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The question therefore naturally arises as to whether it is possible to reconstruct the potential
from a knowledge of the asymptotic form of the wave functions at infinity, and if this is
possible, to give a method for carrying out the construction. Such is the inverse problem of
scattering theory. Of even more interest than the actual construction of the potential are the
various relationships that can be established between it and the asymptotic form of the wave
functions.

...The mathematical techniques developed in the solution of the problem may also
be applied to related questions.

Preface from

Agranovich, Z. S., Marchenko, V. A. (1964)

The Inverse Problem of Scattering Theory
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Abstract

Marchenko Imaging is a new technology in geophysics which enables to retrieve Green’s func-
tions at any point in the subsurface having only reflection data. This method is based on
the extension of the 1D Gelfand-Levitan-Marchenko equation to a 3D medium. One of the
assumptions of the Marchenko method is that the medium is lossless. If the lossy reflection
response is used in the Marchenko scheme, some artefacts in the Green’s functions as well as
in the seismic image are present. One way to circumvent this assumption is to find a com-
pensation parameter for the lossy reflection series so that the lossless Marchenko scheme can
be applied. The main tasks of this thesis are to: [1] use the Marchenko equation to estimate
the attenuation in the subsurface, [2] find a compensation parameter for the lossy reflection
series so that the lossless Marchenko scheme can be applied, and [3] to create an upscaling
method for wave propagation. The Artefact Removal Method was created which makes it
possible to calculate an effective temporal Q-factor of the medium between a virtual source
in the subsurface and receivers at the surface. This method is based on the minimization of
the artefacts produced by the lossless Marchenko scheme. The minimization was performed
in three ways: [1] in the space-time domain, [2] in the frequency domain and [3] to the scales
of the wavelet transform applied to the artefacts. This method can also be used to find the
layers with high attenuation. The upscaling method which can be used to construct macro-
scale homogenized viscoelastic properties of the medium from the micro-scale properties of a
heterogeneous medium was developed. This is done through linking the macro- and micro-
scale Lippmann-Schwinger equations which describe the wave field and the strain field scatter-
ing in an inhomogeneous medium, respectively. In this thesis, the macro-scale homogenized
viscoelastic properties were calculated by using the T-matrix Approach and the Generalized
Dvorkin-Mavko Attenuation Model. All theoretical results are supported by synthetic 1D
modeling. The theoretical part of the thesis and the general work flow can be used for a very
complex medium.
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Chapter 1

Introduction

Seismic imaging is a key method for studying the subsurface structures of the earth. At the
same time, seismic imaging is one of the most challenging tasks in geophysics. This method
has a long history and many applications, but its main function is to create an image of
the subsurface by using only the reflection data measured at the surface. There are many
imaging methods but this thesis is focused on Marchenko imaging. Wave propagation is
governed by the hyperbolic partial differential equation. It is well known that the 1D inverse
problem in quantum mechanics can be solved by the Gelfand-Levitan-Marchenko equation.
Therefore, it might be possible to extend this equation to a 3D case and apply the method
to wave propagation. The key idea is to use Green’s functions — the medium’s response
due to the impulsive point source. Once we know the Green’s functions inside the medium,
the image can be constructed. According to Green’s Theorem, we can correctly retrieve
the Green’s functions of the medium if the data is available from all sides of the medium.
Seismic interferometry (Wapenaar and Fokkema, 2006) is an example of this idea. However,
under several assumptions, it is possible to retrieve the Green’s function by using only the
reflection data. The 3D extension of the Marchenko equation for one-way wave fields as well
as practical applications of this method are given in Wapenaar et al. (2014b). By applying
this method to the reflection data, the Marchenko imaging can be performed and Marchenko
redatuming can be done at any depth level. For redatuming, only an estimate of the first-
arrival travel-time from the virtual receiver to the acquisition surface is needed (Wapenaar
et al., 2014b; van der Neut et al., 2015). This can be achieved, for example, from a smooth
velocity model of the subsurface. For imaging a smooth velocity model is required. One of
the assumptions of the Marchenko method is that the medium is lossless. This assumption
is one of the problems preventing the practical applications of this method to real data; So
circumventing this assumption is a worthwhile endeavor and paramount to this body of work.
If the lossy reflection response is used in Marchenko imaging, some artefacts in the Green’s
functions as well as in the seismic image are present.

The main tasks of this thesis are to: [1] use the Marchenko equation to estimate the atten-
uation in the subsurface, [2] find a compensation parameter for the lossy reflection series so
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that the lossless Marchenko scheme can be applied, and [3] to create an upscaling method for
wave propagation.

The Artefact Removal Method was created, which makes it possible to calculate an effective
temporal Q-factor of the subsurface. This was achieved through minimization of the artefacts,
which were produced by the lossless Marchenko scheme. The estimated attenuation of the
medium can further be used to compensate for the attenuation in the lossy reflection series.
This can then be applied back to the lossless Marchenko scheme.

In order to address scale effects, an upscaling approach was created. Wave propagation at
micro- scale (scale of a rock sample) and macro-scale (scale of several dozens of meters)
are governed by the same partial differential equation. The upscaling method is a forward
problem, but the downscaling method is an inverse problem — one of the key issues in
geophysics. One way to bridge the gap between micro-scale and macro-scale is to use some
properties of the medium. It can be approximated as a viscoelastic solid. In this thesis, seismic
imaging was linked to rock physics, using the viscoelasticity of the rocks (see Figure 1-1). As
a forward problem, the macroscopic properties of the medium were calculated by using the
micro-scale properties of a heterogeneous medium. Theoretically, the general idea of up-
down- scaling is shown through linking the macro- and micro- scale Lippmann-Schwinger
equations which describe the wave field and the strain field scattering in an inhomogeneous
medium, respectively. By using the T-matrix method and the Generalized Dvorkin-Mavko
Attenuation Model, the homogenized viscoelastic properties of the medium can be obtained.
Thus, all the changes in the rock’s microstructure can be observed in seismic imaging. For
example, a reservoir filled with fluid has a very strong attenuation, which can be observed in
seismic imaging (seen as very low amplitudes of the reflections). This upscaling approach is
supported by a synthetic simulation in 1D.

1-1 Thesis Overview

In chapter 2, the general theory of Sturm-Liouville Operators, Green’s Functions and Fun-
damental Solutions is briefly outlined. In chapter 3, the theory behind Marchenko Imaging
is shown as well as the practical applications of the method to seismic imaging. In chapter
4, the general theory of viscoelasticity and seismic attenuation is given. In chapter 5, the
theory of wave propagation in heterogeneous pocks and rock physics modeling is shown. In
chapters 6 and 7, different theoretical and practical results are shown. They include: the
Artefact Removal Method to quantify attenuation in the subsurface, Marchenko redatuming
for lossy medium, the connection between the different types of Lippmann-Schwinger equa-
tions and rock physics modeling, which provides the upscaling of seismic properties. The
general conclusion to the whole thesis is given in chapter 8.
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Figure 1-1: The schematic overview of the thesis. Seismic imaging and rock physics are linked
through viscoelasticity of the medium. Black arrows represent the connections be-
tween different scales. The upscaling problem comes from: [1] a rock sample scale up
to an averaged viscoelastic property scale, through homogenization, and [2] from an
averaged viscoelastic property scale up to a seismic imaging scale, through modeling.
The downscaling problem is an inverse problem.
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Chapter 2

Sturm-Liouville Operators, Green’s
Functions and Fundamental Solutions

Sturm-Liouville Operators, Green’s Functions and Fundamental Solutions are heavily refer-
enced throughout the rest of this thesis. They are briefly outlined below. This allowed me to
remove all complicated math theory, as is customary for geophysical papers. In this chapter
all equations are written in operator form.

Consider this partial differential equation where L is a differential operator and x ∈ Ω,
Ω ⊂ Rn:

Lu(x) = f(x) (2-1)

Operator L can have any form. It might be a Sturm-Liouville operator L = (d2/dx2) + q(x),
where q(x) is the potential (chapter 2-2), or D’Alembert operator for a 3D wave equation
(or more sophisticated form in case of an inhomogeneous wave equation), or an operator
L = ∇jCijkl∇l for the equilibrium equation, where Cijkl is the stiffness tensor (chapter 5),
etc.

The Green’s function G is defined as a solution of the following equation:

LG(x, ξ) = δ(ξ − x). (2-2)

The solution G(x, ξ) of Eq. (2-2) is called the Green’s function of L (Egorov and Shubin,
1988). The Green’s function can be defined as G(x, t) for (x, t) in R4. The definition (2-2)
will be used in this chapter but it can be extended to include the time variable:

Lu(x, t) = f(x, t) (2-3)
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and

LG(x, t; ξ, t′) = δ(ξ − x)δ(t− t′) (2-4)

The term fundamental solution is a generalization of Green’s function theory. More precisely,
the fundamental solution of the operator L is not unique. It can be defined as a set of solutions
with constant coefficients that have corresponding boundary conditions (Vladimirov et al.,
1971). This fundamental solution will be applied in chapter 3-2. The solution of Eq. (2-1)
can be written as:

u(x) = G ∗ f =

∫
G(x, ξ)f(ξ)dξ, (2-5)

where ∗ denotes a convolution operator. At the same time, I can define an inverse operator
L−1 as an integral operator:

L−1f(x) =

∫
G(x, ξ)f(ξ)dξ (2-6)

Indeed, it can be easily shown, that:

∫
LG(x, ξ)f(ξ)dξ =

∫
δ(x− ξ)f(ξ)dx = f(x) (2-7)

Here, I used a fundamental property of the Dirac’s δ function which is defined as:

〈δ(x− ξ), ϕ(x)〉 = ϕ(ξ), (2-8)

where ϕ(x) is a test function. For simplicity, Eq. (2-8) is usually written as:

∫
δ(x− ξ)ϕ(x)dξ = ϕ(ξ), (2-9)

Therefore, the solution of the partial differential equation Eq. (2-1) is:

Lu(x) =

∫
LG(x, ξ)f(ξ)dξ (2-10)

Eq. (2-10) proves the solution given in Eq. (2-5). On the other hand, the classical Sturm-
Liouville theory is based on the eigenvalues and corresponding eigenvectors which form an
orthonormal basis. From that point of view, the Green’s function is a special combination of
the eigenvalues and eigenvectors which form the solution of the partial differential equation.
For example, in case of a hyperbolic equation (for example, wave equation), all eigenvalues
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are real and the Green’s function has a very nice representation in terms of eigenvalues and
eigenvectors. By saying that, I mean that we can consider an operator G in L2(Ω) with its
kernel G(x, ξ):

Gf(x) =

∫
Ω
G(x, ξ)f(ξ)dξ (2-11)

In Eq. (2-11) operator G is symmetric and Ω is the domain. According to the Hilbert-Schmidt
theorem (similar to the Spectral theorem) operator G has a complete orthogonal system of
eigenfunctions with corresponding real eigenvalues (Reed and Simon, 1980). This property
is widely used in seismic wave propagation, usually for self-adjoint operators; For example:
in Wapenaar and Douma (2012) as a Hermitian matrix. Note that, in the mathematical
literature, all problem formulations and corresponding solutions of partial differential equa-
tions are considered in particular functional spaces. In mathematical physics such spaces
are Sobolev spaces W(k)(Ω), Hilbert spaces or L(k)(Ω) spaces, etc. In particular, the most
popular functional space in geophysics is the L2(Ω) space. This is mainly because of L2-norm
which naturally arises in the ill-posed problems. L2(Ω) is a classical example of a Hilbert
space. At the same time the L2(Ω) Hilbert space is, in fact, a Sobolev space W0(Ω), i.e.
L2(Ω) = W0(Ω). The space is important because the solution of the partial differential
equation might not exist in one space, but it does exist in another space.

In geophysics we use the theories developed in different areas of math and physics, i.e. numer-
ical analysis, functional analysis, quantum mechanics, quantum scattering theory and others.
They all have their own conventions, notation etc. In geophysics we focus on applying these
theories to solve geophysical problems. Therefore, I simplified math where it was possible but
also provided necessary references where you can get the original theories and equations.
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Chapter 3

Marchenko Imaging

Marchenko Imaging has many practical applications when it comes to seismic imaging.
The Marchenko equation was developed to solve the inverse quantum scattering problems
(Marchenko, 1955). My work is focused on applying the Marchenko equation to wave prop-
agation problems. The original Marchenko Imaging theory was developed for lossless media
(Wapenaar et al., 2014b); But this work is focused on studying lossy media — [A] quantifying
attenuation from reflection data, [B] Marchenko Redatuming in viscoelastic media with in-
trinsic attenuation and, [C] possibly, Marchenko Imaging in viscoelastic media. This is a new
approach to quantifying attenuation using the Marchenko equation. Some of these problems
can be solved using the existing method. In this case, the solution is shown. Where it is not
possible to reach the goal, it is shown why. It is a new technology, therefore, it is essential to
show how attenuation affects Marchenko Imaging and how the Marchenko equation can be
used for quantifying attenuation using only single-sided data. That’s why the starting point
in this work is the basic laws of solid mechanics and wave propagation. Only such an analysis
can provide a complete overview of the problem and yield a solution.

In this chapter, the theory behind Marchenko Imaging will be shown as well as the practical
applications of the method to seismic imaging. It includes: [1] an overview of the development
of the Marchenko Equation, [2] the theory behind Marchenko Imaging (1D Gelfand-Levitan
and 1D Marchenko Integral equations (Burridge, 1980)), [3] the idea behind the single-sided
autofocusing and a brief review of the different scattering equations (Broggini and Snieder,
2012), and [4] Marchenko Equations for Wave Propagation (Wapenaar et al., 2014a,b; van der
Neut et al., 2015).

3-1 An Overview of the Development of the Marchenko Equation

Inverse scattering problems are of high importance in geophysics. First of all, these problems
arise in quantum mechanics. The inverse problem in quantum mechanics consists of recon-
structing the potential function of the Schrödinger operator by its spectrum and some (so-
called) norming constants. This problem is also known as the inverse Sturm-Liouville problem.
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It was first formulated by Ambarzumian (1929) in 1929. Nowadays, the one-dimensional in-
verse scattering problem can be solved by the Gelfand-Levitan-Marchenko equation (Gelfand
and Levitan, 1951; Marchenko, 1955; Agranovich and Marchenko, 1964). The theorems which
prove the uniqueness of the determination of the quantum scattering potential V (x) on the
half-line for Schrödinger operators were originally developed by Marchenko (1952, 1955) and
Borg (1952) in the 1950s. The reconstruction procedures for the potential were shown by
Gelfand and Levitan (1951), Levitan (1987), Levitan and Sargsian (1975) and Marchenko
(1955, 2011). A survey and a short history of the problem you can find in Faddeyev and
Seckler (1963). Other authors that contributed include: Norman Levinson, Mark Krein and
Ludvig Faddeev.

Later, it was shown that the methods developed in quantum mechanics could be applied to
solve the inverse problems of wave propagation. Burridge (1980) showed that the steady-state
Schrödinger equation is related to the wave equation via a temporal Fourier transformation.
It means that the theory developed by Gelfand and Levitan (1951) and Agranovich and
Marchenko (1964) can be used to solve the inverse scattering problem for the wave equation.
Furthermore, Burridge (1980) showed that this theory has a very nice formulation in the
time-space domain. The next important contribution was done by Rose (Rose, 2001, 2002).
Rose showed the possibility to focus the wave field in the 1D medium using the Marchenko
equation if only the single-sided data are given.

Nowadays, this theory can be applied to imaging, particular, to seismic imaging methods.
Broggini and Snieder (2012) showed the connection between different scattering principles
— inverse scattering, Green’s function reconstruction, Optical theorem and imaging. The
paper by Wapenaar et al. (2014b) generalizes the theory and provides the 3D extension of
the Marchenko equations as well as the iterative scheme to its solution.

3-2 The 1D Gelfand-Levitan and the 1D Marchenko Integral Equa-
tions

3-2-1 The solution of the Inverse Problem

The one-dimensional wave equation can be written in the following notation:

[(
K +

4

3
µ

)
uz

]
z

− ρutt = 0 (3-1)

or

(
ρv2uz

)
z
− ρutt = 0. (3-2)

Here, t is time and z is the space coordinate; u is the elastic displacement; K = K(z) is
the bulk modulus; µ = µ(z) is the shear modulus. The function ρ = ρ(z) is the density and
v = v(z) is the velocity of the wave. Equation Eq. (3-2) can be rewritten in the following
form (Burridge, 1980) via simple change of variables:
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Utt − Uxx + q(x)U = 0. (3-3)

q(x) =
ηxx
η
, (3-4)

where η = [v(z)ρ(z)]1/2 and U = η−1u. Obviously, η2 is the impedance. (Nota Bene: In Eq.
(3-3), ∂2

xx is written instead of ∂2
zz. This was done to separate different quantities in Eq. (3-2)

and Eq. (3-3). In fact, z is the same as x but only x will be used further. This convention is
used in Burridge (1980)). The boundary conditions for Eq. (3-3) on the half line x > 0 are:

−
(
ρv2
)
uz = −η2ux, at z = 0 (3-5)

In order to get the physical meaning of the boundary conditions in Eq. (3-5) let’s write one
more equation. Hook’s Law (in tensor form) can be further described as:

σ = (K − 2

3
µ)tr

(
1

2

(
(∇u) + (∇u)T

))
I2 + 2µ

(
1

2

(
(∇u) + (∇u)T

))
(3-6)

where σ is the stress tensor, I2 is the second order identity tensor and tr is the trace of the
3× 3 matrix. Since P-wave modulus is (K + 4

3µ) = ρv2, equation (3-6) shows the connection
between the stress and the elastic displacement which is used in the boundary conditions
(3-5). Therefore, the boundary conditions in Eq. (3-5) mean that the stress (L.H.S Eq. (3-5))
is given at z = 0. The boundary conditions (3-5) can be rewritten as:

− Ux(0, t) +
ηx(0)

η(0)
U(0, t) = 0 (3-7)

Now, following Gelfand and Levitan (1951), I introduce the two Green’s functions G̃1 and G̃
which are causal and non-causal, respectively. G̃1 satisfies (3-3) under the boundary conditions
−Ux(0, t) + (ηx(0)/η(0))U(0, t) = δ′(t) (similar to (3-7)). The initial condition is G̃1(x, t) = 0
for t < 0. The non-causal Green’s function G̃ satisfies (3-3) under the boundary conditions
(3-7) and the initial condition is G̃(0, t) = 2δ(t). Green’s functions can be written as:

G̃(x, t) = δ(x− t) + δ(x+ t) + K̃(x, t) (3-8)

and

G̃1(x, t) = δ(x− t)− K̃1(x, t) (3-9)

K̃ and K̃1 can be found in Gelfand and Levitan (1951) . Functions K̃ and K̃1 represent the
coda of the impulse response solutions but it will be explained in further detail in section
3-2-2. The solution for the potential is also given in Gelfand and Levitan (1951):
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q(x) = 2
d

dx
K̃(x,±x) = 2

d

dx
K̃1(x, x) (3-10)

Therefore, once K̃ and K̃1 are known, the solution of (3-3) can be derived from (3-10).

At the same time, the temporal Fourier transform of Eq. (3-3) is the steady-state Schrödinger
equation:

− ω2U − Uxx + q(x)U = 0, (3-11)

where −ω2 represents ∂2/∂t2 in the frequency domain. The Gelfand-Levitan-Marchenko
theory was mainly developed for the steady-state Schrödinger equation (3-11) but it can be
applied in the time-space domain for the 1D wave equation.

The most important idea in this theory (Lamb Jr, 1980; Burridge, 1980) is that the fundamen-
tal solution is divided into two parts: the delta pulse and the functions K̃ or K̃1. This idea
plays a key role in future developments by Rose (2002, 2001) (1D problem) and by Wapenaar
et al. (2014b) (3D problem).

