [8].  

The most natural array for mode detection is a ring of equally spaced transducers. Then the inversion 

problem that needs to be solved to obtain, at a given frequency, the amplitudes of the modes features an 

orthogonal matrix, which is easily inverted. The resulting modal amplitudes can be evaluated with a 

Direct Fourier Transform (DFT) applied to the transducer pressure amplitudes. The number of modes that 

can be detected is equal to the number of transducers. The Nyquist-Shannon sampling criterion implies 

that the absolute mode order should be less than half the number of transducers. Aliasing occurs when 

higher order modes exist. 

The range of modes that can be measured without aliasing can be extended by using a non-equally 

spaced array [1]. But then the inversion problem and the DFT solution are no longer equivalent. The 

inversion problem cannot deal with more modes than transducers, and the DFT method introduces the 

detection of spurious modes [1]. 

When the analysis is restricted to tonal (shaft-periodic) sound, advantage can be taken from the fact 

that the sound field is usually dominated by a limited set of modes. This “sparsity” of modes has recently 

[11,12] been exploited by applying Compressed (or Compressive) Sensing, which is a signal processing 

technique aiming at representing measured data with fewer samples than prescribed by the Nyquist-

Shannon sampling criterion. The Compressed Sensing technique features the minimisation of the L1-

norm of the vector of mode amplitudes. By application of an extended version of the Orthogonal 

Matching Pursuit algorithm a maximum number of dominant modes is determined accurately with a 

given array and after a deconvolution step the remaining mode spectrum is estimated using e.g. the DFT 

[11]. For broadband noise, of which the acoustic energy is more equally distributed over the mode orders, 

this may not be the most appropriate approach.  

This paper proposes a strategy based on deconvolution, using lessons learned from methods that were 

developed over the past decade for microphone array measurements [13-19], and exploiting the fact that 
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the DFT method for azimuthal mode detection is exactly the same as Conventional Beamforming (CB) 

with microphone arrays [20]. Deconvolution methods start with CB and aim at retrieving source 

amplitudes using the known CB response of individual sources. In this paper, broadband noise and tonal 

sound are considered separately. Deconvolution of broadband noise is done with a Non-Negative Least 

Squares (NNLS) solver, similar to DAMAS [14]. For tonal sound a Matching Pursuit algorithm is used, 

similar to the approach followed in a few phased array deconvolution methods before [19,21]. 

The next chapter gives a mathematical description of the proposed deconvolution strategy. In Chapter 

3 mode detection deconvolution is applied to fan rig measurements. Chapter 4 gives a brief discussion 

about the quality of the deconvolution data, followed by the conclusions in Chapter 5. 

2. Mathematical description 

All methods and results discussed in this paper are applied to single frequencies or frequency bins. For 

brevity, the frequency-dependence is omitted in the mathematical expressions. Measured (complex) 

pressure amplitudes must be understood as the results of Fourier transforms applied to the time data. The 

terminology of acoustic beamforming is used. 

2.1. Beamforming basics 

2.1.1. Steering vector 

Beamforming starts with the definition of a steering function to describe the response from a potential 

target to a microphone. Usually, the target is a point source position and the steering function is a Green’s 

function solution of the Helmholtz equation. A steering vector g consists of the steering function values of 

a fixed target, evaluated at N microphone locations. 

Azimuthal mode detection can also be treated like beamforming, considering the mode orders as 

targets. The steering function is then  exp ik , where θ is the microphone’s angular position and k the 

mode order k, describing the azimuthal periodicity. Thus, for the steering vector elements, we have 

  exp in ng k  ,  (1) 

where 
n  is the angular position of the n-th transducer. 

Given a pressure vector p (vector of measured pressure amplitudes 
np ) and a set of K steering vectors 

kg , the model assumption is that a set of mode amplitudes 
kb  exists such that 

 k k

k

bp g , (2) 

with 

  , exp ik n ng k  . (3) 

We can write the source model equation, Eq. (2), in condensed form: 

 p Gb , (4) 
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where b is the K-dimensional “mode amplitude vector” and G the N×K-dimensional “steering matrix”, 

the columns of which are the steering vectors. 

2.1.2. Conventional Beamforming 

The Conventional Beamforming (CB) approach to find approximate source amplitudes 
ka  is to 

determine, for each unknown mode order separately, a best match with the measured data by minimizing: 

 
2

k kJ a p g .  (5) 

The minimum value of the cost function J is found for 

 k ka w p ,  (6) 

where the asterisk stands for “complex conjugate transpose” and the “weight vector” 
kw  is given by 

 
1

k k

k k


w g

g g
. (7) 

Evaluating Eq. (6) with Eq. (3) yields 

  
1

1
exp i

N

k n n

n

a p k
N




  ,  (8) 

which is identical to the DFT expression used by Rademaker et al. [1]. 

