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Abstract

This paper presents the findings of a benchmark performed on the audio fingerprinting
framework OLAF in the context of movie music. The goal is to find a music iden-
tification framework suitable for automatically identifying a song from a movie clip.
This research aims to find how well OLAF performs in this context with regard to the
criteria determined in the benchmark and to see if the performance can be increased.
The OLAF framework makes use of parameters, which are individually tweaked and
benchmarked with synthesised data. These findings are then combined to find a set of
parameters that is used to perform this same benchmark on real clips from movies. The
found parameter setup slightly increased the performance, going from 1 true positive
and 133 false negatives in the original setup to 5 true positives, 3 false positives and
126 false negatives.
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1 Introduction
Software to identify music has been around for decades. This software, however, is often
aimed towards identifying short samples in noisy environments. The use case that will be
researched in this work is the identification of music in movies, which brings a different set
of challenges with it. Currently, it is a tedious process to identify music in movies. A music
identification framework that could identify music in movies would drastically cut down the
time required to find metadata about the songs that appear in movies.

OLAF, the audio fingerprinting framework that is subject to this research, is such a music
identification framework. This framework will be further introduced in Section 2. It makes
use of an audio representation technique called audio fingerprinting. According to [1], an
audio fingerprint is defined as “(...) a content-based compact signature that summarizes an
audio recording.”

An advantage according to [2] is that “Audio fingerprinting techniques aim at successfully
performing content-based audio identification even when the audio signals are slightly or
seriously distorted.” This is useful in the context of movies, as the situations that appear
in movies are often scenes with layered audio, e.g. a restaurant scene with music playing
in the background or a traffic scene where the driver puts on a radio. Audio fingerprinting
frameworks should be robust to these changes to a certain extent.

To measure the performance of OLAF, a benchmark has been set up, such that an arbi-
trary music identification framework can be benchmarked1. In this work, the performance of
OLAF according to this benchmark will be researched, as well as the limits to what OLAF
is able to identify. This paper aims to find the answer to the following question:

How well does the OLAF framework perform in identifying music in movies?

This main question is divided up into two parts:

1. How can parameters be configured to improve OLAF’s performance with regards to
the benchmark?

2. How does OLAF perform in practice with identifying samples in real movies?

The paper is outlined as follows. Section 2 introduces the OLAF framework and mentions
an extension made on OLAF for this research. Section 3 describes the methodology of how
the framework will be evaluated. Section 4 reports the results of performing the benchmark
and discusses the findings. Section 5 will discuss the limitations of the research. Section 6
describes how principles of responsible research are applied in the context of this research.
Finally, Section 7 concludes the paper and makes recommendations for further research.

1It is heavily suggested to read the white paper about this benchmark [3] before continuing to read this
work, as this work heavily relies on the metrics and data generated in the white paper.
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2 The OLAF framework
In this section, the OLAF framework will shortly be introduced and the past performance
will be analysed. This will provide a baseline for how well the framework should perform in
practice.

2.1 Introduction of the framework
Overly Lightweight Acoustic Fingerprinting, or OLAF for short, is an audio fingerprinting
framework designed and implemented by J. Six in 2020. OLAF is, according to [4]: “(...) a
portable, landmark-based, acoustic fingerprinting system released as open-source software”.
It is based on the algorithm implemented in [5]. According to [4], three points set OLAF
apart from other audio fingerprinting frameworks: it can run on embedded systems, it runs
fast on traditional computers and it can run in the browser. Of these points, the second is
the most applicable to the benchmark, as search speed and scalability is one of the criteria
determined in the benchmark.

2.2 Implementation of the framework
To get a better understanding of how OLAF works, a short description of the fingerprinting
process of the framework will follow. The process starts with an audio file, OLAF accepts
many commonly used audio file formats. Then each audio file is split into blocks, on which
a Fast Fourier Transform is applied. The output of this transform is used to extract event
points. An event point is a combination of a time index and a frequency. Once some thresh-
old of event points has been met, fingerprints are created from these event points. Whether
the audio files are queried, stored in the database or deleted from the database, the finger-
printing process is the same. Since this process is deterministic, the resulting fingerprints
from an audio file will always be the same, given the same parameters are used.