3-2-2 The 1D Marchenko Integral Equations

Let us consider the problem (3-3) with q(x) = 0 in x < 0. In the domain x < 0 we have the
solution in the form (Burridge, 1980):

u(x, t) = f(t− x) + g(t+ x) (3-12)

The f is zero if we consider only left-going solutions in the domain x < 0 and Ux = Ut =
g′(t+ x). For example, we can write:

Ux(0, t) = Ut(0, t) (3-13)

Equation (3-13) will play a very important role later. The basic solution with only right-going
wave in the domain x < 0 is:

G(x, t) = δ(t− x) +K(x, t). (3-14)

K is bounded by δ(t− x) and by a set of points (x, t) ∈ (t+ x), i.e. supp(K) := |t| ≤ x. The
support of K, denoted by supp(K), is the smallest closed set outside of which K vanishes
(Folland, 1999). In our case, K vanishes outside the cone (see Figure 3-1) and the boundary
defined by δ(t − x) (solid line in Figure 3-1) and by a set of points (x, t) ∈ (t + x) (dashed
line in Figure 3-1).
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3-2 The 1D Gelfand-Levitan and the 1D Marchenko Integral Equations 13

Figure 3-1: The non-causal Green’s function G(x, t) = δ(x, t) + K(x, t) is shown. K vanishes
outside the cone and the boundaries defined by δ(t − x) (solid line) and a set of
points (x, t) ∈ (t+ x) (dashed line). [Modified after Burridge (1980)]

A left-going wave in the solution in domain x < 0 is the time-reversed Eq. (3-14) (using the
fact that δ is an even distribution, i.e. δ(−t− x) = δ(t+ x)):

Ḡ(x, t) = G(x,−t) = δ(t+ x) +K(x,−t). (3-15)

Thus, the solution can be written as (see the basic theory in chapter 2, particularly, Eq.
(2-5)):

U(x, t) =

∫
Ḡ(x, τ)U(0, t− τ)dτ =

U(0, t+ x) +

∫ x

−x
K(x,−τ)U(0, t− τ)dτ =

U(0, t+ x) +

∫ x

−x
K(x, τ)U(0, t+ τ)dτ (3-16)

Next, we define the causal Green’s function G1:

G1(x, t) = δ(t− x) +K1(x, t), (3-17)

where K1 is bounded (analogous to K but in the upper half-space), supp(K1) := |x| ≤ t (see
Figure 3-2).
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14 Marchenko Imaging

After subtracting Eq. (3-14)) from Eq. (3-17)) we have:

G̃(x, t) = −K(x, t) +K1(x, t), (3-18)

where G̃(x, t) = G1(x, t)−G(x, t). By replacing U = G̃ in Eq. (3-16) we can write:

G̃(x, t) = G̃(0, t+ x) +

∫ x

−x
K(x, τ)G̃(0, t+ τ)dτ (3-19)

At the same time, it is obvious that

K(x, t) = −G̃(x, t), for x > |t|, (3-20)

K1(0, t) = R(t) = G̃(0, t). (3-21)

Thus, using (3-19), Eq. (3-20) and (3-21) we can write the Marchenko integral equation for
t < x as:

R(t+ x) +K(x, t) = −
∫ x

−t
K(x, τ)R(t+ τ)dτ (3-22)

The geometrical interpretation of the Marchenko equation is shown in Figure 3-3. Indeed,
K and K1 can be represented as a coda events — everything instead of the delta pulse.
The goal of this chapter is to demonstrate this visual interpretation. In fact, the application
of the integral equation (3-16) to the Green’s function G̃ (3-18)) is shown in Figure 3-3,
where the region of integration 0 < t − τ < t + x (pink line). The Marchenko equation
has a very strong connection with the Gelfand-Levitan equation which is shown in Burridge
(1980). While the Marchenko equation was derived to recover the potential, this new impulse-
response interpretation has a very important contribution to the inverse problem solution for
hyperbolic equations, i.e. the wave equation. Originally, equation (3-22) is solved for K, then
the potential can be found, as it is shown in the previous section. At the same time a similar
solution can be found in Lamb Jr (1980). The interpretation of Eq. (3-22) in terms of seismic
applications is shown in the next section.
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3-2 The 1D Gelfand-Levitan and the 1D Marchenko Integral Equations 15

Figure 3-2: The causal Green’s function G1(x, t) = δ(x, t) +K1(x, t) is shown. The blue line is
the reflected data (i.e. recorded data). [Modified after Burridge (1980)]

Figure 3-3: The causal Green’s function and the focusing solution. Red arrows shows the relation
between the focusing function and the recorded data. Pink line is the region of
integration 0 < t+ τ < t+ x. [Modified after Burridge (1980)]
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16 Marchenko Imaging

3-3 Single-sided Autofocusing

The importance of the 1D inverse problem solution being an exact solution plays an essential
role in seismic imaging. Rose (2002) showed that the Marchenko equation might be used to
focus the wave field in the 1D medium. The question stated in Rose (2002) is, ”Given single-
sided access, how does one focus sound to a point inside a one-dimensional layered medium at
a specified time-given that the velocity profile is unknown?” From a modern perspective in 1D,
the wave field can be focused inside the medium if the focal point is defined in scaled depth.
In order to translate from scaled depth to real depth, a smooth velocity model is needed. The
most important contribution of Rose to Marchenko Imaging is that he linked autofocusing
and inverse scattering (Broggini and Snieder, 2012; Wapenaar et al., 2014a). This important
contribution made it possible to use the Marchenko equation in seismic imaging and seismic
interferometry. This means that instead of having a physical source in the subsurface, we can
focus the wave field in the subsurface, using physical sources and receivers at the surface only.
Then, we can apply a well-developed seismic interferometry theory. Broggini and Snieder
(2012) showed the connections between different inverse scattering techniques in different
areas, i.e. seismology, quantum mechanics, optics and others. The last equation in the
section 3-2 is the 1D version of the Marchenko equation (3-22). For wave propagation it can
be rewritten as (Broggini and Snieder, 2012):

R(t+ tf ) + ũ(t, tf ) = −
∫ tf

−∞
ũ(τ, tf )R(t+ τ)dτ, (3-23)

where R(t) is the reflected scattering amplitude to the incident wave field ũ(t, tf ) and tf is a
parameter that controls the focusing location. In terms of the wave propagation problem, the
solution of Eq. (3-23) focuses the wave field inside the medium. A detailed study of similar
equations will be given in the next few chapters.

Another important equation which arises in the wave propagation and scattering problems is
the Lippmann-Schwinger equation:

u±(n,x) = u0(n,x) +

∫
G±0 (x,x′)L′(x′)u±(n,x′)dx′, (3-24)

Here, u±(n,x) is the total wave field, u0(n,x) is the incident (unperturbed) wave field, n is
the direction of the wave field propagation. The superscripts + and − in the Green’s function
correspond to the causal and anti-causal Greens function with outgoing or ingoing boundary
conditions, respectively (Broggini and Snieder, 2012). At the same time, the superscripts +
and − in the wave field illustrate the forward and backward propagation, respectively (mean-
ing, the wave fields are time-reversed in the space-time domain). The integral represents
the scattered wave field caused by perturbations L′(x′) ≡ L(x) − L0(x). This equation can
be used to derive the Newton-Marchenko equation and a generalized optical theorem. The
Newton-Marchenko is the same as the Marchenko equation, but it requires reflection and
transmission data — meaning, it’s a two-sided problem. Since, all scattering principles are
connected with each other, Eq. (3-24) plays an essential role in the wave scattering problems.
The Lippmann-Schwinger equation describes wave propagation and scattering in inhomoge-
neous media. The connection between the different types of Lippmann-Schwinger equations,
describing micro (5-10) and macro scale (3-24) wave propagation will be shown later.
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3-4 3D Marchenko Equations for Wave Propagation

According to Broggini and Snieder (2012), there are three wave scattering problems. The 1D
inverse scattering problem which can be solved via the Gelfand-Levitan-Marchenko equation.
The second problem is focusing, i.e. focusing the wave field inside the medium via an incident
wave field. The third problem is Green’s function retrieval. In general, inverse scattering
methods estimate perturbations in medium properties from recorded scattered wave fields.
This is an exact integral equation which relates the scattered field measured on one side of
the medium to its interior inhomogeneities. Therefore, all of these problems are connected.

According to Green’s Theorem, we can correctly retrieve the Green’s functions of the medium
if the data are available from all sides of the medium. Unfortunately, in seismic imaging we
usually deal with single-sided data. The term ”single-sided” means that the data are available
only from one side of the medium. In seismic exploration it can be the reflection data.
Green’s functions retrieval becomes an extremely ill-posed problem if only single-sided data
are available. Fortunately, using several assumptions, this problem can be solved by using the
3D Marchenko equation (Wapenaar et al., 2014b). The main assumptions are: [1] the medium
is lossless; [2] the total Green’s function can be represented as a superposition of the up- and
down-going components; [3] the reflection response is properly sampled in space and time; [4]
an estimate of the first-arrival travel-time from the focusing point to the acquisition surface
is given; and [5] for imaging a velocity model is required. The 3D Marchenko Equation’s
solution’s main feature is the focusing function. It represents the injected wave field from
one side of the medium which focuses inside the medium at a focal point. Furthermore,
the focusing function is defined in such a way that it doesn’t generate multiples at the focal
point. They are removed via the inverse-polarity wave field in the focusing function at a
specific time, in such a way, that the multiples are cancelled. From a mathematical point of
view, the focusing function is, in fact, a fundamental solution of the Marchenko equation with
specific boundary conditions, as shown in chapter 3-1. These specific boundary conditions
are defined in the truncated medium, which is identical to the physical medium between the
injection and focal points but reflection free below the focusing level. Therefore, by using
the 3D Marchenko equation, we can retrieve the Green’s function from a virtual receiver in
the medium. However, we must have a single-sided data (i.e. the reflection response) and an
estimate of the first-arrival travel-time from the virtual receiver to the acquisition surface.

In this work, it is assumed that surface-related (i.e. free-surface) multiples have been re-
moved. Examples on how to achieve this can be found in Verschuur and Berkhout (1997)
and Amundsen (2001). Alternatively, the methodology of Singh et al. (2015) can be used to
modify the focusing algorithm provided by Wapenaar et al. (2013) in such a way that the
free-surface multiples are incorporated.

3-4-1 Green’s Functions

In this work, t denotes time, x = (xH, z) is the spatial coordinate vector. Here, xH = (x, y)
refers to the horizontal coordinates of the space. The positive z-axis is pointing downward.
If a location is fixed in depth, the spatial coordinates are noted as x0 = (xH, z0). The exact
location of the source is defined as x′0 = (x′0, y

′
0, z
′
0). I defined the Green’s function G as the
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18 Marchenko Imaging

causal solution of the Eq. (2-4) with the operator L and modified right hand-side:

LG = −ρδ(x− x′0)
∂δ(t)

∂t
(3-25a)

L = ρ∇ ·
(

1

ρ
∇
)

[·] +
1

V 2

∂2

∂t2
[·] (3-25b)

where V = V (x) is the propagation velocity. Note, that in the section 1 of chapter 3 , I
defined the propagation velocity as v = v(z) because of 1D nature of the problem. ρ = ρ(x) is
the density of the inhomogeneous medium. The Eq. (3-25a) states that the Green’s function
G(x,x′0, t) is the response at location x to the impulsive point source at location x′0 of the
lossless inhomogeneous medium. The Green’s function G(x,x′0, t) can be decomposed to
the downgoing part G+,+(x,x′0, t) and upgoing part G−,+(x,x′0, t). The first superscript in
G±,+(x,x′0, t) denotes the up- or down-going part, i.e. minus denotes the upgoing part; the
second superscript denotes the response due to up- or down-going source, i.e. plus means the
down-going source. The relations between G(x,x′0, t), G

+,+(x,x′0, t) and G−,+(x,x′0, t) for
flux- and pressure- normalized wave fields can be found in Wapenaar and Grimbergen (1996).
For flux-normalized wave field, the relationship is more complicated than for the pressure-
normalized wave fields, where the up- and down-going wavefields can be simply superposed.

3-4-2 Reciprocity Theorems

The temporal Fourier transform is defined as

p(x, ω) =

∫ +∞

−∞
p(x, t)exp(−jωt)dt (3-26a)

p(x, t) =
1

2π

∫ +∞

−∞
p(x, ω)exp(jωt)dω, (3-26b)

where j is the imaginary number, ω is the angular frequency. For simplicity, I will use the
same symbol for time- and frequency domain function p.

In this work the derivations are given in terms of flux-normalized one-way wave fields.
The derivation of the 3D Marchenko equations is possible using the flux-normalization and
pressure-normalized wave fields; but for practical applications pressure-normalized wave fields
are preferable. On the other hand, by using the flux-normalized wave field, the derivation
of the 3D Marchenko equations becomes simple (i.e. formulas are slightly simpler) than for
pressure-normalized wave fields. That is why in this thesis equations are given in terms of
flux-normalized one-way wave fields. The acoustic pressure and particle velocity identify the
acoustic wave field in the space-time domain. In the space-frequency domain, the relations
between two-way and one-way wave fields are given by (Wapenaar et al., 2014a):

(
p
vz

)
=

(
L1 L1

L2 −L2

)(
p+

p−

)
(3-27)
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(
p+

p−

)
=

(
Lt2 Lt1
Lt2 −Lt1

)(
p
vz

)
(3-28)

In Eq. (3-27), Eq. (3-28) L1 and L2 are pseudo-differential operators and superscript t denotes
operator transposition. Eq. (3-28) is valid for the one-way fields which are normalized with
respect to acoustic power flux. According to Eq. (3-27) the relation between acoustic pressure
and one-way wave fields is:

p = L1

(
p+ + p−

)
(3-29)

A very detailed representation of operator L1 as well as relations between flux- and pressure-
normalized wave fields can be found in Wapenaar and Grimbergen (1996) and in Wapenaar
(1998).

Reciprocity theorems form the essential basis for 3D Marchenko Imaging. Wave fields are
defined in two states — A and B (indicated by subscripts A and B) in the space-frequency
domain. The theorems formulate general relations between two independent states (Wapenaar
et al., 2014a) — A and B. It is assumed that the medium parameters between ∂D0 and ∂Di
are the same in states A and B. The visual illustration is shown a little later in this chapter
in Figure 3-4. For flux-normalized one-way wave fields the theorems can be written as:

∫
∂D0

(p+
Ap
−
B − p

−
Ap

+
B)d2x =

∫
∂Di

(p+
Ap
−
B − p

−
Ap

+
B)d2x (3-30a)∫

∂D0

(p+
Ap

+∗
B − p

−
Ap
−∗
B )d2x =

∫
∂Di

(p+
Ap

+∗
B − p

−
Ap
−∗
B )d2x (3-30b)

where the asterisk (∗) denotes complex conjugation. Eq. (3-30a) represents the reciprocity
theorem of the convolution type and Eq. (3-30b) represents the reciprocity theorem of the
correlation type. It is assumed that there are no sources between two boundaries ∂D0 and
∂Di in Eq. (3-30a)-(3-30b) and the media is lossless between ∂D0 and ∂Di.
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Figure 3-4: Two states that are used in the the reciprocity theorems (a) State A: the medium
properties are identical to the physical medium between ∂D0 and ∂Di but reflection
free below ∂Di. (b) State B: the medium properties are identical to the physical
medium between ∂D0 and ∂Di. Also, the medium properties are identical to the
physical medium below ∂Di. [Modified after (van der Neut et al., 2015)].
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3-4-3 Focusing Functions

It was shown in chapter 2-1 that the Marchenko equation can be used to solve the one-
dimensional (1D) inverse scattering problem. In other words, the Marchenko equation links
the single-sided data (i.e. the reflection response) to the field inside the medium. The con-
cept of fundamental solutions is used to solve the steady-state Schrödinger equation in 1D
(Lamb Jr, 1980; Burridge, 1980). This approach was extended to 3D case (Wapenaar et al.,
2013). In this derivation, focusing functions are, in fact, fundamental solutions of the 3D
Marchenko equation. The focusing function (or the fundamental solution) of the first type
f1(x,x′i, t) is defined such as it focuses at xH = x′H,i at depth level Di and continues as a

downgoing wave field f+
1 (x,x′i, t) (Wapenaar et al., 2014b). The formal focusing condition is:

f1(xH, x3 = x3,i,x
′
i, t) = δ(xH − x′H,i)δ(t) (3-31)

The focusing function f1(x,x′i, t) can be decomposed as:

f1(x,x′i, t) = f+
1 (x,x′i, t) + f−1 (x,x′i, t) (3-32)

Note, that evanescent field of f1(x,x′i, t) is excluded at the focusing depth level (i.e. at depth
level Di). This is done to avoid instabilities in f1(xH, x3 = x3,i,x

′
i, t). It means that the

delta function becomes a spatially band limited delta function (it affects the resolution of the
image). The focusing function (or the fundamental solution) of the second type f2(x,x′0, t) is
similar to the focusing function f1(x,x′i, t), but f2(x,x′0, t) focuses at at depth level D0 (i.e.
f2(x,x′0, t) focuses to the focal point from below (Brackenhoff, 2016)).

f2(xH, x3 = x3,0,x
′
0, t) = δ(xH − x′H,0)δ(t) (3-33)

The decomposition is similar:

f2(x,x′0, t) = f+
2 (x,x′0, t) + f−2 (x,x′0, t) (3-34)

Similarly, evanescent field of f2(x,x′0, t) is excluded at the focusing depth level (i.e. at depth
level D0). The visual interpretation of the two types of the focusing functions is shown in
Figure 3-5.

3-4-4 Green’s Functions Retrieval

Reciprocity theorems are used to obtain the Green’s function representations. Again, all wave
fields are flux-normalized. As it was introduced before, wave fields are defined in two states A
and B (indicated by subscripts A and B). The truncated medium identified as a medium A in
state A, therefore, the subscript A will be used. The downgoing field of the source (observed
just below the source) in state A is p+

A(x0, ω) = δ(xH,0 − x′H,a). Here, x′a is the horizontal
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position of the source. The source which generates p+
A(x0, ω) is placed just above depth level

z0. Here, the 2D Dirac delta function represents the source at horizontal location x′a in state
A. At the same time, the upgoing component at depth level z0 is p−A(x0, ω) = RA(x0,x

′
a;ω) =

RA(xH, z0; x′a, z0;ω). The function RA(xH, z0; x′a, z0;ω) is the reflection response at depth
level z0 of the truncated medium. At depth level zi the downgoing part is p+

A(xi, ω) =
TA(xi,x

′
a;ω) = TA(xH, zi; x

′
a, z0;ω). The function TA(xH, zi; x

′
a, z0;ω) is the transmission

response of the truncated medium.

The state B is defined as the actual inhomogeneous media. Similarly, the point source
which generates the downgoing wave field is p+

B(x0, ω) = δ(xH,0 − x′H,b). The upgo-
ing component at depth level z0 is the reflection response of the inhomogeneous media:
p−B(x0, ω) = R(x0,x

′
b;ω) = R(xH, z0; x′b, z0;ω). At depth level zi (i.e. focusing level) the

downgoing part is p±B(xi, ω) = G±,+(xi,x
′
b;ω) = G±,+(xH, zi; ,x

′
b, z0;ω), i.e. the impulse

response due to the wave filed generated by δ(xH,0 − x′H,b) source.

) ) )

, (x , x ′, )

, (x, x ′, ) , (x, x ′, )

x ′
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(x, x ′, ) (x, x ′, )
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(x, x ′, ) (x, x ′, )

(x, x ′, )

Actual inhomogeneous medium
Actual inhomogeneous medium

Actual inhomogeneous medium

Homogeneous half−space Homogeneous half−space

Actual inhomogeneous half−space Reflection−free reference half−space Reflection−free reference half−space

Homogeneous half−space

x ′

Figure 3-5: Green’s function and two types of focusing functions. (a) Green’s function G(x, x′0; t)
of the 3D inhomogeneous equation due to a source x′0 and upgoing and downgo-
ing components of the Green’s function. (b) Focusing function of the first type
f1(x, x′i, t) which focuses to the focal point x′i. (c) Focusing function of the second
type f2(x, x′0, t) which focuses to the focal point x′0. [Modified after (Wapenaar
et al., 2014b)]

Now, we can write the following equations substituting the above expressions for states A
and B to the reciprocity theorems Eq. (3-30a)-(3-30b):
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R(x′a, z0; x′b, z0;ω)−RA(x′b, z0; x′a, z0;ω) =∫
∂Di

TA(xH, zi; x
′
a, z0;ω)G−,+(xH, zi; x

′
b, z0;ω)d2xH (3-35)

∫
∂D0

RA(xH, z0; x′a, z0;ω)R∗(xH, z0; x′b, z0;ω)d2xH − δ(x′b − x′a) =

−
∫
∂Di

TA(xH, zi; x
′
a, z0;ω)G+,+∗(xH, zi; x

′
b, z0;ω)d2xH (3-36)

The downgoing part of the focusing function is defined as:

δ(xH − x′F ) =

∫
∂D0

TA(xH, zF ; x′a, z0;ω)f+
1 (x′a, z0; x′F , zi;ω)d2x′a, (3-37)

where we defined f+ as the inverse of TA, x′F is the horizontal coordinate of the focal point.
The response of the truncated medium to f+ is:

f−1 (xH, z0; x′F , zF ;ω) =

∫
∂D0

RA(xH, z0; x′a, z0;ω)f+
1 (x′a, z0; x′F , zi;ω)d2x′a (3-38)

Substituting Eq. (3-37) and Eq. (3-38) into the Eq. (3-35) and Eq. (3-36) we get:

G−,+(x′F , zi; x
′
b, z0;ω) + f−1 (x′b, za; x

′
F , zi;ω) =∫

∂D0

R(x, z0; x′b, z0;ω)f+
1 (x, z0; x′F , zi;ω)d2x (3-39)

G+,+∗(x′F , zi; x
′
b, z0;ω)− f+

1 (x′b, za; x
′
F , zi;ω) =

−
∫
∂D0

R∗(x, z0; x′b, za;ω)f+
1 (x, z0; x′F , zi;ω)d2x (3-40)

Equations (3-39)-(3-40) will be used later to retrieve the Green’s functions. Later, in discrete
notation, it will be shown that in order to obtain G−,+ and G+,+∗ only the direct arrival and
the single-sided reflection response are needed.
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3-4-5 Discrete Marchenko Equations

In this section, equations (3-39)-(3-40) will be rewritten in a discrete notation and the coupled
Marchenko equations will be derived. Next, the iterative approach will be introduced to solve
the coupled Marchenko equations. Equations (3-39) and (3-40) can be written in space-time
domain:

G−,+(xF , zi; x
′
b, z0; t) + f−(x′b, za; x

′
F , zi; t) =∫ ∞
−∞

∫
∂D0

R(x, z0; x′b, z0; t− τ)f+(x, z0; x′F , zi; t)dτ (3-41)

and

G+,+∗(xF , zi; x
′
b, z0; t)− f+

1 (x′b, za; x
′
F , zi; t) =

−
∫ ∞
−∞

∫
∂D0

R(x, z0; x′b, za; t− τ)f+(x, z0; x′F , zi; t)dτ (3-42)

In discrete form, equations (3-41) and (3-42) are

f−1 + g−,+ = Rf+
1 (3-43)

and

f+
1 − g+,+∗ = R∗f−1 , (3-44)

where vector f±1 is the focusing function, vector g±,+ is the Green’s function. Matrix R
represents a complicated operation: the forward Fourier transformation, convolution with
the reflection response and inverse Fourier transform which acts on the focusing function (see
Eq. (3-41)). Matrix R∗ is defined in a similar manner and determines cross-correlation with
the reflection series which then acts on the upgoing focusing function. According to (van der
Neut et al., 2015), I introduce a matrix window Θ that removes the direct wave and the coda:

Θg−,+ = 0 (3-45)

and

Θg+,+∗ = 0 (3-46)

The focusing function can be represented as the direct wave and the coda:
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f+
1 = f+

1d + f+
1m (3-47)

Applying Θ to equation (3-47) gives:

Θf+
1 = Θ(f+

1d + f+
1m) = f+

1m (3-48)

and

Θf−1 = f−1 (3-49)

From (3-43) with help of (3-45), (3-47) and (3-49) we obtain:

f−1 = ΘRf+
1d + ΘRf+

1m (3-50)

At the same time, from (3-44), (3-46), (3-47) and (3-48) we get:

f+
1m = ΘR∗f−1 (3-51)

We can also retrieve the focusing function differently. By using (3-50) and (3-51) we obtain
the equation which can be solved for f+

1m:

[I−ΘR∗ΘR]f+
1m = ΘR∗ΘRf+

1d (3-52)

Here, I is an identity matrix. Now, we observe that (3-52) is the Fredholm equation of the
second kind. The solution of such type of equation is known and yields the Kth order estimate
of f+

1 :

f
+(K)
1 =

K∑
k=0

(ΘR∗ΘR)k f+
1d, (3-53)

The solution for f−1 can be found by inserting (3-50) into (3-52):

f
−(K)
1 = ΘR

K∑
k=0

(ΘR∗ΘR)kf+
1d (3-54)

The convergence of Eq. (3-53) and is verified by van der Neut et al. (2015) under the condition
that ‖ (ΘR∗ΘR)k f+

1d‖2 → 0 as k → ∞. ‖ · ‖2 denotes the L2-norm. The solutions for the
upgoiung Green’s functions is:
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g−,+(K) = ΨR

K∑
k=1

(ΘR∗ΘR)kf+
1d (3-55)

and

g−,+(0) = ΨRf+
1d (3-56)

This result means that, first, we define g−,+(0) using Eq. (3-56), and then, estimate the Green’s
function via Eq. (3-55). The solutions for the downgoing Green’s functions is:

g+,+∗(K) = [I−ΨR∗ΘR

K−1∑
k=1

(ΘR∗ΘR)k]f+
1d (3-57)

and

g+,+∗(0) = f+
1d (3-58)

Similarly, first, we define g+,+(0) using Eq. (3-58), and then, estimate the Green’s function
via Eq. (3-57). Thus, equations (3-53)-(3-57) can be used to retrieve the Green’s function
g±,+(0) and the focusing function f±1 .

