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Annual satellite-based NDVI-derived land cover of Europe for 2001–2019 
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A B S T R A C T   

Land cover plays an important role in the Earth’s climate as it affects multiple biochemical cycles and is critical 
for food security and biodiversity. As land cover is continuously evolving, influenced by anthropogenic and other 
factors, the availability of temporally varying land cover data sets of large spatial domains is integral to un
derstanding, monitoring, and informing environmental management efforts. Here we use classification trees to 
generate annual land cover maps of the European continent for 2001 to 2019 on a ~250 m resolution. The 
classification trees are trained using gap-filled and smoothed MODIS normalised difference vegetation index 
(NDVI) satellite data, as well as CORINE reference land cover data. We apply the bagging ensemble technique on 
oversampled NDVI data, with an additional majority vote for overlapping segments over the continent-wide 
domain. We distinguish between 39 land cover classes, with a total classification accuracy of 75% and 
average precision of 76%. The accuracy varies between the classes, with common classes (e.g. agricultural and 
forest classes) performing better than rarer ones (e.g. artificial land cover). Over the entire continent, we find 
that artificial land cover, wetlands, and forests have increased on average by 0.76, 0.50 and 0.22%/year 
respectively, while the agricultural area has decreased by 0.21%/year. We also quantify these changes in land 
cover on a national and metropolitan level. Given the near-real-time availability of global NDVI data, we note the 
potential of the presented approach for generating ‘near-real-year’ annual land cover data sets of large 
geographic domains, for the continuous monitoring of land cover change and the effects of interventions.   

1. Introduction 

Land cover and its dynamics play a key role in multiple global 
challenges. First, land cover is an integral part of the Earth system. Land 
cover, and changes therein, affect the global carbon cycle through the 
surface albedo, heat flux and atmospheric moisture (IPCC, 2019). Earth 
system models, employed to further our understanding of the evolving 
Earth system by numerically simulating the Earth’s climate, require 
detailed land cover data among other inputs (Jeffries et al., 2015). 
Although progress has been made in improving our understanding of the 
interaction between land cover and the Earth system, land cover and 
land cover change still remain a significant source of uncertainty in the 
global carbon cycle (Houghton et al., 2012). Besides its importance in 
understanding the Earth system, land cover is one of the most widely 
used indicators for measuring pressure on ecosystems and biodiversity 
(OECD, 2018). Finally, land cover and associated dynamics are tightly 
related to the ability to produce the necessary food to sustain the global 
population. 

Land cover evolves heterogeneously over time, depending on the 

land cover type as well as location. It is estimated that only 13% of the 
global wetlands area that existed in 1700 remains today (Davidson, 
2014). Furthermore, since the 1960s the global area used for cropland 
has increased by 15% and the area used for pastures by 8% to support 
the world’s growing population (IPCC, 2019). Similarly, the global 
urban surface area has increased over the last few decades and is ex
pected to triple between 2000 and 2030 (Martellozzo et al., 2015; 
d’Amour et al., 2017). The global area covered by forests has also 
declined by 3% between 1990 and 2015 and continues to decrease, with 
the largest losses in Brazil, Indonesia and Nigeria. In Europe, the forest 
area has steadily increased however (Keenan et al., 2015). Further land 
cover change is caused by desertification, which, despite national and 
international efforts, is continuing at accelerating rates (Abahussain 
et al., 2002). 

To better monitor and understand the evolution of land cover over 
time and the effects that various natural and anthropogenic in
terventions have on it, land cover data sets of high temporal resolution 
and wide geographic spans are needed (An and Brown, 2008; Mena, 
2008). A variety of data sets exist that provide fine resolution (~ 30 m) 
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annual land cover maps, but they are restricted to small spatial domains 
(Mena, 2008; Braimoh and Vlek, 2005; Vågen, 2006). Besides the 
inherently large geographic spans of Earth system modelling, deter
mining the land cover over a large geographical area also enables us to 
determine whether spatial patterns can be found in the land cover and 
its change. Additionally, land cover transitions affect the surrounding 
areas of where they occur (Mahmood et al., 2014). As such, the causes 
and effects of changes in land cover may be overlooked when a restricted 
area is investigated. 

While continent-spanning, high resolution (10–100 m) land cover 
data sets exist, they lack a fine temporal resolution. For example, the 
CORINE database exists for 2000, 2006, 2012 and 2018 (European 
Environment Agency, 2017), Copernicus for 2015 (Buchhorn et al., 
2019) and S2GLC for 2017 (Malinowski et al., 2019). As land cover 
change is often a nonlinear process (Braimoh and Vlek, 2005; Vågen, 
2006), it cannot necessarily be interpolated or extrapolated using such 
existing land cover maps. Given the methodological and input data 
differences between the aforementioned land cover products, using 
multiple existing products to gain temporal resolution or spatial 
coverage would introduce uncertainties. 

