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Abstract
Positive end-expiratory pressure (PEEP) is one of
the components of mechanical ventilation treat-
ment for patients with acute respiratory distress
syndrome (ARDS). Correct PEEP level can reduce
additional lung injuries sustained during the hospi-
talisation, significantly increasing patients’ chances
for survival. In this paper, we focus on estimat-
ing the difference in patient mortality when as-
signed high or low PEEP level. We look at three
machine learning models specifically designed for
such tasks: S-learner, T-learner and causal for-
est. Through a series of experiments, we determine
their best use cases based on simulated data and
measure their performance on a real-life dataset -
MIMIC-IV. In our analysis, we find that after tun-
ing the hyperparameters, the models can, to some
degree, make valuable predictions and reveal het-
erogeneity in the treatment effect. However, when
evaluated on a separate dataset, the models’ perfor-
mance drops significantly.

1 Introduction
Mechanical ventilation is a crucial point of supportive ther-
apy for critically ill patients who were admitted to the inten-
sive care unit (ICU) with acute respiratory distress syndrome
(ARDS) [1]. However, mechanical ventilation can also cause
further lung injuries, such as abnormal opening and closing of
small airways and alveoli [2]. These issues can be mitigated
by using positive end-expiratory pressure (PEEP) [3], which
additionally helps increase the area of aerated lung available
during inhalation [4], further improving the patient’s condi-
tion. PEEP can be set to different values, which are cate-
gorised into two main groups: high and low. Both of these
groups have their advantages and disadvantages, for exam-
ple, high PEEP levels allow for the usage of a lower frac-
tion of inspired oxygen, reducing adverse pulmonary effects
[1]. On the other hand, higher PEEP might increase cardiac
pressures and strain on airways, causing new lung injuries,
and even possibly leading to cardiac arrest [4]. Therefore, the
PEEP setting is crucial in the treatment, since it has a sizeable
influence on the patient’s condition, and if chosen correctly,
can have a considerable potential of increasing their chances
for survival.

In the past, there have been several studies aiming to find
which PEEP setting is more beneficial for the patients. Some
of them (e.g. [5]) suggested that assigning higher PEEP for
patients with severe ARDS (those heaving low PaO2/FiO2 ra-
tio) reduced their mortality rate. However, more recently, Sa-
hetya and Brower [4] as well as Cavalcanti et al. [2] in their
analyses did not arrive at the same conclusions. Rather, they
have observed a higher mortality rate among patients with se-
vere ARDS who received higher PEEP setting.

Walkey et al. [6] have conducted a systematic review of
outcomes of eight clinical trials comparing strategies us-
ing higher PEEP versus lower PEEP levels in patients with
ARDS. Oba et al. [7] have carried out a similar analysis of

five datasets, three of which were not included in [6]. In both
of these studies, the results did not indicate undoubtedly that
either of the PEEP setting options has a clear supremacy over
the other. Therefore, it is hypothesised that the PEEP strategy
should be chosen on a case-to-case basis, with the optimal
setting depending on the individual patient’s characteristics.

In this paper we investigate whether one can use machine
learning techniques to estimate for patients with ARDS their
conditional average treatment effect (CATE) - the difference
in outcomes in treatment depending on the chosen PEEP
regime and patient characteristics. Specifically, we focus on
three forest-based meta-learning models - causal forest [8],
S-learner [9] and T-learner [9]. The last two are more gen-
eral models, not strictly limited to being forest-based, so we
restrict ourselves to using only random forest as their base
learner. We analyse these models and measure their perfor-
mance using real-world data - MIMIC-IV dataset [10], [11],
[12]. Furthermore, based on the results of this analysis, we
determine whether they are suitable for making the predic-
tions mentioned above, and verify our claims using data from
a randomised controlled trial.

With the rise in popularity of machine learning in recent
years, one can find studies aiming to apply various models
in the mechanical ventilation setting. For example, in [13]
and [14] authors have studied the ability of neural networks
and deep learning models trained on MIMIC-III and eICU
datasets to correctly predict future oxygenation levels and res-
piratory system compliance. Based on the same databases,
Peine et al. [15] have trained a reinforcement learning model
to suggest a suitable mechanical ventilation regime for pa-
tients. According to our knowledge, there has not been any
research into estimating CATE for PEEP assignment based
on the MIMIC-IV data yet.

The remainder of this paper is structured as follows:
section 2 introduces related terminology and describes the
MIMIC-IV dataset. Section 3 outlines the models and meth-
ods used in the experiments. The detailed setup and results of
those experiments are presented in section 4. Section 5 pro-
vides further analysis of the results. In section 6 we examine
the reproducibility and ethical aspects of our study. Lastly, in
section 7, the paper is concluded and an overview of possible
future work is given.

2 Preliminaries
In this section, we make a short introduction about relevant
concepts. First, we give a detailed description of the MIMIC-
IV dataset. Next, we describe notions of causal inference and
CATE estimation, as well as introduce relevant terminology.
After that, three important causal inference assumptions are
discussed. Lastly, we motivate our feature selection choices.

2.1 MIMIC-IV dataset
MIMIC-IV is a publicly available database of medical records
of the Beth Israel Deaconess Medical Center located in
Boston, United States [10]. It contains various information
such as patient measurements, diagnoses, applied treatments
etc. The data has been deidentified by the authors - all pa-
tient identifiers were removed and a random offset has been
applied to any dates.



