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Abstract
In order to monitor elliptical fatigue crack growth in ferromagnetic steel using magnetic methods, an
alternative to the self magnetic flux leakage method must be derived as elliptical cracks can grow to
significant sizes before they reach through the thickness of the plate material. An approach is sought by
translating subtle changes in magnetisation back to the Villari effect, a phenomenon which depicts how
applied stress induces changes in magnetisation in ferromagnetic objects. Since the magnitude of these
changes in magnetisation is small, other nonlinear effects of similar order such as magnetic relaxation
and hysteresis are identified, measured and quantified preliminarily.

The magnetic behaviour in this project is assumed to be quasi-static, and derivations of the expressions
for the magnetic field around simple geometric shapes are provided in order to understand magnetic be-
haviour and verify the outcome of the numerical simulations. It is shown that the numerical simulations
produce identical magnetostatic induction fields as the analytically derived expressions when using a
sufficiently refined mesh.

An attempt is made to measure long-term magnetic relaxation by subjecting a solid prolate spheroid to
a continuous uniform background field for periods of an hour while trying to measure differences in the
induction field at a fixed distance. Short-term relaxation, the time it takes for an object to reach a certain
magnetisation when the background field is abruptly changed, is also investigated. It is concluded that
both effects could not be successfully measured using the current setup. In order to draw proper conclu-
sions, further research into this topic should be conducted using more accurate equipment for extended
periods of time.

Upon investigation it is discovered that it can not be assumed that the steel specimens exhibit a uniform
permanent magnetisation. A self-developed method is introduced through which non-uniform magneti-
sation in three directions can be calculated by means of inversion using a set of magnetic induction field
measurements in a plane below the specimen when the background field is zero. These measurements
are translated to magnetisation using a set of higher order square Gaussian distribution functions that
are spaced in a grid over the domain of the test specimen in order to vary the magnetisation locally.
Literature that shows comparable results regarding description of non-uniform permanent magnetisation
using an array of induction field measurements has not been found.

The concept of hysteresis is introduced and a method is presented through which the parameters of
the Jiles-Atherton hysteresis model can be determined using parameter fitting in combination with a for-
ward numerical model created in COMSOL. Closure of minor loops require modifications to the original
JA equations which are implemented in the forward model. The numerical model is encapsulated within
the Shuffled Leaping Frog parameter optimisation algorithm in order to compute the correct hysteresis
parameters. It is found that it is possible to successfully determine the parameters of multiple specimens
using weak magnetic fields, and therefore minor loops, which is unparalleled in literature.

Eventually, the Villari effect is introduced and an attempt is made to measure and model the effect us-
ing an extension of the Jiles-Atherton model proposed by Naus. Experiments have shown that using
this methodology the magnetostriction parameters can be succesfully obtained. A recommendation is
provided into how these results can be implemented in crack-propagation models in future research.
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Nomenclature

Terminology

Accommodation Non-physical aspect of the JA-model which prevents minor hystere-
sis loops from closing properly

Annealing Heating metal up to a point that any residual stresses due to produc-
tion processes disappear

Condition number Measure of how the output of a function changes for a small change
in the input argument

COMSOL A cross-platform FEA, solver and multiphysics simulation software
developed by COMSOL Inc.

Eddy current Loops of electrical current within a conducting material induced by a
changing magnetic field

FEM / FEA Finite element method / analysis
Helmholtz cage A domain in which the magnetic field in three directions can be con-

trolled
Homogeneous Material parameters do not vary over the domain
Hysteresis The dependence of the state of a system on its history
Inversion Process of calculating from a set of observations the causal factors

that produced these observations
Inverse magnetostriction Changes in magnetisation due to applied stress
Isotropic Directional independence
JA(N) Jiles-Atherton(-Naus) Model
Uniform Magnetisation does not vary over the domain
Magnetic after-effect See Relaxation
Magnetostriction A property of ferromagnetic materials that causes them to change

dimensions during the process of magnetisation
Magnetostatics The study of magnetic fields when the electric currents are steady

(not changing over time)
Magnetomechanical effect See inverse magnetostriction
MATLAB A numerical computing environment and proprietary programming

language developed by MathWorks
Prolate spheroid A spheroid with one long axis and two smaller axes of equal length
Relaxation The accumulation of magnetisation in a ferromagnetic object sub-

jected to a constant background field
Regularisation The process of introducing additional information in order to solve

ill-posed problems or to prevent overfitting
RMSE Root-mean-square error
Villari effect See inverse magnetostriction
(Quasi-)static Neglecting any time-dependent effects
Zero measurement Measurement performed without a specimen present for compara-

tive purposes
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Mathematical symbols

𝛼 Inter-domain coupling parameter -
𝑎 Domain wall density A/m
𝐵 Magnetic induction field T
𝐵 Applied magnetic induction field T
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𝑓 focal length m
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𝜆 Magnetostriction -
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𝜇 Relative permeability -
𝑚 Length to width ratio spheroid -
m Dipole moment A⋅m
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𝑁 Demagnetisation factor -
𝑀 Parameter sensitivity matrix T

𝑅 Dissipative irreversible magnetisation factor -
𝜎 Stress N/m
𝜎 Yield stress N/m
𝑠 Standard deviation -
u Unit vector -
𝑉 Magnetic scalar potential A
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1
Introduction

1.1. Motivation
To guarantee structural integrity of marine structures, methods are developed to detect and monitor
cracks in steel structures. Be it a drilling rig, vessel or bridge, eventually all structures made from steel
beams will develop cracks after long periods of continuous cyclic loading below the global yield stress
which is a phenomenon known as fatigue damage. The horrendous accident in which a bridge collapsed
in Genoa, Italy, in September 2018 demonstrates the importance of operating an adequate fatigue de-
tection and monitoring system [16].

Detecting and monitoring cracks can be subdivided into destructive- and non-destructive tests. Since
the integrity of structures is analysed, destructive testing is not suitable as the goal is to monitor cracks
while the target structure is in-service. Some of the prevalent ways of non-destructive evaluation (NDE)
are strain monitoring, ultrasonic testing, radiographic testing and magnetic testing which are analysed
and compared by Van der Horst [54]. In his paper it was concluded that, while each of these options
have shown merit, a solution which is wireless, cheap, robust and conveniently implemented should be
sought by means of the Self Magnetic Flux Leakage method (SMFL). The SMFL method is based on the
principle of differences in magnetic permeability 𝜇 between steel (the structure) and air (the crack). As
the magnetic permeability of air is much lower than that of ferromagnetic steel this causes the magnetic
flux lines to flow a different route when encountering a pocket of air. Some of this flux will leave the
material which is therefore defined as flux leakage, see Sophian [47]. A visualisation of magnetic flux
leakage is given in figure 1.1.

Figure 1.1: Plate (top view) with a through-thickness crack and magnetic flux leakage, from [53].

In order to use this concept to detect cracks, the specimen must be actively magnetised which means
that an applied magnetic field needs to be generated using an external power source. This method has
shown to be robust and reliable but it does depend on human inspection and the fact that a background
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6 1. Introduction

field must be generated rendering the application not wireless. SMFL is based on the same principle as
ordinary magnetic flux leakage, but through theorising that the applied background field is represented
by the Earth’s magnetic field. Although this field is much weaker, it has shown to influence the distribution
of the magnetic induction field on the surface of ferromagnetic materials, see Dong [13]. The application
of this concept to fatigue cracks has been studied extensively by Van der Horst [52][54].

The fatigue cracks studied by Van der Horst only consider so-called through-thickness cracks. This
implies that, as the name suggests, the material has disappeared over the entire depth of the crack.
In fatigue-sensitive locations, for instance near weld seams, cracks can grow at the steel’s surface in
a semi-elliptical shape, possibly reaching large sizes before eventually becoming a through-thickness
crack. Monitoring the growth of these cracks before they reach a substantial size is not possible with the
leakage method since the de-routing of magnetic induction field lines does not occur as apparently as
for through thickness cracks. A schematic drawing of a semi-elliptical crack is given in figure 1.2. Please
note that figure 1.2 depicts a cross section of a metal plate opposed to a top view in figure 1.1.

t

d

Figure 1.2: Plate (cross section) with a semi-elliptical surface crack. = thickness of the plate, = depth of the crack.

Even so, the possibility remains that magnetic flux can be used as a measure for the severity of crack
propagation such as drawn in figure 1.2. This requires a crack monitoring system which analyses mag-
netic induction field changes of an even smaller magnitude than while using the SMFL method. In this
order of magnitude the significance of different, smaller and highly nonlinear effects which could previ-
ously be neglected increases. This thesis aims to identify, measure, model and quantify these nonlinear
effects.

1.2. Objective
From an introductory point of view the magnetisation of a ferromagnetic object can be split into two parts:
permanent and induced magnetisation, as described by Holmes [19]. The former describes the magneti-
sation that is apparent within a ferromagnetic object when there is no background field present, whereas
the latter depicts the additional magnetisation that an object accumulates when exposed to a certain
magnetic background field. Gradual changes in permanent magnetisation over extended time periods
have been observed in steel structures which are expected to occur due to a combination of ferromag-
netic mechanics. Describing these gradual changes provides a challenge since they are governed by
effects that are relatively small, highly nonlinear, and sometimes poorly documented. This thesis aims
to provide better understanding into how these nonlinear changes in permanent magnetisation occur in
ferromagnetic steel. A number of separate effects have been identified up to date, of which the stress-
induced component, known as the magneto-mechanical- or Villari effect, is beforehand expected to be
the largest contributor within the testcase that will be analysed during this research project. Proper quan-
tification and modelling of this effect can then be implemented in sensoring equipment used for elliptical
crack monitoring systems in the future.

1.2.1. Research question
The main research question is defined as:

• Is it possible to model the magnetic behaviour of a ferromagnetic object regarding the nonlinear
effects (relaxation, hysteresis and Villari) and non-uniform distribution of the magnetisation?
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Which corresponds with the set of subquestions that need to be answered preliminary:

• What is the effect of magnetic relaxation, or the magnetic after-effect, on the permanent magneti-
sation of ferromagnetic steel and can it be quantified?

• Are the test specimens uniformly magnetised, and if not, is it possible to describe a non-uniform
distribution using inversion?

• How does magnetic hysteresis influence the permanent magnetisation of ferromagnetic steel?

• What is the significance of the magneto-mechanical or Villari effect when investigating changes in
the permanent magnetisation of ferromagnetic steel?

1.2.2. Methodology
Rrelaxation has not been studied extensively, so an attempt is made to measure and quantify this effect.
Magnetic hysteresis normally only occurs due to changes in positioning of the observed object within the
Earth’s magnetic field. This field has a strength of around 50 µT, from which follows that when a ferro-
magnetic object is rotated in the Earth’s magnetic field, for instance a vessel that changes its course, the
amplitude of the change in applied magnetic field is in the order of 50 µT. Besides this effect, structural
steel is also subjected to high amounts of tensile and compressive stress, and even though its effect on
permanent magnetisation compared to magnetic hysteresis is currently unclear, for now it is expected
that the majority of the changes in permanent magnetisation over time, or perm, originate as a conse-
quence of this magneto-mechanical effect. For this project, the choice was made to use a hysteresis
model that could be conveniently modified to include a stress-induced magnetisation component. Since
this model is an extension of an ordinary magnetic hysteresis model, magnetic hysteresis itself is initially
described without stress in order to expand with a stress-induced component at a later stage.

The magnetic behaviour of a ferromagnetic object is dependent on three factors:

1. Material properties;

2. Geometry;

3. External factors (stress, applied background field, temperature).

Since the goal is to find the correct material parameters, it is essential that the other factors are known
and controlled. Using the right test setup, both the stress and the background field can be controlled.
Geometry is controlled by testing specimens consisting of different geometric shapes for which analyt-
ical (approximate) expressions of the magnetic field can be derived. Generic descriptions of stationary
magnetic fields in matter are given for a certain range of objects. These are the objects that will be tested
during experiments, and an explanation is provided as to why these objects are selected for the scope
of this research. After describing the magnetic field of these objects using the magnetostatic field equa-
tions, a three-dimensional numerical model that is created using finite element analysis (FEA) software
is presented which is used to validate the analytical solutions.

Up front it is not anticipated that specimens subjected to constant background fields show significant
changes in magnetisation due to magnetic relaxation. To verify this, an attempt is made to measure
and describe magnetic relaxation in the laboratory setup. Then, the permanent magnetisation of the test
specimens is analysed by describing the non-uniform magnetisation of these specimens using a self-
derived methodology. Following this, an explanation of the concept of magnetic hysteresis is provided
and a comparison of existing models that are widely used to capture this effect is given. An approach is
presented in which multiple hysteresis experiments are conducted on various specimens. These experi-
ments are then recreated and compared using FEA which uses the earlier derived non-uniform magneti-
sation description to describe the starting point of the hysteresis curve.

The hysteresis model is extended with two additional parameters in order to accommodate a stress-
induced magnetisation component. Laboratory tests are performed by means of tensioning a rectangular
steel plate in a custom setup made from aluminium which uses titanium bolts in order to apply tension.
The resulting changes in induction field measurements below the specimen due to the tensioning are
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measured and an attempt is be made to translate this to magnetisational changes using FEA. This is
followed by several conclusion as well as future recommendations and a discussion regarding the im-
plementation of the knowledge acquired during this project.

1.3. Outline
The contents of each chapter are summarised here.

Chapter 2 provides the analytical derivation of expressions for the magnetostatic field around a sphere,
spheroid, and a square plate. It explains why these objects are chosen and why the derivation of these
equations is relevant for the scope of this research.

Chapter 3 includes an investigation into the significance of magnetic relaxation or the magnetic after-
effect.

Chapter 4 shows that the specimens can not be treated as exhibiting uniform permanent magnetisation.
This is followed by a self-developed method through which the non-uniform magnetisation can be calcu-
lated using inversion.

Chapter 5 introduces the concept of magnetic hysteresis and provides insight into the prevalent hys-
teresis models. Hysteresis is measured and successfully recreated using the Jiles-Atherton model in
combination with FEA, which uses the methodlogy from chapter 4 to define a starting magnetisation.

Chapter 6 introduces the Villari effect, and how the model used to describe magnetic hysteresis in chap-
ter 5 can be extended in order to incorporate stress-induced magnetisation. The Villari effect is measured
and reproduced using FEA, which uses the methodlogy from chapter 4 to define a starting magnetisation.

Chapter 7 contains conclusions drawn from chapters 3-6 including some recommendationds and insight
into further research and application of the acquired knowledge in ellipsoidal crack detection methods.



2
Magnetostatics

2.1. Magnetostatic field equations
As explained in section 1.2.2, the goal of this thesis is to describe changes in permanent magnetisation of
steel using experiments and numerical simulations. A problem that arises while trying to measure mag-
netisation during experiments is that magnetisation is impossibly measured directly, i.e. it is not possible
to ’open up’ a test specimen and directly measure its magnetisation. In order to describe magnetisation
within a specimen a method known as inversion is adopted. Expressions for the magnetic field can be
derived given that the objects’ magnetisation is known. Inversion entails, as the name suggest, that the
opposite is done: measurements are conducted at a distance from the material and translated back to
magnetisation using the inverse of these field equations.

Analytical expressions of the magnetic field of uniformly magnetised objects can be derived from the
magnetic field equations formulated by Maxwell. These analytical expressions can only be derived, with
relative ease, for simple geometric shapes. These shapes include spheres, spheroids and thin metal
plates. Since this is rather fundamental research, it is prefered to compare numerical and analytical so-
lutions which limits the test specimen geometries to these shapes.

The experiments in this research project are restricted to a quasi-static magnetic domain in which there
are no external electric currents present. This physical state is known as magnetostatics. In order to
describe magnetic fields, a system of three field equations, known as Maxwell’s equations, is governing.
These equations use the following physical quantities, as introduced by Jackson [21]

H = magnetic field [A/m]
B = magnetic induction field [T]
M = magnetisation [A/m]

and the constant 𝜇 = magnetic permeability in vacuum (air) = 4𝜋10 [H/m] .

H, B, andM are vector fields. This implicates that for every point in three-dimensional space there is a
vector describing the magnetic field in that point, with its own three-dimensional direction and magnitude.
Characters that represent vectors are from here on printed in bold and vector fields are printed in bold
capital letters.

It is assumed that there are no electrical currents on the ferromagnetic material’s surface, hence J = 0.
The first field equation then states that the curl of H is 0. This implies that given a certain ferromagnetic
object in space, the vector describing the magnetisation in any point (𝑥,𝑦,𝑧) does not change over time,
the magnetisation is static

∇ ×H = J = 0 . (2.1)

9
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The second field equation states that the magnetic induction field B is divergence-free. This implicates
that there are no sources or sinks of magnetism within the observed domain, ensuring zero net magneti-
sation, i.e. magnetism is conserved

∇ ⋅ B = 0 . (2.2)

The third and final field equation describes the relation between the magnetisation, the magnetic field,
and the magnetic induction field as

B = 𝜇 (H+M) . (2.3)

Magnetisation may only exist in matter, whereas B and H exist both in matter and air. From this it follows
that the magnetic induction field and the magnetic field outside of the object, in air, are linearly correlated
by

B = 𝜇 H (2.4)

as described by Coey [9].

2.2. Sphere
2.2.1. Uniformly magnetised
As described in the previous section there is a limited number of geometries for which an analytical ex-
pression for the magnetic field can be provided. The geometry with the most straightforward derivation
is a sphere. Even though a sphere is not one of the objects that will be subjected to experiments, a good
understanding of the derivation of the analytical expression for the magnetic field around a uniformly
magnetised sphere provide an excellent starting point for the derivations of the analytical expressions
for the spheroid and thin plate that will be subjected to experiments in the laboratory setup. Because of
its relatively simple derivation, the sphere serves as a good method of verifying correct implementation
in the FEA-package.

Presented in this section is a summarised version of the derivation of the magnetic field H of a sphere
with radius 𝑎 which is uniformly magnetised in 𝑧-direction with magnetisation M. The full extent of this
derivation can be found in appendix A.1. In figure 2.1, a two-dimensional sketch of the magnetised
sphere is presented with the 𝑦-axis pointing out of the paper.

z

x

M

y

Figure 2.1: Two-dimensional view of a uniformly magnetised sphere.
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Uniform magnetisation in 𝑧-direction implies that for every point within the sphere the magnetisation is
given by the vector

M = 𝑀 [
0
0
1
] (2.5)

assuming no magnetisation in 𝑥 and 𝑦-directions. In order to calculate the magnetic field H it can be
stated that based on equation (2.1), a magnetic scalar potential Φ can be introduced (see Jackson [21]
and Griffiths [18]) such that

H = −∇Φ . (2.6)

In this equation, Φ(r) is given by

Φ(r) = −1
4𝜋 ∭

(∇ ⋅M)(r )
|r− r | 𝑑 𝑟 (2.7)

in which Ω is the infinite air domain. In order to further simplify this solution to the potential equation it is
necessary to define an expression for ∇ ⋅M. The vector r is considered in a spherical coordinate system
as shown in figure 2.2. Only the coordinate system is shown here, the magnetised sphere has its centre
at the origin as shown in figure 2.1.

z

y

x

r

(r,ϑ,φ)

φ



Figure 2.2: Spherical coordinate system.

After rewriting, see appendix A.1, the H-field is given by

H =
⎧

⎨
⎩

−∇Φ = ⋅ (cos𝜃u − sin𝜃u ) = − u if 𝑟 < 𝑎,

−∇Φ = ⋅ (2 cos𝜃ur + sin𝜃u ) = (3 sin𝜃u + 2u ) if 𝑟 > 𝑎
(2.8)

in which u = cos𝜃u −sin𝜃u . Using the fact that a sphere’s volume is given by 𝑉sphere = 𝜋𝑎 , for 𝑟 > 𝑎
it is possible to write H as

H = 𝑉sphere𝑀
4𝜋𝑟 (2 cos𝜃u + sin𝜃u ) . (2.9)
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Visualising a magnetic field provides a challenge since a vector field implies that for every point in three-
dimensional space, a vector can be constructed which has three components. A way of visualising a
vector field is using a two-dimensional approach by taking a cut plane out of the data by fixing one of
the three coordinates, and plotting the size of the 𝐵 , 𝐵 , 𝐵 and 𝐵 components individually at each
location in this plane. For the case of the magnetic field around a uniformly magnetised sphere, an
arbitrary sphere with its centre at the origin, radius 𝑎 = 100 mm and a uniform magnetisation pointing
downwards in 𝑧-direction of 1000 A/m was modelled analytically using MATLAB. The plane observed is
the 𝑥𝑦-plane directly below the sphere at 𝑧 = 200 mm, which is shown in figure 2.3. The analytically
calculated magnetic induction field components 𝐵 , 𝐵 and 𝐵 as well as the norm 𝐵 in this plane are
shown in figure 2.4.

Figure 2.3: Sphere with origin at (0,0,0) and a -plane at = 200 mm.
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Figure 2.4: Magnetic induction field of a magnetised sphere ( = 100 mm, = 1000 A/m), in the -plane at = 200 mm.

From equation (2.8) it can be observed that the magnetic field H within the sphere points in a direction
opposite to the direction of the magnetisation. Equation (2.8) can be rewritten in such a way that a
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demagnetisation factor 𝑁 can be defined as

𝐻 = −𝑁 𝑀 (2.10)

from which follows that 𝑁 = 1/3. Because of radial symmetry it can be stated that 𝑁 = 𝑁 = 𝑁 = 1/3
for a sphere. The demagnetisation factors serve as a parameter that provides insight into the relation of
the magnetisation within the object and the strength of the magnetic field, within the object, that works
in the opposite direction due to this magnetisation. A low demagnetisation factor implies that the object
prefers to be magnetised into that direction. As shown in the derivation, this factor is defined by geometry
of the specimen only. The importance of this property will be explained further in section 2.3 when the
magnetic field equations derivation for spheroid is presented.

2.2.2. Linearly reacting material
Section 2.2 and appendix A.1 show the derivation of the equations describing the magnetic field due to a
magnetised sphere without a background field. However, in practice there is usually a background field
present, for example the Earth’s magnetic field. A ferromagnetic object in this case amplifies the back-
ground field. It is relevant to see how this magnetisation differs from the derivation presented in section
2.2, since in practice the magnetic field around an object can be best represented by a combination of
internal magnetisation and linear dependence on a certain background field. Please note that in this
section a summarised version of the derivation is given. The full derivation is presented in appendix A.2
and is taken from Morse and Fesbach [38].

The sphere from section 2.2 is placed in a uniform background field H = 𝐻 u , and it is stated that
the magnetisation inside the sphere is no longer a fixed constant but rather scales linearly with the
background field with a relative permeability 𝜇 . The relative permeability 𝜇 describes the magnetic per-
meability of the material as a multiplication of the magnetic permeability in free space, 𝜇 . The equation
describing the magnetisation within the sphere becomes, as described by Jackson [21] and Griffiths [18]:

M = (𝜇 − 1)H . (2.11)

From equation (2.11) it can be seen that for 𝜇 = 1 the magnetisation completely vanishes since the
permeability of the object is identical to 𝜇 which is present outside the object. In (2.11), H inside the
sphere is defined as the sum of H due to the background field, and H due to the magnetisation of the
sphere itself:

H = H +H . (2.12)

Please note that for this example it has been assumed that themagnetic background field points uniformly
downward in the 𝑧-direction. Combining equations (2.11) and (2.12) returns the following expression for
M:

M = (𝜇 − 1)(H +H ) . (2.13)

Rewriting, see appendix A.2, and substituting into equation (2.9) yields

H = H +H = 𝐻 u + 𝑉sphere4𝜋𝑟 (2 cos𝜃u + sin𝜃u ) [ 𝜇 − 1
1 + (𝜇 − 1)

]𝐻 . (2.14)

This can be rewritten using spherical unit vectors and the knowledge that the magnetic dipole moment
is given by

m = ∫ M(r)d(r) = VsphereM = VsphereM0uz . (2.15)
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This leads to the following equation describing the magnetic field outside a sphere which has a magneti-
sation that scales linearly with the applied background field:

H(r) = 𝐻 u + 3𝐻 (𝜇 − 1)
4𝜋𝑟 (𝜇 + 2) (

3r(m ⋅ r)
𝑟 −m) . (2.16)

A linearly reacting sphere with radius 𝑎 = 100 mm and relative permeability 𝜇 = 100 is subjected to
a background field of 100 µT which points downward in 𝑧-direction. The components of the magnetic
induction field in the 𝑥𝑦-plane at 𝑧 = 200 mm (see figure 2.3) are plotted in figure 2.5.
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Figure 2.5: Magnetic induction field of a magnetisable sphere ( = 100 mm, = 100), subjected to a background field , = 100
µT, in the -plane at = 200 mm.

2.3. Prolate spheroid
2.3.1. Uniformly magnetised
An analytical solution for the magnetic field around a solid, uniformly magnetised sphere was presented
in section 2.2. Besides spheres, another shape for which an analytical solution exists is the prolate
spheroid. This will be one of the objects that will be used in laboratory experiments. A spheroid is
created by spinning a two-dimensional ellipse around one of its axes as shown in figure 2.6. Assume an
ellipse with major axis 𝑎 and minor axis 𝑏 such that 𝑎 > 𝑏. In order to turn this into a three-dimensional
object, one can revolve this ellipse around either of these axes. When rotated around its major axis, a
cigar-shaped three-dimensional volume is created with one major and two identical minor axes, which is
known as a prolate spheroid. Revolving around the minor axis will yield a pancake-shaped volume with
two major and one minor axis which is known as an oblate spheroid. In mathematical terms:

if 𝑎 > 𝑏 = 𝑐 ∶ prolate spheroid;

if 𝑎 = 𝑐 > 𝑏 ∶ oblate spheroid.
(2.17)

a

b

c

a

b

Figure 2.6: Ellipse (2D) and spheroid (3D).
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The main reason that the analytical solution to the magnetic field of a prolate spheroid is derived here
involves the demagnetisation factors that were introduced at the end of section 2.2. For a sphere it was
found that in the 𝑥𝑦𝑧-directions the demagnetisation factors were all equal to 1/3. This can be interpreted
as that for a certain magnetisation in a given direction, the magnetic field within the material points in a
direction opposite to this magnetisation at a third of the strength of the magnetisation. For spheroids it is
known that these demagnetisation factors are different, depending on the length to width ratio as derived
by Osborn [42]. At the end of this section it will be found that for prolate spheroids the demagnetisation
factor in the longitudinal direction becomes much smaller than in the transverse directions for increasing
length to width ratio. This implicates that when a certain field is applied in line with the major axis of
a prolate spheroid (from here on the 𝑥-axis), the magnetisation within the material in that direction will
change by a greater amount than if a field with identical strength is applied in 𝑦 or 𝑧-directions. This
property will come in very useful when measuring hysteresis in a laboratory setup, since larger changes
in magnetisation cause the hysteretic effect to become increasingly detectable when applying a certain
external magnetic field along the prolate spheroid’s longitudinal direction. On top of that, it is known that
for both solid spheres and spheroids the magnetisation and the corresponding magnetic field within the
material are uniform when a linearly reacting material is subjected to a uniform field, as described by
Osborn [42]. The introduction of spheroidal coordinates is given by Morse and Feshbach [38] and the
full derivation of the equations below is presented in appendix A.3.

In order to describe a spheroid a new coordinate system will be introduced using prolate spheroidal co-
ordinates (𝜉, 𝜂, 𝜙). This is explained further below and illustrated in figure 2.7.

uξ

uφ

uη

f2 f1rc

ux

uz

uy

Figure 2.7: Prolate spheroid in spheroidal coordinates.

The centre point of the spheroid is described in Cartesian coordinates by

r = (
𝑥
𝑦
𝑧
) . (2.18)

The focal length 2𝑓 is introduced as the distance (in 𝑥-direction) from the centre towards the two focal
points:

f1 = r + 𝑓u ,

f2 = r − 𝑓u .
(2.19)

A position vector r = (𝑥, 𝑦, 𝑧) can now be defined in terms of (𝜉, 𝜂, 𝜙), while using that 𝑟 = |r − f1| and
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𝑟 = |r− f2|:

𝜉 = 𝑟 + 𝑟
2𝑓

𝜂 = 𝑟 − 𝑟
2𝑓

cos(𝜙) = 𝑦 − 𝑦
√(𝑦 − 𝑦 ) + (𝑧 − 𝑧 )

sin(𝜙) = 𝑧 − 𝑧
√(𝑦 − 𝑦 ) + (𝑧 − 𝑧 )

.