OLAF relies on a database library called LMDB, which offers storage based on a B+-tree [4].
According to [6], even with millions of records in the tree, the amount of necessary accesses
to the database is still reasonable when searching for a record.

2.3 Prior performance of the framework
The OLAF paper mentions that the speed of the OLAF framework is over thirty times faster
than that of Panako [7], an audio fingerprinting framework implemented by J. Six in 2014.
Storing data in the database was 1429 ± 205 times faster than real-time. An hour of audio
is analysed and consequently stored in about 2.5 seconds. Similarly, with ten thousand
songs in the database and four minutes per song, querying was 891 ± 99 times faster than
real-time. An hour of audio is queried in about four seconds. Since the queries will be based
on music in movies, the clips will mostly range from less than a minute to a few minutes.
Therefore, it will generally take a fraction of a second to query a single track. The OLAF
paper also mentions that the retrieval performance is similar to that of [5].

2.4 Selectors for OLAF’s results
Scripts on GitLab [8] are used to further process the results, counting the true positives,
false positives and false negatives. The time of queries is also measured. With this data, all
metrics can be quantified or calculated. One problem that occurs in practice is that OLAF
returns multiple results. To combat this, three selectors have been implemented. The job
of these selectors is to select one of the results OLAF presents. An explanation about the
three implemented selectors will now follow.
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2.4.1 Ideal selector

This selector will make use of the original song name in the query to determine if a query
contains a true positive, false positive or false negative. If a true positive is contained in
the results, this selector marks that query as having a true positive. If there are no true
positives, it will mark the query result as a false positive if there is one, or a false negative
if there are no results. A false positive therefore is taking precedence over false negatives.
This is to mimic a real-life selector more closely, as those will usually prefer some result
over no result. This indicates how well OLAF performs, with regards to reliability and
robustness, at identifying music when information about the correct match is available. In
practice, however, this information will not be available, so this selector is not applicable
to a real case. Its goal is to act as an upper bound, i.e. showing how well a selector could
theoretically perform.

2.4.2 Random selector

A selector should on average never perform worse than random. To have a baseline for
this worst-performance, a random selector has been implemented. It picks a pseudo-random
result from the list, a selector should never be worse than picking randomly. In cases where
OLAF returns a lot of false positives alongside true positives, this random selector will have
hugely varying results. Therefore, this selector will be run 100 times for each run of the
framework with a certain set of parameters, of which the average will be taken. This helps
combat runs whose results deviate far from the average, as theoretically one single run of
this random selector could be as good as the ideal selector or miss the right result every
time.

2.4.3 Exact matches selector

An exact match is defined as a collision with the database. A single fingerprint can poten-
tially return thousands of hits with the database. In reality, the exact matches can be used
to select a result. For every result OLAF returns for a query, the number of exact matches
are included. The results are sorted by most matches descending by default, which means
the first result OLAF returns for a query is the one with the most exact matches. This is
one of the most practical selectors to implement that uses information provided by OLAF
to determine a match. The precision and recall of this selector should be between that of
the random selector and the ideal selector.
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3 Methodology
This section will discuss the methodology of how the research is set up. This includes the
criteria that will be used, data generation and how the benchmark will be performed.

3.1 Benchmark criteria
Before a benchmark can be performed to test the performance of the OLAF framework,
a benchmark will first need to be set up. To determine the quality of the results of the
benchmark, metrics have been determined in the white paper [3].

TP

FN + TP
(1)

Robustness: The framework should be able to identify music, even
though there are movie noises over it. The metric is defined as the
formula for recall seen in Equation 1, where TP stands for the num-
ber of true positives and FN stands for the number of false nega-
tives.