In this work we produce continent-spanning time series of land cover 
at continental spatial scales. To do this, we use remotely sensed nor
malised difference vegetation index (NDVI) data, for which global data 
are available spanning several decades (Kerr and Ostrovsky, 2003; Xie 
et al., 2008). NDVI data have previously been used to characterise the 
land cover of constrained spatial domains (Geerken et al., 2005; Pacheco 
et al., 2014; Lunetta et al., 2006; de Bie et al., 2011; Usman et al., 2015; 
Sheffield et al., 2015; Ali et al., 2013) as well as larger domains (De Fries 
and Townshend, 1994; Hansen et al., 2013; Estel et al., 2016) but with 
low temporal resolution. In some cases, these data products make use of 
multiple input data sets (e.g. multiple spectral indices). Here however, 
we classify land cover using solely NDVI data. 

We produce and analyse annual land cover results of a large 
geographical area, specifically the European continent. The distribution 
of land cover and changes therein are quantified and discussed on 
several spatial levels, indicating the suitability of this approach for 
monitoring and understanding the implications of environmental man
agement efforts. While there are both prior examples of the classification 
of a large region as well as prior classification studies producing annual 
results, to the best of our knowledge this work presents the first 
comprehensive analysis of recent annual land cover change over the 
European continent. 

2. Data and study area 

2.1. Study area 

We classify the land cover of the continent of Europe. The spatial 
domain extends from 11◦W to 32◦E longitude, and 34.5◦N to 71.5◦N 
latitude. It contains a heterogeneous climate, including arid (e.g. Iberian 
peninsula), temperate (e.g. Mediterranean and western Europe), cold (e. 
g. eastern and northern Europe), and polar (parts of northern Europe) 
Köppen-Geiger climate zones (Beck et al., 2018). Within the domain, 
different landscape types exist. Examples are the Tabernas desert in 
southern Spain, the wetlands found in Scotland, the forests of Scandi
navia, the grasslands of Great Britain, and the urban areas of various 
sizes predominantly located in western Europe. 

2.2. NDVI data 

We use Moderate Resolution Imaging Spectroradiometer (MODIS) 
MOD13Q1 NDVI data. In order to quantify long-term fluctuations in 
land cover, nineteen years of data are analysed between 2001 and 2019. 
The data sets are available every sixteen days, at a spatial resolution of 
232 m × 232 m (Didan et al., 2015). 

Remotely-sensed vegetation data contain inherent noise as the 

Earth’s surface and atmosphere obfuscate present patterns. The MODIS 
NDVI data product used here has been corrected for the atmospheric 
conditions as well as the different viewing angles (Brown et al., 2006; 
Didan et al., 2015). The quality of each NDVI pixel is indicated by its 
pixel reliability index. Of these, the Fill/No Data, Snow/Ice and Cloudy 
indices were considered invalid. Any such invalid values in each pixel’s 
(grid-cell’s) time series are gap-filled using weighted temporal interpo
lation, with a symmetrical window width of five timestamps. 

We use the iterative Savitzky-Golay filter to further reduce the noise 
(Chen et al., 2004). The Savitzky-Golay filter is a moving average filter 
with weighting given as a polynomial. These weight coefficients when 
applied to a signal, perform a least-squares fit within the filter window 
(Savitzky and Golay, 1964). In this iterative approach, an initial filter is 
applied followed by the iterative filter which favours positive outliers 
(Chen et al., 2004). This enables the algorithm to compensate for the 
negative bias within the data set which is a result of atmospheric 
interference (Gutman, 1991; Jönsson and Eklundh, 2004). We use a 
window width corresponding to 208 days and a polynomial degree of 2 
for both the initial, as well as the iterative Savitzky-Golay filter. An 
example of the initial noise within the data set, as well as the effects of 
interpolation and the iterative Savitzky-Golay filter are shown in Fig. 1. 

2.3. Reference land cover data 

In order to both train the supervised classification methodology and 
assess its effectiveness, reference land cover data are required. To this 
end, we use the openly available CORINE Land Cover database, pro
vided by the Copernicus Global Land Service (European Environment 
Agency, 2019). This land cover database has been generated using high 
resolution satellite imagery from different satellite sensors and spectral 
ranges. NDVI data are not directly used in CORINE, but the near infrared 
and red spectra included in the NDVI definition are used to generate 
some of the CORINE data set years (European Environment Agency, 
2002, 2007, 2014, 2017). The CORINE Land Cover database has been 
verified using expert assessment of aerial photographs, and has an 
overall classification accuracy of 85% (Büttner and Maucha, 2006). 