The CB expression, Eq. (6), can be written in condensed form too: 

 
a W p ,  (9) 

where W is the N×K-dimensional “weight matrix” and a the K-dimensional “CB amplitude vector”.  

2.1.3. Convolution 

By combining the source model equation, Eq. (4), and the CB expression, Eq. (9), we obtain 

 a Qb ,  (10) 

in which the K×K-dimensional convolution matrix Q is defined by 

 Q W G . (11) 

The challenge of deconvolution methods is to solve b from Eq. (10).  

For equally-spaced mode detection arrays it can be shown that Q is the identity matrix, which means 

that CB yields the correct mode amplitudes. Otherwise, Eq. (10) describes convolution, which is the 

linear combination of responses of single unit modes jb e . For the response of a unit mode order j to 

mode order k we have 

  k j kj k jk
a Q   Qe w g . (12) 

This is the so-called Point Spread Function (PSF). Evaluating kjQ  with Eq. (3) yields 

  
def

1

1
exp i

N

kj n k j

n

Q k j
N

 



       . (13) 
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In general, the rank of the matrix Q is smaller than its dimension and it cannot be inverted. 

2.1.4. Ensemble averaging 

Estimates of the mode cross-spectral data can be obtained by multiplying the amplitude vector b with 

its conjugate transpose, and averaging the results over many time blocks. With Eq. (9) the following 

estimate of the Mode Cross-Spectral Matrix (MCSM) is obtained: 

      A aa W pp W W CW ,  (14) 

where C is the traditional Cross-Spectral Matrix (CSM). With Eq. (4) we obtain the following 

convolution expression: 

        A W G bb G W Q bb Q QBQ ,  (15) 

where B is the actual MCSM. Eq. (15) is an order of magnitude more difficult to solve than Eq. (10), 

unless simplifying assumptions can be made for B. These will be discussed in the following section. 

2.2. Tonal sound and broadband noise 

Sound in an engine duct can typically be split into a part that is periodic with the shaft rotation and a 

non-periodic part. The periodic sound is a set of “shaft order” tones (i.e., the frequencies are multiples of 

the shaft rotation frequency), and is therefore referred to as “tonal”. The frequency spectrum can be 

obtained by performing “phase locked” Fourier transforms [1] and averaging over many shaft revolutions: 

 
ton p p .  (16) 

The remaining non-periodic sound is called “broadband noise”: 

 
brb ton p p p .  (17) 

Averaging over many shaft revolutions yields for the CSM: 

 ton ton brb brb ton ton brb

       C pp p p p p p p C .  (18) 

Likewise, for the MCSM we have 

 ton ton brb

 B b b B .  (19) 

By inserting Eq. (18) into Eq. (14) we find for the estimated MCSM 

   ton ton brb


   A W p W p W C W . (20) 

Thus, we can split the convolution into a tonal part: 

      ton ton ton ton ton

   A W p W p Qb Qb  (21) 

and a broadband part 

 brb brb brb

  A W C W QB Q . (22) 

The tonal part of the convolution is equivalent to 
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 ton ton ton

 a W p Qb . (23) 

2.3. Deconvolution of broadband noise modes 

The starting point is 
brbA A , obtained by evaluating the first equality of Eq. (22), and the challenge 

is to obtain a better estimate for 
brbB B  using the convolution expression 

 A QBQ . (24) 

For broadband noise in an engine duct it’s reasonable to assume that modes with different orders are 

incoherent (see Appendix A). This means that the off-diagonal terms in A and B can be set to zero, 

leading to 

 diag( ) diag( ) U Q V Q , (25) 

where V is the vector of actual mode auto-powers, 
k kkv B , and U the vector of CB-estimated mode auto-

powers, 
k kku A . We can derive: 

 U SV , (26) 

where the K×K-dimensional matrix S is defined by 

 
2

kj kjS Q . (27) 

When solving Eq. (26), the constraint of non-negativity needs to be put on the elements of V, being auto-

powers. 

The problem of finding non-negative solutions of Eq. (26) is a key issue in microphone array 

deconvolution methods, when the assumption of incoherent sources is made. A well-known algorithm to 

solve the problem is DAMAS, proposed by Brooks and Humphreys [14], which features a Gauss-Seidel 

procedure where negative solutions are replaced by zero. Faster solution strategies were proposed by 

Dougherty et al., through the assumption of PSF shift-invariance [13] or by using Linear Programming 

[18]. 