For our purposes, the database has been pre-processed, re-
sulting in a dataset with information about 3941 patients suf-
fering from hypoxemic respiratory failure. There are 24 fea-
tures provided, including patient characteristics such as vital
signs and blood oxygenation levels, as well as laboratory and
ventilation settings. Additionally, we are given information
about the high vs low PEEP assignment and the treatment
outcome (mortality) after 28 days.

2.2 Causal inference and CATE estimation
Causal inference is the process of uncovering cause-effect re-
lationships between different phenomena. That is, through
causal inference we try to explain and predict how the value
of one variable will change if the value of another variable is
altered. This variable whose value is changing is called treat-
ment and in this paper we will denote it as W. For example,
in our setting, we are trying to predict the hospitalisation out-
come of a patient (whether they die or not) and the treatment
is expressed as assigning to them a high (W = 1) or low
(W = 0) PEEP level.

In some cases, the treatment might have different effects
on different individuals. For example, people from different
age groups might have various responses to a given hospital-
isation course. In these cases, we say that the treatment is
heterogeneous and can use conditional average treatment ef-
fect (CATE) as a measure of comparing the treatments. CATE
calculates the estimate of the difference of the outcomes when
the individual is treated or untreated, conditioned on the char-
acteristics of that individual:

τ(X) = E[Y1 − Y0|X]

where the meaning of variables and their interpretation in our
use case is as follows: X denotes the vector describing the
individual, Y1 and Y0 are potential outcomes in cases when
the individual is respectively treated (high PEEP, W = 1) or
remains untreated (low PEEP, W = 0). Possible values for
Yw are 0 and 1 with Yw = 0 meaning that the patient has died
and Yw = 1 denotes that the patient has survived under given
treatment W = w.

When trying to estimate CATE, one faces several obsta-
cles. The first one (which we describe in regard to our setting,
but is also one of the main challenges of causal inference in
general) is that for each patient it is possible to observe the
outcome under only one of the possible PEEP assignments.
This means that it is impossible to know what would be the
outcome if the patient was assigned high PEEP instead of low
one (or the other way round) as it is highly unlikely to find an-
other person with the exact same characteristics. Because of
that, we are always missing half of the information about the
potential outcomes.

Another challenge is connected to the existence of con-
founders. They are variables that influence both the outcome
and the treatment assignment [16]. As mentioned in section 1,
in past years there have been some papers suggesting that pa-
tients with low PaO2/FiO2 ratio (called pf ratio in our dataset)
benefit from high PEEP (e.g. [5]). Therefore, doctors who
were aware of these claims might have based their decision
about the PEEP level assignment on this characteristic. Be-
cause of that, pf ratio is a confounder – its value influenced

PEEP assignment and might also be related to the outcome -
the mortality rate. One of the ways of removing confound-
ing is conducting a randomised controlled trial – an experi-
ment in which the treatment is assigned randomly and does
not depend on any variables. However, MIMIC-IV is an ob-
servational dataset – the researchers had no influence on the
treatment and only registered the data. The existence of con-
founders introduces bias into predictions, as any difference
between the treated and untreated groups means that we can-
not unquestionably say that the potential discrepancy between
outcomes of these groups is exclusively caused by the treat-
ment. Because of that, our predictions might be highly inac-
curate unless we properly account for the presence of these
confounders.

2.3 Causal inference assumptions
Causal inference requires three main conditions to hold [17]:

• Consistency – the way treatment is applied does not in-
fluence the outcome, meaning that the result of a given
treatment for a given individual is always the same.

• Conditional exchangeability – given a set of con-
founders, if we split our data into groups based on the
values of these features, the treatment assignment is in-
dependent of the possible outcomes within these groups.
Thus one could exchange the treated and untreated parts
(again within the groups) without influencing the result
of a study, as in that case the probability of a given out-
come, under a given treatment, is the same in both parts.

• Positivity – for each individual the probability of being
assigned to a given treatment level is positive (greater
than zero).

It is not guaranteed that these conditions will hold in obser-
vational datasets such as MIMIC-IV and they are often diffi-
cult to verify. We can try to check whether positivity holds
by training a model predicting the probability of assigning a
given treatment level to a given sample, that is P (W = 0|x)
and P (W = 1|x). We have done so on MIMIC-IV data using
k-neighbours classifier and random forest classifier and found
that for 3% of the samples both models estimated that one of
P (W = 0|x) and P (W = 1|x) is lower than 1%. This re-
sult could mean that positivity does not hold in our dataset, or
that these samples are outliers and we would need more data
points to properly verify this claim.

The remaining two assumptions are trickier to verify. For
consistency we need the treatment to be conducted in exactly
the same way for each patient and conditional exchangeabil-
ity essentially means that all possible confounders are ac-
counted for in the data. Therefore it is impossible to precisely
verify these claims, and we need to assume that the conditions
hold - the treatment was administered each time in the same
way and there are no confounders which are not included in
our dataset.

2.4 Selected variables
From all available features, we need to select those that either:
(1) are confounders, to be able to account for them within the
models, or (2) have an impact on the outcome, without in-
fluencing or being influenced by the treatment. Based on the



literature, talks with the supervisors of this paper and data-
driven methods, such as correlation between features and
training models predicting treatment and outcome based on
feature values, we have chosen to select the following twelve
variables:

• As mentioned in subsection 2.2, pf ratio is a con-
founder. Two variables used to calculate this ratio po2
and fio2 are also markers of blood oxygenation levels,
and thus could influence both treatment assignment and
the outcome, potentially making them confounders.

• Pco2 is also a blood oxygenation indicator and we mark
it as a confounder for the same reason as po2 and fio2.