CORINE distinguishes between 44 classes in total. These are grouped 
as subclasses of the artificial, agricultural, forest and semi-natural areas, 
as well as wetlands, and water bodies classes. CORINE is at a 100 m ×
100 m resolution. We remap and regrid the CORINE dataset to match the 
projection and resolution of the ~ 250 m MODIS NDVI data used in this 
work. This is done by selecting the most common Corine pixel within the 
spatial bounds of each respective pixel of the MODIS data. The CORINE 
database is produced every six years, and four CORINE data sets are used 
here (2000, 2006, 2012 and 2018). 

Fig. 1. An example time series of four years showing the effect of the pre- 
processing steps. Interpolation removed four invalid pixels, and the Savitzky- 
Golay filter smoothed the resulting time series. 
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Finally, we note that the CORINE reference land cover database does 
not cover the full spatial domain. This further illustrates the lack of 
universal land cover data, which together with the fact that these data 
are produced only once every six years, and with a lag of several years, 
motivates the use of continuously available NDVI data for land cover 
classification. 

3. Methods 

Fig. 2 presents an overview of the methods used for obtaining annual 
land cover data, using the aforementioned interpolated and smoothed 
NDVI time series and the four years of CORINE reference data. 

3.1. Types of land cover classes and their classification profiles 

Supervised classification methods require the definition of classifi
cation profiles that are representative of each pixel’s time series. We use 
the following NDVI and normalised growing season metrics to charac
terise each pixel (Martínez and Gilabert, 2009; Reed et al., 1994):  

• NDVI metrics: The mean, maximum and minimum, as well as the 
amplitude of the NDVI time series. The time at which the maximum 
occurs is also used, as well as the slope at the start and end of the 
growing season (rates of greenup and senescence respectively).  

• Growing season metrics: The start, end and length of the growing 
season, as well as the area under the NDVI time series during the 
growing season (a proxy for the gross primary productivity) (Park 
et al., 2016). 

To determine the growing season metrics we use the midpointpixel 
method, due to its good performance compared to other methods (White 
et al., 2009). The start of the growing season is set as the first time the 
average between the minimum and maximum annual NDVI is exceeded, 
with the end of the growing season being the last (White et al., 2009). 
Additionally, the start of the growing season has to occur prior to the 
annual NDVI maximum, and the slope has to be positive. The opposite 
criteria are used for the end of the growing season. This alleviates the 
issue that the growing season may be reversed around the Mediterra
nean (Estel et al., 2015). Similar to the other feature data, the growing 
season metrics are determined on an annual basis for each pixel’s time 
series individually. 

To further characterise each pixel, textural features are used to 
describe their spatial distribution and thus the landscape they represent. 
The textural features are computed using the mean NDVI as per Haralick 
et al. (1973). The homogeneity, contrast, correlation and angular second 
moment metrics were selected due to their prior use for land cover 
classification (Rodriguez-Galiano et al., 2012; Beekhuizen and Clarke, 
2010). A square window of 15 × 15 pixels (~ 4 km × ~ 4 km) was found 

to be optimal. 
Finally, while CORINE has 44 classes, here we merge the water 

bodies classes. This was deemed necessary, as the MODIS NDVI data use 
a single value to indicate water pixels, and is thus not suited to distin
guish between different types of water bodies. We further divide the 
mixed forest class between the coniferous and broad-leaved classes to 
avoid the mixed-pixel problem (Carreiras et al., 2006). 

3.2. Classification trees 

We use classification trees to generate a classifier that is applied to 
the NDVI data. Classification trees split the data into ever-more homo
geneous groups. They start out at the ‘root’, which contains all the data. 
The data are then divided into ‘branches’, to create more homogeneous 
groups. Each division is determined with a decision stage, where the 
data either meet the given threshold for the specific feature or not. The 
‘leaves’ are located at the top of the tree, and give the pixel its classifi
cation type. Decision stages represent an optimisation problem where 
the objective is to minimise impurity, or, in other words, maximise the 
separability (Safavian and Landgrebe, 1991). 

This optimisation process favours common classes over rarer ones. 
For the European domain as a whole, the artificial, wetlands, and non- 
vegetated classes are usually rare compared to the agricultural, and 
grasslands and forests classes. To overcome the issue of rarity, we apply 
sampling techniques to adjust the distribution of the classes within the 
training data. When the training data distribution is different from the 
actual data distribution, the classifier becomes biased. To prevent this, 
the prior probabilities must be changed accordingly (Weiss and Provost, 
2003). For this purpose, Laplace’s law of succession is used, as it lacks 
the asymptotic behaviour for small sample sizes that the frequency 
based alternative has (Weiss and Provost, 2003). The fully balanced 
distribution was found to be the most suitable in this work. Four sam
pling techniques were considered: oversampling, undersampling and the 
synthetic sampling strategies SMOTE (Chawla et al., 2002) and 
Borderline-SMOTE (Han et al., 2005). 