(2.20)

The surface of the spheroid is given by 𝜉 = 𝜉 . It then follows that 𝜉 < 𝜉 lies within the spheroid and
𝜉 > 𝜉 lies in free space. The uniform magnetisation is then described by

M =
⎧

⎨
⎩

𝑀 u +𝑀 u +𝑀 u for 𝜉 < 𝜉

0 for 𝜉 > 𝜉
. (2.21)

Similar to section 2.2, the following solution to the potential equation must be worked out in order to find
the magnetic field:

Φ(r) = −1
4𝜋 ∭

(∇ ⋅M)(r )
|r− r | 𝑑 r . (2.22)

The solution to equation (2.22) is once more found using (associated) Legendre functions which is further
described in Appendix A.3 and follows from Morse and Feshbach [38]. The magnetic field H inside the
spheroid is given by

H(r) = −𝑁 𝑀 u − 𝑁 𝑀 u − 𝑁 𝑀 u (2.23)

with demagnetisation factors

𝑁 = 1
𝑚 − 1 [

𝑚
√𝑚 − 1

ln (𝑚 + √𝑚 − 1) − 1] (2.24)

𝑁 = 𝑁 = 𝑚
2(𝑚 − 1) [𝑚 −

1
√𝑚 − 1

ln (𝑚 + √𝑚 − 1)] (2.25)

in which 𝑚 is the ratio of the spheroid’s length to diameter, 𝑚 = 𝑎/𝑏. From figure 2.8 it can be seen
that for 𝑚 = 1 the demagnetisation factors are all 1/3, as derived earlier for the sphere. Upon elonga-
tion in 𝑥-direction, the ratio between length and diameter increases, causing the demagnetisation factor
longitudinal direction to decrease. This shows that a prolate spheroid accumulates magnetisation more
easily in the longitudinal direction.
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Figure 2.8: Demagnetisation factors of a prolate spheroid as a function of .

The solution to the magnetic induction field outside of the spheroid is given by

B = 𝜇 𝜉 (𝜉 − 1)𝐴M (2.26)

in which

𝐴 = (
𝐴 𝐴 𝐴
𝐴 𝐴 𝐴
𝐴 𝐴 𝐴

) (2.27)

with

𝐴 = −12 ln(𝜉 + 1𝜉 − 1) +
𝜉

𝜉 − 𝜂 (2.28a)

𝐴 = − 𝜂 cos𝜙𝜉 − 𝜂
√1 − 𝜂
𝜉 − 1 (2.28b)

𝐴 = − 𝜂 sin𝜙𝜉 − 𝜂
√1 − 𝜂
𝜉 − 1 (2.28c)

𝐴 = 𝐴 (2.28d)

𝐴 = −14 ln(𝜉 + 1𝜉 − 1) +
𝜉

𝜉 − 1 [
1 − 𝜂
𝜉 − 𝜂 cos 𝜙 − 12] (2.28e)

𝐴 = 𝜉(1 − 𝜂 )
(𝜉 − 1)(𝜉 − 𝜂 ) sin𝜙 cos𝜙 (2.28f)
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𝐴 = 𝐴 (2.28g)

𝐴 = 𝐴 (2.28h)

𝐴 = 1
4 ln(𝜉 + 1𝜉 − 1) +

𝜉
𝜉 − 1 [

1 − 𝜂
𝜉 − 𝜂 sin 𝜙 − 12] . (2.28i)

In order to visualise the magnetic field around a spheroid, a prolate spheroid is modelled with length 560
mm and diameter 95 mm, or 𝑎 = 280 mm and 𝑏 = 47.5 mm. These dimensions are identical to the
spheroid that will be tested during laboratory experiments. These dimensions result in 𝜉 = 1.01, 𝑚 =
5.89, 𝑁 = 0.0442, 𝑁 = 𝑁 = 0.4778, and 𝑉 = 2.65×10 m . The spheroid is assumed to be uniformly
magnetised in 𝑥-direction with a magnetisation of 1000 A/m. The magnetic field is observed is the 𝑥𝑦-
plane at 𝑧 = 200 mm below the origin of the spheroid. The different components of the magnetic induction
field are computed using MATLAB and presented in figure 2.9.
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Figure 2.9: Magnetic induction field of a magnetised prolate spheroid with its centre at the origin (length 560 mm, diameter 95 mm,
= 1000 A/m), in the -plane at = 200 mm.

2.3.2. Linearly reacting material
In the same manner as the sphere, the magnetic induction field of the spheroid can be calculated when
the material supposedly reacts linearly to a uniform background field. The complete derivation shows
large similarities to sections 2.2.2 and 2.3.1 and is therefore not presented here. It can be found in a
document by Lepelaars [33]. The expression describing the magnetic field inside the spheroid is given
by

H = 𝐻 u
1 + (𝜇 − 1)𝑁 +

𝐻 u
1 + (𝜇 − 1)𝑁 + 𝐻 u

1 + (𝜇 − 1)𝑁 (2.29)

in which 𝑁 , 𝑁 and 𝑁 represent the demagnetisation factors derived in section 2.3. Since the magnetic
induction field inside the spheroid can be written as

B = 𝜇 (H +M) , (2.30)

and from the fact that the magnetisation is uniform inside the spheroid, it follows that the magnetisation
M and dipole moment m can be written as

M = (𝜇 − 1)H , m = 𝑉spheroidM = 4
3𝜋𝑓 𝜉 (𝜉 − 1)M . (2.31)
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The magnetic induction field outside of the spheroid follows from the result found in section 2.2 to which
the background field is added. This returns

B = B + 𝜇 𝜉 (𝜉 − 1)𝐴M (2.32)

in which the matrix 𝐴 is identical to the matrix derived in section 2.3.1. The magnetic induction field in
an 𝑥𝑦-plane 200 mm below the centre of a linearly reacting spheroid with length 560 mm, diameter 95
mm and 𝜇 of 100 which is subjected to a uniform background field of 100 µT pointing in 𝑥-direction is
presented in figure 2.10.
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Figure 2.10: Magnetic induction field of a magnetisable prolate spheroid (length 560 mm, diameter 95 mm, = 100), subjected
to a background field , = 100 µT, in the -plane at = 200 mm.

2.4. Metal plate
2.4.1. Uniformly magnetised
Previously, the magnetic field properties of spheres and spheroids have been derived. However, in prac-
tice, the material that is used in the construction of marine applications consists mainly of sheet metal
plates. In order to get a better understanding of hysteresis in these types of steel, measurements are
performed on pieces of construction-grade sheet metal. These are widely available in different dimen-
sions and provide a good addition to the experiments since they are easily subjected to tension tests,
unlike spheroids or spheres. A perfect analytical solution for thin plates exists in a rather complex form,
so an adequate approximation is presented here. This derivation is taken from [54].

A plate with width 𝑤, length ℓ, and thickness 𝑡 in respectively 𝑥, 𝑦 and 𝑧-direction exhibits a uniform
magnetisation in 𝑥-direction,𝑀 . Making use of the Heaviside step function 𝐻, the magnetisation can be
written as

M = 𝑀 ⋅ [𝐻 (𝑥 + ) − 𝐻 (𝑥 − )] ⋅ [𝐻 (𝑦 + ℓ) − 𝐻 (𝑦 − ℓ)] ⋅

[𝐻 (𝑧 + ) − 𝐻 (𝑧 − )]u .
(2.33)

The three magnetostatic field equations are independent of geometry and identical to the sphere and
spheroid

∇ ×H = 0 , (2.34)
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∇ ⋅ B = 0 , (2.35)

B = 𝜇 (H+M) . (2.36)

It follows that the potential equation has the shape of

∇ Φ = ∇ ⋅ ∇Φ = −∇ ⋅H = ∇ ⋅M

∇ Φ = 𝑀 ⋅[𝛿 (𝑥 + ) − 𝛿 (𝑥 − )] ⋅ [𝐻 (𝑦 + ℓ) − 𝐻 (𝑦 − ℓ)] ⋅

[𝐻 (𝑧 + ) − 𝐻 (𝑧 − )] .

(2.37)

The corresponding magnetic field is given by equation (2.38) below. For the full derivation, please view
appendix A.4.

H(r) = −∇Φ = { u + ( ) (1 −
ℓ
) [(𝑥 − )u + 𝑧u ] −

u + ( ) (1 −
ℓ
) [(𝑥 − )u + 𝑧u ] −

u + ( ) (1 −
ℓ
) [(𝑥 + )u + 𝑧u ] +

u + ( ) (1 −
ℓ
) [(𝑥 + )u + 𝑧u ] } .

(2.38)

In the middle of the plate, where r = 0, it follows that

𝐷 = 𝐷 = 𝐷 = 𝐷 = √(𝑤2 ) + (ℓ2) . (2.39)

The magnetic field in the centre of the plate then simplifies to

H(r = 0) = −𝑀 𝐾u with 𝐾 = 2𝑡ℓ
𝜋𝑤√𝑤 + ℓ

. (2.40)

It can be observed that the magnetic field inside the plate due to the magnetisation points in a direction
opposite to the direction of the magnetisation from equation (2.40), which is also observed in the sphere
and spheroid. The magnetic field increases with magnetisation𝑀 , thickness 𝑡 and length ℓ, but reduces
with increasing width𝑤. This is due to the fact that the edges of the plate at 𝑥 = ±𝑤/2 can be seen as the
sources of the magnetic field, since this is where ∇ ⋅M ≠ 0. As the plate becomes wider, these sources
are separated further, decreasing the strength of the magnetic field. Source strength does increase for
larger values of 𝑀 , 𝑡 and ℓ.

A metal plate with its centre at the origin, 𝑤 × 𝑙 × 𝑡 = 300×300×5 mm and a uniform magnetisation in
𝑥-direction of 1000 A/m was modelled analytically using MATLAB. The magnetic flux density components
in the 𝑥𝑦-plane below the plate at 𝑧 = 200 mm are shown in figure 2.11.
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Figure 2.11: Magnetic induction field of a magnetised plate × × = 300×300×5 mm, A/m), in the -plane at =
200 mm.

2.4.2. Linearly reacting material
In the same manner as previous examples, the magnetic induction field of a thin plate can be calculated
when the material reacts linearly to a uniform background field. Assume a uniform background field

B = 𝐵 u = 𝜇 H = 𝜇 𝐻 u . (2.41)

If the plate reacts linearly with a relative permeability 𝜇 , a magnetisation is introduced when the plate is
placed in the background field. It is for now assumed that this magnetisation is uniform throughout the
plate. It is known that this property holds for spheres and spheroids, but for thin plates this is not the
case, so a small error is made which can be observed when compared with FEA computations later on.
The solution for the magnetic field from section 2.4.1 can be used and the total magnetic field within the
plate becomes, using the centre-point of the plate:

H(r = 0) = (𝐻 −𝑀 𝐾)u . (2.42)

The magnetic induction field is given by

B(r = 0) = 𝜇 (𝑀 −𝑀 𝐾 + 𝐻 )u . (2.43)

Furthermore, the following relation holds within the plate:

B = 𝜇 𝜇 H . (2.44)

Combining these three equations yields

𝜇 (𝑀 −𝑀 𝐾 + 𝐻 ) = 𝜇 𝜇 (𝐻 −𝑀 𝐾) (2.45)

from which a new expression for 𝑀 can be computed, which is directly related to the background field
𝐻 and the relative permeability 𝜇 :

𝑀 = (𝜇 − 1)𝐻
1 + (𝜇 − 1)𝐾 . (2.46)

This expression for 𝑀 can be substituted in the equation that is derived earlier, describing the magnetic
field for the magnetised plate (equation 2.38). This is shown in figure 2.12



22 2. Magnetostatics

Bx [µT]   Min = -11.1601  Max = 3.2463

-0.4 -0.2 0 0.2 0.4

x

-0.1

0

0.1

y

By [µT]   Min = -3.8218  Max = 3.8218

-0.4 -0.2 0 0.2 0.4

x

-0.1

0

0.1

y

Bz [µT]   Min = -11.0302  Max = 11.0302

-0.4 -0.2 0 0.2 0.4

x

-0.1

0

0.1

y

Btot [µT]   Min =  3.3231  Max =  11.7788

-0.4 -0.2 0 0.2 0.4

x

-0.1

0

0.1

y

-10

-8

-6

-4

-2

0

2

4

6

8

10

M
a

g
n

e
ti
c
 i
n

d
u

c
ti
o

n
 f

ie
ld

 s
tr

e
n

g
th

 [
µ

T
]

Figure 2.12: Magnetic induction field of a magnetisable plate ( × × = 300×300×5 mm, = 100), subjected to a background
field , = 100 µT, in the -plane at = 200 mm.

2.5. Finite Element Analysis
Analytical solutions to the magnetostatic field equations for various objects presented in the previous
sections provide an elegant insight into the distribution of magnetic fields around ferromagnetic objects.
However, major drawbacks include that these formulations only hold for certain specific geometric cases.
For more complex geometries, varying time-signals, or highly nonlinear hysteretic behaviour, such di-
rect analytical formulations might simply not exist. The most common way around this problem which
is widely adopted by scientists and engineers globally is known as the Finite Element Method, FEM, or
Finite Element Analysis, FEA. Where analytical solutions require the solution to boundary value prob-
lems for partial differential equations over the entire domain, the FEM solves a set of algebraic equations
which result in approximate solutions at a discrete number of points on a given domain. The problem
is solved by subdividing the area under investigation into multiple small and finite elements for which
the physical equations that one wishes to solve for are computed. This section simulates step-by-step
how COMSOL Multiphysics, a FEA package, is used to calculate the magnetostatic fields numerically.

Besides the fact that COMSOL suits itself very well for complex problems, another major advantage of
using FEM simultaneously with analytical formulations is the property of validation. When the analyti-
cal derivation and the FEM implementation are done correctly, they should provide identical results with
increasing mesh refinement. At this point, COMSOL serves as a perfect tool for validating if the implemen-
tation of the field equations is done correctly, and vice versa. Eventually, this powerful software is used
to model hysteresis and stress-induced magnetic components on more complex geometries for which
the analytical expressions become too complex to solve for altogether.

COMSOL provides different sets of physics to work with. In order to create an appropriate environment
for the magnetostatic computations that will be conducted, a stationary study is used in combination with
the physics-package ”Magnetic Fields, No Currents” which is part of the ”AC/DC” module.

2.5.1. Sphere
Uniformly magnetised:
The first thing that must be defined in order to perform magnetic computations within COMSOL is the anal-
ysis domain. From equation (A.34) it can be observed that the gradient of the potential, which defines
the strength of the magnetic field, decreases as 1/𝑟 when moving away from the sphere. Theoretically,
the strength of this field keeps decaying when moving further away from the sphere but never reaches 0.
This asymptotic behaviour can not be modelled as such within FEM software, because a discrete domain
has to be determined for which the solution is calculated. In order to provide COMSOLwith a starting point,
a box is drawn at a distance which is sufficiently far away from the sphere such that −∇Φ ≈ 0. Because
of the third power term it can be calculated that at a distance of 10 ⋅ 𝑎 the field strength has decayed to
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an insignificant amount of ≈ 1/1000 of the field strength at the edge.

In order to calculate the magnetic field around a sphere with radius 𝑎 = 100 mm, a cube with an edge
length of 2000 mm is modelled which represent the air domain. The constitutive relation that holds in
this domain is given by

B = 𝜇 𝜇 H . (2.47)

This air domain has the property that its relative permeability 𝜇 is set to 1. This means that for this
volume 𝜇 = 𝜇 ⋅ 𝜇 = 𝜇 . The edges of this box are subject to a boundary condition which is defined
in COMSOL as magnetic insulation, which states that on all boundaries

n ⋅ B = 0 . (2.48)

This ensures that no magnetic field leaks from this box, i.e. that the magnetic field is conserved. At
the centre of the box, a sphere is placed with a radius of 100 mm. Within this sphere, magnetism is
conserved using the magnetisation constitutive relation

B = 𝜇 (H+M) . (2.49)

In order to compare this with the analytical solution as presented in figure 2.4, the same cut plane is
investigated: an 𝑥𝑦-plane at 𝑧 = 200 mm below the sphere, shown in figure 2.3. The results of the
numerical computation are presented in figure 2.13 below. Comparisons with figure 2.4 show a rela-
tive error of less than 1%, verifying that the COMSOL implementation and the analytical derivations are
executed correctly.

Figure 2.13: -components of magnetised sphere with radius = 100 mm and = 1000 A/m in an -plane at = 200 mm.

Linearly reacting material:
For the magnetisable sphere in a uniform background field the samemodel is used as for the magnetised
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sphere. A uniform background field within the entire domain is applied in 𝑧-direction:

B = (
0
0
100

) µT . (2.50)

Furthermore, the constitutive relations inside and outside the material are now identical and given by

B = 𝜇 𝜇 H0 (2.51)

in which the 𝜇 within the sphere is set to 100. The results of this numerical computation are shown in
figure 2.14 below. Comparisons with figure 2.5 show a relative error of less than 1%, verifying that the
COMSOL implementation as well as the analytical derivations are correct.

Figure 2.14: -components of magnetisable sphere with radius = 100 mm and = 100 subjected to a background field of 100
µT in -direction in an -plane = 200 mm.

2.5.2. Spheroid
Uniformly magnetised:
The numerical implementation of the solid uniformly magnetised spheroid is performed analogous to the
solid sphere, with equations (2.47) and (2.49) describing the constitutive relations in respectively the air
domain and the spheroid. Figure 2.15 shows the 𝐵 , 𝐵 , 𝐵 and 𝐵 components in an 𝑥𝑦-plane 200
mm below the centre of a spheroid with length 560 mm, diameter 95 mm and magnetisation of 1000 A/m
in 𝑥-direction. The error with the analytical solution is less than 1%.

Linearly reacting material:
The numerical validation of the linearly reacting magnetisable spheroid in a uniform background field is
done analogous to the linearly reacting sphere, with merely the geometry changing and the constitutive
relation within the entire domain equal to equation (2.47). The magnetic induction field components in
an 𝑥𝑦-plane 200 mm below the centre of a spheroid with length 560 mm, diameter 95 mm, 𝜇 = 100,
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subjected to a background field in 𝑥-direction of 100 µT is given in figure 2.16. The error with the analyt-
ical solution is less than 1%.

Figure 2.15: -components of a magnetised spheroid ( × = 560×95 mm) and = 1000 A/m in an -plane at = 200 mm.

Figure 2.16: -components of a magnetisable spheroid ( × = 560×95 mm) with = 100 subjected to a background field of 100
µT in -direction in an -plane at = 200 mm.
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2.5.3. Plate
Uniformly magnetised:
The numerical implementation of the magnetised plate is performed analogous to the solid sphere and
spheroid, with equations (2.47) and (2.49) describing the constitutive relations in respectively the air do-
main and the plate. Figure 2.17 shows the 𝐵- components in an 𝑥𝑦-plane 200 mm below the centre of
a plate with length 300 mm, width 300 mm, thickness 5 mm and 𝑀 of 1000 A/m in 𝑥-direction. The error
between the numerical and analytical solution is less than 1%.

Figure 2.17: -components of a magnetised plate ( × × = 300×300×5 mm) with = 1000 A/m in an -plane at = 200
mm.

Linearly reacting material:
The numerical validation of the magnetisable plate in a uniform background field is done analogous to
previous examples. The magnetic induction field components in an 𝑥𝑦-plane 200 mm below a plate
(𝑙 × 𝑤 × 𝑡 = 300×300×5 mm and 𝜇 = 100) subjected to a background field in 𝑥-direction of 100 µT is
given in figure 2.18.
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Figure 2.18: -components of a magnetisable plate (( × × = 300×300×5 mm) with subjected to a background field
of 100 µT in -direction in an -plane at = 200 mm.

In this final example, there is a significant error visible in the extreme values between the numerical and
analytical solutions of roughly 20%. This can be explained by the fact that in the analytical solution the
assumption is made that the magnetisation within the plate is constant over the entire domain of the
plate. In practice this is the case for spheres and spheroids, but not for plates, which is what makes
spheroids and spheres ideal testing objects. A small over-estimation is made of the magnetisation in the
analytical solution because the sides of the plate get less magnetised than the centre. The numerically
calculated magnetisation distribution of the magnetisable plate mentioned above is shown in figure 2.19.

Figure 2.19: Numerically calculated magnetisation distribution of a magnetisable plate (Top view, × × = 300×300×5 mm)
subjected to a background field of 100 µT in -direction with = 100.





3
Relaxation

3.1. Introduction
The concept of relaxation, also known as the magnetic after-effect, deals with changes in magnetisa-
tion in ferromagnets due to time-dependent effects. An example of relaxation is the fact that when a
ferromagnetic object is subjected to a constant magnetic field for a large amount of time, the magnetic
orientation of the domains rotates slightly into the direction of the background field. Looking at relaxation
on a much smaller timescale, it can also be said that it takes a certain amount of time for an object to
be magnetised when the background field is abruptly changed. In this research project the assumption
is made that relaxational effects are neglibily small when compared to hysteresis and the Villari effect.
This also implies that time-dependent factors are negligible, and that the effects measured are identical
independent of the time frame in which these tests are conducted. In order to verify this hypothesis,
an attempt to capture magnetic relaxation is made by measuring changes in induction field over time
and comparing those with zero measurements, which are experiments conducted without a specimen
present for comparative purposes.

In the original paper by Ferenc Preisach from 1935 [43], the question is raised whether the magnetisation
of ferromagnetic materials follows changes in the background field instantaneously or if a defined amount
of time can be defined that is required to reach a certain level of magnetisation. In order to test this,
numerous experiments have been concluded with varying results. Overall, it has been found that energy
losses due to these time-dependent effects, much like hysteresis, start to become apparent under high
frequencies [60] (losses due to eddy currents and hysteresis) and high temperatures [36]. Since no rapid
changes in background field will take place and tests are conducted at constant room temperature, it is
expected that these effects will have negligible disruptive effect on the measurements conducted in the
laboratory setup. Regarding the changes in magnetisation in the longer term it is expected that these
changes, if observable, are negligible as well compared to the range of data that is observed during
hysteresis and Villari experiments. In summary, two types of time-dependent changes in magnetisation
can be defined:

1. The short-term magnetic after-effect, which looks at the time needed for the material to come to a
constant magnetisation after the background field is abruptly increased;

2. The long-term magnetic after-effect, which shows the gradual change in magnetisation of a ferro-
magnetic object in a constant background field for a longer period of time.

3.2. Test setup
In order to measure magnetic relaxation, the solid prolate spheroid (appendix B.4) is placed within the
Helmholtz cage (appendix B.1). The fluxgate sensor (appendix B.2.2) is placed 145 mm below the centre
of the spheroid. In order to capture both the short and long-term magnetic after-effect in one setting, a
so-called switch test is performed which consists of the following four phases:

29
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1. In the first phase, the Earth’s magnetic field is lifted within the Helmholtz cage resulting in net zero
background field in three directions. This phase lasts for an hour without conducting measurements
in order to create a stable starting condition for the experiment;

2. After an hour the fluxgate sensor starts taking measurements at a sampling frequency of around 5
Hz. The background field is kept constant during this hour;

3. After two hours, the background field in 𝑥-direction is instantaneously increased to +250 µT for
another hour;

4. After three hours the background field is reverted back to 0, and measurements are taken for
another full hour.

At the end of the experiment, four hours have elapsed. The applied time-signal is shown in figure 3.1
(phase 1 excluded).
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Figure 3.1: Applied background field during relaxation testing.

In order to verify that any measured effects can indeed be contributed to changes in the magnetisation
of the spheroid, the same test was performed without an object present, a zero measurement. The tests
conducted on the spheroid are then compared with the zero measurements in order to form an opinion
on the magnitude of magnetic relaxation.

3.3. Results
The relaxation experiment described in section 3.2 was performed twice with the same object, the solid
prolate spheroid. These experiments are named R1 and R2. An identical experiment was performed
without an object present, a zero measurement R0. The applied background magnetic field is shown
in figure 3.1. The measured signal in both experiment R1 and R2 is shown in figure 3.2 and 3.3. The
zero measurement R0 is plotted in figure 3.4. As expected, the shape of these graphs is identical to the
applied time signal when observing the entire graph with a timescale of three hours and a bandwidth
of 400 µT. During phase 2 it can be seen that the measured 𝐵 signal is roughly 100 µT lower than the
applied background field. This is in line with the results found while deriving the expressions for the
magnetic field around a prolate spheroid that is magnetised in 𝑥-direction in chapter 2.

0 0.5 1 1.5 2 2.5 3

time [hrs]

-200

0

200

B
x
 -

 m
e
a
s
u
re

d
 [

T
]

Measured signal R1

Figure 3.2: Measured signal R1.
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Figure 3.3: Measured signal R2.
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Figure 3.4: Measured signal R0.

The following sections discuss specific parts of the figures above in more detail, in order to provide more
insight into the short and long-term relaxation effects separately.

3.3.1. Short-term
With respect to short-term relaxation, the vertical sections at 𝑡 = 1 hour and 𝑡 = 2 hours are shown in fig-
ures 3.5-3.10. For convenience, 𝑡 iss taken as the moment just before the abrupt change in background
field. In figures 3.5-3.7 the effect of short time relaxation at 𝑡 = 1 hour is shown.
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Figure 3.5: Short-term relaxation R1, at = 1 hour.
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Figure 3.6: Short-term relaxation R2, at = 1 hour.
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Figure 3.7: Short-term relaxation R0, at = 1 hour.

The figures below show a similar effect which occurs at 𝑡 = 2 hours when the background field as abruptly
dropped back to 0.
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Figure 3.8: Short-term relaxation R1, at = 2 hours.
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Figure 3.9: Short-term relaxation R2, at = 2 hours.
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Figure 3.10: Short-term relaxation R0, at = 2 hours.

When investigating the right-hand side of figures 3.5-3.10 it can be seen that on a smaller scale, the
measured signal shows asymptotically in- or decreasing behaviour. In figures 3.11-3.16 the same 𝑡 =
0 is adopted, but now the signal from 𝑡 = 2.5 s to 𝑡 = 20 s is shown which is from here on called the
medium-term.
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Figure 3.11: Medium-term relaxation R1, beyond = 1 hour.



34 3. Relaxation

2 4 6 8 10 12 14 16 18 20

Time [s]

153.64

153.66

153.68

153.7

153.72

153.74
B

x
 -

 m
e
a
s
u
re

d
 [

T
]

Medium-term relaxation R2

Figure 3.12: Medium-term relaxation R2, beyond = 1 hour.
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Figure 3.13: Medium-term relaxation R0, beyond = 1 hour.
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Figure 3.14: Medium-term relaxation R1, beyond = 2 hours.
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Figure 3.15: Medium-term relaxation R2, beyond = 2 hours.
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Figure 3.16: Medium-term relaxation R0, beyond = 2 hours.

As for the medium-term, it can be seen that the measured signal keeps de- or increasing slightly for
around 30 seconds after the background field is changed. But, as can be seen from the zero measure-
ment, this effect can not be contributed to the magnetic relaxation. This can be explained by the fact that
the computer sends a desired current to the Helmholtz coils. The amplifier then starts varying the voltage
until the desired amperage is reached. This varying of the voltage causes changes in the magnetic field
and therefore changes in the measured signal.

3.3.2. Long-term
As for long-term relaxation, a closer look is taken at the horizontal sections from figures 3.2 & 3.3. Three
horizontal sections, or phases, can be observed:

Phase 1 : 0 < t < 1 hr;

Phase 2 : 1 hr < t < 2 hrs;

Phase 3 : 2 hrs < t < 3 hrs.

For each phase separately, the effect of the long-term relaxation is shown in figures 3.17-3.25 below.
Please note that for 𝑡 ≈ 1 hour for phase 2 and 𝑡 ≈ 2 hours for phase 3.
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Figure 3.17: Long-term relaxation R1, phase 1.
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Figure 3.18: Long-term relaxation R2, phase 1.
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Figure 3.19: Long-term relaxation R0, phase 1.
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Figure 3.20: Long-term relaxation R1, phase 2.
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Figure 3.21: Long-term relaxation R2, phase 2.
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Figure 3.22: Long-term relaxation R0, phase 2.
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Figure 3.23: Long-term relaxation R1, phase 3.
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Figure 3.24: Long-term relaxation R2, phase 3.
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Figure 3.25: Long-term relaxation R0, phase 3.

When looking at all long-term relaxation figures above it can only be concluded that long-term magnetic
relaxation is not succesfully measured using this setup. Some gradual changes can be observed, but
nothing that a clear difference with the zero measurements. In order to capture the effect it might be
necessary to measure for longer periods of time. An idea is to store a specimen in a certain fixed position
with respect to the magnetic field of the Earth, and then measure the magnetic flux at a fixed distance
for multiple days, weeks, or even months to observe gradual changes in magnetic flux.