• Driving pressure and plateau pressure are variables
indicating overall patient condition, which could affect
doctor’s decision about PEEP level.

• Bilirubin, platelets and urea are inflammation markers
which can inform about the state of internal organs, in-
fluencing treatment course. Moreover, these variables
were highly correlated with the outcomes.

• We found that weight had a strong influence on predic-
tions of both treatment and outcome, implying that it is
a confounder.

• Lastly, out of variables that were not included in the
list already, we identified age and minute volume to be
strong predictors of the outcome.

3 Methodology
We believe that it is a natural assumption that patients with
similar characteristics should in real life have similar out-
comes for a given treatment. Therefore, it could be expected
that many machine learning techniques would be able to iden-
tify and model relationships among data of patients with
ARDS and make reliable CATE estimations for them. To test
this hypothesis, in this paper we focus on forest-based models
because of their capacity to handle outliers (patients abnor-
mally responding to a treatment) and their ability to model
non-linear relationships. Moreover, such models offer higher
accuracy and are more robust to noise when compared to sin-
gle tree models.

Specifically, we look at three forest-based CATE estima-
tors: S-learner [9], T-learner [9] (with random forest as the
base model for these two learners) and causal forest [8] and
analyse their performance in several experiments. In this sec-
tion, we provide a short overview of these models and explain
the general setting of performed tests.

3.1 Models
S-learner works by using a single model which takes as its
input, apart from the sample features, the treatment assign-
ment without putting any special emphasis on it. We train
this model using the whole dataset and obtain an estimator
for the function:

µ(x,w) = E(Y |X = x,W = w)

Then we can make CATE estimates by computing:

τS(x) = µ(x, 1)− µ(x, 0)

Unlike S-learner, T-learner uses two separate models.
Each of them is trained on only a part of the data – one on
the untreated samples, the other on the treated. Aside from
making this data split, the treatment assignment is not used
further in the training process. After that, we obtain two cor-
responding estimators for functions:

µ0(x) = E(Y |X = x,W = 0)

µ1(x) = E(Y |X = x,W = 1)

The CATE estimator is then obtained by combining:

τT (x) = µ1(x)− µ0(x)

Causal forest, introduced by Wager and Athey [8], is an
extension of random forest developed in [18]. At a high level,
a causal forest consists of B separate trees, which have to sat-
isfy several constraints, for example each leaf has to contain
at least k samples from both treated and untreated groups.
Wager and Athey in their paper describe two algorithms for
creating such trees – double-sample tree and propensity tree.
The first one splits training data into two halves, one of which
is used to place splits when building the tree, and the other
is utilised to make within-leaf estimates. The second algo-
rithm trains a classification tree which predicts treatment as-
signment W while ignoring the outcome Y. Once the forest is
built, for each tree the treatment effect is estimated by calcu-
lating:

µ(x) =
1

|{i : W i = 1, Xi ∈ L}|
∑

{i:W i=1,Xi∈L}

Y i

− 1

|{i : W i = 0, Xi ∈ L}|
∑

{i:W i=0,Xi∈L}

Y i

where L is the leaf for which x ∈ L and (Xi,W i, Y i) triplets
come from the observed data samples in L.

After we obtain µ1, µ2, . . . , µB estimates from all trees, we
can combine them and acquire estimated CATE:

τCF (x) =
1

B

B∑
i=1

µi(x)

It is worth noting that each tree is trained only on a random
fraction s of all samples n, with s/n ≪ 1. The authors, fol-
lowing [18] and [19], argue that it is better to take an average
of predictions from many different trees rather than try to find
a single best-performing tree, as it results in a reduction of the
variance of predictions.

3.2 Experimental approach
We have conducted several experiments, training the models
and measuring their performance in making valuable predic-
tions. Some of those were conducted on simulated data, while
others were based on real-life input. Because of that, we had
to choose our methods and evaluation criteria accordingly.

Firstly, we have run a simulation study, training and testing
models on artificially generated data. By measuring models’
performance in specifically designed conditions, we aimed to
determine which models excel under which circumstances, in



the hope that this would enable us to make accurate predic-
tions about their performance on MIMIC-IV data and other
real-life applications. Since in this simulation setup we have
control over both response functions, we can accurately cal-
culate the true treatment effect for a given sample. There-
fore, as the evaluation criterion, we have decided to use mean
squared error (MSE) of the predicted treatment effect, which
is also called precision in estimation of heterogeneous effect
(PEHE) [20]. Each experiment was repeated several times,
each time on a newly generated set of data. We report the av-
erages of outcomes with corresponding confidence intervals.

Unlike in the simulated experiments, in the MIMIC-IV
dataset we do not have access to both outcome values, and
thus we cannot use MSE to assess predictions. Instead, we
chose to use the Qini curve [21], [22], a metric allowing us
to evaluate the quality of ranking of samples based on their
CATE predicted by the model. The Qini curve plots the dif-
ference in the number of responders (Y = 1) in the treated
and untreated parts of a subset consisting of top k samples or-
dered by their estimated CATE (with the sizes of these parts
scaled to be equal) as a function of k (the size of this subset).
We can then compare this curve to a random (in which sam-
ples are considered in random order) and optimal ones, and
calculate the ratio of areas enclosed by curve pairs random–
our and random–optimal, obtaining the area under the curve
(AUC) metric. In our setting, the greater this AUC score, the
better the model is at properly distinguishing groups of pa-
tients – those who benefit from the high PEEP and those who
are negatively affected by it.