Improvements to the classifier itself were also considered in the form 
of the ensemble techniques random forests, bagging and boosting. 
Ensemble techniques work by using the results from multiple classifiers, 
an ensemble, to arrive at the final result. The error of a single classifi
cation is outweighed by the group through majority voting, where the 
mode of the classification results for a pixel is selected. Ensemble 
methods suffer less from over-fitting and thus enable the use of larger 
trees (Ghimire et al., 2012). This enables the classifier to also consider 
rarer cases, which could otherwise be ignored. All combinations be
tween the aforementioned sampling and ensemble techniques were 
assessed, and the combination of oversampling with bagging was found 
to be the most optimal. 

Fig. 2. Overview of the approach for producing the annual land cover, including all inputs, intermediate processes and (intermediate) outputs. The performance of 
the classified land cover is assessed as described in Section 3.4. 
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3.3. Segmenting the data 

Large heterogeneous landscapes are challenging to classify as they 
have low inter-class separability and high intra-class variability (Ghi
mire et al., 2012). This makes it difficult to accurately classify a large 
geographic area, such as Europe, or even a smaller domain, such as 
Iberia. Aside from the water bodies class, the classes are difficult to 
separate and the values are generally lower than those found in litera
ture (Shao et al., 2016). We overcome the low inter-class separability 
and high intra-class variability in the continent spanning NDVI data set 
by segmenting the spatial domain in 60 × 60 pixel sections and classi
fying each section at a time. This is selected as a trade-off between the 
ability to more accurately classify rarer classes, and classification bias 
and computational cost. The resulting improvements in the separability 
and variability are discussed in section C1 of the Supplementary Infor
mation (SI). 

The use of classification trees yields inconsistency in the produced 
land cover type. To increase the classification consistency, a second 
layer of majority voting is introduced. Multiple iterations of the classi
fication procedure described thus far are performed, with the most 
common classification (mode) for each pixel returned as the final result. 
The similarity between successive levels of majority voting approaches 
the asymptote of 100% in five to ten iterations. 

Additionally, discontinuous classification results could be obtained 
when the data are segmented, as each segment is trained on entirely 
separate data. To ensure spatial consistency, as well as introduce the 
aforementioned second layer of majority voting, segmenting is applied 
in a sweeping manner horizontally as well as vertically (see Figure SI.1 
in the SI). This smooths out resulting edges between sections, and, as 
these segments are layered on top of one another, this inherently in
troduces a degree of iteration. An overlap of 80% in both dimensions is 
used, resulting in a conservative ten iterations to ensure consistency. 

3.4. Annual classification results 

The CORINE land cover data used to train the classifier are only 
available for four years within the assessed nineteen year time window 
(European Environment Agency, 2019). As a result, four classifiers are 
produced. To produce land cover data at an annual temporal resolution, 
the classification trees generated using the nearest (in time) CORINE 
data set are applied to the corresponding year’s NDVI data. The effects of 
this on the classification results are relatively minor (discussed in section 
C2 in the SI), indicating that the classification algorithm is robust to 
evolving feature data. 

The classification algorithm can occasionally yield anomalous re
sults, necessitating temporal smoothing. In this temporal smoothing, a 
classification is seen as erroneous if the classification land cover does not 
cover at least three successive years, and is not the majority land cover 
type within the twenty year window. The erroneous classification results 
are substituted for the most common class in a symmetrical window of 
five years for each pixel’s land cover trajectory. If after this procedure 
any outliers remain, they are substituted for by the majority class within 
the entire time span. The effects of this temporal smoothing are dis
cussed further in section C4 in the SI. 

We assess the performance of the annual classification results by 
quantifying the accuracy and precision of the classified years for which 
reference land cover data is available. We use the ratio of correct pre
dictions (true positives and true negatives) to total predictions to assess 
the classification accuracy, and the ratio of true positives to total pre
dicted positives (true positives and false positives) to assess the classi
fication precision. Besides CORINE, we also use the Copernicus land 
cover map data set for an additional classification performance 
assessment. 

4. Results 

4.1. Classification performance 

The land cover of Europe in 2018 is given in Fig. 3, both as deter
mined by the classifier (a) as well as the CORINE reference data set (b). 
The classified land cover captures all major patterns given by the 
CORINE land cover data, including all large urban and natural areas. 
Results differ where small areas are covered by a land cover type that is 
distinct from its surroundings. These are often no bigger than a pixel and 
the likely explanation for this is that these distinct areas cannot provide 
the classifier with sufficient training data for our 60 × 60 pixel segment 
size. 

Fig. 4 presents the accuracy and precision of the classifier for the 39 
classes, resulting from the test data used for the entire domain for the 
four years for which reference CORINE land cover data are available 
(2000, 2006, 2012, 2018). The full confusion matrix is shown in section 
B1 in the SI. Whilst differences exist between the obtained classification 
performance for the years for which this can be tested, they are small 
and do not affect the conclusions drawn from them. 

