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Abstract
As AI-generated content becomes more prevalent,
the risk of generative models consuming and regen-
erating their own outputs in a self-consuming loop
increases. This study explores the phenomenon
of self-poisoning in generative models, an itera-
tive process where AI-generated outputs are repeat-
edly used as input for further generations. Using
a dataset of artworks by renowned artists, the pro-
cess involves captioning the artworks, generating
images from the captions, and repeating this cy-
cle. The research focuses on the impact of self-
poisoning on creative novelty, evaluated through
content and visual novelty metrics. The findings re-
veal that while self-poisoning introduces novel el-
ements in both content and visuals, it simultane-
ously degrades the quality of the generated artifacts
over time. Generative models struggle to maintain
the complexity and creativity of the original art-
works, leading to outputs that converge on certain
themes and realistic styles. This study contributes
to a broader understanding of AI’s role in art and
highlights potential limitations posed by iterative
generative processes.

1 Introduction
As generative artificial intelligence (AI) models increasingly
become authors of much of the content found online, the line
between human-generated and AI-generated content contin-
ues to blur. Text-to-image models based on diffusion mod-
els [1] or Generative Adversarial Networks [2] have learned
to produce images similar to the training input and gener-
ate new ones from textual prompts. Describing an image’s
content through text is also possible with Transformers [3].
The internal mechanisms of the AI systems often represent
black-boxes that are impossible to model manually [4]. How-
ever, their training data is based on human-created content,
which raises questions about copyright violation. These ques-
tions were especially emphasized when Jason Allen’s artwork
“Théâtre D’opéra Spatial”, generated by Midjourney, won the
Colorado State Fair’s fine arts competition. While these ad-
vancements come with benefits, they also put human-made
art at risk of plagiarism and devaluation.

As the models become content creators, given the difficul-
ties in differentiating between human content and synthetic
content, future generations of AI models will be trained on
generated data, creating a self-consuming loop. This self-
feeding mechanism, known as an autophagous loop [5], risks
leading AI into a recursive cycle where it consumes and re-
generates its own output, potentially diminishing the diversity
of its creations. Questions are raised about the future of cre-
ativity, especially in the arts, as generative models become not
only tools for creation, but also sources for their own training
data.

The potential for AI to recycle existing artistic elements
without innovation also poses a significant threat to the eco-
nomic and cultural value attributed to originality in human

creativity. Addressing these concerns is not only a technical
challenge but also a philosophical one: can AI truly create
novel art, or is it creating a blend of previously consumed hu-
man outputs? This question underscores the need for inves-
tigation into how generative models, both for image creation
and text generation, influence the novelty and integrity of art.
Considering current literature, self-consuming training loops
are expected to have a negative impact on the diversity and
quality of the data that will be generated in the future.

However, there remains a gap in the studies of iteratively
using AI to generate content from AI-generated content.
While state-of-the-art research investigates the consequences
of generative AI models being retrained with AI-generated
content in a self-consuming loop, they do not investigate the
consequences of this loop without retraining. This paper aims
to bridge the gap in current literature by defining and exam-
ining the impacts of generation loops on the creative novelty
of AI-generated captions and artworks, exploring trends that
might occur throughout these iterative generative processes.

The following sections are structured as follows: Section
2 will introduce a motivating example and the methodology,
proposing a definition of self-poisoning, as well as formu-
lating the research question. Section 3 will dive into related
work and explain connections to self-poisoning. Section 4
will introduce the concepts used throughout the experiment.
In Section 5, the experiment and its results will be presented.
Section 6 will discuss and interpret the results further, while
Section 7 will address possible biases and other issues that
might have occurred during the experiment. Section 9 will ex-
amine the limitations of the study and encourage future work
on the topic, whereas Section 10 will conclude the research.

2 Our Contribution
2.1 Motivating Example
Imagine you are back in middle school, and your art class
homework is to create an image inspired by a famous
painter’s artwork. It’s 2024, and your teacher is up-to-date
with the latest technology, aware of generative artificial in-
telligence models like Midjourney, DALL-E or Stable Diffu-
sion. Hence, there are no restrictions on how you produce the
image, ”as long as it remains creative,” your teacher empha-
sizes. Intrigued by Vincent Van Gogh, you choose his 1890
masterpiece ”Almond Blossom” since spring is your favorite
season and blue is your favorite color. You are keen on cap-
turing the essence rather than mimicking the style directly,
but you are unsure how to proceed. You turn to your favorite
captioning model, BLIP2, to interpret the painting’s content
in simple terms: ”The branches of an almond tree in blos-
som” [6]. With this description in hand, you then feed it into
Stable Diffusion [7] to craft your homework piece, blending
inspiration with innovation. The result is still a blossomed
tree, but the colors and style are novel.

