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Summary

This thesis explores the growing complexity of contemporary financial markets, which is a consequence
of a world that is increasingly interconnected and correlated. This evolution highlights the necessity
of understanding and accurately modeling these underlying relationships, which translates into the
need of incorporating more complex models into portfolio optimization, breaking away from Harry
Markowitz’s foundational Portfolio Optimization Theory. While Markowitz’s model has been effective,
the complexity of modern financial instruments demands more sophisticated approaches. This study
focuses on the application of copulas and vine models to portfolio optimization, aiming to understand
how these advanced models can enhance the optimization process by accurately capturing dependencies
among financial assets. In particular, this thesis investigates the benefits of integrating copula-GARCH
models, a combination of time series modelling where the residuals are modelled using copulas or vine
models, into portfolio theory. Through this approach, the research aims to extend existing knowledge
and highlight the specific advantages provided by these models in portfolio optimization.
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1
Introduction

The contemporary financial market is a dynamic and constantly-evolving landscape, resulting in fi-
nancial instruments becoming increasingly complex to understand and model. Understanding this
complexity is crucial for investors seeking to make informed and rational decisions in their pursuit of
financial success. The foundation of modern Portfolio Optimisation Theory, laid by Harry Markowitz
with the publication of ”Portfolio selection” in 1952 ([1]), provided an initial framework for constructing
optimal investment portfolios. However, given the continuous transformation of the financial world, one
may question whether Markowitz’s relatively simplistic model remains sufficiently robust in capturing
the intricate dynamics at play. On the other hand, there is a question about whether introducing
additional complexity to the models brings true advantages to the optimisation process. This thesis
aims to address these critical questions by analyzing the impact of more sophisticated models, with a
specific focus on copulas and vine models, applied to portfolio optimisation techniques.

Modern portfolio optimisation is the theory, developed by Markovitz, that focuses on the strategic
allocation of wealth among different financial assets available [2], [3]. The main idea behind Markovitz’s
theory is to construct an efficient frontier, by finding a balance between maximising the expected re-
turn and minimizing the variance of the portfolio assets: the exact solution on the frontier is then
decided subjectively depending on individual risk preferences. The model in its simplicity has proved
to be effective. However, over time many extensions of the original framework have been developed to
keep up with the increasing complexity of modern financial instruments. Among these extensions, one
particularly emerges as a useful instrument: copula models and their ability to accurately estimate and
model the relationship between asset prices and stock indices.

Copulas were first introduced by Sklar in 1959 [4], offering a framework to characterize the joint
dependence of multiple variables while separating it from the marginal distributions. By employing
copulas, one can capture the underlying dependence structure independently of the single variables’
distributions, allowing to set the focus on the dependence between the variables. A further advance-
ment, introduced by Bedford and Cooke [5], is represented by the introduction of vine models, which
represent a more flexible type of copulas. Vine models enable the construction of the joint distribution
by decomposing it into bivariate copulas. This approach allows for a more structured representation

1
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of the dependencies among financial assets and stock indices, enabling a deeper understanding of their
collective behavior.

This master thesis therefore wants to reflect on the advantages of introducing copulas and vine
models within the realm of portfolio theory, and specifically focus on the following questions:

What are the advantages of introducing copulas and vine models, in the context of portfolio optimisa-
tion theory? How can the properties of these models be used to improve and understand the optimisation
process?

This will be the scope of this master thesis, which will investigate the advantages of applying vine
copulas to portfolio optimisation, through the development of a time-dependant model that collects
a set of financial assets, processes, models it, and construct an optimal portfolio. The output of the
process will be a time varying set of weights, which indicates to what extent one needs to invest in a
given asset at a given time period (for a clear explanation of the model refer to Section 7.2). Following
the work of Barthel et al. [6] and Serban and Brockwell [7], we will extend the existing research on
copula models for Portfolio optimisation, by focusing on the advantages of such models, and on the
specific information that can be gained by their application.

1.1 Thesis Outline
This thesis follows a structured approach that allows the reader to comprehensively explore and analyze
the concepts of portfolio theory, time series, copulas, and vine models, before diving into the core
applications to financial modeling. We will provide all the necessary theoretical background in the first
four chapters, and then move on to the practical applications. We can divide the structure in three
macro parts, which are outlined as follows.

1.1.1 Theoretical Background
The first chapters of this thesis will be focused on providing the reader with all the necessary instruments
for understanding the more practical aspects that will follow. Each chapter will provide the needed
theoretical information, along with a series of simulation studies aimed at clarifying the main concepts,
at underlying the practical use of each mathematical model described, and at highlighting possible up
and downsides of each of them. We will start by introducing Portfolio Optimisation Theory in Chapter
2, where the main risk measures and their use will be introduced, along with a comparison of different
methodologies that can be adopted to select an optimal portfolio. Chapter 3 will focus on the concept
of copulas and Sklar’s theorem. It will also discuss the most used dependence measures associated
with copulas, and the extension to conditional copulas. Subsequently, we will extend copulas to vine
copulas in Chapter 4. Additionally, the latter will offer an overview of the methods for estimating the
parameters, and for selecting the most suitable family and structure for vine models. We will proceed
to discuss time series in Chapter 5, along with a brief simulation study. Lastly, we will conclude by
combining time series to vine copula models, and introduce the concept of copula-GARCH models in
Chapter 6.
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1.1.2 Application to Finance
Once all the theoretical basis will be set, we will collect all the information discussed in Chapter 7 , where
we will discuss how to combine time series and copulas to construct optimal portfolios, delineating the
procedure that we will adopt to analyze real financial data. In particular, we will discuss the transition
to a time dependant model, and will illustrate how to leverage advanced techniques such as vine copula
modeling and Monte Carlo simulation to capture dependencies and uncertainties in financial data.
We will then explain how to use the gained information for portfolio optimisation. In Chapter 8 we
will apply the methodology discussed in the previous Chapter to a set of international stock indexes.
We will extract the closing prices, perform some data manipulation, and finally perform a portfolio
optimisation with all the instruments provided. The obtained results will be carefully evaluated, and
the first conclusions will be made. In addition, from the fitted vine model we will be able to draw some
considerations about the market. In the concluding chapter, Chapter 9, we summarize the key findings
of this thesis and discuss their implications within the word of financial modeling. In addition, we
will examine some potential errors that could have been made throughout the process, discuss possible
improvements, and extensions of the methodology created.

1.1.3 Appendix
Some of the results from the simulations provided in the theoretical Chapters will be collected in
Appendix B and C; while in D some additional results from the application to real data of Chapter 8
are collected. For readers seeking additional theoretical background, we have included an Appendix (E,
F) that presents fundamental statistical and probabilistic concepts underlying the theories discussed
throughout the following chapters. In addition, G explores the main idea behind the Simplifying
assumption, a key assumption that can be made in the context of vine models to remove some degrees
of complexity. Lastly, Appendix A will provide some proofs of theorems and results discussed throughout
this thesis.



2
Portfolio Optimisation

Portfolio optimisation theory, introduced by Harry Markovitz with the publication of ”Portfolio selec-
tion” in 1952 ([1]), is centered around the strategic allocation of wealth among a selection of N different
financial assets forming the portfolio basket. The primary goal is to find a balance between financial
gain and risk [2], [3]. At the heart of Markowitz’s contribution is the innovative concept of constructing
an ”efficient frontier.” This frontier is created by seeking an optimal compromise between maximizing
the expected return and minimizing the variance of the portfolio’s returns. The specific solution on
this frontier is then determined subjectively, taking into account individual risk preferences. A more in
depth explanation of this approach, referred to as the Mean-Var Approach, will be provided in Section
2.3.1.

Since Markovitz, the theory around portfolio optimisation has been addressed using many instru-
ments, ranging from statistical approaches, like Value at Risk (that will be discussed in 1) and Con-
ditional Value at Riks, to machine learning-based methods such as Bayesian network (refer to [8] for
more details), or Neural Networks. [9] offers a wide overview of some of the most well known methods,
and also explores alternative and more recent methods: among them the use of reinforcement learning
techniques and quantum-based approaches emerge.

Through the main sections of this Chapter, we will construct all the basis needed to understand the
main concepts behind portfolio optimisation. Starting with an exploration of the foundational aspects
in Section 2.1, where we will define some key concepts, we will then move to Section 2.3 where we will
introduce risk measures, ranging from the classic Markowitz Mean-Variance Portfolio Optimization to
more contemporary tools like Value-at-Risk and Conditional Value-at-Risk. Section 2.1 discusses the
concept of efficient frontier, which is complemented by the introduction of the tangent portfolio in 2.4,
incorporating metrics such as the widely-utilized Sharpe Ratio and the STARR Ratio, which are useful
to select the optimal portfolio. Sections 2.5 and 2.6 bring analytical and simulation-based approaches
into focus, respectively, providing readers with a comprehensive understanding of portfolio optimisation
methods and their practical applications.

4
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2.1 Definition
A financial asset is defined as a liquid asset with a value derived from a contractual right or ownership
claim. Examples of such assets include stocks, bonds, mutual funds, cash and other form of commodities.
Investors, each with their available wealth, can opt to invest in various assets, which will be forming
what is known as a portfolio. These assets can be viewed as random variables, and the selection of an
optimal portfolio will be determined by the behaviour of the said assets, and on the personal preferences
of the investor according to the risks involved. A portfolio can be mathematically represented as follows:

P (t) =

N∑
j=1

wj(t)sj , (2.1)

where wj(t) represents the weight associated to a certain security, hence the percentage of the total
capital invested in the j − th security at time t. S = {s1, . . . , sN} is the set of available securities [9].
The weights at each time point are therefore defined as:

wj(t) =
Amount invested in sj
Total invested in P (t) . (2.2)

The goal behind portfolio optimisation theory is to find an optimal set of weights wj(t), by maximising
the returns, while minimizing risk. What we mean by risk will be clarified in the Section 2.2. The
different problems and approaches used will be analyzed in the following Sections.

Each security si, is associated with a return ri(t) at each time point t. There are different ways of
computing returns, in this thesis we will use the daily log-returns, which are defined as:

ri(t) = log
pi(t)

pi(t− 1)
, (2.3)

where pi(t) is the closing price at time t. The choice of log-returns offer numerous advantages: they
are, for example, additive over time, hence they can be added together to obtain the total return over
a longer period. Moreover, for each security we can define the discount rate di(t) from each time point
to the present. Consequently, the discounted anticipated return of si, can be therefore defined as:

Ri =

∞∑
t=1

di(t)ri(t). (2.4)

{Ri}i=1,...,N is a random variable, since it is a function of the random variables ri(t). Although portfolio
theory was initially developed as a static framework for one-period models, it has since evolved into
a more complex field of study, with ongoing research and innovation [3]. In this chapter, our focus
remains on a single-period framework, deliberately excluding the consideration of time by neglecting
the variable t in our notation from now on. Time will be introduced subsequently in our exploration of
time-varying models.

By defining R = (R1, . . . , RN ), the random vector of the returns of the portfolio, and the vector
of weight w = (w1, . . . , wN ) associated to the chosen portfolio, such that wi ≥ 0, ∀i = {1, . . . , N} and
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∑N
i=1 wi = 1, we can formulate the discounted return of the portfolio as:

R = wT R =

N∑
i=1

wiRi. (2.5)

Since R is a random variable, obtained as a linear combination of random variables. Moreover, let
µ = (µ1, . . . µN )T be the vector of expected returns of R, hence µi is the mean of the discounted return
Ri, and let Σij be the covariance between Ri and Rj , then from (2.5) we obtain the expected return of
the chosen portfolio as:

µP (R) =

N∑
i=1

wiµi, (2.6)

and the variance of the portfolio as:

σ2
P (R) =

N∑
i=1

N∑
j=1

Σijwiwj . (2.7)

The mean and variance of each component, as well as the covariance matrix Σ, can be estimated using
historical data, financial models, or other forecasting techniques [1]. In the following sections we will
discuss different optimisation methods, and explore portfolio evaluation techniques, including risk as-
sessment measures.