4
Uniformity

4.1. Introduction
An important assumption through which the expressions formulated in chapter 2 are derived is the fact
that the objects are magnetised uniformly. Magnetic uniformity implies that the vector describing the
magnetisation within an object does not vary within the domain of the object. Without uniform magneti-
sation, the inverse problem becomes more complicated.

In order to see if an object is uniformly magnetised, multiple magnetic induction field measurements
are taken around a specimen which is subjected to a uniform and constant background field. Following
the theory provided in chapter 2, inversion performed at different locations leads to identical vectors de-
scribing the three-dimensional uniform magnetisation within the object. The difference in the inversely
calculated magnetisation at different locations can be seen as a qualitative indication of the amount of
non-uniformity in the material.

4.2. Initial test setup
The magnetic uniformity is initially investigated for two specimens, see appendix B.4:

• A solid prolate steel spheroid (580×95×95 mm);

• Steel plate specimen 1 (300×300×5 mm).

Five locations are marked around each specimen along their symmetry axes. For the spheroid, the
locations of these sensors are numbered and given in table 4.1.

Table 4.1: Sensor locations with respect to the spheroid’s centrepoint.

Sensor 𝑥 [mm] 𝑦 [mm] 𝑧 [mm]
1 0 0 145
2 150 0 74
3 -150 0 74
4 0 150 74
5 0 -150 74

Please refer to figures 4.1 and 4.2 for a schematic top and side view of the solid spheroid and the sensor
locations. Please note that the 𝑧-direction points downwards.

39
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Figure 4.1: Spheroid sensor locations (top view).
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Figure 4.2: Spheroid sensor locations (side view).

For the steel plate the locations of the sensors are given in table 4.2.

Table 4.2: Sensor locations with respect to the centre point of the metal plate.

Sensor 𝑥 [mm] 𝑦 [mm] 𝑧 [mm]
1 0 0 50
2 166 0 -12
3 -166 0 -12
4 0 185 -12
5 0 -185 -12

Please refer to figures 4.3 & 4.4 for a schematic top and side view of the spheroid and the sensor
locations. The 𝑧-direction points downwards.
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Figure 4.4: Plate sensor locations (side view).

The individual measurements are provided as input for the inversion at different locations and the results
are compared. The variance in inversely calculated magnetisation can be used as a qualitative measure
of uniformity.

Three test cases are defined for the spheroid:
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• Case 1: With the Earth’s magnetic field present;

• Case 2: With background field 0 in all directions;

• Case 3: With background field +200 µT in 𝑥-direction.

The calculation of the magnetisation through inversion at each sensor location yields a vector with three
components. This implies that for each test case, a table can be constructed with the inversely calcu-
lated ’uniform’ 𝑀 -magnetisations corresponding to measurements at that location. The results are
presented in table 4.3.

Table 4.3: Spheroid magnetisation [A/m].

Case 1
Sensor 1 2 3 4 5
𝑀 167 1335 1003 -73 366
𝑀 119 -99 97 65 41
𝑀 -84 -464 -71 28 -96

Case 2
Sensor 1 2 3 4 5
𝑀 483 1616 1313 223 659
𝑀 114 -94 123 71 51
𝑀 -154 -519 -131 -44 -152

Case 3
Sensor 1 2 3 4 5
𝑀 4188 4919 4547 3626 4030
𝑀 178 -111 64 98 13
𝑀 -142 -429 -146 -58 -151

For the metal plate, four cases are defined:

• Case 1: With background field 0 in all directions;

• Case 2: With background field +200 µT in 𝑥-direction;
• Case 3: Demagnetised, background field 0 in all directions;

• Case 4: Demagnetised, background field +200 µT in 𝑥-direction.

The expression used for inverse calculations derived in section 2.4 only deals with one-dimensional mag-
netisation, meaning that inversion can only be applied for one direction (in this case the 𝑥-direction). This
means that applying inversion in the 𝑥-direction theoretically only works when using the 𝐵 -component
at locations 1, 4 and 5 where the magnetic field due to a possible uniform magnetisation in 𝑦 and 𝑧-
directions is zero (the contributions to 𝐵 due to uniform magnetisation in 𝑦 and 𝑧-directions are zero in
the 𝑦𝑧-plane at 𝑥 = 0, see chapter 2). After the measurements are taken, the specimen is demagnetised
using the demagnetising unit described in appendix B.3. The process is repeated under case 3 & 4. The
results are presented in table 4.4.

Table 4.4: Metal plate specimen 1 magnetisation [A/m].

Sensor 1 2 3 4 5
𝑀 , case 1 1340 349 364 2114 1196
𝑀 , case 2 13005 4279 4338 16544 15510
𝑀 , case 3 191 118 143 773 700
𝑀 , case 4 12262 4096 4135 15136 14980

In an ideal situation with uniform magnetisation, the 𝑀 , 𝑀 and 𝑀 components in table 4.3 would not
change for different sensor locations. For the metal plate the same can be said for the 𝑀 component
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of the magnetisation at locations 1, 4 and 5 in table 4.4. For locations 2 and 3 this can not be directly
deduced since a possible magnetisation in the 𝑦-direction also directly influences the 𝐵 -field at these
locations. A quantitative interpretation of these numbers is difficult, but a preliminary conclusion that can
be drawn is:

• The assumption that the test specimens exhibit uniform magnetisation is likely to be incorrect.

As mentioned in the beginning of this chapter this makes the inversion process more complicated. In the
following section, a method is proposed in order to describe non-uniform permanent magnetisation in a
square plate.

4.3. Non-uniform distribution functions
Based on the results of the previous section, all specimens are from here on treated as exhibiting non-
uniform magnetisation. One of the reasons for conducting experiments on a spheroid is the expectation
that, due to its shape and size, it is magnetised uniformly since for spheroids of a linearly reacting ma-
terial it is known that they magnetise uniformly when subjected to a uniform background field [42]. The
discovery in the previous section that this is not the case means that this clear expected advantage of
testing a spheroid over sheet metal plates no longer upholds. For this reason, from now on, plate ma-
terial only will be tested since this is the material that will be used in construction of marine vessels, as
well as the fact that it is much more convenient to use sheet metal when applying tension in order to
capture the Villari effect which will be discussed in chapter 6. Another change in approach is made by
shifting the measuring equipment from the fluxgate sensor to the sensor array. Please refer to appendix
B.2.1 for a more detailed description of the array. The individual sensors are less accurate than the
fluxgate sensor, but the entire array is able to measure three components of the magnetic induction field
with 112 sensors in a 750×300mm plane instead of a three component measurement at a single location.

In this section an attempt is bemade to translate a set of magnetic induction field measurements obtained
with the sensor array at a distance from the specimen to the magnetisation within the object. An example
of magnetic induction field measurements below a metal plate when the Earth’s magnetic field is lifted is
shown in figure 4.5.
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Figure 4.5: Measured induction field in an -plane at = 71 mm due to remnant magnetisation of a 300×300×5 mm metal plate
with its centre at (0,0,0), Background field 0 in all directions.

The goal is to find a non-uniform expression which describes the 𝑀 , 𝑀 and 𝑀 distributions over the
plate that produce the magnetic induction field components as measured in, for example, figure 4.5.
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4.3.1. Global and local functions
Since for a metal plate the width and length are much larger than the thickness, variance in magnetisation
over the thickness is neglected. When assuming variance in 𝑥 and 𝑦-directions only, two methods are
proposed initially through which non-uniform magnetisation can be described in a square plate:

• Global functions that provide a single equation which exists on the entire domain of the plate;

• Local functions that describe the magnetisation on a discrete domain, for which the entire domain
consists of multiple of these discrete domains.

Assume metal plate specimen 1 (300×300×5 mm) from the previous section with its centre at the origin.
Global functions describing the magnetisation that depend on both 𝑥 and 𝑦 can be defined by taking a
polynomial expansion in both directions up to the second order. For each separate component (𝑀 , 𝑀 ,
𝑀 ) this yields the following set of expressions:

𝑀 (𝑥, 𝑦) = 𝐴 + 𝐴 ( ) + 𝐴 ( ) + 𝐴 ( ) ( ) + 𝐴 ( ) + 𝐴 ( )

𝑀 (𝑥, 𝑦) = 𝐴 + 𝐴 ( ) + 𝐴 ( ) + 𝐴 ( ) ( ) + 𝐴 ( ) + 𝐴 ( )

𝑀 (𝑥, 𝑦) = 𝐴 + 𝐴 ( ) + 𝐴 ( ) + 𝐴 ( ) ( ) + 𝐴 ( ) + 𝐴 ( )

(4.1)

in which𝑤 equals half the width of the plate, 150 mm. Some randommagnetisation distributions obtained
using expressions (4.1) and random parameters between -1000 and 1000 are presented in figure 4.6.
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Figure 4.6: Random , , -distributions [A/m] in a 300×300×5 mm plate obtained with second order polynomials.

As can be seen from equations (4.1), the magnetisation distribution within the plate is described using
18 parameters: 𝐴 , 𝐴 …𝐴 . This could be extended to higher order terms in order to capture a higher
order of non-uniformity. Below, an extension using third order global functions is given:

𝑀 (𝑥, 𝑦) = 𝐴 + 𝐴 ( ) + 𝐴 ( ) + 𝐴 ( ) ( ) + 𝐴 ( ) + 𝐴 ( ) +

𝐴 ( ) ( ) + 𝐴 ( ) ( ) + 𝐴 ( ) + 𝐴 ( )

𝑀 (𝑥, 𝑦) = 𝐴 + 𝐴 ( ) + 𝐴 ( ) + 𝐴 ( ) ( ) + 𝐴 ( ) + 𝐴 ( ) +

𝐴 ( ) ( ) + 𝐴 ( ) ( ) + 𝐴 ( ) + 𝐴 ( )

𝑀 (𝑥, 𝑦) = 𝐴 + 𝐴 ( ) + 𝐴 ( ) + 𝐴 ( ) ( ) + 𝐴 ( ) + 𝐴 ( ) +

𝐴 ( ) ( ) + 𝐴 ( ) ( ) + 𝐴 ( ) + 𝐴 ( ) .

(4.2)
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It can be seen from equations (4.1) and (4.2) that increasing the global functions by one order signifi-
cantly increases the amount of parameters used to describe the magnetisation to a total of 30. Random
magnetisation distributions, which are obtained using third order polynomials and random parameters
between -1000 and 1000 are presented in figure 4.7.
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Figure 4.7: Random , , -distributions [A/m] obtained with third order polynomials.

When comparing figures 4.6 and 4.7 it can be seen that increasing the order of the global functions allows
for an increase in the possible non-uniformity over the surface of the domain.

Using local instead of global functions, the plate is subdivided into smaller domains in which the magneti-
sation is uniform. The amount of parameters describing the magnetisation then depends on the amount
of squares that the plate is discretized into. For each domain, three parameters are required to describe
the, locally uniform, 𝑀 , 𝑀 and 𝑀 components. Assuming a discretization into square domains, the
order of discretization can be described by 𝑛 in which 𝑛 is the total amount of discretized domains. The
total amount of parameters used to describe non-uniformity is then given by 3𝑛 when considering the
three components (𝑀 ,𝑀 ,𝑀 ). For 𝑛 = 2 and 𝑛 = 3, the𝑀-distribution within the plate could look similar
to figure 4.8 when using random parameters between -1000 and +1000 A/m.
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Figure 4.8: Random , , -distributions [A/m] with (top) and (bottom).

4.3.2. Two-dimensional Gaussian distributions
A drawback of the local functions is that the magnetisation is not continuous over the domain of the
plate, as can be seen in figure 4.8. Eventually, a chosen distribution is projected onto a mesh in the
finite element simulation. For each element in this mesh the magnetisation is linearised over the domain
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of that element. When using these local functions it is found that these locally steep gradients caused
difficulties within COMSOL in finding a solution compared to when the distribution is smooth. Another
drawback is the fact that incorporating these separate domains would come with extra implementational
burden in COMSOL when combined with the Jiles-Atherton model which will be discussed in the following
chapter. This gave rise to the idea to look for functions which act locally but live on a global domain.
These were found in the shape of higher order two-dimensional Gaussian functions which are given by

𝑓(𝑥, 𝑦) = 𝐴 exp(−((𝑥 − 𝑥 )2𝑠 + (𝑦 − 𝑦 )2𝑠 ) ) . (4.3)

In equation 4.3, 𝐴 is the amplitude or peak height, 𝑥 and 𝑦 the coordinates of the centrepoint, 𝑠 and
𝑠 the standard deviation in 𝑥 and 𝑦 directions and 𝑃 the higher order power. A three-dimensional view
of this function is given on the left side of figure 4.9 for 𝐴 = 1, 𝑥 = 𝑦 = 0, 𝑠 = 𝑠 = 0.05, and 𝑃 = 1. By
increasing the value of the higher order term 𝑃, the transition zone between zero and the peak value 𝐴
can be decreased as shown in the right figure, where 𝑃 = 3.
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Figure 4.9: Two-dimensional higher order Gaussian distribution functions, = 1 (left) and = 3 (right).

A contour plot of both distributions is provided in figure 4.10. From this figure it can be clearly seen how
the higher order Gaussian functions can be used to describe magnetisation locally while existing on the
entire domain of the plate.

Figure 4.10: Two-dimensional higher order Gaussian distribution functions, = 1 (left) and = 3 (right).

A drawback of these functions is their radial symmetry which conflicts with the rectangular shapes of the
test specimens. On the left of figure 4.11, nine higher order Gaussian terms with 𝐴 = 1, a small standard
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deviation 𝑠 , = 0.02, and 𝑃 = 3 are placed in a grid-like shape on the surface of the plate. In order to cover
the entire plate, the standard deviation in both directions can be increased. This results in some areas
of the plate being over-represented, which means that they feel the effect of two neighbouring Gaussian
functions. These areas are dark red and have values >>1. Other areas that are under-represented
appear at locations further removed from the centre-points and do not feel the effect of any Gaussian
distribution function, which are dark blue and<<1. This effect is visualised on the right side of figure 4.11.

Figure 4.11: Two-dimensional higher-order Gaussian functions distributed in a grid, =1, = 3 and , = 0.02 (left), , = 0.046
(right).

The effect from figure 4.11 is caused by the grid-like placement which conflicts with the radial shape of
the Gaussian distributions. This can be overcome by ensuring that the distances between centrepoints
of neighbouring Gaussian functions is kept identical over the surface. Keeping angles between the cen-
terpoints of the Gaussian functions at 60°, which is a known property of equilateral triangles, results in
a hexagonal distribution. The effect of this hexagonal placement versus grid-shaped rectangular place-
ments is shown in figure 4.12. On the left, a hexagonal placement of 7 Gaussian functions with 𝐴 =
1, a small standard deviation 𝑠 , = 0.03 and 𝑃 = 2 is shown. On the right, the standard deviation is
increased to 𝑠 , = 0.067, resulting in a much better approximation which evenly capturies the entire field
compared with the grid-shape from figure 4.11. This is best deduced from the considerable difference in
the colourbar range of the right-hand side of figures 4.11 and 4.12.

Figure 4.12: Two-dimensional higher-order Gaussian functions in a hexagonal pattern, =1, = 3 and , = 0.02 (left), , =
0.067 (right).

The abovementioned hexagonal distribution is a good way to describe non-uniform magnetisation on
surfaces of any geometric shape. However, in this research project all test specimens used from here
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on are rectangular. For these special cases, a rectangular higher order Gaussian distribution function is
used which is slightly different from equation 4.3:

𝑓(𝑥, 𝑦) = 𝐴 exp(−((𝑥 − 𝑥 )2𝑠 ) − ((𝑦 − 𝑦 )2𝑠 ) ) . (4.4)

With expression (4.4), the local functions as used in figure 4.8 are incorporated in one global function.
The parameter 𝑃 = 𝑃 = 𝑃 , is varied to smoothen the transition zone in order to prevent discontinuities
when incorporated into COMSOL. For 𝑃 = 1, the ordinary two-dimensional Gaussian function is obtained,
while increasing the value of 𝑃 steepens the transition zone from 𝐴 (dark red) to 0 (dark blue). Contour
plots of the the square higher order Gaussian functions for 𝑃 = 1.5 and 𝑃 = 3 are given in figure 4.13.

Figure 4.13: Two-dimensional higher-order square Gaussian functions, =1, , = 0.05 and = 1.5 (left), = 3 (right).

As these distirubtions will be implemented in COMSOL, it is important to keep in mind that this expression
will be projected onto a meshed surface. For each element on the mesh the magnetisation is then
linearised over the element. In order to prevent steep discontinuities which are found to be problemtic,
it is decided to look for the optimal distribution in a shape which does not allow for steep local variations
from a numerical perspective. On the left side of figure 4.14, a contour plot with nine higher order square
Gaussian functions placed in a similar grid-like pattern as figure 4.11 is shown. The parameters used for
the distribution functions are: 𝐴 = 1, 𝑃 = 1.5 and 𝑠 , = 0.05. This shows how multiple square Gaussian
distribution functions are capable of reproducing a more or less uniform field when 𝐴 is set to 1 for all
terms in the expression. For comparative reasons, the figure on the right shows the same distribution
as on the left but now with one parameter 𝐴 = 0 while the others remain unchanged. This shows how
this summation of Gaussian distributions is capable of locally varying the field in a global function, while
keeping steep discontinuities to a minimum.
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Figure 4.14: Nine two-dimensional higher order square Gaussian functions in a grid-like pattern, , = 0.05, = 1.5 and = 1
for all (left), { | } = 1, = 0 (right).

4.3.3. Matrix condition
The goal is to find a set of parameters that describes the non-uniform magnetisation in the plate. It is
important to note that magnetisation can be described by a linear superposition of separate functions.
This implies that when looking at the global and local functions above, the effect of varying each param-
eter can be investigated separately when these parameters do not directly influence each other. This is
the case for the terms describing the amplitude of the Gaussian distirubtion functions 𝐴 , 𝐴 …𝐴 , since
changing one of these parameters does not alter the resulting outcome of changing one of the other am-
plitudes. For the standard deviation 𝑠 , 𝑠 or the power terms 𝑃 , 𝑃 this is not the case since these terms
also directly influence all of the amplitude parameters. For this reason, the power term and standard
deviation are fixed. The outcome of the fit is then given by a combination of amplitudes for each Gaus-
sian distribution function given by the terms 𝐴 , 𝐴 …𝐴 . In order to find a magnetisation that fits with
the measured induction field, a parameter sensitivity matrix 𝑀 is constructed using the process outlined
below which is visualised in the flowchart in figure 4.15:

1. The magnetisation in COMSOL is expressed using a set of functions as described at the beginning
of this section;

2. All parameters 𝐴 , 𝐴 …𝐴 are set to 0;

3. The first parameter, 𝐴 , is set to 1;

4. The corresponding induction field at the location of the sensor array is calculated;

5. The calculated 𝐵-field is stored in a vector in the first column of matrix 𝑀;

6. All parameters 𝐴 , 𝐴 …𝐴 are set to 0;

7. The second parameter, 𝐴 , is set to 1;

8. etc.



50 4. Uniformity

Start

Load

distri-

bution

functions

= 1
{ … }

= 0

Compute

-field
? End

Store -field in

column of matrix

no

yes

Figure 4.15: Parameter sensitivity matrix creation flowchart.

Upon storing the solution for each parameter in a separate column, the matrix in equation (4.5) appears.
The first index indicates the component and sensor number, so 𝑥, 𝑦, 𝑧 for the direction of the induction field
and a number between 1 and 112 which corresponds with the location of the sensor. The second index
is the parameter 𝐴 for which this induction field is calculated. For a total of 𝑛 parameters, a parameter
sensitivity matrix𝑀 of size 336×𝑛 is created. The 336 rows in the matrix correspond with the 112 sensors
which measure three components each.

𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐵 , 𝐵 , … 𝐵 ,
𝐵 , 𝐵 , … 𝐵 ,
⋮ ⋮ ⋮

𝐵 , 𝐵 , … 𝐵 ,
𝐵 , 𝐵 , … 𝐵 ,
𝐵 , 𝐵 , … 𝐵 ,
⋮ ⋮ ⋮

𝐵 , 𝐵 , … 𝐵 ,
𝐵 , 𝐵 , … 𝐵 ,
𝐵 , 𝐵 , … 𝐵 ,
⋮ ⋮ ⋮

𝐵 , 𝐵 , … 𝐵 ,

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.5)

The goal is to find the set of parameters which describes the magnetisation that has the optimal fit with
the measured B-field data. When the induction field measurements from the array are stored in a vector,
and another vector A is defined which contains all parameters 𝐴 , 𝐴 …𝐴 , the following expression can
be formulated:

𝑀

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐴
𝐴
⋮
⋮
⋮
⋮
⋮
𝐴

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐵 , measured
𝐵 , measured

⋮
⋮
⋮
⋮
⋮

𝐵 , measured

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.6)

A system like the one described in equation (4.6) can be solved for A using MATLAB’s direct solver
which is built in using the backslash operator ’\’. This quickly computes the least squares solution to the
above-mentioned problem, see [20], or the best ’fit’ of the parameters in the A-vector that connects 𝑀
with the solution on the right-hand side. This operator can only be used if 𝑀 is well-conditioned. The
condition number of matrix 𝑀 qualitatively describes how the solution A varies when the right-hand side
of equation (4.6) is changed. If a small alteration of the measured signal leads to a large change in
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the solution A it is said that 𝑀 is ill-conditioned. A well-conditioned matrix will translate a change in
the induction field into a change in A of the same order of magnitude. Another topic of importance is
the stability of the solution and trustworthiness of its results. This can be tested using twin-experiments
that will be further elaborated in the following section. A more in-depth analysis of condition numbers
and matrix stability can be found in the master’s thesis by Vijn [56]. For the purpose of this research
it suffices to keep in mind that, as a rule of thumb, the base logarithm of the condition number can be
seen as a measure of the worst-case loss of precision in terms of significant digits lost in the solution [35].

4.4. Model verification
In the previous section, methods are introduced through which non-uniform magnetisation in a surface
can be described. In order to verify the applicability of these methods so-called twin experiments are
conducted. Initially, an identical twin experiment is performed, where the inversion is applied to a fictitious
𝐵-field measurement which is created using the original distribution function. The second step involves a
twin experiment in which the fictitious 𝐵-field is subjected to various levels of noise. A stable expression
should reproduce the original 𝑀-distribution when inversion is applied. Eventually the applicability to
measured data is checked and the effectiveness of different functions is compared.

4.4.1. Identical twin
The methodology behind the identical twin experiment is outlined below.

1. A distribution for𝑀 , , is chosen following the approach outlined in section 4.3. When using Gaus-
sian functions, fixed values are used for 𝜎 , and 𝑃 , . Each value 𝐴 , 𝐴 …𝐴 is a separate param-
eter that can be varied in order to find the best 𝑀-distribution;

2. An𝑀-distribution is created using the function defined in step 1 with random parameters for 𝐴 …𝐴 .
This 𝑀-distribution is entered in COMSOL and the corresponding 𝐵-field in a plane below the plate
is stored in a vector 𝐵true;

3. The parameter sensitivity matrix 𝑀 is created for the chosen distribution, as described in section
4.3;

4. MATLAB’s direct solver is used to compute the least-squares fit of parameters (values for 𝐴) that
corresponds with 𝐵true;

5. The calculated values for 𝐴 , 𝐴 …𝐴 are compared with the random input values for 𝐴 , 𝐴 …𝐴
from step 2.

In general, the matrix condition number is a good indicator of the outcome of the identical twin experi-
ment. Well-conditioned matrices will always lead to a calculated fit which corresponds correctly with the
randomly chosen 𝐴-values. As the matrix condition number increases it is found that the direct solver
fails to correctly reproduce the input values which should be avoided. A substantial amount of functions
has been analysed following the methodology above. The results of the identical twin experiment for a
selection of these functions are presented table 4.5. This selection consists of

• 𝑓 : Second order global functions as described in equations (4.1): 6 parameters per𝑀-component,
18 parameters in total;

• 𝑓 : Third order global functions as described in equations (4.2): 10 parameters per 𝑀-component,
30 parameters in total;

• 𝑓 : Circular higher order Gaussian functions in a hexagonal pattern: 23 parameters per𝑀-component,
69 parameters in total. 𝜎 = 𝜎 = 0.031 and 𝑃 = 𝑃 = 1.5;

• 𝑓 : Square higher order Gaussian functions in a grid: 9 for 𝑀 , 9 for 𝑀 and a constant, location
independent parameter describing 𝑀 , 19 parameters in total. 𝜎 = 𝜎 = 0.05 and 𝑃 = 𝑃 = 1.5.
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The choice of the latter function demands some explanation. While trying out different sets of functions
to describe the magnetisation it was found from time to time that the components of the magnetisation
in 𝑧-direction became very small compared to the 𝑥 and 𝑦 components when trying to fit the functions
to measured data. When the 𝑧-component of the magnetisation was taken as uniform over the surface,
the resulting fit would always find a value close to zero compared to the 𝑥 and 𝑦-components of the
magnetisation. It is only when more freedom in 𝑧-direction is allowed that the maximum and minimum
𝑀 start to deviate from 0, but the average 𝑧-component was still found to be equal to 0 in all testcases
which can be observed further in this report. In order to not completely neglect the possibility of mag-
netisation in 𝑧-direction, a single uniform term is used to describe 𝑀 in 𝑓 . Even so, this term turned
out to provide an irrelevant contribution to the 𝐵-field in all calculated fits on measured data compared
to its 𝑥 and 𝑦 counterparts when fit to actual data. In order to improve the stability of the system which
will be investigated further in this section the choice was made to allow for only uniform magnetisation in
𝑧-direction.

𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑦)
Condition no. of 𝑀 5.4×10 5.7×10 4.3×10 4.9×10

Parameter True input
𝐴 1 1.000 1.000 1.000 1.000
𝐴 3 3.000 3.000 3.000 3.000
𝐴 0 0.000 -0.525 0.000 3.000
𝐴 -1 -1.000 -1.000 -1.000 -1.000
𝐴 -2 -2.000 -2.000 -2.000 2.000
𝐴 1 1.000 1.000 1.000 1.000
𝐴 2 2.000 2.525 2.000 2.000
𝐴 0 0.000 -0.000 0.000 0.000
𝐴 -2 -2.000 -2.000 -2.000 -2.000
𝐴 -1 -1.000 -1.000 -1.000 -1.000
𝐴 -2 -2.000 -2.000 -2.000 -2.000
𝐴 -1 -1.000 0.475 -1.000 -1.000
𝐴 0 0.000 0.000 0.000 0.000
𝐴 0 0.000 0.000 0.000 0.000
𝐴 0 0.000 0.000 0.000 0.000
𝐴 2 2.000 2.000 2.000 2.000
𝐴 0 0.000 0.000 0.000 0.000
𝐴 3 3.000 2.475 3.000 3.000
𝐴 1 1.000 1.000 1.000
𝐴 3 3.000 3.000
⋮ ⋮ ⋮ ⋮

Table 4.5: Identical twin experiment comparison.

The following conclusions can be drawn from table 4.5:

• The condition number is an indicator of the stability of 𝑀;

• It is unclear for which value of the condition number the system becomes unstable, but it is lower
than 5.7×10 ;

• The amount of parameters and the condition of the matrix are not necessarily related. Function 𝑓
uses 69 parameters compared to 30 parameters in 𝑓 , while maintaining a much lower condition
number;

• The use of higher order Gaussian functions leads to an abundance of freedom to describe the
𝑀-distribution without capitalising on matrix condition.

A visualisation of the true 𝑀 and 𝐵-values from table 4.5 is provided in figure 4.16 for 𝑓 . It is important
to keep in mind that the 𝐵-fields on the right are created due to a superposition of the magnetisation
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components on the left, i.e. the 𝑀 distribution by itself creates a 𝐵-field with components in all three
directions, which also holds for the 𝑀 and 𝑀 components. The 𝐵-fields on the right-hand side consist
of superpositions of the 𝐵-fields due to the three magnetisation components on the left, please refer to
chapter 2.
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Figure 4.16: True , and distributions and the corresponding -fields in a plane below the plate corresponding with
and the true parameters from table 4.5.

The optimal fit calculated for 𝑓 uses a slightly different set of parameters to describe the magnetisation
than the original input. In figure 4.17 the fit magnetisation and corresponding 𝐵-field component plots
are provided. From these figures it is seen that the third order global description for the magnetisation 𝑓
allows for too much freedom in the 𝑀-distribution to coincide with the measured 𝐵-field below. In other
words, there are multiple combinations of𝑀 possible that produce an identical 𝐵-field at a distance below
the plate, which is clearly an unwanted result when trying to fit a model to experimental data.
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Figure 4.17: Calculated , and distributions and the corresponding -fields in a plane below the plate corresponding with
and the true parameters from table 4.5.