The teacher’s requirement that the final product ”remains
creative” poses a challenge. Creativity is a fundamental fea-
ture of human intelligence [8], but a concept not yet formally
defined without oversimplification. As such, the assessment
of the creative aspect of an image produced by injecting an
AI-generated text describing a creative artwork into a text-to-



image generative model becomes complex. This study lever-
ages previous research on creative novelty to explore how the
iterative process of generating images from text descriptions
and vice versa affects the novelty and semantic integrity of
AI-generated artworks.

2.2 Mathematical Definition of Self-Poisoning
This study adopts the approach of using previously generated
outputs as new inputs, thereby allowing an exploration of the
dynamics of a process we can define as ”self-poisoning”. As
such, it is possible to investigate self-poisoning by combin-
ing Image-to-Text and Text-to-Image models. By iteratively
feeding the output of one process (image-to-text or text-to-
image) back into the other, we can examine the effects of this
cycle on the evolution of properties of the generated content.
The goal is to observe any trends over iterations.

Let D = {Ii}Ni=1 be an initial dataset of N human-made
artworks, where Ii represents the i-th image. Define:

• TG: an image-to-text generation model (e.g., BLIP-2).

• IG: a text-to-image generation model (e.g., Stable Dif-
fusion).

We define self-poisoning as a process that can be described
iteratively as follows:

• Initialization (iteration k = 0): Start with the initial
dataset D. Define D0 = {(T 0

i , Ii)}Ni=1, where T 0
i is

empty for all i. Thus, D0 consists of the images from D
paired with empty text descriptions.

• Iteration k (for k ≥ 1):

1. Text Generation: For each image I
(k−1)
i in Dk−1,

generate a textual description using the image-to-
text model:

T
(k)
i = TG(I(k−1)

i ). (1)

2. Image Generation: For each generated textual de-
scription T

(k)
i , generate an image using the text-to-

image model:

I
(k)
i = IG(T (k)

i ). (2)

3. Form the new dataset Dk = {(T (k)
i , I

(k)
i )}Ni=1, to

be used in the next iteration.

Figure 1 illustrates the steps above at a higher, dataset
level, while Figure 2 illustrates the same steps at an indi-
vidual artwork level. The examples from Figure 2 are part
of the WikiArt dataset [9], specifically Henri Matisse’s ”A
Bunch Of Flowers 1907” from style Fauvism as artwork 1
and Utagawa Kuniyoshi’s ”The Actor 6” from style Ukiyo e
as artwork 2. The generative models used were BLIP-2 [6]
for captioning and Stable Diffusion [7] for image generation.
In simple terms, self-poisoning at an individual level refers
to selecting a human-made artwork, captioning it, generating
an image from the caption, captioning the generated image,
generating an image from the new caption, and so on, for
multiple steps. At a dataset level, this process is repeated for
a collection of artworks.

Figure 1: Process Flow Diagram illustrating the Self-Poisoning pro-
cess on a dataset level for an initial dataset of human-made art (a
sample of the WikiArt dataset) consisting of N images

Figure 2: Process Flow Diagram illustrating the Self-Poisoning Pro-
cess on an individual artwork level, containing particular examples.

2.3 Research Question
The main research question addressed by this work is:

How does the iterative process of generating images from
text descriptions, and vice versa, affect the novelty and qual-
ity of the outputs?

The following are the sub-questions to be investigated:
• How does the content of the images drift from the orig-

inal intent of the textual description over multiple itera-
tions?

• How do the visuals of the images change over multiple
iterations?

• At what point, if any, does the novelty and semantic sim-
ilarity between iterations converge?

• How is the quality of the generated datasets impacted
over iterations?



This work contributes through:

• Investigating the capabilities of state-of-the-art image-
to-text and text-to-image generative models to maintain
content and visuals through self-poisoning.

• Applying previously defined metrics for creative novelty
find any possible trends arising during a recursive self-
poisoning process.

• Discussing potential impacts that self-poisoning might
have on generative models in the context of art.

3 Related Work
As vast amounts of content on the Internet are increasingly
becoming AI-generated, it is expected that the next train-
ing iterations of generative models will be (partly) based on
previously generated data, creating a feedback loop. These
processes, known as autophagous or self-consuming training
loops, raise a concern given the difficulties in differentiating
between AI-made and human-made content, as well as data
collection practices, since text and data are in many cases
extracted from the Internet using crawlers [10]. An experi-
ment [10] studied the relationship between generative mod-
els and the Internet using a simplified interaction model and
concluded that this interaction could lead to degeneration and
loss of diversity.