2.2 Portfolio Selection
2.2.1 Definition of the Problem
When seeking a way to compare and evaluate different portfolios, a commonly used strategy involves
the use of risk measures. As the name suggests, a risk measure ρ(·) is statistical tool designed to
quantify the risk associated with negative events, and it is expressed as a non-negative real number.
Risk measures enable the comparison of different events, such as various investments in the financial
domain, by assessing the associated risk of potential losses, which are characterized by a loss function
L(w,R). Given a set of weights w and random vector of the returns R, we will use as loss function the
following:

L(w,R) = −wT R. (2.8)

This loss represents the negative of the returns of a portfolio with the chosen set of weights. The risk
measures will then be a function of this loss.

Some widely used measures are Variance, Value at Risk (V aRβ), and Conditional Value at Risk
(CV aRβ). These measures can be applied to a broad range of financial instruments, facilitating the
quantification of risk, and will be discussed in Section 2.3.

With all the necessary elements in place, we are able to define the general portfolio optimisation
problem, which involves a constrained double-objective problem, aiming to both maximize the expected
return and minimize the associated risk. In general, given a specific risk measure, the problem can be
summarized as follows:
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min ρ(w,R)

maxwTµ

s.t.
∑N

i=1 wi = 1.

(2.9)

To adopt a more practical approach, we can reformulate problem (2.9) into a single-objective one,
making the problem more straightforward to solve, by selecting from two alternative formulations. The
first approach involves setting a set of target risks, denoted as ρ0, and solving to maximize the return for
each risk. Alternatively, one can establish a set of target expected returns, r0, and solve by minimizing
the risk measure while constraining the portfolio’s expected value to match the specified target return.

The latter methodology, as suggested by [7], transforms the problem into the following optimisation:
min ρ(w,R)

s.t. wTµ = r0

s.t.
∑N

i=1 wi = 1,

(2.10)

where r0 represents the target expected return. Throughout this thesis, we will adopt this second
method, although it’s worth noting that both methods provide equivalent results. The uniqueness of
the solution to problem (2.10) depends on the choice of the risk measure ρ(w,R) . To ensure uniqueness,
ρ(w,R) needs to be convex, as we will discuss in the upcoming Sections.

It is important to notice that the solution to the problem stated in (2.9) is not unique; instead, it
forms a set of points within the risk-expected return space, defining what we refer to as the efficient
frontier, which will be elaborated in the following Section 2.2.2. Each feasible solution point on the
frontier is associated with a specific set of weights w. In practical terms, the construction of the frontier
involves systematically selecting a vector of target returns.

2.2.2 Efficient frontier
After having chosen a proper risk measure, hence the objective function of the optimisation problem
(2.9), we will identify a set of optimal points among all possible solutions to the problem, which compose
the feasible set - the set of solutions that satisfy the constraints. The optimal points are known as the
Efficient Frontier, and are of the form (ρi, µi): each point corresponds to an optimal portfolio of N
assets with a set of specific weights w. Figure 2.1 provides a visual representation, with each data point
denoting a unique portfolio of assets. It is worth noting that there is no single, definitive solution: we
will discuss methods for selecting portfolio in Section 2.4.
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Figure 2.1: Example of efficient frontier for a Mean-Variance problem, computed optimising a portfolio of two
normally distributed asset’s returns.

2.3 Risk Measures
In this Section we analyse the main Risk measures that can be used for problem (2.10). As already
anticipated, we will discuss Variance, Value at Risk (V aRβ), and Conditional Value at Risk (CV aRβ).

2.3.1 Variance
The Mean-Variance Markowitz Portfolio Selection approach is still widely used in finance and investment
management, as it provides a framework easy to construct. The chosen risk measure is variance, setting
the risk of problem (2.9) to be:

ρ(w,R) = σ2
P (w,R) = wTΣ(R)w.

In its simplicity, it provides fast solutions that are still valid today. However, it is important to note
that the model relies on certain assumptions, such as static parameters, that may not fully capture
the complexities of real-world markets. Another drawback of the method is that it is not able to fully
capture the relationships between variables if characterized by complex relationships (e.g. polynomial
relationships) [9]. Various extensions and modifications have been developed to address these limita-
tions, such as incorporating additional risk measures, considering transaction costs, and accounting for
parameter uncertainty.

In addition, some limitations of adopting variance as a risk measure include its inability of taking
into account asymmetries, and skewness, which are a common trait of financial data. In fact, because
of how it is defined, variance is sensitive to the magnitude of deviations from the mean, but does not
consider the direction of those deviations. In other words, it treats positive and negative deviations
from the mean identically. Moreover, it lacks subadditivity, a crucial property for a coherent risk
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measure (a coherent measure, is a risk measure that satisfies the four axioms of translation invariance,
sub-additivity, positive homogeneity, and monotonicity, see [10] for more details). The variance of the
sum of two random variables can, in fact, be expressed as

V ar(X1 +X2) = V ar(X1) + V ar(X2) + 2Cov(X1, X2). (2.11)

While a coherent risk measure, denoted as ρ(·), should adhere to the subadditivity criterion:

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2), (2.12)

property that is not met in the case of negative covariance between the random variables. The subad-
dittivity property is directly associated with a diversified portfolio.

Additionally, another drawback of selecting variance as a risk measure is its lack of convexity, leading
to the potential presence of multiple local extrema, which is an undesirable property, especially in
optimisation contexts. A risk measure is considered convex if it adheres to the following relationship:

ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2), (2.13)

while from the extended formula (2.11), we find that the convexity relationship is satisfied only if
Cov(X1, X2) ≤ 1

2 (V ar(X1)+V ar(X2)), condition that is not always met. To address these limitations,
alternative risk measures like Value at Risk and CV aRβ have gained importance.

2.3.1.1 Analytical Computation of the Mean-Variance Efficient Frontier
In the Markovitz’s scenario, we are able to derive the analytical expression of the Efficient frontier. This
represents a big advantage for the method, simplifying the resolution of the problem.

If we consider the mean-variance optimisation version of the problem introduced in (2.10), setting
the Risk equal to the variance of the portfolio, the efficient frontier can be derived analytically by
restating the problem with the corresponding Lagrangian function. If we consider:

a = µ⊤Σ−1µ

b = µ⊤Σ−11

c = 1⊤Σ−11.

(2.14)

we can derive the points of the parabola of the efficient frontier (r0, V ar), from the following theorem.

Theorem 1. Let Σ be non singular and the returns are non identical, hence Ri ̸= Rj, for some
i, j ∈ {1, . . . , N}. Then the region of efficient portfolios is described by the parabola:

Var(r0) =
cr20 − 2br0 + a

∆
, (2.15)

where ∆ is defined as ∆ = ac− b2.

The corresponding weight vector is obtained as:

w (r0) =

(
cΣ−1µ− bΣ−11

)
r0 +

(
aΣ−11 − bΣ−1µ

)
∆

. (2.16)
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The proof is taken from [3], and is available in Section A.1.2 of the Appendix.

2.3.1.2 Example for Mean-Variance
To have a better understanding of how the frontier is constructed, [1] proposes an example with three
securities. We simulated a similar example with a portfolio of two assets, which serves purely for illus-
trative purposes.

Our objective is to delineate two graphs within the space of weights w = (w1, w2). The first
corresponds to a set of isomean curves, which are lines characterized by the same expected return.
They are constructed by setting a target return, defined as r0. Similarly, an isovariance curve is a
set of points with the same variance, the target variance, V ar0. The results are shown in Figure 2.2,
where the reader can identify the set of feasible solutions, as well as the set of isomean curves, and the
isovariance curves. The center of the isovariance ellipses corresponds to the point with lower variance.

Figure 2.2: Isomean and Isovariance curves obtained from two normally distributed returns. The red dot
represents the weights associated with unconstrained minimum variance. The isomean lines are obtained from

w2 = r0
3
− 2

3
w1, while the ellipses 1.5w2

1 + 1.4w1w2 + 2w2
2 − V ar0 = 0. With r0 ∈ {0, . . . , 4}, and

V ar0 ∈ {1.19, . . . , 4.19}.

More specifically, the isomean curve is obtained by finding the weights that satisfy r0 = wTµ, for a
specific target return. In the case of two assets, this corresponds to equation:

w2 =
r0
µ2

− µ1

µ2
w1,

which is a line with slope −µ1

µ2
.

Equivalently, in the 2-dimensional case, the isovariance curves are a set of concentric ellipses, ob-
tained by solving the quadratic equation V ar0 = wTΣw. In this case the weights compose the ellipse:

w2
1Σ11 + 2w1w2Σ12 + w2

2Σ22 − V ar0 = 0,

where Σij represents the component ij of the covariance matrix Σ.
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Among all the possible solutions represented in Figure 2.2, we can select the ones corresponding to
the efficient frontier by solving (2.16) for a set of chosen target returns r0.

2.3.2 Value-at-Risk
In 1994, financial institution JP Morgan proposed a new instrument to evaluate risk, whose objective
was to ”establish a benchmark for credit risk measurement” [11]: the Value at Risk, or V aRβ . It was
lately adopted as the standard measure of risk for financial regulations by the Basel Committee [12].
This new tool’s aim was to evaluate the risk, by quantifying how much of the capital invested could be
lost with a certain degree of confidence β.

If we consider a decision vector w, which corresponds to the optimal set of weights taken from
the feasible set of solutions, and considering the loss L(w,R) defined in Eq. 2.8, we can provide the
mathematical definition of Value at Risk for the random variable L:

Definition 1 (Value at Risk (VaR)). Value-at-Risk (VaR) of the random variable that expresse the loss
L(w,R), with confidence level β ∈ (0, 1) is:

V aRβ(L) = min{z s.t. FL(z) ≥ β},

where FL(z) = P(L ≤ z) is the cumulative distribution (see Def. 31) of the loss.

V aRβ represents the lower β−percentile of L(w,R), hence the lowest value such that the probability
of the loss being less or equal to that value is equal to β.

Figure 2.3: Value at Risk and Conditional Value at Risk, [13].

The intuition behind Value-at-Risk becomes clear by observing Figure 2.3, where the V aRβ(L) is
represented by a specific value in the loss distribution: the region under the curve. The risk measure
can be computed at different confidence levels, typically β = {0.90, 0.95, 0.99} are considered.
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One advantage of using V aRβ is that it is characterized by stability in the estimation, in fact ”it is
not affected by very high tail losses” [13]. By not explicitly considering these very high tail losses, VaR
avoids being overly influenced by extreme events that might be difficult to measure accurately or predict
reliably. Value at Risk, can be estimated using different methods, including parametric approaches like
historical data analysis, or Monte Carlo simulations [12].

However, as [12] points out, V aRβ presents some drawbacks that make its use not ideal in the
context of portfolio optimisation. In fact, V aRβ is not a coherent measure since it does not satisfy
sub-additivity (see 2.12). As already discussed for the Mean-Var case, sub-additivity is essential for
ensuring a diversified portfolio, which is translated into a minimization of risk. Value-at-Risk fails to
meet this criterion, with the only exception being represented by variables that exhibit an elliptic joint
distribution [14]. A formal proof of this violation involves showing that there exist scenarios where
the V aRβ of a portfolio is greater than the sum of the V aRβ of its individual components, hence by
providing a counter example. A proof is discussed by [15] in Example 2.25, where a discrete scenario is
analyzed.

Furthermore, V aRβ exhibits non-convexity (see (2.13)), implying the potential existence of multiple
local extrema. This non-convex nature can pose challenges in the optimisation process [12]. In addition,
since it is only dependant on the chosen value of β, its value might be strongly affected by the choice
of the confidence level [13]. Given these limitations, an alternative risk measure, introduced by [16] in
1999, offers a viable choice: the Conditional Value at Risk (CVaR), [12], [14], [16].

2.3.2.1 Analytical Computation of VaR: Elliptical case
If we have normally distributed set of returns (see E.2.1), we can analytically compute the Value at
Risk of the portfolio considered. If we set a confidence level β, the V aRβ of a normal random variable
can be computed as:

VaRβ(R) = Φ−1(β)σp + µP , (2.17)

where Φ−1(·) is the inverse of the standard normal CDF. The proof is simple, and is provided in Section
A.1.4 of the Appendix.