4.4.2. Twin experiment
When performing real-world experiments the measured 𝐵-field will, in all likelihood, not be formed due to
a magnetisation that perfectly fits the distribution functions as described in section 4.3. Even if this was
the case, the corresponding measured 𝐵-field will be affected by noise due to inaccuracy of the sensors
in the array. For this reason it is important to investigate the stability of the distribution functions when
the output is affected by noise. The methodology of the twin experiment is outlined below.

1. A distribution for𝑀 , , is chosen following the approach outlined in section 4.3. When using Gaus-
sian functions, fixed values for 𝜎 , and 𝑃 , are used. Each value for 𝐴 is a separate parameter
that can be varied in order to find the best 𝑀-distribution;

2. An𝑀-distribution is created using the function defined in step 1with randomparameters for 𝐴 , 𝐴 …𝐴 .
This 𝑀-distribution is entered in COMSOL and the corresponding 𝐵-field in a plane below the plate
is calculated;

3. Various levels of normally distributed noise are added to the 𝐵-field calculated in step 2. These
noise-affected 𝐵-fields are stored in separate columns in a matrix 𝐵true. Each column of 𝐵true is a
separate ’solution’ of the system, with increasing amounts of noise added;

4. MATLAB’s direct solver is used to compute the least-squares fit of parameters (values for 𝐴) that
correspond with 𝐵true for each noise level;
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5. The calculated values for𝐴 , 𝐴 …𝐴 are compared for each noise level with the input for𝐴 , 𝐴 …𝐴
from step 2.

For each of the functions 𝑓 , the average total strength of the measured 𝐵-field is calculated using

𝐴signal =
∑ √𝐵 , + 𝐵 , + 𝐵 ,

112 . (4.7)

The signal-to-noise ratio, or 𝑆𝑁𝑅, can be expressed by

𝑆𝑁𝑅 = 𝐴noise
𝐴signal

(4.8)

in which 𝐴 stands for amplitude. The corresponding noise is calculated as a percentage of the average
measured field. The noise is added in five different levels of magnitude:

• L1: 2.5% 𝑆𝑁𝑅;

• L2: 5% 𝑆𝑁𝑅;

• L3: 10% 𝑆𝑁𝑅;

• L4: 20% 𝑆𝑁𝑅;

• L5: 40% 𝑆𝑁𝑅.

The noise is added to the 𝐵-field using an ordinary Gaussian distributed function with a mean of 0 and
a standard deviation equalling one third of 𝐴noise in order to ascertain that 99.7% of the noise is equal to
or lower than the noise amplitude. A visualisation of the noise classes is provided using COMSOL output
in figure 4.18.

Figure 4.18: The -components of a -field with various levels of added noise.
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The error between the input and the calculated parameters is calculated through

𝜂 =
∑ |𝐴 ,input − 𝐴 ,calculated|

∑ |𝐴 ,calculated|
(4.9)

which calculates the relative difference between the input and the calculated fit parameter vectors.The
results of the twin experiment for 𝑓 and 𝑓 in combination with the noise levels mentioned above are
given in table 4.6.

𝑓 (𝑥, 𝑦), 𝐴signal =16.76 µT
Level L1 L2 L3 L4 L5

St. dev. noise 0.14 µT 0.28 µT 0.56 µT 1.11 µT 2.22 µT
Parameter Input Calculated fit value

𝐴 1 1.001 1.001 1.088 1.087 1.217
𝐴 3 3.006 2.978 3.027 3.004 2.903
𝐴 0 0.004 0.019 0.023 0.094 -0.072
𝐴 -1 -1.028 -1.026 -1.072 -0.939 -1.253
𝐴 -2 -1.999 -1.977 -2.052 -2.014 -2.289
𝐴 1 0.986 0.952 0.784 0.645 1.095

𝐴 , 𝐴 … 𝐴 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜂 0.89 % 2.85 % 4.21 % 7.01 % 17.35 %

𝑓 (𝑥, 𝑦), 𝐴signal =31.6 µT
Level L1 L2 L3 L4 L5

St. dev. noise 0.26 µT 0.53 µT 1.05 µT 2.11 µT 4.21 µT
Parameter Input Calculated fit value

𝐴 1 1.055 0.942 0.498 1.216 2.807
𝐴 3 2.963 2.963 2.635 3.509 2.930
𝐴 0 1.07× 10 4.23×10 -2.67×10 -4.58×10 3.60× 10
𝐴 -1 -0.984 -1.026 -1.030 -1.032 -1.838
𝐴 -2 -2.095 -1.977 -1.975 -2.322 -5.684
𝐴 1 0.947 0.952 1.134 0.807 0.592

𝐴 , 𝐴 … 𝐴 ⋮ ⋮ ⋮ ⋮ ⋮ �
𝜂 » 100 % » 100 % » 100 % » 100 % » 100 %

Table 4.6: Twin experiment results for and .

The contrast with respect to noise sensitivity of the two functions is large. 𝑓 shows that even with a
significant amount of noise, the relative error between the input and the inversely calculated parameters
remains small. This proves that 𝑓 returns a stable solution when confronted with output blurred by a
certain amount of noise. The contrary can be said for 𝑓 , for which the error becomes huge when the
output is subjected to the smallest amount of noise. Based on figure 4.17, one could argue that even
though the parameters returned in the identical twin experiment were different than the input values, the
resulting 𝑀-distribution and corresponding 𝐵-field are still nearly identical. However, the 𝑀-distributions
that follow from table 4.6 show that certain calculated parameters become extraordinarily large. These
parameters are linked to the following terms from equations (4.2):

In the expression for 𝑀 ∶ 𝐴 ( ) and 𝐴 ( ) ( ) ;

In the expression for 𝑀 ∶ 𝐴 ( ) and 𝐴 ( ) ( ) .

Upon investigation it was found that these four terms, in a certain configuration, are capable of cancelling
out each others’ effect on the 𝐵-field in a plane below the plate. Therefore, it can be said that 𝑓 allows
for too much freedom in the solution in order to be reliable and stable.
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The results of the twin experiment for 𝑓 and 𝑓 are shown in table 4.7.

𝑓 (𝑥, 𝑦), 𝐴signal = 8.9 µT
Level L1 L2 L3 L4 L5

St. dev. noise 0.07 µT 0.15 µT 0.30 µT 0.59 µT 1.19 µT
Parameter Input Calculated fit value

𝐴 1 1.170 1.115 -0.292 0.923 -0.527
𝐴 3 2.986 2.921 3.106 2.208 3.469
𝐴 0 -0.048 0.167 0.189 0.587 0.388
𝐴 -1 -0.983 -0.944 -0.770 -0.483 -2.277
𝐴 -2 -2.039 -2.234 -2.125 -1.752 -0.696
𝐴 1 1.221 0.748 -0.401 1.128 -0.193

𝐴 , 𝐴 … 𝐴 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜂 7.00 % 16.55 % 38.06 % 61.71 % 124.63 %

𝑓 (𝑥, 𝑦), 𝐴signal = 8.5 µT
Level L1 L2 L3 L4 L5

St. dev. noise 0.07 µT 0.14 µT 0.28 µT 0.57 µT 1.14 µT
Parameter Input Calculated fit value

𝐴 1 0.995 1.015 0.961 0.972 1.195
𝐴 3 2.996 3.041 2.999 2.997 3.340
𝐴 0 -0.002 0.014 0.022 0.001 0.101
𝐴 -1 -1.000 -1.007 -0.971 -1.022 -1.105
𝐴 -2 -2.008 -1.985 -1.960 -2.090 -1.951
𝐴 1 0.995 0.993 1.021 0.948 1.195

𝐴 , 𝐴 … 𝐴 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜂 0.34 % 1.59 % 2.18 % 3.07 % 14.87 %

Table 4.7: Twin experiment results for and .

Table 4.7 shows that expression 𝑓 allows for a very stable reproduction of the input values when the
output is subjected to noise. The error in 𝑓 is considerable and grows rapidly for increasing noise
levels, which can be explained by the fact that this expression uses 69 parameters compared to only
19 parameters in 𝑓 . From these results it can be stated that the use of higher order Gaussian global
functions is a good way to describe non-uniform magnetisation. A trade-off is always made between the
amount of freedom available to apply local variations (the amount of parameters) and the robustness of
the function (the error).

4.4.3. Application to measurements
The final step in the model verification process consists of applying the functions proposed in this chapter
to actual measurements and see how well they are capable of finding an 𝑀-distribution that reproduces
the measured data. Based on the results of the (identical) twin experiments it was found that only 𝑓
and 𝑓 prove to be reliable functions. Their applicability to real-world measurements is investigated be-
low, which implicates that from here on 𝑀true is unknown. This implies that only 𝐵-field measurements
can be compared with 𝐵-fields that follow from the magnetisation calculated through inversion using the
functions above. Since 𝑓 and 𝑓 provide a substantially different approach when describing the mag-
netisation, it is interesting to investigate the differences between the magnetisation obtained when using
both functions on the same dataset as a method of verifying them.

The Earth’s magnetic field is lifted within the Helmholtz cage (see appendix B.1) and a zero measure-
ment is taken without an object present. Then, a steel plate (300×300×5 mm) is placed in the centre of
the cage. The 𝐵-field is measured and the zero measurement is subtracted. This yields the 𝐵-field due
to the remnant magnetisation within the steel plate. The result of this measurement for each separate
component are shown on the left side of figures 4.19 & 4.20. Based on these measurements, an attempt
is made to find the 𝑀-distribution using 𝑓 and 𝑓 . For both functions, the obtained 𝑀-distributions are
given in figure 4.21. The 𝐵-fields obtained using 𝑓 , and the difference between the fit 𝐵-field and the
original measurement are shown in the centre and right side of figure 4.19. For the fit obtained using



58 4. Uniformity

𝑓 , these are given in the centre and right side of figure 4.20. The experiment above was repeated for a
different metal plate with identical dimensions (300×300×5 mm). The results of this second experiment
are given in figures 4.22 - 4.24.

From figures 4.19-4.24 it can be observed that both 𝑓 and 𝑓 are capable of producing an 𝑀-distribution
that produces a 𝐵-field which fits properly with the measured data. The difference fields show that the
error between the measured and calculated fields rarely exceeds 1 µT, which is roughly the same magni-
tude of error known for the sensors mounted in the sensor array used to measure the 𝐵-field. To conclude
this chapter it is decided to continue with the higher order square Gaussian function, 𝑓 , instead of 𝑓 for
the remainder of this project due to the reasons outlined here:

1. Higher order Gaussian functions can be easily adapted to other (irregular) geometric shapes. This
is more complicated for the global functions from 𝑓 ;

2. The specimens above are found to be relatively uniformly magnetised. If future specimens are
encountered with larger local variations, 𝑓 provides a more intuitive approach to vary the magneti-
sation locally;

3. Function 𝑓 can be easily scaled to include more degrees of freedom by refining the grid (adding
more Gaussian terms to the equation). Adding additional terms to 𝑓 (essentially transforming 𝑓
into 𝑓 ) is found to destabilise the solution;

4. The noise-effected inversion error in 𝑓 is smaller than in 𝑓 which implies a more robust approach;

5. The extreme values of the magnetisation produced by 𝑓 are smaller than in 𝑓 .

At this point it is decided to continue with these functions in order to describe an initial magnetisation which
acts as a starting magnetisation, 𝑀 , for the hysteresis and Villari experiments. This does not stipulate
that this methodology or the functions derived in this chapter will always provide both the optimal and a
unique solution to the inverse problem. Defining this optimal expression, and guaranteeing this solution
is unique, will require a signifcant amount of time and someone who is skilled in the field of regularisation,
please refer to chapter 7.
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5
Hysteresis

5.1. Introduction
The origin of the word hysteresis traces back to the the ancient Greek hysteros which means ’later’, ’sec-
ond’ or ’after’, and was later incorporated in the English language as ’lagging behind’ or ’shortcoming’.
It was coined around 1890 by Sir James Alfred Ewing to describe the behaviour of magnetic materials
[26]. Magnetic hysteresis implicates that magnetisation is not only a result of the applied background
field at this moment, but also depends on the history of the magnetic background field that preceded
this moment. This history-dependent aspect causes hysteresis to be an equally intriguing and complex
phenomenon to describe.

While magnetic hysteresis has been studied extensively up until now, consensus in the academic world
as to which model best describes magnetic hysteretic behaviour has not been reached. As mentioned
above, this is mainly due to the overall complexity of describing hysteretic behaviour which takes into
account the history of magnetic fields applied to the ferromagnetic material in order to be complete. Sev-
eral models based on different assumptions have been made over the years, of which the Jiles-Atherton
and Preisach models are well regarded as the most adequate modelling techniques to date. A prelimi-
nary analysis and comparison of these models was performed by Berkman [3]. A short summary of his
comparison is provided in this section, as well as an explanation for why the model developed by Jiles
& Atherton is the most suitable for this research project.

Magnetic hysteretic behaviour is dependent on many different material properties of the magnetisable
material. Besides properties that describe the internal crystallogrpahic structure of the material, other
properties such as temperature-dependence [28], frequency of alternating fields [25], and applied stress
[5] are important. Since the scope of this project is about investigating hysteresis from a quasi static
standpoint, with fields alternating at a relatively low frequency of 0.1 Hz, frequency dependence is not
accounted for in the model. The same goes for temperature; it is known that magnetic materials demag-
netise when the Curie temperature is reached, as described by Oguchi [41]. Since testing is performed
at room temperature of around 293 K with negligible variations over time, temperature dependence is
left out of the scope of this research as well. Stress-induced magnetisation, also known as the magneto-
mechanical effect, will be studied separately in chapter 6.

In the previous chapter it was discovered that the distribution of the magnetisation was not uniform. This
chapter aims to find the material parameters, for which the variance over the domain is described using
the term homogeneity. It is assumed that the material parameters do not vary over the domain of the
specimens, i.e. the test specimens are all homogeneous. The material is also assumed to be isotropic
which implies that the material is rotationally independent and behaves similarly in all directions.

65
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5.1.1. Jiles-Atherton
The theory by Jiles and Atherton (JA) [26] describes ferromagnetic hysteresis from a physical point of
view by means of subdividing the materials into a finite amount of separate domains of microscopic
size (10 - 10 m), see Coey [9]. Within each domain, the magnetisation is said to be orientated
in a certain direction. When a background field is applied, the magnetisation within these individual
domains rotate into a direction aligned with the background field. If the direction of the background field
is changed, the magnetisation within the grains follow the direction of the background field. Domains that
are aligned with the background field might increase in size due to the fact the the domain walls bend
without permanently altering the size of the domains, see Subrahmanjam [48]. The magnetic orientation,
as well as the position of the domain walls, return to their original states when the background field is
removed. This is called reversible magnetisation and is shown schematically in figure 5.1.

Happ

Figure 5.1: Reversible Magnetisation.

Besides changing orientation of the grains, it is also possible that the domains permanently deform under
the appliedmagnetic field, with domains that are aligned with the background field increasing in size. This
effect causes the boundaries and shapes of the grains to deform around the ’pinning sites’. Pinning sites
can be seen as small anomalies in the material along which the edges of the domain walls are formed.
Upon removing the background field, the domains remain deformed and hence this effect is known as
irreversible magnetisation, see figure 5.2. Please note that these two effects are shown separately here
for clarity, but in reality happen simultaneously. This section’s explanation is derived from the paper by
Melo [37].

Happ

Figure 5.2: Irreversible magnetisation.

In a magnetic material without hysteresis, there is only fully reversible magnetisation, which is usually
modelled with a relative permeability 𝜇 . A full hysteresis model includes a nonlinear relationship be-
tween the change in magnetic field H, magnetisationM and magnetic flux density B. Only a relationship
between two of these three parameters must be found since it was seen in chapter 2 that the following
relationship always holds:

B = 𝜇 (H+M) . (5.1)

The prevalent way of visualising magnetic hysteresis is plotting the internal magnetic field H against
the magnetisation M. While magnetisation and magnetic fields exist in three dimensions, for now only
uniaxial hysteresis is considered. When the applied magnetic background field in 𝑥-direction is plotted on
the 𝑥-axis and the magnetisation in 𝑥-direction on the 𝑦-axis a typical sigmoid-shaped curve is obtained
as shown in figure 5.3.



5.1. Introduction 67

Mr

-Mr

-Hc Hc

Ms

-Ms

Figure 5.3: Major hysteresis loop of a specimen of iron containing 0.25% wt carbon, from Jiles [22].

Figure 5.3 shows a typical magnetic hysteresis curve for a ferromagnetic material that is subjected to
strong magnetic fields. In this example a hysteretic material is chosen which has zero initial magnetisa-
tion. As the applied magnetic field 𝐻 increases, the magnetisation increases nonlinearly in the same
direction, rapidly at first, and slower as 𝐻 increases. For large 𝐻 , asymptotical behaviour is observed.
The magnetisation corresponding to these 𝐻-values is known as the saturation magnetisation 𝑀 which
is one of the parameters in the JA-model. The physical interpretation of this parameter is that all of the
separate domains have been rotated in alignment with the background field and further amplification of
the background field will not cause more changes in the domain wall structure. An additional increase of
the background field strength will therefore not change the magnetic orientation of the domains causing
the material to reach a certain saturation level. When the external field is reduced, the magnetisation
decreases less rapidly than the H-field is dropping since the pinning sites prevent deformation into its
original shape, resulting in a remnant magnetisation 𝑀 when 𝐻 = 0. In order to return the material
to zero magnetisation, a magnetic field in the opposite direction is required which is called the coercive
force 𝐻 . When the field is further reduced the material again reaches saturation but now in the opposite
direction. From there on the process repeats itself, revealing another remnant magnetisation and coer-
cive force at mirrored locations. Such a loop, in which the material reaches saturation level on sides of
the 𝐻-spectrum is called a major loop. Major loops are always symmetrical with respect to the origin,
and for a certain ferromagnetic object only one major loop exists.

It is important to note that major loops occur under very strong appliedmagnetic fields in the order of 1-2 T,
which is comparable with the strength of magnetic fields used in medical MRI scans. The field strengths
that will be applied during this research project are of a much smaller magnitude of around 400 µT. This
means that magnetic saturation will not occur, which alters the shape of the hysteresis curve. If a weaker
field is applied, different curves may appear. These curves can havemany shapes depending onmaterial
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parameters, starting magnetisation and applied field range, but always lie between the ascending and
descending branches of the major loop from figure 5.3. In figure 5.4, some possible minor loops for an
arbitrary material are displayed. Figure 5.4 is a good example of how a certain material can have an
infinite amount of minor loops depending on the starting magnetisation and applied background field.
This shows how for a certain known background field the material can exhibit any magnetisation in a
vertical line between the ascending and the descending branch of the major loop of the hysteresis curve.

Figure 5.4: Minor hysteresis loops, from Zirka [62].

Themagnitude of hysteresis, or the amount of energy dissipated with each loop, can be related to the area
under the curve of the hysteresis loop. When a material is not hysteretic, but does get magnetised under
an external field, the graph would take the shape of a line crossing the (0,0) intersection in both directions
thus having zero residual magnetisation or coercive force. In terms of mathematical formulation, the
anhysteretic curve 𝑀 was derived by Cullity and Graham [11]. The original Langevin function is given
by:

𝑀 (𝐻 ) = 𝑀 (coth(𝐻𝑎 ) −
𝑎
𝐻 ) (5.2)

in which 𝑎 = 𝑘 𝑇/𝑚, 𝑘 is Boltzmann’s constant, 𝑇 is the temperature in Kelvin, 𝑚 the magnitude of the
magnetic dipole in the material, and 𝐻 the applied field. The magnetic dipole moment𝑚 can be seen as
the net magnetic moment of a certain domain. If a domain is bound by the volume 𝑉 the dipole moment
is given by

m =∭ M(r ) 𝑑𝑉 (5.3)

where the triple integral denotes integration over the entire volume of the domain. The Langevin approach
assumes no interaction between the individual magnetic moments in the material, accounting only for
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changes due to the applied field and thermal agitation. For ferromagnetic materials this approach is no
longer suitable. There is a strong interaction between the domains, especially at room temperature. In
order to account for these, Weiss developed the concept of the mean field 𝐻 [59]. He suggested that a
fictitious internal field 𝐻 exists within the material that is directly related to the magnetisation 𝑀, which,
in turn, also adds to 𝐻 . The resulting field 𝐻 is then given by

𝐻 = 𝐻 + 𝐻 = 𝐻 + 𝛼𝑀(𝐻 ) . (5.4)

This 𝐻 then replaces the original 𝐻 in equation (5.2), resulting in the modified Langevin expression

𝑀 (𝐻 ) = 𝑀 (coth(𝐻 + 𝛼𝑀(𝐻 )
𝑘 𝑇 ) − 𝑘 𝑇

𝐻 + 𝛼𝑀(𝐻 )) . (5.5)

This describes the saturation of the material, but not the hysteresis as this still only accounts for the
reversible part of the magnetisation, i.e. domain rotation. Irreversible magnetic phenomena, like domain
wall bending, are not included, and it was concluded earlier that it is due to these specific irreversible
aspects that hysteresis occurs. The expression used to model hysteresis eventually follows from an en-
ergy equilibrium condition between the magnetic energy supplied by an external source (𝑀 ) the change
in stored magnetostatic energy (A) and the hysteresis loss (B) which is directly related to the irreversible
magnetisation 𝑀 , as described by Jiles [26]. This energy relation is given by:

𝜇 ∫𝑀 ⋅ 𝑑𝐻 = 𝜇 ∫𝑀 𝑑𝐻
⏝⎵⎵⎵⏟⎵⎵⎵⏝

A

+𝜇 𝑘(1 − 𝑐)∫𝛿𝑑𝑀𝑑𝐻 𝑑𝐻
⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

B

. (5.6)

In this equation 𝑘 is the pinning parameter, which is related to the energy dissipated due to hysteresis, i.e.
the average amount of energy that is required to ’break’ a pinning site. The 𝛿 makes sure that the energy
dissipated is always positive, ensuring that hysteresis is always paired with a loss of energy i.e. >
0. The coefficient 𝑐 depicts a measure of the reversible change in magnetisation which lies between
0 and 1. If 𝑐 = 0, the magnetisation change is irreversible, and for 𝑐 = 1 the change in magnetisation
is fully reversible. From equation (5.6) it can be seen that energy losses only occur due to irreversible
magnetisation changes. Considering that the magnetisation consists of

𝑀 = 𝑀 +𝑀 (5.7)

both eq (5.6) and eq (5.7) can be rewritten, see Melo [37]:

𝑀 = 𝑀 +𝑀 + 𝑘(1 − 𝑐)𝛿𝑑𝑀𝑑𝐻 . (5.8)

If the entire process is irreversible, 𝑐 = 0 and 𝑀 = 0, the irreversible magnetisation can be written as

𝑀 = 𝑀 +𝑀 + (1 − 𝑐)(𝑀 −𝑀 ) . (5.9)

which can be rewritten as

𝑀 = 𝑐(𝑀 −𝑀 ) . (5.10)

Combining these expressions, an overall rate of change in magnetisation with the applied field can be
expressed as

𝑑𝑀
𝑑𝐻 = 𝑐𝑘𝛿 ⋅ 𝑑𝑀 /𝑑𝐻 + (𝑀 −𝑀)

𝑘𝛿 − 𝛼(𝑀 −𝑀) (5.11)

see Vijn [56]. Equation (5.11) is shaped as a displacement from the original anhysteretic curve. This
equation models the magnetic hysteretic behaviour in the JA-model. Together with the original Langevin
expression this model has five parameters that are summarised below.
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• 𝑎, domain wall density [A/m];

• 𝛼, interdomain coupling [-];

• 𝑐, reversibility of the change in magnetisation [-];

• 𝑘, domain wall pinning parameter [A/m];

• 𝑀 , saturation magnetisation [A/m].

There is plenty of discussion on this model due to the fact that it does not correctly incorporate the first
law of thermodynamics [63], and due to the employment of non-physical considerations such as the 𝛿
which ensures that the hysteresis is a phenomenon which consistently dissipates energy. Even so, the
Jiles-Atherton model has shown to represent major hysteresis loops very accurately. For minor loops
however, behaviour is observed that does not always coincide with measurements. Modifications have
to be made in order for minor loops to be properly represented by the JA-model. The issue at hand is
the fact that minor loops in the original JA model do not close properly. Minor loop closure dictates that,
when the background field is varied at a constant amplitude, after a few loops the change in magnetisa-
tion keeps following the same path, i.e. the 𝑀-loops are identical to each other, see Zirka [62]. Without
modifications to the original JA-model this is not accounted for properly, which means that the magneti-
sation changes with every loop iteration. The foregoing does not coincide with real-world measurements.

In figure 5.5 two minor loops are shown. The left-hand side shows a minor loop which closes at the top.
This coincides with real-world measurements that invariably show that, after a number of cycles, hys-
teresis loops stabilise when the amplitude of the background field variation is kept constant. The figure
on the right-hand side shows a non-closing minor loop which is the result of a flaw in the Jiles-Atherton
model when describing hysteresis in small minor loops. It can be clearly seen that for multiple loop cycles
the minor loop on the right-hand side starts to run-off to the right which is an unwanted effect known as
accommodation which is further described by Zirka [62]. For the figure on the left it can be seen that,
since the loop is closed, any new full loop will be identical to the previous loop.
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Figure 5.5: Closed minor loop (left), non-closing minor loop (right).

Modifications to the JA model that prevent this run-off of minor loops are more thoroughly discussed by
Carpenter, Chwastek and Leite [7][8][32]. The latter suggests an introduction of an additional dissipative
factor in the description for the irreversible magnetisation which is implemented by Vijn [56]. In short, the
dissipative factor 𝑅 is introduced in the description for the irreversible magnetisation

𝑑𝑀 = 1
𝑘𝛿 [(𝑀 − 𝑅𝑀 )𝑑𝐻 ] . (5.12)

Note that for 𝑅 = 1, the extended model coincides with the original JA model. Two factors are important
to keep in mind when introducing this factor:
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1. The loop has to be approximately symmetric with respect to the magnetisation (the internal 𝐻-field
changes sign approximately halfway);

2. The parameter 𝑅 is a function of the turning point of the loop, so it is not a single value.

If a parameter 𝛾 is defined as a function of both 𝑅 and 𝑐

𝛾(𝑐, 𝑅) = 1 + 𝑐(𝑅 − 1) (5.13)

the relation for the rate of change in magnetisation with the applied field, equation (5.11) becomes:

𝑑𝑀
𝑑𝐻 = 𝑐𝑘𝛿 ⋅ 𝑑𝑀 /𝑑𝐻 + (𝛾𝑀 − 𝑅𝑀)

𝑘𝛿 − 𝛼(𝛾𝑀 − 𝑅𝑀) . (5.14)

5.1.2. Preisach
The model developed by Preisach in 1935 [43] can be used to describe any hysteretic effect, including
magnetic hysteresis, without considering the physical mechanics behind it. For magnetic hysteresis, a
material that is subjected to a unidirectional magnetic field 𝐻(𝑡) is subdivided into a large set of identical
small dipoles called hysterons. These hysterons can be either positively or negatively magnetised (±m ,
with the same absolute magnitude for all dipoles). For each hysteron, two threshold levels 𝛼 and 𝛽
are defined. 𝛼 corresponds to the background field that is required in order to flip the magnetisation
within the hysteron from -m to +m , and 𝛽 is the threshold level that must be reached in order to do
the reverse. These boundaries only have a meaning when they are approached from a certain direction.
This means that if a hysteron already exhibits a positive magnetisation +m , crossing the 𝛼 boundary has
no effect on the dipoles’ magnetisation. The same applies for 𝛽 if the hysteron already exhibits negative
magnetisation. This is best described in figure 5.6. It’s important to note that because of this definition
𝛼 > 𝛽. If 𝐻 > 𝛼 the hysteron is positively charged, if 𝐻 < 𝛽 the hysteron has a negative magnetisation,
and if 𝛽 < 𝐻 < 𝛼, the magnetisation of the hysteron depends on the history of the path taken, i.e. the
history of the background field. This is how the memory aspect of hsyteresis is being accounted for in the
Preisach model. Each individual hysteron is then multiplied with the Preisach function 𝑝(𝛼, 𝛽), which is
a hysteron weight function which has specific characteristic for different materials. The general formula
which calculates the magnetisation is defined as

𝑀(𝑡) = ∫ 𝑑𝛼 ∫ 𝑝(𝛼, 𝛽)𝑓 , (𝐻(𝑡)) 𝑑𝛽 . (5.15)

A schematic representation of this formula is given in figure 5.6.
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Figure 5.6: Preisach Hysteron and a schematic representation of the Preisach model, from Melo [37].
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The mathematical structure of the Preisach model has two fundamental properties:

• Wiping-Out property: this is related to the memory process. The sequence of local maximum and
minimum values of𝐻(𝑡) can be redundant, since Preisach only stores the dominant extreme values
of 𝐻(𝑡). All local maxima and minima between these extreme values are erased from the memory;

• Congruency property: this addresses the creation of minor loops due to periodic field variations. If
two different external fields 𝐻 (𝑡) and 𝐻 (𝑡) are considered to cycle between two values 𝐻 and 𝐻
for 𝑡 > 𝑡 , they would both create similar-shaped loops. However, these loops will lie on a different
position in the𝑀-𝐻 plane if the history of these fields was different for 𝐻 (𝑡) and 𝐻 (𝑡) when 𝑡 < 𝑡 .
They will then be shifted along the 𝑀-axis (up or down in figure 5.4).