TP

FP + TP
(2)

Reliability : This represents how much the result the algorithm gives
can be trusted to be correct. Reliability is calculated using the for-
mula for precision found in Equation 2. TP stands for the num-
ber of true positives and FP stands for the number of false posi-
tives.

Search speed and scalability : This metric measures the average time it takes to query from
start to finish and how the size of the database affects the search speed, i.e. how much slower
does the algorithm perform with a larger database? The expectation is that the query time
would grow logarithmically with the database size, due to OLAF relying on a B+-tree.

In this work, the definitions above will be used to determine the quality of a music identi-
fication framework. These metrics are based on [9] and [10] and are further elaborated on
in [3], where the process of defining these metrics is described.

3.2 Generating query data
To be able to conclude anything about what the algorithm performs well or poorly at, the
search space has been explored. Some common categories of sounds in movies that play over
music have been selected. The selected categories and the reasoning for these categories can
be found in [3].

3.3 Performing the benchmark
Now that criteria have been established, the approach to measure the benchmark will be
briefly discussed. This approach is discussed more in-depth in [3]. The data set that will be
used is provided by Muziekweb and consists of 49 movies and their corresponding sound-
tracks. These soundtracks are fingerprinted and inserted into the database. This is under the
assumption that high-quality soundtracks (i.e. soundtracks that have no distortions applied
to them) are available for the movies in the database. Researching the effect of distorted
data in the database is out of scope for this research. The research will be executed as fol-
lows: All available movie soundtrack data will be stored in the database. This will be done
in FLAC format. The synthesised data is in WAV format, which is uncompressed. Since
FLAC uses lossless compression and WAV is uncompressed, OLAF should produce the same
fingerprints since fingerprints are produced from spectrogram peaks [5]. After the available

5



soundtrack data is stored, querying can begin. The querying process is simple: OLAF will
fingerprint the query data and compare these generated query fingerprints to those already
stored in the database. If a match is found, it is recorded for further processing.

3.4 Varying the parameters
OLAF has an extensive list of variable parameters that can be optimised for each of the
metrics. Depending on the use case, the emphasis may lie on robustness, reliability or
search speed. The default parameters, which will be used as a baseline, can be found on
the OLAF repository2. Due to time constraints, not every combination will be tested. The
default values for each parameter will be used, except for the parameter that is being varied.
The value for this parameter depends on the default value that is given to that parameter.
Generally, the other values that will be tested are the default value both halved and doubled.
For each selected parameter a description will follow, alongside the selected values.

Parameter Abbreviation Description Default
value

Values
to test

Minimum
Match
Count

MMC Amount of exact matches re-
quired for OLAF to display a
match

6 3, 12,
24

Max Finger-
prints Per
Point

MFP Determines the amount of times
an event point can be reused

3 1, 5

Max Finger-
prints

MF Used for determining the maxi-
mum amount of fingerprints the
fingerprint extractor can hold

300 150,
600

Max Event
Points

MEP Similar to the previous parame-
ter, but for event points instead
of fingerprints

60 30,
120

Event Point
Threshold

- Combines n event points into fin-
gerprints, where n is the value of
the parameter. This value is only
changed when varying the MEP
parameter and uses the value of
MEP

2

30 15, 60

Table 1: Description of parameters to vary

These parameters have been chosen based on their effects impacting either fingerprint cre-
ation, search speed or match selection.

3.5 Hardware & software specifications
The hardware and software specifications of the system the fingerprinting is done on will
impact the search speed. OLAF was run on a Linux subsystem (Ubuntu version 20.04) for
Windows. The computer used for this research was a laptop equipped with a hexa-core Intel
i7-8750H @ 2.20GHz processor. It has 16.0 GB DDR4 RAM, of which 15.9 GB is usable.
All data relating to the research was stored on a 5400 RPM HDD.

2https://github.com/JorenSix/Olaf/blob/master/src/olaf_config.c
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4 Results
Now that preliminary research has been completed and the setup has been described, the
performance of OLAF will be evaluated based on the benchmark. First, the results using
the different selectors will be discussed. The best performing parameter setup from the
most matches selector will be used for any tests related to recall or precision after that. The
search speed of different parameter setups and scalability of the framework will be reviewed.
Finally, some tests on real movie data will be done.

