<]
TUDelft

Delft University of Technology

A defect-based physics-informed machine learning framework for fatigue finite life
prediction in additive manufacturing

Salvati, Enrico; Tognan, Alessandro; Laurenti, Luca; Pelegatti, Marco; De Bona, Francesco

DOI
10.1016/j.matdes.2022.111089

Publication date
2022

Document Version
Final published version

Published in
Materials and Design

Citation (APA)

Salvati, E., Tognan, A., Laurenti, L., Pelegatti, M., & De Bona, F. (2022). A defect-based physics-informed
machine learning framework for fatigue finite life prediction in additive manufacturing. Materials and Design,
222, Article 111089. https://doi.org/10.1016/j.matdes.2022.111089

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.matdes.2022.111089
https://doi.org/10.1016/j.matdes.2022.111089

Materials & Design 222 (2022) 111089

journal homepage: www.elsevier.com/locate/matdes materliodoy

Contents lists available at ScienceDirect

Materials & Design

A defect-based physics-informed machine learning framework for
fatigue finite life prediction in additive manufacturing

Check for
updates

Enrico Salvati **, Alessandro Tognan?, Luca Laurenti”, Marco Pelegatti?, Francesco De Bona*?

2 Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, Via delle Scienze 206, Udine, Italy
b Delft Centre of System and Control (DCSC), TU Delft University, Mekelweg 2, Delft, the Netherlands

HIGHLIGHTS

« A machine Learning-based approach
and phenomenological laws are
combined to account for several
influencing factors and improve
fatigue life prediction.

« A PINN framework is employed to
predict finite fatigue life in materials
containing defects.

« A newly developed LEFM semi-
empirical model is employed to
represent the physics of the problem.

« Results from an additively
manufactured material are taken
from the literature to demonstrate
the effectiveness of the proposed
method.

ARTICLE INFO

Article history:

Received 1 June 2022

Revised 2 August 2022
Accepted 21 August 2022
Available online 22 August 2022

Keywords:

Additive manufacturing

Fatigue

Machine learning
Physics-informed neural network
Defects

Fracture mechanics

GRAPHICAL ABSTRACT

T T T T = =1 PHYSICS-INFORMED
LEFM MODEL| | NEURAL NETWORK

EXPERIMENTAL

Ao CHARACTERISATION
DEFINITION

OF LEFM
_ _DAASEL MODEL

STRESS

RANGE

]
Ao ™
DATA | FCHARACTERISTICS,
Hiacausimon; | ok berkcts

~Morphology
- Location

BEFECTS

NEURAT
NETWORK;

FINITE FATIGUE
LIFE

DATA
PROCESSING
ViA

|

NEURAL | |
WORE i

Ao NETWORK | |

ABSTRACT

Defects in additively manufactured materials are one of the leading sources of uncertainty in mechanical
fatigue. Fracture mechanics concepts are useful to evaluate their influence, nevertheless, these
approaches cannot account for the real morphology of defects. Preliminary attempts to exploit a more
comprehensive description of defects can be found in the literature, by using Machine Learning. These
approaches are notoriously data-hungry and neither physics laws nor phenomenological rules are intro-
duced to assess the soundness of the outcome. Hereby, to overcome this limitation, an approach to pre-
dicting fatigue finite life of defective materials, based on a Physics-Informed Neural Network framework,
is presented for the first time. The training process of a Neural Network is reinforced by introducing novel
Fracture Mechanics constraints. Experimental results obtained from the literature, including detailed
defect analysis from computer tomography and fractography, were used to check its accuracy. The pro-
posed predictive tool fully exploits the advanced capabilities of machine learning to account for morpho-
logical aspects of defects that could not be accounted for otherwise, while at the same time obeying
fracture mechanics laws and requiring a smaller experimental dataset . The approach paves the way

for new structural design approaches with an unprecedented degree of accuracy.
© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The development of Additive Manufacturing (AM) techniques
has brought an unprecedented degree of geometry flexibility dur-
ing the design process of mechanical components, which has been
enabling the full exploitation of topology optimisation processes
[1]. Nevertheless, structural performance - particularly fatigue -
of AM materials is still an open issue that needs to be addressed
in order to produce reliable engineering components [2]. Besides
surface roughness finish, several interplaying microstructural fac-
tors rule the fatigue behaviour of these materials, distinctively
from those produced by traditional manufacturing processes. Such
influencing factors are largely caused by the nature of the process,
which consists of a fast-moving heat source that inevitably pro-
duces high and inhomogeneous localised cooling speeds. There-
fore, the resulting material is greatly influenced by the thermal
history and heat fluxes, which are poorly controlled and inevitably
give rise to inhomogeneous microstructure. Indeed, AM materials
usually show a textured microstructure linked to the heat flux
directions, and even crystallographic phase gradients may be pre-
sent in some cases [3]. Another important consequence of the inef-
ficiently controlled thermal history across the length scales is the
origin of residual stress [4]. In the case of AM, residual stresses
are present at different length scales, ranging from the intra-
granular (Type III) to inter-granular (Type II) and eventually
macroscopic scale (Type I) [5,6]. All of these stresses play different
roles, for instance, Type I residual stress may produce relevant dis-
tortions of the manufactured part [7], while Type I and II stresses
can importantly alter its fatigue performance. For this reason, a
stress relief heat treatment is generally applied [8]. In some other
specific applications where superior fatigue performance is sought,
post-process mechanical treatments are employed, such as shot/
shock peening [9-11], to locally modify residual stress spatial dis-
tribution and magnitude.

Although thermal effects can also cause the nucleation of ther-
mal cracks, the predominant presence of crack-like features in AM
materials is due to the interplay of localised thermal gradients and
dynamics of the material’s melt pool producing gas/vapour jets
[12] that can promote spatter effects, which are then the principal
cause of pore gas formation [13]. Besides gas porosity, whereas
insufficient localised heat is provided to the material to be melted,
lack-of-fusion defects may arise. Differently from gas porosities,
lack-of-fusion pores display a more complex morphology arising
from the presence of unmolten particles, oxides, impurities, recrys-
tallised grains and high dislocation density [14]; these characteris-
tic traits make lack-of-fusion pores more detrimental to fatigue
resistance.

