

Delft University of Technology

Deep Reinforcement Learning Versus Evolution Strategies
A Comparative Survey
Majid, Amjad Yousef ; Saaybi, Serge ; Francois-Lavet, Vincent ; Venkatesha Prasad, Ranga; Verhoeven,
Chris
DOI
10.1109/TNNLS.2023.3264540
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Neural Networks and Learning Systems

Citation (APA)
Majid, A. Y., Saaybi, S., Francois-Lavet, V., Venkatesha Prasad, R., & Verhoeven, C. (2024). Deep
Reinforcement Learning Versus Evolution Strategies: A Comparative Survey. IEEE Transactions on Neural
Networks and Learning Systems, 35(9), 11939-11957. https://doi.org/10.1109/TNNLS.2023.3264540

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNNLS.2023.3264540
https://doi.org/10.1109/TNNLS.2023.3264540

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024 11939

Deep Reinforcement Learning Versus Evolution
Strategies: A Comparative Survey

Amjad Yousef Majid , Serge Saaybi, Vincent Francois-Lavet, R. Venkatesha Prasad ,
and Chris Verhoeven , Member, IEEE

Abstract— Deep reinforcement learning (DRL) and evolution
strategies (ESs) have surpassed human-level control in many
sequential decision-making problems, yet many open challenges
still exist. To get insights into the strengths and weaknesses
of DRL versus ESs, an analysis of their respective capabilities
and limitations is provided. After presenting their fundamental
concepts and algorithms, a comparison is provided on key
aspects, such as scalability, exploration, adaptation to dynamic
environments, and multiagent learning. Current research chal-
lenges are also discussed, including sample efficiency, exploration
versus exploitation, dealing with sparse rewards, and learning to
plan. Then, the benefits of hybrid algorithms that combine DRL
and ESs are highlighted.

Index Terms— Deep reinforcement learning (DRL), evolu-
tion strategies (ESs), exploration, meta-learning, multiagent,
parallelism.

I. INTRODUCTION

IN THE biological world, the intellectual capabilities of
humans and animals have developed through a combination

of evolution and learning. On the one hand, evolution has
allowed living beings to improve genetically over succes-
sive generations such that higher forms of intelligence have
appeared, on the other hand, adapting rapidly to new situations
is possible due to the learning capability of animals and
humans.

In the aim of developing artificial (general) intelligence,
these two phenomena have motivated the development of dis-
tinct approaches that could both play an important role in the
quest for intelligent machines. From the learning perspective,
reinforcement learning (RL) shows many parallels with how
humans and animals can deal with new unknown sequential
decision-making tasks. Meanwhile, evolution strategies (ESs)

Manuscript received 13 October 2021; revised 5 August 2022 and
2 January 2023; accepted 25 March 2023. Date of publication 2 May 2023;
date of current version 4 September 2024. This work was supported in part
by Cognizant Technology Solutions through the Internet of Swarms Project
and in part by Rijksdienst voor Ondernemend Nederland under PPS O&I.
(Corresponding author: Amjad Yousef Majid.)

Amjad Yousef Majid and Chris Verhoeven are with the Depart-
ment of Microelectronics, Delft University of Technology, 2628 Delft,
The Netherlands (e-mail: a.y.majid@tudelft.nl; c.j.m.verhoeven@tudelft.nl).

Serge Saaybi and R. Venkatesha Prasad are with the Department of
Software Technology, Delft University of Technology, 2628 Delft, The
Netherlands (e-mail: s.c.e.saaybi@student.tudelft.nl; r.r.venkateshaprasad@
tudelft.nl).

Vincent Francois-Lavet is with the Department of Computer Science,
Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands (e-mail:
vincent.francoislavet@vu.nl).

Digital Object Identifier 10.1109/TNNLS.2023.3264540

Fig. 1. Structure of the survey.

are engineering methods inspired by the mechanism that
let intelligence emerge in the biological world—repeatedly
selecting the best-performing individuals.

The RL framework is formalized as an agent acting on
an environment with the goal of maximizing a cumulative
reward that the agent obtains from the environment [1], [2].
To highlight the main elements of this framework, let us
consider the following example. Imagine playing a table tennis
game (environment) with a robot (agent). The robot has not
explicitly been programmed to play the game but it can instead
observe the position of all the key objects, such as the ball
(environment state), and has also access to the score of the
game (reward). The robot’s goal is to maximize its score. For
that, it tries different techniques of hitting the ball (through
a sequence of actions), observes the outcome, and gradually
enhances its playing strategy (policy). The main limitation of
classical RL algorithms is the difficulty of generalizing to new
slightly different situations (e.g., images with slightly different
lighting conditions). To tackle such data, RL algorithms are
nowadays often combined with deep neural networks (DNNs),
giving rise to a whole new field of research known as deep
RL (DRL) that can automatically learn from high-dimensional
observations [3].

Instead of improving one candidate solution, ESs consider
a population of solutions. They iteratively generate candidate
solutions, evaluate them, and bias the search toward the
best-scoring ones [4]. The advantage of this approach is its
simplicity and minimum requirements on the optimization
side. The disadvantage is its high computational demand and
the difficulty of learning from high-dimensional data.

The parallel development of DRL and ESs indicates that
each has its advantages (and disadvantages), depending on the
problem setup. To enable scientists and researchers to choose
the best algorithm for the problem at hand, we summarized
the pros and cons of these approaches through the develop-
ment of a comparative survey: we compared DRL and ESs
from different learning aspects such as scalability, exploration,

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8225-6410
https://orcid.org/0000-0001-7443-7641
https://orcid.org/0000-0002-0106-8117

11940 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 2. Iteration loops of (Deep) RL and evolutionary strategies. (a) RL. (b) DRL. (c) ESs.

and the ability to learn in dynamic environments (Fig. 1).
Additionally, we discuss how combining DRL and ESs
in hybrid systems can leverage the advantages of both
approaches.

To date, there have been different papers reviewing some
aspects of DRL and ESs. For example, derivative-free RL and
ESs are reviewed in [5], covering aspects, such as scalability
and exploration, and systems that hybridize DRL and ESs
are surveyed in [6]. However, different from prior work, this
article surveys the literature with a bird’s-eye view, focusing
on the main developmental directions instead of individual
algorithms.

The rest of this survey is organized as follows: Section II
presents the fundamental architectural concepts and algorithms
behind RL and ESs; Sections III-A–III-D compare the capa-
bilities of DRL and ESs; and in Section IV, hybrid systems,
which combine DRL and ESs, are presented. Section V out-
lines open challenges and potential research directions. Finally,
we conclude this survey in Section VI. The main takeaways
of each section are summarized in a concise subsection titled
“observations.”

II. FUNDAMENTALS

Here, we cover the fundamentals of DRL and ESs,
including formal definitions and the main algorithmic fami-
lies. In addition, non-Markovian and multiagent settings are
introduced.

A. Reinforcement Learning

RL is a computational approach to understanding and
automating goal-directed learning and decision-making [1].
The goal of an RL agent is to maximize the total reward it
receives over a trajectory of interaction with the environment
[Fig. 2(a)]. Generally, this interaction is modeled as a Markov
decision process (MDP). An MDP is defined by the tuple
⟨S,A, T, R, ρ0⟩, where S denotes the state space, A is the
action space, T (s, a, s ′) is a transition function that defines the
probability of transitioning from the current state s to the next
state s ′ after an agent takes action a, R(s, a, s ′) is the reward
function that defines the immediate reward r that the agent
observes after taking action a and the environment transition
from s to s ′, and ρ0 is the starting state distribution. The
accumulation of the rewards r starting from time t until the end
of the interaction is referred to as the return. Mathematically,
the return is expressed as

G t =

∞∑
k=0

γ k Rt+k+1

where Rt is a random variable that models the rewards r and
γ ∈ (0, 1] is a discount factor that weights the immediate and
future rewards. It also prevents G t from approaching infinity
when the agent-environment interaction has no terminating
state.

The state-value function vπ (s) gives the expected return of
being in state s and following policy π

vπ (s) =
∑

a

π(a|s)
∑
s ′,r

p(s ′, r |s, a)[r + γ vπ (s ′)]. (1)

The action-value function (or Q-function) qπ (s, a) yields the
expected return of taking action a in state s and following
policy π thereafter

qπ (s, a) =
∑
s ′,r

p(s ′, r |s, a)

[
r + γ

∑
a′

π(a′|s ′)qπ (s ′, a′)

]
.

(2)

Value-based RL refers to a family of RL algorithms that
optimize value functions and use them to select the most
rewarding actions. Examples of such algorithms are state-
action-reward-state-action (SARSA) [7] and Q-learning [1].
In the classical RL settings, these algorithms represent the
value functions as tables which make them unsuitable for
problems with large state and/or action spaces. To overcome
this limitation DRL uses DNNs to find low-dimensional repre-
sentations of large state spaces [Fig. 2(b)] [3]. Therefore, algo-
rithms like deep SARSA [8] and deep Q-network (DQN) [9]
can learn directly from high-dimensional data, such as images.

Instead of optimizing a value function to select opti-
mal actions, policy-based RL algorithms optimize the policy
directly. A policy, in the most general form, is a function that
outputs a probability distribution over the action space given
a state, π(a|s). An optimal policy, π∗(a|s), is the one that
yields the maximum return from any state. Policy gradient
algorithms [10] represent the workhorse of policy-based RL.
Compared with value-based algorithms policy-based ones are
better suited for learning stochastic policies and for dealing
with high-dimensional or continuous action spaces. However,
naive policy-based algorithms have high variance in estimating
the gradient and are sample inefficient.

The idea of learning a policy and value function to reduce
the variance and speed up learning has led to the emer-
gence of the actor–critic algorithms [1]. The actor refers to
a parameterized DNN that acts as a policy, and the critic
refers to a DNN that estimates the value of the taken action
(the Q value). Examples of actor–critic algorithms include
advantage actor–critic (A2C) [11], asynchronous advantage

MAJID et al.: DEEP REINFORCEMENT LEARNING VERSUS EVOLUTION STRATEGIES: A COMPARATIVE SURVEY 11941

actor–critic (A3C) [12], and deep deterministic policy gradient
(DDPG) [13].

In addition to learning a value function and/or policy,
an algorithm may also learn a model of the environment.
Thanks to the model, an RL agent can predict the outcome
of future interactions, and thereby, substantially improves its
sampling efficiency. Dyna-Q [14] is a classical model-based
RL algorithm.

1) SARSA: is a model-free RL algorithm that optimizes the
state-action values (Q values) to select (near) optimal actions.
It updates the Q values using

Q(s, a)← Q(s, a)+ α
[
r + γ Q(s ′, a′)− Q(s, a)

]
(3)

where α is the learning rate. This update rule shows that
SARSA is a temporal difference (TD) learning method. That
is, it updates a Q value by bootstrapping from the current
Q value estimate. To select an action, SARSA uses a policy
that relies on the Q values, such as the ε-greedy algorithm.
ε-greedy selection chooses an action with the maximum
Q value with a probability of 1−ε, and otherwise, an action is
selected uniformly from A. SARSA is an on-policy algorithm
because its behavior policy, i.e., the policy that causes the
environment to transition, is also the one estimated by the
Q values.

Q-learning [1] is similar to SARSA, but it is an off-policy
algorithm, which means that its behavior and target policies are
different. In particular, the Q-learning’s update rule selects the
action from the next state with the maximum Q value which
is not necessarily the one chosen by ε-greedy as in SARSA.
The update rule of Q-learning is

Q(s, a)← Q(s, a)+ α
[
r + γ max

a
Q(s ′, a′)− Q(s, a)

]
. (4)

Off-policy algorithms are more data efficient than on-policy
ones because they can reuse old data repeatedly.

DQN [15] combines Q-learning with a convolutional neural
network (CNN) to act in environments with high-dimensional
input spaces (e.g., images of Atari games). The CNN gets
a state (e.g., a mini-batch of images) as input and produces
Q values of all possible actions. Then, an ε-greedy algorithm
is used to select an action. Using a DNN to approximate an
optimal value function causes the DRL agent to be unsta-
ble [15]. DQN does two things to improve the stability of
the agent: first, it samples from an experience replay buffer
(i.e., a buffer of D = {(s, a, r, s ′), (s ′, a′, r ′, s ′′), . . . }) to
reduce the correlation in the training data [16], and second,
it uses a target network (a second DNN) that is updated only
after a certain number of iterations to further stabilize learn-
ing. To optimize the DNN parameters, DQN uses stochastic
gradient descent with the following loss function:

L i (θi) = E(s,a,r,s ′)∼U (D)

×

[(
r + γ max

a′
Q(s ′, a′;θθθ i)− Q(s, a;θθθ i)

)2]
(5)

where θi and θi are the parameters of the Q-network and
target network, respectively; and the experiences, (s, a, r, s ′),
are drawn from D uniformly.