For azimuthal mode detection, when the number of unknown sources is much smaller than a typical 

number of scan points used with beamforming, the standard Non-Negative Least Squares algorithm 

proposed by Lawson and Hanson [22] can be used1. This solver, which we denote by “NNLS”, is a so-

called “active set” method, in which negative solutions for 
kv  are set to zero, similarly to DAMAS. This 

is a useful trick to make the solution space sparser when the number of possible modes is larger than the 

rank of S. The advantage of NNLS is that it always comes to an end after a finite number of iterations, 

whereas DAMAS doesn’t have a clear stop criterion. 

2.4. Deconvolution of tonal modes 

The starting point is now 
tona a , obtained with the first equality of Eq. (23), and the challenge is 

obtain a better estimate for 
tonb b  using the convolution expression 

                                                      
1
 The Matlab implementation of the Lawson-Hanson NNLS algorithm is “lsqnonneg”. 



8 

 a Qb . (28) 

By definition, Eq. (11), the rank of Q is at most max{K,N}. Thus, if the number K of detectable modes is 

larger than the number N of transducers, Eq. (28) is not invertible. The NNLS trick of replacing negative 

results by zero doesn’t work either, as there is not a non-negativity constraint. Unlike Eq. (26), which is a 

real-valued system, Eq. (28) is complex-valued. In this case, a Matching Pursuit (MP) algorithm, as used 

in a few phased array deconvolution methods before [19,21], can improve the results. The idea is to find a 

“best match” for Eq. (28) with a limited set of modes, as detailed below.  

From the set of detectable modes, a subset of 
subK  modes is considered with the largest absolute 

values of 
kb . Typically, 

subK  is much less than N. Assuming that this set is known, we can estimate the 

corresponding amplitudes
kb  by minimizing 

 
2

sub subJ  a Q b .  (29) 

Herein, 
subb  is a 

subK -dimensional vector with only the subset amplitudes, and 
subQ  is a 

subK K -

dimensional matrix containing only the subset PSFs. The solution that minimises Eq. (29) is the Moore-

Penrose pseudoinverse: 

  
1

sub sub sub sub


 b Q Q Q a .  (30) 

Defining a “residual” CB amplitude vector by 

 
res sub sub a a Q b ,  (31) 

the deconvolved amplitude vector is given by 

 
dec sub res a b a . (32) 

The effects of convolution are then only present in the residual mode amplitudes in the 
resa  vector. 

The question remains how to find the subset containing the dominant modes. This can be done by the 

following iteration strategy in which a fixed (chosen) subset dimension, 
subK , is used: 

Step 0. Determine a by CB, set
dec a a  and start with an empty mode subset. 

Step 1. Define a new mode subset by the 
subK  largest absolute values of 

deca . When the new subset 

is the same as the old subset, stop the iteration. 

Step 2. Calculate 
subb  from Eq. (30). 

Step 3. Calculate 
resa  from Eq. (31). 

Step 4. Calculate 
deca  from Eq. (32). 

Step 5. Return to Step 1. 

The iteration is terminated when the mode subset doesn’t change anymore, and the solution remains the 

same. This happens after a finite number of iterations, typically less than 10. The choice of the number of 

subset modes,
subK , can be informed by looking at the condition numbers of the matrices sub sub


Q Q . These 

condition numbers increase with 
subK , but should not be too large. 
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The Matching Pursuit approach outlined above, featuring a fixed 
subK , is different from the standard 

“Greedy Algorithm”, which starts with 
sub 1K   and adds a solution at each iteration step. The procedure 

followed here needs less iterations and is thus faster. 

3. Application to fan rig mode detection data 

The deconvolution techniques described in the previous chapter were applied to measurements 

performed in the AneCom AeroTest facility on a Rolls-Royce fan rig. Fig. 1 shows a drawing of the rig. 

The internal diameter was approximately 80 cm. Two mode detection arrays were installed. The first one 

consisted of 100 Endevco transducers, mounted in the outer surface of the bypass duct, approximately 15 

cm downstream of the 44-vaned stator. The second array consisted of 100 Kulite transducers, mounted in 

the (drooped) intake, about 40 cm ahead of the 20-blades rotor. A liner was installed between the rotor 

and the array.  