More in general, we are able to derive analytically the Value-at-Risk of elliptical distributed random
vectors X = (X1, . . . , XN ) ∼ El(µ,Σ, g), with mean vector µ, covariance matrix Σ, and g as the density
generator. The density is therefore:

f(x) = |Σ|− 1
2 g

(
(x− µ)⊤Σ−1(x− µ)

)
.

The V aRβ of elliptically distributed variables is:

V aRβ = −w⊤µ+ qgβ,N
√

w⊤Σw, (2.18)

where qgβ,N is the solution to:

G(s) =
π

N−1
2

Γ
(
N−1
2

) ∫ −∞

s

∫ +∞

z2
1

(
u− z21

)N−3
2 g(u)dudz1.
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The proof is available at [17]. The result is coherent with the one obtained in (2.17), since a normal
variable is a special case of elliptical with density generator:

g(z) = (2π)−
N
2 e−

z
2 .

2.3.3 Conditional Value-at-Risk
The Conditional Value-at-Risk (CVaR) is defined as ”the expected value of losses exceeding V aRβ” [14].
If we consider a vector w of the portfolio’s weights, a random vector R ∈ RN of returns, then the
formal definition of CV aRβ is the following:

Definition 2 (Conditional Value at Risk (CVaR)). The Conditional Value-at-Risk (CVaR) of the
random vector R, with confidence level β ∈ (0, 1) is the expected loss in the β−tail with respect to the
joint distribution of returns:

CV aRβ(L) =
1

1− β

∫
L(w,R)≥V aRβ(L)

L(w, r)f(r)dr, (2.19)

where L(w,R) is the loss function, and f(r) is the probability density function of R (see Def. 30),
[14]. An alternative formulation of the CV aRβ is also provided by [14], which makes the interpretation
of the measure being an expected value evident:

CV aRβ = V aRβ + E[L(w,R)− V aRβ |L(w,R) > V aRβ ]. (2.20)

In contrast to Value-at-Risk, CV aRβ possesses some interesting properties. It is, in fact, continuous
with respect to the confidence level β, and is jointly convex in (L, β) [13]. As already highlighted, it
is a convex risk measure, which ensures that efficient algorithms can reliably find the optimal solution
[18]. However, Definition 2.20 still necessitates the computation of V aRβ to derive the CV aR measure,
which is not ideal for the previously outlined reasons. This has led to the development of an alternative
formulation that is simpler, yet equivalent to CV aRβ in optimisation problems. We can, in fact, define
a function Fβ(L,α), which depends on a new variable α:

Fβ(L,α) = α+
1

1− β

∫
L(w,R)≥α

(L(w, r)− α)f(r)dr. (2.21)

This new formulation has a set of desirable properties that are outlined by the following two theo-
rems, derived by Rockafellar and Uryasev [16].

Theorem 2. As a function of α, Fβ(L,α) is convex and continuously differentiable. The CV aRβ of
the loss associated with any return vector R ∈ RN can be determined from the formula:

CV aRβ(L) = min
α∈R

Fβ(L,α). (2.22)

In this formula the set consisting of the values of α for which the minimum is attained, namely

Aβ(L) = argmin
α∈R

Fβ(L,α), (2.23)
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is a nonempty, closed, bounded interval (perhaps reducing to a single point), and the V aRβ of the loss
is given by

V aRβ(L) = left end point of Aβ(L). (2.24)

In particular, one always has:

V aRβ(L) ∈ argmin
α∈R

Fβ(L,α) and CV aRβ(L) = Fβ(L, V aRβ(L)). (2.25)

From Theorem 2 we gain the convexity and differentiability of the newly defined function Fβ , which
make the function ideal for minimization purposes. Computing the V aRβ becomes not necessary any-
more, but the Value at Risk can still be derived from Fβ . The proof of this theorem is taken from [16],
and is discussed in Section A.1.1 of the Appendix.

Theorem 3. Minimizing the CV aRβ of the loss associated with the weights w over all w ∈ Xw, where
Xw represents the feasible set, is equivalent to minimizing Fβ(L,α) over all (w,α) ∈ X ×R, in the sense
that

min
w∈Xw

CV aRβ(L) = min
(w,α)∈w∈Xw×R

Fβ(L,α). (2.26)

where moreover a pair (w∗, α∗) achieves the second minimum if and only if w∗ achieves the first
minimum and α∗ ∈ Aβ(w∗). Therefore, in circumstances where the interval Aβ(L

∗) reduces to a single
point (as is typical), the minimization of Fβ(L,α) over (w, α) ∈ Xw × R produces a pair (w∗;α∗),
not necessarily unique, such that w∗ minimizes the CV aRβ and α∗ gives the corresponding V aRβ.
Furthermore, Fβ(L,α) is convex with respect to (w, α), and CV aRβ(L) is convex with respect to w,
when L(w,R) is convex with respect to w, in which case, if the constraints are such that Xw is a convex
set, the joint minimization is an instance of convex programming.

From Theorem 3, whose proof is available in [16]’s Appendix, several interesting properties emerge.
Firstly, it is important to note that optimizing Fβ(L) is equivalent to optimizing the Conditional Value
at Risk, which significantly simplifies the problem. This problem falls under the category of convex
stochastic optimisation, which has been extensively addressed in the literature [16]. Another observa-
tion is that the convexity of the loss function L(w,R) implies the convexity of both Fβ(L) and, most
importantly, CV aRβ(L).

However, the CV aRβ risk measure also presents some disadvantages. It is more sensitive to errors,
and is highly affected by the accuracy of tail modelling [13].

2.3.3.1 Analytical Computation of Conditional VaR
Analogously to the V aRβ case, we can analytically derive the CV aRβ of a of a portfolio composed by
Gaussian returns [19]. Hence, the analytical formulation is:

CVaRβ =
1

1− β
φ
(
Φ−1(β)

)
σP − µP , (2.27)

where φ(·) is the density of a standard normal, and Φ−1(·) the inverse of the CDF of a standard
normal. The proof is provided in the Appendix, in Section A.1.5.
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2.3.3.2 CVaR’s Problem Simplification
Differently from the Mean-Var case, finding solutions to the CV aRβ optimisation problem in non Gaus-
sian scenarios can be complex, since we cannot derive an analytical formulation of the efficient frontier.

Luckily, the CV aRβ offers a simplification that allows to solve the problem with an equivalent
formulation through linear programming optimisation. Starting from the equivalent formulation of
(2.21), [16] introduced its discretized version:

F̃β(L,α) = α+
1

q(1− β)

q∑
k=1

(L(w,Rk)− α)1L(w,Rk)≥α, (2.28)

which is obtained by sampling from the distribution of the return vector R, using a sample set
R1, . . . ,Rq. F̃β(L,α) can be further simplified into a linear expression using an auxiliary variable
uk, subject to the linear constraints uk ≥ 0 and L(w,Rk) + α+ uk ≥ 0 ∀k = 1, . . . , q:

α+
1

q(1− β)

q∑
k=1

uk,

becoming a linear programming problem. For each sampled vector Rk, the variables uk corresponds to
the quantity [L(w,Rk) − α]+, since the constraints imposed guarantee that the variable is located in
the space where the constraint L(w,Rk) ≥ α is satisfied.

The new formulation is much easier to optimize, and can be used also for non-normal distributions.
Problem (2.10) therefore becomes:

minw,α,u α+ 1
q(1−β)

∑q
k=1 uk

s.t. L(w,Rk) + α+ uk ≥ 0 ∀k = 1, . . . , q

s.t. uk ≥ 0 ∀k = 1, . . . , q

s.t. wTµ = r0

s.t.
∑N

i=1 wi = 1

s.t. wi ≥ 0

s.t. α ∈ [0, 1].

(2.29)

2.4 The Tangent Portfolio
The selection of a specific point among the collection of optimal ones of the efficient frontier, depends on
the level of risk that an investor is willing to take. In this subsection, we will discuss different methods
for choosing an optimal solution, aiming to find a balance between a satisfying expected return, and
managing the level of risk to which the chosen portfolio is exposed.

The general approach is what is defined as the reward-risk ratio, hence a method that implies the
choice of the portfolio based on two factors: the reward (the expected return in the scenario that we
consider), and the risk. [20], [21] propose an overview of some of the ratios available. Among these, the
Sharpe Ratio, introduced by Sharpe in 1966 in [22], stands out as one of the most widely adopted.



2.4. The Tangent Portfolio 16

Given a risk measure ρ(·), the corresponding reward-risk ratio, can be defined as:

wTµ− rf
ρ(wT r)

, (2.30)

where rf is the risk free rate, defined as the return on an investment that is considered to have no risk
of financial loss.

The portfolio on the efficient frontier corresponding to the maximum ratio is selected as the optimal
portfolio. This portfolio is commonly referred to as the ρ-tangent portfolio, as geometrically, the solution
is defined by the point where the efficient frontier intersects the line representing the maximum ratio.
This line passes through the risk-free rate point, emphasizing the trade-off between risk and return in
portfolio selection [20]. An example is shown in Figure 2.4, where the risk measure ρ(·) is the Variance,
hence corresponding to the Sharpe ratio scenario.

Figure 2.4: Efficient frontier of a Mean-Variance problem, computed optimising a portfolio of two normally
distributed returns. The tangent portfolio and the Capital Market Line, computed with a risk free rate rf = 1.5.

In the following Sections, we will explore the Sharpe ratio, generally associated to the Mean-VaR
problem, and the STARR ratio, which finds utility in the context of Conditional Value at Risk (CVaR).
For Value at Risk, there is not a specific ratio identified, but in practical application we will deploy the
formula presented in (2.30).

2.4.1 Sharpe Ratio
Given a risk-free rate rf , we can define the Sharpe ratio as:

SR =
µP − rf
σP

, (2.31)

where µP is the expected return of the portfolio, and σP is its standard deviation [23]. The higher the
value of the ratio, the better the performance of the portfolio.
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The Sharpe Ratio can be used to select the best portfolio in the Mean-Variance scenario. The
general approach is to find the tangent portfolio, hence the point of the efficient frontier that is tangent
to the Capital Market Line (CML). The the CML is defined as the line that maximises the reward-risk
ratio on a risk-free adjusted environment. The analytical derivation of this tangent portfolio will be
discussed in 2.3.1.1.

2.4.2 STARR Ratio
Analogously to the Mean-Var context, we can define the STARR Ratio in the context of Conditional
value at risk minimization. Following the general formula discussed in (2.30), for a given confidence
level β, the Ratio is obtained by computing:

STARRβ =
µP − rf

CV aRβ(w,R)
, (2.32)

where again µP is the expected return of the portfolio, and rf the risk-free rate [20].
The objective is to identify the portfolio that maximizes the STARR Ratio, corresponding to the
CV aR−tangent portfolio. It is noteworthy that different values of β lead to distinct results [21].

2.5 The Delta-Normal Method
The risk measures can be obtained through different methods. One such method is the delta-normal
technique, which is based on the assumption that the underlying assets follow a multivariate normal
distribution. This method makes the computation of V aRβ and CV aRβ extremely straightforward
(see Sections 2.3.2.1, 2.3.3.1), yet it relies on the assumption of data normality. The delta method is
straightforward to compute, it is often less applicable in financial contexts where asset’s returns behav-
iors generally are not correctly represented by a normal distribution. This considerations set the stage
for the simulation study discussed in the following Section 2.6.

Alternatively, historical data can be used for simulation, assuming that future observations will
mimic past behavior. Monte Carlo Simulations provide an alternative methodology, simulating data
from a chosen statistical distribution believed to accurately describe the behaviour of the returns of an
asset [24].

2.6 Simulation Study
Having discussed the theory and the computations behind portfolio theory, we propose a small simula-
tion study.