Another study also [11] investigates the impact that re-
training Large Language Models (LLMs) in a self-consuming
training loop has on the quality and diversity of the samples.
Diversity was defined as a metric of pairwise Levenshtein dis-
tance between output that these models produce, averaged
over the total number of pairwise comparisons [12]. Qual-
ity was measured using similarity metrics (such as the BERT
score [13]) of LLMs’ outputs with expected reference data.
The results of the study indicate that the diversity of the gen-
erated data degenerates as the number of iterations of the self-
consuming training loop increases, collapsing into a single
point.

One theoretical and empirical study of AI autophagy from
the perspective of generative image models [5] sought to ex-
trapolate the consequences of generative models becoming
ubiquitous and used in training future generations in a self-
consuming loop. They recursively trained generative mod-
els on synthetic data sampled from other generative models,
resulting in an autophagous (“self-consuming”) loop and de-
fined Model Autophagy Disorder (MAD) as an analogy to
concepts in mathematics and biology. The conclusion was
that without enough fresh real data each generation, future
generative models are doomed to MADness: the synthesized
data distribution drifts from the true data distribution over the
generations. Precision (defined as the portion of synthesized
samples of high quality or visually appealing) and diversity
decreased over generations and generative artifacts were am-
plified.

The critical difference between this study and the existing
research on self-consuming training loops is that this study
does not aim to re-train models on a combination of generated
and original content. Instead, we aim to define and investigate
self-consuming loops without retraining, which we defined as

self-poisoning: the generated content is directly fed into the
generative model once again, repeatedly. The generated con-
tent, whether textual or visual content, which was initially the
output of a generative model, becomes the input of a new it-
eration of generation. While the research on self-consuming
training loops is extensive, previous studies do not address
self-poisoning.

4 Preliminaries
While substantial progress has been made in the technical de-
velopment of generative models and their application in art,
the biggest gap remains the lack of universally accepted met-
rics for assessing the novelty of AI-generated art. There ex-
ist several novelty detection techniques through Generative
Adversarial Networks [14] with several applications such as
hand gesture data [15] or fake news [16], but little has been
done in the context of art.

Notably, one study defines novelty in terms of the subject
matter and its interrelations within the artwork [17]. From
this perspective, the concept of creative novelty emerges as
a useful metric for evaluating the uniqueness and innovation
of AI-generated artifacts. This concept is rooted in classi-
cal philosophy, particularly the philosophy of symbolism in
art, which distinguishes between the content (the meaning or
subject matter of an artwork) and the visuals (the physical el-
ements that convey this content). As such, creative novelty in
the context of AI-generated art can be split into two distinct,
but interconnected dimensions: Content Novelty and Visual
Novelty. Using the idea of conceptual spaces seen as geomet-
ric representations of entities capturing attributes, we can use
embeddings of text and images, which translate their features
into a vector space. The distances between these vectors can
then be measured to determine whether artifacts deviate or
converge with the references.

The Content Novelty dimension measures how the focal
objects and themes in new artworks diverge from those in
previous works, focusing on the thematic and conceptual as-
pects of an artifact. The operationalization of Content Nov-
elty involves analyzing the semantic content of an artifact,
often extracted using advanced natural language processing
models like BLIP-2 [6], that interpret images to generate de-
scriptive textual content. This textual data is then converted
into high-dimensional vector representations using embed-
ding techniques, such as those based on BERT [18] models.
The novelty is quantitatively assessed by computing the co-
sine distance between these vectorized descriptions, compar-
ing each new artifact against a baseline set to capture varia-
tions over time.

On the other hand, visual Novelty measures how the style
and visual elements of new artworks differ from earlier ones
at the pixel level. This dimension focuses on the visual pre-
sentation, including but not limited to color schemes, texture,
and style. Techniques such as DINOv2 [19], a self-supervised
visual representation learning algorithm, are employed to ex-
tract and analyze these visual features. Similar to Content
Novelty, Visual Novelty is measured by determining the co-
sine distance between the vector representations of the visual
features of new and baseline artifacts.



The cosine similarity is a traditional method used to mea-
sure the similarity between two vectors and it is obtained
through the cosine angle multiplication value of the two vec-
tors to be compared [20]. The idea is that the cosine of 0° is
1, hence the two vectors are said to be similar, whereas val-
ues of less than one emphasize on the differences between the
vectors. Following these definitions and the defining study’s
methodology, we refer to Content or Visual Novelty as Con-
tent or Visual Similarity interchangeably and compute them
as follows:

1. Content Similarity is captured using BERT [18]. It is
represented by the semantic similarity between captions
and used as a metric of the content channel of cre-
ative novelty. BERT encodes each caption into high-
dimensional vector representations. These vectors cap-
ture the semantic meaning of the text, considering the
context and relationships between words. The similarity
between captions is quantified by calculating the cosine
similarity between their respective feature vectors V .