We have used the Qini curve and the AUC metric when
comparing the performance of the three models, as well as
in hyper-parameter optimisation. In these experiments, we
have split the MIMIC-IV data into training and test sets with
a ratio of 70/30. We have not used a separate validation set
due to the limited size of the dataset. However, in regard to
hyperparameter tuning, the test set plays the role of a valida-
tion set – using it we choose optimal parameters for models
which then undergo a final evaluation on unseen data from a
randomised controlled trial. All tests resulting in a numerical
value (AUC score) were repeated numerous times, with a dif-
ferent train/test split in each iteration. We report averages of
results, together with their confidence intervals.

As the last evaluation, we performed an experiment using
data from a randomised controlled trial (RCT). In this dataset,
high and low PEEP was assigned to patients randomly, with-
out any connection to patients’ characteristics. Because of
that, we can compute the real average treatment effect (ATE)
– the difference between averages of outcomes in the treated
and untreated groups. We can then compare this real ATE to
those estimated by our models (calculated by taking averages
of individual CATE estimates). Moreover, as with MIMIC-IV
data, we can plot Qini curves and measure the AUC score.

4 Experimental Setup and Results
In this section we will describe in detail the experiments that
were conducted on simulated data, as well as MIMIC-IV and
RCT datasets. We discuss the setup and tools used for each
test and provide their results.

4.1 Simulated data
In total we have conducted seven experiments on simulated
data. In each, the samples were generated in the following
way:

1. Specify: number of features d; propensity score e(x) (a
function determining the probability that the sample x
will be treated); the response functions µ0(x) and µ1(x)

2. Simulate the feature vector: Xi ∼ N (0, Id), where Id
denotes d-dimensional identity matrix

3. Calculate Y0 = µ0(Xi) + ε0 and Y1 = µ1(Xi) + ε1,
where ε0, ε1 ∼ N (0, 1) are added to introduce noise
into the data

4. Simulate the treatment assignment: Wi = Bern(e(Xi))

5. Set Yi to Y0 or Y1 based on chosen Wi and thus we ob-
tain a sample (Xi,Wi, Yi)

This way we generated 40000 samples for the training set and
10000 samples for the test set. Each experiment was repeated
50 times.

In this part of our study, following [8], we have used the
k-nearest neighbours algorithm as a comparison model. We
have made that choice as trees are also nearest neighbours es-
timators and we wanted to compare our forest-based models
with one that also looks at spatial relations between features.
Unlike random forests, k-NN is sensitive to feature scaling,
however, in our case feature values were already sampled
from N (0, 1), meaning that no additional normalisation was
required. The estimates for k-NN were made using the fol-
lowing formula:

τkNN (x) =
1

k

∑
i∈S1(x)

Y i − 1

k

∑
i∈S0(x)

Y i

where S1 and S0 are sets of k nearest neighbours of x in the
treated and untreated groups respectively. In our experiments
we have used k = 10.

The first six tests were inspired by [9] and [8]. The details
of setups off each of them can be found in Table 1. For mod-
els, we used default parameters from their implementations1.
Average mean squared errors of predictions made by models
in these experiments are provided in Table 2. The evolution
of MSE depending on the size of the training set can be found
in Appendix A.

Based on these results we can make several observations
about the models. S-learner clearly outperforms other models
when there is no treatment effect (simulations 5 and 6). Since
it handles treatment like any other feature, the model might
not use it to make any splits while building underlying trees,
resulting in a correct estimated CATE equal to 0. T-learner
performed best in simulation 3, where the response functions
were completely independent of each other. The fact that the
model uses two separate base learners meant that it was able
to estimate these functions with greater precision than other

1Random forests for S- and T-learners use Python library scikit-
learn (https://scikit-learn.org). Causal forest uses econml library
(https://econml.azurewebsites.net), which implements the model
following [23]

https://scikit-learn.org
https://econml.azurewebsites.net


Table 1: Details of the setups of the simulation experiments; d - number of features, e(x) - propensity score, µ0(x) and µ1(x) - response
functions

Sim. no. d e(X) µ0(X) µ1(X) Remarks
1 10 0.5 X · β µ0(X) + 20 β ∼ U([−5; 5]d)
2 10 0.01 X · β + 5 · I(X1>0.5) µ0(X) + 8 · I(X2>0.1) β ∼ U([−5; 5]d)
3 10 0.5 X · β1 X · β2 β1, β2 ∼ U([1; 30]d)
4 10 0.5 1

2 ς(X1)ς(X2) − 1
2 ς(X1)ς(X2) ς(x) = 2

1+e−12·(x−0.5)

5 10 0.5 X · β µ0(X) β ∼ U([1; 30]d)
6 10 1

4 (1 + β2,4(X1)) 2 ·X1 − 1 µ0(X) β - beta distribution

Table 2: Outcomes of simulation experiments. For each of the models average MSE is given, together with a 95% confidence interval in
parentheses

Sim. no. S-learner T-learner Causal forest k-NN
1 4.133 (3.805; 4.461) 4.133 (3.790; 4.476) 2.361 (2.299; 2.423) 5.890 (5.718; 6.062)
2 29.85 (28.97; 30.73) 17.97 (15.26; 20.68) 11.06 (9.09; 13.03) 21.61 (19.03; 24.19)
3 240.8 (212.4; 269.2) 130.4 (122.0; 138.8) 427.5 (406.7; 448.3) 269.5 (258.7; 280.3)
4 2.064 (2.005; 2.124) 2.064 (2.007; 2.121) 2.014 (1.957; 2.071) 2.522 (2.444; 2.600)
5 2.204 (2.141; 2.267) 67.30 (59.05; 75.55) 13.39 (12.27; 14.51) 115.0 (111.7; 118.3)
6 2.008 (1.951; 2.065) 2.107 (2.049; 2.165) 2.020 (1.963; 2.077) 2.504 (2.435; 2.573)

models. Causal forest performed overall well. Its CATE es-
timates had the lowest or second lowest MSE in almost all
simulations (causal forest performed the worst of all models
only in simulation 3), showing that it can produce valuable re-
sults in various circumstances. All three of our forest-based
models have on average outperformed the k-nearest neigh-
bours algorithm, most notably in simulations 4, 5 and 6, and
showed that they can uncover the heterogeneity of the causal
effects of the treatment.