In this study, we simulate N = 1000 data points, representing two asset’s returns, from a Gaussian
distribution: R1 ∼ N

(
µ1, σ

2
1

)
and R2 ∼ N

(
µ2, σ

2
2

)
. Consequently, the portfolio obtained as a linear

combination of the two, will have a return of R = w1R1 + w2R2, which will be again normally dis-
tributed. The goal of the optimisation process is to determine the value of the two weight, by deploying
the different methodologies presented in the previous Chapters. The results obtained will then be com-
pared, highlighting the differences between the different risk measures.
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The selected parameters are the following µ and Σ:

µ =

[
µ1

µ2

]
=

[
10

15

]
,

and

Σ =

[
102 0.7 ∗ 15 ∗ 10
0.7 ∗ 15 ∗ 10 152

]
.

The choice of the parameters is dictated by a need of exploring two cases that should mimic the
behaviour of a financial index: we generate an asset with low expected return, and low volatility, which
corresponds to a less risky asset, and one that has higher expected value but also higher volatility. The
portfolio obtained by combining the two assets is a normally distributed random variable with mean:

µP = wTµ,

and variance
σ2
P = wTΣw.

The simulated data are visualized in the following Figure 2.5, along with the estimated Pearson
Correlation between the two variables.

Figure 2.5: Distribution of the two simulated asset’s returns, drawn from two Gaussian distributions. A
scatterplot of the data, highlighting their linear correlation is also provided (refer to section 3.2 for additional

details on correlation).

After having simulated the two returns, we started studying the implications of following an Equal-
Weight approach (the weights are simply set at 50% for each asset). We proceeded by studying the
frontiers obtained from the Mean-Variance approach. Lastly, we studied the effect of choosing risk
measures like V aRβ and CV aRβ , discussed in Sections 2.3.2, and 2.3.3, to select the optimal set of
weights. Reward-to-Risk Ratios are then applied to select the best portfolio from each method, and to
compare the results.

The risk free rate was set to be rf = 6, coherently with the mean and volatility value of the assets
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considered.

2.6.1 Simulation-Based Calculation of the Mean-Variance Efficient Frontier
After having estimated the mean µ, and the covariance matrix Σ from the simulated data, following the
steps discussed in Section 2.3.1, we started by computing the target return associated with minimum
variance, which corresponds to the starting value of the vector of target returns r0. This return, rmin is
obtained from rmin = wT

minµ, where wmin is the vector of weights that solves the following quadratic
minimization problem: minw wTΣw

s.t. wT1 = 1.

Once we obtained the value of rmin, we created a vector of target returns which was used to
generate the efficient frontier from the parabola that we derived in Equation 2.15. The results obtained
are presented in Figure 2.6, where on the y-axis we find the target returns, and on the x-axis the
corresponding Variance. The results are compared with the mean and variance of the Equal-Weight
portfolio, hence the portfolio whose weights are wi =

1
N .

Figure 2.6: Mean-Variance efficient frontier of the normally distributed asset’s returns, where the tangent
portfolio (blue triangle) is identified as the intersection of the frontier with the market line. The portfolio is

compared to the equal weight portfolio (red dot).

Subsequently, we set the risk free rate rf = 6, and found the Tangent Portfolio by solving Equation
(1). The portfolio is the point that maximises the Sharpe Ratio (formula 2.31) among the ones of the
efficient frontier. For this example, the portfolio is presented as a blue triangle in Figure 2.6. We can,
in fact, see how the point is located on the frontier, and is indeed obtained from the intersection of the
tangent line (blue) with the curve of optimal points. The values of the tangent portfolio are:{

µtp = 12.004

σ2
tp = 122.486.
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The results obtained will be compared to the ones of the other methods in Section 2.6.4. In plot
2.6 we compare the resulting portfolio to the equal weights one (red dot in the Figure): both points are
located on the frontier, but Markovitz’ method prefers a less risky combination.

2.6.2 Simulation-Based Calculation of the Mean-V aRβ Efficient Frontier
As previously discussed in Section 2.2.2, the efficient frontier in the Mean-Value at Risk framework
can be derived by solving the optimisation problem of 2.9, by setting V aRβ as the risk measure, and
solving the problem for a set of target returns. Since we are in a Gaussian setting, we can simplify the
computations by deploying the analytical formulation of the value at Risk introduced in Equation (2.17).

We determined the optimal set of weights that minimizes the corresponding V aRβ , for each target
return, obtaining the frontier in Figure 2.7. The optimisation was carried out by applying a built
in function of R’s package ”fPortfolio” [25], ”portfolioFrontier”, which uses a quadratic programming
algorithm (or QP, a nonlinear programming algorithm used to optimize multivariate quadratic functions
subject to linear constraints).

Figure 2.7: Efficient frontiers for the Mean-Value-at-Risk case, with the optimal reward-to-risk portfolio
(blue), and compared with the equal weight (red).

Among the points obtained from the optimisation process, we selected the portfolio that maximised
the Reward-to-Risk ratio, with a rf = 6, hence the point i for which the following was maximised:

µi − rf
V aRβ(wi,R)

,

µi representing the return of the i-the portfolio, and wi the associated set of weights.
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The best portfolio is identified by a blue triangle, and has values:{
µtp = 13.059

V aR0.95 = 7.099.

Again, the EW point, which appears as a red dot in the plot, is located on the frontier, but this
time is less risky than the one preferred by the mean-VaR method.

2.6.3 Simulation-Based Calculation of the Mean-CV aRβ Efficient Frontier
Analogously to the V aRβ case, we can also optimize a portfolio using the Conditional Value at Risk
(CVaR) risk measure. This optimisation involves solving the problem introduced in (2.29), as this dis-
cretized problem is equivalent to solving the original one, but can be solved with linear programming.

In Figure 2.8 we can observe the parabolic efficient frontier derived. Here, the x-axis represents the
risk measure under optimisation, hence the values of the CVaR, and on the y-axis the corresponding
target returns.

Figure 2.8: Mean-Conditional Value-at-Risk efficient frontier, computed optimising a portfolio of two
normally distributed returns. In blue we find the best STARR ratio portfolio, in red the EW portfolio.

The optimal portfolio, highlighted as a blue triangle has the following values:{
µtp = 13.209

CV aR0.95 = 12.546.

The method does not provide an efficient frontier that is better than the EW portfolio (in red), since
the portfolio is located on the frontier itself. However, this might be due to the fact that we considered
only two assets. Similarly to the Mean-VaR, the chosen portfolio is riskier than the one obtained from
setting the weights equal.
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2.6.4 Results comparison
In the following two tables we will compare the portfolios obtained by solving the optimisation problem
with the different methods discussed in Subsections 2.6.1, 2.6.2 and 2.6.3. The portfolios are also com-
pared to an equal weight portfolio. Furthermore, we will examine two portfolios exposed to maximum
and minimum risk, achieved by setting the weights equal to w1 = 100% and w2 = 0%, and vice versa.

To compare the results, we compute the variance, the Value at Risk, and the Conditional Value at
Risk of the portfolios selected from each method. Using the corresponding weights, we derive these
risk measures through numerical methods, the results are provided in Table 2.1. For each method we
computed the Sharpe and STARR ratios (eq. (2.31) and (2.32)). We also provide the time that the
optimisation process took to compute the optimal portfolios.

In addition, given the Gaussian nature of the simulations, we are able to compute all the values
discussed above with analytical formulas, as discussed in Section 2.5. Consequently, we present the
analytical values in Table 2.2: this will allow to discuss the efficacy of applying numerical approxima-
tions to the risk measures. To give further meaning to this comparison, in Table 2.2 we used the actual
parameters used to simulate the portfolios, hence the values of µ and Σ provided at the beginning of
this Section, instead of using values estimated from the simulated data.

Method Weights Mean Var VaR CVaR Sharpe STARR Time
EW (50%, 50%) 12.495 133.779 6.574 11.488 4.8% 0.565 -
Mean-Var (59.9%, 40.1%) 11.997 122.476 6.223 10.922 4.9% 0.549 0.14 s
Mean-VaR95 (38.8%, 61.2%) 13.059 149.306 7.099 12.302 4.7% 0.574 1.74 s
Mean-CVaR95 (35.8%, 64.2%) 13.209 153.939 7.286 12.546 4.7% 57.5% 53.5 s
Least Risky (100%, 0%) 9.983 99.86 6.481 10.626 4.0% 0.375 -
Most Risky (0%, 100%) 15.007 225.267 9.78 16.131 4.0% 0.558 -

Table 2.1: Table comparing the portfolios obtained by optimizing the composition of two normally distributed
returns of the two assets, using different methods: the Equal Weight, The Mean-Var, the Mean-V aR0.95 and
the Mean-CV aR0.95. The table reports the weights and the results of the risk measures and ratios computed

numerically.

Method Weights Mean Var VaR0.95 CVaR0.95 Sharpe STARR
Equal Weight (50%, 50%) 12.5 133.75 6.582 11.154 4.8% 0.583
Mean-Var (59.91%, 40.09%) 12.004 122.486 6.257 10.632 4.9% 0.565
Mean-VaR0.95 (38.77%, 61.22%) 13.061 149.229 7.095 11.924 4.7% 0.592
Mean-CVaR0.95 (35.78%, 64.22%) 13.211 153.849 7.255 12.158 4.7% 59.3%
Least Risky (100%, 0%) 10 100 6.5 10.453 4.0% 0.383
Most Risky (0%, 100%) 15 225 9.75 15.679 4.0% 0.574

Table 2.2: Table comparing the portfolios obtained by optimizing the composition of two normally distributed
asset’s returns, using different methods: the EW, The Mean-Var, the Mean-V aR0.95 and the Mean-CV aR0.95.

The table reports the weights and the results of the risk measures and ratios computed analytically.

The results shown in Table 2.1, correspond to the expectations. We can observe that according to
Sharpe Ratio, the best portfolio is obtained with Markovitz’ method, while the best STARR is achieved
by the portfolio obtained from the Mean-CVaR optimisation. The ratios for all methods are quite close
to each other, indicating how the methods do not have big differences among their results and that
they can be considered rather equivalent. We can however notice how the Mean-Variance portfolio
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is significantly faster than the other methods, suggesting that for cases like this, we should prefer a
more straightforward risk measure. This result is coherent with the previous discussion, emphasising
that with simple distributions, such as normally distributed data, more simplistic approaches tend to
outperform others.

On another note, if we compare the two tables, we can notice how the analytical values are not per-
fectly matching the ones obtained from the simulated data, but they are rather close. The discrepancy
is rather small, and we can therefore conclude that n = 1000 are enough observations to guarantee a
good estimate of the analytical result. In addition, we can see how the numerical results are able to
maintain the risk hierarchy, and exhibit consistent relationships with VaR and CVaR across all consid-
ered measures. We can therefore conclude that we are satisfied with the results obtained. To improve
the robustness of our analysis, if data availability allows it, we will try to increase the dataset size when
working with the actual model.

Lastly, to have a better overview of how the weights influence the risk measures and the ratios,
we computed these metrics for each possible combination of weights, ranging from the less risky w =

(100%, 0%), to the most risky w = (0%, 100%). The risk measures and ratios were calculated as
functions of weight w1 (the weight of the first variable), and produced the plots shown in Figure B.1.
We can notice how all three measures exhibit a decreasing trend as the weight assigned to the first
variable increases, in accordance with the mean, which has a linear behaviour. Variance, VaR and
CVaR have a quadratic behaviour. Additionally, we studied the evolution of the relative Sharpe and
STARR Ratio: they have a concave shape, where we can clearly identify a maximum, corresponding to
the optimal portfolio.
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Figure 2.9: Plots showcasing the evolution of the risk measures considered, and the relative ratios in relation
to the change of weights. In particular, in the X-axis we find the percentage of the first asset (less risky).

2.6.5 The Exponential Case
Normally distributed variables offer a series of advantages that are considered ideal. As discussed earlier,
the analytical formulation is readily available for all three risk measures under consideration. This is the
main reason why methods such the Delta Method, which considers the assumption that the underlings
follow a normal distribution, is often used.