REINFORCE [17] is a stochastic gradient-based algorithm
that directly optimizes a parameterized policy, π(a|s, θθθ). Such
a policy can be represented by a neural network where
the policy’s parameters are the network weights. Thanks to
the gradient policy theorem, we can ensure changing the
weights (and thereby the policy) in the direction that leads
to performance improvement [1]. For episodic REINFORCE,
the performance can be defined as the value of the starting
state. In the continuing settings, the average rate of reward
per time step is the preferred performance metric. The episodic
REINFORCE uses stochastic gradient ascent (SGA) and the
following rule:

θθθ ← θθθ + γ tαG∇ ln π(a|s, θθθ)

to update the policy parameters, where α is a scalar that
controls the updating rate. Although this update rule converges
to a local minimum, it has high variance as it relies on
an empirical return estimate. Consequently, this version of
REINFORCE learns slowly. One simple but effective idea to
reduce the variance is to subtract the return of a trajectory
from a baseline. To reduce the variance and thereby speed up
learning the return is subtracted from a baseline (b(s)), which
results in the REINFORCE-with-baseline update rule

θθθ ← θθθ + αγ t (G − b(s))∇ ln π(a|s, θθθ).

Some of the used baselines include the average of return
values and the state-value function [11], [17]. If the state-value
function estimate is learned in a temporal-difference (TD)
manner, then the algorithm becomes known as actor–critic in
the literature.

Dyna-Q [1], [14] uses experiences of interaction between
an agent and environment to learn a model of the envi-
ronment’s dynamics. Then, to improve its Q value esti-
mates, it mixes simulated experiences produced by the learned
model and actual experiences collected from interaction with
the environments. Its update rule is similar to that of the
Q-learning algorithm. Interacting with an environment’s
model called planning. Planning can speed up learning sig-
nificantly, but learning an accurate model can be challenging.

B. Evolution Strategies

ESs are set of a population-based black-box optimization
algorithms often applied to continuous search spaces problems
to find the optimal solutions [18], [19]. ESs do not require
modeling the problem as an MDP, and neither does the objec-
tive function f (xxx) have to be differentiable and continuous.
The latter explains why ESs are gradient-free optimization
techniques. They do, however, require the objective function
f (xxx) to be able to assign a fitness value to (i.e., to evaluate)
each input xxx ∈ Rn such that f : Rn

→ R, xxx → f (xxx).
The basic idea behind ESs is to bias the sampling process

of candidate solutions toward the best individuals found so far
until a satisfactory solution is found. Samples can be drawn,
for instance, from a (multivariate) normal distribution whose
shape is described by what is called strategic parameters,
i.e., the mean m and the standard deviation σ . These can be
modified online to make the search process more efficient.

11942 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

The generic ESs process is shown in Fig. 2(c) and its elements
are explained in the following.

1) Initialization: The algorithm generates an initial popu-
lation P consisting of µ individuals.

2) Parent Selection: A subset of the population is selected
to function as parents during the recombination step.

3) Reproduction: It consists of two steps.
a) Recombination: Two or more parents are combined

to produce a mean for the new generation.
b) Mutation: A small amount of noise—usually nor-

mally distributed—is added to the recombination
results

xxxg+1
k ∼ N (mmm(g), σ (g) I) = mmm(g)

+ σ (g)N (0, I)

where g is the generation index, k is the number
of offsprings, and I is the identity matrix.

4) Evaluation: A fitness value is assigned to each candidate
solution using the objective function f (xi).

5) Survivor Selection: The best µ individuals are selected
to form the population for the next generation. Generally,
the algorithm iterates from step 2 to step 5 until a
satisfactory solution is found.

Employing ESs as an alternative to RL is not new [20], [21],
[22], [23]. However, recent advances in computing power and
parallelization have reignited the interest in ESs [24], [25].

1) Fundamental Algorithms: The (1 + 1)-ES (one parent,
one offspring) is the simplest ES conceived by Rechen-
berg [26]. First, a parent candidate solution, xp, is drawn
according to a uniform random distribution from an initial set
of solutions, {xi , x j }. The selected parent, xp, together with
its fitness values enter the evolution loop. In each generation
(or iteration), an offspring candidate solution, xo, is created
by adding a vector drawn from an uncorrelated multivariate
normal distribution to xp as follows:

xo = xp + yσ, y ∼ N (0, I).

If the offspring xo is found to be fitter than the parent xp, then
it becomes the new parent for the next generation; otherwise,
it is discarded. This process is repeated until a termination
condition is met. The amount of mutation (or perturbation)
added to xp is controlled by the stepsize parameter σ . The
value of σ is updated every predefined number of iterations
according to the well-known (1/5th) success rule [27], [28]:
if xo is fitter than xp (1/5th) of the times, then σ should stay
the same; if xo is fitter more than (1/5th) of the times, then
σ should be increased, and otherwise, it should be decreased.

The (µ/ρ+,λ)-ES was originally proposed by Schwefel [29]
as an extension to the (1 + 1)-ES. Instead of using one
parent to generate one offspring, it uses µ parents to generate
λ offsprings using both recombination and mutation. In the
comma-variation of this algorithm [i.e., (µ/ρ,λ)-ES], the
selection of the parents happens solely from the offsprings;
whereas in the plus-variation, the selection of the parents for
the next generation happens from the union of the offsprings
and old parents. ρ refers to the number of parents used to
generate each offspring.

An element (or an individual) that the (µ/ρ+,λ)-ES evolves
consists of (x, s, f), where x is the candidate solution, s are

the strategy parameters that control the significance of the
mutation, and f holds the fitness value of x. Consequently, the
evolution process itself tunes the strategy parameters, which is
known as self-adaptation. Thus, unlike (1 + 1)-ES, (µ/ρ+,λ)
do not need external control settings to adjust the strategy
parameters.

Covariance Matrix Adaptation ESs (CMA-ESs) is one of the
most popular gradient-free optimization algorithms [30], [31],
[32], [33]. To search a solution space, it samples a population,
λ, of new search points (offsprings) from a multivariate normal
distribution

xxxg+1
i = mmm(g)

+ σ (g)N (000,CCC (g)), for i = 1, . . . , λ

where g is the generation number (i.e., g = 1, 2, 3, . . .),
xxx i ∈ Rn is the i th offspring, mmm and σ denote the mean and
standard deviation of xxx , CCC represents the covariance matrix,
and N (000,CCC) is a multivariate normal distribution. To compute
the mean for the next generation, mmmg+1, CMA-ES computes
a weighted average of the best—according to their fitness
values—µ candidate solutions, where µ < λ represents the
parent population size. Through this selection and the assigned
weights, CMA-ES biases the computed mean toward the best
candidate solutions of the current population. It automati-
cally adapts the stepsize σ (the mutation strength) using the
cumulative stepsize adaption (CSA) algorithm [30] and an
evolution path, pppσ : if pppσ is longer than the expected length
of the evolution path under random selection E||N (000, III)||,
then increase the stepsize; otherwise, decrease it. To direct
the search toward promising directions, CMA-ES updates the
covariance matrix in each iteration. The update consists of
two main parts: 1) rank-1 update, which computes an evolution
path for the mutation distribution means, similar to the stepsize
evolution path and 2) rank-µ update, which computes a
covariance matrix as a weighted sum of covariances of the best
µ individuals. The obtained results from these steps are used
to update the covariance matrix CCC itself. The algorithm iterates
until a satisfactory solution is found (we refer the interested
reader to [33] for a more detailed explanation).

Natural Evolution Strategies: NESs are a family of
black-box optimization algorithms that use the natural gradient
to update the search distribution in the direction of the highest
fitness [34]. Relying on natural gradient—instead of plain
gradient—makes NES resistant to premature convergence,
oscillations, and unwanted side effects of a particular param-
eterization. NES main steps are as follows.

1) Sampling: NES samples its individuals from a probabil-
ity (Gaussian) distribution over the search space. Its goal
is to update the distribution parameters θθθ to maximize
the average fitness f (xxx) of the sampled individuals xxx .

2) Search Gradient Estimation: NES estimates a search
gradient on the parameters by evaluating the samples
previously computed. It then decides on the best direc-
tion to take to achieve a higher expected fitness.

3) Gradient Ascent: NES computes gradient ascent along
the estimated gradient.

4) Back to 1) unless a stopping criterion is met [34].

MAJID et al.: DEEP REINFORCEMENT LEARNING VERSUS EVOLUTION STRATEGIES: A COMPARATIVE SURVEY 11943

Fig. 3. Multiagent RL overview [46].

C. Non-Markovian Settings

The Markov property denotes the situation where the future
states of a process depend only on the current state and
not on events or states from the past. In many real-world
applications, agents can only partially observe the state of
their environments. This means agents need to take into
account the history of observations—actions and rewards—to
produce a better estimation of the underlying hidden state [35],
[36], [37]. These problems are usually modeled as a partially
observable MDP (POMDP). Researchers have addressed the
POMDP problem setup through the proposal of many RL
models [38] and ESs [39]. For example, Hausknecht and
Stone [40], Igel [41] employed a neural network with a
recurrent architecture to consider past observations.

Another common scenario where an agent does not have
perfect information is when it faces a distribution of environ-
ments. This setting is known as Meta-RL. The objective of
meta-RL is to learn a policy that can be quickly generalized
across a distribution of tasks or environments. Generally,
a meta-learner achieves this through a two stages optimization
process: first, a meta-policy is trained on a distribution of
tasks to learn their common dynamics; then, the meta-learner
tailors the learned meta-policy to a particular task through
the interaction with the given environment [42]. Examples of
meta-RL tasks include: solving different mazes [43], dealing
with component failures [44], or driving different cars [45].

D. Multiagent Learning

A multiagent system (MAS) refers to multiple cooperating
or competing agents working toward maximizing their own
objectives in a shared environment [47]. Since the environment
and reward are affected by the joint actions of all agents, the
single-agent MDP model cannot be directly applied to MAS
settings (Fig. 3). The Markov games (MGs) [48] framework
comes as a generalization of the MDP that captures the
entanglement of the multiple agents. MG defines two distinct
types of games: cooperative and competitive.

In a cooperative game agents seek to maximize a common
reward signal by taking actions that favor their outcome while
taking into account their effects on others. Most contemporary
applications are based upon a cooperative setup. Examples
include traffic signal control [49], [50], robot path finding [51],
[52], and air traffic control [53]. On the other hand, agents
in a competitive game receive different rewards based on the
overall outcome of the joint actions. In this setup, certain

actions might be beneficial to one set of agents while being
disadvantageous to others.

Another important aspect of an MAS is the centralized
or decentralized control approach. In a centralized control,
a single-entity governs the decisions of all agents based on
all available joint actions, rewards, and observations [54].
While this approach enables optimal decisions, it quickly
becomes computationally intractable as the number of agents
grows [55]. In decentralized settings, agents make decisions
independently, based on local information. Decentralized sys-
tems can be subdivided into two categories: “decentralized
networked agents,” and “fully decentralized agents” [56].
In the former, the agents communicate with each other to
optimize their actions. In the latter, agents make independent
decisions without information exchange. While this means
that no explicit messages can be sent, it is still possible to
influence other agents by affecting their reward [51]. While
the decentralized approach is more scalability and robustness,
it increases the complexity of the system significantly.

E. Observations

Our main takeaways from this section are as follows.
1) An ES algorithm is a black-box optimization method

that keeps a pool of multiple candidate solutions, while
an RL method generally has a single agent that improves
its policy by interacting with its environment.

2) RL can naturally be combined with deep learning
and gradient descent techniques (with backpropagation),
which is key for sample efficiency (i.e., generalization).

3) Value-based RL methods usually operate in discrete
action spaces, while the actor–critic architecture extends
this ability to continuous action spaces. ESs can operate
on discrete or continuous action spaces by default.

4) Both ESs and on-policy RL algorithms are data inef-
ficient: on-policy algorithms make use of data that are
generated from the current policy and discard older data
and ESs discard all but a subset of candidate solutions
in each iteration.

5) Value-based off-policy DRL algorithms, such as DQN,
can be data efficient because they can work with a
replay memory that allows the reuse of off-policy data.
However, they can become unstable for long horizons
and high discount factors [57].