Despite some post-processing thermo-mechanical treatments
have been developed over the recent years to mitigate issues
related to the presence of defects (e.g. Hot Isostatic Pressing, HIP)
[15], in some cases, these methods either cannot be employed
practically or do not produce the expected effectiveness. For this
reason, understanding the role of these defects and their influence
on the fatigue performance of the material is of paramount impor-
tance. Indeed, according to the theory of Fracture Mechanics, small
defects may or may not affect fatigue depending on their size,
shape, and location in the tested material. In the last decade, Frac-
ture Mechanics concepts have been widely used to assess the fati-
gue endurance of AM parts considering material defects [16-19],
even in the elastoplastic regime [20], thanks also to the original
idea of Murakami and his definition of the characteristic size of a
defect [21]. Nevertheless, other approaches have also been used
[22]. By means of extreme value statistics [23], Romano et al lately
employed the statistical distribution of porosity to infer the prob-
ability of failure invoking Kitagawa’s diagram with El-Haddad’s
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model cast within a Finite Element Methods (FEM) framework
[24,25]. Other FEM-based calculation procedures are also available,
specifically dealing with local and probabilistic approaches such as
P-FAT [26,27] or DARWIN [28].

Detection of defects characteristics in materials can be done
through destructive and non-destructive methods. The former
refers to material sectioning and optical metallurgical observa-
tions, while the latter appeals to a non-invasive technique Com-
puter Tomography (CT) scan [29], for instance. In the specific
case of CT, such a technique enables fine morphology details to
be captured for a large number of pores, not fully exploited when
semi-empirical models - Murakami’s for example - are employed.
Nonetheless, both experimental and theoretical mechanics has
shown how the morphology of initial cracks or defects may affect
the actual crack propagation driving force. As analytically demon-
strated, concave crack fronts can display increased Stress Intensity
Factors (SIFs) [30], meaning that the crack propagation rate is
higher in these locations when fatigue loadings are applied exter-
nally. Nevertheless, these details are still neglected mainly due to
the characteristic crack front evolution that tends to form circular
planar cracks, regardless of the initial planar crack profile [31,32].
Additionally, a substantial computational effort is often required
to evaluate the number of elapsed cycles required to turn a
complex-shaped crack into a circular one, and generally such a
number of cycles is negligible as compared with the total number
of cycles to failure.

In recent years, the rapid development of Machine Learning-
based (ML) techniques has demonstrated a great potential for the
recognition of influencing factors and patterns in large datasets;
many applications can be found focusing on fatigue problems
[11,33-35]. In particular, some approaches have been proposed
very recently to deal with the presence of defects in AM metallic
materials. For instance, Support Vector Machine (SVM) was suc-
cessfully applied to infer the fatigue finite life of a selective laser
melted Ti-6Al-4V alloy by studying the statistical information
obtained by Synchrotron X-ray tomography of the geometric fea-
tures of the defects [36]. Another application of SVM to deal with
defects and associated influencing features was proposed very
recently [37]. A further recent research showed an application of
a random forest ML model to analyse the finite fatigue life beha-
viour of a martensitic stainless steel considering the projected
defect area and a modified SIF fatigue driving force as inputs to
the model [38]. The fatigue life of an AM laser powder bed fused
(LPBF) AlISi10Mg alloy was studied using ML as well [39]. In such
a particular instance, scanning electron microscopy (SEM) post-
mortem examination allowed for the characterisation of the criti-
cal defects in order to identify the three most important defect
characteristics: projected area, location and morphology. Eventu-
ally, ML was employed to understand whether these three charac-
teristics, along with the applied stress magnitude, could achieve a
satisfactory prediction of fatigue life. Another ML application to the
problem of defect presence was presented by Seunghyun et al. In
their research it is shown how CT and surface profilometry charac-
terisation could serve as inputs to a drop-out neural network
approach, for Ti64 fatigue bars manufactured via the LPBF tech-
nique [40].

It is thus evident how ML techniques can potentially substitute
semi-empirical modelling for fatigue prediction when the available
data is sufficiently high. On the other hand, semi-empirical models
are the only possible choice if a prediction is sought while having
only a limited dataset. At the present, one method generally
excludes the intervention of the other, thus in some cases, relevant
influencing factors are either partially or completely neglected.

The fundamental challenge is therefore the fusion of the two
approaches with the aim to reinforce the prediction.
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In the last few years, an interesting variant of ML methods has
been attracting a great deal of attention, namely Physically-
Informed ML [41]; originally developed for Neural Networks
(NN) [42]. The distinctive feature of this approach is that it enables
to account for physical laws or other phenomenological con-
straints, e.g. differential equation models, ruling the studied phe-
nomenon to reinforce the prediction. Very recently, such an
approach appeared to be effective for the prediction of AM material
porosity during manufacturing [43]. Another example is an appli-
cation of NN to a Ti-6Al-4V AM alloy for the prediction of fatigue
life, considering also probability, without considering any material
microstructural characteristics such as defects [44]; in this case,
the physics-informed approach was referred to as physics-
guided. In the field of solid mechanics, the methods was also pro-
posed to identify inhomogeneous elastic properties [45].

In the present work, a novel ML approach - based on the
Physics-Informed Neural Network (PINN) framework - is devel-
oped and presented to forecast the finite fatigue life additively
manufactured metallic materials. This approach enables for taking
into account those morphological characteristics of the porosity
present in the material that are not contemplated when using clas-
sic Linear Elastic Fracture Mechanics (LEFM). By proposing and
exploiting the capability of a novel semi-empirical modelling
approach to fatigue life based on LEFM, the physics-informed sec-
tion of the PINN model was employed to reinforce the training pro-
cess of a properly structured NN. A case-study is eventually shown
by analysing a relatively small dataset obtained from the literature
regarding an AlSi10Mg alloy produced by selective laser melting,
specifically containing material fatigue experimental data and
morphological characteristics of the porosity present in the mate-
rial. Importantly, the analysed samples did not undergo any ther-
mal treatment after fabrication, so the effect of residual stress
may be significant. The validation of the devised PINN model is
then performed through the so-called K-fold cross validation, i.e.
permutations of the samples excluded in the training process of
the PINN. To this end, the predicted and actual results in terms
of fatigue finite life of independent experimental test samples are
compared for each generated fold. In order to prove the benefits
offered by the PINN, the training and the validation is replicated
using an equivalent NN, i.e. the same PINN where the LEFM phys-
ical constraint is deactivated. To this end, both qualitative and
quantitative comparison are widely discussed, alongside with a
discussion on the implications and potential limitations of the pro-
posed model.