However, the normality assumption is not a characteristic typically observed in financial time series,
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as we will see in in Chapter 8. Financial data often exhibit asymmetries and high-tail distribution,
phenomena that are inadequately represented by a normal distribution. Consequently, the desirable
properties associated with normality cannot be fully deployed. Methods such as Markowitz’s Mean-Var
prove to be too simplistic, failing to fully capture all information carried by the time series. More
sophisticated models and risk measures, like Conditional V aR, become necessary to effectively address
the optimisation problem under consideration.

In light of these considerations, we re-propose the same simulation, but with a different underlying
distribution. We simulate n=1000 data points from two exponential distributions with parameters:[

λ1

λ2

]
=

[
1
10
1
15

]
,

hence by generating two returns that have the same mean and variance of the assets considered on
the previous experiment (the mean of an exponentially distributed variable, X ∼ Exp(λ), is given by
E[X] = 1

λ , while σ2 = 1
λ2 ). Since, exponential data are only positive, to make sure the simulation study

had financial sense, we translated the data by 2 units on the left, allowing for negative values. The
resulting data are show in in the following figure 2.10.

Figure 2.10: Distribution of the simulated data, drawn from two Exponential distributions with parameters
presented above. A scatterplot of the data, highlighting their linear correlation is also provided (see section 3.2).

In Section 2.6.5 of the Appendix we provide the results for the exponential case, which will be dis-
cussed here. In particular, in Figure B.3 we have the three graphs obtained from the three optimisation
methods, while in Figure B.2 we provide the graphs showcasing the evolution of the risk measures and
the ratios in relation with the weight w1, equivalently to what we discussed for the Gaussian case.

In particular, for each optimisation technique we obtain the following results.

2.6.5.1 Mean - Variance
The optimal portfolio chosen from the Mean - Variance frontier, by comparing the Sharpe ratios of each
point, has the following values: {

µtp = 10.473

σ2
tp = 124.634,
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the portfolio is the tangent portfolio in blue, and is characterized by low exposure to risk. We can
notice how the chosen portfolio has almost the same values as the EW portfolio, represented as a red
dot, which is also located on the frontier. The result is coherent with Figure B.2, where the maximum
Sharpe ratio is located in correspondence to w1 = 50%.

2.6.5.2 Mean - Value at Risk
The optimal portfolio for the Mean- V aR frontier has the following values.{

µtp = 10.942

V aR0.95 = 139.114.

The selected portfolio has higher risk than the ones selected with an EW approach, or the Mean-Var
one, as it is noticeable with comparing the point with the EW (red dot). However, this method still is
not characterized by a high exposure to risk, preferring a rather low return with minimal risk.

2.6.5.3 Mean - Conditional Value at Risk
Lastly, the Mean - CV aR optimal portfolio is characterized by the following values:{

µtp = 11.725

CV aR0.95 = 177.932.

This specific portfolio has weights w = (7.68%, 92.32%), a result that is significantly higher in risk
than the ones from other methods considered. This choice is better explained in Figure B.2, where we
can see that the STARR curve reaches its peak almost at the beginning, hence where the weight w1 is
low, and then starts a constant decrease, while for the Sharpe ratio the peak is reached around the EW.

2.6.5.4 Result Comparison
Here we present the table summarizing the results presented for the exponential case, and comparing
the four methods. Differently from the Gaussian case presented in Table 2.2, we do not have an
analytical computation for the different measures. We therefore computed the values on the table from
the simulated data using only numerical methods.

Method Weights Mean Var VaR CVaR Sharpe STARR Time
Equal Weight (50%, 50%) 10.499 125.265 0.912 1.384 3.59% 3.251 -
Mean-Var (50.90%, 49.10%) 10.473 124.634 0.912 1.383 3.58% 3.235 0.18 s
Mean-VaR95 (34.69%, 65.31%) 10.942 139.114 0.965 1.423 3.55% 3.472 0.72 s
Mean-CVaR95 (7.68%, 92.32%) 11.725 177.932 1.193 1.581 3.21% 3.62 27.8 s
Least Risky (100%, 0%) 9.051 121.12 1.421 1.715 2.51% 1.779 -
Most Risky (0%, 100%) 11.947 192.333 1.286 1.649 3.09% 3.607 -

Table 2.3: Table comparing the portfolios obtained by optimizing the composition of two exponentially
distributed returns, using different methods: the EW, The Mean-Var, the Mean-V aR0.95 and the

Mean-CV aR0.95. The table reports the weights and the results of the risk measures and ratios computed
numerically.

It is immediate to notice that, the Equal Weight portfolio outperforms the Mean-Variance portfolio
in terms of achieving the best Sharpe ratio. Nevertheless, the discrepancy between the two portfolios is
minimal, as we have already discussed. Contrarily, the optimal STARR ratio aligns with the portfolio
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selected by the Mean-CVaR method, which is consistent with our expectations.

By comparing the computational times, we can observe how Markovitz’ method is the fastest, as we
expected, but all methods reach a result in a few seconds, making the time not a relevant factor in the
method’s choice for such amount of observations.

In addition, as for the normal scenario, since we are in two dimensions, we can study the evolution
of the variables according to the weights. The results are available in the Appendix, in Figure B.2. The
mean and variance plot are similar to the Gaussian case. However, the VaR and CVaR preserve the
quadratic shape, but are not only decreasing anymore. This implies that a lower return is associated
with a higher risk: the frontier, in this case, is non-bijective, resulting in some portfolios to be inefficient:
this is the case of the ”Least Risky” portfolio, where the value of the VaR and CVaR is higher than all
other methods, even if the expected value is lower. The Sharpe ratio maintains the shape discussed in
the previous section, and we can identify the best portfolio as the peak of the curve.

From this example it is still challenging to draw conclusions on which method is best. While the
Mean-Variance method stands out for its computational efficiency and simplicity, the difference is still
marginal. A small indication of potential limitations in Markowitz’s method arises as it is slightly out-
performed by the EW portfolio. However, it is important to keep in mind that this analysis is conducted
in a bidimensional setting, which results in all portfolios to lie on the same frontier, as each point can
be written as a function of one weight wi (the other one is simply given by 1− wi). This is clear from
the Figures in B.2.

For this reasons, we decided to expand this simulation study to three dimensions, introducing a
controlled yet more complex environment for the optimisation procedure. In particular, we will discuss
a 3-dimensional portfolio with Gaussian distributed returns, and one further advancement introducing
copulas. While the optimisation of VaR and CVaR in this expanded setting may result in longer
computational times, it offers an opportunity to study potential advantages of these two methods.

2.6.6 Gaussian 3-dimensional case
For the three-dimensional case we simulate three normal variables with the following parameters:

µ =

 µ1

µ2

µ3

 =

 10

12

15

 ,
and

Σ =

 102 0.7 ∗ 10 ∗ 12 0.6 ∗ 10 ∗ 15
0.7 ∗ 10 ∗ 12 122 0.8 ∗ 12 ∗ 15
0.6 ∗ 10 ∗ 15 0.8 ∗ 12 ∗ 15 152

 .

The simulated variables, and their Pearson correlations are shown in the following Figures 2.11.
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Figure 2.11: Distribution of the simulated data, drawn from two Exponential distributions with parameters
presented above. Three scatterplots of the data, highlighting their linear correlation is also provided (see section

3.2).

Again we derive the three optimal portfolios using the three risk measures, and compare the results
with the EW portfolio, the most risky portfolio and the least risky one. The results are shown in Table
2.4, and in Figure B.4 of the Appendix.

Method Weights Mean Var VaR CVaR Sharpe STARR Time
EW (33.3%, 33.3%, 33.3%) 12.22 123.088 5.923 10.74 5.05% 57.9% -
Mean-Var (51.7%, 16.1%, 32.2%) 11.82 112.872 5.574 10.123 5.15% 57.4% 0.17 s
Mean-VaR95 (41.4%, 12.7%, 45.9%) 12.436 126.835 5.981 10.836 5.07% 59.3% 0.52 s
Mean-CVaR95 (39.9%, 4.9%, 55.2%) 12.742 135.574 6.33 11.308 4.97% 59.6% 42.1 s
Least Risky (100%, 0%, 0%) 9.903 100.658 6.612 10.753 3.87% 36.2% -
Most Risky (0%, 0%, 100%) 14.867 224.796 9.743 16.036 3.94% 55.2% -

Table 2.4: Table comparing the portfolios obtained by optimizing the composition of three normally distributed
returns, using different methods: the Equal Weight, The Mean-Var, the Mean-V aR0.95 and the Mean-CV aR0.95.

The table reports the weights and the results of the risk measures and ratios computed numerically.

Observing the results in the Table, we can highlight how the Mean-Variance method tends to favor
a less risky portfolio, while using the Conditional value at risk results in the choice of a more risky
portfolio. Despite this difference, the Sharpe ratio is still maximised by Markovitz’ portfolio, while the
best STARR ratio is reserved to the Mean-CVaR one. We can see how all portfolio exhibit very similar
ratio values, suggesting that the portfolios might be equivalent.
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In addition, also for this simulation, we have that the computational time required to optimize the
CVaR portfolio is higher. However, it remains manageable, taking less than a minute, suggesting that
we cannot select our preferred method solely based on computational efficiency.

What becomes interesting is the observation of the plots in Figure B.4. Here the CVaR method
stands out as the only one to outperform the Equal Weight (EW) portfolio, as the red dot does not lie
on the frontier, but in the inefficient surface. On the contrary, we can see how for the Mean-Variance
case, the EW lies almost outside, outperforming the method.

To better compare the different methods, we plotted all optimal portfolios with to the optimal
Mean-CVaR frontier in the following Figure 2.12. This visualization highlights how the EW and the
Mean-VaR portfolios are outperformed by the points on the efficient frontier. However, it is still not
possible to determine which of the other two methods is better as they lie both on the frontier.

It is important to remember that we are in a Gaussian scenario. To further explore the dynamics
and complexities, we introduce copulas.

Figure 2.12: Mean-CVaR efficient frontier, computed optimising a portfolio of three normally distributed
returns. In blue we find the best STARR ratio portfolio, in red the EW portfolio, while in purple the best

Mean-VaR, and in green the best portfolio according to Markovitz.

2.6.7 Copula case
Lastly, to add some complexity and to introduce the topic that will be discussed throughout this thesis,
we analyze a further simulation that involves the use of copulas, which will be introduced in the follow-
ing Chapter 3.
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We simulated a three dimensional Gaussian copula with correlation matrix (see 3.3.2):

R =

 1 0.7 0.6

0.7 1 0.8

0.6 0.8 1

 ,

which guarantees that the simulated variables have the same correlation as the previous example, as
we can notice from the Pearson correlations shown in Figure 2.13. Subsequently, since copulas are
characterized by data that have a uniform distribution, we transform each simulated data by applying
the inverse Cumulative Distribution of an Exponential distribution of parameter λi. This procedure
will be explained in Section 3.1, and it results in a three dimensional dataset that is exponentially
distributed with the following parameters:

µ =

 λ1

λ2

λ3

 =

 1/10

1/12

1/15

 .
As for the bi-dimensional case presented in 2.6.5, we translate the data by two units, to guarantee that
the dataset has negative values, hence that it has financial sense. The resulting dataset is shown in
Figure 2.11.

Figure 2.13: Distribution of the simulated data, drawn from three Exponential distributions with parameters
presented above, and obtained from a three dimensional Gaussian copula. Three scatterplots of the data,

highlighting their linear correlation is also provided (see section 3.2).
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We proceeded by deriving the three optimal portfolios using the three risk measures, and comparing
the results with the EW portfolio, the most risky portfolio and the least risky one. The results are
shown in Table 7.1, and in Figure B.5 of the Appendix.