6) In multiagent settings, both centralized and decentralized
MASs have their pros and cons. A semicentralized
MAS may surpass both. Learning in such settings is
a promising research direction.

III. DEEP REINFORCEMENT LEARNING VERSUS
EVOLUTION STRATEGIES

This section compares different aspects of DRL and ESs,
such as their ability to parallelize computations, explore envi-
ronments, and learn in multiagent and dynamic settings.

A. Parallelism

Despite the success of DRL and ESs, they are still
computationally intensive approaches to tackling sequential

11944 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 4. Parallel DRL algorithms architectures. (a) Gorila [58]. (b) A3C [12]. (c) Batched A2C [11]. (d) Ape-X [59]. (e) IMPALA [60]. (f) SEED [61].

decision-making problems. Parallel execution is, thus,
an important approach to speed up the computation [58].

1) Parallelism in Deep Reinforcement Learning: In parallel-
DRL, many agents (or actors) run in parallel to accelerate
the learning process. Each actor gathers its own learning
experiences. These experiences are, then, shared to optimize
a global network (Fig. 4) [62], [63]. The rest of this section
presents important parallel-DRL algorithms.

Gorila [58] is a large-scale distributed DRL architecture.
It can be thought of as distributed DQN with four major
components: actors, learners, a parameter server, and a replay
memory [Fig. 4(a)]. The actors interact with multiple envi-
ronment instantiations in parallel and store their experiences
(i.e., a set of {s, a, r, s ′}) in the replay memory. Each actor
has its own policy (e.g., ε-greedy), and therefore, they gener-
ate different trajectories of experiences. Consequently, Gorila
explores environments better than DQN, and therefore, it has
a better overall performance. Learners sample the experience
replay memory, compute gradients, and send them to the
parameter server. The parameter server updates its parameters
according to the received gradients and then synchronizes
the learning process by updating the actors’ and learners’
Q-networks.

a) A3C and GA3C: While using a replay buffer helps in
stabilizing the learning process, it requires additional mem-
ory, adds computational overhead, and can only be used
with off-policy algorithms. Motivated by these limitations,
Mnih et al. [12] introduced the A3C as an alternative to
Gorila. A3C consists of a global network and multiple workers
(or agents) interacting with independent instances of an envi-
ronment [Fig. 4(b)]. The agents are implemented as CPU
threads within a single machine, which reduces the commu-
nication cost imposed by distributed systems, such as Gorila.
Each agent generates a trajectory of experiences and calculates
its gradient. These gradients are sent to the global network to
update its parameters. Then, the workers obtain a copy of the

global network parameters to update theirs. This asynchronous
way of learning diversifies and decorrelates data updates,
which stabilizes the learning process. GA3C [64] makes use of
GPUs and shows better scalability and performance than A3C.

b) Batched A2C and DPPO: A downside of A3C is
that asynchronous updates may lead to suboptimal collective
updates to the global network. To overcome this, batched
advantage actor–critic (batched A2C) employs a master node
to synchronize the update process of the global network [11].
Furthermore, batched A2C architecture maintains the advan-
tages of both Gorila and A3C. Similar to Gorila, batched A2C
runs on GPUs and the number of actors is highly scalable
while still running on a single-machine akin to A3C and
GA3C [64]. At each step, batched A2C samples from the
policy and generates a batch of actions for nw workers on ne

environment instances [Fig. 4(c)]. The resulting experiences
are then stored and used by the master to update the policy
(global network). The batched approach allows for easy par-
allelization by synchronously updating a unique copy of the
parameters, with the drawback of higher communication costs.
Distributed proximal policy optimization (DPPO) [65] features
architecture similar to that of A2C but uses the PPO [66]
algorithm for learning.

c) Ape-X and R2D2: Ape-X [59] extends the prioritized
experience buffer to the parallel-DRL settings and shows that
this approach is highly scalable. The Ape-X architecture con-
sists of many actors, a single learner, and a prioritized replay
buffer [Fig. 4(d)]. Each actor interacts with its instance of the
environment, gathers data, and computes its initial priorities.
The generated experiences are stored in a shared prioritized
buffer. The learner samples the buffer to update its network
and the priorities of the experiences in the buffer. In addition,
the learner also periodically updates the network parameters
of the actors. Ape-X’s distributed architecture can be cou-
pled with different learning algorithms, such as DQN [15]
and DDPG [13]. R2D2 [67] has a similar architecture but

MAJID et al.: DEEP REINFORCEMENT LEARNING VERSUS EVOLUTION STRATEGIES: A COMPARATIVE SURVEY 11945

TABLE I
PARALLELIZED DRL AND ESS SYSTEMS

outperforms Ape-X by using recurrent neural network (RNN)-
based RL agents.

d) Importance Weighted Actor-Learner Architec-
ture (IMPALA): Due to the use of an on-policy method in an
off-policy setting GA3C [64] suffers from poor convergence.
IMPALA [60] corrected this with the use of V-trance: an
off-policy actor–critic algorithm that aims at mitigating the
effect of the lag between when actions are taken by the actors
and when the learner estimates the gradient in distributed
settings. IMPALA’s architecture consists of multiple actors
interacting with their environment instances and single or
multiple synchronized learners [Fig. 4(e)]. IMPALA’s actors
send experiences directly to the learners, instead of computing
and sending the gradients like in A3C. The learners then
utilize these experiences to optimize their policies and value
functions. After that, the learners update the actors’ network
parameters. The separation between acting and learning
and V-trace enable IMPALA to have stable learning while
achieving high throughput.

e) Scalable, Efficient Deep-RL (SEED): SEED [61]
improves on the IMPALA system by moving inference to
the learner [Fig. 4(f)]. Consequently, the trajectories’ collec-
tion becomes part of the learner and the actors only send
observations and actions to the learner. SEED makes use of
TUPs and GPUs and shows significant improvement over other
approaches.

2) Parallelism in Evolution Strategies: Compared with
DRL, ESs require significantly less bandwidth to parallelize
a given task. Salimans et al. [24] proposed OpenAI-ES: an
algorithm derived from NES (see Section II) that directly
optimizes the parameters θθθ of a policy. By sharing the seeds
of the random processes prior to the optimization process,
OpenAI-ES requires exchanging only scalars (minimal band-
width) between workers to parallelize the search process. The
main steps of OpenAI-ES are.

1) Sample a Gaussian noise vector, εi ∼ N (0, I).
2) Evaluate workers’ fitness functions, fi ← f (θθθ t , σεi).
3) Exchange the fitness values, fi , between the workers.

4) Reconstruct εi using known random seeds.
5) Adjust parameters according to θθθ t+1 ← θθθ t + α(1/nσ)∑n

j=1 f jε j , where θθθ is a weighted vector of a DNN.
6) Repeat from step 2 until termination.
The results, relative simplicity, and generality of OpenAI-ES

have attracted the attention of many researchers. From a paral-
lelization perspective, the follow-up work indirectly improved
OpenAI-ES’s parallelization: by searching more intelligently
a smaller number of agents (or less time) is needed to match
OpenAI-E’s performance. For example, Chrabaszcz et al. [25]
improved the OpenAI-ES algorithm by complementing it with
two techniques: structured exploration and compact policies.
The authors showed with these modifications up to 13× fewer
parameters are needed.

Conti et al. [68] proposed a novelty search ES (NS-ES)
algorithm, which hybridizes OpenAI-ES with NS—an evolu-
tionary algorithm that searches for diverse policies without
considering the reward signal [69]. The authors also introduced
a variant of NS-ES by replacing NS with a quality diversity
(QD) algorithm. Their results show that the NS- and QD-based
algorithms improve the ES algorithm’s performance on RL
tasks with sparse rewards as they help avoid local optima.
Liu et al. [70] proposed trust region ESs (TRES). It optimizes
a surrogate objective function, which enables repeated data
sample usage. Finally, Fuks et al. [71] proposed ES with
progressive episode lengths (PELs). The main idea of PEL is
to allow an agent to do small and easy tasks to gain knowledge
quickly and then use this knowledge to tackle more complex
tasks. PEL leverages the same parallelization idea as OpenAI-
ES [24] and Table I snapshots the main characteristics of
parallel DRL and ESs algorithms, and Fig. 5 shows their
chronological order.

B. Exploration

One of the fundamental challenges that a learning agent
faces when interacting with a partially known environment is
the exploration–exploitation dilemma. That is, when should an
agent try out suboptimal actions to improve its estimation of

11946 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 5. Parallel DRL and ESs algorithms are shown on a timeline.

the optimal policy, and when should it use its current optimal
policy estimation to make useful progress? This dilemma
has attracted ample attention. Beyond this tradeoff, advanced
exploration techniques are essential for tackling environments
with sparse rewards [72], [73]. In a sparse reward setting,
a DRL agent gets only occasional feedback for its actions.
Consequently, it is hard for the agent to learn action–reward
associations to approach optimal policy [72], [74], [75], [76].

1) Exploration in (Deep) Reinforcement Learning: Simple
exploration techniques balance exploration and exploitation by
selecting estimated optimal actions most of the time and ran-
dom ones on occasion. For example, the ϵ-greedy exploration
algorithm [1] acts greedily with probability 1− ϵ and selects
a random action with probability ϵ.

More complex exploration strategies estimate the value of
an exploratory action by making use of the environment-agent
interaction history. Upper confidence bound (UCB) [77] does
that by adding a term to the reward signal that reflects the
algorithm uncertainty about moving to a particular state

r+(s, a) = r(s, a)+ B(N (s))

where N (s) represents the frequency of visiting state s, and
B(N (s)) is a reward bonus decreases with N (s). In other
words, UCB promotes the selection of actions with high
rewards, r(s, a), or the ones with high uncertainty (less
frequently visited). The Thompson sampling (TS) method [78]
maintains a distribution over the parameters of a model.
In the beginning, it samples parameters at random. But as
the agent explores an environment, TS adapts the distribution
to favor more promising parameter sets. As such, UCB and
TS naturally reduce the probability of selecting exploratory
actions and become more confident about optimal policies over
time. Thus, they are inherently more efficient than ϵ-greedy.

a) From RL to DRL: DRL agents act on environ-
ments with continuous or high-dimensional state-action spaces
(e.g., Montezuma’s Revenge and StarCraft II). Such spaces
render count-based algorithms (e.g., UCB) and the ones that
require maintaining a distribution over state-action spaces
(e.g., TS) useless in their original formulation. To explore such
challenging environments with sparse reward signals, many
algorithms have been proposed. Generally, these algorithms
couple approximation techniques with exploration algorithms
proposed for simple RL settings [79], [80], [81].

b) Pseudocount methods: To extend count-based explo-
ration methods (e.g., UCB) to DRL settings, Bellemare et al.
[82] approximate the counting process using a context tree
switching (CTS) density model. The model’s goal is to provide
a score that increases when a state is revisited. The score

is then used to generate a reward bonus that is inversely
proportional to the score value. This bonus is then added to
the reward signal provided by the environment as an incentive
for the agent to visit less-visited states. Ostrovski et al. [83]
improved this approach by replacing the simple CTS density
model with a neural density model called PixelCNN. Another
approach to utilize counting to explore environments with
high-dimensional spaces is by mapping the observed states to
a hashing table [84] and counting the hashing codes instead
of states. Finally, Machado et al. [85] used a form of implicit
counting via the norm of the successor state representation [86]
to generate a reward bonus that encourages the agent to visit
less-visited states.

c) Information gain: In exploration based on information
gain, the algorithm provides a reward bonus proportional
to the information obtained after taking an action. This
bonus is then added to the reward provided by the environ-
ment to push the agent to explore less known states [87].
Houthooft et al. [88] proposed to learn a transition dynamic
model with a Bayesian neural network. The information gain
is measured as the KL divergence between the current and
updated parameter distribution after a new observation. Based
on this information the reward signal is augmented with a
bonus. Pathak et al. [89] used a forward dynamic model to
predict the next state. The reward bonus is then set to be
proportional to the error between the predicted and observed
state. To make this method effective, the authors utilized
an inverse model, removing irrelevant—for the comparison—
state features. Burda et al. [90] defines the exploration bonus
based on the error of a neural network in predicting features of
the observations given by a fixed randomly initialized neural
network. All the aforementioned information gain methods
obtain information in a reactive manner: the information
gain happens after the interaction with the environment.
Shyam et al. [91] proposed an active exploration algorithm that
involves learning an ensemble of forward dynamics models.
The differences between the models’ predictions are used
as a metric to measure states’ novelties. Then, they explore
novel states or states that the models disagree with the most.
Pathak et al. [80] showed how to extend the active exploration
idea to environments with stochastic dynamics, such as robot
manipulators. Having an ensemble of models can lead to “deep
exploration” as we will see next.