CSim(cap1, cap2) =
Vcap1 · Vcap2

∥Vcap1∥∥Vcap2∥
(3)

2. Visual Similarity is computed using DinoV2 [19], a self-
supervised visual representation learning algorithm. It
extracts high-dimensional feature vectors from each im-
age, representing various visual attributes such as color,
texture, shape, and other pixel-level details. The similar-
ity between images is then quantified by calculating the
cosine similarity between their respective feature vectors
V .

VSim(img1, img2) =
Vimg1 · Vimg2

∥Vimg1∥∥Vimg2∥
(4)

5 Experimental Setup and Results
5.1 Experimental Setup
The implementation consists of a controlled methodology
that uses both textual and visual feedback loops. Textual de-
scriptions are iteratively generated from images using BLIP-
2, followed by using Stable Diffusion to generate images
from the respective text. Several metrics are used to compare
and contrast the generated images of each step. The code and
results are available in our GitLab repository [21].

Dataset Selection
The experiment begins by selecting an open-source dataset
of human-made artworks. WikiArt [9] is chosen for its com-
prehensiveness and widespread use, containing over 81,000
artworks from recognized artists across 27 artistic styles. To
reduce computational time and resources while preserving the
dataset’s diversity, 10 artworks from each style are randomly
selected, creating an initial dataset of 270 artworks.

Text-to-Image Model
Stable Diffusion [7] is used for text-to-image generation in
the iterative self-poisoning process. It uses a deep learning
technique called latent diffusion [1]. To generate images, Sta-
ble Diffusion projects a text prompt into a joint text-image

embedding space and selects a noisy image that is semanti-
cally close to the input prompt. This image is then denoised
based on a latent diffusion model and thus the final image
is produced. The important advantage of Stable Diffusion is
that its code and model weights are publicly available. Fur-
thermore, the model is free to use. To aid the generation of
artistic images, a version of Stable Diffusion fine-tuned on
the WikiArt dataset [22] has been used in the self-poisoning
process with the help of the Diffusers library [23] from Hug-
gingFace.

Image-to-Text Model
BLIP-2 [6] is used for generating textual descriptions (which
we also refer to as captions) for images in order to de-
scribe the focal objects and their relationships. BLIP-2 is a
multimodal model which has been trained on 129M images
and human-annotated data. By leveraging pre-trained im-
age encoders and LLMs, it achieves state-of-the-art perfor-
mance on various visual-language tasks, including zero-shot
instructed image-to-text generation. BLIP-2 is used in the
self-poisoning process through the Transformers library [24]
from HuggingFace.

Data Collection
The free versions of Google Colab and Kaggle were used as
cloud platforms to apply self-poisoning and save the gen-
erated data, both providing T4 GPUs. On this hardware,
producing one image from a text description using a Sta-
ble Diffusion model fine-tuned on the WikiArt dataset took
approximately 8 seconds. The number of iterations of the
self-poisoning process has been restrained at 100 due to re-
sources and time limitations. Applying 100 iterations of self-
poisoning on a single image took on average 15 minutes (ap-
proximately 800 seconds for the generation of the 100 im-
ages and the rest for the captioning). The generated captions
were saved in JSON format, which was archived together
with the generated images. These archived were downloaded
locally and extracted such that the data analysis process can
be performed on a personal computer without the need for
using GPUs. The data collection process resulted in a total
of 27,000 generated images besides the 270 images sampled
from WikiArt, as well as 27,000 captions. The process was
performed in batches over several weeks. It took approxi-
mately 67 hours of runtime.

Data Analysis
For the data analysis part, the two previously defined metrics
of Content and Visual Similarity are used in order to observe
the influence of self-poisoning on creative novelty. Never-
theless, in previous work on autophagous loops [5] [10], the
quality and diversity of the images produced by generative
models throughout retraining cycles are also measured. These
two properties have tremendous importance in the context of
art. Is is arguable that an artwork’s value is not only given by
its creative novelty, but also by its qualitative standard. The
Fréchet Inception Distance score (FID) [25] is a metric that
computes the distance between feature vectors calculated for
real and generated images, capturing the similarity of gener-
ated images to real ones in terms of visual quality and diver-



sity. The FID score is usually used for the evaluation of the
performance of generative adversarial networks (GANs) at
image generation, and lower scores have been shown to cor-
relate with higher-quality images [26]. Hence, we use FID as
a metric of quality and diversity within the generated datasets
over iterations.

To summarize, the following metrics are used:

1. Content Similarity CSim(cap0, capk) is captured us-
ing BERT [18] and the cosine similarity metric. BERT
is used from the Transformers library [24] of Hugging
Face.

2. Visual Similarity V Sim(img0, imgk) is computed using
DinoV2 [19] and the cosine similarity metric. DinoV2
is used from the Transformers library [24] of Hugging
Face.