Method Weights Mean Var VaR CVaR Sharpe STARR Time
EW (33.3%, 33.3%, 33.3%) 10.364 119.745 0.853 1.357 4.47% 3.955 -
Mean-Var (44.8%, 17.5%, 37.6%) 10.26 116.003 0.841 1.35 4.53% 3.897 0.05s
Mean-VaR95 (18.4%, 10.1%, 71.5%) 11.826 166.261 0.909 1.396 4.10% 4.89 0.53s
Mean-CVaR95 (7.9%, 0.8%, 91.3%) 12.642 204.436 1.071 1.504 3.73% 5.082 55.5s
Least Risky (100%, 0%, 0%) 7.993 99.912 1.496 1.749 2.99% 1.711 -
Most Risky (0%, 0%, 100%) 13.068 227.446 1.23 1.618 3.54% 4.987 -

Table 2.5: Table comparing the portfolios obtained by optimizing the weight of a Gaussian copula, transformed
by applying Exponential distributed marginals, using different methods: the Equal Weight, The Mean-Var, the

Mean-V aR0.95 and the Mean-CV aR0.95. The table reports the weights and the results of the risk measures and
ratios computed numerically.

The considerations made from Table 7.1 are similar to the previous simulations. Mean-Variance
tends to prefer a less risky portfolio, while the other two methods present similar results, tending to-
ward a more risky approach. The computational time is rather small for all methods considered, with
Markovitz’ method detaining the best time. The best Sharpe ratio is held by the Mean-Var portfolio,
while the best STARR by the Mean-CVaR one. However, while the values for the Sharpe are quite
close to each other, the CVaR has a significantly better value than the other portfolios considered, with
the exception of the Value at Risk one.

Conversely, by analyzing Figure B.5 of the Appendix, we can observe how, while for the Mean-
Variance case the EW portfolio lies on the efficient frontier, both other risk measures outperform the
benchmark. Furthermore, a detailed comparison of results is presented in Figure 2.14, where optimal
portfolios are plotted against the Mean-CVaR optimal frontier. In this case, all portfolios lie on the
frontier (with the exception of the EW), yet Markowitz’s portfolio is positioned on the inefficient side.
This indicates that, for equivalent risk, we can find a portfolio that has higher expected value. This is
a first example of how the simplicity of Markovitz’ approach can fail to identify an optimal portfolio
for more complex data.
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Figure 2.14: Mean-CVaR efficient frontier, computed optimising a portfolio of three set of returns, derived
from a Gaussian copula, and transformed using an exponential. In blue we find the best STARR ratio portfolio,

in red the EW portfolio, while in purple the best Mean-VaR, and in green the best portfolio according to
Markovitz.

2.7 Conclusions
In light of the findings discussed in the previous sections, we will adopt CV aRβ as the chosen risk
measure. In fact, it has demonstrated favorable properties, including subadditivity, ensuring the con-
struction of a diversified portfolio, and a consideration of asymmetries and tail behaviour, which are
characteristics that become necessary in more complex distributions, such as those observed in financial
scenarios. In addition, from Section 2.6.7, we have seen how adopting more complex risk measures
becomes favorable in more complex settings. Lastly, while its formulation can seem more complex, the
equivalent problem discussed in (2.29) allows us to deal with a much simpler problem, which can be
solved with a linear programming optimisation.

As a consequence, to select the optimal portfolio from the frontier we will use the STARR Ratio (see
2.32). On the other hand, we will also run some analysis and comparison of the selected portfolio with
other benchmarks. Those comparisons will be ran using Sharpe ratio ((2.31)), which is more simple
and straightforward to compute.

More in general, within portfolio optimisation, many methods have been developed and explored over
time, with each offering a unique set of advantages and drawbacks. While Markowitz’s approach retains
its significance for its simplicity, the field has evolved considerably since its formulation. [9] provides a
wide overview of the state-of-the-art methodologies available, describing and comparing earlier versions
with the latest advancements. In this thesis in particular, we will discuss the introduction of copula
models in Chapter 3, and the one of time series models in Chapter 5. Moreover, we will combine the
two models in Chapter 6, and explain the final procedure adopted to construct an efficient frontier in
Chapter 7.



3
Copulas

This Chapter aims at providing all the knowledge necessary to understand copula models, which are
useful tools for modelling dependencies, and particularly relevant in risk and tail modelling. Copulas
have gained relevancy in financial applications, supporting modelling assets and risk management [26].

Copulas were first introduced in 1959 by Sklar in [4]. The main idea behind copulas is to study
multivariate distributions, by projecting each variable to the unit hypercube [0, 1]d. This is carried
out by applying the correct marginal distribution function to each variable of the multivariate dataset.
This ensures to eliminate the information contained in the marginals, and to focus on exploring the
relationships between variables, and their dependencies.

More in detail, given d random variables X1, . . . , Xd, we can define their marginal distributions
F1, . . . , Fd and their joint distribution F . However, the marginal distributions are not sufficient to
characterize the joint distribution, because they do not describe the relationship between the different
components. The missing link is the copula, which is defined by [4] as follows:

Definition 3 (Copula). A d-dimensional Copula C(u1, ..., ud) is a multivariate distribution function
on the hypercube [0, 1]d, where the marginal distributions are uniform.

Starting from Sklar’s theorem, this chapter will discuss the theoretical background behind copulas,
and the corresponding statistical methodology following the textbooks [27], [28]. A few usual copula
families will be introduced, as well as details on how to estimate their parameters. The chapter will
conclude with a simulation study, aimed at illustrating the model selection procedure described in
Section 3.4, and to give some insight on the application of copula models.

3.1 Sklar’s Theorem
In this section, we will discuss an important theorem that illustrates how to construct a copula, and
vice-versa how to derive the joint distribution from a copula. This theorem is Sklar’s theorem, which
details the relationship between copulas and the CDFs of a multivariate random vector.

33



3.2. Dependence Measures 34

Theorem 4 (Sklar’s Theorem). Given a d-dimensional random vector X = (X1, ..., Xd) that has a
joint distribution F , and marginal distributions F1, ..., Fd, then there exists a copula C, such that
∀x = (x1, ..., xd) ∈ Rd:

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (3.1)

If the density of X exists, hence if F is differentiable with respect to all of its arguments, we can
also express this relationship using the copula density c,

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))f1(x1)...fd(xd). (3.2)

If the marginal distributions F1, ..., Fd are absolutely continuous, then the copula C is unique.

Moreover, given a copula C associated to a multivariate distribution F, with marginals F1, ..., Fd, we
have that ∀u ∈ [0, 1]d the copula can be expressed as:

C(u1, ..., ud) = F (F
[−1]
1 (u1), ..., F

[−1]
d (ud)), (3.3)

where F [−1]
i (s) = inf{t|Fi(t) ≥ s}, s ∈ [0, 1], represents the pseudo inverse of the marginal CDF of

the random variable Xi.

From Sklar’s Theorem we learn how copulas are used to represent the relationship between the
joint distribution of a random vector, and the marginal distributions of its components. Copulas are
therefore a useful tool used to model the dependence among the components of a random vector, and
ultimately to make predictions.

3.2 Dependence Measures
Dependence is a rather complex mathematical concept, which can be mathematically formulated via
the concept of copulas, by eliminating the effect of marginal distributions. In general, dependence,
especially in the two dimensional case, is tightly related to correlation, a metric that incorporates the
information about the relationship between two variables within the [-1, 1] interval.

The most commonly used dependence measure is Pearson correlation, which quantifies linear depen-
dence. However, many alternatives are available, each with distinct properties: it is therefore important
to chose the correct measure, depending on the characteristic relevant for a specific task. Copulas are
typically associated with two rank-based measures: Kendall’s Tau and Spearman’s Correlation. In this
section we will present these two dependence measures, which offer the advantage of being well-defined
and invariant to changes in scale. We will define them, illustrate how they are estimated, and their re-
lationship with copulas. Additionally, we will discuss the concept of tail dependence coefficients, which
are particularly useful when studying extreme events.

3.2.1 Kendall’s Tau
Kendall’s Tau is a rank-based dependence measure, that assesses the degree of dependence between two
random variables based on the ranks of their observations, rather than the actual values. Along with
Spearman’s ρs, it can be expressed only in terms of the underlying copula. It is defined as follows:

Definition 4 (Kendall’s tau). If we have two random variables X and Y, where each pair (X1, Y1)

and (X2, Y2) are independent and identically distributed as (X,Y ), we can define Kendall’s tau as the
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difference of the following probabilities:

τ(X,Y ) = P((X1 −X2)(Y1 − Y2) > 0)− P((X1 −X2)(Y1 − Y2) < 0). (3.4)

Kendall’s Tau is defined as the probability that the two random variables are concordant, minus
the probability of discordance [27]. More precisely, ”Two random variables X1 and X2 are concordant
when large values of X1 go with large values of X2.” [29].

3.2.2 Spearman’s Correlation
Spearman’s Correlation is also a rank-based measure, defined as:

Definition 5 (Spearman’s Correlation). If we have two random variables X1 and X2, with the corre-
sponding marginal distributions F1 and F2, Spearman’s Correlation is defined as:

ρs := ρs (X1, X2) = Cor (F1 (X1) , F2 (X2)) . (3.5)

Spearman’s Correlation is therefore computed as the Pearson correlation Cor(·, ·), between two
random variables, which have been transformed to unit scale by applying their marginal distribution.

3.2.3 Tail Dependence
Tail dependence expresses the probability of joint occurrence of extreme events, which can either be
extremely small or large. It is defined as follows:

Definition 6 (Upper and lower tail dependence coefficient). The upper tail dependence coefficient of a
bivariate distribution with copula C of the random variables X1, X2, with cdf F1, F2, is defined as:

λupper = lim
t→1−

P(X2 > F−1
2 (t)|X1 > F−1

1 (t)) = lim
t→1−

1− 2t+ C(t, t)

1− t
,

while the lower tail dependence coefficient is:

λlower = lim
t→0+

P(X2 ≤ F−1
2 (t)|X1 ≤ F−1

1 (t)) = lim
t→0+

C(t, t)

t
.

The tail dependence coefficients provide valuable insight into the occurrence of joint extreme events.
A high tail dependence coefficient indicates that the probability of a similarly extreme event in variable
X2 is high when an extreme event occurs in variable X1.

However, it is important to note that accurate estimation of the tail dependence coefficient requires
a large number of observations to ensure stability. It is also worth mentioning that Gaussian copulas
(which will be discussed in Definition 3.3.2) exhibit a tail dependence coefficient of zero [27], making
them unsuitable for financial applications: it has, in fact, been proven that in periods of crisis, hence
during extreme events, markets exhibit a high correlation [30].
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3.2.4 Dependence Measures Estimation
After having defined Kendall’s tau and Spearman’s ρs, we can proceed to discuss how these dependence
measures are estimated empirically from an observed dataset of n pairs, (xi1, xi2), for i = 1, . . . , n.

From a given dataset, we can estimate Kendall’s tau:

τ̂n :=
Nc −Nd√

Nc +Nd +N1 ×
√
Nc +Nd +N2

, (3.6)

where:

• Nc is the number of concordant pairs. Two pairs (x1, y1) and (x2, y2) are concordant if x1 < x2

and y1 < y2, or vice versa x1 > x2 and y1 > y2,
• Nd is the number of discordant pairs: the ones where the xi have the opposite relationship than

the yi,
• N1 is the number of pairs where xi = xj ,
• N2 is the number of pairs where yi = yj .

Subsequently, we can estimate Spearman’s ρs.If we define rhj , j ∈ {1, 2}, as the h-th ranked data, this
is simply obtained by assigning a numerical rank to each xij , for i = 1, . . . , n, based on their magnitude.
The estimator is the following:

ρ̂s =

∑n
i=1(ri1 − r̄1)(ri2 − r̄2)√∑n

i=1(ri1 − r̄1)2
√∑n

i=1(ri2 − r̄2)2
,

where r̄j = 1
n

∑n
i=1 rij .

3.2.5 Relationship with Copulas
Moreover, from Definition 6, we have seen how tail dependence can be expressed with copulas. Both
other Kendall’s Tau and Spearman’s Correlationn can also be expressed in terms of copulas. The fol-
lowing theorems illustrate the copula formulations for these measures.