3-4-6 Marchenko Redatuming

Marchenko equations can be used to redatum the receivers and the sources to any depth level
Di. The upgoing and downgoing Green’s functions are related via (Wapenaar et al., 2014b):

G−,+(xi,x
′, t) =

∫
∂Di

dx

∫ ∞
−∞

R(xi,x, τ)G+,+(x,x′, t− τ)dτ (3-59)

Here, R(xi,x, τ) is the reflection response of the medium below depth level Di. This reflec-
tion response is defined in a medium which is identical to the actual medium below Di and
reflection-free above this depth level. (3-59) states that the downgoing Green’s function at the
new datum Di, convolved with the reflection response R(xi,x, τ) gives the upgoing Green’s
function. The first integral means that G+,+(x,x′, t− τ) convolved with R(xi,x, τ) and then
integrated along all source positions of this reflection response at Di. Therefore, (3-59) can
be solved via multidimensional deconvolution and image can be obtained (Broggini et al.,
2014). In the 1D case, the solution of (3-59) becomes simple — deconvolution results in the
redatumed reflection response at depth level Di.

On the other hand, we also can apply other imaging methods once the redatumed reflection
response is obtained. It might be, for example, Reverse Time Migration or RTM (Amundsen
and Robertsson, 2014). Also, we can the extract zero-time component of the redatumed
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reflection response and repeat that for many depth levels Di. It is called Marchenko Imaging
(Wapenaar et al., 2014b). Also, we can apply Full-Waveform Inversion (FWI) once we have
obtained the redatumed reflection response. As you can see, there are many ways on how to
get the image. In my opinion, Marchenko Redatuming is the most important issue.

3-5 Conclusion

In this chapter, the 3D Marchenko (Wapenaar et al., 2014b) equations were derived from
the basic solution of the inverse scattering problem given by the Gelfand-Levitan-Marchenko
equation (Marchenko, 1955; Gelfand and Levitan, 1951). The starting point has been done
by Marchenko who has proved the theorems on the uniqueness of the 1D inverse scattering
problem and provided a method to reconstruct the potential. Nowadays, it is known as
the inverse Sturm-Liouville problem. The second step has been done by Burridge (1980)
who showed that the Marchenko equation can be applied to solve the 1D inverse problems
of wave propagation. Indeed, the most important idea was that the fundamental solution
considered as the delta pulse and the function K (Burridge, 1980; Lamb Jr, 1980). The third
step has been done by Rose (2001, 2002) who connected the inverse scattering problem and
autofocusing. The fourth step has been done by Broggini and Snieder (2012), who connected
the work of Rose to seismic interferometry. Finally, the fifth step has been done by Wapenaar
et al. (2014b). In the latter paper the 3D extension of the Marchenko equation is given as
well as the iterative scheme to its solution. It is assumed that the total Green’s function can
be represented as a superposition of the up- and down-going Green’s functions. Furthermore,
it is assumed that the media is lossless. It is clear that it is impossible to include seismic
attenuation into the current iterative scheme without its modification. Furthermore, while
the visual explanation of the focusing function is very straightforward (i.e. it is an incident
wave field which focuses inside the medium and all corresponding multiples are removed via
a complicated inverse-phase incident wave field) the Marchenko equations acts differently. In
fact, the Marchenko equation creates the focusing function using the full reflection series,
i.e. time doesn’t play a role because the reconstruction of the focusing function proceeds
simultaneously for all times. Therefore, it means that in order to include intrinsic attenuation
into the scheme we should know the attenuation of the medium in advance! But that is an
unknown parameter. Therefore, only an adaptive approach is possible. There are several
methods which would work. According to the Marchenko equation, in order to account for Q-
factor, we can either modify the reflection series or the focusing function. This thesis is focused
on modifying the reflection series, using different compensation parameters. Alternatively, we
could work with the focusing function — calculate the focusing function using different lossy
reflection series that are compensated with different Q-factors — to produce the optimal
solution, which corresponds to correct focusing.
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Chapter 4

Viscoelasticity and Seismic
Attenuation

Seismic attenuation plays an important role in seismic wave propagation. Over the past fifty
years, a lot of work has been done in this area. Many models were developed to describe
attenuation effects. Generally speaking, all forward-modeling approaches are split into two
categories (Zhu and Harris, 2014). The first category implements attenuation in the frequency
domain. In this case the wave propagation velocity becomes complex. The second approach
uses different viscoelastic models to introduce the Q-factor, as a combination of springs and
dashpots.

There are several attenuation mechanisms (Anderson, 1989; Arora et al., 2011): intrinsic at-
tenuation, scattering and geometrical spreading. Geometric spreading is the energy density
decrease caused by wavefront expansion. Therefore, the compensation for the geometrical
spreading is straightforward. Intrinsic attenuation is the energy loss due to various physical
processes such as defects, dislocations and grain boundaries (Anderson, 1989). Scattering
attenuation is the transferring and scattering of elastic energy due to inhomogeneities in the
media. It also includes seismic wave reflection and refraction. Therefore, scattering attenua-
tion is not an energy loss to heat but rather a conversion of elastic energy and production of
scattering waves.

In partially saturated rocks, many other sophisticated attenuation mechanisms exists — in-
cluding different types of wave-induced fluid flow at microscopic and mesoscopic scales. In-
deed, it was shown that wave-induced fluid flow is the major cause of intrinsic seismic atten-
uation at different frequency ranges: from seismic to sonic (Müller et al., 2010; Rubino and
Holliger, 2013). Some of these effects can be taken into account by using Biots theory of dy-
namic poroelasticity (Biot, 1956a,b, 1962). Dynamic-equivalent-medium models can be used
to describe interlayer flow between poroelastic layers: for a periodically stratified medium
(White et al., 1975) and for randomly fluctuated layer properties (Gurevich and Lopatnikov,
1995). Some important results can be found in (Carcione et al., 2003; Qi et al., 2014). A very
comprehensive review can be found in Müller et al. (2010).
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In seismic imaging, reducing computational costs is an essential task. Therefore, very com-
plicated frequency-dependent attenuation or quality factor parameters are not desirable in
such problems. Kjartansson (1979) proposed a constant Q-factor model in the time domain
which produces very accurate results within the seismic bandwidth. Also, constant or near-
constant Q-factor models can be created via an approximation of the generalized Zener model
(Carcione, 2014).

In this work, the forward modelling of the lossy reflection series was done using a constant
attenuation factor for a simple model and using a generalized Maxwell model which will be
explored in detail in section 4-5. The compensation for the attenuation was performed using a
constant attenuation factor which is convenient in seismic imaging. There were three models
studied as part of this project: [1] amplitude damping model, [2] a generalized Maxwell model
with two independent parameters, [3] a generalized Maxwell model with one independent
parameter. In order to compensate for the losses, three models were applied: [A] a constant
Q-factor model, [B] an effective Q-factor model and [C] a time-dependent Q-factor model.

4-1 Stress-Strain Relationships

The basic theory of linear viscoelasticity can be found in various literature, for example in
Christensen (1982) and Carcione (2014). The modulus M in the viscoelastic solid becomes
complex. Attenuation can be added in the frequency domain by complex valued elastic moduli
and/or density. In the time domain, attenuation can be introduced by the relaxation tensor
ψijkl. Following Carcione (2014), the stress-strain relationship in viscoelastic media is (using
index or Einstein notation):

σij(x, t) = ψijkl(x, t) ∗ ∂tεkl(x, t) (4-1)

where ∗ represents time convolution, ψijkl are the components of the relaxation tensor, σij and
εkl are the components of the second order strain and stress tensors, respectively. Equation
(4-1) can be written in tensor form:

σ = Ψ ∗ ∂tε = ∂tΨ ∗ ε (4-2)

Consider a n-dimensional Euclidean space with the basis being orthonormal, {ai}, i = 1, ..., n.
Therefore, the stress tensor is σ = σijai ⊗ aj and the basis is ai ⊗ aj (i.e. dyadic basis, see
Appendix A). The strain tensor is ε = εklak ⊗ al and the basis is ak ⊗ al. The symbol ⊗
denotes the tensor product. Equation Eq. (4-2) accounts for the fact that the value of stress
tensor depends on the history of the strain field which is shown by time derivatives.

In the short matrix or Voigt notation, Eq. (4-1) can be written as:

σ̄v = Ψv ∗ ∂tēv, (4-3)
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where

σ̄v = (σ1, σ2, σ3, σ4, σ5, σ6)T = (σ11, σ22, σ33, σ23, σ13, σ12)T (4-4)

and

ēv = (e1, e2, e3, e4, e5, e6)T = (e11, e22, e33, e23, e13, e12)T = (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)T

(4-5)

In this case, the stress σ̄v and the strain ēv are both 6 × 1 matrices. The relaxation tensor
determines the viscoelastic behaviour of the solid. For example, stress and strain can be
related through different models: Kelvin-Voigt solid, Standard Linear Solid (Zener), etc..

4-2 Wave Propagation in Viscoelastic Solid

Wave propagation of monochromatic plane waves in viscoelastic media can be written as (in
terms of displacement):

u(x, t) = u0 e
[j(ωt−kx)] (4-6)

Thus, the medium is subjected to average sinusoidal strain exp(jωt) (Hashin, 1970):

σ = σ0exp(jωt) (4-7)

and

ε = ε0exp(jωt) (4-8)

Furthermore, the Fourier transformation of Eq. (4-2) gives:

F [σ(t)] = M(ω)F [ε(t)] (4-9)

where F [·] denotes the Fourier transform operator (3-26a) and

M(ω) = F [∂tΨ(t)] =

∫ +∞

−∞
∂tΨ(t)exp(−jωt)dt (4-10)

The coefficient of proportionality between stress and strain is the complex elastic moduli
M(ω) (Hashin, 1970):
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M(ω) = MR(ω) + jMI(ω) (4-11)

In Eq. (4-11), MR(ω) represents a real part of the complex elastic moduli and MI(ω) repre-
sents an imaginary part of the complex elastic moduli. Furthermore, in terms of the relaxation
tensor, MR(ω) and MI(ω) are (Carcione, 2014):

MR(ω) = ω

∫ +∞

0
Ψ(t)sin(ωt)dt (4-12)

and

MI(ω) = ω

∫ +∞

0
[Ψ(t)−Ψ(∞)] cos(ωt)dt (4-13)

I assumed that the medium is isotropic and replaced M(ω) by M(ω) (in the lossless case M
is the Lame constants, M = λ+ 2µ). Therefore, the complex velocity is:

Vc =
ω

k
=

√
M(ω)

ρ
(4-14)

In (4-14), the wavenumber is complex k = κ− jα; ω is real; α is the attenuation factor. With
a complex wavenumber, equation (4-6) can be rewritten as:

u(x, t) = u0 e
[−α(ω)x]e[j(ωt−κx)] (4-15)

Equation (4-15) shows that the attenuation coefficient is defined as the exponential decay
coefficient of a harmonic wave (Mavko et al., 2009). According to Eq. (4-14), the phase
velocity is:

Vp =
ω

κ
=

[
Re

(
1

Vc

)]−1

(4-16)

It is possible to rewrite Eq. (4-14) where the wavenumber is real but ω is complex. In this
case, the group velocity is:

Vg =
∂ω

∂κ
=

[
Re

(
∂k

∂ω

)]−1

(4-17)

In the general case of a 3D anisotropic media, phase and group velocities are different. Fur-
thermore, their propagation directions are different. Group velocity propagation is determined
by the Umov-Poynting vector, whereas phase velocity propagation direction is determined by
eigenvectors of the Christoffel equation. In 1D such an analysis is useless. Note, that in
seismic imaging, equations are usually formulated in terms of particle velocity field v.

August 20, 2017



4-3 The Quality Factor Q 33

4-3 The Quality Factor Q

The quality factor Q is the measure of how dissipative material is Mavko et al. (2009).
There are several definitions of Q-factor, but the most common definition is (O’connell and
Budiansky, 1978):

1

Q
=

Im(M)

Re(M)
≡ MI

MR
(4-18)

The definition (4-18) will be used by default if another meaning is not considered. Eq. (4-18)
means that the inverse Q-factor is determined by the ratio of imaginary and real parts of the
complex elastic moduli. In terms of energy, Q is (O’connell and Budiansky, 1978):

1

Q
=

∆E

4πE
(4-19)

∆E is the energy dissipated per cycle under a harmonic loading. E is the average stored
energy. Note, that in terms of spatial attenuation factor and for low-loss media (Q > 1) we
can write:

α =
ω

2QspVp
=

πf

QspVp
(4-20)

2πf = ω and Qsp defines the spatial quality factor. Therefore, we can rewrite Eq. (4-15) as:

u(x, t) = u0exp

[
− πf

QspVp
x

]
exp[j(ωt− kx)] (4-21)

At the same time, we can define a temporal quality factor for larger times as the exponentially
decaying amplitudes u(t):

u(t) = u0exp

[
− πf0

Qtm
t

]
(4-22)

f0 is the central frequency of the source wavelet, Qtm is the temporal Q-factor. In other
words, Eq. (4-22) determines the damping factor which acts on the wavefields. Therefore, for
lossy wavefield compensation purposes in the time domain the temporal quality factor Qtm
plays an essential role.

4-4 The Kramers-Kronig Relationship

The Kramers-Kronig relationship describes the connection between modulus-frequency dis-
persion and Q-factor in the viscoelastic media. It was first derived by Kramers and Kronig
(Kramers, 1927). The complete derivation of these relations for a general physical system
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can be found in Landau and Lifshitz (1969). The essential properties of the M(ω) function
(which are used in the proof) are: M(ω) is holomorphic and M(ω) is single-valued (or, briefly,
M(ω) is a regular function). The derivation uses some theorems from complex analysis. The
Kramers-Kronig relationship is also known as causality constraints (Landau and Lifshitz,
1969; ODonnell et al., 1981). Since Ψ is is real and M(ω) is Hermitian (Carcione, 2014):

F [∂tΨ(t)] = MR(ω)−
(
j

πω

)
∗MR(ω) (4-23)

Therefore, the causality is:

MI(ω) = − 1

π
p.v.

∫ +∞

−∞

MR(ω′)

ω′ − ω
dω′ (4-24)

and

MR(ω) =
1

π
p.v.

∫ +∞

−∞

MI(ω
′)

ω′ − ω
dω′ (4-25)

p.v. denotes the Cauchy principal value. Therefore, the real and imaginary parts of elastic
moduli are linked via Hilbert transform. Equations (4-24)-(4-25) can be rewritten as (Mavko
et al., 2009):

MR(ω) = MR(0)− ω

π

∫ +∞

−∞

MI(ω
′)

ω′
dω′

ω′ − ω
(4-26)

and

MI(ω) =
ω

π

∫ +∞

−∞

MR(ω′)−MR(0)

ω′
dω′

ω′ − ω
(4-27)

In equations (4-26)-(4-27), MR(0) represents the real part of the modulus at zero frequency.
In other words, MR(0) is an instantaneous elastic response from the viscoelastic solid (Mavko
et al., 2009). In terms of the quality factor, (4-26)-(4-27) becomes:

Q−1(ω) = − |ω|
πMR(ω)

∫ +∞

−∞

MR(ω′)−MR(0)

ω′
dω′

ω′ − ω
(4-28)

The inverse of Eq. (4-28) is:

MR(ω)−MR(0) = −ω
π

∫ +∞

−∞

Q−1(ω)MR(ω′)

ω′
dω′

ω′ − ω
(4-29)

According to equations (4-26)-(4-27), a larger attenuation is associated with larger dispersion.
In fact, there are many ways to model attenuation, but the Kramers-Kronig relations put
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some constraints on the material’s behaviour. Therefore, these constraints make it possible
to link velocity dispersion and Q-factor in a linear viscoelastic solid (Mavko et al., 2009). The
main problem with the practical application of the Kramers-Kronig relation is that usually
we don’t know all frequencies of MR(ω). By using equations (4-2)-(4-5), we can apply the
Kramers-Kronig relationship to the general case of viscoelastic media.

4-5 The Dissipative Scalar Wave Equation with Two Independent
Parameters

Let us consider the general equation Eq. (2-1) as a wave equation — corresponding to the
complex frequency-domain scalar Helmholtz equation with operator L (de Hoop, 2001):

LĜ = −δ(x) (4-30)

L = (∂m∂m + γ̂2) (4-31)

where γ̂ is the wave number. γ̂ = (αHβH − ω2/V 2 + jω(αH · ρ + βH · κ))1/2. Here, αH
and βH are two relaxation parameters which correspond to compressibility and bulk density
dissipation, respectively. κ is the compressibility, or rather the inverse of bulk modulus. V is
the wave speed. In other words, the dissipation is introduced as αH + jωκ and βH + jωρ in
the frequency domain expression for the wave equation. The solution of (4-30)-(4-31) is the
Green’s function:

Ĝ = exp(−γ̂R)/(4πR) (4-32)

R is the distance from a point source. Therefore, only for a special case of αH = βH , we can
write the solution of Eq. (4-30) as:

G =
1

4πR
exp

(
−αH · t

κ

)
δ(t−R/V ) (4-33)

While the solution for the lossless case is (for a homogeneous medium):

G =
1

4πR
δ(t−R/V ) (4-34)

According to Eq. (4-33), the compensation in the form of exp(αt) can completely compensate
attenuation in the lossy reflection series only in a special case. This model with two indepen-
dent parameters will be used in the modelling of the lossy reflection series. As you can see,
the definition of αH and α (Eq. (4-33)) are different and we don’t consider the exact formula
between them.
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4-6 Conclusion

The basic theory of linear viscoelasticity was shown on the basis of the relaxation tensor
(Carcione, 2014). The definitions of the quality factor were given in terms of the energy
dissipation; And, in terms of the ratio of the real and imaginary parts of the complex elastic
moduli. Fortunately, the two definitions introduce the same quality factor (O’connell and
Budiansky, 1978).

In general, the low frequency elastic modulus has lower attenuation than the high frequency
elastic moduli within the desired bandwidth. This idea can be shown via a simple standard
linear solid (or Zener) model (Carcione, 2014). Velocity dispersion and Q-factor frequency
dependence are especially important in porous rock, filled with different fluids, but such a
detailed research is outside the scope of this study. The constant Q-factor model as well as
De Hoop’s model (section 4-5) were used to model the lossy reflection response.
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Chapter 5

Wave Propagation in Heterogeneous
Rocks and Rock Physics Modeling

Wave Propagation in Heterogeneous Porous Rocks and Rock Physics are dramatically spread-
ing research areas in geophysics nowadays. Amos Nur, one of the pioneers of Rock Physics
and founder the Stanford Rock Physics Project, revolutionized how Rock Physics can be used
in seismic exploration. Stanford Rock Physics Project research projects, nowadays, became
very quantitative. The books (Mavko et al., 2009; Dvorkin et al., 2014; Avseth et al., 2010)
can be used to create different rock physics constraints for seismic imaging, as well as, for the
quantitative interpretation of seismic data.

Nowadays, lots of different rock physics models exist which describe rock properties at different
scales and stress/strain regimes. There are three basic parameters which are essential in such a
characterization of the rock: the moduli of the rock, density and attenuation. Unfortunately,
nowadays, we are more likely using velocity or impedance to infer porosity, lithology and
fluid, rather than using attenuation (Dvorkin and Mavko, 2006). That is because of: [A]
only a few consistent and relevant field datasets and [B] the phenomenological complexity of
available data. Thankfully, a lot of research has been done in the past few years on seismic
attenuation. Now, Rock Physics can be used to improve seismic imaging which was shown by
a few recent PhD dissertations at Stanford Exploration Project — for example: Shen (2016)
and Li (2014). Also, important researches on seismic attenuation were done at TU Delft a
few years ago by Zhubayev (2014) and Kudarova (2016).