d) Approximate posterior sampling: Inspired by TS,
Osband et al. [92] introduced bootstrapped DQN. Boot-
strapped DQN trains a DNN with N bootstrapped heads to
approximate a distribution over Q-functions (or DQN). At the
start of each episode, bootstrapped DQN draws a sample at

MAJID et al.: DEEP REINFORCEMENT LEARNING VERSUS EVOLUTION STRATEGIES: A COMPARATIVE SURVEY 11947

random from the ensemble Q-functions and acts greedily with
respect to this sample. This strategy enables an RL agent to do
temporally extended exploration (or deep exploration), which
is particularly important when the agent receives a sparse
environmental reward. Chen et al. [93] integrates UCB with
bootstrapped DQN by calculating the mean and variance of a
subset of the ensemble Q-functions.

e) Memory-based: Savinov et al. [94] proposed a new
curiosity method that uses episodic memory to form the
novelty bonus. The bonus is computed by comparing the
current observation with the observations in memory and a
reward is given for observations that require more environment
steps taken to reach. Ecoffet et al. [95] introduced go-explore:
an RL agent that aims to solve hard exploration problems,
such as Montezuma’s revenge. Go-explore runs in two phases.
In phase one, the agent explores randomly, remembers inter-
esting states, and continues, after a reset, random exploration
from one of the interesting states. Once a solution has been
found, phase two begins where the go-explore agent robus-
tifies the best-found solution by randomizing the environ-
ment and running imitation learning using the best solution.
Badia et al. [96] proposed “never give up” (NGU): an agent
that also targets hard exploration problems. NGU augments
the environmental reward with a combination of two intrinsic
novelty rewards: 1) an episodic reward, which enables the
agent to quickly adapt within an episode and 2) a life-long
novelty reward, which down-modulates states that become
familiar across many episodes. Furthermore, NGU uses a uni-
versal value function approximator to learn several exploration
policies with different exploration–exploitation tradeoffs at the
same time. Agent57 [97] manages the tradeoff between explo-
ration and exploitation using a “meta-controller” that adap-
tively selects a correct policy (ranging from very exploratory to
purely exploitative) in the training phase. Agent57 outperforms
the standard human benchmark on all 57 Atari games.

f) Exploration is the goal: Eysenbach et al. [98] noted
that devising a reward function to drive exploration in sparse
reward settings is challenging and requires domain-specific
knowledge. Therefore, they proposed an exploration strat-
egy that has two stages: unsupervised and supervised explo-
ration. In stage one, the agent’s objective is to learn policies
(or skills) that are as diverse as possible without considering
any rewards. In stage two, the agent uses its learned skills and a
reward-driven exploration strategy to achieve a particular goal.
The authors showed that such an exploration strategy makes
the agents more capable of tackling novel environments and
long-horizon tasks. In addition to diversity, Sharma et al. [99]
argued that finding predictable skills eases their composition
in hierarchical RL settings which leads to more capable RL
agents. Interestingly, while this approach makes diversity a
learning objective, ESs (which we will review next) uses
diverse policies to approach an optimal one [74].

2) Exploration in Evolution Strategies: ESs optimize the
fitness score while exploring the best solutions found so
far. The exploration is realized through the recombination
and mutation steps. Despite their effectiveness in exploration,
ESs may still get trapped in local optima [100]. To overcome

this limitation, many ES algorithms with enhanced exploration
have been proposed.

One way to extract approximate gradients from a nonsmooth
objective function, f (θθθ), is by adding noise to its parameter
vector, θθθ . This yields a new differentiable function, fES(θθθ).
OpenAI-ES [24] exploits this idea by sampling noise from
a Gaussian distribution and adding it to the θθθ . The algorithm
then optimizes using SGA. Additionally, OpenAI-ES relays on
a few auxiliary techniques to enhance its performance: virtual
batch normalization [101] for enhanced exploration, antithetic
sampling [102] for reduced variance, and fitness shaping [34]
for avoiding local optima.

Choromanski et al. [103] proposed two strategies to enhance
the exploration of derivative-free optimization (DFO) methods,
such as OpenAI-ES [24]: 1) structured exploration, which
replaces random Gaussian directions with random orthogo-
nal and quasi-Monte Carlo finite difference directions for
more efficient parameter exploration and 2) compact policies,
whereby imposing a parameter sharing structure on the policy
architecture to significantly reduces the dimensionality of the
problem without losing accuracy.

Maheswaranathan et al. [104] proposed guided ES: a ran-
dom search that is augmented using surrogate gradients which
are correlated with the true gradient. The key idea is to track
a low-dimensional subspace that is defined by the recent
history of surrogate gradients. Sampling this subspace leads
to a drastic reduction in the variance of the search direction.
However, this approach has two shortcomings: 1) the bias
of the surrogate gradients needs to be known and 2) when
the bias is too small, guided ES cannot find a better descent
direction than the surrogate gradient. Meier et al. [105] draw
inspiration from how momentum is used for optimizing DNNs
to improve upon guided ES [104]. The authors showed how
to optimally combine the surrogate gradient directions with
random search directions and how to iteratively approach
the true gradient for linear functions. They assessed their
algorithm against a standard ESs algorithm on different tasks
showing its superiority.

Choromanski et al. [106] noted that fixing the dimension-
ality of subspaces (as in guided ES [104]) leads to subopti-
mal performance. Therefore, they proposed adaptive sample-
efficient blockbox optimization (ASEBO) an algorithm that
adaptively controls the dimensionality of subspaces based
on gradient estimators from previous iterations. ASEBO was
compared with several ESs and DRL algorithms and showed
a promising averaged performance.

Liu et al. [107] proposed self-guided ESs (SGES).
This work is inspired by both ASEBO [106] and guided
ES [104]. Furthermore, it is based on two main ideas:
leveraging historically estimated gradients and building
a guiding subspace from which search directions are
sampled probabilistically. The results show that SGES
outperforms OpenAI-ES [24], guided ES [104], and
CMA-ES.

The aforementioned methods suffer from the curse of
dimensionality due to the high variance of Monte Carlo gradi-
ent estimators. Motivated by this, Zhang et al. [108] proposed
directional Gaussian smoothing ES (DGS-ES). It encourages

11948 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

TABLE II
DRL AND ESS EXPLORATION ALGORITHMS

nonlocal exploration and improves high-dimensional explo-
ration. In contrast to regular Gaussian smoothing, directional
Gaussian smoothing conducts 1-D nonlocal explorations along
d orthogonal directions. The Gauss–Hermite quadrature is then
used for improving the convergence speed of the algorithm.
Results show that DGS-ES is superior to OpenAI-ES [24] and
ASEBO [106].

To encourage exploration in environments with sparse or
deceptive rewards, Conti et al. [68] proposed hybridizing
ESs with directed exploration methods (i.e., NS [109] and
QD [110]). The combination resulted in three algorithms: NS-
ES, NSR-ES, and NSRA-ES. NS-ES builds on the OpenAI-ES
exploration strategy. OpenAI-ES approximates a gradient and
takes a step in that direction. In NS-ES, the gradient estimate
is that of the expected novelty. It gives directions on how to
change the current policy’s parameters θθθ to increase the aver-
age novelty of the parameter distribution. NSR-ES is a variant
of NS-ES. It combines both the reward and novelty signals
to produce policies that are both novel and high performing.
NSRA-ES is an extension of NSR-ES that dynamically adapts
the weights of the novelty and the reward gradients for more
optimal performance.

Ajani and Mallipeddi [111] discussed the advantages and
disadvantages of using Cauchy or Gaussian distribution for
mutation. The authors stated that the Cauchy distribution

is preferred when the search is far away from the optimal
solution, and Gaussian is better near the global optimum.
However, identifying when to switch from Cauchy to Gaussian
distribution is hard. Therefore, a hybrid mutation approach was
adopted to enhance the exploration of the proposed algorithm.
Results show great performance. But, the tests were done
in a single environment. We hope to see follow-up work
that examines hybrid mutation approaches in more complex
environments. Table II summarizes important DRL and ESs
exploration algorithms. Fig. 6 shows important exploration
agents in chronological order.

C. Meta Reinforcement Learning

Meta-RL can be subdivided into two categories [114].
Recurrent Models (RNN-Based Learners): Leveraging the

agent-environment interaction history provides more infor-
mation, which leads to improved learning [45], [115]. This
idea can be implemented using RNNs (or other recurrent
models) [43], [116], [117], [118]. The RNNs can be trained on
a set of tasks to learn a hidden state (meta-policy), then this
hidden state can be further adapted given new observations
from an unseen task.

The general architecture of a meta-RL algorithm is illus-
trated in Fig. 7, where an agent is modeled as two loops, both

MAJID et al.: DEEP REINFORCEMENT LEARNING VERSUS EVOLUTION STRATEGIES: A COMPARATIVE SURVEY 11949

Fig. 6. DRL and ESs exploration algorithms are shown on a timeline.

Fig. 7. Schematic of meta-RL [123].

implementing RL algorithms. The outer loop samples a new
environment every iteration and tunes the parameters of the
inner loop. Consequently, the inner loop adjusts more rapidly
to new tasks.

Duan et al. [117] and Wang et al. [118] proposed analogous
recurrent meta-RL agents: R2 and DRL-meta. These agents
use RNNs to track characteristics of interaction trajectories.
The main difference between both approaches relates to the
set of environments. Environments in [118] are issued from
a parameterized distribution [119]. In contrast, those in [117]
are relatively unrelated [119].

Such RNN-based methods have proven to be efficient on
many RL tasks. However, their performance decreases as the
complexity of the task increases, especially with long temporal
dependencies. Additionally, RNN-based meta-learners cannot
pinpoint specific prior experiences [43], [120].

To overcome these limitations, Mishra et al. [43] proposed
simple neural attentive learner (SNAIL). It combines temporal
convolutions and attention mechanisms. The former aggregates
information from past experiences and the latter pinpoints
specific pieces of information. SNAIL consists of three main
parts: 1) DenseBlock, a causal 1-D-convolution with a specific
dilation rate; 2) TCBlock, a series of DenseBlocks with
exponentially increasing dilation rates; and 3) AttentionBlock,
where key-value lookups take place. This general-purpose
model has shown its efficacy on tasks ranging from super-
vised to RL. Despite that, challenges, such as a long time,
needed for getting the right architectures of TCBlocks and
DenseBlocks. [120] persist.

Gradient-Based Models: Model agnostic meta-learning
(MAML) [121] realizes meta-learning principles by learning
an initial set of parameters, θ0θ0θ0, of a model such that taking
a few gradient steps is sufficient to tailor this model to a
specific task. More precisely, MAML learns θ0θ0θ0 such that for
any randomly sampled task, T , with a loss function, L, the

agent will have a modest loss after n updates

θ0θ0θ0 = arg min
θθθ

ET

[
LT

(
U n
T (θθθ)

)]
where U n

T (θθθ) refers to an update rule, such as gradient descent.
Nichol et al. [122] proposed Reptile a first-order meta-

learning framework, that is considered to be an approximation
of MAML. Similar to first-order MAML (FOMAML), Reptile
does not calculate second derivatives, which makes it less
computationally demanding. It starts by repeatedly sampling
a task, then performing N iterations of stochastic gradient
descent on each task to compute a new set of parameters.
Then, it moves the model weights toward the new parameters.
Next, we look at how meta-learning makes ESs more efficient.

1) Meta Evolution Strategies: Gajewski et al. [124] intro-
duced “evolvability ES,” an ES-based meta-learning algo-
rithm for RL tasks. It combines concepts from evolvability
search [125], ESs [24], and MAML [121] to encourage
searching for individuals whose immediate offsprings show
signs of behavioral diversity (that is, it searches for parameter
vectors whose perturbations lead to differing behaviors) [125].
Consequently, evolvability ES facilitates adaptation and gener-
alization while leveraging the scalability of ESs [124], [126].
Evolvability ES shows a competitive performance to gradient-
based meta-learning algorithms. Quality evolvability ES [126]
noted that the original evolvability ES [127] can only be used
to solve problems where the task performance and evolv-
ability align. To eliminate this restriction, quality evolvability
ES optimizes for both—task performance and evolvability—
simultaneously.

Song et al. [128] argue that policy gradient-based MAML
algorithms [121] face significant difficulties when estimating
the second derivative using backpropagation on stochastic poli-
cies. Therefore, they introduced ES-MAML, a meta-learner
that leverages ES [24] for solving MAML problems without
estimating second derivatives. The authors empirically showed
that ES-MAML is competitive with other meta-RL algorithms.
Song et al. [129] combined hill-climbing adaptation with ES-
MAML to develop a noise-tolerant meta-RL learner.