The total classification accuracy and average precision are 75% and 
76% respectively. This is comparable to the 74% accuracy of the MODIS 
land cover product at a 500 m × 500 m resolution, however it should be 
noted that this product distinguishes between 16 rather than 39 classes 
(Sulla-Menashe et al., 2019). When our results are aggregated to the 
second tier of CORINE land cover classes with a more comparable 14 
classes, an over-all accuracy of 79% is found. For the five tier 1 classes, 
this is further improved to 89%. 

The highest accuracy is found for the most common agricultural 
classes, for instance non-irrigated (89%) and permanently irrigated 
(81%) agriculture, and natural classes, such as broad-leaved (78%) and 
coniferous (85%) forests. The classification accuracy for many of the 
artificial built-up classes is relatively low, ranging between 9% and 61%. 
The road/rail class performs the worst with an accuracy of 9%, likely 
due to the relatively large pixel resolution of ~ 250 m exceeding the 
general size patterns of this land cover type. 

Fig. 4 further shows that for the rarer classes, the precision is 
considerably higher than the accuracy. This indicates that the classifier 
is conservative when allocating the rarer classes. It also explains the 
classifier’s reduced ability to replicate individual artificial class pixels 
that are present in the reference land cover, but not the classified land 
cover shown in Fig. 3. 

The results produced by the classifier for 2015 were also compared to 
the Copernicus land cover data set of 2015 (Buchhorn et al., 2019). 
When compared with the Copernicus land cover data set, the over-all 
accuracy is 71% and the average precision is 77%, excluding the 
water bodies class. The classification accuracy is high for the agricul
tural (89%) and water bodies classes (99%), with a lower accuracy of 
69% for the forests class and 66% for the artificial class. The perfor
mance is worse for non/sparsely vegetated land cover, wetlands and 
shrubs and herbaceous vegetation (<32%), likely due to the discrep
ancies between the CORINE and Copernicus land cover maps for these 
classes. We provide further information and quantify the discrepancies 
between the CORINE and the Copernicus land cover data sets in section 
B2 in the SI. 

4.2. Land cover changes 

Determining the number of land cover classes to analyse is a trade-off 
between fidelity and accuracy. On the one hand, a useful portrayal of the 
ground cover diversity warrants a large number of classes. On the other 
hand, this reduces the accuracy of the produced land cover map, and 
makes the results more complex to analyse. As such, while we classify 39 
land cover types, we choose to aggregate these into the following 7 
classes for calculating the temporal trends: artificial (urban and built-up 
areas), agricultural, forests, shrubs and herbaceous vegetation, non- 
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vegetated areas and wetlands. The over-all classification accuracy for 
this level of class fidelity is 85%. As the area covered by water bodies is 
near-constant, it is not examined further. For the exact grouping of these 
classes, the reader is referred to section D in the SI. 

4.2.1. The land cover of the European continent 
Table 1 presents the distribution of the land cover classes for the 

European continent in 2001 and 2019. Overall, we find that the distri
bution of classes is imbalanced, and that absolute changes in land cover 
are minor over this time period (<40,000 km2). Specifically, we find the 
greatest relative increase (5.9%) in artificial land cover, in line with 
European urban sprawl figures (Hennig et al., 2015, 2016). Meanwhile 
the agricultural class decreased in size by 1.3%, and is the only class to 
show a decrease in surface area. The surface area occupied by more 
natural vegetation increased in size, albeit by less than 1%. The forested 
area increased by 0.9% and the shrubs and herbaceous vegetation class 
shows an increase of 0.5%. The non-vegetated class also increased in size 

by 0.13%. This is a minor change, but has previously been associated 
with the increase in global temperature (Martínez and Gilabert, 2009). 
The wetlands class increased in size by 5.0%, deviating from the nega
tive rate of change previously reported for Europe (Davidson, 2014). We 
note that a high relative increase in the wetlands class was found orig
inally due to the CORINE data set for the year 2000 not labelling the 
wetlands of northern Scotland, contrary to the data sets of 2006, 2012 
and 2018. To overcome this, the classification results of Great Britain for 
the years 2001–2003 were substituted for those obtained for 2004. 

The time series of these classes are shown in Fig. 5, along with the 
rates of change as determined by the Theil-Sen estimator, w.r.t. the size 
of the class itself. These time series show that, whilst only agricultural 
land cover decreased between 2001 and 2019 according to Table 1, the 
shrubs and herbaceous vegetation class also shows a negative trend 
(− 0.287%/year). The forest trend shows the opposite behaviour of the 
agricultural class (0.217%/year). This loss rate closely resembles the 
0.3%/year determined previously by the EEA (Büttner et al., 2019). The 

Fig. 3. Comparison between the (a) classified and the (b) reference land cover (CORINE) of the European domain in 2018. Pixels that are missing from the CORINE 
data are shown in white (water) and dark grey (land). Land outside of the domain is shown in light grey. 
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wetlands and artificial classes increased most rapidly in size (0.498 and 
0.763%/year respectively) and the latter’s increase is to be expected due 
to urban sprawl. Finally, the rate of change in non-vegetated land cover 
is near-zero (0.0165%/year). We note that the aggregated time series 
deviate from their respective trend lines, indicating that the intra-year 
variability is greater than the computed rates of change. 