This study is mostly focused on the Marchenko equation. Detailed research on different rock
physics models for quantifying elastic properties and seismic attenuation is beyond the scope
of this project. Instead, I focused on linking seismic imaging and rocks physics through rock’s
viscoelastisity and provide a method to model the Q-factor of the rock. The theoretical part of
this work and a general work flow are very solid and can be used for a very complex medium.
In this chapter you will find: [1] a general work flow of the Rock Physics Modelling, and [2]
the T-matrix approach, which is used in this study.
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5-1 The General Work Flow of Rock Physics Modelling

As was mentioned before, there are three basic parameters which describe rock: the modulus
(or the stiffness tensor), density and attenuation of the rock. The modulus and attenuation
are usually frequency dependent. Furthermore, these parameters are non-linearly dependent
on applied stress and stress-strain relationship, in general, non-linear. Therefore, precisely
speaking, rocks are not elastic or viscoelastic, etc. (Dvorkin et al., 2014). But according
to our observations, rocks are more likely to have viscoelastic behaviour rather than elastic
behaviour. Thus, viscoelasticity is a very good approximation of a rock’s rheology. In practice,
seismic waves propagate in the frequency range of approximately 101 (seismic) to 104 (sonic)
Hz (Dvorkin and Mavko, 2006).

Rocks can be represented as a composite material — polycrystalline aggregate with pores
and cracks. For non-reservoir rocks, we can use constant-Q models or slightly dispersive
viscoelastic models. In fact, non-reservoir rocks produce some attenuation mainly because
of the elastic heterogeneities in the rock, but that is not part of this study. The elastic
moduli in a low-frequency regime can be calculated using different effective medium models
— for example the T-matrix approach (Jakobsen et al., 2003). In such models, rocks are
represented by a mixture of different minerals in a rock’s matrix — for example, in carbonate
rocks, the matrix consists of calcite. Of course, some calibrations with real data are needed.
For reservoir rocks, the modelling becomes more difficult.

In fact, there are several rock physics models which can predict Q-factor from the rock’s
properties. In our frequency range of four orders of magnitude, pore-scale Biot and squirt
flow attenuation mechanisms are not relevant. Within the seismic bandwidth, the theory
provided by Shapiro and Müller (1999) can create the desired 1/Q versus frequency curves
which can be used for a detailed simulation of fluid-saturated reservoir rocks. This is also
important for seismic imaging and monitoring of such fluid-saturated rocks because of the
strongly inelastic behaviour of those. This analysis might be very important for synthetic
studies and for applications on real data.

The main idea is that the Q-factor is linked to the changes in the elastic modulus versus
frequency (Dvorkin and Mavko, 2006). A linear viscoelastic solid represented by a Zener model
is a very simple illustration of this link (Mavko et al., 2009; Dvorkin et al., 2014; Carcione
and Picotti, 2006) . We only need the low frequency moduli (i.e. the low frequency limit)
and high frequency moduli (i.e. the high frequency limit) to construct the Zener model. This
model produces two main curves: [A] the velocity-frequency curve which defines the velocity
dispersion, and [B] Q−1 versus frequency curve which shows that higher frequencies attenuate
stronger than lower frequencies. Therefore, the task is reduced to calculation of the low and
high frequency elastic moduli. Eq. (4-2) which determines the stress-strain relationship in
viscoelastic solid:

σ = ∂tΨ ∗ ε (5-1)

In a lossless case, the stress-strain relationship can be written as:
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σ = Cε (5-2)

C is the elastic modulus. Ψ(t) = CH(t), where H(t) is Heaviside function. In this study, the
lossless moduli C will be used to construct the viscoelastic solid in the next few chapters.

The first simple approach for reservoir rocks is given by Dvorkin and Mavko (2006). At
low frequencies we assume that the loading is slow. Therefore, the oscillations of the pore
pressure equilibrate. In this case, low frequency rock physics models can be applied for elastic
moduli calculations — calculating the moduli using Gassmann’s equation. In other words,
the low-frequency compressional modulus is calculated by theoretically substituting the pore
fluid into the spatially averaged rocks dry-frame modulus (Dvorkin and Mavko, 2006). High
frequency moduli are calculated by the spatial average of the saturated-rock modulus.

The second approach is rather different. Instead of a very simple heuristic method we can
use the dynamic T-matrix approach (Jakobsen, 2004). The dynamic T-matrix approach was
also extended to a few types of fluid flow (Jakobsen and Chapman, 2009). This method is, in
fact, a method from micromechanics but takes into account different types of fluid flow. In
other words, at low frequencies, the dynamic T-matrix approach is Biot-Gassmann consistent
while at higher frequencies it behaves like a viscoelastic solid. A quite similar result for
seismic frequency band can be achieved using the static T-matrix approach (Jakobsen et al.,
2003) and the Zener model simultaneously. In this case, I first calculated the dry moduli of
a porous rock using the T-matrix method, and then used the Gassmann equation to fill the
pores with different fluids. As a result I got the low-frequency rock’s moduli. Secondly, I used
the T-matrix method to calculate the moduli of the fluid-filled rock. In this case, pores were
not sensitive with respect to fluid flow and, therefore, it produced the high-frequency elastic
moduli. Thirdly, I used the low- and high- frequency elastic moduli as input parameters
for the Zener model. For the lossy reflection response modelling, I used the low-frequency
elastic moduli because the wave frequency is closer to the zero frequency limit and the Biot-
Gassmann assumptions were fulfilled. But the Q-factor parameter was obtained through
linear approximation of the Zener model. Therefore, the higher the difference between the
low- and high- frequency elastic moduli, the higher the attenuation of the rock. This approach
was used in this study. While in future research, more complicated models can be used to
produce more sophisticated Q-factor behaviour as well as velocity dispersion.

5-2 The T-Matrix Approach

5-2-1 Some basic equations

In the local linear theory of elasticity, the local stress field linearly depends on the local
strain field of the inhomogeneous medium. The idea is to provide a method which can be
used to calculate the low- and high frequency elastic moduli and, then, use these moduli as
input parameter for the Zener viscoelastic model. The T-matrix approach makes it possible to
connect the microstructure of the rock with its effective properties. We can write a generalized
Hooke’s Law for the anisotropic elastic case (in tensor form) as:
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σ(x) = C(x) : ε(x), (5-3)

or using index notation (Einstein):

σij(x) = Cijkl(x)εkl(x) (5-4)

where C(x) is the local stiffness tensor, and x is the spatial coordinates of the medium. The
symbol ”:” denotes the double dot product.

The effective stiffness tensor of the statistically homogeneous medium is determined as the
coefficient of proportionality C∗:

〈σ〉 = C∗ : 〈ε〉 (5-5)

The stress and strain fields are averaged over the representative elementary volume (REV)
of the inhomogeneous medium. We assume that the REV contains a sufficient number of
inclusions such that the statistical averaging makes sense. The REV is much larger than
the size of the heterogeneities in the medium. On the other hand, the volume’s macroscopic
physical properties coincide with the medium’s macroscopic properties in terms of the spatial
scale of interest being analyzed. The angular brackets 〈·〉 denote volume averaging. Therefore,
the averaging of the stress and strain fields over the representative elementary volume V can
be written in the following form (for stress field):

〈σ〉 =
1

V

∫
V

σ(x)dx (5-6)

The volume averaging for the strain field can be written similarly.

5-2-2 The T-Matrix

In this section all mathematical operations are written using operator or index notations.
The stiffness tensor can be represented as:

C(x) = C(L) + δC(x) (5-7)

where C(L) is the elastic moduli of the matrix of the rock. At the same time, the quantity C(L)

can be chosen arbitrarily, i.e. there are some connections to the Biot-Willis parameter. The
last term in the Eq. (5-7) can be expressed as the medium fluctuations: δC(x) ≡ C(x)−C(L).
Let us consider the general equation Eq. (2-2) with the operator L:

Likg
(0)
km(x) = −δimδ(x) (5-8)
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Lik = ∇jC(L)
ijkl∇l (5-9)

Equations (5-8)-(5-9) are called Navier equations. In general, the elastostatic problem is
governed by three equations (Willis, 1981): the equilibrium equation∇·σ(x) = 0, Hook’s Law
(5-3) and ε = 1/2

(
(∇u) + (∇u)T

)
(Landau and Lifshitz, 1986). The boundary conditions for

the displacements are: u = uδΩ(x), x ∈ δΩ, where δΩ is the external boundary of the solid.

The derivation of the full theory is beyond the scope of this work, therefore, only a few
important aspects of the theory will be shown. A general integral equation for the strain field
(5-10) is usually considered as a starting point (for the statistically homogeneous medium
and homogeneous boundary conditions):

ε(x) = ε(0) +

∫
Ω

G(0)(x− x′)δC(x′)ε(x′)dx′ (5-10)

where the constant tensor ε(0) is the medium’s strain field with the elastic moduli C(L)

under the action of the boundary conditions specified at infinity. In other words, Eq. (5-
10) is the solution of Eq. (5-8)-Eq. (5-9). The tensor δC(x) is the difference between the
inclusions’ elastic moduli and the elastic moduli C(L). The fourth rank tensor G(0) is the
second derivative of the equilibrium equation (quasi-static version of the dynamic equations
of motion in solid mechanics). The components of G(0) are (using index or Einstein notation):

G(0) = G(0)
ijkl = −1

4

(
g

(0)
ik,jl + g

(0)
jk,il + g

(0)
il,jk + g

(0)
jl,ik

)
(5-11)

The tensor g(0) is the Green’s tensor of the equilibrium equation. The tensor component
g(0)(x − x′) determines the displacement component ui emerging at point x of the elastic
infinite homogeneous medium under the action of a unit force directed along the ek-axis and

applied at point x′. Correspondingly, tensor G(0)
ijkl determines the ij-th component of the

strain tensor at the point x under the action of the kl-th pseudo-stress component at the
point x′ of the volume of the medium. The pseudostresses have the form δC(x′)ε(x′).

In the quantum scattering theory, equation (5-10) is the the Lippmann-Schwinger equation
(Landau and Lifshitz, 1958). Note, that the Lippmann-Schwinger equation is equivalent to
the steady state Schrödinger equation. Let us define the operator G in the following way:

G =

∫
Ω

G(0)(x− x′)dx′ (5-12)

From the standpoint of the quantum scattering theory, tensor G(0) is a propagator and δC
are the scatters of the strain field in the direction from point x to point x′ (Gubernatis and
Krumhansl, 1975). We can write Eq. (5-10) in the form of the series:

ε(x) = ε(0) + GδCε(0) + GδCGδCε(0) + ..., (5-13)
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which is the Dyson series in the quantum scattering theory. The fourth rank tensor field T
is:

δC(x)ε(x) = T(x)ε(0) (5-14)

which connects the stress field in the medium with the boundary conditions. For simplicity,
we will write the final equation for the effective elastic moduli as:

C∗ = C(L) + 〈T〉
(
I4 + 〈GT〉

)−1
(5-15)

The derivation of this equation can be found in various literature, for example in Jakobsen
et al. (2003), Gubernatis and Krumhansl (1975), and Zeller and Dederichs (1973). The
equation (5-15) is exact but the tensors 〈T〉 and 〈GT〉 can be calculated only approximately.

The medium consisting of the matrix and inclusions (ellipsoids) - are divided into families r =
1, 2, , ..., N . Each family of inclusions has the elastic moduli C(r), the volume concentration

υ(r), and aspect ratio α(r). Subscript (α) corresponds to the volume Ω
(r)
(α) which occupies one

family of inclusions. A detailed explanation can be found in Jakobsen et al. (2003). Tensor
t(r) is the T -matrix for one family of inclusions. The expression for t(r) is similar to Eq.
(5-14):

δC
(r)
(α)(x)ε

(r)
(α)(x) = t

(r)
(α)(x)ε(0) (5-16)

The T -matrix can be written as:

T =
∑
r

t
(r)
(α) +

∑
r

∑
u6=r

t
(r)
(α)G

(ru)
t

(u)
(α) +

∑
r

∑
u6=r

∑
v 6=u

t
(r)
(α)G

(ru)
t

(u)
(α)G

(uv)
t

(v)
(α) + ... (5-17)

Equation (5-17) describes scattering in a typical many-body system. By selecting two-point,
three-point, etc., correlation functions, each term in the right-hand side of Eq. (5-17) accounts
for the interactions between the inclusions in the statistical case. The Dyson series (5-13)
describes the interactions in the many-body system.

5-2-3 Generalized Optical Potential Approximation 1

I introduce the modified Generalized Optical Potential Approximation (5-18)-(5-21). By the
term modified I postulate a special choice of C(L) = (1 − f)CM + fCFL where parameter
f is a function of the Biot-Willis parameter α; CM is the elastic moduli of the matrix of
the rock; CFL is the elastic moduli of inclusions (Alkhimenkov and Bayuk, 2017). Physically,
parameter f (or, in general sense, tensor) reflects the degree of connectivity between inclusions.

1In this section all operations are written using tensor notation.
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The Generalized Optical Potential Approximation approach is given by Jakobsen et al. (2003).

The operator G(r)
was replaced by a constant tensor Ĝ

(r)
. Expressions (5-18)-(5-21) are pre-

sented in such a way that provides straightforward implementation in FORTRAN90, Matlab
or any other software package:

C∗OPA = C(L) + 〈T〉 :
(
I4 + 〈T−1〉 : B

)−1
(5-18)

〈T〉 =
∑
r

t(r)υ(r) (5-19)

B =
∑
r

∑
s

υ(r)t(r) : Ĝ
(rs)

: t(s)υ(s) (5-20)

where υ(r) is the volume concentration of inclusions of family r. The constant tensor Ĝ
(r)

is:

Ĝ
(r)
≈
∫
g

(s)
k)(i,j)(l(x)dx (5-21)

Equation (5-18) means that the components of the tensor Ĝ
(r)

are given by the integration
of the singular component of the Green’s tensor second derivative over the inclusion volume

(Bayuk et al., 2007). Tensor Ĝ
(rs)

can be calculated using the same formulas as tensor Ĝ
(r)

but using the aspect ratio of the two-point correlation function, which defines the probability
density for finding an s-type inclusion at point x′, if there is an r-type inclusion at point x
(Jakobsen and Johansen, 2005).

Likewise, tensor Ĝ
(r)

can be defined as:

Ĝ
(r)

= −S(r) : S(L), (5-22)

where S(r) is the Eshelby tensor (Eshelby, 1957), and S(L) is the compliance tensor:

S(L) =
(
C(L)

)−1
(5-23)

Equations (5-18)-(5-23) fully describe the modified Generalized Optical Potential Approxi-
mation Method to calculate the low frequency elastic moduli of heterogeneous rocks. This
approach can be considered as a long wavelength Biot-Gassman theory for porous rocks. Some
practical aspects of this method are given in Alkhimenkov (2015). A comparison with other
methods can be found in Jakobsen et al. (2003) and Alkhimenkov (2017).
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5-3 Conclusion

In this chapter, a General Work Flow of the Rock Physics Modelling is given as well as the
T-matrix approach to calculate the elastic moduli of rock. I linked seismic imaging to Rock
Physics, using viscoelasticity. This theory is not restricted to 1D media, but can also be
applied to 2D and 3D, as well. Because of the tensor nature of the theory, this modelling can
be used for anisotropic viscoelastic media. Because more complex and realistic models are
possible, this approach can be used universally to study how different rocks types (and how
different fluids in reservoir rocks) affect seismic images. That is important for both exploring
reservoirs and for monitoring subsurface flow reservoir rocks.
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Chapter 6

Redatuming and Quantifying
Attenuation from Reflection Data

Using the Marchenko Equation

In this chapter, the theory and practical results of using the Marchenko Equation for Q-
estimation and redatuming will be shown, which include: [6-1] the modeling results for lossy
media, [6-2] the Artefacts Removal Method for Q-estimation and [6-3] Marchenko Redatuming
in Viscoelastic media. In section [6-1], the lossy refection series behaviour for different models
is illustrated. In section [6-2], the Artefact Removal Method for Q-estimation is shown. This
method makes it possible to quantify attenuation using solely the Marchenko equation. This
method was tested by several synthetic models. These models consist of several horizontal
layers. The first model is the simplest one where each layer has the same velocity and
attenuation. Other models have more complex velocity, density and attenuation profiles. In
section [6-3] the Marchenko Redatuming in Viscoelastic media was performed using different
models.

6-1 Modeling Results for Lossy Media: a Visual Tour

As it was shown in chapters 4 and 5, there are many attenuation mechanisms which describe
intrinsic, transmission and scattering losses. Instead of studying one particular mechanism in
seismic imaging, it is much more prominent to model attenuation through visloelasticity of
the medium (Ursin and Toverud, 2002). In this case, attenuation in the viscoelastic solid is
described as complex moduli. In the time domain, attenuation is described through the relax-
ation tensor which acts as the time convolution operator (Carcione, 2014). In this thesis, the
forward modelling of the lossy reflection series was done using three methods: [1] amplitude
damping model, [2] De Hoop’s model with two independent parameters and [3] De Hoop’s
model with one independent parameter. These models were explained in detail in chapter 4.
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The compensation for the attenuation was performed using [A] a constant Q-factor model,
[B] an effective Q-factor model and [C] a time-dependent Q-factor model.

6-1-1 Constructing the Lossy Reflection Series

Assume, then the medium consists of N plane-parallel layers. Each layer has its own P-wave
velocity V p, density ρ and a Q-factor or attenuation which depends on the model. The lossless
reflection response was modelled using the method proposed by Fokkema and Ziolkowski
(1987). While this approach works for plane waves, I modeled the reflection response for 1D
media. Following this approach, the incident wave field is the plane pressure wave:

P INC(x, z, ω) = A+
0 (ω) exp(jω(p0x+ q0z)) (6-1)

A+
0 is the spectrum of the wave field, p0 is the horizontal slowness in the upper half-space and

q0 is the vertical slowness in the upper half-space. The reflection response is the wave field:

PR(x, z, ω) = A−0 (ω) exp(jω(p0x− q0z)) (6-2)

In the case of 1D media, it is a wave field returning at normal angle. Therefore, the total
wave field in the upper half-space is:

P 0(x, z, ω) = exp(jωp0x)
[
A+

0 (ω) exp (jωq0z) +A−0 (ω) exp(−jωq0z)
]

(6-3)

I won’t give all steps here but only mention a few important equations. The global reflection
coefficient Rn(ω) for the n-th layer is defined as:

A−n (ω) = Rn(ω) A+
n (ω) exp(2jωqnzn) (6-4)

where the subscript n corresponds to n-th layer. The global recursion formula for the global
reflection coefficient is (Fokkema and Ziolkowski, 1987):

Rn(ω) =
Γn +Rn+1(ω) exp( 2jωqn+1(zn+1 − zn)

1 + Γn Rn+1(ω) exp( 2jωqn+1(zn+1 − zn)
(6-5)

where Γn is the local reflection coefficient. By inserting Eq. (6-5) into Eq. (6-4), I can rewrite
Eq. (6-3) as:

P 0(x, z, ω) = A+
0 (ω) exp(jωpx) [exp (jωq0z) +R0(ω) exp(jωq0(2z0 − z))] (6-6)

In order to account for the losses, the elastic modulus and/or density must be complex
numbers, so that they will provide a lossy reflection response.
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6-1-2 Lossy Reflection Series Behaviour for Different Models

Amplitude Damping Model

In this modelling, the intrinsic loss was modelled as a constant-Q model. This is the most
popular model used in seismic exploration. Indeed, within the seismic bandwidth, this as-
sumption provides quite accurate results. The wavefields were multiplied with the damping

factor exp
(
− πf0
Qtm

t
)

(Aki and Richards, 2002; Draganov et al., 2010). f0 is the central fre-

quency of the source wavelet. Qtm is the temporal Q-factor. I frequently use parameter
ζdamping which is:

ζdamping = − πf0

Qtm
(6-7)

Therefore, I can rewrite the damping factor for amplitudes u(t) as:

u(t) = u0(t) exp

(
− πf0

Qtm
t

)
= u0(t) exp(−ζdamping t) (6-8)

Thus, the compensation is:

u(t)compensated = u(t) exp(+ζcompensation t) (6-9)

The medium properties of the model that will be used to demonstrate this attenuation are
shown in table C-1 on page 95. This is a simple constant-Q model. The central frequency of
the source wavelet (Ricker wavelet) is f0 = 30 Hz. ζdamping = 0.8 corresponds to Qtemporal ≈
117.8. The reflection series was calculated by convolving the reflection coefficients with the
Ricker wavelet. Figure 6-1 shows the two reflection series. The first reflection series was
calculated for lossless medium (black curve). The second reflection series was calculated
for lossy medium. This model can be considered as an ideal model because by applying
compensation (6-9), I will get the lossless reflection series. However, this is only the case if
I know the true compensation parameter, i.e. ζcompensation = ζdamping. Even for this simple
constant-Q model, if you don’t know the true Q-factor of the model you won’t be able to
compensate for the losses.

When I used the lossy reflection series for Marchenko redatuming or Marchenko imaging, I
got very poor results: many artefacts and multiples were present and the amplitudes of the
primary reflections were wrong. To show these poor results, I focused below the second layer.
The focal depth is 2000 meters. As was mentioned before, there are no multiples present in
the first layer because there is no free surface. But there are multiples in the second layer.
By focusing below the second layer, I could test how the lossless Marchenko scheme deals
with lossy reflection response. In general, for the lossy model, the Green’s functions and the
focusing functions have very weak amplitudes for most cases. Also, there are some artefacts
present. Figure 6-2 shows the upgoing Green’s function G−,+ for the lossless and lossy media.
There is an artefact before the first arrival in G−,+. Figure 6-3 is the same as Figure 6-2
but zoomed in to 1-2.5 seconds. This artefact is shown by an arrow. Figures D-1, D-2 and
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D-3, show the downgoing Green’s function, upgoing focusing function and downgoing focusing
function, respectively. The first arrival in the lossy version of G+,+ (’lossy version’ meaning
that the Green’s/focusing functions were calculated using the lossy reflection response) has a
stronger amplitude than the lossless G+,+. But the coda events in the lossy version of G+,+

have very low amplitudes (see Figure D-1). The lossy version of f−1 has the same two events
as the lossless version of f−1 . The amplitudes of lossy f−1 are much lower than in the lossless
f−1 (see Figure D-2). The lossy version of f+

1 has two events as the lossless version of f+
1 .