3. The Fréchet Inception Distance score FID(Dk), for
each iteration k represents the quality and diversity of
the dataset generated at iteration k with respect to the
original dataset of human-made artworks D0. It is cal-
culated using a dedicated Python implementation [27].

Convergence
To evaluate the stability of the iterative self-poisoning pro-
cess, we define convergence based on the similarity metrics
over iterations relative to their respective minimum observed
values. Convergence occurs when the deviation between the
average similarity of a certain iteration and the minimum ob-
served average similarity consistently falls below predefined
thresholds.

The Content Similarity is considered to have converged at
a point tc if the following criteria are met:

|CSim(t0, t)− CSimmin| < ϵc ∀ t ≥ tc (5)

where CSim(t0, t) represents the averaged Content Similarity
between each original artwork and the image generated from
that artwork at iteration t, CSimmin is the minimum averaged
Content Similarity value observed in all iterations and is de-
fined mathematically as:

CSimmin = min
t

(CSim(t0, t)) , (6)

and ϵc is a small positive constant representing the conver-
gence threshold.

The Visual Similarity is considered to have converged at a
point tv if the following criteria are met:

|VSim(t0, t)− VSimmin| < ϵv ∀ t ≥ tv (7)

where VSim(t0, t) represents the averaged Visual Similarity
between each original artwork and the image generated from
that artwork at iteration t, VSimmin is the minimum Visual
Similarity value observed and is defined mathematically as:

VSimmin = min
t

(VSim(t0, t)) , (8)

and ϵv is a small positive constant representing the conver-
gence threshold.

The convergence point tc for Content Similarity and tv for
Visual Similarity are defined as the iterations after which all

subsequent similarities remain within ϵ of the minimum ob-
served similarity value:

tc = min{t | |CSim(t0, t
′)− CSimmin| < ϵc ∀ t′ ≥ t}

(9)
tv = min{t | |VSim(t0, t

′)− VSimmin| < ϵv ∀ t′ ≥ t}
(10)

In general mathematical terms, convergence refers to the
property of a sequence where its elements become close to a
certain value, known as the limit, as the sequence progresses.
The definitions above follow this principle by checking if the
similarity values CSim(t0, t) and VSim(t0, t) remain within a
small threshold ϵ of the minimum similarity values CSimmin

and VSimmin beyond the convergence points tc and tv . This
ensures that the similarities are stable, presenting no signifi-
cant variations.

5.2 Quantitative Results
Content and Visual Novelty

Figure 3: Content Similarity between the first and the other gener-
ated captions over iterations. The blue points represent the average
Content Similarity, the blue error bars represent the standard devia-
tion, and the purple error bars represent the 95% confidence interval.

Figure 4: Visual Similarity between the initial artwork and the gen-
erated images over iterations. The blue points represent the average
Content Similarity, the blue error bars represent the standard devia-
tion, and the purple error bars represent the 95% confidence interval.

As per Figure 3 and Figure 4, both content and visual nov-
elty show a drift from the original dataset within the first few



iterations of self-poisoning. The results indicate a signifi-
cant change in the novelty metrics, particularly in the initial
phases. The average Content Similarity between the gener-
ated captions and the original dataset shows a declining trend,
suggesting an increase in content novelty. Over the first 20 it-
erations, the average Content Similarity decreases from 0.72
to 0.4, indicating a significant drift. The standard deviation
of Content Similarity across iterations was observed to be be-
tween 0.2 and 0.3, suggesting significant variability around
the mean. This variability indicates that the degree of content
change observed through self-poisoning can differ consider-
ably for different initial artworks. However, the narrow 95%
confidence intervals (ranging from ±0.02 to ±0.03) around
the mean Content Similarity imply high precision, meaning
that we are 95% confident that the true mean Content Simi-
larity lies within the purple error bars of Figure 3.

Visual Similarity also demonstrated a notable decline. The
average Visual Similarity between the generated images and
the initial dataset decreases from 0.76 to 0.64 over 20 itera-
tions. This decline in Visual Similarity highlights the Visual
Novelty introduced through self-poisoning. The standard de-
viation for Visual Similarity is observed between 0.07 and
0.12, underscoring a significant dispersion in Visual Simi-
larity. This variability suggests that the visual changes in-
troduced by self-poisoning can be quite different for various
artworks. The visual features of the training data of Stable
Diffusion have a direct impact on the visual features of the
produced images, therefore applying self-poisoning on art-
works from certain styles might have produced images that
are more similar to the original than others. Nevertheless,
the 95% confidence intervals for Visual Similarity are also
narrow (ranging from ±0.02 to ±0.03), suggesting high pre-
cision of the mean Visual Similarity.