The 100N   transducers of each array were arranged2 in a non-equidistant pattern, in order to be able 

to detect modes in the range 80 79k    ( 160)K  . For that purpose, the maximum absolute value of 

k , Eq. (13), was minimized for 1 1k K   . The bypass array was optimized with the additional 

constraint of two non-accessible sectors3. The layout of both arrays and their PSFs (expressed in dB) are 

shown in Fig. 2 and Fig. 3. As can be seen in the PSF images, the optimisation process led to aliasing 

peaks at 160k  . The dynamic range (level difference between 
0  and  max ; 1, , 1k k K  L ) is 

19.56 dB for the bypass array and 22.64 dB for the intake array. 

A measurement is considered here at 5515 RPM (60% engine speed). The measurement time was 10 s 

and the sample rate 44 kHz.  

A breakdown of the average Sound Pressure Level (SPL) at both arrays into shaft tones and broadband 

noise is shown in Fig. 4. Only at the Blade Passing Frequency (BPF) and higher harmonics, i.e., where 

the shaft orders are multiples of the number of rotor blades (20), tones have significant levels. At other 

shaft orders broadband noise dominates. 

3.1. Broadband noise 

CB and NNLS were applied to broadband noise data at all shaft orders up to 100. First, the validity of 

the mode incoherence, as assumed in Section 2.3, was checked. This appeared to be the case, as illustrated 

for shaft order 75 in Fig. 5. 

CB results are depicted in Fig. 6 and NNLS results in Fig. 7. Comparing CB with NNLS, we see 

virtually the same mode levels in the triangle of propagating modes. But outside the triangle, the NNLS 

levels are typically 10 dB lower4. At each shaft order, the NNLS results were summed and compared with 

                                                      
2
 Both arrays were designed within the EU 5

th
 Framework project SILENCE(R) [23]. 

3
 The bypass array design process started with a non-constrained optimization which was compressed until the 

“forbidden” sectors were free of sensor locations. The final design was selected from a large number of trials. 
4
 This also shows that aerodynamic pressure fluctuations, which do not have a preferred mode order, have much 

lower levels than the acoustic broadband noise. 
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the average SPL. A maximum difference of only 0.1 dB was found, thus demonstrating the high quality 

of the NNLS results. 

3.2. Shaft tones 

The MP method, outlined in Section 2.4, was applied to the BPF tones, i.e., to shaft orders 20, 40, 60, 

and 80. The iteration process was done with subsets of 
sub 30K   modes. For the 8 cases (intake and 

bypass) the number of iterations for obtaining the final subset of dominant modes varied between 4 and 9. 

The condition numbers of the matrix to be inverted, Eq. (30), remained below 10. 

Results for, respectively, the bypass and the intake array are shown in Fig. 8 and Fig. 9. The images 

show a significant increase in dynamic range, featuring level reductions of 10 to 20 dB for modes that 

were apparently spurious, especially in the cut-off regime. For example, in the bypass results the rotor-

stator interaction modes [4] ( shaft order 44)k     show much more protrusion.  

Interestingly, the rotor-stator interaction modes have also become prominent in the bypass array BPF 

results (shaft order = 20; mode orders = −68, −24, 20, 64), even though these modes are all cut-off. The 

reason for their presence is the short distance between the stator and the array. Note that a few aliased 

modes are visible too: 112 160 48    and 108 160 52   . 

A check on the quality of the results can be made by comparing measured transducer pressures p with 

reconstructed pressures 
decGa . In Fig. 10 a comparison of the absolute values at shaft order 20 is shown, 

both for the intake and for the bypass array. The agreement is good.  

4. Discussion 

To assess the accuracy of the MP results discussed in the previous chapter, MP was also applied, with 

the same settings, to synthesized mode detection array data. The bypass array geometry (Fig. 2) was used. 

Array data were synthesized with two groups of modes: 

− “Dominant modes”: 15 mode orders were randomly selected between −30 and 30. Each mode was 

given a random SPL between −20 and 0 dB and a random phase. 

− “Background modes”: all the other modes were given a random phase too and a random SPL 

between −40 and −25 dB. 

The CB and MP results are shown in Fig. 11. The improvement obtained with MP is obvious, especially 

for values between −20 and −10 dB. 

It must be emphasized, however, that the success of MP depends on the actual distribution of modes. 

In particular, MP takes advantage of the “sparsity” of the dominant modes. That is, MP benefits from the 

fact the acoustic field is usually dominated by a limited set of modes. What happens when there is no 

sparse set of dominant modes is depicted in Fig. 12. Here array data were generated with “background 

modes” only, having random SPL between −5 and 0 dB and random phase. For this simulation, the CB 

results are poor, but the MP results are even worse.  
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Finally, for simulations with incoherent broadband noise modes it was found that the NNLS results 

always matched exactly (i.e., at machine precision) with the actual mode levels, regardless of the assumed 

mode distribution. 