Wang et al. [130] introduced instance weighted incremental
ESs (IW-IESs). It incorporates an instance weighting mech-
anism with ESs to generate an adaptable and salable meta-
learner. IW-IES assigns weights to offspring proportional to
the amount of new knowledge they acquire. The weights are
assigned based on one of the two metrics: instance novelty and
instance quality. Compared with ES-MAML, IW-IES proved
competitive for robot navigation tasks.

11950 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

TABLE III
META-LEARNING

Meta-RL is particularly suited for tackling the sim-to-real
problem: simulation provides previous experiences that are
used to learn a general policy, and the data obtained from
operating in the real world fine tunes that policy [131], [132].
Examples of using meta-RL to train physical robots include:
Nagabandi et al. [44] built on top of MAML a model-based
meta-RL agent to train a legged millirobot; Arndt et al. [133]
proposed a similar framework to MAML to train a robot on a
task of hitting a hockey puck; and Song et al. [129] introduced
a variant of ES-MAML to train and quickly adapt the policy
commanding a legged robot. Table III summarizes the main
characteristics of the presented algorithms.

D. Learning in Multiagent Settings

An MAS is a distributed system of multiple cooperating or
competing agents, working toward maximizing their objectives
within a shared environment [47]. Next, multiagent DRL
(MADRL) and multiagent ESs are discussed.

1) Multiagent Deep Reinforcement Learning: Moving from
a single-agent RL to a multiagent RL brings about new
complex challenges with respect to learning and evaluating
outcomes. This can be attributed to several factors, including
the exponential growth of the search space and the nonstation-
arity of the environment [134]. Nonstationarity: In MADRL,
agents learn concurrently and their actions reshape their shared
surroundings repeatedly. This causes their environment to be
nonstationary. Consequently, the convergence of well-known
algorithms, such as Q-learning, can no longer be guaranteed as
the Markov property assumption is violated [15], [135], [136].
Many papers attempt to address the nonstationarity prob-
lem. Castaneda [137] proposed two algorithms: Deep loosely
coupled Q-network (DLCQN) and deep repeated update Q-
network (DRUQN). DLCQN modifies an independence degree
for each agent based on the agent’s negative rewards and
observations. The agent then utilizes this independence degree
to decide when to act independently or cooperatively. DRUQN
tries to avoid policy bias by making the value of an action
inversely proportional to the probability of selecting that
action. The use of an experience replay buffer with DQN

enables efficient learning. However, due to the nonstationarity
of the environment in MADRL data stored in an experience
replay buffer can become outdated. To counter this unwanted
behavior, lenient-DQN conceived by Palmer et al. [138] uti-
lizes decaying temperature values for adjusting the policy
updates sampled from the replay buffer.

a) Scalability: One way to deal with the nonstationarity
problem is to train the agents in a centralized fashion and let
them act according to a joint policy. However, this approach is
not scalable because the state-action space grows exponentially
with a number of agents [139], [140], [141]. To balance
the challenges imposed by nonstationarity and scalability,
a centralized training and decentralized execution approach
has been proposed [142], [143], [144], [145].

b) Credit assignment: One of the main challenges of
learning in a cooperative setting is termed a “multiagent credit
assignment problem,” which refers to how to divide a reward
obtained on a team level amongst individual learners [146].
Due to the complex interaction dynamics of the agents, it is
not trivial to determine whose actions were beneficial to the
group reward. Researchers have proposed different approaches
to deal with the challenges associated with MADRL problems.

c) Independent-learning: Under this approach, each
agent considers other agents as part of the environment;
consequently, each agent is trained independently [136], [147],
[148]. This approach does not suffer from the scalability prob-
lem [148], [149], but it makes the environment nonstationary
from each agent’s perspective [150]. Furthermore, it conflicts
with the usage of experience replay that improves the DQN
algorithm [15]. To stabilize the experience replay buffer in
MADRL settings, Foerster et al. [149] used importance sam-
pling and replay buffer samples aging.

d) Fully observable critic: A way to deal with the
nonstationarity of an MADRL environment is by leveraging an
actor–critic approach. Lowe et al. [151] proposed a multiagent
deep deterministic policy gradient (MADDPG) algorithm,
where the actor policy accesses only the local observations,
whereas the critic has access to the actions, observations, and
target policies of all agents during training. As the critic has

MAJID et al.: DEEP REINFORCEMENT LEARNING VERSUS EVOLUTION STRATEGIES: A COMPARATIVE SURVEY 11951

global observability, the environment becomes stationary even
though the policies of other agents change. Many extensions
to MADDPG have been proposed [152], [153], [154], [155].

e) Value function decomposition: To coordinate the
agents’ actions, learning a centralized action-value function,
Qtot, is desirable. However, when the number of agents
is large, learning such a function is challenging. Inde-
pendent learning (where each agent learns its action-value
function, Qi) does not face such a challenge, but it also
neglects interactions between agents, which results in subop-
timal collective performance. Value function decomposition
methods try to capitalize on the advantages of these two
approaches. It represents Qtot as a mixing of Qi that is
conditioned only on local information. Value-decomposition
network (VDN) algorithm assumes that Qtot can be additively
decomposed into N Qi for N agents. QMIX [143] algorithm
improves on VDN by relaxing some of the additivity con-
straints and enforcing positive weights on the mixer network.

f) Learning to communicate: Cooperative environments
may allow agents to communicate and achieve their shared
objective more optimally [156], [157]. Foerster et al. [158]
proposed two algorithms, reinforced interagent learning
(RIAL) and differentiable interagent learning (DIAL), which
utilize DNNs to learn to communicate. RIAL is based on deep
recurrent Q-network with independent Q-learning. It shares
the parameters of a single-neural network between the agents.
In contrast, DIAL passes gradients directly via the com-
munication channel during learning. While a discrete com-
munication channel is used in realizing RIAL and DIAL,
CommNet [159] utilizes a continuous vector channel. Over
this channel, agents obtain the summed transmissions of other
agents. Results show that agents can learn to communi-
cate and improve their performance over noncommunicating
agents.

g) Partial observability: Foerster et al. [158] introduced
a deep distributed recurrent Q-network (DDRQN) algorithm
based on a long short-term memory network to deal with
POMDP problems in multiagent settings. Gupta et al. [160]
extended single-agent RL algorithms based on policy gradient,
temporal-difference error, and actor–critic methods to multia-
gent settings. Their work shows the importance of using DRL
with curriculum learning to address the problem of learning
cooperative policies in partially observable environments.

We refer the reader to the following surveys for a more
in-depth discussion on MADRL: Hernandez-Leal et al. [135]
focus on the nonstationarity problem in MADRL;
Oroojlooy-Jadid and Hajinezhad [150] scope their survey to
decentralized MADRL with cooperative goals; Da Silva and
Costa [161] survey transfer learning for MADRL; and Du and
Ding [162] review challenges and applications of MADRL.

2) Multiagent Evolution Strategies: ES algorithms do not
require the problem to be formulated as an MDP; there-
fore, they do not suffer from the nonstationarity of the
environment. Consequently, it is relatively easy to extend
a single-agent ES algorithm to the multiagent domain and
develop an application. Hiraga et al. [163] developed robotics
controllers based on ESs for managing congestion in robotic
swarm path formation using LEDs. A neural network rep-

resents the controller of the robot. (µ, λ)-ES is utilized to
optimize the weights of the controller. A copy of the controller
is implemented on N different robots, before being evalu-
ated and assessed depending on the swarm’s performance.
Another similar approach was proposed in [164] for building
a swarm capable of cooperatively transporting food to a nest
and collectively distinguishing between foods and poisons.
Hiraga et al. [164] developed a controller for a robotic swarm
using CMA-ES, aiming to automatically generate the behavior
of the robots.

Tang et al. [165] proposed an adversarial training multiagent
learning system, in which a quadruped robot (protagonist) is
trained to become more agile by hunting an ensemble of robots
that are escaping (adversaries) following different strategies.
An ensemble of adversaries is used, as each will propose
a different escape strategy, thus improving agility. Training
is done using ESs and more specifically by augmenting
CMA-ES to the multiagent framework. There are two steps for
training: An outer loop that iteratively trains the protagonist
and adversaries, and an inner loop for optimizing the policy of
each. Policies are represented by feed-forward neural networks
and are optimized with CMA-ES.

Chen and Gao [166] proposed a predator–prey system that
leverages ESs. It consists of multiple predators trained to catch
prey in a certain time frame. The predator controllers are
homogeneous and are represented by DNNs, whose param-
eters are optimized with ESs (OpenAI-ES and CMA-ES) and
Bayesian optimization. The DNN has three inputs, one hidden
layer, and two outputs for controlling the angular velocities of
the two wheels. As for the prey’s controller, it follows a simple
fixed evasion strategy: having computed a danger zone map,
the prey navigates toward the least dangerous locations. After
performing various experiments, the predators showcased a
successful collective behavior: moving following a formation
and avoiding collisions.

Multiagent Credit Assignment Problem: In a multiagent
setting, agents often receive a shared reward for all the
agents, making it harder to learn proper cooperative behav-
iors. Li et al. [167], thus, proposed to use parallelized ESs
along with a value decomposition network (VDN) (useful for
identifying each agent’s contribution to the training process)
for solving cooperative multiagent tasks. Fig. 8 is an overview
of the overall parallelized ES with value decomposition
(PES-VD) algorithm, which consists of two phases. First,
the policies of each agent are represented by a DNN with
parameters θθθ , optimized using parallelized ES. Each agent,
thus, identifies its actions independently following its policy.
In the second place, seeing how the reward is common to
the whole team, a value VDN is used to compute the fitness
for each of the different policies. PES-VD is implemented in
parallel on multiple cores: M workers evaluate the policies and
compute the gradients of the VDN and a master node collects
the data and updates the policies and the VDN accordingly.

Various researchers proposed multiagent solutions for
swarm scenarios leveraging ESs. Each robot in the swarm
runs the same network, thus maintaining collective behavior.
Rais Martínez and Aznar Gregori [168] assess the performance
of ESs (CMA-ES, PEPG, SES, GA, and OpenAI-ES) for

11952 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

TABLE IV
HYBRID ALGORITHMS HIGHLIGHTS

Fig. 8. PES-VD network overview.

multiagent learning in the swarm aggregation task. Similarly,
Fan et al. [169] used ESs on different multiagent UAV swarm
combat scenarios. Aznar et al. [170] developed a swarm
foraging behavior using DRL and CMA-ES.

E. Observations

Our main takeaways from this section are as follows.
1) ESs communicate only scalars to parallelize the opti-

mization process, whereas DRL algorithms communi-
cate parameters or gradient vectors. Consequently, ESs
are easier to parallelize and scale than DRL.

2) ESs sample candidate solutions (or policies) and commit
to them until the next generation. Therefore, ESs do tem-
porally extended exploration (or deep exploration) [171].
On the other hand, DRL algorithms need to explicitly
enforce deep exploration [92].

3) Distributed settings diversify data updates, which enable
DRL algorithms to leave out the experience replay
buffer [12]. ESs do not utilize a replay buffer.

4) Benchmarking exploration strategies happen almost
exclusively in simulated/gaming environments. Conse-
quently, the efficacy of these algorithms in real-world
applications is mostly unknown.

5) Gradient-based meta-RL faces many challenges. For
example, estimating the first- and second-order deriva-
tives, high variance, and high computation needs.

6) ES-based meta-RL attempts to address the limitations
of gradient-based meta-RL; however, ES-based meta-
RL itself faces significant challenges, such as sample
efficiency.

7) Meta-RL is particularly suited for tackling the sim-to-
real problem: a generic policy is trained in simulation
and fine-tuned via interaction with the real world.

Fig. 9. CEM-RL [173]: a hybrid algorithm that combines cross-entropy with
deep deterministic gradient policy [174].

8) New algorithms, such as PES-VD [167], propose a direct
solution to some of the main challenges of MADRL.
PES-VD uses a VDN for solving multiagent credit
assignment problems.

9) Using ESs for multiagent learning is a growing field
with a large potential as to the many advantages ESs
brings to concepts, such as “collective robotic learning”
and “cloud robotics” [172], with its improved paral-
lelism [24].