These properties are essential for modelling this physical process with the Preisach formulation. How-
ever, the correlation between parameters and the magnetisation process is not always clear as described
by Visintin [58]. On top of that, a complex parameter identification is demanded in order to find the cor-
rect Preisach weight function which comes with a heavy computational burden. For the purpose of this
research, it is important to note that an accurate history of the applied background field is required.
Therefore, the Preisach model is very hard to implement in this project. The Jiles-Atherton model also
has the benefit that it can be easily extended to account for a stress induced magnetisation component.
For these reasons, the Jiles-Atherton model is implemented together with some modifications in order
to correctly represent the minor loops that will be measured in experiments.

5.1.3. Approach
In this chapter an attempt is made to find the Jiles-Atherton parameters that describe minor-loop hys-
teresis in structural steel specimens. When observing a minor hysteresis loop, it is possible to point out
five key points of interest which are given by the time instants 𝑡1, 𝑡2… 𝑡5 in figure 5.7.

Time instant 𝐵background 𝑀
𝑡1 0 −𝑀
𝑡2 +𝐵amplitude +𝑀max
𝑡3 0 +𝑀
𝑡4 −𝐵amplitude −𝑀max
𝑡5 0 −𝑀
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Figure 5.7: Time instants.

The starting point of the loop is taken as the remnant magnetisation on the ascending branch −𝑀 , which
is given by 𝑡1 in figure 5.7. The fact that 𝑡1 does not lie on the origin implies that the material exhibits
a certain starting magnetisation 𝑀 , for which a description was provided in chapter 4. The first turning
point of the loop is at 𝑡2 where the background field, internal field, and the magnetisation find their max-
imum value. The time instant 𝑡3 (halfway the loop) yields the remnant magnetisation on the descending
branch +𝑀 . At 𝑡4, the background field and the magnetisation find their minimum after which at 𝑡5
one re-obtains the remnant magnetisation on the ascending branch −𝑀 . Please note that in figure 5.7
the time instants 𝑡1, 𝑡3 and 𝑡5 are not located exactly on the 𝑦-axis. This would be the case when the
𝑥-axis depicts the applied background field. In figure the internal total 𝐻-field is shown on the 𝑥-axis as
is common for hysteresis curves. It is known that when an object exhibits a magnetisation in a certain
direction, in this case the remnant magnetisation, this is accompanied with an internal magnetic field
which points in the opposite direction, as described in chapter 2.

An example of hysteresis measured using the sensor array is given in figure 5.8. This figure shows the
𝐵 -field 71 mm below a metal plate (300×300×5 mm) subjected to a sinusoidally varying background
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field with an amplitude of 𝐵 ,max = 400 µT at the time instants from figure 5.7. Please note that in these
figures the applied background field, shown in the title with 𝐵 , is subtracted from the total measurement.
The black lines represent the edges of the square steel specimen.
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Figure 5.8: Magnetic induction field below ametal plate (300×300×5mm) subjected to a varying background field with an amplitude
of 400 µT at the time instants from figure 5.7.

The hysteretic effect is represented by the difference between the 𝐵 -field at the first, third and fifth time
instant. The background field at these instants is zero, but 𝑡3 is clearly different from 𝑡1 and 𝑡5. When
pointing back at figure 5.7 this makes sense since the Magnetisation at 𝑡1 and 𝑡5 coincide with the rem-
nant magnetisation on the ascending branch of the hysteresis curve. The measurement at 𝑡3 shows the
remnant magnetisation on the descending branch. Looking at figure 5.7 this implies that the specimen
inhabits a more positive, or less negative, 𝑀 at 𝑡3 than at 𝑡1 and 𝑡5.

The 𝐵-field at 𝑡1 and 𝑡5 shows large similarity with the inverse of figure 2.11, which implies that the spec-
imen exhibits a possible negative magnetisation in 𝑥-direction. Following that analogy, the 𝐵-field at 𝑡3
shows the 𝐵-field below a plate which is less negatively magnetised in 𝑥-direction than at 𝑡1 and 𝑡5, which
corresponds with figure 5.7. When the background field has its extreme values at 𝑡2 and 𝑡4 in figure 5.8,
the field of a uniformly magnetised plate in 𝑥-direction appears, resembling great similarity with figure
2.11. This shows that the effect of the initial magnetisation almost disappears when the background field
is strong, and the induced component of the magnetisation is dominant. Even so, it can be seen that 𝑡2
and 𝑡4 are still slightly skewed with respect to the symmetry axis at 𝑥 = 0 due to the non-uniform initial
magnetisation. Figure 5.8 shows the two-dimensional 𝐵 fields below a metal plate at 𝑡1, 𝑡2… 𝑡5 for one
full hysteresis loop. Increasing the size of the measured dataset subsequently increases the chance
of finding a good fit of the Jiles-Atherton parameters. Therefore, each test specimen was subjected to
multiple symmetrical hysteresis loops of different loop amplitudes. In this project this was done using
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four loops with 𝐵amplitude of 100, 200, 300 and 400 µT. Using a numerical model in combination with a pa-
rameter optimisation tool, an attempt is made to recreate the measured hysteresis loop through forward
modelling using many different sets of Jiles-Atherton parameters until a proper fit is obtained, which is a
technique known as forward modelling.

5.2. Forward implementation in COMSOL
This section aims to explain how the theory from section 5.1 is implemented in COMSOL, since this is
the software that will be used to model a plate which is subjected to a varying background field. When
following themain storyline of this report, it will not be essential to read or understand the following section
completely. It may however serve as a guideline for anyone who wishes to replicate the results through
the use of FEM software. The most convenient way to follow this section is by reading the methodology
below while simultaneously having the model JA_Model_Plate.mph open in COMSOL.

5.2.1. Model builder setup
Within COMSOL the ”AC/DC” module is used in combination with a stationary study, which implies that the
physics do not include time-derivative components (since the effects are assumed to be quasi-static).
The geometry consists of a square air box with sides of 3 m and its centre at (0,0,0), another box which
represents a metal plate 300×300×5 mm) with its centre at (0,0,0) and a rectangular plane which repre-
sents the sensor array, at a certain 𝑧-distance from the plate (which is the distance between the centre
of the test specimen and the array, in this case 71 mm). The air domain and the metal plate are shown
in the top left and right of figure 5.9. The rectangular shaped plane is shown on the bottom left of figure
5.9 and the resulting combined geometry on the bottom right-hand side.

Figure 5.9: Air domain (top left), plate domain (top right), rectangular plane (bottom left), resulting combined geometry (bottom
right).
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5.2.2. Physics
The ”Magnetic Fields, No Currents” package is used (see chapter 2). For the air domain, the relative
permeability is defined as the domain where 𝜇 = 1. Regarding the Jiles-Atherton model the following
nodes in COMSOL are of importance:

1. JA Variables;

2. JA Parameters;

3. Langevin function;

4. Weak form PDE M;

5. Weak form PDE B;

6. JA model (within the ”Magnetic Fields, No Currents” interface).

Within the Equation View of the JA Model node, the original 𝐵-components are replaced with the de-
pendent variables 𝐵1, 𝐵2, and 𝐵3. These dependent variables, together with the dependent variables
𝑀1,𝑀2 and𝑀3 refer to the weak form partial differential equations that are defined on the domain of the
plate which describe the relations for 𝐵 and 𝑀 that hold within the hysteretic domain. These dependent
variables, together with the JA Variables and JA Parameters nodes provide an implementation of the
Jiles-Atherton model with full access to all of the expressions used to calculate the hysteresis. This is
unique since COMSOL originally provided a basic hysteresis model in which the Jiles-Atherton expres-
sions were inaccessible and therefore locked. In this modified version, each of the expressions from
section 5.1 are accessable and alterable. These alterations include the previously discussed minor loop
closing parameter 𝑅 and a possible stress induced component of the magnetisation. For this project,
an isotropic material is assumed for which the parameters in 𝑥𝑦𝑧-directions are all identical. However,
the model does provide the ability to vary the JA-parameters per direction. The local variables section
uses local parameters to calculate the Jiles-Atherton equations (5.4-5.11). An analytical expression for
the Langevin function (5.2) is programmed separately which is being called upon from within the JA vari-
ables section.

Finally, a scalar potential is defined on the edges of the air domain:

𝑉 = −𝑥 𝐵𝜇 sin(2𝜋𝑡) . (5.16)

With the relation between the scalar potential and the magnetic field given by

H = −∇𝑉 (5.17)

through which the background field is varied sinusoidally in 𝑥-direction with an amplitude of 𝐵 Tesla and
a period of 1 second.

5.2.3. Mesh and results
The plate is meshed by creating a mapped two-dimensional grid mesh using a fixed element size on
the surface of the plate, and sweeping the mesh with one element over the thickness. On the left of
figure 5.10 this is shown for a 300×300×5 mm plate with a mapped mesh of 10×10 mm grid size. The
same mapped grid is used for the plane which resembles the sensor array in order to obtain an accurate
solution in the region which is of interest. The remaining three-dimensional air domain is meshed using
free tetrahedral elements set to a predefined size named ”Extra Coarse” which entails that element edges
grow with a maximum growth rate of 85% to a minimum size of 162 mm.
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Figure 5.10: Meshed plate (left), Meshed plate and plane (right).

It is important to note that mesh size is of great influence on both the accuracy of the results as well as
the computation time. In figure 5.10 a grid size of 10×10 mm is adopted for both the plate and the plane,
which is the size that was used during the optimisation process described in section 5.3. If accuracy does
not have the highest priority one could change the mesh to a 25×25 mm grid for both the plate and the
plane. This reduces computation time by roughly 80%. For final comparisons with actual measurements,
the opposite can be done by refining the grid to a 5×5 mm mesh for accurate results, which was was
done for the figures in section 5.4. The results are exported at the time instants from figure 5.7. At these
tinstants, the following results are exported:

• The 𝐵-field in the finely meshed plane below the plate (the 𝑥𝑦𝑧-components each in a separate
column) at the coordinates which coincide with the sensor array locations (see appendix B.2.1) in
order to provide a comparison with measurements;

• The 𝑀 -distribution within the plate.

For examples of these exported datasets, please refer to the results in section 5.4

5.3. Inverse modelling
5.3.1. General model structure
In the previous section a forward COMSOLmodel was introduced which is capable of capturing hysteresis
by placing a metal plate coupled with a Jiles-Atherton hysteresis model in an air domain and varying the
background field. The results of this hysteresis loop, the magnetisation distribution and the magnetic
induction field at a distance below the plate, are then exported at different time instants in the hysteresis
curve. This process is then repeated until a proper fit with the measured dataset is obtained.

These calculated 𝐵-fields can be compared with real-world measurements of plate samples that are
tested within the Helmholtz cage. The optimal combination of JA parameters used in the COMSOL model
reproduces a set of induction field measurements that fits with the measured data. This section outlines
the complete procedure, which also implements the non-uniform magnetisation description from chapter
4. A schematic overview of the model is presented in figure 5.11. During initialisation, the measured
dataset is loaded and the appropriate non-uniform magnetisation distribution is created that produces
the correct 𝐵-field at 𝑡1 as discussed in chapter 4. This chapter will focus on finding the right parameters
to describe hysteresis, which is given by the optimisation box in figure 5.11. This is done by defining an
objective function which should in an ideal situation, a perfect fit, become zero. A perfect fit means in
this case that the output of the model returns the same 𝐵-fields as were measured in, for example, figure
5.8. The method of finding the right parameters is then performed by the shuffled frog leaping algorithm
or SFLA. These two elements are discussed separately in the sections below.
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Figure 5.11: Algorithm flowchart ( = background field, = initial magnetisation distribution, = parameter sensitivity matrix).

5.3.2. The objective function
As the optimisation algorithm aims to find a combination of parameters that makes an objective function
zero, this function needs to be constructed appropriately. The procedure of the objective function which
is used to calculate the fit between the measured and the calculated hysteresis data is visualised in a
flowchart in figure 5.12. Initially the measured dataset should be examined. As mentioned before, multi-
ple hysteresis loops were measured for a certain test specimen for varying background field amplitudes.
The amount of different loop amplitudes, 𝑖max = 4 during these experiments. For each loop size there is
a set of 𝐵 , 𝐵 and 𝐵 -fields at the time intervals 𝑡1, 𝑡2… 𝑡5 that acts as the target data for the objective
function.

The arguments of the objective function are:

• The 𝑀 distribution parameters for each 𝑖;
• A set of JA parameters 𝑆;
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• A separate 𝑅 for each loop 𝑖;

• The amplitudes of the background field 𝐵 for each loop 𝑖;
for

• 𝑖 = 100 µT background induction field amplitude;

• 𝑖 = 200 µT background induction field amplitude;

• 𝑖 = 300 µT background induction field amplitude;

• 𝑖 = 400 µT background induction field amplitude.

It is important to note that, when optimising this function, the arguments that vary for each objective
function evaluation are the Jiles-Atherton parameters in 𝑆 and the dissipative factors 𝑅. The initial 𝑀
and loop amplitudes are both known values after the algorithm initialization and therefore do not change
during the iterative procedure.

The COMSOL file from section 5.2 is saved as a MATLAB 𝑚-file, which means that it can be called as a
function from within MATLAB. The function returns a text file with the 𝐵-field at 𝑡1, 𝑡2… 𝑡5 for a certain
combination of JA-R parameters (𝑆,𝑅). On the first call, it runs the hysteresis loop for the first amplitude
of the background field (𝐵 ) in combination with the magnetisation distribution of the first loop at (𝑀 , )
and the corresponding dissipative factor (𝑅 ). Since the combination of JA-R parameters is chosen by
the optimisation algorithm, it is beforehand unknown what the result of the computation in COMSOL will
yield. Occasionally a combination of parameters is chosen, within the pre-defined boundaries of the pos-
sible JA-R values, for which the solver does not converge. When this occurs the function JA_model.mph
returns an error within this script. If this happens, the objective function returns an infinite value for the
fit and the computation is stopped. This sends a message to the SFLA algorithm that the parameters
should be sought in a different combination.

Another unwanted event which sporadically occurs is that the COMSOL function takes extraordinarily
long to find a solution. When the function goes through trouble finding a solution it reduces the size of
the timestep, since the model uses free time-stepping. This can lead to tedious computations without
returning an error. For this reason, a stop condition is added to the COMSOL model which quits the
computation early when the timestep becames smaller than 10 s. If this happens, the computation is
cancelled before the full hysteresis loop is completed. This is an unwanted event since it shows that the
solver has too much trouble finding a solution for the full hysteresis loop. To check if this is the case,
the size of the output is investigated. If the output does not contain the 𝐵 , , values for all five time
intervals, but fewer, the fit value is set to infinite and the objective function is aborted similarly to when
a convergence error occurs. Upon completion the relative error between the output solution and the
measurements is calculated at 𝑡2 using the expression

𝜂rel, , =
∑ |𝐵measured, , − 𝐵computed, , |

∑ |𝐵measured, , |
. (5.18)

This is repeated for 𝑡3, 𝑡4 and 𝑡5. The error in 𝑡1 is not used as a measure for finding the optimal fit since
this was already done during the non-uniform mangetisation description in chapter 4 and captured in the
parameter set 𝑀 , , which obviously does not change for different JA parameters. The relative error at
each time interval 𝑡2, 𝑡3… 𝑡5 is calculated separately in order to make sure that the fitting algorithm treats
each of the time intervals as an equal measure for finding the right fit. One could argue that equation
5.18 could be modified to compute the relative error between the measurements at all time intervals in
one summation, but this will lead to a good fit at the extreme values (where the absolute error is large)
while the error at 𝑡3 and 𝑡5 is underrepresented. In order to clarify this, please regard the strength of the
measurements in figure 5.8. The absolute value of the measurements at 𝑡2 and 𝑡4 is much larger than
those at 𝑡3 and 𝑡5, which would significantly reduce the relative error at the latter time intervals when the
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error is computed in one calculation.The relative error at 𝑡2, 𝑡3… 𝑡5 is now calculated for the first loop
size with a 100 µT background field, 𝑖 = 1. This process is repeated until 𝑖 = 𝑖max. For 𝑖max = 4 this leads
to table 5.1.

i 𝑡2 𝑡3 𝑡4 𝑡5
1 𝜂rel, , 𝜂rel, , 𝜂rel, , 𝜂rel, ,
2 𝜂rel, , 𝜂rel, , 𝜂rel, , 𝜂rel, ,
3 𝜂rel, , 𝜂rel, , 𝜂rel, , 𝜂rel, ,
4 𝜂rel, , 𝜂rel, , 𝜂rel, , 𝜂rel, ,

Table 5.1: Relative error table after one full function evaluation of the objective function for max .

The overall fit, the scalar output from the objective function, is calculated as the mean of all values in table
5.1. All the elements of the objective function discussed in the previous paragraphs can be retraced to
the visualisation in figure 5.12. The next paragraph will explain how this objective function is used within
the optimisation algorithm in order to swiftly calculate the optimal fit. In order to find the optimal fit, this
objective function is evaluated around 1000 times for each specimen. This means that all diferent loop
amplitudes are evaluated 1000 times each with the total computation time (using a high-end pc) at around
24 hours.

Start:

Load input:
, , ,

Run
JA_model( , , , , )

in COMSOL

Convergence
error?

Check if Output
is a full loop

full loop? fit =

Compute rel,i

at …

max?

fit = rel,mean

End

no

yes

no

yes

yes

no

Figure 5.12: Objective function flowchart.
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5.3.3. Shuffled Leaping Frog Algorithm
Various methods can be adopted in order to find the minimum of a function. For functions with a clear
global minimumwithout an abundance of local minima, the Fminsearch algorithm in MATLAB can be used.
This requires the user to enter a starting value for each parameter, after which the algorithm varies each
parameter separately in order to find the nearest local minimum value. For this situation such an al-
gorithm is not suitable because during earlier parameter fitting tests conducted on experiments, which
are not included in this report, it was found that there are many different combinations of parameters
which can produce similar results. Besides that, because of the high nonlinearity of the Jiles-Atherton
expressions, the balance between parameters is delicate. Certain combinations of parameters from the
Jiles-Atherton equations produce bad results or cause non-convergence, while different compositions of
identical parameters might produce a good fit. For this reason a global search algorithm is required which
looks for the optimal solution in the entire parameter space when the boundaries for each parameter are
defined.

The effective solution time for finding the right JA parameters with different optimisation models has
been studied, and a comparison has been made between SFLA, the Genetic Algorithm, Articifial Neu-
ral Networks, Fuzzy Logic, Partical Swarm Optimisation and Differential Evolution by Naghizadeh [39].
The SFLA showed the best results in terms of convergence, speed and accuracy. In many applications
that are different from the JA-model, the SFLA and modified versions have shown to produce the most
efficient results with the least computing power when compared with different optimisation algorithms,
see Samuel, Eghbal, Yue [46][14][61]. It is for this reason that the SFLA model was adopted as the
optimisation algorithm of choice.

The algorithm requires that the boundaries for each parameter are known. In order to define a set of
boundaries for each of the JA parameters, literature was studied (Jiles [27] [24], Leite [31] [32], and
Toman [50]). The maximum and minimum boundaries obtained are given in table 5.2.

Parameter Minimum value Maximum value Unit
𝑀 1.50 × 10 1.80 × 10 A/m
𝑎 0 5000 A/m
𝑘 0 5000 A/m
𝑐 0.05 0.5 -
𝛼 1.0×10 1.0×10 -

𝑅 , 𝑅 …𝑅 ,max 1 20 -

Table 5.2: Jiles-Atherton parameter boundaries.

The SLFA algorithm was originally introduced by Eusuff for the optimal design of a water distribution
network [15]. It starts with creating a population 𝑃 of hypothetical frogs that are created randomly within
the space allowed by table 5.2. For each frog, or random combination of parameters, the fitness is eval-
uated using the objective function. The solutions are stored and sorted from best to worst fit. Then, the
population is sorted into 𝑚 memeplexes each containing 𝑛 frogs (i.e. 𝑃 = 𝑚 × 𝑛). The frogs are divided
equally over the different memeplexes, which implies that the top 𝑛 frogs each go in a different meme-
plex, then the (𝑛+1th) frog goes in the first memeplex, and so on. From that point the local search starts.

In each memeplex, the worst frog leaps towards the best frog in order to improve the worst frog’s fit. If
the fit is better than it was, the new frog replaces the worst frog. If the fit did not improve, the frog tries to
leap towards the best global frog (so the best of all frogs, not just the best in this specific memeplex). If
the fit still did not improve, a new random frog is created. A leap implies that, for each parameter, a new
random value between the worst frog and the best frog’s parameter value is chosen. This is repeated
for each memeplex, and after a predefined number of steps within each memeplex the evolved mem-
explexes are once more mixed together in the shuffling process. Then, the memeplexes are re-created
and the process starts over. For a more detailed overview of the SFLA and the corresponding equations,
please refer to Naghizadeh [39]. The complete algorithm flowchart is given in appendix C.

The original SFLA algorithm was programmed to quit the optimisation process after a fixed number of
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iterations. For the application in this project the code was modified in order to quit when the fit did not
change sufficiently for three iterations in a row. In this case the threshold for convergence was set at one
tenth of a percentage point. Three iterations in a row which, in total, improve the fit by less than 0.1%
was taken as a measure for sufficient convergence.

5.4. Results
The results of the parameter optimisation process are provided in this section. Specimens 1-4 (see
appendix B.4) were each subjected to background fields of various amplitudes. The parameters that
were found to provide the best fit for each separate experiment are given in table 5.3. For specimen
1 the results of the fit are presented in figures 5.14 - 5.17. For specimens 2, 3 and 4 the results are
given in appendix D. The assumptions of homogeneity and isotropy imply that one set of parameters
describes the material behaviour for each test specimen. In order to quantify the results of the fit, the
relative error as well as the root mean squared error (RMSE) were computed for each loop at each time
interval 𝑡1, 𝑡2… 𝑡5 as well as some time intervals in between. The relative error was calculated using
expression (5.18) in the previous section, and the RMSE is calculated through

𝑅𝑀𝑆𝐸 =
√ ∑ (𝐵 ,computed − 𝐵 ,measured)

𝑛 (5.19)

in which 𝑛 is the total amount of measurements at one time instant, wich is equal to 112 (sensors) × 3
(components) = 336.

Parameter Specimen 1 Specimen 2 Specimen 3 Specimen 4 Unit
𝑀 1.52×10 1.67×10 1.52×10 1.66×10 A/m
𝑎 379 270 295 323 A/m
𝑘 2656 1256 1763 379 A/m
𝑐 0.1344 0.0974 0.1139 0.1194 -
𝛼 1.790× 10 9.929 ×10 9.884×10 7.777×10 -
𝑅 1.5 1.7 2.9 8.0 -
𝑅 1.2 1.0 2.5 1.0 -
𝑅 1.1 1.0 1.1 8.3 -
𝑅 1.0 8.6 1.1 6.6 -

Table 5.3: JA-R parameters obtained for Specimens 1-4.

An 𝑅-value of 1 means that there was no additional dissipative factor necessary in order to make sure
that the measurment at 𝑡5 would be close to the measurement at 𝑡1 (closing of the minor loop). In-
creasing 𝑅-values show that more of this dissipation is needed in order for the loop to fit better with the
measurements. From the table it can be observed that these 𝑅-values vary wildly for different speci-
mens. This is likely due to the fact that only one hysteresis loop was simulated for each loop amplitude.
In order to find a combination of parameters that fits perfectly it would be better to simulate 2 or 3 hystere-
sis loops that all have to fit the measured field at 𝑡1, 𝑡2… 𝑡5 each time in order to verify minor loop closure.

The result of these error calculations for the first specimen are given in figure 5.13, and for the remaining
specimens these can be found in appendix D. It can be observed that, as expected, the relative error
becomes rather large when the background field is zero since the measurements are much closer to 0
µT then when the background field is nonzero. This is also shown by the fact that the peaks disappear
almost immediately for the measurements that are directly before or after a measurement where the
background field is zero. As for the RMSE, it is seen that this error barely exceeds 2 µT when the back-
ground field is zero,which can be seen as a reasonable fit when regarding all measuring uncertainties in
the setup, please refer to chapter 7.

For larger background fields the RMSE increases. This can be explained by the fact that for different
ranges of measurements the sensors are programmed at a different gain level. The gain is a measure
of the precision of the magnetometer. A higher gain allows the sensor to pick up a larger range of
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the magnetic induction field at the cost of some precision. The hysteresis loops with larger amplitudes
were performed with higher gain levels of the sensors, inherently creating a bigger absolute RMSE in
the results. Identical graphs for the relative and RMS error are given for specimens 2-4 in appendix
D. A peak in the RMSE is observed for the 400 µT loop. Further investigation showed that one of the
sensors malfunctioned during the measuring of the background field at that time interval which resulted
in measured 𝑥, 𝑦 and 𝑧 values that were very different from all the other measurements at that moment
in time. The RMSE shows similar peaks for specimens 2-4 as shown in appendix D, which makes
sense since the same background field was subtracted from each specimens. This measurement was
not used in the fitting algorithm so it did not interfere with the optimisation procedure. For other time
instants, peaks can sometimes be observed which also corresponds with several additional cases of
sensor malfunctioning. Overall, the RMSE is 10% of the average measured field strength which indicates
a good fit.
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Figure 5.13: Specimen 1. Relative and Root Mean Squared Error.

When observing the magnetisation in figure 5.18 it is interesting to see how the influence of the initial
magnetisation disappers for increasing loop amplitude. The initial magnetisation distribution’s influence
disappears for increasing loop amplitudes. In order to provide a good comparison, the colourbar scales
of 𝑡1 and 𝑡5 have been made identical since theory suggests that at these time intervals, the magneti-
sation should be similar.

When comparing the RMSEs and fit results in appendix D it can be seen that reasonable fits can be
found, but the results are not perfect yet. Upon investigation it is observed that this is mainly due to the
fact that the measured dataset with measurements is not perfectly accurate. A number of measured 𝐵
fields, figure D.10 (𝑡1, 𝑡3 and 𝑡5) and figure (D.15, 𝑡1 and 𝑡5), show that both the maximum and minimum
observed 𝐵 values are negative, while in chapter 2 it could be seen that this is highly unlikely to occur
from a physical point of view. On top of that, sensors that malfunction can be oberserved on numerous
occasions, see figure D.11 (𝑡5). Please note that only 𝐵 measurements are plotted in this results sec-
tion. Errors in 𝐵 and 𝐵 occur as well, and these components are also used as a measure to calculate
the fit. In general it can also be seen that the fits behave better when the loop amplitude increases. This
makes sense since an increased background field will yield in a more clear representation of hysteresis
than a weak background field.

Specimen 3 behaves less well than the other specimens which can be partially explained by the fact that
this plate was demagnetised during the study regarding non-uniformity in chapter 4. Since the values
of the measured 𝐵-field when the background field is 0, are very close to 0, it can be stated that there
is a lack of permanent magnetisation at the starting point which makes it harder to correctly describe
the initial 𝐵-field. This error is then translateed through to the calculations at 𝑡3 and 𝑡5, showing the
importance of correctly describing the initial magnetisation before attempting to find the JA parameters.