Theorem 5. If we have two random variables X and Y,

1. Kendall’s τ is:
τ = 4

∫
[0,1]2

C (u1, u2) dC (u1, u2)− 1. (3.7)

2. Spearman’s ρ is:
ρs = 12

∫
[0,1]2

u1u2dC (u1, u2)− 3. (3.8)

Both theorems are taken from [27], and the corresponding proofs, which are quite straightforward,
are discussed in Sections A.2.1 and A.2.2 of the Appendix.

3.3 Copula Families
In the previous section we have addressed how to quantify dependence, with the use of different de-
pendence measures. However, these measures gather all the information in a single number, which
might not be sufficient to explore the complex relationships that are established among the variables,
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especially in higher dimensions. Copulas are a valid alternative able to fully express these relationships.

In the following subsections, the most common Copula families will be introduced. We will present
Gaussian and t-Student copulas, which are popular multivariate elliptical copulas. Additionally, we
discuss the Fréchet-Hoeffding Bounds, exploring their significance in characterizing copula functions.
Furthermore, a general overview on Archimedean copulas, along with the relative properties, is ad-
dressed.

3.3.1 Fréchet-Hoeffding Bounds
It is first useful to introduce bounds for every copula, no matter what family they belong to. Given a
d-dimensional copula C, we have that:

Wd(u) ≤ C(u) ≤Md(u), ∀u ∈ [0, 1]d, (3.9)

where Wd(u) and Md(u) are defined as follows [31]:

Definition 7 (Fréchet-Hoeffding Bounds). Given u = (u1, . . . , ud) ∈ [0, 1]d, the Fréchet-Hoeffding
Bounds are defined as: 

Wd(u) = max

{
d∑

i=1

ui − d+ 1, 0

}
Md(u) = min{u1, ..., ud}

The discussion can be extended to the more broad concept of concordance ordering, which gives a
way of ordering copulas [26]. The definition is the following:

Definition 8 (Concordance Ordering). We say that a copula C1 is smaller than the copula C2 (or C2

is larger than C1), and write C1 ≺ C2 if ∀u = (u1, . . . , ud) ∈ [0, 1]d:

C1(u1, . . . , ud) ≤ C2(u1, . . . , ud).

From this definition, we can rewrite (3.9) as:

Wd ≺ C ≺Md. (3.10)

The importance of the Fréchet-Hoeffding bounds lies in their capability of delineating the range of
copula. Hence, they are useful to represent extreme dependence scenarios, and can be applied for risk
management and extreme value theory. In particular, they offer insights on the behaviour of copula’s
tails under extreme conditions.

It is important to mention that, for dimensions greater than 2, the Fréchet-Hoeffding lower bound
Wd(u) is not a copula anymore [27], as its image does not lie in the interval [0, 1] anymore. This
highlights a possible limitation of these bounds, indicating a need to find alternative approaches when
extending copula models to higher dimensions.
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3.3.2 Gaussian Copulas
One of the most known copula models is a model that belongs to the family of Elliptical copulas: the
Gaussian copula.

Given the cumulative distribution of a univariate standard normal Φ, and its inverse Φ−1, we can
define a multivariate Gaussian copula with mean zero and correlation matrix R ∈ [−1, 1]d×d, for each
u = (u1, .., ud) ∈ [0, 1]d :

C(u;R) = ΦR(Φ
−1(u1), ...,Φ

−1(ud)), (3.11)

where ΦR is the multivariate CDF of a standard normal with mean zero, unit variances, and R as the
symmetric positive definite correlation matrix. We can also derive the copula density as:

c(u;R) = |R|−1/2exp{x
T (Id −R−1)x

2
}, (3.12)

where x = (x1, ..., xd)
T ∈ Rd, xi = Φ−1(ui), ui ∈ [0, 1], for i = 1, ..., d, and for Id the identity matrix of

dimension d [27].

More in detail, we can construct the bivariate Gaussian copula applying Sklar’s theorem to the
bivariate normal distribution Φ2(·) with mean zero, unit variance and correlation ρ: C(u1, u2; ρ) =

Φ2(Φ
−1(u1),Φ

−1(u2); ρ). The corresponding copula density with standard Gaussian margins and cor-
relation ρ, will be [27]:

c(u1, u2) =
1√

1− ρ2
exp {−ρ

2(x21 + x22)− 2ρx1x2
2(1− ρ2)

}.

Two examples of bivariate Gaussian copulas can be observed in Figure 3.1.

Figure 3.1: Two examples of bi-dimensional Gaussian copulas. We provide two scatterplots of 20000 sampled
data from a Gaussian copula with, respectively, a correlation ρ of -0.8 and 0.3. The Kendall’s τ are −0.59 and

0.19.

A Gaussian copula is characterized by radial symmetry, hence the copula C(U1, . . . , Ud) has the
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same distribution of its survival copula Ĉ(1−U1, . . . , 1−Ud), where a survival copula is defined by [27]
as:

Definition 9 (Survival Copula). Given a d-dimensional random vector X = (X1, ..., Xd), with marginal
distributions F1, ..., Fd, the Survival Copula Ĉ, is defined as:

Ĉ(1− F1(x1), ..., 1− Fd(xd)) = P(X1 > x1, . . . , Xd > xd). (3.13)

In particular, when d = 2 the following relationship holds:

Ĉ(u1, u2) = u1 + u2 + C(1− u1, 1− u2)− 1.

Moreover, a Gaussian copula is invariant under the permutation of its arguments ui, a property
known as ”exchangeability”: for example, in the bivariate case, we have C(ui, uj) = C(uj , ui) ∀i, j,
which means that in a scatterplot its points are symmetrically located around the diagonal. In addition,
as already discussed in Section 3.2.3, Gaussian copulas exhibit zero tail dependence [32].

Lastly, bidimensional Gaussian copulas are closely related to the Fréchet-Hoeffding bounds defined
in 7. In fact, the bounds in two dimensions can be obtained by setting the parameter ρ of a Gaussian
copula respectively equal to −1 and +1 [26]. The concordance ordering of (3.10) can be therefore
represented as:

Wd = Cρ=−1 ≺ C ≺ Cρ=−1 ≺Md.

3.3.3 t-Student Copulas
Another multivariate copula family of Elliptical copulas is the t-Student copula. As the name suggests, it
is derived from a t-Student distribution, and generally, it is used for datasets with high tail dependence,
which allows this family to be more suitable for financial data. A t-student copula is characterized by its
correlation matrix R, and its degrees of freedom ν. An example of a bivariate copula with a t-Student
distribution can be found in Figure 3.2.

Figure 3.2: 20000 generated points of a t-Student copula, with correlation set to ρ = −0.3 and ν = 3 degrees
of freedom. Kendall’s τ = −0.19.
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The multivariate t-student copula with correlation matrix R ∈ [−1, 1]d×d, and ν > 0 degrees of
freedom, is computed with the following formula:

C(u;R, ν) = TR,ν(T
−1
ν (u1), . . . , T

−1
ν (ud)), (3.14)

where TR,ν is the multivariate Student’s t distribution, and T−1
ν is the inverse of the univariate standard

t-Student with ν degrees of freedom.

The bivariate t-student copula, for example, can be derived by applying Sklaar’s theorem to the
standard student’s t distribution, with mean µ = 0, and correlations ρ, which has density given by:

t(x1, x2; ν, ρ) =
Γ( ν+2

2 )

Γ( ν2 )
√
νπ

√
1− ρ2

{
1 +

x21 − 2x1x2ρ+ x22
ν(1− ρ2)

}− ν+2
2

.

The copula can be therefore computed by integrating over the density, and its distribution is given by:

C(u1, u2; ν, ρ) =

∫ b1

−∞

∫ b2

−∞
t(x1, x2; ν, ρ)dx1dx2,

where b1 := T−1
ν (u1) and b2 := T−1

ν (u2).

T-Student copulas for dimension d = 2 have symmetric tail dependence, hence we have that
λupper = λlower. Lastly, like Gaussian copulas, the bivariate t-Student copulas are radially symmet-
ric and exchangeable [32].

3.3.4 Archimedean Copulas
Lastly, we introduce Archimedean copulas, which include a great variety of copula families, all identified
by the general formula reported here [26].

Definition 10 (Archimedean Copulas). Let Ω be the set of all continuous functions φ ∈ C2, with
φ(1) = 0, φ′(u) < 0, and φ′′(u) > 0, ∀u ∈ [0, 1]. Let φ ∈ Ω, then:

C(u) =

 φ[−1](φ(u1) + . . .+ φ(ud)), if
∑d

i=1 φ(ui) ≤ φ(0)

0, otherwise.
(3.15)

is a copula, defined as Archimedean Copula. φ(x) is defined as the Archimedean generator function.
The density of a bivariate Archimedean copula can also defined as:

c (u1, u2) =
∂2C (u1, u2)

∂u1∂u2
=
φ′′ (C (u1, u2))φ

′ (u1)φ
′ (u2)

[φ′ (C (u1, u2))]
3 .

A sufficient condition for Archimedean generators to generate a proper copula, is that they satisfy
the ”d-monotoniticy”, hence they are functions that are all functions φ, with φ(0) = 1 that are infinitely
often differentiable in their domain (0,∞) [32].

The distinction between Archimedean copulas lies in the choice of the generating function φ(x). An
example could be the Gumbel copula, which is characterized by φ(x) = (− log(x))θ, θ ≥ 1, and Frank’s
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copula which has φ(x) = −log( e
−θx−1
e−θ−1

). The parameter for Frank’s copula take values in the interval
θ ∈ [−∞,∞]\{0}.

Figure 3.3: In this picture we have two examples of Archimedean copulas: 20000 points sampled from a
Gumbel copula with parameter θ = 3, and 20000 from a Frank copula with θ set to 6. The corresponding

Kendall’s τ are 0.67 and 0.51.

The importance of Archimedean copulas can be identified in several properties, in fact they are
symmetric, associative and have a simplified way of computing Kendall’s tau [26], which is given by:

τ = 1 + 4

∫ 3

0

1
φ(u)

φ′(u)
du.

In addition, like Gaussian copulas, Frank copulas are characterized by tail independence. On the other
hand, Gumbel copulas present only upper tail dependence λupper. Moreover, from their definition we
obtain that Archimedean copulas are exchangeable even for dimensions greater than 2, which means
that they are invariant under the permutation of their arguments [32].

3.3.5 Other Families
The set of available copula families extends beyond those mentioned in the previous sections, particularly
when considering the bivariate case. Worth mentioning examples include Claytons’s copulas, Joe’s
copulas, and BB copulas. For readers interested in further deepening the knowledge of copula families,
[27] presents a wide coverage of the topic.

3.4 Copula Models
A parametric statistical model is a collection of probability distributions on a given sample space
characterized by a set of parameters Θ (see Def. 37 of the Appendix). This concept extends to
copulas, where a d-dimensional copula can be associated with a set of distributions on the sample space
Ω = [0, 1]d. Starting from the definition of parametric model, we can derive the definition of a Copula
model:

Definition 11 (Copula Model). A copula model C is a family of probabilities distributions, characterized
by a finite number of parameters:

C = {Pθ : θ ∈ Θ}.



3.4. Copula Models 42

The set of parameters Θ that identify each copula depends on the underlying family. An example of
copula’s parameters can be Kendall’s tau τ , or Spearman’s Correlation ρs.

From definition 11 we can conclude that, when performing model selection in the context of copulas,
we will have to face two main choices. We will need to select the family type (several families are
available, some examples were introduced in Section 3.3), and estimate the values of the parameters
associated with the chosen copula family.

Then one question arises: what is the process for estimating a copula model?
From a d-dimensional set of observations u = (u1, . . . ,ud), where each ui = (ui,1, . . . , ui,n), ui,j ∈ [0, 1],
we can fit a distribution, with the objective of finding a one able to correctly mimic the behaviour of
the considered dataset. The initial step involves the selection of a set of family distributions. Then, for
each family, we estimate the values of the associated parameters, using different estimation methods,
detailed in Section 3.4.1. The next step consists in comparing different criteria to select the best-fitted
copula from the set of candidates. Lastly, the quality of the chosen model will be assessed with some
Goodness of Fit tests, discussed in Section 3.4.3.