The amplitude of the first event of lossy f−1 is slightly lower than the amplitude of the first
event in the lossless f−1 . But the second event in the lossy f−1 has a very low amplitude
compare to the lossless f−1 (see Figure D-3). No additional artefact events are present in the
lossy versions of G+,+, f+

1 and f−1 . By applying compensation ζcompensation = ζdamping to
the lossy reflection series, we get the reflection response which is identical to the lossless one
(Figure D-4). As you can see on Figure D-4, the black curve and the red curve coincide.

Figure 6-1: Lossless (black curve) and lossy (red curve) reflection series for Model 1. The x-axis
represents time in seconds, the y-axis represents the amplitude. The intrinsic loss
was modelled as an amplitude damping (Model 1) ζdamping = 0.8.
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Figure 6-2: Upgoing Green’s function G−,+. The black curve is the lossless G−,+. The red curve
is the lossy G−,+. The x-axis represents time in seconds. The y-axis represents the
amplitude. The focal point is 2000 m depth. The intrinsic loss was modelled as an
amplitude damping (Model 1).

Figure 6-3: Upgoing Green’s function G−,+ zoomed in to 1-2.5 seconds. The black curve is the
lossless G−,+. The red curve is the lossy G−,+. The artefact is shown by an arrow.
The x-axis represents time in seconds. The y-axis represents the amplitude. Focal
point is 2000 m depth. The intrinsic loss was modelled as an amplitude damping
(Model 1) ζdamping = 0.8.
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De Hoop’s Model with Two Parameters

In this section, the method described in chapter 4-5 was used. It was assumed that the
losses are incorporated through two parameters: the moduli and density of the rock. The
medium properties are shown in table C-2 on page 95 (Model 2a). This model consist of
five layers. Each layer has a different velocity and density. The attenuation parameter αH is
the same for all layers. Figure 6-4 shows the two reflection series. The first reflection series
was calculated for lossless media (black curve). The second reflection series was calculated
for lossy media. Note, that in this modelling, a simple exponent compensation factor won’t
completely compensate for attenuation. The compensation factor ζcompensation = 0.4 was
applied to the lossy reflection series (see Figure 6-5). I found the value of ζcompensation via
solving the inverse problem (visually) — the best match between the lossless and compensated
lossy reflection responses. The result is quite accurate but the compensated lossy reflection
series doesn’t completely coincides with the lossless reflection series. That is because the
Q-factor is not the same for all frequencies; Therefore, it is impossible to compensate for
the attenuation via a constant Q-factor. The compensation parameter ζcompensation = 0.4
corresponds to Qtemporal ≈ 235. Also, the result is quite accurate because the attenuation is
quite small. If attenuation is increased, the result is less accurate. But this phenomena will
be further explored later.

Figure 6-4: Lossless (black curve) and lossy (red curve) reflection series for Model 1. The x-axis
represents time in seconds, the y-axis represents the amplitude. The intrinsic loss
was modelled using De Hoop’s model with two parameters (Model 2a).
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Figure 6-5: Lossless (black curve) and compensated lossy (red curve) reflection series for Model
2a. The x-axis represents time in seconds. The y-axis represents the amplitude.
The intrinsic loss was modelled using De Hoop’s model with two parameters (Model
2a). The compensation factor is ζcompensation = 0.4.

De Hoop’s Model with One Parameter

This modelling is similar to the previous De Hoop’s model with two parameters but, in this
case, the losses were incorporated through the elastic modulus only. In the De Hoop’s model
with two parameters, the attenuation was incorporated via modulus and density while in the
De Hoop’s model with one parameter the attenuation was incorporated via modulus only.
The lossy reflection response is different from Model 2a. Therefore, the compensation must
be different as well. The medium properties are shown in table C-3 on page 95 (Model 2b).
Model 2b is similar to the Model 2a but the attenuation αH is different. Figure D-5 shows the
lossless and the lossy reflection response for Model 2b. Figure D-6 illustrates the compensated
lossy reflection series by parameter ζcompensation = 0.5. While the αH is 200 percent larger
in Model 2b compared to Model 2a, the compensation Qtemporal is only 20 percent larger.
Therefore, the attenuation mechanism plays an important role in the modelling.
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6-2 Quantifying Attenuation using the Marchenko Equation

All artefacts in the Green’s function (or in the focusing function or in the image) can be divided
into two groups: [A] numerical artefacts and [B] artefacts caused by additional medium’s
assumptions.

While the solution of the Marchenko equation is exact, some small artefacts are present in the
Green’s functions — mainly because the single-sided inverse problem is extremely ill-posed
and because of some numerical limitations. For example, we performed the discrete Fourier
transform which is not absolutely perfect. These artefacts are very small and must be muted
before applying Marchenko redatuming and imaging. Thorbecke et al. (2013) and Wapenaar
et al. (2014b) further illustrated this when they applied the Marchenko equation to synthetic
data where all the medium’s assumptions have been fulfilled. These artefacts belong to the
group [A], i.e. ”numerical” artefacts.

On the other hand, if the medium doesn’t fulfil all necessary assumptions, the solution of
the Marchenko equation will produce some additional artefacts, different from the numeri-
cal ones. These additional artefacts contain some new information of the subsurface. These
artefacts belong to the group [B]. There are several of the medium’s properties which cause
some artefacts in the Green’s functions, focusing functions and image, such as: [1] anisotropy
of the medium, [2] incorrectly scaled source signature, [3] incorrect velocity model, [4] incor-
rect compensation for transmission losses, [5] incorrect compensation for intrinsic losses (or,
simply, lossy medium) etc. Therefore, by applying compensation for these properties, we will
get a better seismic image and, what’s even more attractive, we will obtain even more new
information of the subsurface. For example, if our velocity model is incorrect and we observe
some artefacts, we can change the velocity model by reducing the artefacts. As a result, a
better image as well as a better velocity model will be obtained.

The artefacts behaviour in the second group depends on the input data. This idea uses
a fundamental property that the solution of the Marchenko equation is exact. Therefore,
the solution might be considered as a ”skeleton”. If our compensation for the medium’s
properties is incorrect, the solution will produce some artefacts from the second group. Also,
these artefacts usually have a very specific behaviour: if the input data to the Marhcnko
equation is over or under compensated, the resulting artefacts will have opposite behaviour.
This phenomena is not new. In seismic interferometry Draganov et al. (2010) observed that
artefacts change polarity if you under- or over- compensate for the intrinsic losses. Mildner
et al. (2017) observed that artefacts change polarity if the source signature is under- or over-
scaled. These artefacts have a common feature that they change polarity. But the energy of
the artefacts, the number of the artefacts, their position on the time axis etc. strictly depend
on the compensation parameters.

This thesis is focused on studying the intrinsic attenuation. The general idea of the propos-
ing method to quantify the intrinsic attenuation is the following: [1] the artefacts must be
recognized by applying different Q-compensation parameters to the reflection series, [2] by
minimizing the artefacts, the true value of the medium’s Q-factor can be found. In the case
of the same attenuation for entire medium, the inverted Q-factor value is very accurate. In
the case where different layers have different attenuation, the effective Q factor can be found
or the time-dependent Q-factor can be found. A detailed approach as well as a number of
examples will be further explained.
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6-2-1 Behaviour of the Artefacts

Amplitude Damping Model

The main feature of Model 1 (the ideal model) is that, once we found the true attenuation
of the medium and applied the compensation to the lossy reflection series, it coincided
with the lossless reflection series. I used a focal point of 2000 meters (depth) to observe
artefact behavior (i.e. the focal point is in the third layer). Several compensation parameters
were applied to the lossy reflection series: ζdamping = 0.2; 0.4; 0.6; 0.8; 0.9; 1.0. Then, the
upgoing Green’s function G−,+ was calculated for each compensated lossy reflection series.
Figure E-1 illustrates the upgoing Green’s function G−,+ calculated using several compensated
reflection series. Obviously, because the compensation parameters vary from 0.2 to 1.0, the
resulting reflection series is under- and over- compensated for the attenuation. It can be
seen by the amplitude changes in the primaries and multiples (Figure E-1). Two artefacts
are present in G−,+ on Figure E-1 at times 1.25 and 2 seconds. By studying the Figure E-
1 it can be seen that the artefacts change their polarity. This feature further explored on
Figure 6-6 where the G−,+ zoomed in to 1.16-1.34 seconds. The values of compensation
parameter ζcompensation = 0.2; 0.4; 0.6 cause the negative polarity artefact. The values of
compensation parameter ζcompensation = 0.9; 1.0 cause the positive polarity artefact. The
value of compensation parameter ζcompensation = 0.8 gives no artefact! It means that the
compensation parameter coincides with the damping parameter. Therefore, true attenuation
is found.

In order to derive an expression which is able to recognize artefacts, I first calculated several
upgoing Green’s functions G−,+i . Index i means that G−,+i was calculated using the compen-
sated lossy reflection response with different compensation parameter ζicompensation. In this
example, i = 1; 2; 3; 4; 5; 6; and corresponds to ζcompensation = 0.6; 0.7; 0.75; 0.8; 0.85;
0.9. The artefacts change polarity, therefore, the artefacts can be found by calculating the
function T (x, t):

T (x, t) =

[∣∣∣∣∣∑
i

G−,+i (x, t)

∣∣∣∣∣−∑
i

∣∣∣G−,+i (x, t)
∣∣∣] · ebt (6-10)

The exponent ebt was added to this expression to increase the energy of the artefacts at longer
times. Parameter b is a free parameter and can be set to 1, or another value. It depends on
whether we want to have all artefacts be equal amplitudes or not. It is suggested to choose
the value of b in such a way that all artefacts have the same amplitudes. If it is not possible,
use time-dependent normalization. Figure 6-7 illustrates the function T (x, t) calculated for
Model 1. Three artefacts are clearly visible at 1.25, 2 and 2.75 seconds. Figure E-2 shows
Figure 6-7 zoomed in to 1-4.5 seconds and between 0 and 15 ·10−3 amplitudes. Five artefacts
can be seen at 1.25, 2; 2.75, 3.5 and 4.25 seconds. The time difference between the artefacts
is 0.75 seconds. This is the double the travel time of the wave in the second layer. Indeed,
750 meters ÷ 2000 m/s = 0.375 seconds × 2 = 0.75 seconds. Therefore, it can be concluded
that these artefacts are caused by the second layer.
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Figure 6-6: Upgoing Green’s function G−,+ zoomed in to 1.15-1.34 seconds. The focal point
is 2000 m depth. Different colors correspond to different compensation parameters
ζcompensation = 0.2, 0.4, 0.6, 0.8, 0.9, 1.0. The intrinsic loss was modelled as
an amplitude damping (Model 1). Compensation parameter ζcompensation = 0.8
(purple curve) shows no artefact which corresponds to the true compensation.

Figure 6-7: The function T (x, t). Three artefacts are clearly visible at 1.25, 2, 2.75 seconds.
The intrinsic loss was modelled as an amplitude damping (Model 1).
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6-2-2 Analysis of Artefacts in the Frequency Domain

Artefact behavior in the frequency domain was examined, firstly, by defining the time inter-
vals, tl in T (x, t), when the artefacts occur. Subscript l corresponds to a particular artefact.
For example, there are five artefacts present in T (x, t), therefore, there are five intervals in
tl. Next, I define the function T iG(x, tl):

T iG(x, tl) = G−,+i (x, tl) (6-11)

This function T iG(x, t) is non zero only at time intervals where the artefacts are present.
Superscript i corresponds to different compensation parameters applied to the lossy reflection
series. Figure E-3 illustrates the function T iG(x, tl) calculated for different ζcompensation. The
polarity of the events on Figure E-3 (a) and (b) is opposite to the polarity on Figure E-3 (c).
Then, I transformed the function T iG(x, tl) into the frequency domain:

T̂ iG(x, ω) = FT
[
T iG(x, tl)

]
(6-12)

Figure 6-8 (2D plot) shows the function T̂ iG(x, ω). Figure E-4 (3D plot) shows the func-

tion T̂ iG(x, ω). The minimum of T̂ iG(x, ω) occurs when the compensation parameter is
ζcompensation = 0.8. This value of ζcompensation is indeed the true ζdamping which was ap-
plied to the wave field. Figure E-5 is the same as Figure E-4 but the compensation parameter
ζcompensation varies from 0.6 to 0.9. The minimum ζcompensation = 0.8 is, in fact, very strong.

Figure 6-8: Function T̂ i
G(x, ω). This figure is similar to Figure E-5 but instead of a 3D plot

this figure is a 2D plot. ζcompensation = 0.6; 0.7; 0.75; 0.8; 0.85; 0.9 and the
frequency. The color denotes the amplitude. The true compensation parameter is
ζcompensation = 0.8 which corresponds to the minimum of T̂ i

G(x, ω) (blue).

August 20, 2017



56
Redatuming and Quantifying Attenuation from Reflection Data Using the

Marchenko Equation

6-2-3 Analysis of Artefacts using the Wavelet Transform

The main difference between the continuous 1D wavelet transform and the Fourier trans-
form, which is important in this study, is that the wavelet transform produces a time and
frequency localization. In other words, we can perform a time-frequency analysis of a signal.
Different wavelets are possible, therefore, about ten wavelets were applied, including: Haar
wavelet, Meyer wavelet, Shannon wavelet, Gaussian wavelet, Complex Gaussian wavelet etc.
Morlet wavelet showed the best capabilities to study the artefacts’ behaviour for different
ζcompensation. Theory of the continuous wavelet transform is beyond this study and can be
found in Daubechies (1992); Mallat (2008) and Teolis (2012). The continuous wavelet trans-
form of function f(t) at any scale a and position b is (Mallat, 2008):

W f(b, a) =

∫ +∞

−∞
f(t)

1√
a
φ

(
t− b
a

)
dt (6-13)

where φ is a wavelet, a is a scale parameter and b defines the shift. Therefore, a time-scale
image (b, a) can be created. First, I applied the continuous 1D wavelet transform using the
Morlet wavelet to the function T iG(x, tl) with scales a varying from 20 to 80. The analysis of
the wavelet transform was performed using a scaleogram — as shown in Figure E-4 — the
wavelet transform of T iG(x, tl). The x-axis represents time, the y-axis represents scale a and z-
axis represents the coefficient value. Morlet wavelet is complex valued, therefore, I calculated
the absolute value of the complex function. The coefficient values on Figure E-4 (a) and (b)
are similar and correspond to strong artefacts. The coefficient values on Figure E-4 (c) are
not as strong as on Figure E-4 (a) and (b) which means that the compensation parameter
ζcompensation = 0.75 is closer to the true value. Finally, Figure E-4 (c) shows no artefacts
which means that the compensation parameter ζcompensation = 0.8 is correct. This approach
will be very important later for attenuation estimation of more complex models and for
constructing an effective Q-factor compensation and a time-dependent Q-factor compensation.
ζcompensation = 0.8 is the correct value, because the amplitude is zero (Figure 6-9).

Figure 6-9: The continuous 1D wavelet transform of the function T i
G(x, tl) using the Morlet

wavelet. The x-axis represents time in seconds. The y-axis represents scale a. The
y-axis is divided into 6 horizontal bands. Each horizontal band corresponds to a
different ζcompensation. Within each horizontal band, scales a = 70-80 are shown.
The color represents the coefficient value.
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De Hoop’s Model with Two Parameters

Artefact behavior was examined by using De Hoop’s lossy model with two parameters
(Model 2a). The work flow is similar to the previous sub-section where the ideal model
was analysed. I focused the wave field at 2000 meters (depth), i.e. the focal point is in the
fourth layer. Therefore, there are multiples in the second and in the third layers which may
cause some artefacts in the upgoing Green’s function G−,+. Several compensation parameters
were applied to the lossy reflection series: ζdamping = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. Figure 6-10
illustrates the function T (x, t) which consists of artefacts only in the upgoing Green’s func-
tion G−,+. These artefacts were calculated by using Eq. (6-10). Indeed, two layers cause
many more artefacts compared to the previous ideal model. Then, I calculated the function
T iG(x, tl). Next, the function T̂ iG(x, ω) was calculated by using the Eq. (6-12). The next step
was the continuous wavelet transform calculation of function T iG(x, tl).

Figure E-7 illustrates the function T̂ (x, t) calculated for different compensation parameters
ζcompensation = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. Figure E-9 shows the function T̂ (x, t) as a 2D plot.
Figure E-10 is the continuous 1D wavelet transform of the function T iG(x, tl) using the Morlet
wavelet for different ζcompensation. The minimum of T (x, t) corresponds to the ζcompensation
= 0.4 but this minimum is not perfect. Therefore, the exact parameter ζcompensation can be
inverted by solving the non-linear inverse problem. It can be done in several ways. The first
way is by minimizing the function T iG(x, tl):

‖T iG(x, tl)‖2 → 0 (6-14)

‖ · ‖2 denotes the L2-norm. The second way is by minimizing the function T̂ iG(x, ω) in the
frequency domain:

‖T̂ iG(x, ω)‖2 → 0 (6-15)

The third way is by minimizing the coefficient values of the wavelet transform W
[
T iG(x, tl)

]
:

‖W
[
T iG(x, tl)

]
‖2 → 0 (6-16)

As a result of the first method, the value of ζcompensation = 0.4352 was obtained. Indeed,
ζcompensation = 0.4352 provides much better results which can be seen in the frequency domain
(Figure E-8 and Figure 6-11) and in the scaleogram (Figure E-11). The compensated lossy
reflection series with ζcompensation = 0.4352 is shown in Figure E-12.

De Hoop’s Model with One Parameter

The same inversion method was performed by using De Hoop’s lossy model with one parameter
(Model 2b). The results are similar to the Model 2a.
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Figure 6-10: The function T (x, t). Several artefacts are clearly visible. The intrinsic loss was
modelled using De Hoop’s Model with Two Parameters (Model 2a).

Figure 6-11: Function T i
G(x, tl). This figure is similar to Figure E-8 but instead of a 3D plot this

figure is a 2D plot. The x-axis represents the compensation parameter ζcompensation

= 0.1, 0.2, 0.3, 0.4352, 0.5, 0.6. The y-axis represents the frequency. The color de-
notes the amplitude. The true compensation parameter is ζcompensation = 0.4352,

which corresponds to the minimum of T̂ i
G(x, ω) (blue). The intrinsic loss was

modelled using De Hoop’s Model with Two Parameters (Model 2a).
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6-2-4 Artefact Removal Method to Quantify Attenuation

The general approach is as follows:

[1] Focus the wave field in the subsurface, using the Marchenko equation. Identify a set of Q-
factors {Qi} to compensate for the attenuation in the interval between the acquisition surface
and the focal point. This set of Q-values must be broad and include the extreme minimum
and maximum values (for example, from 5 to 1000). Then, calculate ζicompensation from {Qi}.
Next, calculate a set of compensated lossy reflection series Ri by applying ζicompensation to the
lossy reflection series.

[2] Calculate the function T (x, t) using Eq. (6-10). Identify the time intervals, tl in T (x, t),
where the artefacts occur. Calculate the function T iG(x, tl) using Eq. (6-11) and choose the
intervals where there is no overlap with other events.

[3] Transform the function T iG(x, tl) into the frequency domain: T̂ iG(x, ω) = FT
[
T iG(x, tl)

]
.

Apply the continuous wavelet transform, using the Morlet wavelet to the function T iG(x, tl) and
create a scaleogram with several horizontal bands, which correspond to different ζicompensation.

[4] Analyze the artefacts’ behavior in the frequency domain and in a scaleogram. If the
minimum doesn’t exist, repeat step [1] and choose another set of {Qi}. The minimum may
be absent if there is no effective Q-factor for a given interval between the acquisition surface
and the focal point. In this case, another focal point must be chosen.

[5] Invert for the effective compensation parameter ζcompensation which corresponds to the

minimum in the functions: [a] T iG(x, tl), [b] T̂ iG(x, ω), [c] W
[
T iG(x, tl)

]
.

These steps, [1]-[5], will give you an effective temporal Q-factor for a given interval between the
acquisition surface and the focal point, only the Marchenko equation is used in this method.
This method works very well if an effective temporal Q-factor exists in that interval. The
results are given in sections 6-3-1 - 6-3-3 for a constant Q-factor model and for De Hoop’s
Model with Two Parameters. The analysis of this method, when there are different layers
and hence different attenuation, is shown in the next sections.

The general approach is to focus at several focal points in the medium and apply the method
to invert for the attenuation. This will give you the quantitative information about the
attenuation in the subsurface. You will find the intervals where the attenuation is quite
similar between the layers and where the attenuation is very strong. Instead of minimizing
the artefacts in the upgoing Green’s function, it can be done by minimizing the artefacts
in the redatumed reflection series. Moreover, this method is more stable if applied to the
redatumed reflection series (mainly because there are more artefacts).
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Nota Bene

In this modeling, it is assumed that surface-related (i.e. free-surface) multiples have been
removed. Therefore, it might be reasonable to assume a zero or very low attenuation in the
first layer. In this case, this method also would work with some modifications. First, the
compensation for the losses must start not from zero time (like in this work) but from the
time of the first reflection from the bottom of the first layer. Also, the behaviour of the
artefacts will be slightly different; Therefore, this method can be applied to minimize the
artefacts in the upgoing focusing function of the first kind and in the downgoing focusing
function of the second kind. Furthermore, even more artefacts are present in the redatumed
reflection series. In other words, I have tested this method by minimizing the artefacts in the
the redatumed reflection series and in the f−1 for a few models. The results are very similar
to when I minimized the artefacts in the upgoing Green’s function. The only difference is
that the artefacts in f−1 start to appear if the focal point is below the third layer (the first
layer without free-surface multiples and the next two layers are with all kinds of multiples).
Similarly, in the redatumed reflection series and in the f−1 , the different artefacts are related
to different layers; Therefore, the effective Q-factor can be found. Also, if the effective Q-
factor compensation for a given interval doesn’t exist, it can be recognized because not all
the artefacts can be removed.