4.2.2. The land cover of European nations 
We also characterise the land cover of the nations within the domain, 

along with changes in its distribution. The difference between the na
tional land cover distribution in 2001 and 2019, relative to class size, is 
presented in Fig. 6. It should be noted that these are snapshots in time, 
and as Fig. 5 shows are thus not necessarily representative of the overall 
temporal trend. Whilst the common agricultural and forests classes show 
only moderate levels of change (average absolute change <5%). For the 
rarer classes significant change is found (average absolute change 
15–45%). The obtained class distribution for the first year of the data set, 
2001, as well as the changes for each nation are given in section E in the 
SI. 

Nearly all countries within the domain show an increase in artificial 
land cover, with the greatest relative increase in south-eastern Europe 
(24%). These findings are in agreement with those reported by the Eu
ropean Environment Agency and the Federal Office for the Environment 
(Hennig et al., 2016). Furthermore, a high degree of urbanisation in 

many former Eastern Bloc countries has also been previously determined 
(Radeloff and Gutman, 2017), although Romania, Bulgaria and Belarus 
show a decrease. For the latter, it is important to note that the classifier 
did not always classify urban areas not covered by training data 
correctly. 

The agricultural class has changed less over the twenty year period, 
with small changes throughout the domain, with the exception of Russia 
and Latvia. Abandonment of farmland occurred in Eastern Europe after 
the dissolution of the Soviet Union, however the rate of recultivation in 
Eastern Europe is greater than the rate of abandonment (Estel et al., 
2015; Radeloff and Gutman, 2017). Nevertheless, a slight negative 
change is determined for some of the countries. They further state that 
farmland abandonment has occurred in the mountainous regions of 
Europe, which is confirmed by the Alpine countries, however not for 
Norway. 

Many of the north-western countries of Europe show increases in the 
area occupied by forests (5%), with the opposite in much of south- 
eastern Europe (− 3%). Previous studies report that that the logging 
industries of the Baltic countries and Romania grew to unsustainable 
levels, and a decrease in forest cover is found for Romania (− 2%) but not 
the Baltic countries (Radeloff and Gutman, 2017). In Portugal, a rela
tively large amount of forests was replaced with agriculture over the 
twenty year period, and the loss agrees with the numbers found by 
Hansen et al. (2013). 

On average, the area covered by the shrubs and herbaceous vege
tation types is near-constant around the Mediterranean (− 0.2%), 
although it should be noted that this change is not uniform. In Scandi
navia, there is a significant increase in Denmark (19%) and decrease in 
Finland (− 28%). In Finland, the shrubs and herbaceous vegetation was 
replaced by forests. 

Whilst few countries contain a non-neglible amount of non-vegetated 
land cover, the countries with the greatest proportion covered by 
mountains show a very slight increase (0.5%). Land degradation due to 
soil erosion has also been predicted for the Mediterranean and moun
tainous regions due to rainfall erosivity (Panagos et al., 2015). The 
Tabernas desert in south-eastern Spain slowly transformed into forests 
and grasslands in the early 2000’s according to the classifier and the 
CORINE land cover data, resulting in the large reduction in 
non-vegetated land cover in Spain. 

The British Isles contain the greatest proportion of wetlands. Ireland 

Fig. 4. The accuracy (red, bottom bar) and precision (blue, top bar) of the classifier for each class. Determined using the test data from 2000, 2006, 2012 and 2018.  

Table 1 
The distribution of land cover for the European continent in 2001 and 2019, 
including the relative change in class size as well as the absolute change in 
surface area between 2001 and 2019.   

Distribution 
2001 [%] 

Distribution 
2019 [%] 

ΔClass size 
[%] 
(2001–2019) 

Δ Surface 
area [km2] 
(2001–2019) 

Artificial 2.83 3.00 5.90 9536 
Agricultural 48.03 47.41 − 1.30 − 38,153 
Forests 36.21 36.54 0.91 17,428 
Shrubs & 

Herb. 
Vegetation 

8.17 8.21 0.50 1971 

Non- 
Vegetated 

3.14 3.14 0.13 93 

Wetlands 1.62 1.70 5.04 4652  
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shows a moderate decrease (− 8%) over the time period, whilst Great 
Britain shows an increase (11%). In northern Europe, the average 
change in wetlands is 2%, although not uniform in its sign. 