From these conclusions, one could expect that the T-learner
or causal forest performs best on the MIMIC-IV data, as there
the response functions are most likely rather unalike, albeit
not as independent of each other as it was in the case of simu-
lation 3. To test this hypothesis we have conducted one more
simulation experiment, aiming to generate data closely fol-
lowing the real-life samples from MIMIC-IV. In this setting
we have d = 12 and e(x) function specifically designed to
introduce confounding in the data (in a similar way as it was
done in simulation 6 – by changing propensity score based on
feature values), with the expected number of treated samples
to be around 12.5% of the whole dataset (matching the treat-
ment ratio of 12.3% in the MIMIC-IV data). To get response
functions µ0(x) and µ1(x) to match the real ones as closely
as possible, we use additional models to represent them. For
each of those two functions, we have trained, on a corre-
sponding part of the MIMIC-IV data (treated or untreated;
with pre-processing steps described in subsection 4.2), three
models to predict the patient’s mortality Y based on their nor-
malised characteristics X (thus in total obtaining six estima-
tors). These models were: linear regression, k-nearest neigh-
bours regression (with k = 5 to capture the relation between
closest samples) and decision tree regression (with minimal
leaf size equal to 15 to model spatial relations wider than
those picked up by k-NN). Then we obtain µ0(x) and µ1(x)

by taking the average of predicted outcomes made by corre-
sponding three models and generate data samples according
to the procedure discussed at the beginning of this subsection.

The average mean squared errors in this simulation were as
follows: S-learner - 2.047 (95% CI: 1.982; 2.112), T-learner -
2.072 (95% CI: 2.007; 2.137), causal forest - 2.039 (95% CI:
1.975; 2.103), k-NN - 2.220 (95% CI: 2.148; 2.292). Figure 1
depicts the evolution of MSE as we increase the number of
samples the models were trained on.

Figure 1: Evolution of MSE in simulation 7

From Figure 1 we can note that both causal forest and
T-learner make more accurate predictions the more training
data we provide. An interesting observation is that S-learner
seems to do the opposite - the MSE of its predictions in-
creases. We have tried to find the cause of this phenomenon
and concluded that it is most likely due to the noise we in-
clude in our simulations.



4.2 MIMIC-IV
After performing experiments on simulated data, we have
conducted multiple tests using the MIMIC-IV dataset.

Firstly we pre-processed the data. We selected features
as described in subsection 2.4 and normalised them using z-
score normalisation. Missing values were imputed using k-
nearest neighbours imputation. Two categorical features were
converted into numerical ones – treatment (peep regime): 0
for ‘low’, 1 for ‘high’ and outcome (mort 28): 1 for ‘False’
(patient survived), 0 for ‘True’ (patient died).

The first experiment we ran on the MIMIC-IV data was
aimed at making an initial measure of the models’ perfor-
mance on the dataset. We split the data into training and test
sets with a ratio of 70/30, train the models with default pa-
rameters and calculate the Qini AUC score for both of these
sets. We repeated this test 500 times, with different train/test
split each time, and measured averages of the results, which
can be found in Table 3.

Table 3: Qini AUC scores of models trained on MIMIC-IV with
default parameters. In the parentheses we give 95% confidence in-
tervals

Model Train set Test set
S-learner 0.593 (0.54; 0.65) 0.021 (-0.04; 0.08)
T-learner 0.635 (0.61; 0.66) 0.030 (-0.02; 0.08)

Causal forest 0.273 (0.23; 0.32) 0.019 (-0.04; 0.08)

From the results in Table 3, we can notice that the mod-
els’ relative performance on generated data in simulation 7
does not match their performance on real-life samples. Un-
like in the simulation, here T-learner outperformed both S-
learner and causal forest, with the last two obtaining compa-
rable scores on the test set. It is worth noting that on the test
set all models performed only slightly better than a theoret-
ical model making random CATE estimates (it would have
Qini AUC score of 0). Moreover, all models are heavily over-
fitting, with AUC scores around 15-25 times higher on the
training set when compared to the test set.

Trying to mitigate the issue of overfitting and to improve
models’ performance on the test set we have run a grid search
in hopes of finding parameters that would limit the estima-
tors’ tendency to closely follow the training set, by for exam-
ple limiting the depth of trees. We have looked at the follow-
ing parameters and their possible values:

• max depth - Maximal depth - [3, 5, 20, 40, None],
where None meant that the trees were expanded as far
as possible

• min samples split - Minimum number of samples re-
quired to split an internal node - [5, 10, 20, 35, 50]

• n estimators - Number of trees in the forest - [50, 100,
250, 500] for S- and T-learners; [24, 60, 100, 500, 1000,
2500] for causal forest

• max samples - Fraction of samples used to train each
tree - [0.5, 1.0] for S- and T-learners; for causal forest
this parameter was always set to the default value of 0.45

We have run this grid search 50 times and in Table 4 we
report average Qini AUC scores of the models’ versions per-
forming best on the test set. The corresponding best hyperpa-
rameters can be found in Appendix B.