4.1 Robustness & Reliability
In the results below, the x-axis will consist of all the varied parameters. The letters represent
the varied parameter and the number behind it represents the value used for the parameter.
The abbreviations for each parameter can be found in Table 1. The ideal selector’s scores
can be seen in Figure 1. As expected, the reliability is very high: when a match is found,
there is a high probability that it is correct. The way the selector has been set up does affect
the reliability negatively, because of the preference for false positives over false negatives.

Figure 1: Recall and precision with ideal selector

The performance of the exact match selector, which can be seen in Figure 2, is better than
the ideal selector when it comes to precision. The recall, however, is far lower. This selector
chooses either the correct match or no match, but only rarely picks a false positive. This
is a nice result, as this selector can be implemented based on just the information OLAF
provides. For most parameter combinations there is a high probability that it is the correct
one when OLAF returns a result.
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Figure 2: Recall and precision with exact matches selector

Finally, the random selector is considered in Figure 3. The reliability for this selector is
also surprisingly high, except for the last parameter configuration. This makes sense, as
this parameter configuration allows for a query to return a wider range of results. While
the exact match selector can still pick out the most correct result with this configuration,
the random selector picks a random result, which will then be incorrect more often due to
selecting potential matches with fewer exact matches. For most other parameters, OLAF
only returns one result for most queries. That means there is essentially no randomness,
meaning the selector performs the same as the two previous selectors.

Figure 3: Recall and precision with random selector

Further analysis will be done using the parameter MFP5. This parameter setup sacrifices
some precision for a larger gain in recall. Across all noise categories using the most matches
selector, the average recall for this parameter is 0.80 and the precision is 0.98.

8



Figure 4: Precision for most matches
selector per noise category using differ-
ent signal-to-noise ratios for parameter
MFP5

Figure 5: Recall for most matches se-
lector per noise category using differ-
ent signal-to-noise ratios for parameter
MFP5

As expected with such a high overall precision score, for almost every noise category the
precision is close to 1 (see Figure 4. Each abbreviation in Figure 4 and Figure 5 is short
for a noise category, which can be found in [3]. The AS (street noises) category performs
the worst but still has a very high precision. There is a clear pattern in the performance
of OLAF when it comes to different signal-to-noise ratios. For every noise category, the
negative signal-to-noise ratio also performs the worst. This is logical, as fewer event points
will be extracted from the song and more event points will be extracted from the layered
sample. A negative signal-to-noise ratio means the sample is louder than the song. This
mimics music in the background of a movie scene. A positive signal-to-noise ratio performs
better, as more event points will be extracted from the song instead.

Figure 6: Recall and precision for pitch
shifts with most matches selector and
parameter MFP5

Figure 7: Recall and precision for
tempo changes with most matches se-
lector and parameter MFP5
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From Figure 6 and Figure 7, it can be seen that OLAF performs poorly when the audio is
either pitch shifted or has its tempo changed. If the pitch shifting is too far away from the
original track, no results are returned. If there is a pitch shift that is still relatively close to
the original track, some results are returned, but the recall and precision are far from what
was seen with the layering tests. There is no tempo change value for which no results have
been returned, but the recall and precision are still very low for every tested value.

4.2 Search speed & Scalability

Figure 8: Query times per category for
parameter MFP5

Figure 9: Query times for different
database sizes with parameter MFP5

When considering Figure 8, it can be seen that queries on average take around 1000 ms
± 500 ms for most parameters. There is one clear deviating parameter, which is Max Fin-
gerprints with a value of 600. The query time is about twice as large as that of the default
parameter setup. This parameter setup also performs worse regarding robustness and reli-
ability than the default setup, so there is no benefit to using this configuration.

From the tests ran on OLAF regarding scalability (see Figure 9), the claim that OLAF
runs fast on traditional computers [4] definitely holds. A database size increase by 980

10 = 98
only results in an average query time 0.82

0.70 ≈ 1.17 times longer.