6-2-5 Constant-Q, Effective-Q and Time-Dependent-Q Compensation Factors

If all the layers have the same attenuation, a constant-Q factor can be found by using the
Artefact Removal Method. If different layers have different attenuation but the difference in
attenuation is small (i.e. 10-50 %), an effective Q-factor can be found. In this case, not all
the artefacts can be removed but the minimum can at least be found. If there is a layer with
a very high attenuation such that the effective Q-factor doesn’t exist, it can be recognized
by applying the Artefact Removal Method to the redatumed reflection series (it is shown
in section 6-5). In this case, the artefacts can not be removed and they are strong for any
applied compensation factors. This artefact model is explained in detail below.

Effective Q-factor

In order to test this method for the case where one layer has a strong attenuation, a more
complex model was created. It has five layers, each with a different velocity and density.
Each layer has a different velocity and density. This model is the same as Model 2a but
the third layer has a different attenuation: αH = 5.25. The medium properties are shown
in table C-4 on page 96 (Model 2c). Figure E-13 shows the two reflection series. The first
reflection series was calculated for lossless media (black curve). The second reflection series
was calculated for lossy media. The intrinsic loss was modelled using De Hoop’s model with
two parameters (Model 2c). I focused the wave field at different depth levels because we
measured attenuation in the interval between the acquisition surface and the focusing depth.
By doing this step-by-step approach we can see how the attenuation changes.

When the focusing depth is 1300 meters, the attenuation for the first two layers can be
found by minimizing the artefacts. However, once the focus goes below the high attenuation
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layer, not all the artefacts in the upgoing Green’s function can be removed, by applying a
compensation to the reflection series.

The following are some examples of when the focal point is 2000 meters. Figure E-14 illustrates
the function T̂ (x, t) calculated for different compensation parameters ζcompensation = 0.1, 0.2,

0.3, 0.4, 0.45, 0.55. Figure 6-12 shows the function T̂ (x, t) as a 2D plot. According to
Figure E-13 and Figure 6-12 the range of ζcompensation = 0.4- 0.45 gives the minimum in

T̂ (x, t). Therefore, we can’t invert for the exact compensation parameter. This is caused
by the third layer which has a stronger attenuation than the other layers. Figure E-15
is the continuous 1D wavelet transform of the function T iG(x, tl) using the Morlet wavelet
for different ζcompensation. The minimum of T (x, t) corresponds to the ζcompensation = 0.42
but this minimum is not perfect. Artefacts are still present. Furthermore, in Figure E-
15 the artefacts which correspond to ζcompensation = 0.39 and ζcompensation = 0.45 have the
opposite behaviour. It means that the range of ζcompensation = 0.375-0.39 (where the first
artefact is closer to zero in Figure E-15) corresponds to the correct compensation for the
losses in the first layer. While the value of ζcompensation = 0.45 (where the second artefact is
closer to zero in Figure E-15) corresponds to the correct compensation for the losses in the
second layer. This means that if I: [1] apply the value of ζcompensation = 0.45 to the lossy
reflection series, then [2] the amplitude of reflection from the bottom of the second layer of this
reflection series (compensated lossy) will coincide with the amplitude of the lossless reflection
series. Unfortunately, the artefacts related to the layer with a strong attenuation cannot be
recognized. This problem can be solved by applying this method to the redatumed reflection
series (section 6-5). The artefacts are strong for any compensation factor which are shown
in Figures E-15 and E-14. In general, it is difficult to determine which artefact corresponds
to which layer because the model is unknown. Therefore, the parameter ζcompensation can be
inverted by minimizing the artefacts and the solution will give us only an effective temporal
Q-factor of the medium between 0-2000 meters. But I can focus the wave field in the third
layer, for example at a depth of 1200 meters to calculate the attenuation of the medium above
that focal depth.

Figure 6-12: Function T̂ i
G(x, ω) for Model 2c. The horizontal plane is the compensation param-

eter ζcompensation = 0.1, 0.2, 0.3, 0.4, 0.45, 0.55 and the frequency. The vertical
axis corresponds to the amplitude. The range of ζcompensation = 0.4− 0.45 corre-

sponds to to the minimum of T̂ i
G(x, ω).
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Time-Dependent-Q Compensation

Time-Dependent-Q compensation might be a very attractive tool to compensate for the losses
in a very simple way — by applying the time-dependent compensation to the lossy reflection
series. In order to test this, I used the Model 2c (table C-4 on page 96). (Nota Bene: The
model seems to be quite simple, therefore, the time-dependent compensation might give a
very nice result). First, I calculated the lossless and lossy reflection series for Model 2c.
Then, I divided the whole lossy reflection series into 20 segments — each corresponding to
one particular event, which all include a primary reflection and/or multiples (until it’s not
visible). After that, I found the compensation parameter for each segment. By applying this
compensation parameter to the lossy reflection response (i.e. to one particular segment or
a time interval) I got the lossless one. The accuracy of this time-dependent compensation
is roughly 10−3 (i.e. the difference between the compensated lossy and lossless reflection
series is less than 1 ∗ 10−3 amplitudes at any time). Next, I focused the wave field at a
depth of 2000 meters depth using the compensated lossy reflection series. The amplitudes
of the up- and down- going Green’s functions were calculated by using the compensated
lossy reflection series. They are very similar to the up- and down- going Green’s functions,
which were calculated by using the lossless reflection response (the difference between the
compensated lossy and lossless versions are less than 10−3). But there are still artefacts
present in the upgoing Green’s function. Furthermore, the artefacts are present at different
locations. The main problem is that the Marchenko equation is highly sensitive to time-
dependent compensation. For example, if the compensated lossy reflection series coincides
with the lossless reflection series everywhere except one event, the approach will break down.
This event might correspond to the third order multiple, i.e. the difference between the
compensated lossy and lossy reflection response is 5 ∗ 10−2, which is a very small difference.
It will, therefore, produce noticeable artefacts in the upgoing Green’s function. So, the idea
to invert for the time-dependent compensation factor breaks down because the criterion is not
stable. Moreover, the inversion for the minimizing the artefacts is non-linear. Consequently,
it is impossible to invert for all 20 compensation parameters, which all correspond to their
own particular time interval. Additionally, the model of the subsurface is unknown. So, that
makes it difficult to model all possible multiples within different layers and their subsequent
interactions and apply a correct compensation parameter. Overlapping events have the same
issue. In conclusion, the time-dependent approach is not going to work even for a quite simple
model.
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6-3 Marchenko Redatuming in Viscoelastic Media

As was shown in chapter 2, the Marchenko equation can be used to redatum the receivers
and the sources to any depth level Di in the subsurface. The main feature of Marchenko
redatuming is that it takes into account all internal multiple reflections. It is a two step
process and a detailed explanation can be found in Wapenaar et al. (2014b). The upgoing
and downgoing Green’s functions are related via Eq. (3-59):

G−,+(xi,x
′, t) =

∫
∂Di

dx

∫ ∞
−∞

R∪(xi,x, τ)G+,+(x,x′, t− τ)dτ, (6-17)

where R(xi,x, τ) is the reflection response of the medium below depth level Di. This reflection
response is defined in a medium which is identical to the actual medium below Di and is
reflection-free above this depth level. In the 1D case, equation (6-17) can be solved via
deconvolution in the frequency domain (Vasconcelos, 2007):

R∪ =
G−,+

G+,+
=
G−,+ G+,+∗

|G+,+|2 + E
(6-18)

where E is a parameter that accounts for stabilization and R∪ is the redatumed reflection
response. I found that the value of E = 10−4 provides quite an accurate result for a given
wave field. Several models were used to test the Marchenko redatuming. In 1D, the general
approach is the following: [1] Focus in the subsurface and calculate the upgoing and down-
going Green’s functions using the Marchenko equation; [2] calculate the redatumed reflection
response R∪ by using Eq. (6-18).

Several figures are shown below. In each figure you will find three reflection responses: black,
green, dashed red. The black curves show the 1D lossless reflection responses at the surface.
The green curves show the redatumed reflection response which was calculated via (6-18) using
the G−,+ and G+,+ for lossless medium. Dashed red curve shows the redatumed reflection
response which was calculated via (6-18) using the G±,+ for lossy or compensated lossy
medium.

6-3-1 Marchenko Redatuming for the Amplitude Damping Model

This is a perfect model. The main feature is that once we found the attenuation of the
subsurface, the compensated lossy reflection series coincides with the lossless one. Its medium
properties are shown in table C-1 on page 95 (Model 1). Figure 6-13 shows the reflection
response at the surface (black curve) and two redatumed reflection responses that were shifted
to the location of the focal point (green and dashed red curves, respectively). The green curve
is the redatumed response for the medium without attenuation. The dashed red curve is the
redatumed response for the medium with attenuation. The dashed red curve shows very
low amplitudes and artefacts. The artefacts are shown on Figure 6-14 which is the same
as Figure 6-13 but zoomed in to 2-4.5 seconds and -0.02-0.04 amplitudes. But once the
attenuation of the medium is found via the Green’s Function Artefact Removal Method, the
lossy reflection series can be compensated for the losses. Figure 6-15 shows the redatumed
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reflection response which was calculated via Eq. (6-18) using G±,+ for compensated lossy
medium. No artefacts are present on the red curve.

6-3-2 Marchenko Redatuming for De Hoop’s Model Two Parameters

De Hoop’s Model is explained in chapter 3. Because the models with one or two parameters
are similar, only the De Hoop’s Model with two parameters was considered. The medium
properties are shown in table C-2 on page 95 (Model 2a). In this model, the losses were incor-
porated through two parameters: the moduli and density of the rock. As it was mentioned
before, a simple exponent compensation factor won’t completely compensate for attenuation.
Therefore, some artefacts might be present in the redatumed reflection response. Figure F-1
shows three reflection series (the same as the previous model). The dashed red curve shows
very low amplitudes. Figure F-2 is the same as Figure F-1 but zoomed in to 1.5-3.2 seconds
and -0.04-0.06 amplitudes. The artefacts are shown by blue arrows on Figure F-2. Figure F-3
shows the redatumed reflection response which was calculated via Eq. (6-18) using G±,+ for
compensated lossy medium. The compensation was found via Artefact Removal Method.
Because the compensation is not perfect, some artefacts are present but their amplitudes are
very small (lower than 8 · 10−4).

Figure 6-13: Reflection response (black), redatumed reflection response using G±,+ for loss-
less medium (green) and the redatumed reflection response using G±,+ for lossy
medium. Losses were incorporated as Amplitude Damping (Model 1). The black
curve coincides with the green curve at time ≈2.4 sec.

August 20, 2017



6-3 Marchenko Redatuming in Viscoelastic Media 65

Figure 6-14: This is the same figure as Figure 6-14 but zoomed in to 2-4.5 seconds and -0.02-
0.04 amplitudes. Losses were incorporated as the Amplitude Damping (Model 1).
The black curve coincides with the green curve at time ≈2.4 sec.

Figure 6-15: Black and green curves are the same as in Figure 6-13. The dashed red curve is the
redatumed reflection response which was calculated using G±,+ for compensated
lossy medium. The black curve coincides with the green curve at time ≈2.4 sec.
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6-4 Conclusion

The Artefact Removal Method works very well for the medium where the losses can be
compensated via an effective temporal Q-factor. It means that this approach works for the
medium where all layers have similar attenuation or the difference in attenuation between
layers is (approximately) less than 10-50%. If there is a layer/layers with very strong atten-
uation, the effective temporal Q-factor can be found for an interval between the acquisition
surface and the layer/layers with very strong attenuation. The time-dependent compensation
factor doesn’t seem to work even for a simple medium. In general, it cannot be found because
of too many unknown parameters for compensation are needed. In fact, there are all kind
of multiples between several layers for which the correct compensation can be found only
through modeling. Marchenko redatuming for lossy medium works very well for the medium
where the losses can be compensated via an effective temporal Q-factor.
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Chapter 7

Seismic Upscaling

In this chapter, the theory and practical results of seismic upscaling method will be shown,
which include: [7-1] the connection between the different types of Lippmann-Schwinger equa-
tions, [7-2] Rock Physics Modeling. Section [7-1] provides the mathematical background of
this work. The main idea is that the wave propagation and scattering at macro- and micro-
scales are governed by similar equations. Therefore, upscaling can be done because seismic
imaging and rock physics are linked through viscoelasticity of the medium. In section [7-2],
the final, the most complex model (Model 3a-b) is illustrated. This model is governed by
three components — rock physics, viscoelasticity and imaging. The first component is the
calculation of the viscoelastic modulus of a reservoir layer using the methods described in
Chapters 4 and 5. Then the viscoelastic modulus was used to construct the image and test
the Q-estimation method. As a result, the rock properties’ changes in the reservoir layer
might be seen on the image. While this is done in 1D, not all the benefits can be shown. But
this idea could be extended to 2D and 3D media where all the advantages are visible. Also,
more complex rock’s models could be very beneficial to test different imaging technologies.
For example, this model could have a strong attenuation and velocity dispersion which is
common for reservoirs.

7-1 Connections Between the Different Types of Lippmann-
Schwinger Equations

This section is mainly inspired by the papers de Hoop and de Hoop (2000); Wapenaar (2007);
Wapenaar and Douma (2012) and Broggini and Snieder (2012). In the first three papers, the
Unified Wave Equation was explored. It makes it possible to unify several partial differential
equations (namely the acoustic wave equation, elastodynamic wave equation, Schrödinger
equation, electromagnetic wave equation and piezoelectric wave equation) into one general
equation with different coefficients. In the fourth paper, Broggini and Snieder (2012) explored
the connection of different scattering integral equations.
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It can be shown that the Lippmann-Schwinger equations, which describes wave field scattering
at macro- and micro- scales, are very similar. These mathematical observations might give
some insight into new ideas regarding micro- and macro- scale wave propagation. Let us
suppose that function Ψ of a given physical system is:

LΨ = f (7-1)

This is a more generalized form of Eq. (2-1). L is a linear differential operator acting on
distributions over a Sobolev space Ω ⊂ W0. Function Ψ can have any form. It might be the
Hamiltonian of a given physical system H (Landau and Lifshitz, 1958; Rodberg and Thaler,
1967), a wave field u (Colton and Kress, 2012), etc. Operator L also can have any form as
discussed in Chapter 2 — a Sturm-Liouville operator, the wave operator, etc. In terms of
quantum scattering problems, the solution of the (7-1) is governed by the Lippmann-Schwinger
equation (Landau and Lifshitz, 1958; Rodberg and Thaler, 1967):

Ψ = Ψb.c. + VSc (7-2)

Ψb.c. is the unperturbed Ψ, VSc is a perturbation of Ψ. Eq. (7-2) can be written as:

Ψ(ξ) = Ψb.c.(ξ) +

∫
Ω
G(ξ, ξ′)V ′Ψ(ξ′)dξ′ (7-3)

G(ξ, ξ′) is the fundamental solution for operator L, V ′Ψ(ξ′) is the perturbation, (ξ, ξ′) ∈
Ω. In terms of quantum scattering theory, the general form of the Lippmann-Schwinger
equation can be written in a particular form for a specific function Ψ — [1] the Hamiltonian
H (corresponding equations can be found in Landau and Lifshitz (1958) and in Colton and
Kress (2012)), [2] the wave field u and [3] the stress or strain field ε or σ, respectively. For
the wave field u equation (7-3) is the same as Eq. (3-24) (Colton and Kress, 2012; Broggini
and Snieder, 2012):

u(ξ) = ub.c.(ξ) +

∫
Ω
G(ξ, ξ′)L′u(ξ′)dξ′ (7-4)

where u is the total wave field, ub.c. is the incident wave field which denotes the boundary
conditions, L′ is the perturbation and G is the propagator. For the strain field ε, equation
(7-3) is the same as Eq. (5-10) (Zeller and Dederichs, 1973; Gubernatis and Krumhansl, 1975):

ε(ξ) = εb.c.(ξ) +

∫
G(0)(ξ, ξ′)C′(ξ′)ε(ξ′)dξ′ (7-5)

ε is the total strain field. εb.c. denotes the boundary conditions for the displacements at
infinity. C′ is the medium’s perturbations. G(0) is the propagator.

In other words, Eq. (7-4) describes the wave field scattering in an inhomogeneous medium
while Eq. (7-5) describes the strain field scattering. By using equation Eq. (7-5), we can
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obtain the inhomogeneous medium’s averaged properties (by applying several additional as-
sumptions, which are beyond the scope of this chapter). Then, by solving the Christoffel
equation we obtain the phase and group velocities. Thus, equation Eq. (7-4) can be called
the ’macro-scale’ Lippmann-Schwinger equation and equation Eq. (7-5) can be called the
’micro-scale’ Lippmann-Schwinger equation. The original theory of the Lippmann-Schwinger
equation was developed in quantum scattering theory.

When either the macro- or micro- scales of the Lippmann-Schwinger equations are used in
scientific works, they are usually linked to the quantum mechanics version of this equation,
albeit separately. However, we can link these two versions of the Lippmann-Schwinger equa-
tions through up-scaling. Micro-scale wave propagation can be considered as a stress or strain
propagation in the micro-inhomogeneous medium because at this scale, the wave field is no
longer a wave and there is no time derivative. On the other hand, macro-scale wave propa-
gation is governed by the averaged medium’s properties over the representative elementary
volume. Thus, by using the Christoffel equation the up-scaling, which is the key, can be done;
And therefore, we can link seismic imaging and rock physics using viscoelasticity. As a result,
the Lippmann-Schwinger equation and scattering at ’micro-scale’ is the next, natural step,
following the paper by Broggini and Snieder (2012), the ’Connection of Scattering Principles:
a Visual and Mathematical Tour.’

7-2 Rock Physics Modeling

Reservoirs can cause some problems due to high attenuation; Therefore, I created a five-
layered model with two variants: [1] without a reservoir (Model 3a), and [2] with a reservoir
as the third layer (Model 3b). Each layer has a different velocity, density and attenuation.
Moreover, the thickness of the third layer is 200 meters for both variants. In Model 3a
(reservoir-less), the third layer is a carbonate rock with some clay content. The properties
are: Vp=4.0 (km/s), Vs=2.2 (km/s) and ρ=2.69 (g/cm3). The medium properties for Model
3a are shown in the table C-5 on page 96. In Model 3b (with a reservoir) the third layer
represents a reservoir with 20% porosity. The reservoir’s properties (Vp, Vs, ρ, Q-factor)
can be modelled using different rock physics models. The medium properties for this second
variant with a reservoir are shown in the table C-6 on page 96 (Model 3b).

7-2-1 Generalized Dvorkin-Mavko Attenuation Model

Dvorkin and Mavko (2006) proposed a method to calculate the P- and S- wave quality factor
of a reservoir rock. I’ve extended the idea of this method to calculate a rock’s properties, using
the T-matrix approach (Figure 7-1). (The method to simulate the properties of the porous
rocks is given in detail in chapter 5, pages 36-37). I assumed that the reservoir is a shale with
a clay matrix, and that the porosity is 20%. Also, some parts are shaly sands. The reservoir
is filled with water and gas. It’s important to note that some small volumes in the reservoir
are fully water-saturated while some volumes may contain gas. Attenuation is linked to the
changes in the elastic modulus versus frequency. Instead of using a specific mechanism for
the attenuation, the Q-factor of the reservoir rock was modelled by using a linear viscoelastic
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solid (Dvorkin and Mavko, 2006). In this model, only the low frequency modulus of the rock
(i.e. the low frequency limit) and a hight frequency modulus (i.e. the high frequency limit)
are needed. I assumed that at low frequencies the induced pore pressures are equilibrated
throughout the pore space (i.e., there is sufficient time for the pore fluid to flow and eliminate
wave-induced pore-pressure gradients) (Mavko et al., 2009). This is called the ’relaxed’ or
’quasi-static’ limit for P-wave phase velocities. Therefore, I calculated the ’dry-frame’ elastic
modulus of the rock using the T-matrix approach. The term ’dry-frame’ means that the pore
fluid has zero bulk modulus. In this case, the pore compression during wave propagation does
not induce changes in pore pressure. As a result I got the elastic properties of the ’dry-frame’.
The pores were modelled as spheroids with an aspect ratio equal to 1 (i.e. spheres). I also
assumed that some parts have quite strong connectivity, therefore, the dry rock has a low bulk
modulus. The effective bulk moduli of the dry rock were calculated by using the T-matrix
method. The dry bulk modulus of the reservoir rock is Kdry= 5.9 GPa. As the second step,
I filled the pore space with fluid by using the Biot-Gassmann theory. At low frequencies, the
effective bulk modulus KF of the liquid and gas parts is the harmonic average of water Kwater

and gas Kgas bulk moduli. I calculated the bulk modulus and density for gas at reservoir
conditions (high pore pressure) using the Batzle-Wang formulas (Batzle and Wang, 1992). I
assumed that the pore pressure is Pp=300 bar. The gas has the properties: Kgas = 0.133
GPa and ρgas = 0.336 (g/cm3). Water has the properties: Kwater = 3.0133 GPa and ρwater
= 1.055 (g/cm3). As a result, the saturated reservoir has the properties: Vp = 2.49 (km/s)
and ρ = 2.00 (g/cm3).

At high frequencies, I assumed that pores are not sensitive with respect to fluid flow, i.e.
there is no time for flow-induced equilibration of pore pressures (Mavko et al., 2009). Firstly,
I applied the high frequency Biot-Gassmann theory to calculate the modulus of the rock at
high frequencies it produced a modulus that was too low and closer to the saturated modulus
(closer to the low frequency modulus). Then, I calculated the high frequency modulus of the
rock using the T-matrix approach and I assumed a very low connectivity in the pore space
closer to the upper Hashin-Shtrikman bounds). Also, my goal was to produce a high velocity
in order to create high attenuation in the reservoir. As a result, the saturated reservoir at
high frequencies has the velocity Vp = 2.7 (km/s). The medium properties are shown in the
table C-6 on page 96 (Model 3b).