Table 4: Qini AUC scores of best performing versions of models
found using grid search. In the parentheses we give 95% confidence
intervals

Model Train set Test set
S-learner 0.184 (0.13, 0.24) 0.032 (-0.04; 0.10)
T-learner 0.263 (0.22; 0.30) 0.053 (-0.02; 0.12)

Causal forest 0.207 (0.16; 0.25) 0.036 (-0.04; 0.11)

Based on the results in Table 4 we can see that indeed
performance of all models has improved, with T-learner still
outperforming the other two. Qini AUC score considerably
dropped on the training set and increased by around 50%-
75% when calculated on unseen data. However, the afore-
mentioned issues that we aimed to solve are still present. The
models are still strongly overfitting, and the AUC scores, al-
though greater than before, are still on average not that far
from 0. In the last attempt to fix them, we have identified
using Shapley values (see subsection 5.2) four features con-
tributing the most to the estimates - age, platelets, urea and
pco2. We then ran the same grid search again for 20 rep-
etitions, using in our models only these four variables. The
results can be found in Table 5 and the hyperparameter values
are in Appendix B.

Table 5: Qini AUC scores of best performing versions of models
when only age, platelets, urea and pco2 features were used. In the
parentheses we give 95% confidence intervals

Model Train set Test set
S-learner 0.213 (0.17; 0.25) 0.044 (-0.01; 0.10)
T-learner 0.239 (0.21; 0.27) 0.058 (0.01; 0.11)

Causal forest 0.083 (0.04; 0.12) 0.034 (-0.02; 0.09)

The results in Table 5 suggest only a small improvement
in Qini AUC scores for S- and T-learners, while causal forest
performed worse. Therefore, we can conclude that limiting
ourselves to only a subset of features does not significantly
increase the performance of the models.

4.3 RCT dataset
The last set of evaluation tests was conducted on the RCT
dataset. The data contained 2299 samples, but did not have
all features available in the MIMIC-IV database. Particu-
larly, from the list we developed in subsection 2.4 bilirubin,
platelets and urea were missing. Because of that, we had to
re-train our models, ignoring these three variables. We have
done so, using the optimal hyperparameters, on 500 different
random train/test splits and chose the ones with the highest
Qini AUC score. They were then used to make CATE esti-
mates for available samples.



The real ATE in the dataset was equal to 0.02556. The ATE
estimates made by our models were following – S-learner:
−0.03194; T-learner: −0.18256; causal forest: −0.11225.
The Qini AUC scores for the CATE predictions were as fol-
lows – S-learner: 0.00515; T-learner: 0.026117; causal for-
est: 0.00682. The corresponding Qini curves can be found in
Appendix C.

5 Discussion
In this section we further study the outcomes of performed
evaluations. Additionally, we mention the limitations en-
countered in our research.

5.1 Further analysis of the MIMIC-IV tests

Firstly, it needs to be noted that in all of our experiments on
the MIMIC-IV data the confidence intervals for our results
were quite broad. Because of that, many of our results might
be highly inaccurate, for example the found optimal hyperpa-
rameters might be wrong or T-learner might not outperform
the other two models by such a considerable margin. Sim-
ilarly, the improvements we have found in models’ perfor-
mance between the experiments might be imprecise.

Secondly, the issue of overfitting persisted throughout the
experiments we have performed. Even after tuning hyper-
parameters and reducing the complexity of models, the Qini
AUC score was still 4 to 5 times greater on the train set when
compared to the test set.

However, despite these issues, when we plot Qini curves
for the models’ predictions for the test set, they lay (in most
cases) above the random line, indicating that they are, to some
extent, capable of distinguishing between groups of patients
that benefit and suffer from high PEEP. Figure 2 depicts this
situation for the best train/test split we have found among 10
random splits.

One might try to resolve these concerns by running the tests
for a greater number of repetitions and with a finer grid search
that also includes other hyperparameters. This was unfortu-
nately impossible in our study due to time and computational
power constraints and we believe that it still would not com-
pletely fix these issues given the rather small absolute value
of improvements we were able to achieve in our experiments.

Figure 2: Qini curves for the models with optimal hyperparameters

5.2 Shapley values
Shapley values are a way of explaining black-box models
[24]. They provide us with a measure to check which fea-
tures influence the predictions the most. We have calculated2

Shapley values for all of our models, both with and without
tuned hyperparameters. In almost all of them, age, platelets,
urea and pco2 (not necessarily in this order) emerged as the
top 4 most predictive features (only for S-learner with default
parameters pco2 was ranked lower). The detailed plots can
be found in Appendix D. According to our knowledge, these
four features have not been mentioned before in the literature
as variables that help make correct PEEP level assignments,
meaning that clinical trials focusing on these features could
be conducted, confirming or disproving this correlation.

5.3 Evaluation on RCT dataset
The real ATE on RCT dataset was positive, meaning that on
average patients benefited from high PEEP. However, all of
our models had negative ATE estimates, predicting that low
PEEP was more beneficial. The distance between the real
value and the estimates was also significant – up to around 0.2
for T-learner. Moreover, Qini AUC scores were all very close
to 0, meaning that the models performed only marginally bet-
ter than a random baseline.