IV. HYBRID DEEP REINFORCEMENT LEARNING AND
EVOLUTION STRATEGIES ALGORITHMS

Although DRL and ESs have the same objective—
optimizing an objective function in a potentially unknown
environment—they have different strengths and weak-
nesses [175], [176]. For example, DRL can be sample efficient,
while ESs have robust convergence properties and exploration
strategies. The hybrid approach combines DRL and ESs to get
the best of both worlds. Although the idea is not new [177],
hybridizing DRL and ESs has gained momentum, driven by
their recent success [24], [178], [179]. Next, we describe a
few population-guided parallel learning schemes that enhance
the performance of RL algorithms (Table IV).

Pourchot and Sigaud [173] addressed the problem of pol-
icy search by proposing CEM-RL: a hybrid algorithm that
combines a cross-entropy method (CEM) with either the twin
delayed deep deterministic (TD3) policy gradient [174] or
the deep deterministic policy gradient DDPG [13] algorithms
(Fig. 9). The CEM-RL architecture consists of a population
of actors that are generated using CEM, and a single DDPG
or TD3 agent. The actors generate diversified training data
for the DDPG/TD3 agent, and the gradients obtained from
DDPG/TD3 are periodically inserted into the population of

MAJID et al.: DEEP REINFORCEMENT LEARNING VERSUS EVOLUTION STRATEGIES: A COMPARATIVE SURVEY 11953

the CEM to optimize the searching process. The authors
showed that CEM-RL is superior to CEM, TD3 [174], and
evolution RL (ERL) [180]: a hybrid algorithm that com-
bines a DDPG agent with an evolutionary algorithm. Shopov
and Markova [181] combined ESs and MADRL (DQNs)
for sequential games and showcased the model’s efficiency
as compared with classical multiagent reinforcement train-
ing with ϵ-greedy. The agent was tested in two environ-
ments: one with almost no obstacles; and the second with
many obstacles to increasing the probability of getting the
agent to trap into a local minimum. The ESs-based agent
showed better performance in an environment with many
obstacles.

Houthooft et al. [182] devised a hybrid RL agent, evolved
policy gradients (EPGs), which optimize a policy and a loss
function. EPG consists of two optimization loops: the inner
loop uses stochastic gradient descent to optimize the agent’s
policy, while the outer one utilizes ES to tune the parameters of
a loss function that the inner loop minimizes. This architecture
enables EPG to learn faster than a standard RL agent.

Chen et al. [183] proposed a hybrid agent to approximate the
Pareto frontier uniformly in a multiobjective decision-making
problem. The authors argued that despite the fast convergence
of DRL, it cannot guarantee a uniformly approximated Pareto
frontier. On the other hand, ES achieves a well-distributed
Pareto frontier, but they face difficulties optimizing a DNN.
Thus, Chen et al. [183] proposed a two-stage multiobjective
RL (MORL) framework. In the first stage, a multipolicy soft
actor–critic algorithm learns multiple policies collaboratively.
And, in the second stage, a multiobjective covariance matrix
adaptation ES (MO-CMA-ES) fine-tunes policy-independent
parameters to approach a uniform Pareto frontier.

de Bruin et al. [184] used a hybrid approach to train and
fine-tune a DNN control policy. Their approach consists of
two main steps: 1) learning a state representation and initial
policy from high-dimensional input data using gradient-based
methods (i.e., DQN or DDPG) and 2) fine-tuning the final
action selection parameters of the DNN using CMA-ES. This
architecture enables the policy to surpass its in performance
and its gradient-based counterpart while using fewer trials
compared with a pure gradient-free policy.

Several other researchers have also proposed solutions
hybridizing ES and DRL for various applications. For exam-
ple, Song et al. [185] proposed ES-ENAS, a neural architecture
search (NAS) algorithm for identifying RL policies using ES
and Efficient NAS (ENAS); Ferreira et al. [186] used ES to
learn agent-agnostic synthetic environments (SEs) for RL.

A. Observations

Here, we summarize our observations of this section.
1) DRL suffers from temporal credit assignment, and sensi-

tivity in the hyperparameters’ selection and might suffer
from more brittle exploration due to its unique agent
settings, while ES has low data efficiency and struggle
with large optimization tasks.

2) Combining both approaches can help address some of
these identified challenges.

3) Some hybrid methods proposed throughout the literature
seem to outperform the use of each method on its own.

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Although DRL and ESs have proven their worth in many
AI fields, there are still many challenges to be addressed.

A. Sample Efficiency

DRL agents require a large number of samples (i.e., inter-
actions with environments) to learn performant policies. How-
ever, collecting a sufficient number of samples is not always
feasible due to computational and/or quantity of interaction
limitations. Recently, using model-based RL to improve sam-
ple efficiency is gaining more attraction [189], [190].

ESs work with full-length episodes [191], [192], and they
do not memorize [191]. Therefore, they are less sample
efficient than DRL. There have been a few attempts to improve
the sample efficiency of ESs [191], [193], but it is still a
challenge.

B. Exploration Versus Exploitation

The exploration versus exploitation dilemma is one of
the most prominent problems in RL. Recent breakthroughs
have enabled the exploration of novel environments. For
example, Osband et al. [92] observed the importance of
temporal correlation and proposed the bootstrapped DQN, and
Bellemare et al. [82] used density models to scale UCB to
problems with high-dimensional data. Despite that, exploring
complex environments is still a very active field of research.

ESs realize exploration through the recombination and
mutation steps. Despite their effectiveness, ESs may still get
trapped in local optima [70], [100]. Proposals have been made
to enhance ESs exploration capabilities [103], [104]; however,
more work in this direction is needed.

C. Sparse Reward

A reward signal guides the learning process of an RL agent.
When this signal is sparse learning becomes hard. Approaches,
such as reward shaping [1], curiosity-driven methods [89], and
curriculum learning [194], improve learning in sparse settings.
However, the challenge of learning from sparse rewards is far
from being solved. Directing the exploration of ES algorithms
to counter the sparsity and/or deceptiveness of a task is one of
the most important challenges to scale ESs to more complex
environments and make them more efficient [19].

D. Learning a Plan

An emerging line of research is trying to extend the DRL
framework to tackle long-horizon planning problems. The
premise is that by learning a set of primitive skills (e.g.,
picking an object and sealing a box), an agent will be able
to learn how to use these skills to devise a complete plan and
achieve an intended goal (e.g., placing 20 different objects in
a box and prepare it for delivery) [98].

11954 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

VI. CONCLUSION

DRL and ES have the same objective but use different
mechanisms to solve sequential decision-making problems.
This survey tracks their recent development and highlights
their relative strengths and weaknesses. The survey consid-
ered major learning aspects, such as parallelism, exploration,
meta-learning, and multiagent learning. We hope that this
comparative survey promotes ideas for more general and
robust DRL/ESs algorithms. Our conclusion is that the parallel
development of DRL and ESs continues, but hybridizing them
has the potential to lead to significant breakthroughs.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[2] D. Bertsekas, Reinforcement Learning and Optimal Control. Nashua,
NH, USA: Athena Scientific, 2019.

[3] V. François-Lavet et al., “An introduction to deep reinforcement learn-
ing,” Found. Trends Mach. Learn., vol. 11, nos. 3–4, pp. 219–354,
2018.

[4] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Germany: Springer, 2003.

[5] H. Qian and Y. Yu, “Derivative-free reinforcement learning: A review,”
Frontiers Comput. Sci., vol. 15, no. 6, Dec. 2021, Art. no. 156336.

[6] M. M. Drugan, “Reinforcement learning versus evolutionary computa-
tion: A survey on hybrid algorithms,” Swarm Evol. Comput., vol. 44,
pp. 228–246, Feb. 2019.

[7] G. Rummery and M. Niranjan, “On-line Q-learning using connec-
tionist systems,” Springer, Berlin, Germany, Tech. Rep., CUED/F-
INFENG/TR 166, 1994.

[8] D. Zhao, H. Wang, K. Shao, and Y. Zhu, “Deep reinforcement learning
with experience replay based on SARSA,” in Proc. IEEE Symp. Comput.
Intell. (SSCI), Dec. 2016, pp. 1–6.

[9] V. Mnih et al., “Playing Atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

[10] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Proc. NeurIPS, 1999, pp. 1–7.

[11] A. V. Clemente, H. N. Castejón, and A. Chandra, “Efficient parallel
methods for deep reinforcement learning,” 2017, arXiv:1705.04862.

[12] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. ICML, 2016, pp. 1928–1937.

[13] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

[14] R. S. Sutton, “Dyna, an integrated architecture for learning, planning,
and reacting,” ACM SIGART Bull., vol. 2, no. 4, pp. 160–163, Jul. 1991.

[15] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[16] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
Carnegie-Mellon Univ. Pittsburgh PA School Comput. Sci., Pittsburgh,
PA, USA, Tech. Rep. ADA261434, 1993.

[17] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[18] N. Hansen, D. V. Arnold, and A. Auger, “Evolution strategies,”
in Springer Handbook of Computational Intelligence. Berlin, Ger-
many: Springer, 2015.

[19] Z. Li, X. Lin, Q. Zhang, and H. Liu, “Evolution strategies for continuous
optimization: A survey of the state-of-the-art,” Swarm Evol. Comput.,
vol. 56, Aug. 2020, Art. no. 100694.

[20] V. Heidrich-Meisner and C. Igel, “Similarities and differences between
policy gradient methods and evolution strategies,” in Proc. ESANN,
2008, pp. 149–154.

[21] V. Heidrich-Meisner and C. Igel, “Evolution strategies for direct policy
search,” in Proc. PPSN, 2008, pp. 428–437.

[22] V. Heidrich-Meisner and C. Igel, “Neuroevolution strategies for episodic
reinforcement learning,” J. Algorithms, vol. 64, no. 4, pp. 152–168,
Oct. 2009.

[23] V. Heidrich-Meisner and C. Igel, “Hoeffding and Bernstein races for
selecting policies in evolutionary direct policy search,” in Proc. 26th
Annu. Int. Conf. Mach. Learn., Jun. 2009, pp. 401–408.

[24] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” 2017,
arXiv:1703.03864.

[25] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “Back to basics: Bench-
marking canonical evolution strategies for playing Atari,” 2018,
arXiv:1802.08842.

[26] I. Rechenberg, Evolutionsstrategie Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Stuttgart-Bad Cannstatt:
Friedrich Frommann Verlag, 1973.

[27] A. Slowik and H. Kwasnicka, “Evolutionary algorithms and their appli-
cations to engineering problems,” Neural Comput. Appl., vol. 32, no. 16,
pp. 12363–12379, Aug. 2020.

[28] M. Dianati, I. Song, and M. Treiber, “An introduction to genetic
algorithms and evolution strategies,” Citeseer, Princeton, NJ, USA,
Tech. Rep., 2002.

[29] H.-P. Schwefel, “Evolutionsstrategien für die numerische optimierung,”
in Numerische Optimierung von Computer-Modellen mittels der Evolu-
tionsstrategie. Basel, Switzerland: Birkhäuser, 1977.

[30] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation,”
in Proc. IEEE Int. Conf. Evol. Comput., May 1996, pp. 312–317.

[31] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2,
pp. 159–195, Jun. 2001.

[32] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evol. Comput., vol. 11, no. 1, pp. 1–18,
Mar. 2003.

[33] N. Hansen, “The CMA evolution strategy: A tutorial,” 2016,
arXiv:1604.00772.

[34] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and
J. Schmidhuber, “Natural evolution strategies,” J. Mach. Learn. Res.,
vol. 15, no. 1, pp. 949–980, 2014.

[35] A. K. McCallum, Reinforcement Learning With Selective Perception and
Hidden State. Rochester, NY. USA: Univ. Rochester, 1996.

[36] R. Ortner, O.-A. Maillard, and D. Ryabko, “Selecting near-optimal
approximate state representations in reinforcement learning,” in Proc.
ALT, 2014, pp. 140–154.

[37] V. François-Lavet, G. Rabusseau, J. Pineau, D. Ernst, and R. Fonteneau,
“On overfitting and asymptotic bias in batch reinforcement learning with
partial observability,” J. Artif. Intell. Res., vol. 65, pp. 1–30, May 2019.

[38] P. Zhu, X. Li, P. Poupart, and G. Miao, “On improving deep reinforce-
ment learning for POMDPs,” 2017, arXiv:1704.07978.

[39] B. Eker and H. L. Akın, “Using evolution strategies to solve
DEC-POMDP problems,” Soft Comput., vol. 14, no. 1, pp. 35–47,
Jan. 2010.

[40] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially
observable MDPs,” 2015, arXiv:1507.06527.

[41] C. Igel, “Neuroevolution for reinforcement learning using evolution
strategies,” in Proc. IEEE CEC, Dec. 2003, pp. 2588–2595.