2. Materials and methods
2.1. Experimental dataset

The experimental dataset used in the present work was kindly
provided by Romano et al. [17], particularly regarding those which
underwent CT analysis. According to the authors, several cylindri-
cal aluminium alloy (AlSi10Mg) samples were additively manufac-
tured by means of an EOS M400® powder-bed machine, which
relies on the selective laser melting (SLM) technology. The surface
of the samples was turned to remove the intrinsic roughness of the
SLM machining process. These samples were fabricated over a per-
iod of three years (2015 to 2017) employing the same process
parameters, and the diameter of the gauge volume was not the
same for all the tested samples: from 4 mm to 6 mm. Additionally,
all the samples were fabricated using a layer thickness of 60 pum
and a pre-heating of the platform of 200 °C. Throughout the fabri-
cation period, however, the machine’s built-in system that recircu-
lates the inert gas and removes the particles was upgraded to
improve the quality of the material. Therefore, two different
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batches of samples were distinguished, namely P1 and P2. Specif-
ically, the samples belonging to P1 and P2 were produced using
the original and the upgraded recirculating system, respectively.
Furthermore, regardless of the batch involved, two different built
orientations were considered, namely vertical (V) and horizontal
(H). It is important to highlight that none of the samples was heat
treated after the manufacturing process.

Prior to fatigue testing, the samples underwent CT scans in
order to reconstruct the accurate morphology and location of hid-
den, or partially hidden, defects. In this respect, details of the
adopted gauge volume can be found elsewhere [17].

In order to characterise the fatigue behaviour of the material,
the specimens were subjected to a cyclic load of constant stress
amplitude at a load ratio of R = —1. In this instance, Ac is the nom-
inal externally applied load, whereas N is the corresponding num-
ber of cycles to failure. Table 1 provides the outcomes of the fatigue
experimental characterisation. After the fatigue testing, the sam-
ples were observed through fractography in post-mortem condi-
tions to detect, where identifiable, killer pores, i.e. the pores
where the fatigue cracking was triggered. Table 1 reports in which
samples this operation turned out to be successful.

The morphology features that are considered pertinent to the
present work are: the volume of the defects Vj, the external sur-
face of the defects Ap, and the projection of Ap onto the plane nor-
mal to the direction of the applied load. The square root of this
projection will be identified as v/area in the following sections con-
cerning the LEFM model. According to the features Ap and Vp, the
sphericity of the defects is computed as:

1 2
S_ 73(6Vp)3 (1)
Ap

whereas the equivalent three-dimensional diameter of the defects
is given by:

1

3Vp\3
d=2 <_47'c > (2)
Regarding the location of the defects, the CT scans permitted

the distance between the defects and the free surface of the spec-
imen to be assessed. Hereafter, such quantity will be denoted by h.

2.2. Development of a fracture mechanics-based model

2.2.1. Stress intensity factor evaluation

Due to the relatively small size of the defects generally found in
AM materials, a LEFM approach is often used to assess the severity
of the applied cyclic load concerning the fatigue life. The stress
intensity factor, SIF (K), is widely employed to evaluate the crack
driving force in LEFM. For fatigue problems, a SIF range (AK) is con-
sidered as follows:

AK = YAo/Ta 3)

where a is the crack length, while Y is a function depending on the
geometry of the problem and loading mode, e.g. crack size, crack
morphology, crack position, sample geometry etc.

When dealing with small cracks (up to ~ 1000 pm), compared
with the characteristic cross section dimension of the probed
material, Murakami demonstrated how even three-dimensional
defects can be characterised by simply evaluating the square root
of the projected area of the defect over a plane normal to the prin-
cipal loading direction, v/area; this characteristic is then consid-
ered as the equivalent crack length [21]. Therefore, for small
defects, Eq. (3) becomes:

AK = YAoy/ mtv/area (4)
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Table 1
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List of tested samples and fatigue details [17]. As concerns the built orientation, H and V stand for horizontal and vertical, respectively.

Progressive Batch, P# Built Stress range, Ac [MPa] Experimental Killer defect detectable?
Number, i orientation fatigue life, N
[number of cycles]

1 1 H 400 474 YES
2 1 H 220 2,622,640 YES
3 1 H 360 3432 YES
4 1 \ 200 15,242,310 YES
5 1 \ 180 11,352,768 YES
6 1 \% 295 46,255 YES
7 1 H 298.5 19,806 NO
8 1 \ 301.6 39,538 NO
9 1 \ 180 237,485 NO
10 1 \Y 3783 11,465 NO
11 1 \ 156 3,795,336 NO
12 2 H 3744 28,201 NO

As widely reported by Murakami [21], Y turns out to be depen-
dent predominantly on the distance between the centre of the
defect and the sample free surface - for short cracks. In particular,
Murakami proposed the following empirical condition to discrim-
inate (sub-)surface defects and embedded cracks:

h/r <1.25 (5)

where h is the distance from the sample free surface of the defect
centre, and r is the radius of the equivalent circular planar defect
defined as:

= o

Therefore, according to LEFM, the crack coefficient turns out to
be: Y = 0.65 for (sub-)surface defects and Y = 0.5 for embedded
(or bulk) cracks.

y— {0.65 h/r <1.25 )

050 h/r>1.25

Particular case of sub-surface defects.

For a more precise evaluation of the AK, the equivalent crack
length for sub-surface defects should be corrected to account for
the fraction of material laying between the defect and the free sur-
face that does sufficiently restrain the defect to open when the load
is applied [21,46]. In order to do so, an effective area (areae) is gen-
erally employed. The concept of the effective area stems from the
relatively fast propagation of sub-surface cracks, preferentially
towards the sample free surface, along with those directions where
the crack driving force is predominant. In this scenario, fatigue
crack growth occurs rapidly to form a secondary defect geometrical
configuration (area.y) and these fatigue cycles allowing for a crack
to grow from area to area,; are neglected; this is a generally
accepted assumption [46].

Given the difficulty in achieving an accurate estimate of ared. -
especially when dealing with three-dimensional defects - the exact
shape of the defect can be conveniently and efficiently replaced by
accounting for the distance of the sample free surface h to the cen-
tre of the equivalent circular defect again by a planar circular crack
with the equivalent radius, r, according to Fig. 1. It is important to
report that the centre of the equivalent circular defect is coincident
with the centroid of the defect itself.