Figure 7-2 shows the velocity dispersion curve in the frequency domain for the constructed
rock’s model. In this work, we are mostly interested in Q behavior, therefore, the low fre-
quency velocity was used in the modeling. The low frequency velocity is an appropriate
choice for seismic frequencies. Figure 7-3 illustrates the nearly constant Q-factor model in
the frequency domain. Each curve in Figure 7-3 is a Zener model with a different critical
frequency fc. The critical frequency fc is the frequency at which the inverse quality factor
has a maximum value. That is an additional property of the porous rock. Because I am using
De Hoop’s model with two parameters and this is a synthetic model, I used the attenuation
αH in Model 3b which gives the same attenuation as the constructed rock’s model (Figure 7-2
and Figure 7-3). Moreover, for verification of the constructed rock’s model with experimantal
data and other methods, I used the books Barton (2007), Schön (2011), Mavko et al. (2009)
and Dvorkin et al. (2014). Therefore, the properties of the constructed reservoir are typical
of the available experimental data.
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Figure 7-1: The schematic overview of the proposed upscaling method. Seismic imaging and
rock physics are linked through viscoelasticity of the medium. The upscaling ap-
proach starts with defining the rock’s microstructure and properties of the compo-
nents. Then, by applying the scheme, the homogenized viscoelastic properties can
be obtained.

Figure 7-2: Schematic of the velocity dispersion in the frequency domain.
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Figure 7-3: Schematic of the nearly constant Q-factor model in the frequency domain.

7-2-2 Effective Q-factor Model and Artefact Model

Figure 7-4 shows the two reflection series. The first reflection series was calculated for lossless
media (black curve). The second reflection series was calculated for lossy media. The intrinsic
loss was modelled using De Hoop’s model with two parameters (Model 3a). Figure 7-5 shows
the two reflection series for Model 3b. The reflections below the third strong reflector are
very low. This is because the attenuation in the third layer (reservoir) is very strong.

The correct compensation parameter for Model 3a can be inverted by using the Artefact
Removal Method. The results are shown in Figures G-1, G-2 and G-3. The focal point is at
a depth of 2000 meters. But in this inversion, instead of using the upgoing Green’s function,
the focusing function f−1 was used. The approach is absolutely the same. Instead of the

function T̂ iG(x, ω) (calculated using the upgoing Green’s function) I used the function T̂ if1(x, ω)

(calculated using the focusing function f−1 ) etc. (Nota bene: that the attenuation in Model
3a is slightly different for different layers). The inverted compensation ζcompensation = 0.4 is
the correct value. It corresponds to effective Q-factor. By applying ζcompensation = 0.4 to the
lossy reflection series, I got the lossless one (with a low percentage of errors) (Figure 7-6).

In Model 3b, the third layer represents a reservoir with very high attenuation. Therefore, it
might cause some problems. Figures G-1, G-2 and G-3 were recreated for Model 3b. They
are not shown because they are absolutely identical, i.e. there is no difference between Model
3a and Model 3b. Then, all the steps were repeated for ζcompensation = 0.35, 0.36, 0.37, 0.38,
0.39 and 0.41 (i.e. closer to the minimum). Moreover, the second artefact was normalized
by multiplying the corresponding time interval in the f−1 by 100. That was done to make
the amplitudes of all artefacts equal to each other (because it is unknown which artefact
corresponds to which layer). Figure G-4 shows the function T̂ if1(x, ω), which was calculated

using the focusing function f−1 instead of G−,+. It is clear that the minimum of T̂ if1(x, ω)
corresponds to ζcompensation = 0.37. But this minimum is not perfect, mainly because the
second artefact was overcompensated, because the impact of this artefact on in the inverse

August 20, 2017



7-3 Conclusion 73

problem solution was overestimated. It can be further examined in Figure G-5. While the
first artefact in Figure G-5 is almost zero for ζcompensation = 0.37, the second artefact is non
zero for any ζcompensation. The work flow was repeated for Model 3a, and the same result was
obtained. It means that the artefacts caused by the third layer are very small and cannot be
seen in the figures. Therefore, the Artefact Removal Method gives the same compensation
parameter for Model 3a and for Model 3b. But, this problem can be solved if we apply the
Artefact Removal Method to the redatumed reflection series.

Figure 7-8 shows the redatumed reflection responses which were shifted down and zoomed in
to show the artefacts (Model 3a). The black curve corresponds to the redatumed reflection
response calculated for lossless medium. This is a perfect redatumed reflection response,
no artefacts are present. The red, blue and brown curves correspond to the redatumed
reflection responses, calculated for compensated lossy medium with ζcompensation = 0.1, 0.4,
0.5, respectively. The blue curve is the closest to the correct one because the artefacts are
small. Figure 7-9 is the same as Figure 7-8 but calculated for Model 3b. The artefacts are
clearly visible. The blue curve shows small artefacts for all events except the last one. This
artefact is shown by an arrow in Figure 7-9. Because of this artefact, we can conclude that
there is a layer with a very strong attenuation; Therefore, an effective temporal Q-factor
for Model 3b doesn’t exist. But it exists for Model 3a because the blue curve gives small
amplitudes for all artefacts.

7-3 Conclusion

In this thesis, the macro-scale homogenized viscoelastic properties were calculated by using the
T-matrix Approach and the Generalized Dvorkin-Mavko Attenuation Model. All theoretical
results are supported by synthetic 1D modeling. The theoretical part of thesis and a general
work flow can be used for a very complex medium. The Artefact Removal Method was tested
on Models 3a-3b. It works very well where the difference in attenuation between layers is
(approximately) less than 10-50% (as illustrated in Model 3a). If there is a layer with very
strong attenuation, the effective temporal Q-factor can be found for an interval between the
acquisition surface and the layer/layers with very strong attenuation (as seen in Model 3b).
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Figure 7-4: Lossless (black curve) and lossy (red curve) reflection series for Model 3a. The x-axis
represents time in seconds. The y-axis represents the amplitude. The intrinsic loss
was modelled using De Hoop’s model with two parameters (Model 3a).

Figure 7-5: Lossless (black curve) and lossy (red curve) reflection series for Model 3b. The x-
axis represents time in seconds. The y-axis represents the amplitude. The intrinsic
loss was modelled using De Hoop’s model with two parameters. The third layer
represents a reservoir with 20% porosity.
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Figure 7-6: Lossless (black curve) and compensated lossy (dashed red curve) reflection series
for Model 3a. The x-axis represents time in seconds. The y-axis represents the
amplitude. The compensation parameter applied to the lossy reflection series is
ζcompensation = 0.4

Figure 7-7: Lossless (black curve) and compensated lossy (dashed red curve) reflection series
for Model 3b. The x-axis represents time in seconds. The y-axis represents the
amplitude. The compensation parameter applied to the lossy reflection series is
ζcompensation = 0.37. This compensation is valid only for the first two layers.
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Figure 7-8: Redatumed reflection response for lossless medium (black) and the redatumed re-
flection response for compensated lossy medium (Model 3a). The figure is zoomed
in to 1.5-2.9 seconds and −2 ∗ 10−3-3.5 ∗ 10−3 amplitudes to show the artefacts.

Figure 7-9: Redatumed reflection response for lossless medium (black) and the redatumed re-
flection response for compensated lossy medium (Model 3b). The figure is zoomed
in to 1.5-2.9 seconds and −1 ∗ 10−3-2 ∗ 10−3 amplitudes to show the artefacts. The
desired artefact is shown by an arrow.
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Chapter 8

General Conclusions and Future
Research

8-1 General Conclusions

The connection between the different types of Lippmann-Schwinger equations was shown.
The macro- and micro- scale Lippmann-Schwinger equations describe the wave field and the
strain field scattering in an inhomogeneous medium, respectively. These two versions of the
Lippmann-Schwinger equations are connected through up-scaling. This approach is explained
in section (6-1) (theory) and in section (6-5) (synthetic simulation). The forward problem
is the following (from micro-scale to macro-scale): [A] By using the micro-scale Lippmann-
Schwinger equation and some additional rock physics models the effective viscoelastic moduli
of the rock can be calculated. In this thesis, it was done by using the T-matrix Approach and
the Generalized Dvorkin-Mavko Attenuation Model. [B] The calculated rock’s properties were
implemented into the layered model of the subsurface. The forward modeling showed that
the micro-scale properties of a heterogeneous porous medium are represented as homogenized
viscoelastic properties of the medium at macro-scale. Thus, the uspcaling scheme can be
constructed. On the other hand, the downscaling problem (from homogenized viscoelastic
properties to the heterogeneous porous medium’s properties), in general, cannot be resolved
because the uncertainties are too numerous and too substantial.

The Artefact Removal Method was proposed to quantify attenuation in the subsurface. This
method is based on the fact that the solution of the Marchenko equation is exact (Nota
Bene: Evanescent waves are excluded); However, there are artefacts present in the solution
if some assumptions of the medium are not fulfilled. Artefacts in the solution are caused
by: [A] numerical limitations (these artefacts are very small) and [B] additional medium’s
assumptions. Properties which can cause some artefacts in the solution are: [i] the anisotropy
of the medium, [ii] an incorrectly scaled source signature, [iii] an incorrect velocity model, [iv]
an incorrect compensation for transmission losses, [v] an incorrect compensation for intrinsic
losses (or, simply, lossy medium) etc. In this thesis, the medium assumptions [i]-[iv] were
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fulfilled. Therefore, the artefacts are present because the medium is lossy. These artefacts
have a very specific behaviour: if the input data to the Marchenko equation is over- or
under- compensated, the resulting artefacts will have an opposite polarity. Thus, they can
be recognized. The artefacts are present in the upgoing Green’s function, upgoing focusing
function of the first kind, the redatumed reflection series, etc. Thus, by applying different
compensation parameters to the lossy reflection series, the artefacts can be removed and,
hence, the correct compensation for the losses can be found. The method works very well for
the medium where the losses can be compensated via an effective temporal Q-factor. This is
shown by Models 1, 2a, 2b, 3a. If there is a layer/layers with a very strong attenuation, the
effective temporal Q-factor can be found for an interval between the acquisition surface and
the layer/layers with very strong attenuation. This is shown in Model 2c. The layer with a
very high attenuation can be found but this requires additional modeling (Model 3b).

The time-dependent compensation Q-factor doesn’t seem to work even for a simple medium.
The idea was to invert the time-dependent compensation Q-factor by minimizing the artefacts
in the upgoing Green’s function, upgoing focusing function and in the redatumed reflection
series. In general, the time-dependent compensation Q-factor can be found but too many
unknown parameters for such compensation are needed. For example, for a simple five layer
model, at least 20 different compensation parameters are needed. This inverse problem is
unstable and very expensive. It might work only if additional modeling is applied. But it is
difficult to model all possible multiples within different layers and their subsequent interactions
and invert to the correct time-dependent compensation Q-factor.

Marchenko redatuming for lossy medium works very well when the losses can be compensated
via an effective temporal Q-factor. If there is a layer/layers with a very strong attenuation, the
redatumed reflection series will contain some undesired artefacts. Therefore, further research
is required.

8-2 Future Research

It is my belief that the lossless Marchenko scheme can be modified in such a way that the
losses are incorporated.

Moreover, it has been suggested to jointly study the artefacts caused by assumptions [i]-[v],
as outlined above. It is the belief of this author that in each case these artefacts have very
specific behaviour and can be recognized. But, admittedly, for a very complex subsurface
medium, the artefact behaviour might be very complicated.

It has been suggested to modify the focusing algorithm provided by Wapenaar et al. (2013)
in such a way that the free-surface multiples are incorporated. This can be done by using
the modification provided by Singh et al. (2015). Therefore, the Artefact Removal Method
can be improved by focusing just below each layer (one-by-one, starting with the first layer)
and thus, removing the topmost layer, one-by-one. Dr. Slob (Delft University of Technology)
shared the original idea of this approach. Without the Singh et al. (2015) modification, the
Artefact Removal Method works well when the attenuation can be approximated with an
effective Q-factor — layers can be removed using seismic interferometry.
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Regarding the upscaling problem, it can be done using more sophisticated methods. For
example, different types of fluid flow can be taken into account. A more complicated rock’s
microstructure can be implemented as well.
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Appendix A

Operator, Tensor and Index Notations

Through this work Operators, Tensor and Index Notations are heavily referenced. They are
briefly explained below in the Hook’s law example for a lossless medium. Using the operator
notation, the stress-strain relationship can be written as:

σ = Cε (A-1)

At the same time, the stress-strain relationship can be written using the index or Einstein
notation:

σij = Cijklεkl (A-2)

Operator and index notations are widely used in geophysical literature. On the other hand,
it can be written using the tensor notation:

σ = C : ε, (A-3)

where : is the double dot product. The tensor notation is popular in micromechanics, me-
chanics of composites etc. The dyadic basis is defined as ai ⊗ aj . Thus, by definition the
stress and strain tensors are:

σ = σij ai ⊗ aj (A-4)

ε = εkl ak ⊗ al (A-5)

Similarly, the stiffness tensor is:

C = Cijkl ai ⊗ aj ⊗ ak ⊗ al (A-6)
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90 Operator, Tensor and Index Notations

Therefore, the stress-strain relationship can be written as:

σ = C : ε =

= (Cijkl ai ⊗ aj ⊗ ak ⊗ al) : (εpm ap ⊗ am) =

= Cijklεpm ai ⊗ aj δkp δlm =

= Cijklεkl ai ⊗ aj
(A-7)
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Appendix B

MATLAB Codes for the T-matrix
Method

Below, are some codes which were written to calculate the homogenized viscoelastic properties

of rocks (equations (5-18)-(5-23)). Tensors Ĝ
(r)

and Ĝ
(rs)

(chapter 5) can be calculated by
using Eq. (5-21) or Eq. (5-22) (these codes are not shown here for brevity’s sake). Analytical
formulas can be found in Torquato (2002) and Jakobsen and Johansen (2005). Formulas for
numerical calculation can be found in Mura (1982) and Bayuk et al. (2007). Some codes for
other routine operations are not shown for brevity’s sake. They can be found in any book on
tensor algebra. Zener model can be found in Mavko et al. (2009) and Carcione (2014).

B-1 The T-matrix

1f u n c t i o n [ Ceff_T , pm , P o r o s i t y _ m ] = . . .
T _ m a t r i x _ m a t h ( vpm , vsm , rhm , vpi , vsi , rhi , a l p h a , fi , a l p h a _ r s , F )

% [ Ceff_T , pm , P o r o s i t y _ m ] = ...

% T _ m a t r i x _ m a t h ( vpm , vsm , rhm , vpi , vsi , rhi , a l f a , fi , a l f a _ r s )

6% C a l c u l a t e the e f f e c t i v e s t i f f n e s s t e n s o r u s i n g the T - m a t r i x m e t h o d

%

%

% I n p u t s :

% vpm : P - w a v e v e l o c i t y of the rock ’ s m a t r i x

11% vsm : S - w a v e v e l o c i t y of the rock ’ s m a t r i x

% rhm : D e n s i t y

% vpi : P - w a v e v e l o c i t y of the i n c l u s i o n s in the r o c k

% vsi : S - w a v e v e l o c i t y of the i n c l u s i o n s in the r o c k

% rhi : D e n s i t y of the i n c l u s i o n s

16% a l p h a : the a s p e c t r a t i o of the i n c l u s i o n s

% fi : p o r o s i t y ( f r a c t i o n )

% a l p h a _ r s : the a s p e c t r a t i o of the i n c l u s i o n s of the two - p o i n t

% c o r r e l a t i o n f u n c t i o n ( w h i c h t a k e s i n t o a c c o u n t

% the s p a t i a l d i s t r i b u t i o n

21% of the i n c l u s i o n s ) . T h i s is the s e c o n d t e r m in the D y s o n s e r i e s .

% ( see J a k o b s e n et al . ( 2 0 0 3 ) and A l k h i m e n k o v ( 2 0 1 7 ) )

% F - is the c o n n e c t i v i t y of i n c l u s i o n s ( f r o m 0 to 1)

%

%

26% O u t p u t s :

% C e f f _ T : The e f f e c t i v e s t i f f n e s s t e n s o r of the c o m p o s i t e m a t e r i a l

% ( 6 * 6 matrix , V o i g t n o t a t i o n )

% pm : D e n s i t y of the c o m p o s i t e m a t e r i a l

% P o r o s i t y _ m : P o r o s i t y of the c o m p o s i t e m a t e r i a l

31
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% W r i t t e n by Y . A l k h i m e n k o v , TU Delft , 2 0 1 7 .

% %

36P o r o s i t y _ m=fi ∗100;
F=0.5;
pm = (1.0− fi )∗ rhm + fi∗ rhi ;
% % C a l c u l a t i n g L a m e c o n s t a n t s of the m a t r i x

41Mum=rhm ∗( vsm . ˆ 2 ) ;
Lam=rhm ∗( vpm . ˆ 2 ) − 2∗ Mum ;
Km=Lam+2∗Mum /3 ;

% c r e a t i n g 6*6 m a t r i x

46C _ m a t r (1 , 1 ) = Lam+2∗Mum ;
C _ m a t r (1 , 2 ) = Lam ;
C _ m a t r (1 , 3 ) = Lam ;
C _ m a t r (2 , 2 ) = Lam+2∗Mum ;
C _ m a t r (2 , 3 ) = Lam ;

51C _ m a t r (3 , 3 ) = Lam+2∗Mum ;
C _ m a t r (4 , 4 ) = Mum ;
C _ m a t r (5 , 5 ) = Mum ;
C _ m a t r (6 , 6 ) = Mum ;

for i=1:6
56for j=i : 6

C _ m a t r ( j , i ) = C _ m a t r ( i , j ) ;
end

end

C _ m a t r 1=C _ m a t r ;
61

% % C a l c u l a t i n g L a m e c o n s t a n t s of the i n c l u s i o n s

Mui=rhi ∗ vsi . ˆ 2 ;
Lai=rhi ∗ vpi . ˆ2 − 2∗ Mui ;

66Ki=Lai+2∗Mui /3 ;

% C r e a t i n g 6*6 m a t r i x

C _ i n c l (1 , 1 ) = Lai+2∗Mui ;
C _ i n c l (1 , 2 ) = Lai ;

71C _ i n c l (1 , 3 ) = Lai ;
C _ i n c l (2 , 2 ) = Lai+2∗Mui ;
C _ i n c l (2 , 3 ) = Lai ;
C _ i n c l (3 , 3 ) = Lai+2∗Mui ;
C _ i n c l (4 , 4 ) = Mui ;

76C _ i n c l (5 , 5 ) = Mui ;
C _ i n c l (6 , 6 ) = Mui ;

for i=1:3
for j=i : 3

C _ i n c l ( j , i ) = C _ i n c l ( i , j ) ;
81end

end

% %

f o r m a t l o n g

86% %

% C o m p a r i s o n b o d y w i t h F

C _ c o m p a r 1=(1−F )∗ C _ m a t r+F∗ C _ i n c l ; %

% C a l c u l a t i n g L a m e c o n s t a n t s of the c o m p a r i s o n b o d y

91Muc=C _ c o m p a r 1 (4 , 4 ) ;
Lac=C _ c o m p a r 1 (1 , 2 ) ;
n u _ c=Lac /(2∗( Lac+Muc ) ) ;

96% % A n o t h e r c o m p a r i s o n b o d y :

%

% K _ V o i g t =(1 - fi ) .* Km + fi * Ki ; % V o i g t b o u n d

% K _ R e u s s = 1 . / ( ( 1 - fi ) ./ Km + fi ./ Ki ) ; % R e u s s b o u n d

% M u _ V o i g t =(1 - fi ) .* Mum + fi * Mui ; % V o i g t b o u n d

101% M u _ R e u s s = 1 . / ( ( 1 - fi ) ./ Mum + fi ./ Mui ) ; % R e u s s b o u n d

%

% L a c _ 2 M u c P (1 ,1) = fi .*( K _ R e u s s + 4 . / 3 * M u _ R e u s s ) +(1 - fi ) . * . . .

% ( K _ V o i g t + 4 . / 3 * M u _ V o i g t ) ;

% M u c P (4 ,4) = fi .* M u _ R e u s s +(1 - fi ) .* M u _ V o i g t ;

106%

% % c r e a t i n g 6*6 m a t r i x

% C _ c o m p a r 1 (1 ,1) = L a c _ 2 M u c P (1 ,1) ;

% C _ c o m p a r 1 (1 ,2) = L a c _ 2 M u c P (1 ,1) -2* M u c P (4 ,4) ;

% C _ c o m p a r 1 (1 ,3) = L a c _ 2 M u c P (1 ,1) -2* M u c P (4 ,4) ;

111% C _ c o m p a r 1 (2 ,2) = L a c _ 2 M u c P (1 ,1) ;

% C _ c o m p a r 1 (2 ,3) = L a c _ 2 M u c P (1 ,1) -2* M u c P (4 ,4) ;

% C _ c o m p a r 1 (3 ,3) = L a c _ 2 M u c P (1 ,1) ;

% C _ c o m p a r 1 (4 ,4) = M u c P (4 ,4) ;

% C _ c o m p a r 1 (5 ,5) = M u c P (4 ,4) ;

116% C _ c o m p a r 1 (6 ,6) = M u c P (4 ,4) ;

% for i = 1 : 3

% for j = i :3

% C _ c o m p a r 1 ( j , i ) = C _ c o m p a r 1 ( i , j ) ;

% end

121% end
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% Muc = C _ c o m p a r 1 (4 ,4) ;

% Lac = C _ c o m p a r 1 (1 ,2) ;

% n u _ c = Lac / ( 2 * ( Lac + Muc ) ) ;

% % C a l c u l a t i n g the E s h e l y t e n s o r ( e x t e r n a l f u n c t i o n )

126% Can be e a s i l y written , see M u r a ( 1 9 8 2 ) .

%

E s h e l b y 2 = E s h e l b y _ m a t h _ m y ( alpha , n u _ c ) ;
C _ c o m p a r 1 _ o b=S i j k l _ c m n ( inv ( C _ c o m p a r 1 ) ) ;
E s h e l b y 2 _ 4=c i j k l _ c m n ( E s h e l b y 2 ) ;

131
% C a l c u l a t i n g the s i n g u l a r c o m p o n e n t of the Green ’ s t e n s o r

% s e c o n d d e r i v a t i v e o v e r the i n c l u s i o n v o l u m e

% Can be e a s i l y written , see M u r a ( 1 9 8 2 ) .