The initial average Visual Similarity of 0.76 and Content
Similarity of 0.72 compare each human-made artwork to the
first image generated from the respective artwork, and each
initial caption generated from the human-made artwork to the
caption generated from the first generated image. These ini-
tial values reflect the ability of BLIP-2 and Stable Diffusion
to accurately match their input to the output. For BLIP-2, this
involves accurately describing the contents of the input im-
age, while for Stable Diffusion, it involves the accuracy and
completeness with which the model includes the nuances of
the input prompt in the generated image. The initial values of
0.76 and 0.72 suggest that the models do not fully maintain
either content or visuals, thereby introducing novelty on both
channels. This raises the question of whether maintaining
content and style or creating novel content is more desirable,
which can be subject to the context.

The convergence points for the two metrics are notably
close to each other. The content convergence point is tc = 66
and the visual convergence point is tv = 67. These points
represent the iterations after which all subsequent average
similarity scores remain close, within ϵ to the minimum av-
erage similarity value. We can say that the Similarity metrics
converge to their minimum value, which is 0.29 for Content
Similarity and 0.59 for Visual Similarity. Taking into account
these minimum values and their ratio, ϵc has been chosen to
be 0.02, while ϵv has been chosen to be 0.01. These points

represent the stagnation in average Content Novelty and Vi-
sual Novelty over time throughout the self-poisoning process.
As of the current experiment, these convergence points could
cannot be generalized. However, increasing the number of
iterations might allow for better observations of convergence.

Quality and Diversity

Figure 5: Fréchet Inception Distance between the original sample
dataset from WikiArt and the generated datasets over iterations

The FID metric, plotted in Figure 5, shows a global up-
ward trend in the first 20 iterations, while later oscillating
above a threshold of 193. The higher the FID value, the
lower the quality of the generated images and the less sim-
ilar to the real artworks. Hence, self-poisoning negatively
impacts the quality of the generated datasets over time. This
phenomenon aligns with the concept of Model Autophagy
Disorder (MAD) [5], where the continuous retraining using
generated data leads to a degeneration of output quality. De-
spite the global upward trend, we notice the first iteration hav-
ing a higher FID score than a few of the subsequent ones.
This could be explained by the gaps of the models in captur-
ing precise details about the artworks in the initial captioning
phase, which are immediately used as prompts for the images
of the first generation’s dataset. After this first iteration, we
can argue that the captioning model works with less complex
images than the initial artworks and, therefore is capable of
capturing more content and visuals in order to recreate it.

5.3 Qualitative Results
Analyzing self-poisoning on an individual artwork level can
further support the quantitative results. Novelty can be easily
observed throughout iterations, but quality and diversity are
noticeably impacted. Figure 6 and Figure 7 are examples in
which the self-poisoning process maintained some part of the
content in the original artwork, but changed the visuals sig-
nificantly. However, the connection to the initial artwork still
exists. On the other hand, Figure 8 and Figure 9 completely
diverged. The connection to the original artwork becomes
more and more vague over time. In Figure 8, the first 43 iter-
ations maintained the content, but in the following iteration,
the models focused on a single object and further iterated on
it. In Figure 9 however, the content and visuals changed dras-
tically and continuously over time. The emotion of Figure 9
does not seem to have been captured either. From a personal



perspective, the artwork suggests that the woman is in a re-
flection state during a break from social responsibilities sug-
gested by her outfit. The initial caption ”The painting shows a
woman sitting at a table with a cup of coffee”[6] fails to cap-
ture this reflection, therefore the next iterations also fail to re-
produce it. Using a fine-tuned model for captioning in which
human-produced captions for artworks are used as training
data could perhaps yield results better in this aspect.

The qualitative results also indicate several notable pat-
terns. Initially, the models tend to produce outputs that are
closely related to the input images. However, as the iterations
progress, a drift is observed where the generated images be-
gin to significantly diverge from the original artistic styles and
subjects. Common themes that emerge after convergence in-
clude men reading books, women sitting on benches, red ob-
jects, forests, and snow scenes. This drift is indicative of the
models’ tendency to focus on specific elements of the original
images, leading to outputs that develop from these single el-
ements. Consequently, the connection to the initial artwork
becomes vague after several iterations. This suggests that
the models’ internal biases and the limitations in capturing
the full complexity of the original artworks play a significant
role in the self-poisoning process. The accuracy of the match
between the models’ input and what they produce is crucial.
The generated images also tend to be increasingly realistic
over iterations, regardless of the style of the initial artwork.
This can be explained by the training data of Stable Diffu-
sion [7], as the goal of the model was to be able to generate
”photo-realistic images”.