By using these dimensions, an approximate value of the aredaey
can be defined through the following equation:

2
aredeyy = % + 2hr = area (% +% 2) (8)

In this way, the projected defect area is increased by maximum
1.3 times at the boundary between bulk and sub-surface defects
(h/r =1.25), and this multiplying factor turns out to be 1 when
h/r = /4 (limit of applicability of the present sub-surface defect).

By substituting area.y in Eq. (4), and assuming Y = 0.65 as per
surface defects, the following expression can be written:

1/4
AR~ _ 0,65 G + % %) Ao/ m/area )

As it can be seen, Eq. (9) maintains the same structure of Eq. (4).
Therefore, a modified version of Y can be defined straightforwardly
as:

Ysub—Surf —=0.65 (1 + g E) v (] 0)
2 mr

which accounts for the aforementioned defect surface increment. It
is worth outlining that this handy estimation procedure might lead
to either an overestimation or underestimation of the effective area
depending upon the shape of the defect. In any case, this effect is
considered to be negligible in the present paper.

Surface cracks and generalised correction in SIF calculation.

The correction on the effective area decays when the bound-
aries of internal defects meet the material sample free surface. In
this scenario, there is no need to consider an effective area of the
defect, but the actual projected area (area) can be used. As quickly
mentioned earlier, as it can be seen in Eq.(8), a further criterion
must be implemented to discriminate this class of cracks, thus:

h/r <m/4 (11)

In summary, a modified version of Y, namely Y. is readily
defined:

0.65 if h/r<m/4
Yoy = 0.65(2+21"* if m/4 < hjr <125 (12)
05 if h/r>125

Hence, the SIF range (AK) can be promptly evaluated through
equation (4), where Y is now replaced by Y;:

AK = Yq Ao/ t/area (13)

2.2.2. Normalised fatigue driving force

Recently, it was shown how accounting for the presence of
defects in tested materials using LEFM concepts can reduce the
scatter of fatigue life data. In other words, the classic S — N (a com-
monly used denomination for the Ag — N curve) curve can be
effectively replaced with a AK — N with the advantage, in some



E. Salvati, A. Tognan, L. Laurenti et al.

FREE SURFACE
OF THE SPECIMEN

CLOSE-UP
OF THE DEFECT

Materials & Design 222 (2022) 111089

SURFACE
INCREMENT

i
|
| 4
; /
i
i
i

DEFECT

Fig. 1. Graphical illustration of equivalent planar circular crack and its surface increment for sub-surface defects. The projected defect area is highlighted in red, and the
radius of its area equivalent circular domain is r. The distance of the equivalent domain to the free surface is h. The effective area of the defect is approximatively given by the
sum of half of the equivalent circular defect (in grey) and the portion of material connecting to the free surface (in green). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

cases, of having a less scattered reference design curve [47-49].
When considering additively manufactured materials containing
small cracks, the SIF range can be considered as the driving force
which governs the relation between the applied stress range and
the number of cycles to failure.

In a recent publication, Murakami showed how the normalisa-
tion of S — N curves using the fatigue limit Ag/Ac,, can be effective
to describe the finite fatigue life behaviour of different batches of
samples belonging to the same parent material; different batches
were referred to different sizes of defects [50,51], where Aag,, is
the material fatigue limit. In the present paper, an analogous nor-
malisation is proposed to deal with short cracks, with the goal of
reducing the scatter band of the master fatigue life curve. To this
end, the normalisation is done by using the fatigue SIF threshold,
AK .. Therefore, AK/AK,, becomes the normalised fatigue driving
force. However, such normalisation is not straightforward given
that in the short crack region AKy, is strongly affected by the initial
crack size as widely reported by Murakami and Ritchie [21,52].
Specifically, this result is attributed to plastic deformations and
crack closure effects [53-55]. In the present work, the normalisa-
tion was done by evaluating AK;, according to the empirical law
proposed by Murakami and Endo [56].

Murakami and Endo showed that AKy; can be easily found with
remarkable accuracy for many metallic materials, and defect sizes
ranging from 10 pm to 1000 pm, through the following equation in
which only the material Vickers hardness (HV) is used as the
intrinsic material property:

AKy = C x 107 (HV + 120)(varea)'’ (14)

where C is a constant that depends on the defect position, i.e. 2.77
for bulk cracks and 3.30 for sub-surface or surface cracks [21], fol-
lowing the same distinction discussed earlier. It is noteworthy that
the units of AK,, and +/area are MPa m'/? and um, respectively.

At this point, in order to fully exploit Murakami’s relation, it is
useful to normalise AK in the AK — N also with respect to the mate-
rial intrinsic mechanical property HV and other remaining con-
stants, therefore Eq. (14) can be rearranged as:

AKy, Jared 1/3
= (varea 15
C x 1073(HV +120) ( ) (13)

Thus, the normalisation is done by dividing Eq. (13) as follows:

AK C(HV +120) _ YeAovmyarea V]grea (16)
AKyy (varea)

It is worth noting that the constant 107> in Eq. (15) vanishes if it
is decided to express y/area in pm. Given that the coefficient C var-
ies according to the same rule of Y. (Eq. (12)), it is possible to
include the functional relationship of both C and Y, into a single
function Y*:

0.1970 if h/r <m/4
Y =01970(+ 28" if 1/4 < h/r <1.25 (17)
0.1805 if h/r>1.25

Eventually, the driving force of the fatigue life can be expressed
as:

ARy 1 120) = Y A0V Varea et = oK (18)
AKy, (varea)

This parameter will be often recalled within the present paper
as the normalised SIF range: 5K.

2.2.3. Fatigue curve regression and prediction band

As mentioned earlier, recent research has shown how scattered
fatigue data could be fit by a regression line by employing the SIF
range [47-49,57], similarly to that classically done using Basquin’s
law for S — N diagrams. According to the E739 ASTM standard [58],
the number of cycles to failure N is assumed to be the dependent
variable, whereas the independent variable is the normalised SIF
range. Therefore, the fitting power function in the present work
is expressed as:

N=A 5K® (19)

where A and B are fitting coefficients that can be found through the
Ordinary Least Squares method (OLS) after taking the logarithm of
both sides:

log N = logA + Blog 6K (20)

It is worth mentioning that ASTM’s standard also reports the
protocol to compute the simultaneous confidence interval for the
regression model, which evaluates the confidence interval of the
sole regression line. Given that the introduction of the empirical
formulation of fatigue life in the present paper is aimed at provid-
ing an interval - that will be later discussed and implemented
within the PINN calculation scheme - in which the fatigue failure
is expected to lay in, a so-called non simultaneous two-sided pre-
diction interval approach is fully exploited [59]. This method is par-
ticularly useful since it provides prediction intervals interpreted as
a band which includes, with a given confidence, a single future
observation. This interval takes into account both the random vari-
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ability of a future observation and the epistemic variability of the
regression estimates. As a particular case, if the sample size tends
to infinity, the prediction interval converges to the scatter band of
the sole regression.