[42] T. Schaul and J. Schmidhuber, “Metalearning,” Scholarpedia, vol. 5,
no. 6, p. 4650, 2010.

[43] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” 2017, arXiv:1707.03141.

[44] A. Nagabandi et al., “Learning to adapt in dynamic, real-world environ-
ments through meta-reinforcement learning,” 2018, arXiv:1803.11347.

[45] F. Garcia and P. S. Thomas, “A meta-MDP approach to exploration for
lifelong reinforcement learning,” in Proc. NeurIPS, 2019, pp. 1–10.

[46] A. Nowé, P. Vrancx, and Y.-M. D. Hauwere, “Game theory and
multi-agent reinforcement learning,” in Reinforcement Learning. Berlin,
Germany: Springer, 2012.

[47] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 14413–14423, Dec. 2020.

[48] L. S. Shapley, “Stochastic games,” Proc. Nat. Acad. Sci. USA, vol. 39,
no. 10, pp. 1095–1100, 1953.

[49] Y. Gong, M. Abdel-Aty, Q. Cai, and M. S. Rahman, “Decentralized
network level adaptive signal control by multi-agent deep reinforce-
ment learning,” Transp. Res. Interdiscipl. Perspect., vol. 1, Jun. 2019,
Art. no. 100020.

[50] H. Wei et al., “CoLight: Learning network-level cooperation for traffic
signal control,” in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage.,
Nov. 2019, pp. 1913–1922.

MAJID et al.: DEEP REINFORCEMENT LEARNING VERSUS EVOLUTION STRATEGIES: A COMPARATIVE SURVEY 11955

[51] G. Sartoretti et al., “PRIMAL: Pathfinding via reinforcement and imi-
tation multi-agent learning,” IEEE Robot. Autom. Lett., vol. 4, no. 3,
pp. 2378–2385, Jul. 2019.

[52] G. Sartoretti, Y. Wu, W. Paivine, T. Kumar, S. Koenig, and H. Choset,
“Distributed reinforcement learning for multi-robot decentralized collec-
tive construction,” in Distributed Autonomous Robotic Systems. Cham,
Switzerland: Springer, 2019.

[53] M. Brittain and P. Wei, “Autonomous air traffic controller: A deep multi-
agent reinforcement learning approach,” 2019, arXiv:1905.01303.

[54] P. Xuan and V. Lesser, “Multi-agent policies: From centralized ones to
decentralized ones,” in Proc. 1st Int. Joint Conf. Auto. Agents Multiagent
Syst., 2002, pp. 1098–1105.

[55] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proc.
ICML, 2018, pp. 5872–5881.

[56] K. Zhang, Z. Yang, and T. Basar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” in Handbook of
Reinforcement Learning and Control. 2019.

[57] V. François-Lavet, R. Fonteneau, and D. Ernst, “How to discount
deep reinforcement learning: Towards new dynamic strategies,” 2015,
arXiv:1512.02011.

[58] A. Nair et al., “Massively parallel methods for deep reinforcement
learning,” 2015, arXiv:1507.04296.

[59] D. Horgan et al., “Distributed prioritized experience replay,” 2018,
arXiv:1803.00933.

[60] L. Espeholt et al., “IMPALA: Scalable distributed deep-RL with
importance weighted actor-learner architectures,” in Proc. ICML, 2018,
pp. 1407–1416.

[61] L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, and M. Michalski,
“SEED RL: Scalable and efficient deep-RL with accelerated central
inference,” 2019, arXiv:1910.06591.

[62] M. Grounds and D. Kudenko, “Parallel reinforcement learning with
linear function approximation,” in Proc. 6th Int. Joint Conf. Auton.
Agents Multiagent Syst., 2005, pp. 1–3.

[63] J. Dean et al., “Large scale distributed deep networks,” in Proc. NIPS,
2012, pp. 1–3.

[64] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Rein-
forcement learning through asynchronous advantage actor-critic on a
GPU,” 2016, arXiv:1611.06256.

[65] N. Heess et al., “Emergence of locomotion behaviours in rich environ-
ments,” 2017, arXiv:1707.02286.

[66] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[67] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney,
“Recurrent experience replay in distributed reinforcement learning,” in
Proc. ICLR, 2018, pp. 1–19.

[68] E. Conti, V. Madhavan, F. Petroski Such, J. Lehman, K. Stanley,
and J. Clune, “Improving exploration in evolution strategies for deep
reinforcement learning via a population of novelty-seeking agents,” in
Proc. NeurIPS, 2018, pp. 1–12.

[69] G. Paolo, “Learning in sparse rewards settings through quality-diversity
algorithms,” 2022, arXiv:2203.01027.

[70] G. Liu et al., “Trust region evolution strategies,” in Proc. AAAI, 2019,
pp. 4352–4359.

[71] L. Fuks, N. Awad, F. Hutter, and M. Lindauer, “An evolution strategy
with progressive episode lengths for playing games,” in Proc. 28th Int.
Joint Conf. Artif. Intell., Aug. 2019, pp. 1234–1240.

[72] D. Rengarajan, G. Vaidya, A. Sarvesh, D. Kalathil, and S. Shakkottai,
“Reinforcement learning with sparse rewards using guidance from
offline demonstration,” 2022, arXiv:2202.04628.

[73] T. Yang et al., “Exploration in deep reinforcement learning: A compre-
hensive survey,” 2021, arXiv:2109.06668.

[74] P. Ladosz, L. Weng, M. Kim, and H. Oh, “Exploration in deep
reinforcement learning: A survey,” Inf. Fusion, vol. 85, pp. 1–22,
Sep. 2022.

[75] S. Chakraborty, A. S. Bedi, A. Koppel, P. Tokekar, and D. Manocha,
“Dealing with sparse rewards in continuous control robotics via heavy-
tailed policies,” 2022, arXiv:2206.05652.

[76] M. Andrychowicz et al., “Hindsight experience replay,” in Proc.
NeurIPS, vol. 30, 2017, pp. 1–11.

[77] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Mach. Learn., vol. 47, pp. 235–256,
May 2002.

[78] D. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen, “A tutorial
on Thompson sampling,” 2017, arXiv:1707.02038.

[79] J. Achiam and S. Sastry, “Surprise-based intrinsic motivation for deep
reinforcement learning,” 2017, arXiv:1703.01732.

[80] D. Pathak, D. Gandhi, and A. Gupta, “Self-supervised exploration via
disagreement,” in Proc. ICML, 2019, pp. 5062–5071.

[81] H. Kim, J. Kim, Y. Jeong, S. Levine, and H. Oh Song, “EMI: Exploration
with mutual information,” 2018, arXiv:1810.01176.

[82] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1–9.

[83] G. Ostrovski, M. G. Bellemare, A. Van Den Oord, and R. Munos,
“Count-based exploration with neural density models,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 2721–2730.

[84] H. Tang et al., “#Exploration: A study of count-based exploration for
deep reinforcement learning,” in Proc. NIPS, 2017, pp. 1–10.

[85] M. C. Machado, M. G. Bellemare, and M. Bowling, “Count-based
exploration with the successor representation,” in Proc. AAAI, 2020,
pp. 5125–5133.

[86] P. Dayan, “Improving generalization for temporal difference learn-
ing: The successor representation,” Neural Comput., vol. 5, no. 4,
pp. 613–624, Jul. 1993.

[87] J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic motiva-
tion (1990–2010),” IEEE TAMD, vol. 2, no. 3, pp. 230–247, Jul. 2010.

[88] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and
P. Abbeel, “VIME: Variational information maximizing exploration,” in
Proc. NIPS, 2016, pp. 1–9.

[89] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 2778–2787.

[90] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” 2018, arXiv:1810.12894.

[91] P. Shyam, W. Jaśkowski, and F. Gomez, “Model-based active explo-
ration,” in Proc. ICML, 2019, pp. 5779–5788.

[92] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped DQN,” 2016, arXiv:1602.04621.

[93] R. Y. Chen, S. Sidor, P. Abbeel, and J. Schulman, “UCB exploration via
Q-ensembles,” 2017, arXiv:1706.01502.

[94] N. Savinov et al., “Episodic curiosity through reachability,” 2018,
arXiv:1810.02274.

[95] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune,
“Go-explore: A new approach for hard-exploration problems,” 2020,
arXiv:1901.10995.

[96] A. P. Badia et al., “Never give up: Learning directed exploration
strategies,” 2020, arXiv:2002.06038.

[97] A. P. Badia et al., “Agent57: Outperforming the Atari human bench-
mark,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 507–517.

[98] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is
all you need: Learning skills without a reward function,” 2018,
arXiv:1802.06070.

[99] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman, “Dynamics-
aware unsupervised discovery of skills,” 2019, arXiv:1907.01657.

[100] J. Zhang, H. Tran, and G. Zhang, “Accelerating reinforcement learn-
ing with a directional-Gaussian-smoothing evolution strategy,” 2020,
arXiv:2002.09077.

[101] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training GANs,” in Proc. NeurIPS,
2016, pp. 1–9.

[102] J. Geweke, “Antithetic acceleration of Monte Carlo integration in
Bayesian inference,” J. Econ., vol. 38, nos. 1–2, pp. 73–89, May 1988.

[103] K. Choromanski, M. Rowland, V. Sindhwani, R. Turner, and A. Weller,
“Structured evolution with compact architectures for scalable policy
optimization,” in Proc. ICML, 2018, pp. 970–978.

[104] N. Maheswaranathan, L. Metz, G. Tucker, D. Choi, and
J. Sohl-Dickstein, “Guided evolutionary strategies: Augmenting
random search with surrogate gradients,” in Proc. Int. Conf. Mach.
Learn., 2019, pp. 4264–4273.

[105] F. Meier, A. Mujika, M. M. Gauy, and A. Steger, “Improving gradient
estimation in evolutionary strategies with past descent directions,” 2019,
arXiv:1910.05268.

[106] K. Choromanski, A. Pacchiano, J. Parker-Holder, and Y. Tang, “From
complexity to simplicity: Adaptive es-active subspaces for blackbox
optimization,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 1–11.

[107] F.-Y. Liu, Z.-N. Li, and C. Qian, “Self-guided evolution strategies with
historical estimated gradients,” in Proc. 29th Int. Joint Conf. Artif. Intell.,
Jul. 2020, pp. 1474–1480.

[108] J. Zhang, H. Tran, D. Lu, and G. Zhang, “A novel evolution strategy
with directional Gaussian smoothing for blackbox optimization,” 202o,
arXiv:2002.03001.

11956 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

[109] J. Lehman and K. O. Stanley, “Novelty search and the problem with
objectives,” in Genetic Program. theory Pract. IX, 2011.

[110] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new
frontier for evolutionary computation,” Frontiers Robot. AI, vol. 3, p. 40,
Jul. 2016.

[111] O. S. Ajani and R. Mallipeddi, “Adaptive evolution strategy with
ensemble of mutations for reinforcement learning,” Knowledge-Based
Syst., vol. 245, Jun. 2022, Art. no. 108624.

[112] B. O’Donoghue, I. Osband, R. Munos, and V. Mnih, “The uncer-
tainty Bellman equation and exploration,” in Proc. ICML, 2018,
pp. 3836–3845.

[113] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. ICML, 2015, pp. 1889–1897.

[114] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, “Meta-
reinforcement learning of structured exploration strategies,” in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 1–10.

[115] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn
using gradient descent,” in Proc. ICANN, 2001, pp. 87–94.

[116] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Proc.
ICML, 2016, pp. 1842–1850.

[117] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “Rl2: Fast reinforcement learning via slow reinforcement
learning,” 2016, arXiv:1611.02779.

[118] J. X. Wang et al., “Learning to reinforcement learn,” 2016,
arXiv:1611.05763.

[119] J. G. Robles and J. Vanschoren, “Learning to reinforcement learn for
neural architecture search,” 2019, arXiv:1911.03769.

[120] M. Huisman, J. N. van Rijn, and A. Plaat, “A survey of deep meta-
learning,” Artif. Intell. Rev., vol. 54, no. 6, pp. 4483–4541, Aug. 2021.

[121] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. ICML, 2017, pp. 1126–1135.

[122] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” 2018, arXiv:1803.02999.

[123] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and
D. Hassabis, “Reinforcement learning, fast and slow,” Trends Cognit.
Sci., vol. 23, no. 5, pp. 408–422, May 2019.

[124] A. Gajewski, J. Clune, K. O. Stanley, and J. Lehman, “Evolvability
ES: Scalable and direct optimization of evolvability,” in Proc. Genetic
Evol. Comput. Conf., Jul. 2019, pp. 107–115.