An unanticipated observation we made is that causal forest
predicted a negative treatment effect for all samples, a result
that we would not expect in a dataset with positive ATE. This,
however, could be a peculiarity of the specific model we used
for the evaluation, as it also made negative CATE estimates
for all MIMIC-IV samples, bar one. Such a property might
be a result of the way we selected the estimators. When com-
paring models trained on different train/test splits, we only
looked at the Qini AUC score on the test set, which evaluates
the quality of the ranking of samples ordered by the estimated
CATE, but does not ensure that these estimates indeed match
reality.

A big constraint of our evaluation on RCT data is the fact
that three features from the MIMIC-IV dataset had to be omit-
ted – bilirubin, platelets and urea. The last two, as mentioned
in subsection 5.2, were identified as having a high impact on
predictions. Without them, the models have most likely lost a
part of their accuracy and predictive power. Furthermore, due
to time constraints, this evaluation was performed only once.
Broad confidence intervals for results of tests on MIMIC-IV
data suggest that the models’ performance was highly depen-
dent on the used train/test split. Therefore, to fully measure
the models’ efficiency on the RCT data, the evaluation would
need to be run multiple times with models trained each time
on a different data split.

5.4 Limitations
In subsection 2.4 we have described which variables from the
dataset have been selected based on literature, our talks with
the supervisors of this paper and data-driven methods. How-
ever, we are not medical professionals and could have added
unnecessary features or missed important ones. Therefore,

2For Shapley values we have used Python library shap (https:
//shap.readthedocs.io)

https://shap.readthedocs.io
https://shap.readthedocs.io


this list could be incorrect, introducing bias into all of the re-
sults we have obtained. An expert, experienced in the PEEP
assignment process, should check that list for correctness be-
fore any of our results are used in practice.

Another limitation is connected to the causal inference
assumptions. As mentioned in subsection 2.3 they are
quite strong and are not guaranteed to hold in observational
datasets, such as MIMIC-IV. For example, conditional ex-
changeability means that there is no unmeasured confound-
ing in the data. However, Calfee et al. [25] managed to split
patients into two groups with different mortality rates in re-
sponse to a given PEEP level. The main splitting conditions
were three features: interleukin-6, soluble tumour necrosis
factor receptor-1 and vasopressor use [yes or no]. Following
our reasoning about pf ratio in subsection 2.2, one can say
that these variables are confounders. However, they were not
available in the MIMIC-IV data, thus our models could not
account for them, potentially introducing bias into our results.

When one looks at the plots showing the evolution of MSE
depending on the size of the training set in our simulation ex-
periments (Figure 1 and Appendix A), it can be seen that the
models begin to converge only at around 5000-10000 train-
ing samples. This result was roughly the same even when we
ran the simulations without introducing any noise in the data.
Therefore, our pre-processed MIMIC-IV dataset, which has
only 3941 samples, might simply be too small to provide a
large enough training sample for the models. Increasing the
amount of data, by including other suitable datasets might
improve the models and their CATE estimates.

6 Responsible Research
This paper contributes to the goal of understanding the PEEP
assignment problem, which could potentially save lives in the
future. Because of that, we have to reflect on the ethical as-
pects and reproducibility of our study.

6.1 MIMIC-IV dataset
Our research is heavily based on a database containing medi-
cal records of real patients admitted to the ICU of Beth Israel
Deaconess Medical Center. Because of that, we need to pay
special attention to preserving the anonymity of people whose
data we use. Authors of the MIMIC-IV dataset have deiden-
tified the data by taking several actions [10], for example: pa-
tient identifiers were replaced with random integer identifiers,
a special algorithm was used to erase any protected health in-
formation (PHI) from free-text fields and a random offset was
applied to all dates (while preserving their relative order for
a given patient). Throughout our study we have not made
any attempts at reidentifing the patient data. Moreover, to
gain access to the database we had to complete a data privacy
training – CITI Data or Specimens Only Research 3 course.

6.2 Potential bias
As a result of our pre-processing and variable selection steps
we have not included features that have been historically dis-
criminated against, such as race or gender, unless they have
shown to be important in the models (e.g. age). However,

3https://about.citiprogram.org/

other variables could act as proxies, for example it was shown
that platelet levels differ among races [26] and bilirubin mea-
sures vary between sexes [27]. Because of that, it is possible
that the models could discriminate against particular groups
of people, and this would need to be be further investigated
before the models are used in practice in any way.

6.3 Reproducibility
By extracting the main goals of the FAIR principles (designed
for reusability of scholarly data) [28] and applying them to
this paper and the codebase used for our experiments, we
hope to make our research reproducible and allow others to
independently verify our results.
Findable – The paper is freely accessible at the TU Delft
repository and the code is publicly available online4.
Accessible – Both paper and code do not require any special
authorisation to be accessed and can be found by anyone with
a connection to the Internet.
Interoperable – The code was written in Python, meaning it
can be used on almost all modern-day computers.
Reusable – The codebase is well-documented and ready to
be run again without any specific setup. Moreover, it is cus-
tomisable, allowing others to carry out the experiments with
different parameters.

7 Conclusions and Future Work
In this study, our goal was to investigate the performance of
S-learner, T-learner (with random forest as the base model
for these two estimators) and causal forest in the task of pre-
dicting the conditional average treatment effect for PEEP as-
signment. Through a series of experiments on simulated data,
the MIMIC-IV dataset and samples from a randomised con-
trolled trial, we measured the models’ efficacy on specific use
cases and determined whether they make valuable predictions
in the goal of CATE estimation.