According to the two-sided prediction model, the prediction
band can be represented by adding and subtracting the predictive
term to Eq. (20) as follows:

logN = log A + Blog oK + SAP (21)
where s is the square root of the estimator for the variance associ-
ated with logN:

1 & 2
s=——5 ; [log N; — (logA + Blog 6K;)] (22)

and AP is the semi-amplitude of the prediction interval, which is
computed through:

(103K  tog )
1 0g oK — log 6K
T+o+

AP =t(n—2,0/2) (23)

PR (IOg oK; — log. 51()2

where t(n —2,0/2) is the o/2 quantile of the t-distribution with

n — 2 degrees of freedom, n is the sample size, and loéél( is the sam-
ple mean.

2.3. Physics-Informed Neural Networks

2.3.1. Introduction to the Physics-Informed Neural network framework

Physical sciences heavily rely on physical and empirical models
to describe observed phenomena. In the field of solid mechanics,
many phenomena are modelled by partial differential equations
(PDE), e.g. equilibrium and conservation laws, or empirical and
semi-empirical formulations, often of a power law nature, a few
examples: fatigue fracture mechanics [55,60,61], fatigue life [62],
and creep [63]. A sufficiently accurate description of the physical
problem using these equations must ensure that the experimental
observation employed for the calibration of their constants is not
affected by noise and, additionally, that other variables of the prob-
lem that cannot be modelled are thought to be negligible.

Particularly for problems dealing with PDE, over the past dec-
ades, considerable effort has been devoted to the development of
numerical methods to solve them. Nevertheless, with high-
dimensional systems, this approach can quickly become computa-
tionally infeasible. On the other hand, semi-empirical formulations
may neglect important factors which hamper their accuracy. For
these reasons, PINNs have been developed and honed to enforce
the mere numerical modelling inherited from NN with the under-
lying physics of the observed phenomenon. PINN-based methods
have turned out to be particularly powerful to facilitate and
strengthen the training process in case of a small data regime
[41]. The working principle of PINNSs is illustrated in Fig. 2. Since
the presented approach does not involve PDE-driven models, but
considers semi-empirical formulations (see Section 3.1), it is useful
to illustrate a generalised PINN framework with a generic model F,
which provides the output y € RV according to the input ¥ € RY
and t € R. This can be mathematically stated as:

y=Fx1) (24)
where y, x and t could represent any pertinent quantities of interest

involved when constructing the model. Based upon a suitable NN,
the goal of the PINN approach is to build a surrogate model of F,

namely F"V:

y* = F"N(x,t.0) (25)
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Where y"V ¢ R" is the output predicted by the NN, and 0 € R
is the vector containing the parameters of the NN.

The parameters of the NN are determined in order to minimise
the error of the predictions with respect to the training dataset
while satisfying the model in Eq. (24). To this end, the inputs x
and t are elaborated by the NN which eventually provides the cor-
responding predicted output yV. Let y, € R be the expected out-
put associated with x. At this point, "V and y, are compared, and
the loss LN (usually a mean squared error) is computed accord-
ingly. With reference to Fig. 2, y¥V is also numerically processed
and fed into the model. It should be mentioned that y"N could only
satisfy the model (Eq. (24)) to a certain degree, thus resulting in a
residual which, in turn, represents the additional loss L. Subse-
quently, the total loss L is given by an appropriate combination,
usually a weighted sum, of L'V and [M:

L=IgM (26)

This combination is concisely represented by the symbol @.
Finally, L is minimised by updating the parameters of the NN via
backpropagation. It is important to note that L™ is the portion of
the total loss that guarantees the fulfilment of underlying pre-
scribed physics.

2.3.2. PINN for finite fatigue life prediction

In the present study, the PINN framework is used to enforce a
NN with phenomenological constraints, referred to as LEFM fatigue
model, so that the physics of the problem is preserved. Aiming at
illustrating the pursued calculation algorithm approach, the train-
ing process of the NN is comprehensively illustrated in Fig. 3.

With reference to Fig. 3, a set of input parameters can be iden-
tified and labelled as experimental datasets, which contains all the
experimental information obtained from fatigue tests (Agj, N;j),
CT analysis (,/area;, h;, S;, d;) and, if available, fractography mea-

surements of the killer defect (,/area;, h;), for each tested sample

j(=1,2---,m); where m is the number of fatigue tested samples.

As far as the NN branch is concerned, the sole feature informa-
tion obtained from CT scans of each tested sample was used since
the prediction is meant to be done before the sample is experimen-
tally tested and thus the actual killer defect cannot be known
beforehand. Therefore, a filtering operation is executed to prepare
the relevant data which will be used as inputs to the NN. Such a fil-
ter relies on the identification of a number of defects (I) that gives
rise to the largest magnitudes of 6K and following sorting in
ascending order, i.e. 6K; < 5K, < ...< K. The size of I (also referred
to as the number of potential killer defects) is chosen by the user -
the case study reported in the next section will show how an
appropriate value of I can be judiciously selected. Therefore, all
the defect features associated with the filtered killers are used as
inputs into the NN’s, the whole set of inputs can be summarised as:

varea; =[+area;; /area; varea,_,; +/area ]

h; =[hij hyy - higy hy] 27)
5; =[S S2j - Sy Sy
d; =[dy; dy diij dyj]

where j denotes the index of the j-th sample. Additionally, each
tested sample j is characterised by its fatigue testing conditions
Ao and its resulting number of cycles to failure N, so that this infor-
mation can be succinctly gathered into the following vectors:

Ao =[Aoy Aoy -+ AGn |

N =[N; Ny - Np| (28)
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> Y = F(x,0)
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Fig. 2. Conceptual representation of PINN. The input x and t are elaborated by the NN which estimates the output y"V¥. Then L™V is computed according to y"V¥ and the
expected output y, . Simultaneously, y™V is processed through the model y = F(x, t) giving rise to an additional loss L. Finally, L"" and [ are combined and backpropagated.