4.2.3. The land cover of European cities 
We also quantify the rates of change in land cover for the ten most 

populated cities within the domain covered by CORINE, using the Theil- 
Sen estimator. These are summarised in Table 2. The city domains are 
chosen such that they encompass the city and its surrounding regions, 
and vary drastically in size and land cover distribution. As such, only the 
rates of change relative to the size of the class itself are given in Table 2. 
The selected city domains are depicted in section F in the SI. Due to the 
different nature of these subsections of the domain, the artificial land 
cover is examined in more detail, resulting in the set of land cover classes 
listed in section D in the SI. While the accuracy of these classes is rela
tively low for the entire domain (30%–59%), it is higher for these sub
sets due to its commonality there. The shrubs and herbaceous 
vegetation, non-vegetated and wetlands classes are not included, as 
many of the assessed regions do not contain them in sufficient number. 

The area occupied by urban land cover (defined as the continuous 
and discontinuous urban fabric) decreased for the metropolitan areas of 
London, Madrid, Vienna and Hamburg (average of − 0.33%/year). The 

same cities are the only ones that show an increase in agricultural land 
cover over this time period (average of 0.20%/year), and all apart from 
London show an increase in forested area (average of 0.40%/year). We 
note that here we quantify other urban aspects in separate classes. For 
example, we find the land covered by industrial, commercial and 
transportation areas has increased for all cities apart from Vienna 
(− 0.38%), and the average rate of increase is 1.5%. Of the classes 
considered here, the mine, dump and construction sites class is the 
rarest, and only Istanbul contains more than 0.5% of this land cover 
type. Finally, the artificially vegetated area, containing amongst other 
aspects parks, shows an increasing rate for all cities apart from Hamburg 
and London, with an average rate of change of 2.22%/year for the 
remaining cities. Finally, we note this land cover analysis does not 
reflect increases in urban density. 

5. Discussion and conclusions 

The type of land cover and how it evolves over time, driven by 
anthropogenic, natural and other processes, has implications for the 
local and wider environment, as well as the way it is managed. In 
addition, land cover change provides a good metric for measuring and 
monitoring pressures on ecosystems and biodiversity (OECD, 2018). As 

Fig. 5. Time series of the (a) artificial, (b) agricultural, (c) non-vegetated, (d) shrubs & herbaceous vegetation, (e) non-vegetated and (f) wetlands class distributions 
(blue), along with the computed rates of change (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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a result, determining land cover annually over a large geographical area 
can grant insight into when and how land cover is altered and any 
existing spatial patterns. 

In this work we produce and analyse the annual European land cover 
between 2001 and 2019, both for the entire continent and on a national 
as well as metropolitan level, on a ~ 250 m × ~ 250 m resolution. Our 
work indicates that the production of NDVI-derived annual land cover 
classification of large spatial domains with a high class fidelity is 
possible. We find good agreement between the generated land cover and 

reference data, with a total classification accuracy of 75% and precision 
of 76%. Critical to the ability to produce a continent-spanning land 
cover classifier is the sweeping segmentation, in which smaller over
lapping segments of the continent-wide data (60 × 60 pixels) are clas
sified at a time. However the classification performance varies between 
the 39 land cover types classified, with rarer classes (e.g. artificial) 
performing worse than more common ones (e.g. agricultural). This may 
be driven by the aforementioned rarity of these classes in the training 
set, but it could also be driven by the inherent suitability of NDVI 

Fig. 6. Relative change in land cover with respect to the number of samples within the class itself, between 2001 and 2019. Countries where the class covers less than 
0.5% of the land are shown in grey. The change is shown for the (a) artificial, (b) agricultural, (c) forests, (d) shrubs and herbaceous vegetation, (e) non-vegetated 
and (f) wetlands classes. 
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towards medium-highly vegetated areas (da Silva et al., 2020). While 
some of the individual classes exhibit similar NDVI behaviour, the use of 
segmentation enhances the inter-class separability. A smaller segment 
size could further increase the classification accuracy of rarer classes (e. 
g. artificial), at the expense of classification bias and spatial continuity. 
Overall, we find that the classification performance was most sensitive 
to changes in the segment size, with a lower sensitivity for the size and 
number of the used classification trees, and oversampling ratio. 

Our results are in part limited by the reference land cover data set 
that the supervised classification algorithm is trained on. We note that 
an absolutely true reference land cover data set does not exist, and while 
the CORINE land cover database reports a total classification accuracy of 
85%, errors or inconsistencies in the CORINE land cover labels result in 
reduced training data quality and subsequently reduced classification 
performance. For the classification performance assessment, we also 
compare our classification results with the Copernicus land cover map 
for 2015 and find a total classification accuracy of 71%. Our classified 
land cover resembles the Copernicus land cover map more closely than 
CORINE for the agricultural, forests and water bodies classes, but is less 
accurate for the artificial and wetlands classes. 