5. Conclusions 

A deconvolution strategy is proposed for azimuthal mode detection with unequally spaced transducer 

rings. Different approaches for broadband noise and shaft-periodic tonal sound are followed. For 

broadband noise, a standard NNLS solver is recommended to solve the convolution equations, assuming 

the modes to be incoherent. For tones a MP algorithm is proposed, exploiting the fact that the acoustic 

field is usually dominated by a limited set of modes. The “best match” solution is found with an iterative 

search process, in which the total number of dominant modes is pre-defined.  

The deconvolution strategy was applied to mode detection measurements in an AneCom fan rig. 

Compared to standard CB (here the same as DFT) results, an increase in dynamic range of typically 10 to 

20 dB was found. The following quality checks were made: 

a) For broadband noise the summed mode powers were compared with the average auto-powers. The 

agreement was within 0.1 dB. 

b) For tones the mode amplitudes obtained with MP were used to reconstruct the transducer data, 

which were compared to the actual measurements. Excellent agreement was found. 

The good performance of NNLS and MP was confirmed with synthesized data. 

For fan rig measurements, the additional time needed for the deconvolution algorithms NNLS and MP 

is small compared to the computation time for CB, which is dominated by the averaging process needed 

to calculate tonp  and brbC .  
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Appendix A: Incoherence of broadband noise modes in engine ducts 

An acoustic field due to a point source in a circular duct can be expressed as a summation of modes: 

  ( ) exp ik

k

p q k        , (A.1) 

Herein, q is the source amplitude, 
k  are constants, and  is the source angular position. In an engine 

duct, it can be expected that broadband noise sources are associated with blades in a blade row (e.g., a 

stator). Thus, groups of incoherent sources exist: 

  
1

( ) exp i
M

m k m

m k

p q k   


      , (A.2) 
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where M is the number of blades and 
m  their angular positions. Usually the blades are equally spaced, so 

we can write 

 
2

m

m

M


  . (A.3) 

Thus, mode amplitudes corresponding with Eq. (A.2) are 

 
1

exp 2 i
M

k k m

m

m
b q k

M
 



 
  

 
  (A.4) 

For the mode cross-powers we have 

 
1 1

exp 2 i
M M

kj k j k j m n

m n

km jn
B b b q q

M
    

 

 
   

 
 . (A.5) 

Because the sources on different blades are incoherent, we obtain 

  
1

exp 2 i
M

kj k j k j m m

m

m
B b b q q k j

M
    



 
   

 
 . (A.6) 

The assumption that all sources have the same, unit, strength yields 

  
1

exp 2 i
M

kj k j

m

m
B k j

M
  



 
  

 
 . (A.7) 

Eq. (A.7) is zero, unless j k M   for integer values of ν. In other words, mode cross-powers in engine 

ducts are expected to be zero, unless the difference between the mode orders is a multiple of the number 

of blades. 

Note that the analysis above ignores the presence of multiple, incoherent radial modes. This will 

probably reduce also the cross-powers when j k M  . 
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Fig. 1. Drawing of RR fan rig in AneCom AeroTest facility. 

 
 (a) (b) 

Fig. 2. Layout of bypass array (a) and corresponding PSF (b) 
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 (a) (b) 

Fig. 3. Layout of intake array (a) and corresponding PSF (b) 

 
 (a) (b) 

Fig. 4. Average SPL; breakdown into shaft tones and broadband noise; bypass array (a) and intake array (b) 
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 (a) (b) 

Fig. 5. Broadband noise mode coherence at shaft order 75; bypass array (a) and intake array (b) 

   
 (a) (b) 

Fig. 6. Broadband noise CB results; bypass array (a) and intake array (b) 

   
 (a) (b) 

Fig. 7. Broadband noise NNLS results; bypass array (a) and intake array (b) 
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Fig. 8. CB and MP results for BPF tones; bypass array 
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Fig. 9. CB and MP results for BPF tones; intake array 

 
 (a) (b) 

Fig. 10. Measured and reconstructed transducer pressures at shaft order 20, absolute values; bypass array (a) and 

intake array (b) 
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 (a) (b) 

Fig. 11. CB (a) and MP (b) results applied to synthesized data with a sparse set of dominant modes; bypass array 

 
 (a) (b) 

Fig. 12. CB (a) and MP (b) results applied to synthesized data without a sparse set of dominant modes; bypass array 