5.4. Results 83

-0.4 -0.2 0 0.2 0.4

x (m)

-0.1

0

0.1
y
 (

m
)

S1: Bx
m

( T), min=-5.5, max= 5.3, B
a
= 0  @ t1

-5

0

5

-0.4 -0.2 0 0.2 0.4

x (m)

-0.1

0

0.1

y
 (

m
)

S1: Bx
c
( T), min=-5.0, max= 5.8, B

a
= 0  @ t1

-5

0

5

-0.4 -0.2 0 0.2 0.4

x (m)

-0.1

0

0.1

y
 (

m
)

S1: Bx
m

( T), min=-32.7, max= 21.5, B
a
= 100  @ t2

-20

0

20

-0.4 -0.2 0 0.2 0.4

x (m)

-0.1

0

0.1

y
 (

m
)

S1: Bx
c
( T), min=-35.9, max= 19.0, B

a
= 100  @ t2

-20

0

20

-0.4 -0.2 0 0.2 0.4

x (m)

-0.1

0

0.1

y
 (

m
)

S1: Bx
m

( T), min=-5.0, max= 3.8, B
a
= 0  @ t3

-5

0

5

-0.4 -0.2 0 0.2 0.4

x (m)

-0.1

0

0.1
y
 (

m
)

S1: Bx
c
( T), min=-4.7, max= 5.3, B

a
= 0  @ t3

-5

0

5

-0.4 -0.2 0 0.2 0.4

x (m)

-0.1

0

0.1

y
 (

m
)

S1: Bx
m

( T), min=-25.8, max= 41.0, B
a
= -100  @ t4

-20

0

20

40

-0.4 -0.2 0 0.2 0.4

x (m)

-0.1

0

0.1

y
 (

m
)

S1: Bx
c
( T), min=-23.3, max= 46.3, B

a
= -100  @ t4

-20

0

20

40

-0.4 -0.2 0 0.2 0.4

x (m)

-0.1

0

0.1

y
 (

m
)

S1: Bx
m

( T), min=-5.8, max= 5.3, B
a
= 0  @ t5

-5

0

5

-0.4 -0.2 0 0.2 0.4

x (m)

-0.1

0

0.1

y
 (

m
)

S1: Bx
c
( T), min=-4.8, max= 5.3, B

a
= 0  @ t5

-5

0

5

Figure 5.14: Specimen 1. field below ametal plate (300×300×5mm) subjected to a 100 µT loop, measurements (left) calculated
fit (right).
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Figure 5.15: Specimen 1. field below ametal plate (300×300×5mm) subjected to a 200 µT loop, measurements (left) calculated
fit (right).
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Figure 5.16: Specimen 1. field below ametal plate (300×300×5mm) subjected to a 300 µT loop, measurements (left) calculated
fit (right).
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Figure 5.17: Specimen 1. field below a metal plate 300×300×5 mm) subjected to a 400 µT loop, measurements (left) calculated
fit (right).



5.4. Results 87

-0.1 0 0.1

x (m)

-0.1

0

0.1
y
 (

m
)

Mx [A/m], min=-868, max= -96  @ t1

-800

-600

-400

-200

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-1098, max= -64  @ t1

-1000

-500

0

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-1423, max= -286  @ t1

-2000

-1500

-1000

-500

0

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-1612, max= -495  @ t1

-2000

-1000

0

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=728, max= 5405  @ t2

1000

2000

3000

4000

5000

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=1964, max= 11415  @ t2

2000

4000

6000

8000

10000

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=3206, max= 17955  @ t2

0.5

1

1.5

10
4

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=4495, max= 24206  @ t2

0.5

1

1.5

2

10
4

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-982, max= -34  @ t3

-800

-600

-400

-200

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-1256, max= 138  @ t3

-1000

-500

0

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-1901, max= 300  @ t3

-1500

-1000

-500

0

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-1876, max= 684  @ t3

-1500

-1000

-500

0

500

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-6906, max= -1466  @ t4

-6000

-5000

-4000

-3000

-2000

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-13121, max= -2793  @ t4

-12000

-10000

-8000

-6000

-4000

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-19561, max= -4044  @ t4

-1.5

-1

-0.5

10
4 -0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-25602, max= -5576  @ t4

-2.5

-2

-1.5

-1

10
4

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-998, max= -10  @ t5

-800

-600

-400

-200

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-1356, max= 146  @ t5

-1000

-500

0

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-2180, max= 407  @ t5

-2000

-1500

-1000

-500

0

-0.1 0 0.1

x (m)

-0.1

0

0.1

y
 (

m
)

Mx [A/m], min=-2525, max= 859  @ t5

-2000

-1000

0

Figure 5.18: Specimen 1. distribution in a metal plate (300×300×5 mm) for four hysteresis loops: 100 µT (left), 200 µT (centre
left), 300 µT (centre right), 400 µT (right).





6
The Villari Effect

6.1. Introduction
James Prescott Joule discovered in 1842 how a ferromagnetic object changes length when magnetised,
as described by Lee [29]. Using an iron rod and a system of mechanical levers he was able to show that
iron expands along the direction of magnetisation in weak magnetic fields, while the rod would shrink for
stronger magnetic fields, introducing the term magnetostriction. Later, he investigated the effect of ex-
ternal stresses on the magnetostriction of iron and showed that, while under tension, iron would contract
further when subjected to external fields. Little over two decades passed until in 1865 the italian physicist
Emilio Villari [57] characterised the inverse relation between changes in flux density B (achieved for a
given value of the magnetic field H) in the material subjected to mechanical stress 𝜎, see Szewczyk [49].
This inverse magnetostriction or magneto-mechanical effect is from there on also known as the Villari
effect.

In his paper on the magnetomechanical effect Jiles described how originally it was assumed that the
process of (inverse) magnetostriction was fully reversible. Jiles concluded that this approach is mislead-
ing since the magnetisation process is in itself hysteretic and therefore inherently irreversible by nature.
He therefore sought a method of implementing a description for the magnetomechanical effect which is
connected with the concepts of irreversibility and hysteresis [23]. Jiles worked on earlier proposed theo-
ries for changes in hysteresis curves due to constant applied stress, see Sablik [45] as well as changes
in magnetisation due to varying stress levels, see Craik [10]. Based on these findings, Naus developed
a formalism which described the magnetisation in ferromagnets when subjected to both constant and
varying applied stress levels and background fields which builds on the original Jiles-Atherton frame-
work [40]. His paper leads to the mean field 𝐻 from equation (5.4) being modified to accommodate an
additional stress-induced magnetic field term which is expressed in terms of the magnetostriction 𝜆:

𝐻 = 𝐻 + 𝛼𝑀(𝐻 ) + 3𝜎
2𝜇

𝜕𝜆
𝜕𝑀 . (6.1)

The magnetostriciton 𝜆 is a function which depends on both the magnetisation and the stress, that is
𝜆 = 𝜆(𝑀, 𝜎) which is given as a double expansion

𝜆(𝑀, 𝜎) =∑𝛾 (𝜎)𝑀 (6.2)

with 𝛾 (𝜎) expanded as a Taylor series about the origin

𝛾 (𝜎) = 𝛾 (0) +∑ 𝜎
𝑛! 𝛾 (0)

[ ] . (6.3)
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In equation (6.3), 𝛾[ ] is the 𝑛th derivative of 𝛾 . In his paper, Naus implements this series up to 𝑖 = 2
and 𝑛 = 1. The derative of 𝜆(𝑀, 𝜎) leads to the expression derived by Vijn [56]:

𝜕𝜆
𝜕𝑀 = (2𝜇3 )𝑀 (𝛾 + 𝛾 𝜎) (6.4)

which leads to the expression of the stress field

𝐻 = 𝑀 (𝛾 𝜎 + 𝛾 𝜎 ) . (6.5)

With this addition, the stress in thematerial gives a contribution to themagnetic field which is incorporated
in the JA model in order to capture the hysteretic effect. The addition to the original JA equations is
implemented in the COMSOLmodel from section 5.2. Previous experiments that show the implementation
and verification of these 𝛾 and 𝛾 have not been performed to date. Qualitative assessment of the
concept of inverse magnetostriction has been done, and an example of such an experiment is given in
figure 6.1 below. On the left the test setup is shown, that consists of a ferromagnetic rod which has been
annealed in order to remove residual stress and magnetisation. This rod is placed between base plates
of non-magnetic material. Compression is applied through these base plates in a cyclical motion and,
using a series of coils wrapped around the specimen, a magnetic field is applied while simultaneously
measuring the induction field. The resulting internal 𝐵 -field is then displayed on the right-hand side.

Non-magnetic 

material

Non-magnetic 

material

Coils 

Ferromagnetic

Rod 

Cyclic 

compression 

Figure 6.1: Villari testing setup (left) and resulting -field inside the specimen during three load cycles (right), from Robertson [44].

On the bottom of the right-hand side of figure 6.1 the experiment starts, with an annealed specimen,
exhibiting no magnetisation and therefore no internal 𝐵-field. A background field of 𝐻 = 50 A/m is
applied which results in a 𝐵-field within the specimen due to the induced magnetisation as shown by
the initial vertical section of the graph. Following this, compressive stress is applied which corresponds
with a nonlinear increase in internal 𝐵-field. Intriguingly as the compression is relieved, the measured
induction field keeps increasing and when this process is repeated a hysteretic effect is observed during
the following two load cycles.
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6.2. Test setup
In order to measure the Villari effect a custom-made test setup is created which enables the user to apply
homogeneous tensile stress to a rectangular steel sheet metal specimen. An important consideration that
causes the necessity of building a custom setup is the fact that the entire setup, excluding the specimen,
must be made made from non-magnetic material in order to not disrupt the measurements. Besides that,
it should be sufficiently small to be conveniently placed in and removed from the Helmholtz cage. This is
realised by glueing the test specimen into a block of aluminium on either side. These blocks of aluminium
are then locked in an aluminium frame which encapsulates the entire specimen. The specimen is then
tensioned using a set of titanium bolts which go through the outer frame into the aluminium block which
was glued to the specimen. This is shown schematically in figure 6.2.

 100 

 135 

 1
8

5
 

 2
3

5
 

Aluminium Block 

into which  the 

specimen is glued

Aluminium Block 

into which  the 

specimen is glued

Steel specimen

Aluminium Frame

Titanium Bolts

Figure 6.2: The Villari testing setup as used in this project. Top view with measurements in mm (left) three-dimensional view (right).

Two strain gauges are mounted on top of the specimen in order to measure the strain applied by tight-
ening the bolts. For photographs of the setup with the attached strain gauges, please refer to appendix
B.5. It is known that below the yield stress 𝜎 , the relation between stress and strain is given by Hooke’s
law

𝜎 = 𝜖𝐸 (6.6)

in which 𝜖 is the strain in m/m and 𝐸 is the young’s modulus which is around 210 GPa for most types of
structural steel [6]. A small problem which occurs with the setup from figure 6.2 is that in order to tension
the specimen the apparatus has to be taken out of the Helmholtz cage in order to tighten the bolts using
a spanner. It is not possible to perfectly control the background field and the stress independently as
removing it from the cage causes the specimen to be subjected to a background field represented by the
Earth’s magnetic field. This means that any change in stress goes hand in hand with a minor hysteresis
loop of some shape due to the rotation in the Earth’s magnetic field. An attempt is made to deminish
this effect by subjecting the specimen to a couple of 400 µT hysteresis loops after each alteration of the
stress level. In figure 6.3, the variations in stress and background field during the experiments performed
are shown.
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Figure 6.3: The applied stress and the applied induction field during the Villari experiments.

In this case, the 𝐵-field was measured at the time instants 𝑡1, 𝑡2… 𝑡7. If this experiment is performed
without any stress it is known that the exported 𝐵-fields are identical at 𝑡1, 𝑡2… 𝑡7 since minor loops close,
see chapter 5. When stress is applied, these induction field measurements will be different, which can be
contributed to the magnetomechanical effect. For the numerical simulation it was chosen to only model
the stress and assume that there was a constant background field 𝐵 = 0 in combination with in initial
magnetisation distribution𝑀 , calculated according to chapter 4. Now it is likely that a small error is made
here, because the background field variations will also influence the magnetisation of the steel as was
concluded in the previous chapter. However, for this moment it is assumed that these hysteretic effects
are significantly smaller than the stress-induced magnetisational changes and therefore negligible.

6.3. Algorithm
The algorithm used to find the parameters is nearly identical to the algorithm used in chapter 5, with a few
modifications which are discussed here. The specimen is glued into two aluminium blocks. A problem
that occurs is that the part of the specimen glued into the aluminium blocks, which is roughly 30 mm on
either side, does not experience the same stress levels as the part of the specimen which is in the middle,
which is 105 mm long. Therefore, the specimen has been split up in three regions as shown in figure
6.4. The small strips on the side are taken into account when regarding the initial magnetisation, but the
stress remains zero throughout the numerical simulation. The middle section has a homogeneous stress
distribution which is calculated directly from the strain gauges. A small error is made since the stress in
the sections of the specimen which are glued within the aluminium blocks is technically not zero, but due
to the large size of the aluminium blocks compared to the volume of the encapsulated steel strips this is
neglected in the simulation.

Figure 6.4: Villari specimen 5 and 6 modelled in COMSOL. The stress follows figure 6.3 (white area), stress is zero (blue areas).
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Another difference in the algorithm is the definition of the fit. This definition is changed for two main
reasons:

1. The starting magnetisation of specimen 5 was found to be large and somewhat oddly distributed
(see the 𝐵-field in figure 6.5 and the corresponding 𝑀-distribution in figure 7.1);

2. Specimen 5 and 6 are much smaller than the plates tested in chapter 5, therefore only the sensors
located near the centre of the array measured significant differences in 𝐵-field.

For these reasons the time instants at 𝑡2, 𝑡3… 𝑡7 are compared relative to 𝑡1, i.e. the 𝐵-field at 𝑡1 is
subtracted from the remaining measurements. This gives a better and more intuitive insight into the
magnitude of the Villari effect than when comparing measured and computed 𝐵-fields directly, which
resulted in very similar looking graphs at all time instants (reason 1). Another modification in the algorithm
is that it compares maximum and minimum values of these difference fields instead of the entire field
(reason 2).

6.4. Results
Two specimens were tested according to figure 6.3:

• A 165 × 100 × 1 mm plate made out of high yield steel with 𝜎 = 700 MPa (specimen 5);

• A 165 × 100 × 2 mm plate made out of structural steel with 𝜎 = 355 MPa (specimen 6).

Specimen 5 was successfully tested at all time instants. During the loading of specimen 6 from 𝑡3 to-
wards 𝑡4 (towards 210 MPa) the glue between the specimen and the aluminium support block gave way.
This resulted in the data being limited to 𝑡1, 𝑡2 and 𝑡3 only. The Jiles-Atherton-Naus parameters obtained
using the fitting algorithm are summarised in table 6.1.

Parameter Specimen 5 Specimen 6 Unit
𝑀 1.61×10 1.72×10 A/m
𝑎 155 1165 A/m
𝑘 709 52 A/m
𝑐 0.029 0.013 -
𝛼 2.78×10 8.08×10 -
𝛾 -2.52×10 -7.92×10 A ⋅m
𝛾 1.82×10 -4.70×10 A ⋅m

Table 6.1: Jiles-Atherton-Naus parameters obtained for specimen 5 & 6.

In figure 6.5 the 𝐵 -field at 𝑡1 is shown for specimen 5. From this figure it can be directly observed that
the initial magnetisation is large compared to specimens 1-4 from chapter 5 since the extreme values of
the 𝐵-field are significantly larger while the dimensions of the sample are considerably smaller.
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Figure 6.5: Specimen 5. Measured (left) and calculated (right) -field at (top left/right).
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Figure 6.6: Specimen 5. Measured (left) and calculated (right) difference -fields at , … .
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For specimen 6 the experiment resulted in the measurements and calculated fit shown in figure 6.7 at
time instants 𝑡1, 𝑡2 and 𝑡3. The 𝐵 -field below this specimen at 𝑡1 shows more similarity with what was
observed during the hysteresis experiments.
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Figure 6.7: Specimen 6. Measured and calculated -field at (top left/right), measured and calculated difference fields with
respect to (remaining left/right).

The fit in figure in figure 6.6 performs well at time instants 𝑡4, 𝑡5… 𝑡7. It seemed difficult for the parameter
optimisation algorithm to find a combination of parameters which behaved properly at both 𝑡2 and 𝑡3 and
the remaining instants. Nonetheless, the overall accuracy is not bad when comparing the minimum and
maximum values closely throughout the experiment. A good fit is obtained for specimen 6 in figure 6.7
as well, although the dataset is too limited to adhere any proper conclusions to this fit, especially when
regarding the fact that the fitting algorithm had trouble fitting 𝑡2 and 𝑡3 with specimen 5. An overview of
the absolute error between the minima and maxima for both specimens is given in figure 6.8.
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7
Conclusions and Recommendations

7.1. Relaxation
Losses due to short-term magnetic relaxation have been discussed in literature for specimens subjected
to strong and rapidly alternating background fields. Since the background field in the Helmholtz cage
is neither strong nor rapidly alternating, the effect has not been observed. It is expected that even with
better sensoring equipment, the losses due to short-term relaxation will be found to be negligibly small.
Further investigation is not recommended due to the fact that for the application of this research such
strong and rapidly alternating fields do not occur.

The effect of magnetisational changes due to long-term relaxation can very well be different. It is not
unreasonable to expect that when a ferromagnetic object is kept in the same background field for a
substantial time, eventually the magnetic orientation in the grains will start to rotate in a direction aligned
with the background field. This effect is barely studied since it is hard to measure and possibly of even
smaller magnitude than the other effects discussed in this thesis. With a different setup and more time at
hand this could and should be studied. A possible test setup used for capturing long-term relaxation is to
place a demagnetised ferromagnetic object in a fixed orientation with respect to the Earth’s magnetic field.
Eachmonth, the specimen is quickly placedwithin a Helmholtz cage in order to annul the background field
and capture the permanent magnetisation. This can be done using inversion performed on the 𝐵-field
below the object. This process is repeated for several months or even years, and when the measured
𝐵-field starts to differentiate this could be the result of magnetic relaxation. Problems that occur with
this experiment are the substantial duration of the test as well as the fact that the applied background
field has to remain constant. This means that no ferromagnetic objects can be in the vincinity of the test
specimen for the duration of the experiment.

7.2. Uniformity
Since literature provided only limited information regarding the description of non-uniform magnetisation
it was decided to personally derive an inverse method. Chapter 4 shows a possible way of translating
induction field measurements in a plane back to magnetisation within a test specimen with adequate
results. Various alternative types of functions could be investigated as well, but this was left out of the
scope of this thesis. The main reason for developing this method was that it provides the posibility to
define a starting magnetisation 𝑀 which is a very important aspect of both the Jiles-Atherton hysteresis
model and the Jiles-Atherton-Naus model. Without a proper approximation of the initial magnetisation it
would be much harder to succesfully obtain the model parameters since, for example, from figure 5.5 it
can be clearly seen that the minor loops change size and shape depending on starting magnetisation.

At the end of chapter 4 it was concluded that there are two possible functions to describe initial magneti-
sation which successfully reproduce the measured 𝐵-field, and it was decided that this was a sufficient
result in order to continue with the next phase of the research project. However, this does not ascertain
that the functions used here provide both the optimal and unique solution to the problem, and more re-
search should be conducted in order to find combinations of functions that describe the magnetisation in
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a more scientific approach. This investigation relies heavily on the mathematical field of study known as
regularisation, and should therefore be conducted by someone with a certain amount of knowledge on
this topic.

7.3. Hysteresis
In chapter 5 the JA parameters of ferromagnetic objects were obtained based on minor loops created
through weakly varying background fields. This approach is unique since similar experiments were not
discovered in literature. The methodology that is proposed in this thesis, which includes the implemen-
tation of an extra dissipative factor 𝑅 in combination with measurements in a plane represented by the
sensor array has shown promising results. In literature, the JA parameters are mainly obtained using
major loops while the results in this thesis show a viable alternative.

A large peak in the RMSE for all specimens was observed during the 400 µT loops. This happened
due to a sensor malfunction while taking the zero measurement. Since this zero measurement (which is
subtracted from the actual measurement) is similar for each specimen, this error pops up in each spec-
imen. Other strange peaks in the RMSE are observed which correspond to other occasions of sensor
malfunctioning during the experiments.

A closer look at table 5.3 shows that the discovered values of 𝑅 vary for each test and for each loop,
while the original theory by Leite [30] suggests that loops with a smaller amplitude would require a higher
𝑅-parameter. The value for 𝑅 should asymptotically go to 1 for increasing loop size (which coincides with
the theory that major loops do not need an extra component to close since major loops always close).
This is possibly due to the fact that the JA-parameter identification was conducted on single loops in the
numerical simulation. In order to check the stability of the solution, multiple loops should be simulated to
see if the minor loop is actually as stable as it seems. This can be done relatively straightforward using a
similar implementation as used in this thesis, but with a higher computational burden since the numerical
simulation will take longer.

Only hysteresis in the longitudinal, or 𝑥-direction, of the specimens has been investigated. It would be
interesting to measure differences in hysteretic behaviour in 𝑥 and 𝑦-directions since it is known that
steel sheet metal is rolled in a certain direction. This will likely cause the crystallographic structure
to be different in 𝑥 and 𝑦-directions which inherently results in varying hysteretic behaviour. Another
topic of interest would be to investigate the material parameters of different types of steel compared
to the structural steel tested within this project. This is preferably a type of steel from a known steel
manufacturer for which the JA-parameters are found in literature in order to verify the implementation of
the method proposed here.

7.4. The Villari effect
As for the Villari effect, the tests performed have shown that it is possible to find a set of parameters that
correctly describes the stress-induced magnetisational changes that were observed during experiments.
Testing more specimens succesfully would provide better insight into how the obtained magnetostriction
paramers differ between steel types. The failure of specimen 6 before reaching time instant 𝑡4 renders
this experiment less useful than specimen 5 since the fitting is now performed at only two datapoints
which is obviously too few for drawing proper conclusions. It would be interesting as well to cycle be-
tween two fixed stress points for a number of loops to see if the observed effect from figure 6.1 can be
reproduced.

In order to improve the quality of the measurements, it would be interesting to perform the same ex-
periment using annealed samples. This way it can be said with certainty that the stress applied while
tightening the titanium bolts is the only stress within the specimen. Another topic of interest are eddy-
currents. Due to the changingmagnetic background field in the Helmholtz cage, eddy currents will appear
in the aluminium frame which create a background field in the opposite direction. However, this would
mainly be an issue with applied magnetic background fields in the 𝑧-direction which was not the case in
this project. Besides this it is expected that the effect of this eddy current-induced magnetic field will be
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small since it is based on the derative of the magnetisation with respect to time. With fields alternating at
a frequncy of less than 0.1 Hz this is in all likelihood negligible, but this this has not been officially proven.

The importance of finding the right magnetisation distribution before attempting to find JA(N) parameters
is best observed in figure 6.5. This 𝐵-field corresponds with a rather odd, inversely calculated, mag-
netisation distribution which is shown in figure 7.1. The 𝑧-component of the magnetisation is negligible
compared to 𝑀 and 𝑀 and therefore omitted here.

Figure 7.1: Specimen 5. Initial magnetisation in -direction (left), -direction (right).

This figure implies that the starting magnetisation in 𝑥-direction in the top half of the specimen is positive,
while being negative in the bottom half. If one keeps in mind that figure 6.6 consists of difference fields
with respect to 𝑡1 it might seem rather surprising that the difference field shows a similar distribution
even though the stress is homogeneous within the specimen. This can only be explained by the fact that
the starting magnetisation has a large influence on the stress-induced component of the magnetisation.
The homogeneous tensile stress throughout the specimen generates negative 𝑥-magnetisation in the top
half while simultaneously generating positive 𝑥-magnetisation in the bottom half. This effect is captured
succesfully by the JA(N) model when regarding the calculated fits on the right hand side of figure 6.6.
The reaon why specimen 5 is initially magnetised this way remains rather mysterious. It could be due
to production methods or post-processing of the steel sheet. This specimen does however give a very
clear insight into how different starting magnetisations lead to different magnetisational changes when
tensioned which is definitely a point of interest for future investigation, especially when combined with
the question how compressive stress influences the magnetisation and how it compares to tension, see
Sablik [45].

Continuing on this topic, a proposition is shared which discusses how the results from chapter 6 can be
implemented in the monitoring of elliptical crack growth. Assume a slender rectangular steel plate of 70
mm wide, 700 mm tall and 10 mm thickness, see Van der Horst and Van Kreveld [51][55]. These dimen-
sions are chosen in such a way that when one of the short edges of the plate is loaded perpendicularly,
the stress distribution in the cross section at 𝑦 = 0 will be approximately homogeneous when there are
no defects present. A semi-elliptical crack is created in the centre of the plate, at the surface. This is
modelled as a semi-spheroidal dent with width 10 mm, height 2 mm, and depth 1 mm. The geometry
is shown in figure 7.2. This plate is loaded with a tensile stress of 100 MPa at the bottom of the plate
(so a force in negative 𝑦-direction) while the top edge is fixed. This results in a homogeneous stress
distribution of 100 MPa in the middle of the plate at a distance from the elliptical crack. When zooming
in on the crack from the top, an increase in stress is observed at the crack tips. A cross section in the
𝑥𝑧-plane at 𝑦 = 0 shows that this increase in stress propagates along the edge of the semi-elliptical crack,
with the stress locally reaching a maximum of 270 MPa as is shown in figure 7.3. It can be stated that,
hypothetically, this plate is made out of regular steel with a yield stress of 𝜎 = 235 MPa. Due to a 100
MPa loading at the edge, far below 𝜎 , it could occur that locally a certain amount of plastic deformation
occurs which subsequently results in crack growth.

With the theory from chapter 6 it can be stated that near such a crack tip the permanent magnetisation of
the steel is different due to the Villari effect. It is therefore thinkable to use the stress distribution from the
structural model shown in figure 7.3 as input for a magnetic model which computes the corresponding
𝐵-field distribution around this elliptical crack. Eventually, a measured 𝐵-field can be translated back to
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Figure 7.2: Full geometry (top left), close up of full geometry (top right), top view close-up of semi-ellipsoidal crack (bottom left),
cross section close-up -plane of crack (bottom right).

Figure 7.3: Stress distribution around the semi-ellipsoidal crack due to a 100 MPA loading, top view (left), cross section (right).

crack propagation using the methodology outlined in chapter 6. Going one step further, a FEMmodel can
be contructed which has disappearing finite elements as is studied by Bijleveld [4]. Using this methodolgy
it is possible to let elements within the steel disappear, i.e. become air elements, when a certain treshhold
is reached. This could be, for instance, that during cyclic loading the yield stress is reached a predefined
number of times. This illustrates how crack propagation can bemodelled using a combination of structural
and magnetic FEM models, possibly using the Multiphysics toolbox in COMSOL.



A
Magnetic field expression derivations

A.1. Uniformly magnetised sphere
Presented here is the derivation of the magnetic field H of a sphere with radius 𝑎 which isuniformly mag-
netised in 𝑧-direction with a magnetisationM. A two-dimensional sketch is presented in figure A.1, with
the 𝑦-axis pointing out of the paper.

z

x

M

y

Figure A.1: Two-dimensional view of a uniformly magnetised sphere.

Uniform magnetisation in 𝑧-direction implies that for every point within the sphere the magnetisation is
given by the vector

M = 𝑀 [
0
0
1
] (A.1)

assuming no magnetisation in 𝑦 and 𝑥-directions. When combining equations (2.2) and (2.3), it follows
that

∇ ⋅ B = 𝜇 ∇ ⋅ (H+M) = 0 . (A.2)

in which 𝜇 drops out so the following relation is obtained:

∇ ⋅H = −∇ ⋅M . (A.3)
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It can be stated that based on equation (2.1), a magnetic scalar potential Φ can be introduced (see
Jackson [21] and Griffiths [18]) such that

H = −∇Φ . (A.4)

Substituting this in equation (A.3) yields

∇ Φ = ∇ ⋅M . (A.5)

This can be mathematically solved since it is known that for a potential function Φ the solution of

∇ Φ(r) = 𝑓(r) (A.6)

can be found in the shape of

Φ(r) = −1
4𝜋 ∭

𝑓(r )
|r− r | 𝑑 𝑟 (A.7)

if 𝑓(r) is bounded and non-vanishing in a bounded volume Ω. When describing magnetostatics, 𝑓(r)
equals ∇ ⋅M such that

Φ(r) = −1
4𝜋 ∭

(∇ ⋅M)(r )
|r− r | 𝑑 𝑟 . (A.8)

To obtain a solution to this potential equation it is necessary to define an expression for ∇ ⋅M. In order
to do so the vector r is projected into a spherical coordinate system as shown in figure A.2. Only the
coordinate system is shown here, the magnetised sphere has its centre at the origin as shown in figure
A.1.

z

y

x

r

(r,ϑ,φ)

φ



Figure A.2: Spherical coordinate system.