4.3 Tests on real movie data
With this new parameter setup, the default parameter setup can be compared to the orig-
inal setup regarding recall and precision. 134 clips where music was playing were taken
from movies. These are queried against the same database as the benchmark. The results
are selected by the same principle as the most matches selector. The default parameter
setup performed poorly: one single true positive was found, while OLAF returned 133 false
negatives. Since there are no false positives, there is a precision of 1. However, the recall
is very low: 1

133+1 ≈ 0.0075. There is a slight improvement when using MFP5: using this
parameter returned 5 true positives, 3 false positives and 126 false negatives. Therefore, the
precision is 5

5+3 = 0.625. The recall is 5
5+126 ≈ 0.038.
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5 Discussion
In this section, the limitations of the research and the impact of these limitations on the
results will be discussed.

5.1 Research data
In the movie data set, there is an issue with duplicate songs on soundtracks. Since file names
were used for determining whether a song is a correct match or not, this turns some true
positives into false positives. Therefore, the resulting precision could be affected negatively.
This would not be an issue when performing the benchmark in real life, as these matches
are still the correct result. OLAF has a command to deduplicate a folder, which removes
any duplicate audio files. This was discovered late in the research process and due to time
constraints, the experiments could not be started over.

The selected noise categories and manipulations only cover a small part of the search
space. The noise categories could be expanded and, additionally, layered over one another
to create a track more accurate to real movies.

5.2 Parameter setup
The parameters decided in subsection 3.4 only cover a part of the parameters that could
be varied. Similarly, the values used for these parameters only cover a part of the possible
values. There is a high likelihood that there is some more optimal set of parameters for
music identification in movies.
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6 Responsible research
To perform this research responsibly, there are two different aspects to consider: the integrity
of the research and the reproducibility of the research.

6.1 Academic integrity
When using the term academic integrity, it can be defined as the values, behaviour and
conduct of academics in all aspects of their practice [11]. Included in this conduct is properly
acknowledging previous work. In this field specifically, that includes acknowledging the
creators of the data that has been used in the synthesis process. All noise data was retrieved
from Freesound3 and all contributors will be acknowledged on GitLab [8].
One question that may be asked is whether the synthesised data accurately represents movie
data. No complete answer can be given as this could be a whole other work of research. A
problem with using data from a medium as broad as movies is that the search space of noise
categories and manipulations is very large. Therefore, it is hard to make any general claims
about the performance of a framework on movie data as a whole.

6.2 Reproducibility of the research
As this research is conducted on synthesised data based on copyrighted data, the synthesised
data can not be published. This makes reproducing the research more difficult. The scripts
that have been used to generate the data, as well as the scripts to analyse the results, are
available on GitLab [8]. Together with the description provided in this paper, it should be
possible to reproduce the results as accurately as possible. According to [5], the hashes that
are created from an audio sample are reproducible, therefore, the same database and query
data with the same configurations should lead to the same result.

7 Conclusion & Recommendations for future work
In this paper, the performance of the OLAF framework has been analysed according to the
benchmark. Both recall and precision delivered satisfactory scores in the benchmark across
the noise categories. OLAF can generally handle layered noises well, however, it struggles
with pitch-shifted and tempo altered data. The results on actual movie clips regarding recall
have slightly improved due to the use of a different parameter setup, but the precision has
decreased. This new parameter setup is more useful than the default setup, however, as the
new setup returns more matches.

There are many ways to expand on this research, of which some will be highlighted.
The noise categories determined in the benchmark are incomplete and could be expanded
to include a wider variety of categories. Similarly, only three sounds per noise category have
been used, but to get a more representative sample, more sounds from the same category
can be used to layer over soundtrack data. Lastly, the final combination of parameters used
for querying the actual movie data likely is sub-optimal for the use case. Some optimisation
strategy could lead to parameters with better results than have been achieved thus far.

3https://freesound.org/
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