Figure 6: Self-Poisoning Example 1, starting from Konstantin
Somov’s artwork ”Costume Sketches Of Columbine For Anna
Pavlova” in style Symbolism

Figure 7: Self-Poisoning Example 2, starting from Adam Baltatu’s
artwork ”House With Flowers” in style Post Impressionism

Figure 8: Self-Poisoning Example 3, starting from Alexey Bo-
golyubov’s artwork ”Steamship Kolkhida Fighting The Turkish
Boats At The St Nicholas Fort Near Potigeor” in style Romanticism

Figure 9: Self-Poisoning Example 4, starting from Edward Hopper’s
artwork ”Automat 1927” in style New Realism

6 Discussion
The observed drift in both Content and Visual Novelty met-
rics highlights the capability of self-poisoning to introduce
significant changes in generated data. This suggests that gen-
erative models, when iteratively consuming their own out-
puts, can create novel content that diverges from the origi-
nal dataset. However, the increase in FID scores suggests a
trade-off between novelty and quality, as higher novelty is ac-
companied by reduced image quality over time.

The decrease and convergence of Content and Visual Nov-
elty over time within the self-poisoning process underscore
the limitations of generative AI models. These models are
capable of maintaining content to some extent, as shown
by convergence, but only if it is not too complex. Starting
from an initial, visually and content-wise complex dataset of
human-made art, the models struggle to capture the details
that contribute to the artworks’ recognition. Nevertheless, the
observed results cannot be generalized, since only BLIP-2 [6]
and Stable Diffusion [7] were used in self-poisoning. Investi-
gation the process using different models could yield different
results.

The performance of the models in maintaining content and
visual integrity is often evaluated using Visual Question An-
swering frameworks like TIFA [28], which reveal common
errors such as object count inaccuracies, missing or dupli-
cated objects, and unrealistic face and body generation in
complex contexts. The results of this study emphasize the
importance of improving these capabilities and suggest that
fine-tuning models on human-written captions for artworks or
incorporating human feedback in the iterative process could



enhance the quality of AI-generated art.
The results align with the theoretical framework of blind

variation and selective retention (BVSR) in creativity stud-
ies, where the generative process explores a broad range of
variations without specific guidance and the most promising
outcomes are selected for retention [29]. In this context, the
generative models’ ability to produce novel content through
self-poisoning reflects the blind variation aspect, while the
iterative process and convergence criteria represent the selec-
tive retention mechanism.

One notable issue encountered was the false positives gen-
erated by the safety filter in Stable Diffusion, resulting in
black images when the text prompt was considered NSFW
(”not safe for work”). In some situations such as certain art-
works that were sampled from the Baroque artistic style, the
generated captions can be traditionally considered explicit, as
some of them depict naked characters, therefore justifying the
generated black images. However, in many other situations,
there was no explicit content and the filter was triggered pur-
poselessly. Examples include ”A black and white photograph
of a towel hanging on a wooden hanger” or ”a painting of a
young boy looking out a window”. These black images have
influenced all future iterations of the self-poisoning process
for the respective artworks, as the generated images in those
cases were, strangely, most of the time, picturing ”an old man
sitting on a chair in a dark room”, which also constituted
the following caption. These images and captions had a di-
rect impact on diversity since they became a recurrent theme
within the generated datasets. This observation highlights a
limitation in the current safety mechanisms and underscores
the need for more refined filtering techniques that can better
differentiate between harmful and benign content.

The findings have implications for the use of generative
AI in art creation. While self-poisoning can enhance the nov-
elty of AI-generated artworks, it also necessitates careful con-
sideration of quality metrics to ensure the produced content
remains engaging and valuable. Content generated through
self-poisoning could potentially become part of the training
data of generative models’ future generations. As the au-
tophagous loop has already been proven to decrease the qual-
ity and diversity of the generated data, injecting self-poisoned
content into the loop might accentuate the consequences.

In summary, the study demonstrates the potential of self-
poisoning to drive novelty in generative AI while highlighting
the challenges associated with maintaining quality. Future re-
search should explore alternative approaches to balance these
aspects and further investigate the underlying mechanisms of
creativity in AI-generated art.

7 Limitations and Future Work
This study encounters several limitations throughout the ex-
perimental scope and data analysis.

Firstly, due to limitations in hardware resources, particu-
larly GPUs, as well as time constraints, the initial dataset was
confined to a randomly selected subset of 10 images per artis-
tic style from the WikiArt dataset [9], totaling 270 images.
Consequently, the small sample size may reduce the statis-
tical significance of the findings. Utilizing a larger dataset

comprising several thousand images would enhance the reli-
ability and generalizability of the results.

Secondly, the study conducted the self-poisoning process
over 100 iterations. Increasing the number of iterations in
future studies could provide a more robust confirmation of
the observed trends and extend the understanding of the long-
term effects of iterative generative processes.

Furthermore, the experiment only investigated self-
poisoning on a particular pair of text-to-image and image-
to-text models: BLIP-2 [6] and Stable Diffusion [7]. Exper-
imenting with different models, or different fine-tuned ver-
sions of certain models might enhance the generalizability of
the results in this study. Despite self-poisoning being defined
as a mathematical process, the results are highly dependent
on the models and their ability to match the text’s contents
with the image’s contents and visuals.