Importantly, the data in Eq. (27) and Eq. (28) should be pre-
processed in order to prepare the input vector which will be fed
into the NN. With reference to the j-th sample, its associated input
vector x; can be constructed in a block-partitioned form:

X = [ /—areaj|hj\sj\d,»|Ac,} € RUxH1 (29)

Thereby, the dimension of the input layer of the NN (n. of input
neurons) is u x [ + 1, where u is the number of defect characteris-
tics (or features) used in this paper (u = 4 in this instance: ,/area;,
h;, S; and d;) and 1 refers to the applied load Agj. Besides, N; is the
expected experimental output associated with x;. Once defined the
architecture of the NN, its predicted output in terms of the number
of cycles to failure will be given by
NN = F"™(x; = [\/area;|h;|S;|dj|Ac;], 0) in agreement with Eq. (25).

At this point, the mean squared error between the predicted
N]’-VN and the actual number of cycles to failure N; is computed by

taking the logarithms, thus providing the loss L
2
= (10ng” - logNj) (30)

Such a loss is summed to an additional loss derived from the
physics side ¥, which will be defined afterwards, giving rise to
the total loss L;.

As widely discussed earlier, this model requires knowledge of
the sole N, Ac, h and +/area to build the normalised SIF range vs.
number of cycles to failure diagram (6K — N) and its associated
regression and prediction band (framed with red dashed lines in
Fig. 3). To define this model both CT and fractographic measure-
ments can be employed, giving the priority to the actual killer
defect information obtained from fractography, while, if this infor-
mation is missing, then a number of | potential killer defects are
exploited.

Given the logarithm of the first n.l normalised SIFs of the j-th
sample, namely logodK;q,10gdK;>,---,logdK;,;, the 6K — N model
(see Eq. (20)) can be used to predict the logarithm of the associated
potential killers expected finite fatigue lives, namely
logN;;,logNj,,---,logN;,. Reasonably, a loss function which pena-

lises the difference between each logNj; (i = 1,2,---,1) and log N}"

(predicted by the NN) should be sought. The definition of such a
loss function exploits an important assumption of the model:
log N for a fixed level of log 6K follows a Normal Distribution [58]:

log N ~ Nor(log N*,s) (31)

where log N* is given by Eq. (20) evaluated at logéK, and s is the
variance (Eq. (22)). Upon normalising the random variable logN,
Eq. (31) provides:

] 7l(logN—10gN’)2
_ 2 s
V2Ts

In view of defining a suitable loss function it is useful to nor-
malise the values provided by Eq. (32) so that this function lays
in [0, 1]. Hence the previous equation can be restated as:

logN ~ (32)

1 (IogN—logN’)2
s

logN ~ e2 (33)

Given that such a normal distribution describes what the prob-
ability of occurrence of N is expected at a given JK, the aim is to
exploit this phenomenological condition into the definition of the
loss function for the physics constrains of the PINN.

Considering Eq. (33), one could recognise the squared difference
between the expected fatigue life log N* and its potential predic-
tion logN, in the argument of the exponential function. This
squared difference resembles a loss function, similar to what is
implemented in NN back propagation process. Nevertheless, this
form cannot be used as a loss function to enforce the physics con-
strains since the presence of the exponential penalises the predic-
tions of log N; when approaching the expected value log N*. In the
present work it is proposed to revert the behaviour of the function
displayed in Eq. (33) such that it can be effectively used as a loss
function. The fundamental idea is to have a function that provides
a null loss function at the mean value of the normal distribution
and a loss function approaching a unitary value far away from
the mean value.

To this end, the general form of the loss function driving the
physics branch of the PINN framework is devised as follows:

(]ogN—]ogN')Z
5

M=1-¢1 (34)

This equation can be readily adapted to handle the prediction
given by the NN, logN}"™, and the expected value logN;; provided
by the 6K — N model, as far as the j-th sample is concerned:

2
logNNN _log N¥.
1 s J s J-X)

M 2 5
Rt 35)

In order to fully define the loss function which pertains to the
physical part of the PINN of the present paper, Eq. (35) was oppor-
tunely generalised for the first n.I normalised SIFs:
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Fig. 3. Developed fatigue finite life PINN algorithm. For graphical reasons, p; represents logNjNN — logN;; according to Eq. (36). Note that @ is the weighted sum between LJ’-V'
and L™ through the weights w¥ and w™V, respectively.
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y i 7% <logN]vNNs—]cgNj’_’J> 2
=Y |1-e (36)

i=1

For the sake of conciseness, the difference logN;"" — logN;; is
labelled as p; in Fig. 3; where the entire numerical calculation
scheme is displayed. Subsequently, the weighted sum of Eq. (30)
and Eq. (36) was taken to define the total loss:

L = WAV (37)

where w™ € [0,1] and wM € [0, 1] are weights which are meant to
sum to 1, and therefore:

whW=1_-].wM (38)

L; was backpropagated to train the PINN, and the training process
had been terminated when L; was sufficiently small.

Considering Eq. (36), it is worth emphasising that the loss pro-
vided from the physics side of the PINN, Lj’-"', is originated from the

mismatch between the predictions given by the NN, log NjNN, and
the expected value obtained from the regression line of the LEFM,
log Nj;. From a practical standpoint, the additional contribution
provided by LJM progressively instruct the PINN to make predictions
closer to the regression line, until reaching a trade-off with the
experimental input. At the end of the training process, the peculiar
structure of LJM automatically ensure the predictions to lay inside
the prediction band, upon rational choice of the weight wM, thus
complying with the semi-empirical law of the LEFM model, Eq.
(21).

Aiming at evaluating the benefits and the accuracy of the PINN
as compared with those of an equivalent fully NN one, two indica-
tors were employed, namely the Root Mean Squared Error (RMSE)
and the Coefficient of Determination (R?). The RMSE was defined
as:

n

3 <log N; — log N}"N) 2

RMSE = \|* . (39)

where N; is the experimental fatigue life, whereas N}VN is the associ-
ate prediction, and n is the sample size. R> was defined as:
2
S (logN; — log N™
R=1- J (o fz (40)
i (logNj —log N)

where loéN is the mean of the observed samples:
- 1 n
logN = - J; logN; (41)

Fig. 3 shown a summary of the calculation scheme proposed in
the present study.