Gr4=−d o u b l e _ d o t _ p r o d u c t ( E s h e l b y 2 _ 4 , C _ c o m p a r 1 _ o b ) ;
136Gr2=S m n _ c i j k l ( Gr4 ) ;

% % S o m e e x t e r n a l f u n c t i o n s :

% T h e s e f u n c t i o n s can be e a s i l y written , see any b o o k on T e n s o r A l g e b r a

% T h e y are not s h o w n in the A p p e n d i x .

141% [ C ] = S m n _ c i j k l ( CC ) % the 4 th r a n k c o m p l i a n c e t e n s o r ( 3 * 3 * 3 * 3 )

% to the V o i g t m a t r i x ( 6 * 6 )

% [ CC ] = S i j k l _ c m n ( C ) % the V o i g t m a t r i x ( 6 * 6 ) to

% the 4 th r a n k c o m p l i a n c e t e n s o r ( 3 * 3 * 3 * 3 )

146
% [ C ] = c m n _ c i j k l ( CC ) % the 4 th r a n k s t i f f n e s s t e n s o r ( 3 * 3 * 3 * 3 )

% to the V o i g t m a t r i x ( 6 * 6 )

% [ CC ] = c i j k l _ c m n ( C ) % the V o i g t m a t r i x ( 6 * 6 ) to

151% the 4 th r a n k s t i f f n e s s t e n s o r ( 3 * 3 * 3 * 3 )

% % E x t e r n a l f u n c t i o n : d o u b l e _ d o t _ p r o d u c t

% [ W ] = d o u b l e _ d o t _ p r o d u c t ( C1 , C2 ) % d o u b l e dot product ,

156% 4 th o r d e r t e n s o r s

% % k r o n e c k e r d e l t a

K r D e l = [ 1 0 0 ; . . .
0 1 0 ; . . .

1610 0 1 ] ;
% % the 4 th r a n k I d e n t i t y t e n s o r

I4=z e r o s ( 3 , 3 , 3 , 3 ) ;
for j=1:1:3

for k=1:1:3
166for l=1:1:3

for m=1:1:3
I4 ( j , k , l , m ) =0.5∗( K r D e l ( j , l )∗ K r D e l ( k , m )+K r D e l ( j , m ) . . .

∗ K r D e l ( k , l ) )+I4 ( j , k , l , m ) ;
end

171end

end

end

% % S o m e r o u t i n e o p e r a t i o n s :

176G r 4 i=S i j k l _ c m n ( Gr2 ) ;
d C r 2 i=C_incl−C _ c o m p a r 1 ;
d C r 4 i=c i j k l _ c m n ( d C r 2 i ) ;

t r r 1 i=d o u b l e _ d o t _ p r o d u c t ( dCr4i , G r 4 i ) ;
181t t r 2 i=I4−t r r 1 i ;

t t r 2 _ o b i=c i j k l _ c m n ( inv ( S m n _ c i j k l ( t t r 2 i ) ) ) ;
t t r 3 i=d o u b l e _ d o t _ p r o d u c t ( t t r 2 _ o b i , d C r 4 i ) ;

G r 4 m=S i j k l _ c m n ( Gr2 ) ;
186d C r 2 m=C_matr−C _ c o m p a r 1 ; %

d C r 4 m=c i j k l _ c m n ( d C r 2 m ) ;

t r r 1 m=d o u b l e _ d o t _ p r o d u c t ( dCr4m , G r 4 m ) ;
t t r 2 m=I4−t r r 1 m ;

191t t r 2 _ o b m=c i j k l _ c m n ( inv ( S m n _ c i j k l ( t t r 2 m ) ) ) ;
t t r 3 m=d o u b l e _ d o t _ p r o d u c t ( t t r 2 _ o b m , d C r 4 m ) ;

% %

% C a l c u l a t i n g the s i n g u l a r c o m p o n e n t of the Green ’ s t e n s o r

196% s e c o n d d e r i v a t i v e o v e r the i n c l u s i o n v o l u m e u s i n g the

% a s p e c t r a t i o of the two - p o i n t c o r r e l a t i o n f u n c t i o n

E s h e l b y 2 = E s h e l b y _ m a t h _ m y ( a l p h a _ r s , n u _ c ) ;
C _ m a t r 4 _ o b=S i j k l _ c m n ( inv ( C _ c o m p a r 1 ) ) ;

201E s h e l b y 2 _ 4 _ r s=c i j k l _ c m n ( E s h e l b y 2 ) ;
G r 4 _ r s=−d o u b l e _ d o t _ p r o d u c t ( E s h e l b y 2 _ 4 _ r s , C _ m a t r 4 _ o b ) ;
G r 2 _ r s=S m n _ c i j k l ( G r 4 _ r s ) ;
G r 4 _ r s=S i j k l _ c m n ( G r 2 _ r s ) ;
G r 4 _ _ _ R S=S m n _ c i j k l ( G r 4 _ r s ) ;

206
% % A g a i n s o m e r o u t i n e o p e r a t i o n s :

X1i=d o u b l e _ d o t _ p r o d u c t ( Gr4_rs , t t r 3 i ) ; % 11

X2i=d o u b l e _ d o t _ p r o d u c t ( ttr3i , X1i ) ;
211
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94 MATLAB Codes for the T-matrix Method

X 1 2 i=d o u b l e _ d o t _ p r o d u c t ( Gr4_rs , t t r 3 m ) ; % 12

X 1 2 1 2=d o u b l e _ d o t _ p r o d u c t ( ttr3i , X 1 2 i ) ;

X 1 m 2 1=d o u b l e _ d o t _ p r o d u c t ( Gr4_rs , t t r 3 i ) ; % 21

216X 2 1 2 1=d o u b l e _ d o t _ p r o d u c t ( ttr3m , X 1 m 2 1 ) ;

X1m=d o u b l e _ d o t _ p r o d u c t ( Gr4_rs , t t r 3 m ) ; % 22

X2m=d o u b l e _ d o t _ p r o d u c t ( ttr3m , X1m ) ;

221X1=fi ∗( X2i ∗ fi ) ;
X12=fi ∗( X 1 2 1 2 ∗(1− fi ) ) ;
X21=(1−fi )∗ X 2 1 2 1 ∗ fi ;
X4=(1−fi ) ∗( X2m∗(1− fi ) ) ;
X=−(fi ∗( X2i ∗ fi )+fi ∗( X 1 2 1 2 ∗(1− fi ) )+(1−fi )∗ X 2 1 2 1 ∗ fi + (1− fi ) ∗( X2m∗(1− fi ) ) ) ;

226
T1=fi∗ t t r 3 i+(1−fi )∗ t t r 3 m ;
T 1 _ o b=S i j k l _ c m n ( inv ( c m n _ c i j k l ( T1 ) ) ) ;
C1i=d o u b l e _ d o t _ p r o d u c t ( T1_ob , X ) ;
C2i=I4−C1i ;

231C 3 i _ o b=c i j k l _ c m n ( inv ( S m n _ c i j k l ( C2i ) ) ) ;

C4i=d o u b l e _ d o t _ p r o d u c t ( T1 , C 3 i _ o b ) ;

C e f f _ T 1 2=c i j k l _ c m n ( C _ c o m p a r 1 )+C4i ;
236C e f f _ T=c m n _ c i j k l ( C e f f _ T 1 2 ) ; % the e f f e c t i v e s t i f f n e s s t e n s o r

d i s p ( ’ The T - m a t r i x ’ ) ;

B-2 The Double Dot Product

1f u n c t i o n [ W ] = d o u b l e _ d o t _ p r o d u c t ( C1 , C2 )
% f u n c t i o n [ W ] = d o u b l e _ d o t _ p r o d u c t ( C1 , C2 )

% d o u b l e dot product , 4 th o r d e r t e n s o r s

% I n p u t s :

% C1 , C2 : two 4 th r a n k t e n s o r s 1 ( 3 * 3 * 3 * 3 ) , 2 ( 3 * 3 * 3 * 3 )

6%

% O u t p u t s :

% W : d o u b l e dot product , the 4 th r a n k t e n s o r s W ( 3 * 3 * 3 * 3 )

W = z e r o s ( 3 , 3 , 3 , 3 ) ;
11

for i=1:3
for j=1:3

for m=1:3
for n=1:3

16for k=1:3
for l=1:3
W ( i , j , m , n )=C1 ( i , j , k , l )∗ C2 ( k , l , m , n )+W ( i , j , m , n ) ;
end

end

21end

end

end

end

26end
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Appendix C

Models: Tables 1-3

ztop(m) zbottom(m) Vp(km/s) ρ(kg/m3) ζdamping Qtemporal

0 750 2000 1000 0.8 ≈ 117.8
750 1500 2000 2000 0.8 ≈ 117.8
1500 2375 2000 1000 0.8 ≈ 117.8
2375 3000 2000 2000 0.8 ≈ 117.8

Table C-1: A simple constant-Q model (Model 1).

ztop(m) zbottom(m) Vp(km/s) ρ(kg/m3) αH

0 400 2500 2500 1.5 · 10−3

400 1000 3000 2700 1.5 · 10−3

1000 1500 2000 2400 1.5 · 10−3

1500 2375 3000 2600 1.5 · 10−3

2375 3000 2000 2500 1.5 · 10−3

Table C-2: De Hoop’s model with two parameters (Model 2a).

ztop(m) zbottom(m) Vp(km/s) ρ(kg/m3) αH

0 400 2500 2500 3 · 10−3

400 1000 3000 2700 3 · 10−3

1000 1500 2000 2400 3 · 10−3

1500 2375 3000 2600 3 · 10−3

2375 3000 2000 2500 3 · 10−3

Table C-3: De Hoop’s model with one parameter (Model 2b).
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96 Models: Tables 1-3

ztop(m) zbottom(m) Vp(km/s) ρ(kg/m3) αH

0 400 2500 2500 1.5 · 10−3

400 1000 3000 2700 1.5 · 10−3

1000 1500 2000 2400 5.25 · 10−3

1500 2375 3000 2600 1.5 · 10−3

2375 3000 2000 2500 1.5 · 10−3

Table C-4: De Hoop’s model with two parameters (Model 2c).

ztop(m) zbottom(m) Vp(km/s) ρ(kg/m3) αH

0 400 2500 2500 1.5 · 10−3

400 1000 2800 2700 1.5 · 10−3

1300 1500 4000 2690 1.2 · 10−3

1500 2375 2650 2700 1.8 · 10−3

2600 3000 2200 2500 1.65 · 10−3

Table C-5: De Hoop’s model with two parameters (Model 3a). The third layer is a carbonate
rock with some clay content.

ztop(m) zbottom(m) Vp(km/s) ρ(kg/m3) αH

0 400 2500 2500 1.5 · 10−3

400 1000 2800 2700 1.5 · 10−3

1300 1500 2490 2000 15 · 10−3

1500 2375 2650 2700 1.8 · 10−3

2600 3000 2200 2500 1.65 · 10−3

Table C-6: De Hoop’s model with two parameters (Model 3b). The third layer represents a
reservoir with 20% porosity.
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Appendix D

Section 6-1: Figures D-1 - D-6

Figure D-1: Downgoing Green’s function G+,+. Black curve is the lossless G+,+, red curve is
the lossy G+,+. The x-axis represents time in seconds, the y-axis represents the
amplitude. The focal point is 2000 m depth. The intrinsic loss was modelled as an
amplitude damping (Model 1) ζdamping = 0.8.
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98 Section 6-1: Figures D-1 - D-6

Figure D-2: Upgoing focusing function f−1 . The black curve is the lossless f−1 The red curve
is the lossy f−1 . The x-axis represents time in seconds, the y-axis represents the
amplitude. The focal point is 2000 m depth. The intrinsic loss was modelled as an
amplitude damping (Model 1) ζdamping = 0.8.

Figure D-3: Downgoing focusing function f+1 . The black curve is the lossless f+1 . The red curve
is the lossy f+1 . The x-axis represents time in seconds. The y-axis represents the
amplitude. The focal point is 2000 m depth. The intrinsic loss was modelled as an
amplitude damping (Model 1) ζdamping = 0.8.
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Figure D-4: Lossless (black curve) and compensated lossy (red curve) reflection series for Model
1. The x-axis represents time in seconds. The y-axis represents the amplitude. The
intrinsic loss was modelled as an amplitude damping (Model 1). ζdamping = 0.8.
The compensation factor is ζcompensation = 0.8

Figure D-5: Lossless (black curve) and lossy (red curve) reflection series for Model 1. The x-axis
represents time in seconds, the y-axis represents the amplitude. The intrinsic loss
was modelled using De Hoop’s model with two parameters (Model 2b).
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100 Section 6-1: Figures D-1 - D-6

Figure D-6: Lossless (black curve) and compensated lossy (red curve) reflection series for Model
2b. The x-axis represents time in seconds. The y-axis represents the amplitude.
The intrinsic loss was modelled using De Hoop’s model with two parameters (Model
2b). The compensation factor is ζcompensation = 0.5.
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Appendix E

Section 6-2: Figures E-1 - E-15

Figure E-1: Upgoing Green’s function G−,+. The focal point is 2000 m depth. Different colors
correspond to different compensation parameters ζcompensation = 0.2, 0.4, 0.6, 0.8,
0.9, 1.0. The intrinsic loss was modelled as an amplitude damping (Model 1).
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102 Section 6-2: Figures E-1 - E-15

Figure E-2: The function T (x, t). This figure is the zoomed version of Figure 6-7. Five artefacts
can be seen at 1.25, 2, 2.75, 3.5, 4.25 seconds. The intrinsic loss was modelled as
an amplitude damping (Model 1).
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Figure E-3: Function T i
G(x, tl) which is equal to the upgoing Green’s function G−,+ at time

intervals where artefacts are present. G−,+ was calculated using different compen-
sation parameters applied to the lossy reflection series: (a) - ζcompensation = 0.6;
(b) - ζcompensation = 0.75; (c) - ζcompensation = 0.8, this is the correct value,
therefore, no artefacts are present; (d) - ζcompensation = 0.9. The x-axis represents
time in seconds. The y-axis represents the amplitude.
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104 Section 6-2: Figures E-1 - E-15

Figure E-4: Function T̂ i
G(x, ω). The horizontal plane is the compensation parameter

ζcompensation = 0.2, 0.4, 0.6, 0.8, 0.9, 1.0 and the frequency. The vertical axis cor-
responds to the amplitude. The true compensation parameter is ζcompensation = 0.8

corresponds to the minimum of T̂ i
G(x, ω) which is shown in blue.

Figure E-5: Function T̂ i
G(x, ω). The horizontal plane is the compensation parameter

ζcompensation = 0.6, 0.7, 0.75, 0.8, 0.85, 0.9 and the frequency. The vertical axis cor-
responds to the amplitude. The true compensation parameter is ζcompensation = 0.8

corresponds to the minimum of T̂ i
G(x, ω).
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Figure E-6: The continuous 1D wavelet transform of the function T i
G(x, tl) using the Morlet

wavelet with scales 20-80. The x-axis represents time in seconds. The y-axis repre-
sents scale a. The color represents the coefficient value. (a) ζcompensation = 0.6; (b)
ζcompensation = 0.75; (c) ζcompensation = 0.8, this is the correct value, therefore,
nothing is visible; (d) ζcompensation = 0.9.
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106 Section 6-2: Figures E-1 - E-15

Figure E-7: Function T̂ i
G(x, ω). The x-axis represents the compensation parameter ζcompensation

= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. The y-axis represents the frequency. The vertical
axis corresponds to the amplitude. The true compensation parameter is around
ζcompensation = 0.4, which corresponds to the minimum of T̂ i

G(x, ω). The intrinsic
loss was modelled using De Hoop’s Model with Two Parameters (Model 2a).

Figure E-8: Function T̂ i
G(x, ω). The x-axis represents the compensation parameter ζcompensation

= 0.1, 0.2, 0.3, 0.4352, 0.5, 0.6. The y-axis represents the frequency. The
vertical axis corresponds to the amplitude. The true compensation parameter is
ζcompensation = 0.8, which corresponds to the minimum of T̂ i

G(x, ω). The intrinsic
loss was modelled using De Hoop’s Model with Two Parameters (Model 2a).
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Figure E-9: Function T i
G(x, tl). This figure is similar to Figure E-7 but instead of a 3D plot this

figure is a 2D plot. The x-axis represents the compensation parameter ζcompensation

= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. The y-axis represents the frequency. The color
denotes the amplitude. The true compensation parameter is around ζcompensation =

0.4, which corresponds to the minimum of T̂ i
G(x, ω) (blue). The intrinsic loss was

modelled using De Hoop’s Model with Two Parameters (Model 2a).
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108 Section 6-2: Figures E-1 - E-15

Figure E-10: The continuous 1D wavelet transform of the function T i
G(x, tl) using the Morlet

wavelet. The x-axis represents time in seconds. The y-axis is divided into 6
horizontal bands. Each horizontal band corresponds to a different ζcompensation.
Within each horizontal band, scales a = 70-80 are shown. The color represents
the coefficient value. The intrinsic loss was modelled using De Hoop’s Model with
Two Parameters (Model 2a).

Figure E-11: The continuous 1D wavelet transform of the function T i
G(x, tl) using the Morlet

wavelet. The x-axis represents time in seconds. The y-axis is divided into 6
horizontal bands. Each horizontal band corresponds to a different ζcompensation.
Within each horizontal band, scales a = 70-80 are shown. The color represents
the coefficient value. ζcompensation = 0.4352 is the correct value, because the
amplitude is closer to zero. The intrinsic loss was modelled using De Hoop’s
Model with Two Parameters (Model 2a).
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Figure E-12: Lossless (black curve) and compensated lossy (red curve) reflection series for Model
2a. The x-axis represents time in seconds. The y-axis represents the amplitude.
The compensation factor is ζcompensation = 0.4352. The intrinsic loss was mod-
elled using De Hoop’s Model with Two Parameters (Model 2a).
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110 Section 6-2: Figures E-1 - E-15

Figure E-13: Lossless (black curve) and lossy (red curve) reflection series for Model 2c. The x-
axis represents time in seconds. The y-axis represents the amplitude. The intrinsic
loss was modelled using De Hoop’s model with two parameters.

Figure E-14: Function T̂ i
G(x, ω) for Model 2c. The horizontal plane is the compensation parame-

ter ζcompensation = 0.1, 0.2, 0.3, 0.4, 0.45, 0.5 and the frequency. The vertical axis
corresponds to the amplitude. The range of ζcompensation = 0.4−0.45 corresponds

to to the minimum of T̂ i
G(x, ω).
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Figure E-15: The continuous 1D wavelet transform of the function T i
G(x, tl) using the Morlet

wavelet (Model 2c). The x-axis represents time in seconds. The y-axis represents
scale a. The y-axis is divided into 6 horizontal bands. Each horizontal band
corresponds to a different ζcompensation. Within each horizontal band, scales a =
70-80 are shown. The color represents the coefficient value.
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Appendix F

Section 6-3: Figures F-1 - F-3

Figure F-1: Reflection response (black), redatumed reflection response using G±,+ for lossless
medium (green) and the redatumed reflection response using G±,+ for lossy medium.
The intrinsic loss was modelled using De Hoop’s Model with Two Parameters (Model
2a). The black curve coincides with the green curve at time ≈1.8 sec.
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114 Section 6-3: Figures F-1 - F-3

Figure F-2: That is the same figure as Figure 6-14 but zoomed in to 2-4.5 seconds and -0.02-
0.04 amplitudes. The intrinsic loss was modelled using De Hoop’s Model with Two
Parameters (Model 2a). The black curve coincides with the green curve at time
≈1.8 sec.

Figure F-3: Black and green curves are the same as in Figure 6-13. The dashed red curve is the
redatumed reflection response which was calculated using G±,+ for compensated
lossy medium. The intrinsic loss was modelled using De Hoop’s Model with Two
Parameters (Model 2a). The black curve coincides with the green curve at time
≈1.8 sec.
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Appendix G

Section 7-2: Figures G-1 - G-5

Figure G-1: Function T̂ i
f1(x, ω) for Model 3a. The horizontal plane is the compensation parame-

ter ζcompensation = 0.1, 0.2, 0.3, 0.4, 0.45, 0.5 and the frequency. The vertical axis
corresponds to the amplitude. The compensation parameter is ζcompensation = 0.4

corresponds to the minimum of T̂ i
f1(x, ω).

August 20, 2017



116 Section 7-2: Figures G-1 - G-5

Figure G-2: This figure is similar to Figure G-1 but instead of a 3D plot this figure is a 2D plot.
The x-axis represents the compensation parameter ζcompensation = 0.1, 0.2, 0.3,
0.4, 0.45, 0.5. The y-axis represents the frequency. The color denotes the amplitude.
The correct compensation parameter is ζcompensation = 0.4, which corresponds to

the minimum of T̂ i
f1(x, ω) (no artefacts).

Figure G-3: The continuous 1D wavelet transform of the function T i
f1(x, tl) using the Morlet

wavelet (Model 3a). The x-axis represents time in seconds. The y-axis represents
scale a. The y-axis is divided into 6 horizontal bands. Each horizontal band corre-
sponds to a different ζcompensation. Within each horizontal band, scales a = 70-80
are shown. The color represents the coefficient value.
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Figure G-4: Function T̂ i
f1(x, ω) for Model 3b. The x-axis represents the compensation param-

eter ζcompensation = 0.35, 0.36, 0.37, 0.38, 0.39, 0.41. The y-axis represents
the frequency. The color denotes the amplitude. The compensation parameter
is ζcompensation = 0.4 corresponds to the minimum of T̂ i

f1(x, ω). Note Bene: the
minimum is not perfect.

Figure G-5: The continuous 1D wavelet transform of the function T i
f1(x, tl) using the Morlet

wavelet (Model 3a). The x-axis represents time in seconds. The y-axis represents
scale a. The y-axis is divided into 6 horizontal bands. Each horizontal band cor-
responds to a different ζcompensation. Within each horizontal band, scales a =
70-80 are shown. The color represents the coefficient value. Note Bene: the second
artefact is still present for any compensation parameter.
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