Lastly, the definition of creative novelty employed in this
paper draws solely from one prior study [17]. Future research
should not only investigate this definition further but also con-
sider incorporating and comparing other conceptual frame-
works of creativity. This could enrich the analysis and offer
more insights into the creative capacities of AI art genera-
tion.

8 Responsible Research
Reflecting on the reproducibility and integrity of the research,
several measures have been taken to ensure that the experi-
ments can be reliably reproduced and that the integrity of the
results is maintained.

8.1 Reproducibility
A comprehensive description of the experimental setup has
been provided, including the specific models used, the dataset
selection, the metrics for evaluation, and the necessary li-
braries. This ensures that other researchers can replicate the
setup accurately. Furthermore, all code and data used in the
experiments are available in our GitLab repository [21]. By
sharing the implementation, the reproducibility of this experi-
ment is further facilitated. The availability of the data ensures
that others can verify the results and conduct further analysis
if needed. The exact platforms and hardware used for the
experiments have also been mentioned. Since the platforms
are free to use, the experiment can be replicated by anyone
without needing access to specialized hardware.

The limitation that this study presents regarding repro-
ducibility is due to the non-deterministic nature of the genera-
tive models. Stable Diffusion, as well as BLIP-2 may produce
different results when run multiple times on the same input.
For this reason, all results that were used in the analysis are
provided in the GitLab repository.

8.2 Integrity
An open-source dataset (WikiArt) has been selected, and the
research adhered to its usage guidelines, ensuring ethical use
of data. Moreover, the tools and models used in the experi-
ments are freely available and properly cited, respecting in-
tellectual property rights and the contributions of the original
developers. The results are presented transparently, with both

https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Lukina/aalazaroaie-The-Many-Faces-of-AI-Art/-/tree/master/Self-Poisoning


quantitative metrics and qualitative examples. A thorough
analysis of content and visual similarity metrics, convergence
points, and FID scores, alongside visual examples that illus-
trate the self-poisoning process has been provided. The nega-
tive influence that Stable Diffusion’s NSFW filter had on the
results has also been explained. The resulting black images
were treated as valid data points and contributed to the quanti-
tative analysis. Well-established models and evaluation tech-
niques previously used in the literature were used throughout
the experiment to strengthen the reliability of the conclusions.

However, it is essential to address the biases inherent in
the training data of the models used in these experiments, as
well as the dataset. Datasets often contain biases related to
cultural representations, subject matter, and stylistic prefer-
ences, which can influence the outputs of generative models.
These biases can lead to the reinforcement of stereotypes or
the exclusion of less-represented artistic styles and cultural
contexts. Stable Diffusion [7] admits such biases, specifically
due to their training data primarily consisting of images with
English descriptions, insufficiently accounting for other lan-
guages and reinforcing white and Western cultures as default.
Furthermore, the iterative self-poisoning process may aggra-
vate these biases, as the models repeatedly generate outputs
based on their previous biased outputs. Ensuring diversity
and representation in the training datasets and implement-
ing mechanisms to identify and mitigate biases in generative
models are crucial steps toward responsible AI research and
development.

By incorporating these practices into the research, the prin-
ciples of reproducibility and integrity are respected, ensuring
that the work can be reliably built upon by the scientific com-
munity.

9 Conclusions
This study defines and investigates the phenomenon of self-
poisoning, an iterative process where AI-generated outputs
are repeatedly fed back into generative models. Starting with
a dataset of artworks by well-known artists, the process in-
volves captioning the artworks, generating images from the
captions, and repeating these steps on the generated data.
The focus is on how self-poisoning affects creative novelty,
assessed through content and visual novelty. Results indi-
cate that while self-poisoning introduces novelty in both con-
tent and visuals, it simultaneously degrades the quality of the
generated artifacts. Over time, models struggle to maintain
the original artworks’ content and visuals, instead introduc-
ing novel elements. Qualitative analysis reveals that the out-
puts converge on certain content themes and realistic styles.
These outcomes come from the generative models’ limita-
tions in closely aligning outputs with input prompts and gen-
erating comprehensive textual descriptions of input images.
They also suggest that generative models have limitations in
sustaining the complexity and creativity of original human-
made artworks. Enhancing models’ capabilities to capture
and replicate complex artistic elements is essential for ad-
vancing AI art generation.

Future research should replicate similar experiments using
different models, datasets, and parameters, and consider mul-

tiple conceptual frameworks of creativity to enrich the analy-
sis and improve the reliability and generalizability of the re-
sults. These efforts will deepen our understanding of genera-
tive AI’s potential and limitations in the creative domain and
contribute to developing more robust and responsible AI art
generation techniques.
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