[125] H. Mengistu, J. Lehman, and J. Clune, “Evolvability search:
Directly selecting for evolvability in order to study and pro-
duce it,” in Proc. Genetic Evol. Comput. Conf., Jul. 2016,
pp. 141–148.

[126] A. Katona, D. W. Franks, and J. A. Walker, “Quality evolvability ES:
Evolving individuals with a distribution of well performing and diverse
offspring,” 2021, arXiv:2103.10790.

[127] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey,
“Meta-learning in neural networks: A survey,” 2020,
arXiv:2004.05439.

[128] X. Song, W. Gao, Y. Yang, K. Choromanski, A. Pacchiano, and
Y. Tang, “ES-MAML: Simple hessian-free meta learning,” 2019,
arXiv:1910.01215.

[129] X. Song et al., “Rapidly adaptable legged robots via evolutionary meta-
learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2020, pp. 3769–3776.

[130] Z. Wang, C. Chen, and D. Dong, “Instance weighted incremental evo-
lution strategies for reinforcement learning in dynamic environments,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Mar. 29, 2022, doi:
10.1109/TNNLS.2022.3160173.

[131] J. Tan et al., “Sim-to-real: Learning agile locomotion for quadruped
robots,” 2018, arXiv:1804.10332.

[132] W. Zhu, X. Guo, D. Owaki, K. Kutsuzawa, and M. Hayashibe,
“A survey of sim-to-real transfer techniques applied to reinforce-
ment learning for bioinspired robots,” IEEE Trans. Neural Netw.
Learn. Syst., early access, Sep. 29, 2021, doi: 10.1109/TNNLS.2021.
3112718.

[133] K. Arndt, M. Hazara, A. Ghadirzadeh, and V. Kyrki, “Meta
reinforcement learning for sim-to-real domain adaptation,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2020,
pp. 2725–2731.

[134] D. Lee, N. He, P. Kamalaruban, and V. Cevher, “Optimiza-
tion for reinforcement learning: From a single agent to coop-
erative agents,” IEEE SP Mag., vol. 37, no. 3, pp. 123–135,
May 2020.

[135] P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. Munoz de Cote,
“A survey of learning in multiagent environments: Dealing with non-
stationarity,” 2017, arXiv:1707.09183.

[136] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooper-
ative agents,” in Proc. ICML, 1993, pp. 330–337.

[137] A. O. Castaneda, “Deep reinforcement learning variants of multi-agent
learning algorithms,” Edinburgh, School Informat., Univ. Edinburgh,
Edinburgh, Scotland, 2016.

[138] G. Palmer, K. Tuyls, D. Bloembergen, and R. Savani, “Lenient multi-
agent deep reinforcement learning,” 2017, arXiv:1707.04402.

[139] B. Kartal, J. Godoy, I. Karamouzas, and S. J. Guy, “Stochastic tree
search with useful cycles for patrolling problems,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2015, pp. 1289–1294.

[140] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique
of multiagent deep reinforcement learning,” Auto. Agents Multi-Agent
Syst., vol. 33, no. 6, pp. 750–797, Nov. 2019.

[141] Y. Yang and J. Wang, “An overview of multi-agent reinforcement
learning from game theoretical perspective,” 2020, arXiv:2011.00583.

[142] P. Sunehag et al., “Value-decomposition networks for cooperative
multi-agent learning,” 2017, arXiv:1706.05296.

[143] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in Proc. ICML, 2018, pp. 1–14.

[144] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proc. AAAI, 2018,
pp. 1–9.

[145] G. Chen, “A new framework for multi-agent reinforcement learning—
Centralized training and exploration with decentralized execution via
policy distillation,” 2019, arXiv:1910.09152.

[146] L. Panait and S. Luke, “Cooperative multi-agent learning: The state
of the art,” Auto. Agents Multi-Agent Syst., vol. 11, no. 3, pp. 387–434,
Nov. 2005.

[147] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforce-
ment learning in cooperative multi-agent systems,” in Proc. ICML, 2000,
pp. 1–7.

[148] A. Tampuu et al., “Multiagent cooperation and competition with
deep reinforcement learning,” PLoS ONE, vol. 12, no. 4, Apr. 2017,
Art. no. e0172395.

[149] J. Foerster et al., “Stabilising experience replay for deep multi-agent
reinforcement learning,” in Proc. ICML, 2017, pp. 1146–1155.

[150] A. OroojlooyJadid and D. Hajinezhad, “A review of cooperative multi-
agent deep reinforcement learning,” 2019, arXiv:1908.03963.

[151] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” 2017, arXiv:1706.02275.

[152] X. Chu and H. Ye, “Parameter sharing deep deterministic policy
gradient for cooperative multi-agent reinforcement learning,” 2017,
arXiv:1710.00336.

[153] H. Ryu, H. Shin, and J. Park, “Multi-agent actor-critic with generative
cooperative policy network,” 2018, arXiv:1810.09206.

[154] H. Mao, Z. Zhang, Z. Xiao, and Z. Gong, “Modelling the dynamic
joint policy of teammates with attention multi-agent DDPG,” 2018,
arXiv:1811.07029.

[155] R. E. Wang, M. Everett, and J. P. How, “R-MADDPG for par-
tially observable environments and limited communication,” 2020,
arXiv:2002.06684.

[156] T. Kasai, H. Tenmoto, and A. Kamiya, “Learning of communication
codes in multi-agent reinforcement learning problem,” in Proc. IEEE
Conf. Soft Comput. Ind. Appl., Jun. 2008, pp. 1–9.

[157] C. L. Giles and K.-C. Jim, “Learning communication for multi-
agent systems,” in Proc. Workshop Radical Agent Concepts, 2002,
pp. 377–390.

[158] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate to solve riddles with deep distributed recurrent Q-
networks,” 2016, arXiv:1602.02672.

[159] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning
multiagent communication with backpropagation,” 2016,
arXiv:1605.07736.

[160] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-
agent control using deep reinforcement learning,” in Proc. AAMAS,
2017, pp. 66–83.

[161] F. L. D. Silva and A. H. R. Costa, “A survey on transfer learning for
multiagent reinforcement learning systems,” J. Artif. Intell. Res., vol. 64,
pp. 645–703, Mar. 2019.

[162] W. Du and S. Ding, “A survey on multi-agent deep
reinforcement learning: From the perspective of challenges and
applications,” Artif. Intell. Rev., vol. 54, no. 5, pp. 3215–3238,
Jun. 2021.

[163] M. Hiraga, Y. Wei, T. Yasuda, and K. Ohkura, “Evolving autonomous
specialization in congested path formation task of robotic swarms,” Artif.
Life Robot., vol. 23, no. 4, pp. 547–554, Dec. 2018.

http://dx.doi.org/10.1109/TNNLS.2022.3160173
http://dx.doi.org/10.1109/TNNLS.2021.3112718
http://dx.doi.org/10.1109/TNNLS.2021.3112718

MAJID et al.: DEEP REINFORCEMENT LEARNING VERSUS EVOLUTION STRATEGIES: A COMPARATIVE SURVEY 11957

[164] M. Hiraga, Y. Wei, and K. Ohkura, “Evolving collective cognition of
robotic swarms in the foraging task with poison,” in Proc. IEEE Congr.
Evol. Comput. (CEC), Jun. 2019, pp. 3205–3212.

[165] Y. Tang, J. Tan, and T. Harada, “Learning agile locomotion via
adversarial training,” 2020, arXiv:2008.00603.

[166] J. Chen and Z. Gao, “A framework for learning predator-prey agents
from simulation to real world,” 2020, arXiv:2010.15792.

[167] G. Li, Q. Duan, and Y. Shi, “A parallel evolutionary algorithm with
value decomposition for multi-agent problems,” in Proc. ICSI, 2020,
pp. 616–627.

[168] J. R. Martínez and F. A. Gregori, “Comparison of evolutionary strate-
gies for reinforcement learning in a swarm aggregation behaviour,” in
Proc. MLMI, 2020, pp. 40–45.

[169] D. D. Fan, E. A. Theodorou, and J. Reeder, “Model-based stochastic
search for large scale optimization of multi-agent UAV swarms,” in Proc.
IEEE Symp. Ser. Comput. Intell. (SSCI), Nov. 2018, pp. 2216–2222.

[170] F. Aznar, M. Pujol, and R. Rizo, “Learning a swarm foraging behavior
with microscopic fuzzy controllers using deep reinforcement learning,”
Appl. Sci., vol. 11, no. 6, p. 2856, Mar. 2021.

[171] F. Petroski Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,”
2017, arXiv:1712.06567.

[172] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforce-
ment learning for robotic manipulation with asynchronous off-policy
updates,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 3389–3396.

[173] A. Pourchot and O. Sigaud, “CEM-RL: Combining evolutionary
and gradient-based methods for policy search,” 2018,
arXiv:1810.01222.

[174] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” in Proc. ICML, 2018,
pp. 1587–1596.

[175] K. Hansel, J. Moos, and C. Derstroff, “Benchmarking the natu-
ral gradient in policy gradient methods and evolution strategies,” in
Reinforcement Learning Algorithms: Analysis and Applications. Cham,
Switzerland: Springer, 2021, pp. 1587–1596.

[176] P. Ecoffet, N. Fontbonne, J.-B. André, and N. Bredeche, “Policy search
with rare significant events: Choosing the right partner to cooperate
with,” PLoS ONE, vol. 17, no. 4, Apr. 2022, Art. no. e0266841.

[177] A. Stafylopatis and K. Blekas, “Autonomous vehicle navigation using
evolutionary reinforcement learning,” Eur. J. Oper. Res., vol. 108, no. 2,
pp. 306–318, Jul. 1998.

[178] M. Jaderberg et al., “Human-level performance in 3D multiplayer
games with population-based reinforcement learning,” Science, vol. 364,
no. 6443, pp. 859–865, May 2019.

[179] Y. Shao et al., “Multi-objective neural evolutionary algorithm for
combinatorial optimization problems,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 34, no. 4, pp. 2133–2143, Apr. 2023.

[180] S. Khadka and K. Tumer, “Evolutionary reinforcement learning,” 2018,
arXiv:1805.07917.

[181] V. Shopov and V. Markova, “A study of the impact of evolution-
ary strategies on performance of reinforcement learning autonomous
agents,” in Proc. ICAS, 2018, pp. 56–60.

[182] R. Houthooft et al., “Evolved policy gradients,” in Proc. NeurIPS, 2018,
pp. 1–10.

[183] D. Chen, Y. Wang, and W. Gao, “Combining a gradient-based method
and an evolution strategy for multi-objective reinforcement learning,”
Applied Intelligence, vol. 50, pp. 3301–3317, Oct. 2020.

[184] T. De Bruin, J. Kober, K. Tuyls, and R. Babuška, “Fine-tuning deep
RL with gradient-free optimization,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 8049–8056, 2020.

[185] X. Song et al., “ES-ENAS: Combining evolution strategies with neural
architecture search at no extra cost for reinforcement learning,” 2021,
arXiv:2101.07415.

[186] F. Ferreira, T. Nierhoff, and F. Hutter, “Learning synthetic envi-
ronments for reinforcement learning with evolution strategies,” 2021,
arXiv:2101.09721.

[187] K. V. Moffaert, M. M. Drugan, and A. Nowé, “Hypervolume-
based multi-objective reinforcement learning,” in Proc. EMO, 2013,
pp. 352–366.

[188] S. Parisi, M. Pirotta, N. Smacchia, L. Bascetta, and M. Restelli, “Policy
gradient approaches for multi-objective sequential decision making,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2014, pp. 2323–2330.

[189] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Proc. Conf. Robot
Learn., 2020, pp. 1101–1112.

[190] J. Tebbe, L. Krauch, Y. Gao, and A. Zell, “Sample-efficient reinforce-
ment learning in robotic table tennis,” 2020, arXiv:2011.03275.

[191] A. Pourchot, N. Perrin, and O. Sigaud, “Importance mixing: Improv-
ing sample reuse in evolutionary policy search methods,” 2018,
arXiv:1808.05832.

[192] O. Sigaud and F. Stulp, “Policy search in continuous action domains:
An overview,” Neural Netw., vol. 113, pp. 28–40, May 2019.

[193] Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber, “Efficient natural
evolution strategies,” in Proc. 11th Annu. Conf. Genetic Evol. Comput.,
Jul. 2009, pp. 539–546.

[194] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer,
“Automatic curriculum learning for deep RL: A short survey,” 2020,
arXiv:2003.04664.