In vector notation, r is given by

r = (
𝑥
𝑦
𝑧
) = (

𝑟 sin𝜃 cos𝜙
𝑟 sin𝜃 sin𝜙
𝑟 cos𝜃

) = 𝑟 sin𝜃 cos𝜙 u + 𝑟 sin𝜃 sin𝜙 u + 𝑟 cos𝜃 u . (A.9)



A.1. Uniformly magnetised sphere 103

The magnetisation M is uniform in 𝑧-direction within the sphere and zero outside of the sphere. This
can be written in a single equation using the Heaviside step function which returns 0 if its argument is
negative but yields 1 for positive arguments:

𝐻(𝑥) = {
0 if 𝑥 < 0
1 if 𝑥 > 0

. (A.10)

The equation forM then becomes

M = H(𝑎 − 𝑟)𝑀 u . (A.11)

The goal is to find an expression for the divergence ofM:

∇ ⋅M = (
𝜕
𝜕
𝜕
) ⋅ (

𝑀
𝑀
𝑀
) = 𝜕 𝑀 = 𝑀 𝜕 H(𝑎 − 𝑟) . (A.12)

To differentiate in 𝑧-direction, the spherical coordinates need to be rewritten to Cartesian coordinates.
Themathematical knowledge used is that the derative of the Heaviside step function is 0 for all arguments
except when the argument is 0, where the derative is infinite. This is described by the Dirac delta function
𝛿:

𝐻 (𝑥) = 𝛿(𝑥) = {
∞ if 𝑥 = 0
0 if 𝑥 ≠ 0

(A.13)

such that the integral of the Dirac-delta function is given by

∫ 𝛿(𝑥) 𝑑𝑥 = 1 . (A.14)

From the above it is important to observe that equation (A.8) only returns nonzero values exactly at the
surface of the sphere, where 𝑎 = 𝑟, since this is the only location where the derative of the Heaviside step
function is not 0. The area around the surface of the sphere, where the Magnetisation abruptly drops
from 𝑀 u to 0, can be seen as the source of the magnetic field. Writing out equation (A.12) using the
chain rule shows that

𝑀 𝜕 H(𝑎 − 𝑟) = 𝑀 𝛿(𝑎 − 𝑟) ⋅ 𝜕𝑟𝜕𝑧 = 𝑀 𝛿(𝑎 − 𝑟) ⋅ −12(𝑥 + 𝑦 + 𝑧 ) ⋅ 2𝑧 = −𝑀 𝛿(𝑎 − 𝑟)𝑧𝑟 . (A.15)

Rewriting this to spherical coordinates using equation (A.9) gives

∇ ⋅M = −𝑀 𝛿(𝑎 − 𝑟)𝑧𝑟 = −𝑀 𝛿(𝑎 − 𝑟) cos𝜃 . (A.16)

With the above, equation (A.8) can be rewritten as

Φ(r) = 𝑀
4𝜋 ∫ ∫ ∫ 𝛿(𝑎 − 𝑟 ) cos𝜃 𝑟 sin𝜃

|r− r | 𝑑𝑟 𝑑𝜃 𝑑𝜙 . (A.17)

Please note that in equation (A.17) a factor 𝑟 sin𝜃 has been added which is the multiplication of three
scale factors: ℎ = 1, ℎ = 𝑟 sin𝜙 and ℎ = 𝑟. This is a mathematical necessity while converting from
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Cartesian to spherical coordinates while integrating. In order to solve this, it is required to rewrite the
denominator using a Legendre polynomial:

1
|r− r | =

1
𝑟 ∑

ℓ
(𝑟𝑟 )

ℓ
𝑃ℓ(cos 𝛾) . (A.18)

In this equation the following symbols are introduced:

𝑟 = max(|r|, |r |);
𝑟 = min(|r|, |r |);
𝑃ℓ = Legendre polynomial;
𝛾 = The angle between r and r’.

A visual representation of 𝛾 is given in figure A.3.

z

y

x

r


r’

Figure A.3: , the angle between r and r .

For the purpose of this research it is deemed unnecessary to further discuss Legendre polynomials and
their properties, or the mathematical analogy behind equation (A.18). Further explanation of this math-
ematical topic is extensively described in Special Functions of Mathematics for Engineers by Andrews
[1]. The final term in equation A.18, 𝑃ℓ(cos 𝛾), is given by

𝑃ℓ(cos 𝛾) =
4𝜋

2ℓ + 1

ℓ

∑
ℓ
𝑌∗ℓ (𝜃 , 𝜙 )𝑌ℓ (𝜃, 𝜙) (A.19)

in which

𝑌ℓ (𝜃, 𝜙) = √2ℓ + 14𝜋 ⋅ (ℓ − 𝑚)!(ℓ + 𝑚)! ⋅ 𝑃ℓ (cos𝜃) exp(𝑖𝑚𝜙) . (A.20)

𝑃ℓ are the associated Legendre functions in which 𝑌∗ is know as the complex conjugate of 𝑦ℓ . Sub-
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stituting equation (A.19) in equation (A.17) yields

Φ(r) = 𝑀
4𝜋 ∫ ∫ ∫ 𝛿(𝑎 − 𝑟 ) cos𝜃 𝑟 sin𝜃 1

𝑟 ∑
ℓ
(𝑟𝑟 )

ℓ
𝑃ℓ(cos 𝛾) 𝑑𝑟 𝑑𝜃 𝑑𝜙 . (A.21)

This function integrates over 𝑟 and contains the Dirac delta function. It is known that a general form the
integral of a Dirac delta function returns

∫ 𝑓(𝑥)𝛿(𝑥 − 𝑥 ) 𝑑𝑥 = 𝑓(𝑥 ) (A.22)

which is known as the sifting property. Using this property in equation (A.21) yields

Φ(r) = 𝑀
4𝜋 ∫ ∫ 𝑎 cos𝜃 sin𝜃 1

𝑟 ∑
ℓ
(𝑟𝑟 )

ℓ
𝑃ℓ(cos 𝛾) 𝑑𝜃 𝑑𝜙 . (A.23)

From here on 𝑟 = max(𝑟, 𝑎) and 𝑟 = min(𝑟, 𝑎). What remains is integration along 𝜃 and 𝜙 . It is
convenient to start with the integration over 𝜙 since 𝜙 only appears within 𝑌∗ℓ which is in 𝑃ℓ . This
means that all other terms can be put in front of the integral (not dependent on 𝜙 , so constant along the
integration) resulting in an integral which has the shape of

∫ exp(𝑖𝑚𝜙 ) 𝑑𝜙 = ∫ (cos(𝑚𝜙 ) + 𝑖 sin(𝑚𝜙 )) 𝑑𝜙 = {
2𝜋 if 𝑚 = 0
0𝜋 otherwise .

(A.24)

For 𝑚 = 0 this integral returns 2𝜋, while for all other values of 𝑚 this integral returns 0, which means
that the summation of 𝑚 can be taken out of the potential equation. The zeroth order of the associated
Legendre function 𝑃ℓ is the Legendre polynomial 𝑃ℓ, allowing 𝑦ℓ (𝜃, 𝜙) to be rewritten to:

𝑦ℓ (𝜃, 𝜙) = √
2ℓ + 1
4𝜋 ⋅ 𝑃ℓ(cos𝜃) . (A.25)

Substituting this in the expression for the potential equation gives

Φ(r) = 𝑀 𝑎
4𝜋 ∫ cos𝜃 sin𝜃 1

𝑟 ∑
ℓ
(𝑟𝑟 ) 𝑃ℓ(cos𝜃)𝑃ℓ(cos𝜃 ) 𝑑𝜃

Φ(r) = 𝑀 𝑎
2

1
𝑟 ∑

ℓ
𝑃ℓ cos𝜃 (

𝑟
𝑟 ) ∫ cos𝜃 sin𝜃 𝑃(cos𝜃 ) 𝑑𝜃 (A.26)

which can be solved by renaming some of the terms:

cos𝜃 = 𝑡 , (A.27)

𝑑𝑡 = 𝑑 cos𝜃 = − sin𝜃 𝑑𝜃 , (A.28)
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∫ cos𝜃 sin𝜃 𝑃ℓ(cos𝜃 ) 𝑑𝜃 = ∫ 𝑡𝑃ℓ(𝑡) 𝑑𝑡 . (A.29)

The principle of orthogonality between Legendre polynomials is used (see Andrews [1]):

∫ 𝑃 (𝑡)𝑃 (𝑡) 𝑑𝑡 = 2
2𝑚 + 1𝛿 (A.30)

in which 𝛿 is the Kronecker-delta, which returns 1 if𝑚 = 𝑛 and 0 if𝑚 ≠ 𝑛. In equation (A.29), 𝑡 can be
rewritten as the first order Legendre polynomial: 𝑃 . From this it follows that only for ℓ = 1 the solution
to the integral is nonzero. Having stated that ℓ = 1, the solution to equation (A.30) becomes 2/3. The
solution to the potential equation can now be written as

Φ(r) = 𝑀 𝑎 𝑟
3𝑟 cos𝜃 . (A.31)

It can be observed that potential equation (A.31) does not depend on 𝜙, which makes sense since 𝜙 is
orthogonal to the direction of the magnetisation. Splitting the potential into two cases, one for inside and
one for outside the sphere:

Φ(r) =
⎧

⎨
⎩

cos𝜃 if r < a

cos𝜃 if r > a
. (A.32)

The magnetic field follows from H = −∇Φ. Using the fact that the gradient of the potential equation can
be described by (see Jackson [21])

∇Φ = u
𝜕Φ
𝜕𝑟 − u

1
𝑟
𝜕Φ
𝜕𝜃 − u

1
𝑟 sin𝜃

𝜕Φ
𝜕𝜙 , (A.33)

the field H can be written as

H =
⎧

⎨
⎩

−∇Φ = ⋅ (cos𝜃u − sin𝜃u ) = − u if r < a

−∇Φ = ⋅ (2 cos𝜃ur + sin𝜃u�) = (3 sin𝜃u + 2u ) if r > a
(A.34)

in which u = cos𝜃u − sin𝜃u . Using the fact that a sphere’s volume is given by 𝜋𝑎 , for 𝑟 > 𝑎 H can
be rewritten as

H = 𝑉sphere𝑀
4𝜋𝑟 ⋅ (2 cos𝜃u + sin𝜃u ) . (A.35)

A.2. Linearly reacting sphere
A sphere with radius 𝑎 is placed in a uniform background field H = 𝐻 u . Its magnetisation scales
linearly with the background field following, as described by Jackson [21] and Griffiths [18]: H = 𝐻 u ,
and it is stated that the magnetisation inside the sphere is no longer a fixed constant but rather scales
linearly with the background field with a relative permeability 𝜇 . The parameter 𝜇 describes the mag-
netic permeability of the material as a multiplication of the magnetic permeability in free space, 𝜇 . The
equation describing the magnetisation within the sphere becomes

M = (𝜇 − 1)H . (A.36)
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In (A.36), H inside the sphere is defined as a superposition of H , the background field, and H due to
the magnetisation of the sphere itself:

H = H +H . (A.37)

Please note that for this example it has been assumed that themagnetic background field points uniformly
downwards in the 𝑧-direction. Combining equations (A.36) and (A.37) returns the following expression
forM:

M = (𝜇 − 1)(H +H ) (A.38)

In appendix A.1 it iss found that H is equal to − 𝑀 uz, which means 𝑀 can be rewritten to

𝑀 u = (𝜇 − 1)(𝐻 u − 13𝑀 u )

𝑀 = (𝜇 − 1)(𝐻 − 13𝑀 )

𝑀 (1 + 13(𝜇 − 1)) = (𝜇 − 1)𝐻

𝑀 = 𝜇 − 1
1 + (𝜇 − 1)

𝐻 . (A.39)

Substituting this into equations (A.35) yields

H +H = 𝐻 u + 𝑉sphere4𝜋𝑟 (2 cos𝜃u + sin𝜃u ) 𝜇 − 1
1 + (𝜇 − 1)

𝐻 . (A.40)

To simplify this expression and get rid of the u term, the spherical unit vectors u , u and u are rewritten
into Cartesian form. The spherical unit vectors are drawn in figure A.4:

z

y

x

r
(x,y,z)

φ


u

ur

uφ

Figure A.4: Spherical unit vectors within the Cartesian coordinate system.

From figure A.4 it can be observed that 𝑥, 𝑦 and 𝑧 are then given by

𝑥 = 𝑟 sin𝜃 cos𝜙
𝑦 = 𝑟 sin𝜃 sin𝜙
𝑧 = 𝑟 cos𝜃
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leading to the following expression for u

u = (
sin𝜃 cos𝜙
sin𝜃 sin𝜙
cos𝜃

) . (A.41)

It can be observed that u lies in the 𝑥𝑦-plane and is therefore independent of 𝑧 and can be written as

u = (
− sin𝜙
cos𝜙
0

) . (A.42)

In order to find u , orthogonality between the unit vectors is used:

u × u = u (A.43)

u = (
− sin𝜙
cos𝜙
0

) × (
sin𝜃 cos𝜙
sin𝜃 sin𝜙
cos𝜃

) = (
cos𝜙 cos𝜃
sin𝜙 cos𝜃
− sin𝜃

) . (A.44)

Substituting the spherical unit vectors into equation (A.40) yields

H = 𝐻 u + sphere [2 cos𝜃 (
sin𝜃 cos𝜙
sin𝜃 sin𝜙
cos𝜃

) + sin𝜃 (
cos𝜙 cos𝜃
sin𝜙 cos𝜃
− sin𝜃

)]
( )

𝐻 . (A.45)

The part between straight brackets can be rewritten to

(
3 cos𝜃 sin𝜃 cos𝜙
3 cos𝜃 sin𝜃 sin𝜙
2 cos 𝜃 − sin 𝜃

) = (
3 cos𝜃 sin𝜃 cos𝜙
3 cos𝜃 sin𝜃 sin𝜙
3 cos 𝜃 − 1

) = 3 cos𝜃 (
sin𝜃 cos𝜙
sin𝜃 sin𝜙
cos𝜃

) − (
0
0
1
) . (A.46)

The vectors can then be replaced by u and u and further rewritten to

3 cos𝜃u − u = 3𝑟u 𝑟 cos𝜃
𝑟 − u = 3r𝑧

𝑟 − u = (3r(m ⋅ r)𝑟 −m) 1
𝑀 𝑉sphere

, (A.47)

using the knowledge that the magnetic dipole moment m = 𝑉sphere𝑀 u . Substituting this solution back
into equation (A.45) leads to the following equation describing the magnetic field outside a sphere which
has a magnetisation that scales linearly with the applied background field:

H(r) = 𝐻 u + 1
4𝜋𝑟 ⋅ 𝐻 (𝜇 − 1)

1 + (𝜇 − 1)
(3r(m ⋅ r)𝑟 −m)

H(r) = 𝐻 u + 3𝐻 (𝜇 − 1)
4𝜋𝑟 (𝜇 + 2) (

3r(m ⋅ r)
𝑟 −m) . (A.48)

A.3. Uniformly magnetised prolate spheroid
In order to describe the magnetic field around a magnetised spheroid, a new coordinate system is intro-
duced, with so-called prolate spheroidal coordinates (𝜉, 𝜂, 𝜙) as introduced by Morse and Feshbach [38].
This is explained further below and illustrated in figure A.5. The derivation provided here follows from
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Lepelaars [33].

uξ

uφ

uη

f2 f1rc

ux

uz

uy

Figure A.5: Prolate spheroid in spherical coordinates.

The centre point of the spheroid is described in Cartesian coordinates by

r = (
𝑥
𝑦
𝑧
) . (A.49)

The focal length 2𝑓 is introduced as the distance (in 𝑥-direction) from the centre towards the two focal
points:

f1 = r + 𝑓u

f2 = r − 𝑓u .

(A.50)

A position vector r = (𝑥, 𝑦, 𝑧) can now be defined in terms of (𝜉, 𝜂, 𝜙), while using that 𝑟 = |r − f1| and
𝑟 = |r− f2|:

𝜉 = 𝑟 + 𝑟
2𝑓

𝜂 = 𝑟 − 𝑟
2𝑓

cos(𝜙) = 𝑦 − 𝑦
√(𝑦 − 𝑦 ) + (𝑧 − 𝑧 )

sin(𝜙) = 𝑧 − 𝑧
√(𝑦 − 𝑦 ) + (𝑧 − 𝑧 )

.

(A.51)

The surface of the spheroid is defined as 𝜉 = 𝜉 so that 𝜉 < 𝜉 lies within the spheroid and 𝜉 > 𝜉 lies in
free space. The uniform magnetisation is then described by:

M =

⎧
⎪

⎨
⎪
⎩

𝑀 u +𝑀 u +𝑀 u for 𝜉 < 𝜉

0 for 𝜉 > 𝜉

. (A.52)

The spheroid has length 𝑙 = 2𝑓𝜉 , diameter 𝑑 = 2𝑓√𝜉 − 1 and volume 𝑉spheroid = 𝑉 = 𝜋𝑑 𝑙/6 =
4𝜋𝑓 𝜉 (𝜉 − 1)/3. For further computations, a scalar parameter 𝑚 is defined as the ratio between the
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length and the width as

𝑚 = 𝑙
𝑑 =

𝜉
√𝜉 − 1

(A.53)

so 𝜉 can be defined in terms om 𝑚 as

𝜉 = 𝑚
√𝑚 − 1

. (A.54)

Analogous so section 2.2 the magnetic field follows from

H− ∇Φ & ∇ Φ = ∇ ⋅M (A.55)

with the magnetic potential

Φ(r) = −1
4𝜋 ∭

(∇ ⋅M)(r )
|r− r | 𝑑 r (A.56)

in whichΩ is the entire domain in which the potential equation is nonzero. Solving ∇⋅Mwhile reintroducing
the Heaviside function yields

M(r) =M𝐻(𝜉 − 𝜉) = (𝑀 u +𝑀 u +𝑀 u )𝐻(𝜉 − 𝜉) (A.57)

∇ ⋅M = −𝛿(𝜉 − 𝜉) (𝑀 𝜕𝜉
𝜕𝑥 +𝑀

𝜕𝜉
𝜕𝑦 +𝑀

𝜕𝜉
𝜕𝑧) = −𝛿(𝜉 − 𝜉)M ⋅ ∇𝜉 . (A.58)

In anticipation of later use the gradients of the spherical coordinates are calculated, and in order to do
so some elementary properties are derived. Combining the definitions of 𝜉 and 𝜂 it is possible to rewrite
𝑟 and 𝑟 to

𝑟 = 𝑓(𝜉 + 𝜂), 𝑟 = 𝑓(𝜉 − 𝜂) . (A.59)

The product of 𝑓, 𝜉 and 𝜂 can be simplified to

𝑓𝜉𝜂 = = {[(𝑥 − 𝑥 − 𝑓) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) ]−

[(𝑥 − 𝑥 + 𝑓) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) ]} = −(𝑥 − 𝑥 ) .

(A.60)

With these properties, |r− f1| can be rewritten in the following manner:

|r− f1| = 𝑟 = (𝑓(𝜉 + 𝜂)) = (𝑥 − 𝑥 − 𝑓) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 )

(𝑓(𝜉 + 𝜂)) = (−𝑓𝜉𝜂 − 𝑓) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 )

𝑓 (𝜉 + 𝜂 + 2𝜉𝜂) = 𝑓 𝜉 𝜂 + 𝑓 + 2𝑓 𝜉𝜂 + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 )

𝑓 (𝜉 + 𝜂 − 𝜉 𝜂 − 1) = (𝑦 − 𝑦 ) + (𝑧 − 𝑧 )

𝑓√(𝜉 − 1)(1 − 𝜂 ) = √(𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) . (A.61)

To summarise the above, it can be stated that

𝑥 − 𝑥 = −𝑓𝜉𝜂 (A.62)

𝑦 − 𝑦 = √(𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) cos𝜙 = 𝑓√(𝜉 − 1)(1 − 𝜂 ) cos𝜙 (A.63)
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𝑧 − 𝑧 = √(𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) sin𝜙 = 𝑓√(𝜉 − 1)(1 − 𝜂 ) sin𝜙 . (A.64)

The following expression for ∇𝜉 is obtained:

∇𝜉 = ∇ = ∇(√(𝑥 − 𝑥 + 𝑓) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) +

√(𝑥 − 𝑥 − 𝑓) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) )

(A.65)

The gradient of ∇𝜉 is given by: ∇𝜉 = ( , , ) . Renaming 𝑟 = √𝑢, 𝑟 = √𝑗, (𝑥 − 𝑥 − 𝑓) = 𝑤 and
(𝑥 − 𝑥 + 𝑓) = 𝑘 and using the double chain-rule for the gradient in 𝑥-direction

∇ 𝜉 = 1
2𝑓 (

𝜕
𝜕𝑢𝑢

𝜕𝑢
𝜕𝑤

𝜕𝑤
𝜕𝑥 +

𝜕
𝜕𝑗 𝑗

𝜕𝑗
𝜕𝑘
𝜕𝑘
𝜕𝑥)

∇ 𝜉 = 1
2𝑓 (

1
2𝑢 ⋅ 2𝑤 ⋅ 1 + 12𝑗 ⋅ 2𝑘 ⋅ 1)

∇ 𝜉 = 1
2𝑓 (

𝑥 − 𝑥 − 𝑓
𝑟 + 𝑥 − 𝑥 + 𝑓

𝑟 ) .

If this process is repeated for the gradients in 𝑦 and 𝑧-directions, the following relation for the gradient
can be obtained:

∇𝜉 = 1
2𝑓 (

r− f1
𝑟 + r− f2

𝑟 ) . (A.66)

Substituting the properties derived earlier into equation (A.66) gives the following definitions for ∇𝜉:

∇𝜉 = ( r f1 + r f2 )

= { ( ) [𝑓(𝜉𝜂 + 1)u + (cos𝜙u + sin𝜙u )𝑓√(𝜉 − 1)(1 − 𝜂 )]

+ ( ) [𝑓(𝜉𝜂 − 1)u + (cos𝜙u + sin𝜙u )𝑓√(𝜉 − 1)(1 − 𝜂 )] }

= ( ){ − (𝜉 − 1)𝜂u + 𝜉(cos𝜙u + sin𝜙u )√(𝜉 − 1)(1 − 𝜂 )} .

(A.67)

Analogous to this the gradient of 𝜂, cos𝜙 and sin𝜙 become

∇𝜂 = 1
𝑓(𝜉 − 𝜂 ) {−(1 − 𝜂 )𝜉u + 𝜂(cos𝜙u + sin𝜙u )√(𝜉 − 1)(1 − 𝜂 )} (A.68)

∇ cos𝜙 = sin𝜙
𝑓√(𝜉 − 1)(1 − 𝜂 )

(sin𝜙u − cos𝜙u ) (A.69)

∇ sin𝜙 = − cos𝜙
𝑓√(𝜉 − 1)(1 − 𝜂 )

(sin𝜙u − cos𝜙u ) . (A.70)
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In order to evaluate the potential function the following expansion is used, as described by Andrews [1]

1
|r− r | =

1
𝑓 ∑ ∑(2𝑛 + 1)𝜖 𝑖 [(𝑛 − 𝑚)!(𝑛 + 𝑚)!] cos[𝑚(𝜙 − 𝜙 )]⋅

𝑃 (𝜂)𝑃 (𝜂 ){
𝑃 (𝜉)𝑃 (𝜉 ) if 𝜉 < 𝜉
𝑃 (𝜂)𝑃 (𝜂 ) if 𝜉 > 𝜉

(A.71)

in which the Neumann factor has been introduced as

𝜖 = { 1 𝑚 = 0
2 𝑚 = 1, ... (A.72)

and where 𝑃 and 𝑄 are the associated Legendre functions of the first and second kind, respectively. In
order to evaluate the integral, scale factors need to be implemented in the same manner as in appendix
A.1. The scale factors in the prolate spherical coordinate system are:

ℎ = 𝑓√𝜉 − 𝜂
𝜉 − 1 , ℎ = 𝑓√𝜉 − 𝜂

1 − 𝜂 , ℎ = 𝑓√(𝜉 − 1)(1 − 𝜂 ) . (A.73)

The potential function can now be rewritten to

Φ(𝑟) = − 1
4𝜋 ∫ ∫ ∫ −𝛿(𝜉 − 𝜉 )M ⋅ ∇𝜉

|r− r | ℎ ℎ ℎ 𝑑𝜉 𝑑𝜂 𝑑𝜙

Φ(𝑟) = − ∫ ∫ ∫ ( )
( ){ − (𝜉 − 1)𝜂 𝑀 + 𝜉 cos𝜙 𝑀 +

sin𝜙 𝑀 )√(𝜉 − 1)(1 − 𝜂 )} ⋅ |r r | ⋅

𝑓√ ⋅ 𝑓√ ⋅ 𝑓√(𝜉 − 1)(1 − 𝜂 ) 𝑑𝜉 𝑑𝜂 𝑑𝜙

Φ(𝑟) = − ∫ ∫ ∫ ( )
( ){ − (𝜉 − 1)𝜂 𝑀 + 𝜉 (cos𝜙 𝑀 +

sin𝜙 𝑀 )√(𝜉 − 1)(1 − 𝜂 )} ⋅ |r r | ⋅

𝑓 (𝜉 − 𝜂 ) 𝑑𝜉 𝑑𝜂 𝑑𝜙 .

(A.74)
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At this point, the potential that needs to be evaluated has the following shape:

Φ(𝑟) = ∫ ∫ ∫ −𝛿(𝜉 − 𝜉 ) ( ){ − (𝜉 − 1)𝜂 𝑀 +

𝜉 (cos(𝜙 )𝑀 + sin(𝜙 )𝑀 )√(𝜉 − 1)(1 − 𝜂 )}

∑ ∑ (2𝑛 + 1)𝜖 𝑖 [ ( )!
( )! ] cos[𝑚(𝜙 − 𝜙 )]

𝑃 (𝜂)𝑃 (𝜂 )𝑃 (𝜉 )𝑄 (𝜉 ) ⋅ 𝑓 (𝜉 − 𝜂 )𝑑𝜉 𝑑𝜂 𝑑𝜙

(A.75)

where 𝜉 = min(𝜉, 𝜉 ) and 𝜉 = max(𝜉, 𝜉 ). In the same way as in section 2.2, the fact that the Dirac-delta
function’s integral only exists while the argument is 0 is used (when 𝜉 = 𝜉 ), meaning that integrating 𝜉
over the infinite domain equals getting rid of the delta function and replacing all 𝜉 terms with 𝜉 terms.
The summations (which do not contain integral dependent terms) are moved in front of the integrals and
the final term 𝑓 (𝜉 − 𝜂 ) is eliminated to give

Φ(𝑟) = ∑ ∑ (2𝑛 + 1)𝜖 𝑖 [ ( )!
( )! ] 𝑃 (𝜂)𝑃 (𝜉 )𝑄 (𝜉 )

∫ ∫ { − (𝜉 − 1)𝜂 𝑀 + 𝜉 (cos𝜙 𝑀 + sin𝜙 𝑀 )⋅

√(𝜉 − 1)(1 − 𝜂 )} cos[𝑚(𝜙 − 𝜙 )]𝑃 (𝜂 ) 𝑑𝜂 𝑑𝜙

(A.76)

in which 𝜉 = min(𝜉, 𝜉 ) and 𝜉 = max(𝜉, 𝜉 ). When integrating over 𝜙 it can be concluded that only the
term 𝑚 = 0 for 𝑀 and 𝑚 = 1 for 𝑀 and 𝑀 have a nonzero value. This results in

Φ(𝑟) = ∑ (2𝑛 + 1) ∑ { − 2𝜋𝛿 𝑃 (𝜂)𝑃 (𝜉 )𝑄 (𝜉 )(𝜉 − 1)𝑀 ⋅

∫ 𝜂 𝑃 (𝜂 )𝑑𝜂 + ( ) 𝛿 𝑃 (𝜂)𝑃 (𝜉 )𝑄 (𝜉 )⋅

𝜉 (cos𝜙 𝑀 + sin𝜙 𝑀 )√𝜉 − 1 ∫ √1 − 𝜂 𝑃 (𝜂 ) 𝑑𝜂 } .

(A.77)

The Legendre functions for complex arguments are defined by the following expressions, as described
by Morse and Feshbach [38]:

𝑃 (𝑧) = (1 − 𝑧 ) ( 𝑑𝑑𝑧) 𝑃 (𝑧), 𝑃 (𝑧) = 1
2 𝑛! (

𝑑
𝑑𝑧) (𝑧 − 1) , (A.78)

𝑄 (𝑧) = (−1) (𝑧 − 1) ( 𝑑𝑑𝑧) 𝑄 (𝑧), (A.79)

𝑄 (𝑧) = 1
2 𝑛! (

𝑑
𝑑𝑧) [(𝑧 − 1) ) ln(𝑧 + 1𝑧 − 1)] −

1
2𝑃 (𝑧) ln(

𝑧 + 1
𝑧 − 1) , (A.80)
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from which follows for this particular case that

𝑃 (𝑧) = 𝑧, 𝑃 (𝑧) = √1 − 𝑧 ,

𝑄 (𝑧) = ln ( ) − 1, 𝑄 (𝑧) = √ − √
ln ( ) .