From the experiments on simulated data, we found that S-
learner performed best where there was no treatment effect,
T-learner outperformed other models when the response func-
tions for treated and untreated groups were independent of
each other, and causal forest performed overall well, achiev-
ing low error rates in almost all tests.

When trained on the MIMIC-IV data, the models were
heavily overfitting to the training set and performed rather
poorly. Hyperparameter tuning helped in fixing these is-
sues, improving the models’ performance, but did not allevi-
ate them completely. Nonetheless, when trained on a correct
train/test split, the models have showcased, to some extent,
the ability to expose the heterogeneity in the effect of PEEP
level assignment, distinguishing groups of patients that ben-
efit or suffer from high PEEP, with T-learner noticeably out-
performing the other two models. However, when evaluated
on the RCT dataset, the models performed only marginally
better than a theoretical model making random CATE predic-
tions, although this finding could be a result of the fact that
not all variables from the MIMIC-IV database were available
in this dataset.

4https://github.com/Hubert1913/research-project

https://about.citiprogram.org/
https://github.com/Hubert1913/research-project


In section 5 we have highlighted several concerns and lim-
itations we have encountered in this study. One could at-
tempt to address some of them in further research. Includ-
ing in our dataset more samples and more variables that af-
fect treatment outcome, as well as running the experiments
for more iterations could improve models’ performance and
reduce the width of confidence intervals in the results. More-
over, the evaluation on the RCT data could be performed mul-
tiple times, each time on models trained on a different part of
the MIMIC-IV database, increasing the reliability of conclu-
sions made from this test.

Lastly, we found that four features: age, platelets, urea and
pco2 had a strong influence on the CATE estimates made by
all three models. These findings could be checked in future
work, by for example performing clinical trials or inspect-
ing if other models for estimating CATE also show this be-
haviour.
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[14] C. Händel, I. Frerichs, N. Weiler, and B. Bergh, “Predic-
tion and simulation of peep setting effects with machine
learning models,” Medicina Intensiva (English Edition),
vol. 48, no. 4, pp. 191–199, 2024.

[15] A. Peine, A. Hallawa, J. Bickenbach, G. Dartmann,
L. B. Fazlic, A. Schmeink, G. Ascheid, C. Thiemer-
mann, A. Schuppert, R. Kindle, et al., “Development
and validation of a reinforcement learning algorithm to
dynamically optimize mechanical ventilation in critical
care,” NPJ digital medicine, vol. 4, no. 1, p. 32, 2021.

[16] M. A. Pourhoseingholi, A. R. Baghestani, and M. Va-
hedi, “How to control confounding effects by statistical
analysis,” Gastroenterology and hepatology from bed to
bench, vol. 5, no. 2, p. 79, 2012.

[17] M. A. Hernán and J. M. Robins, Causal Inference: What
If. Boca Raton: Chapman & Hall/CRC, 2020.

[18] L. Breiman, “Random forests,” Machine learning,
vol. 45, pp. 5–32, 2001.
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A Simulation MSEs

Figure 3 depicts the mean squared error between the real and estimated treatment effect on the test size as a function of the size
of the training set. The detailed setups of each of the simulations can be found in Table 1. Each test was repeated 50 times and
the plots show average MSE for a given training size.

(a) Simulation 1 (b) Simulation 2

(c) Simulation 3 (d) Simulation 4

(e) Simulation 5 (f) Simulation 6

Figure 3: Evolution of MSE in the simulation experiments



B Optimal hyperparameters values
Table 6 and Table 7 show the best hyperparameter values found using a grid search as described in subsection 4.2, respectively
in cases when the models were trained on all features and only on four of them - age, platelets, urea and pco2.

Table 6: Optimal hyperparameters values for each of the models, using all features

Model max depth min samples split n estimators max samples
S-learner 5 5 500 0.5
T-learner 3 5 250 0.5

Causal forest 5 10 2500 0.45

Table 7: Optimal hyperparameters values for each of the models, using only age, platelets, urea and pco2

Model max depth min samples split n estimators max samples
S-learner None 35 50 0.5
T-learner 20 50 250 0.5

Causal forest 3 5 24 0.45

C Qini curves for RCT data
Figure 4 presents the Qini curves for the treatment effect predictions the models made on the data from a randomised controlled
trial.

Figure 4: Qini curves for the predictions on RCT dataset



D Shapley values
Figure 5 depicts the average modulus of Shapley values of S-learner, T-learner and causal forest when trained on the MIMIC-IV
dataset with default and optimal hyperparameters.

(a) S-learner with default parameters (b) S-learner with optimal parameters

(c) T-learner with default parameters (d) T-learner with optimal parameters

(e) Causal forest with default parameters (f) Causal forest with optimal parameters

Figure 5: Average modulus of Shapley values of S-learner, T-learner and causal forest with default and optimal hyperparameters


	Introduction
	Preliminaries
	MIMIC-IV dataset
	Causal inference and CATE estimation
	Causal inference assumptions
	Selected variables

	Methodology
	Models
	Experimental approach

	Experimental Setup and Results
	Simulated data
	MIMIC-IV
	RCT dataset

	Discussion
	Further analysis of the MIMIC-IV tests
	Shapley values
	Evaluation on RCT dataset
	Limitations

	Responsible Research
	MIMIC-IV dataset
	Potential bias
	Reproducibility

	Conclusions and Future Work
	Simulation MSEs
	Optimal hyperparameters values
	Qini curves for RCT data
	Shapley values