2.3.3. Application to a case-study

To showcase the capabilities of the proposed method, a case-
study is presented. In order to pursue a more conservative
approach, in the present work, it was decided to pick the first three
defects showing the highest SIF range, with the difference that the
normalised SIF range (6K) was employed herein. Therefore, | = 3
was assumed. This assumption is justified by the observations
reported by Romano et al [17] who systematically identified the
two defects showing the highest SIF as the killer defects. It is fun-
damental to highlight that the selection of I is highly dependent on
the distribution of defects giving rise to close SIF range values. For
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instance, if a certain batch of material shows two predominant
defects, having much larger SIF ranges as compared with the
remaining ones, then the use of | > 2 would not be the most appro-
priate choice.

As reported in Table 1, a dataset of 12 samples was considered
in the present paper. The architecture of the NN consists of a 13-
element input layer (according to the dimension of the input vec-
tor), a 16-neuron hidden layer, an 8-neuron hidden layer and a
single-neuron output layer. Sigmoid activation functions were
adopted regarding the neurons of both the first and second hidden
layers. Additionally, at each neuron the bias parameter was trained
according to the considered data fold. The architecture of the NN
was accurately designed to provide predictions complying with
the LEFM model, while at the same time keeping its complexity
as low as possible and avoiding overfitting the training dataset. It
should be noted, however, that no rigorous procedures exist to
design the architecture of the NN and thus the necessary number
of layers and neurons.

In the present study, some criteria were considered while struc-
turing the NN architecture. The fundamental idea is to gradually
increase the complexness of the NN structure. Therefore, prelimi-
nary a structure without any hidden layers was tested to check
whether the system could be predicted by a simple model. This

operation was done by considering R?, and it was decided to
increase the complexity of the NN architecture (by adding more
hidden layers) such that the R? turned out to be around 0.9 when
considering both training and test datasets in the PINN framework;
higher values were not considered to avoid overfitting. In the same
way, also the number of neurons in the hidden layers were care-
fully chosen.

The numerical implementation of the PINN was carried out by
using PyTorch [64]. After preliminary tests, n.2000 epochs was
identified as the most suitable value for the present work. During
the training process the loss function in Eq. (34), was optimised
by means of Adam, a popular and broadly employed Gradient Des-
cent optimiser [65].

It is worth noting that in small data regime, L2-regularisation
and adaptive Learning Rate (LR) might be considered to avoid over-
fitting effects [66 67]. The LR is a specific parameter of the NN
which establishes the step size of a Gradient Descent optimiser
when exploring the domain of the loss function to be minimised
[66]. On one hand, higher LR can accelerate the training process,
but on the other, it could trap the optimiser at a local minimum,
thus preventing the model from refining the predictions of the
unseen data. Furthermore, the training of the NN could benefit
from a limited LR, particularly in the small dataset regime; this
would make the training process computationally more expensive
though. The choice of the LR should also be determined in agree-
ment with the number of training epochs, so a trade-off between
all the listed competing factors should be sought.

According to the adopted number of epochs, an adaptive LR was
defined by leveraging the best of both sides of the LR spectrum
while maintaining an LR globally small to comply with the small
dataset regime. Specifically, the initial LR was fixed to 0.001 and
held constant until the 1500th epoch. Following, the LR is reduced
by 25% every 25 epochs until the 1600th epoch and finally reduced
by 75% every 15 epochs. Alongside, L2 regularization with a weight

decay as high as 10~ was adopted to further prevent overfitting.

3. Results and discussion
3.1. Applicability of SIF range as a fatigue driving force

Before showing the key results of the present study, it is impor-
tant to assess the suitability of the proposed fatigue driving force
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parameter, i.e. the normalised SIF range JK. In order to do so, the
whole set of fatigue life experimental results were considered
and fitted using the power law early referred to as the 6K — N trend
(i.e. Eq. (19)), not only for that specific purpose, but also to esti-
mate the S — N and AK — N regression curves, see Fig. 4. In this par-
ticular case study, some of the samples were analysed through
microscopy to identify the actual defect that triggered the fatigue
failure. In those cases, it is unnecessary to consider the first I
defects for the regression of the 6K — N curve and its prediction
band. Therefore, in the regression process, a single value of
8K — N was employed for those samples and expanded [ times to
give the same weight of the samples in which the killer defect
was not identified.

The square root of the estimator for the variance (s) associated
with logN, concerning the prediction band, referring to Eq. (22),
was evaluated to quantify the scatter of each dataset and assess
the buoyancy of the regression. As shown in Fig. 4(a), when consid-
ering the applied stress range A as a driving force, the regression
provides a good representation of the fatigue behaviour and a pre-
diction band width s = 0.7. Instead, this scatter turned out to be
significantly higher if the sole AK is considered (s = 1.079), in con-
trast with what was reported by Sheridan in his results [47,57], see
Fig. 4(b). This contrasting result can be due to the dimension of
defects that lay within a region where the role of the non-
constant AKy, is relevant. Nonetheless, if the normalised SIF (6K)
is deemed to be a representative driving force, the scatter becomes
significantly smaller Fig. 4(c) - although, again, not strikingly evi-

s =0.700
4001 T & . *  LCxperimental
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dent as showed by Sheridan. Therefore, it can be confidently stated
that the normalisation approach implemented herein for the first
time can provide a more truthful fatigue finite life representation.

3.2. PINN predictions and K-fold cross validation

As mentioned earlier, a K-fold validation test was performed to
check the robustness of the presented approach. This test was suc-
cessfully carried out for 6 different permutations of the training
and test datasets (see Fig. 5(a)-(f)).

As far as the training set is concerned, the blue circles in Fig. 5
are the experimental data, whereas the blue crosses markers are
the corresponding predictions. While, the test set is labelled using
red circles and crosses, respectively for the experimental and asso-
ciated predictions. The grey-filled region is the prediction band (Eq.
(21)) enclosed between the associated upper (dot-dashed line) and
lower limits (dashed line), respectively. The black solid line is the
regression curve obtained from the training dataset through OLS,
according to Eq. (20). Additionally, each figure reports the square
root of the estimator for the variance computed from the portion
of data of the training dataset used to build the regression model
(Eq. (22)). It is very important to mention again that both the pre-

diction band and the regression line are defined using the known
experimental data of the fatigued samples employed as training
samples, with JK calculated from fractography if present, other-
wise from CT scans as schematically illustrated in Fig. 3; priority
must be given to the fractography data since this information pro-
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Fig. 4. Regression curves of fatigue life, prediction bands and square root of the estimator for the variance (s) at 95% confidence level. (a) S — N; (b) AK — N; (c).0K — N.
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Fig. 5. Predicted fatigue life overlapped onto the prediction band associated with the considered test samples. Different permutations between test and validations samples

are shown (K-fold) (a-f).
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Fig. 6. Accuracy of the PINN and NN frameworks evaluated through RMSE and R?. Predicted vs. actual number of cycles for (a) NN and (b) PINN. Dispersion band evaluated at

68% confidence level.

vides a precise identification of the killer defect’s traits. On the
other hand, the PINN is employed to make predictions exclusively
using the data obtained from CT.