Over the assessed time period we find that the artificial land cover 
class exhibits the highest growth rate, followed by the wetlands and 
forest classes. The agricultural, and the shrubs and herbaceous vegeta
tion classes show an opposite trend. The non-vegetated area has 
remained roughly constant over the time period. These results could in 
future work be analysed to quantify the ‘conversions’ between the land 
cover classes, assessing the main conversion pathways between losses 
and gains in land cover for specific classes. In addition, we find that 
these land cover class changes are heterogeneous over the domain. 
While environmental management is often focused on a local scale, its 
implications can have wider impacts for which uniform data sets of a 
larger spatial domain are needed. 

We also find that the land cover time series fluctuate over the 
nineteen year period. This highlights the importance of quantifying 
trends in land cover change over time, as opposed to differences be
tween specific years. In addition, this indicates the need for fine tem
poral granularity of land cover data sets (such as the ones produced in 
this work) for monitoring and understanding the impacts of environ
mental management and other interventions. Finally we note, that while 
annual results are produced, and despite the temporal smoothing of the 
classification results, some temporal class inconsistencies still remain in 
the produced data set. 

At the metropolitan level, we find mostly increasing trends for the 
urban class and the industrial, commercial and transportation related 
land cover, in line with increasing urbanisation. We also find increasing 
trends for the artificial vegetated class, possibly indicating the results of 
efforts to ‘green’ urban space. Nevertheless, decreases in urban land 
cover were predicted for four metropolitan areas. This is likely a result of 
underestimation by the classifier, rather than indicative of decreases in 
urban size. Furthermore, the used classification method is only able to 
detect changes in area, and is thus not well suited to capture other 

changes in land cover, such as urban intensification (Hennig et al., 
2016). 

We expect that the ~ 250 m × ~ 250 m spatial resolution of our 
results make them less relevant for smaller spatial domains, and as such, 
the metropolitan results presented are likely to be the most sensitive to 
this. This is additionally because of the relatively low accuracy of the 
higher fidelity artificial classes (9%–61%), although it should be noted 
that the accuracies of these classes are higher for these metropolitan 
areas than the domain as a whole. We further note that we are able to 
capture small changes in land cover (e.g. the construction of new 
airports). 

Improvements in the accuracy of the annual classification results are 
expected if finer resolution data are used, and if the NDVI and growing 
season metrics are determined using time series decomposed into trend 
and seasonal components. The accuracy of the land cover data set can be 
further improved by using multiple sources of data (e.g. multiple spec
tral indices (Inglada et al., 2017)). Finally, while we consider the 
computational cost of the classification to be reasonable (~ 1000 
CPU-hours per classified year), the majority of this cost is attributed to 
the second layer of majority voting (sweeping segmenting). We note that 
the ten iterations used here can be considered conservative and a lower 
number of iterations can be selected, which would reduce the compu
tational cost. 

Our results and accompanying data sets can aide further studies that 
assess the impact of environmental management interventions on land 
cover change, or, vise versa, determine the implications of land cover 
change on water, agriculture, forestry and other management efforts. 
With the continuous availability of large scale NDVI data, the approach 
presented in this article shows promise for the creation of ‘near-real- 
year’ annual land cover results, eliminating the current lag in the 
availability of large scale land cover data sets. This could further 
contribute to the monitoring of land cover change and associated in
terventions, supporting efforts to measure progress towards UN’s Sus
tainable Development Goals and other targets (OECD, 2018). Finally, 
while the European domain has been analysed here, this approach could 
be expanded to any domain. A suitable reference land cover database is 
needed, but the classification method has shown that the reference data 
set does not need to be cover the full time span or spatial domain. 
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The produced annual land cover products are provided in DOI: htt 
ps://doi.org/10.4121/14478171. The code is available at DOI: htt 
ps://doi.org/10.4121/16571516. 

Table 2 
The relative rates of change of the land cover types between 2001 and 2019 for the ten most populated cities within the domain, listed alphabetically.  

City Urban 
[%/yr]  

Ind., Comm. & 
Transportation [%/yr]  

Mine, Dump & 
Construction [%/yr]  

Artificial 
Vegetated [%/yr]  

Agricultural 
[%/yr]  

Forests 
[%/yr]  

Berlin 0.21 1.86 − 3.30 2.97 − 0.52 0.20 
Bucharest 0.62 3.90 – 4.87 − 0.72 0.42 
Hamburg − 0.56 0.91 1.23 3.67 0.06 0.63 
Istanbul 0.43 4.09 2.07 0.26 − 0.35 − 0.21 
London − 0.32 0.77 − 1.66 2.60 0.20 − 1.41 
Madrid − 0.19 1.28 − 2.10 0.82 0.26 0.57 
Paris 0.71 0.13 − 3.59 1.79 − 0.32 0.26 
Rome 0.24 1.37 − 5.58 − 0.64 − 0.11 − 0.16 
Vienna − 0.26 − 0.38 2.38 0.81 0.27 0.01 
Warsaw 0.66 1.17 0.00 − 3.30 − 0.82 − 0.20  
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