(A.81)

For real argument, −1 < 𝜂 > 1 and 𝜉 > 1 it follows that

𝑃 (𝜂) = 𝜂, 𝑃 = √1 − 𝜂 , 𝑃 (𝜉) = 𝜉𝑃 (𝜉) = √1 − 𝜉

𝑄 (𝜉) = ln ( ) − 1, 𝑄 (𝜉) = √𝑥𝑖 − 1 [ − ( )] .

(A.82)

For the remaining integrals the orthogonality of the Legendre functions is used, as shown in equation
(A.30). This orthogonality simplifies the integrals over 𝜂 in equation A.77 to

∫ 𝜂 𝑃 (𝜂 )𝑑𝜂 = ∫ 𝑃 (𝜂 )𝑃 (𝜂 )𝑑𝜂 = ∫ 𝑃 (𝜂 )𝑃 (𝜂 )𝑑𝜂 =

2
2 ⋅ 1 + 1 ⋅

(1 + 0)!
(1 − 0)! =

2
3

(A.83)

∫ √1 − 𝜂 𝑃 (𝜂 )𝑑𝜂 = ∫ 𝑃 (𝜂 )𝑃 (𝜂 )𝑑𝜂 = ∫ 𝑃 (𝜂 )𝑃 (𝜂 )𝑑𝜂 =

2
2 ⋅ 1 + 1 ⋅

(1 + 1)!
(1 − 1)! =

4
3

(A.84)

while discovering that only 𝑛 = 1 survives for the entire solution. Combined with the expressions above
Φ(𝑟) can be rewritten to

Φ(𝑟) = (2 ⋅ 1 + 1){ − 2𝜋𝑀 𝜂𝜉 (𝜉 − 1)𝑄 (𝜉 ) ⋅ + ( ) √1 − 𝜂 𝑖√𝜉 − 1

𝑄 (𝜉 )𝜉 (cos𝜙 𝑀 + sin𝜙 𝑀 )√𝜉 − 1 ⋅ }

Φ(𝑟) = −𝑓(𝜉 − 1)𝑀 𝜂𝜉 𝑄 (𝜉 ) + 𝜉 (cos𝜙 𝑀 ⋅ + sin𝜙 𝑀 ) ⋅

√(𝑥𝑖 − 1)(1 − 𝜂 )(𝜉 − 1)𝑄 (𝜉 ) .

(A.85)

Using the properties derived in equations (A.60) and (A.61) the definition for the potential inside the
spheroid, in Cartesian coordinates, becomes

Φ(𝑟) = (𝜉 − 1)𝑄 (𝜉 )(𝑥 − 𝑥 )𝑀 + √𝜉 − 1𝑄 (𝜉 )⋅

[(𝑦 − 𝑦 )𝑀 + (𝑧 − 𝑧 )𝑀 ] .

(A.86)
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In order to find the magnetic field inside the spheroid, H is defined as the negative gradient of Φ:

H(r) = −∇Φ = −(𝜉 − 1)𝑄 (𝜉 )𝑀 ux −
𝜉
2 √𝜉 − 1𝑄 (𝜉 )[𝑀 +𝑀 ] (A.87)

From this equation it follows that the 𝐻-field inside the spheroid is uniform and in opposite direction to
the MagnetisationM. If the demagnetisation factors 𝑁 , 𝑁 and 𝑁 are reintroduced H(r) becomes

H(r) = −𝑁 𝑀 u − 𝑁 𝑀 u − 𝑁 𝑀 u (A.88)

with

𝑁 = (𝜉 − 1)𝑄 (𝜉 ), 𝑁 = 𝑁 = 𝜉
2 √𝜉 − 1𝑄 (𝜉 ) . (A.89)

In order to rewrite the demagnetisation factors in terms of the ratio between length and diameter 𝑚:

𝑚 = 𝑙
𝑑 =

𝜉
√𝜉 − 1

(A.90)

from which follows that

𝜉 = 𝑚
√𝑚 − 1

, 𝜉 + 1
𝜉 − 1 = (𝑚 +

√𝑚 − 1) . (A.91)

This gives the following equations for the demagnetisation factors in terms of the length/width ratio:

𝑁 = 1
𝑚 − 1 [

𝑚
𝑚 − 1 ln (𝑚 + √𝑚 − 1) − 1] (A.92)

𝑁 = 𝑁 = 𝑚
2(𝑚 − 1) [𝑚 −

1
𝑚 − 1 ln (𝑚 + √𝑚 − 1)] . (A.93)

The potential outside of the spheroid is given by

H(r) = 𝑓𝜉 (𝜉 − 1)∇ [−𝑀 𝜂𝑄 (𝜉) + √1 − 𝜂2 (cos𝜙𝑀 + sin𝜙𝑀 𝑄 (𝜉)] . (A.94)

In order to solve this, the following derivatives are defined:

𝜕 √1 − 𝜂 = √ , 𝜕 𝑄 (𝜉) = ln ( ) ,

𝜕 𝑄 (𝜉) = √ [ ln ( ) − 1 + ] .

(A.95)

It is found that

B = 𝜇 𝜉 (𝜉 − 1)𝐴M (A.96)

in which

𝐴 = (
𝐴 𝐴 𝐴
𝐴 𝐴 𝐴
𝐴 𝐴 𝐴

) (A.97)

with

𝐴 = 𝑓𝜕 (𝜂𝑄 (𝜉)) = −12 ln(𝜉 + 1𝜉 − 1) +
𝜉

𝜉 − 𝜂 (A.98a)
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𝐴 = −𝑓2𝜕 (√1 − 𝜂 cos(𝜙)𝑄 (𝜉)) = −𝜂 cos(𝜙)𝜉 − 𝜂
√1 − 𝜂
𝜉 − 1 (A.98b)

𝐴 = −𝑓2𝜕 (√1 − 𝜂 sin(𝜙)𝑄 (𝜉)) = −𝜂 sin(𝜙)𝜉 − 𝜂
√1 − 𝜂
𝜉 − 1 (A.98c)

𝐴 = 𝑓𝜕 (𝜂𝑄 (𝜉)) = 𝐴 (A.98d)

𝐴 =− 𝜕 (√1 − 𝜂 cos(𝜙)𝑄 (𝜉)) =

− ln ( ) + [ cos(𝜙) − ]

(A.98e)

𝐴 =− 𝜕 (√1 − 𝜂 sin(𝜙)𝑄 (𝜉)) =

( )
( )( ) sin(𝜙) cos(𝜙)

(A.98f)

𝐴 = 𝑓𝜕 (𝜂𝑄 (𝜉)) = 𝐴 (A.98g)

𝐴 = −𝑓2𝜕 (√1 − 𝜂 cos(𝜙)𝑄 (𝜉)) = 𝐴 (A.98h)

𝐴 =− 𝜕 (√1 − 𝜂 sin(𝜙)𝑄 (𝜉)) =

ln ( ) + [ sin(𝜙) − ] .

(A.98i)

A.4. Uniformly magnetised plate
A plate with width 𝑤, length ℓ, and thickness 𝑡 in respectively 𝑥, 𝑦 and 𝑧-direction exhibits a uniform mag-
netisation in 𝑥-direction, 𝑀 . Using the earlier introduced Heaviside step function 𝐻, the magnetisation
can be written as

M = 𝑀 ⋅ [𝐻 (𝑥 + ) − 𝐻 (𝑥 − )] ⋅ [𝐻 (𝑦 + ℓ) − 𝐻 (𝑦 − ℓ)] ⋅

[𝐻 (𝑧 + ) − 𝐻 (𝑧 − )]u .

(A.99)
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The three magnetostatic field equations are identical to the sphere and spheroid

∇ ×H = 0 , (A.100)

∇ ⋅ B = 0 , (A.101)

B = 𝜇 (H+M) . (A.102)

Similar to previous examples, since ∇ ×H = 0, a scalar potential Φ can be introduced such that

H = −∇Φ . (A.103)

This results in

∇ ⋅ B = ∇ ⋅ 𝜇 (H+M) = 𝜇 (∇H+ ∇M) = 0 (A.104)

from which follows that

∇ ⋅H = −∇ ⋅M . (A.105)

From this follows the potential equation

∇ Φ = ∇ ⋅ ∇Φ = −∇ ⋅H = ∇ ⋅M

∇ Φ = 𝑀 ⋅ [𝛿 (𝑥 + 𝑤2 ) − 𝛿 (𝑥 −
𝑤
2 )] ⋅ [𝑈 (𝑦 +

ℓ
2) − 𝑈(𝑦 −

ℓ
2)] ⋅ [𝑈 (𝑧 +

𝑡
2) − 𝑈 (𝑧 −

𝑡
2)] .

(A.106)

The stepfunctions becomeDirac-delta functions after differentiating, similar to appendix A.1. The solution
to this potential equation is given by

Φ(r) = −1
4𝜋 ∭

(∇ ⋅M)(r )
|r− r | 𝑑 𝑟 (A.107)

in which Ω represents the entire three-dimensional domain. Substituting the expression for ∇ ⋅M into
equation A.107 yields

Φ(r) = −𝑀
4𝜋

ℓ/

∫
ℓ/

/

∫
/
( 1
|r− (− u + 𝑦 u + 𝑧 u )|

− 1
|r− ( u + 𝑦 u + 𝑧 u )|

) 𝑑𝑦 𝑑𝑧 .

(A.108)

It is assumed that the plate is thin, 𝑡 ≪ {𝑤, 𝑙}. Since the behaviour directly near the edges of the plate is
not of great importance to us, equation (A.108) can be simplified to

Φ(r)≈
ℓ/
∫
ℓ/
(
|r ( u u u )|

− |r ( u u u )|) 𝑑𝑦

=
ℓ/
∫
ℓ/
(
√( ) ( )

−
√( ) ( )

)𝑑𝑦

=
ℓ/
∫

̃ ℓ/
(
√( ) ̃

−
√( ) ̃

)𝑑�̃�

(A.109)
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in which �̃� = 𝑦 − 𝑦 is substituted. This integral can be solved analytically using the mathematical
knowledge that

∫ 𝑑𝑠
√𝑠 + 𝑝

= ln (√𝑠 + 𝑝 − 𝑠) . (A.110)

Using equation (A.110), the potential becomes

Φ(r)≈ [ln(√(𝑥 − ) + �̃� + 𝑧 − �̃�) − ln(√(𝑥 + ) + �̃� + 𝑧 − �̃�)]
ℓ/

̃ ℓ/

= [ ln(√(𝑥 − ) + (𝑦 − ℓ ) + 𝑧 + (𝑦 − ℓ ))−

ln(√(𝑥 − ) + (𝑦 + ℓ ) + 𝑧 + (𝑦 − ℓ ))

ln(√(𝑥 + ) + (𝑦 − ℓ ) + 𝑧 + (𝑦 − ℓ ))

ln(√(𝑥 + ) + (𝑦 + ℓ ) + 𝑧 + (𝑦 − ℓ )) ] .

(A.111)

With this expression for the potential known, the magnetic field can be described with

H = ∇Φ, B = 𝜇 (H+M) . (A.112)

In order to do so, it is first stated that

∇ ln(𝐷±± + (𝑦 ± 𝑙
2)) =

1
𝐷±± u + 1

(𝑥 ± ) + 𝑧
(1 −

𝑦 ± ℓ

𝐷±± ) [𝑥 ±
𝑤
2 u + 𝑧u ] (A.113)

in which

𝐷±± = √(𝑥 ± 𝑤2 ) + (𝑦 ± ℓ2) + 𝑧 (A.114)

is the distance from r towards one of the corners of the metal plate. The magnetic field is then given by

H(r) = −∇Φ = { u + ( ) (1 −
ℓ
) [(𝑥 − )u + 𝑧u ] −

u + ( ) (1 −
ℓ
) [(𝑥 − )u + 𝑧u ] −

u + ( ) (1 −
ℓ
) [(𝑥 + )u + 𝑧u ] +

u + ( ) (1 −
ℓ
) [(𝑥 + )u + 𝑧u ] } .

(A.115)
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In the middle of the plate, where r = 0, it follows that

𝐷 = 𝐷 = 𝐷 = 𝐷 = √(𝑤2 ) + (ℓ2) . (A.116)

The magnetic field in the centre of the plate then simplifies to

H(r = 0) = −𝑀 𝐾u , with 𝐾 = 2𝑡ℓ
𝜋𝑤√𝑤 + ℓ

. (A.117)

From equation (A.117) it can be observed that the magnetic field inside the plate travels in a direction
opposite to the direction of the magnetisation, which is also observed in the sphere and spheroid. The
magnetic field increases with magnetisation 𝑀 , thickness 𝑡 and length ℓ, but reduces with increasing
width 𝑤. This is due to the fact that the edges of the plate at 𝑤 = ±𝑏/2 can be seen as the sources of the
magnetic field, since this is where ∇ ⋅M = 0. If the plate becomes wider, these sources are separated
further, decreasing the strength of the magnetic field. Source strength does increase for larger values of
𝑀 , 𝑑 and ℓ.





B
Laboratory setup

B.1. Helmholtz cage
A Helmholtz cage was constructed In order to annul the Earth’s magnetic field and to be able to subject
test specimens to user-controlled, stable and uniform background fields. The principle of Helmholtz coils
is that coils carrying an electric current 𝐼, which have a spacing 𝑅 in between them, equal to the radius
of the coils, generate a more or less uniform magnetic field in a direction orthogonal to the coils. Two
Helmholtz coils and the magnetic field distribution in a plane through the coils’ centre line is shown in
figure B.1.

x

I

I

R

R

Figure B.1: Helmholtz coils and the magnetic field lines.

Figure B.1 shows how a more or less uniform magnetic field can be generated in 𝑥-direction. By placing
multiple coils in series, the domain in which this field is generated can be extended. Expanding this sys-
tem into three dimensions will create an environment in which the magnetic field in 𝑥, 𝑦 and 𝑧-directions
can be controlled separately. It is known that the strength of the Earth’s magnetic field lies around 50
µT depending on the position with respect to the Earth’s centre of mass. At the TNO office in where
all of the measurements in this report are conducted, this background field can be seperated into three
components: 𝐵 , = -16.8 µT, 𝐵 , = -7.5 µT and 𝐵 , = +45.2 µT. In order to nullify this background
field, these 𝐵-components can be generated in opposite direction within the domain resulting in a net
zero magnetic field, using the three coil systems.

In order to simplify construction the testing domain is made cubical with an aluminium frame (ℎ × 𝑤 × 𝑙
= 679×679×1116 mm), please refer to the Rhino drawing in figure B.2. The 𝑥-direction of the frame is
defined as the longitudinal axis, the 𝑦-direction points sideways and the 𝑧-direction points downwards.

121
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Figure B.2: Aluminium frame 3D drawing.

In 𝑥-direction, four coils are mounted along the frame while in 𝑦 and 𝑧-direction three coils each are
mounted. For clarity, a schematic overview of the coils for each separate direction is shown in figures
B.3 and B.4. Each of these coils consists of a bundle of copper wires which are connected in series.
The amount of windings per coil determines the strength of the magnetic field produced by that coil. The
magnetic field inside the cage can be calculated by modelling each coil as four separate line currents.
The magnetic induction field at a distance 𝑟 from an infinite wire can be described by

𝐵tot =
𝜇 𝐼
2𝜋𝑟 . (B.1)

In this example, an expression is needed for finite wires, which is given by Lepelaars [34]:

H(r) = 𝐼
4𝜋 [(

r− r2
|r− r2|

− r− r1
|r− r1|

) v] (r− r1) × v
|r− r1| − [(r− r1) ⋅ v]

(B.2)

in which

v = r2 − r1
|r2 − r1|

. (B.3)

In these equations, r defines the point in three-dimensional space in which the magnetic field is cal-
culated due to a theoretical finite wire with its kathode at r1 and anode at r2. For each location in the
three-dimensional domain within the cage, the magnetic induction field due to all individual wires of each
separate coil can be superpositioned in order to find an analytical expression for the total 𝐵-values. The
coils that generate a field in a specific direction are linked in series and connected to one amplifier. Three
amplifiers (for the three directions) are used which means that for each individual direction the same cur-
rent flows through all coils while the current in different directions can be varied independently. In order
to create a uniform field in each direction, the coils towards the centre of the box carry fewer copper
windings than the coils closer to the edges. With this method, a more or less uniform field with three
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components can be created with a user-defined magnetic induction field strength. The maximum field
strength for this Helmholtz cage is around ±450 µT for each direction.

679 mm

6
7

9
 m

m

1114 m
m

z

y

x

Figure B.3: Frame with measurements and four coils in series in -direction.

z

y

x

Figure B.4: Three coils in series in -direction and -direction.

A photograph of the aluminium frame with the coils installed is shown in figure B.5. Aluminium is chosen
as base material for the frame construction since its does not show magnetic behaviour when exposed
to weak magnetic field strengths.

When the Earth’s background field is present, the current that needs to be sent through the three coil
systems in order to counter this field is equal to

𝐼 = [
𝐼
𝐼
𝐼
] = [

−0.0592
0.1327
−0.3573

] 𝐴 . (B.4)
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Figure B.5: Aluminium frame with coils in , and -directions.

It is important to note that the above only holds for this Helmholtz cage, positioned at the TNO office, with
its orientation fixed. In order to create a uniform field of 100 µT in 𝑥-direction, the current in 𝑥-direction
is increased by 0.789 A to a total amount of 0.7306 A. This yields, analytically, the magnetic flux density
distribution in an 𝑥𝑦-plane through the centre of the cage shown in figure B.6.
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Figure B.6: Magnetic flux density in the -plane through the centre of the cage.

From figure B.6 it can be seen that, following the methodology of Helmholtz coils, a more or less uniform
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magnetic field can be created. The field in 𝑦 and 𝑧-directions varies between ±2.5 µT over the plane,
while in 𝑥-direction an error of about 3% is observed. It must be noted that this is an error over a plane
through the centre which is 800 mm long and 400 mm wide. Test specimens will be placed in the centre
of this plane, where the theoretical error is lower. It is worth noting that by increasing the field strength in
a certain direction the relative error stays the same, implying that the absolute error will increase linearly.
This means that for a field strength of 400 µT, the absolute error will be around ±12 µT. In this analytical
approximation, the following assumptions are made:

• The background field does not vary over time;

• The bundles of wire are modelled as line currents, where in reality they have a cross sectional area
of around 10 × 10 mm;

• When a magnetic field is created in a coil, this also creates an additional field in the neighbouring
coil due to an effect known as mutual inductance, see [2]. This effect is assumed to be nonexistent
here;

• Instead of a single wire carying a large current, the laboratory setup will consist of many small wires
connected in series. Interaction between these wires is assumed to be negligible;

• Resistance of the wires is not accounted for.

When comparing the analytical solution with measurements in the laboratory setup, it was found that
there is a relative error between the analytical simulation and the measurments of about 10% due to
the abovementioned effects. Zero measurements without an object present are always subracted from
measurements with a specimen in order to correctly capture the effect in an attempt to reduce the effect
of such errors.

B.2. Sensoring equipment
B.2.1. Sensor array
The first system that measures the 𝐵-field in three directions within the cage is the sensor array, which
consists of 7×16 sensors placed in the 𝑥𝑦-plane at 𝑧 ≈ 180 mm from the centre of the cage. The sensors
on this array are spaced 50 mm from each other, covering a total area of 750×300 mm. The sensors
type is HMC-5983 produced by Honeywell, which measure the magnetic field in three directions with an
accuracy of around 0.5 µT. The error of these sensors is relatively high compared with other measuring
equipment, but the array provides a good insight into the distribution of a magnetic field over an entire
surface compared to single, fixed point measurements. A schematic top view of the array is shown in
figure B.7.
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Figure B.7: Sensor array, schematic top view.
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The array is placed on a wooden base plate which is located 200 mm below the centre of the cage.
In order to protect the array, a perspex casing iss constructed which consists of two vertical walls and
a top plate which have a thickness 15 mm. Besides offering protection, the perspex casing allows for
convenience in placing objects at a certain 𝑧-distance from the array in order to get useful visualisations.
A top view photograph of the array with the perspex casing is shown in figure B.8.

Figure B.8: Sensor array, top view.

A schematic side view of the sensor array with measurements is shown in figure B.9, and a photograph
is shown in figure B.10.
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Figure B.9: sensor array with perspex casing, schematic side view.
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Figure B.10: Sensor array with perspex casing, side view.

During the progress of this thesis, it was decided to move the sensory array closer to the perspex in order
to measure a stronger induction field. For the Villari-experiments in chapter 6 the sensor array is lifted
up using aluminium bars of 30 mm height. This is shown schematically and with a photograph in figure
B.11.

SENSOR ARRAY

PERSPEX

WOODEN PLATE

3
4

 m
m

9
4

 m
m

3
0

 m
m

ALUMINIUM BAR

Figure B.11: Sensor array with perspex casing and aluminium bars, side view.

The sensor array is callibrated manually. This means that initially a current is sent through the coil system
which lifts the background field. Then, a fixed current is sent in each direction (𝑥, 𝑦, 𝑧) in turn. For each
component, the magnetic field distribution can be calculated manually as shown in figure B.6. These
values are then used to callibrate the sensors. It is important to note that a certain error is made here on
top of the accuracy of the individual sensors, since there is always a difference between the theoretical
magnetic field produced by the Helmholtz cage and the actual field. This is an important reason why,
within this report, at certain stage a fit is considered good enough. This means that while theoretically a
better comparison between measured and calculated data can be obtained, in practice this means fitting
parameters to noise. The precise level of this inaccuracy is not exactly known due to a combination of
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sensor inaccuracy, calibration errors and assumptions.

B.2.2. MAG658-fluxgate sensor
Besides the sensory array, a more precise sensor can be used to measure the three-dimensional B-field
at one specific location. This sensor consist of a MAG658-fluxgate sensor produced by Bartington In-
struments, which is encased into a sturdy black box by TNO in order to prevent it from being damaged.
The original circuit board and the box in which it is encased are shown in figure B.12. Contrary to the
sensors used in the array, the accuracy of this sensor lies around 10 nT.

Figure B.12: Mag658 circuit board and casing.

Since the sensor had been encased before the start of this project, it is essential to determine where
inside the black box the actual sensor is located. This is done by moving a small magnet along a straight
line parallel to the edge of the box. At the location of the sensor, a local maximum or minimum is obtained.
The dimensions of the sensor casing were measured to be 154×70×30 mm. The sensor was found to
be situated 14 mm from the bottom and 35 mm from the sides as shown in figure B.13.
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Figure B.13: Schematic drawing of the fluxgate sensor casing with sensor location.
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B.3. Demagnetising unit
In order to demagnetise thin ferromagnetic objects, a demagnetising unit produced by Goudsmit Mag-
netics is used. This unit consists of a bar-shaped object that can be connected to a power outlet.
When plugged in, the bar starts to produce alternating positive and negative strong magnetic fields at
a frequency of 50 Hz. When this bar moves over a thin piece of magnetic steel, the magnetisation in
this steel plate alternates simultaneously with the frequency of the demagnetiser. As the bar gradually
moves away from the steel, the frequency of the alternating fields is kept constant, while the magnitude
decreases. This way, the magnetisation in the objects spirals down to a value close to zero, see the de-
perming section in the book by Gordon [17]. Top and bottom views of the demagnetising bar are shown
in figure B.14.

Figure B.14: Demagnetising bar top and bottom view.

B.4. Steel Specimens
The first specimen that will be used in experiments is a solid steel prolate spheroid, 580 mm long along
the main axis and 95 mm diameter along the two minor axes. The prolate spheroid provides an excellent
starting point while investigating magnetic hysteresis since a perfect analytical solution for its magnetic
field exists, as presented in section 2.3. The characteristic steel properties are unknown, but it can
be safely assumed that this spheroid was created by cutting away parts of a steel bar. Steel bars are
produced from steel billets, which are soft steel slabs obtained directly after casting steel and are used as
a base product for all types of steel products. Figure B.15 shows the prolate spheroid, which is encased
in a perspex device that was manufactured in order to safely place and remove the spheroid in the testing
area. The distance from the centre of the spheroid to the bottom of the casing is measured at 88 mm.

Figure B.15: Prolate spheroid with perspex casing.

Mmetal plates of various dimensions are tested besides the spheroid, since metal plates are compo-
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nents commonly used in marine structures. An overview of the test specimens is given in table B.1. All
specimens are marked with an arrow pointing in 𝑥-direction in order for experiments to be repeatable.

Table B.1: Metal plate specimen overview.

Specimen number width [mm] length [mm] thickness [mm] Production
1 300 300 5 Ordinarily cut
2 300 300 2 Ordinarily cut
3 300 300 5 Laser cut
4 300 300 2 Laser cut
5 100 165 1 Ordinarily cut, 𝜎 = 700 MPa
6 100 165 2 Ordinarily cut, 𝜎 = 355 MPa

Characteristic properties such as carbon or manganese content of these plates are currently unknown,
and not particularly relevant since it is expected that two types of steel with the same contents can differ
in magnetic behaviour, depending on the way they were produced. Figures of the metal plate specimens
1-4 are given in figure B.16.

Figure B.16: Photographs of specimen 1 within the Helmholtzcage (top left), top view specimen 1 (top right), side view specimen
1 & 2 (bottom left), side view specimen 3 & 4 (bottom right).
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B.5. Villari experiment
A schematic drawing of the Villari experiment setup iss provided in chapter 6. Additional photogaphs of
the test setup with the strain gauges mounted on top of the specimen are shown in figure B.17.

Figure B.17: Photographs of the Villari experiment setup with specimen 6 mounted in the aluminium frame. Within the Helmholtz
cage (top left), top view (top right), side view of bolts (bottom left), side view with spanner used for tensioning (bottom right).
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Figure C.1: Shuffled leaping frog algorithm flowchart, from Darabian [12].
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D.1. Specimen 2-4: RMSE & Relative error
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Figure D.1: Specimen 2: Relative and Root Mean Squared Error.
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Figure D.2: Specimen 3: Relative and Root Mean Squared Error.
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Figure D.3: Specimen 4: Relative and Root Mean Squared Error.
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D.2. Specimen 2: Fit
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Figure D.4: Specimen 2. field below a metal plate (300×300×2 mm) subjected to a 100 µT loop, measurements (left) calculated
fit (right).
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Figure D.5: Specimen 2. field below a metal plate (300×300×2 mm) subjected to a 200 µT loop, measurements (left) calculated
fit (right).
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Figure D.6: Specimen 2. field below a metal plate (300×300×2 mm) subjected to a 300 µT loop, measurements (left) calculated
fit (right).
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Figure D.7: Specimen 2. field below a metal plate (300×300×2 mm) subjected to a 400 µT loop, measurements (left) calculated
fit (right).
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Figure D.8: Specimen 2. distribution in a metal plate (300×300×2 mm) for four hysteresis loops: 100 µT (left), 200 µT (centre
left), 300 µT (centre right), 400 µT (right).
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D.3. Specimen 3: Fit
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Figure D.9: Specimen 3. field below a metal plate (300×300×5 mm) subjected to a 100 µT loop, measurements (left) calculated
fit (right).
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Figure D.10: Specimen 3. field below a metal plate ((300×300×5 mm) subjected to a 200 µT loop, measurements (left)
calculated fit (right).
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Figure D.11: Specimen 3. field below ametal plate (300×300×5mm) subjected to a 300 µT loop, measurements (left) calculated
fit (right).
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Figure D.12: Specimen 3. field below a metal plate ((300×300×5 mm) subjected to a 400 µT loop, measurements (left)
calculated fit (right).
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Figure D.13: Specimen 3. distribution in a metal plate (300×300×5 mm) for four hysteresis loops: 100 µT (left), 200 µT (centre
left), 300 µT (centre right), 400 µT (right).
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D.4. Specimen 4: Fit
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Figure D.14: Specimen 4. field below ametal plate (300×300×2mm) subjected to a 100 µT loop, measurements (left) calculated
fit (right).
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Figure D.15: Specimen 4. field below ametal plate (300×300×2mm) subjected to a 200 µT loop, measurements (left) calculated
fit (right).
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Figure D.16: Specimen 4. field below ametal plate (300×300×2mm) subjected to a 300 µT loop, measurements (left) calculated
fit (right).
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Figure D.17: Specimen 4. field below ametal plate (300×300×2mm) subjected to a 400 µT loop, measurements (left) calculated
fit (right).
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Figure D.18: Specimen 4. distribution in a metal plate (300×300×2 mm) for four hysteresis loops: 100 µT (left), 200 µT (centre
left), 300 µT (centre right), 400 µT (right).
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