Fig. 5(a)-(f) illustrates the results of the PINN obtained by set-
ting w™ = 0.015 and w"N = 0.985, which sums to 1 in agreement
with Eq. (38). These weight values turned out to be appropriate
since they equate the contribution of L} and L. As concerns the

early stages of the training a small value of wM could be particu-
larly suitable. In this instance, the predictions given by the PINN
could be forecasted far away from the prediction band thus leading
excessive values of L' as compared with those of L.

Although the formulation of the loss function is arbitrary, its
peculiar structure defined in Eq. (38) allows the user to promptly
tune the importance of the physics with respect to the pure NN
prediction and vice versa. Extreme instances may be seen if
wM =0, then w"N = 1, meaning that the PINN reduces to a stan-
dard NN, since the physical constraint is deactivated. Conversely,
if wM = 1/I, then wWV = 0, therefore the predictive frameworks rely
exclusively on the physical constraints.

Another important strength that is worth highlighting is that in
principle, when the PINN is used for prediction purposes, the out-
come can be promptly checked with the physics constraints to ver-
ify if it complies with the expected range of fatigue life. To this end,
it suffices to ascertain whether the predicted point lays inside the
prediction band. If so, this point should be accepted. Conversely, it
should be rejected.

3.3. Assessing the performance of the PINN

As shown in Fig. 5(a)-(f), the predictions of the PINN framework
and their compliance with phenomenological laws are verified. In
fact, the markers indicating the predicted life (i.e. evaluation) lay
within the prediction band in all the studied cases. Special atten-
tion must be paid to those predictions associated with the “test”
samples - those not involved while conducting the PINN training
process — which again showed a good prediction. This means that
the PINN is capable of satisfactorily estimating the fatigue perfor-
mance based on the morphological traits and distribution of “kill-

12

er” defects in the material. Minor mismatches in terms of the
number of cycles (actual vs. predicted) are certainly attributed to
those mechanisms involved that are completely neglected in the
present study, residual stress above all. And it is actually for this
reason that the employment of semi-empirical law can ensure
realistic predictions, rather than seeking the perfect match in
terms of the number of cycles which would be impractical if no
prior information regarding residual stress (for example) is known.

It is important to observe that the predictions of the training
dataset appear to be located at an intermediate position between
the corresponding experimental point and the expected value on
the regression line. This could be attributed to the PINN achieving

an appropriate trade-off between the model loss L and the

numerical loss L,-NN during the training process.

For the sake of comparison, the reader can find the results
obtained by deactivating the physical constrains in the supplemen-
tary material, so by employing the standard NN training process,
i.e. by setting w; = 0 and wy; = 1 while retaining the same architec-
ture - neurons, layers, and activation functions. In these results it
can be seen that some points actually lay outside the prediction
band, and the estimate valued of the test samples was less effec-
tive; this will be shown shortly.

Besides the qualitative analysis just discussed, it essential to
discuss the advantages offered by the PINN over the classic NN
in a quantitative manner as well, although one method does not
exclude the other. To this end, the results of Fig. 5 are conveyed
into the equivalent, yet concise representation of Fig. 6, which
shows the predicted fatigue life vs the experimental fatigue life
exclusively for the test data since these are the independent pre-
dictions. Specifically, Fig. 6(a) report the result concerning the
dataset given by the sole NN, whereas Fig. 6(b) illustrates that
given by the PINN counterpart. Additionally, each figure reports
the RMSE (Eq. (39)) and R? (Eq. (40)), along with its associated dis-
persion band for each dataset. The Physics Informed side of the
PINN provided fundamental and undoubtedly positive support to
the NN learning process and avoided overfitting. A remarkable evi-
dence, showing the superior predictive capabilities of the PINN
over the NN, can be seen by comparing the values of RMSE and
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R?, and obviously the narrower scatter band at the same confidence
level (68%).

It worth remarking that in case of even smaller data regime,
additional support might be introduced by increasing L2-
regularisation or decreasing the LR, to limit overfitting.

4. Conclusions

In the present work, the development and implementation of a
ML-based prediction tool, constrained by an original semi-
empirical laws of fatigue finite life, has demonstrated to be highly
effective for the accurate prediction of finite fatigue life perfor-
mance in materials containing flaws. The key results of the
research can be summarised as follows:

o The validation executed by exploiting experimental results
(AlSi10Mg) showed how this approach can account for defect
features that could not be taken into account otherwise: defect
sphericity and three-dimensional equivalent diameter. The pre-
dictions as compared with a purely NN-based predictive tool

are improved as demonstrated by the R? index that increased
by around 83%.

o The proposed predictive tool can be easily implemented to con-
sider other characteristics of defects not contemplated in the
present work that are thought to play a role in fatigue, for
example: eccentricity, angularity, solidity etc. [37]. Therefore,
the accuracy of the method can be further increased, provided
that large datasets are available.

o The fundamental idea of using the prediction band, instead of
relying upon a deterministic reference curve, allows for the
model to intrinsically account for other sources of uncertainties
that cannot be evaluated, at least in this study, residual stress
for instance; residual stresses that are certainly present in the
analysed samples and may play a significant role.

o The PINN framework has proven to be particularly suited for
those problems where the dataset is not sufficiently large for
reliable prediction using a pure Machine Learning technique.
Indeed, the lack of data is overcome by introducing phe-
nomenological constraints, i.e. the LEFM model, capable of
guaranteeing the physical soundness of predicted outcomes.

In conclusion, the PINN framework introduced in this paper has
demonstrated an extraordinary capability to make the best out of
the two key approaches in fatigue life assessment, namely semi-
empirical laws and machine learning methodologies. This work
will pave the way for a new class of predictive tools with unprece-
dented accuracy and great potential for future developments.
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