3.4.1 Parameter Estimation
To estimate the parameter θ of a copula with a specific family, we can use the Maximum Likelihood
estimator, which is the the value θ̂ML that maximises the likelihood function L(θ). More details on
both the likelihood function, and the estimator can be found in the Subsection in Definition F.1.1 of
the Appendix. However, an approach that uses the Canonical Maximum Likelihood, or CML, instead
of the regular ML, is generally preferred for variables of the dataset are not uniformly distributed, as it
does not require optimization to compute the margins.

The method requires two steps. Firstly, we transform the variables to a uniform scale, by applying
their empirical distribution. Hence, for a given observation sample x = (x1, . . . ,xd), where each xi

is a vector of N observations, we find the empirical cumulative distribution F̂i of each component as
described in Section F.4.1. With the empirical CDF we can then transform the observations to their
uniform variants ûi,j = F̂i(xi,j), where xi,j is the j-th component of the vector xi.

Once the first step is completed, we then proceed by estimating the parameters using the following
estimator [33]:

θ̂CMLE := argmax
Θ

N∑
j=1

log cΘ(û1,j , . . . , ûd,j ; Θ), (3.16)

where cΘ is the density of the chosen copula family with unknown set of parametersΘ. û = (û1, . . . , ûd) =

(F̂1(x1), ..., F̂d(xd)) is the d-dimensional vector of pseudo-observations, transformed to uniform scale by
applying the empirical CDFs.

3.4.2 Model Selection
Once we have the different distributions, along with their estimated parameters, a comparison can
be made using metrics such as Likelihood, AIC (Akaike Information Criterion), and BIC (Bayesian
Information Criterion) to determine the most suitable model (refer to Def. 41 of the Appendix): we
will choose the model with higher Likelihood, or lower value of AIC and BIC.
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3.4.3 Hypothesis Testing
Once a model has been selected, it is left to evaluate whether the model is a good fit to the original
dataset. Hence, to analyse if the chosen theoretical distribution appropriately describes the distribution
of the sample data, typically through a Goodness of Fit (GoF) test. The choice of GoF test depends
on the specific objectives of the model fitting process: in this Section we will discuss the White Test
for copulas. Additionally, we will discuss the Vuong Test, a hypothesis test used to compare different
distributions.

3.4.3.1 White Test for Copulas
In our analysis, we will mainly be working with the test implemented in the function ”BiCopGofTest”,
from the VineCopula package in R [34], which assess the Goodness of Fit of bivariate copulas. The
same test can be applied to multivariate copula models using different functions, such as the function
’gofWhite’, implemented in Package [35].

This test is designed to assess the goodness of fit of copulas using White’s information matrix equality
[36], as discussed in [37]. It is based on the assumption that, under the correct model specifications, the
Fisher Information matrix C(θ) can be computed as the negative of the expected Hessian matrix H(θ),
which is the matrix of the second order partial derivatives of the likelihood function. Consequently, the
null hypothesis is formulated as:

H0 : H(θ) +C(θ) = 0,

while the alternative is that the sum is not equal to zero.

The test statistic is computed using the MLE estimator θ̂ (refer to F.1.1), and is equal to dD̄T
θ̂
V −1
θ0
D̄θ̂,

where d is the number of variables considered, V −1
θ0

the inverse of the asymptotic variance, and D̄θ̂ =
1
d

∑d
t=1 d̂t(θ). Here, d̂t(θ) = vech( ˆCt(θ) + Ht(θ)), with vech denoting the vertical vectorization of the

lower triangular of a matrix. The test statistic follows asymptotically a χ2 distribution with p(p+1)
2

degrees of freedom, where p represents the dimension of θ [37].

3.4.3.2 Vuong Test
Another test that could be used would be the Vuong test, a hypothesis test designed to verify if a cho-
sen distribution is significantly better than the alternative ones by comparing their Kullback–Leibler
Information criterion.

In order to do so, we will need to introduce the Kullback–Leibler Information criterion (KLIC),
which measures the ”distance” between an unknown density f∗, and the approximated parametric
density f(·|θ) of parameter θ. It is used to compare statistical models.

Definition 12 (Kullback–Leibler Information criterion (KLIC)). Given the true density of a random
vector X, f∗, and the parametric density f(·|θ), we define the KLIC as:

KLIC(f∗, f, θ) :=

∫
ln
f∗(x)
f(x|θ)f

∗(x)dx = E∗[ln f∗(X)]− E∗[ln f(X|θ)], (3.17)

where E∗[X] =
∫
f∗(x)dx is the expected value of a random variable or random vector X with density

f∗.
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Once we have defined the KLIC, we can finally introduce the Vuong hypothesis test, which is used to
check if, given two models M1 and M2 with parametric densities {fj(·|θ)∀θ ∈ Θ, j = 1, 2}, one model
has to be preferred over the other. The Null hypothesis of the Voung is that the two models have the
same KLIC, hence, the H0 hypothesis is:

H0 : E0[ln f1(X|θ1)] = E0[ln f2(X|θ2)].

The alternative hypothesis is that they have a different KLIC:

H1 : E0[ln f1(X|θ1)] ̸= E0[ln f2(X|θ2)].

For a given significance level α, we reject H0 if |ν(x1, ..., xd)| > Φ−1(1− α
2 ), where ν is defined as the

Likelihood ratio statistic LRd(θ̂
1, θ̂2)(x1, ..., xd) for the two models, divided by the square root of the

sample size times the sample variance of LRd (the detailed formula can be found in [27]), and Φ−1 is
the inverse of the CDF of a standard normal. For non-nested models, the test statistic asymptotically
follows a Gaussian distribution [27].

3.5 Simulation Study to illustrate Model Selection
In order to provide a more comprehensive understanding of the steps discussed in the previous Section
regarding the construction of a Copula model, a small simulation study has been conducted. This
should help the reader to understand the main steps, by presenting a concise example that establishes
a general framework that will serve as the basis for analyzing real-world data in the subsequent chapters.

The simulation study is conducted on a two-dimensional copula for simplicity, and focuses on two
main objective: evaluate the accuracy of parameter estimation for small datasets, and visualize the
convergence of parameter estimators as the number of observations increases, by computing the mean
squared error (MSE). The simulation is then extended to a 4-dimensional framework, and could be
easily extended to higher dimensions.

3.5.1 Bidimensional Case
We started by generating five different bivariate copulas, one for each copula family introduced in Sec-
tion 3.3 and an additional one using a Clayton copula. Since we want to test the efficiency of the
estimators, we work with a relatively small dataset to analyze the estimation performance. we therefore
simulate N = 100 point from each copula using the following parameters. We simulate from a Gaussian
with correlation ρ = −0.8 (τ = −0.590), a t-Student with ρ = −0.3, and ν = 3 degrees of freedom
(τ = −0.194), then we proceeded to simulate a Clayton with θ = 5 (τ = 0.714), a Gumbel copula with
parameter θ = 3 (τ = 0.667), and lastly a Frank copula with θ = 6, τ = 0.514. The true parameters
are summarized in Table 3.2.

To each simulated copula, we assumed that the original copula distribution was unknown, proceeding
to fit different copula families to determine the most suitable one, by comparing the the Bayesian
Information Criterion (BIC) values. From the chosen family, hence the family that presented the lower
BIC value, we then saved the estimated the parameters, which are reported in Table 3.2. The results
presented in Table 3.1, indicate that the algorithm successfully identified the original copula family for
each tested family despite working with a small dataset.
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True Distribution Gaussian Student-t Clayton Gumbel Frank
Gaussian -84 -79 5 5 -79
t-Student -2 -19 5 4 -5
Clayton -111 -112 -160 -83 -117
Gumbel -137 -134 -94 -143 -132
Frank -42 -41 -34 -35 -59

Table 3.1: BIC values obtained by fitting a bivariate copula simulated using the distribution presented in the
first column. The results are presented after fitting a Gaussian, a Student-t, a Clayton, a Gumbel, and a Frank

copula to the generated copula. We highlight in bold the lowest BIC value for each row.

Furthermore, we compare the parameters estimated with an MLE estimator from the chosen copula
family in Table 3.2, with the ones corresponding to the original copula: as inferred from observing the
previous table the parameters are estimated from the same family as the original data-set. We also
compare the values of the original Kendall’s τ , with the estimated ones.

The estimated parameters appear rather close to the initial ones, in particular for the t-Student case.
The estimated Kendall Taus present values that are extremely close to the original ones.

True Dist True Θ True τ Estimated Θ̂ Estimated τ̂
Gaussian -0.8 -0.590 -0.763 -0.553
Student-t -0.3, 3 -0.194 -0.306, 2.106 -0.198
Clayton 5 0.714 4.395 0.687
Gumbel 3 0.667 3.316 0.698
Frank 6 0.514 5.904 0.508

Table 3.2: Estimated parameters and Kendall’s τ of each copula, compared to the original ones. The
parameters are estimated from the copula’s family selected in Table 3.1, in all cases it correspond to the

original one.

Since we are working with only N = 100 initial data points, we can consider the results rather
satisfactory. To further validate this observation in Table 3.3 we report the p-values of White’s Goodness
of Fit test, discussed in Section 3.4.3.1. We observe that all p-values provided are larger than the target
0.05, hence we cannot reject the null hypothesis, and we can conclude that all samples considered come
from the distribution used to generate the original data.

True Dist White’s p-value
Gaussian 0.83
Student-t 0.93
Clayton 0.83
Gumbel 0.48
Frank 0.94

Table 3.3: P-values of White’s Goodness of Fit test for each bivariate copula.

However, one question arises: what is the impact of the number of datapoints, and how much can we
improve the estimation if we increase the number of observations? We will address this in the following
Subsection 3.5.2.

3.5.2 Parameter Estimator’s Convergence of 2-Dimensional Copulas
In this section we expand on the observations of the preceding subsection, studying the rate of conver-
gence of the estimators of the parameters of the two-dimensional previously copulas considered. For this
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simulation we assume the copula family known, and estimate the parameters by varying the number of
observations N, set to N = {50, 100, 200, 500, 1000, 2000}. We replicated the experiment 100 times for
each copula family considered, and computed the mean squared error (MSE) from the true values of
each estimated parameter, for each value of N. The results are shown in Figure 3.4.

Figure 3.4: Logarithmic scaled plot studying the convergence of the fitted parameters of the considered copulas.
On the x-axis we have the number of observations, on the y-axis the corresponding Mean Squared Error values.

Figure 3.4 represents the rate of convergence of the MSE in a logarithmic scale of the estimated
parameters in relationship with the size of the simulated dataset. The graph shows that, for all con-
sidered copula families, the convergence rate is rather steep and reaches satisfactory results even with
a relatively small amount of data. Already for N = 200, the MSE for all estimated parameters is
approximately 10−1 or lower. The only exception is for the estimator of the second parameter of the
t-student copula, ν, which has an initial MSE larger than the other estimated parameters considered.

In addition to the plot, in the Appendix we have included a boxplot showcasing the distribution of
the estimated parameters for each copula family: the results are shown in Figure B.6. By observing
the plots, it becomes evident that even with a minimal amount of simulated data, such as N = 50,
each simulated variable exhibits a median that correspond to the original value used to simulate the
different copulas. Clearly by increasing N, we observe a reduction in the variability of the data, with
observations becoming more concentrated around the true value. Based on these observations, we could
conclude thatN = 500 should sufficient to guarantee a satisfactory estimation for all families considered.

The same observations that were made regarding the parameter estimators can be extended to the
plots analyzing the convergence of estimators for Kendall’s τ , which are available in the Appendix in
Figures B.7 and B.8. With the only specification that the MSE values are even smaller in the case of
Kendall’s τ , providing an additional layer of confidence in the precision of the estimations.

3.5.3 Extension to 4-dimensions
Building upon the simulation study introduced in the previous Subsections, we expand the simulation
to 4-dimensional copulas. We maintain the same number of simulated data (N = 100), and the same
families previously considered. The parameters used to simulate the copulas are presented in Table 3.5,
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alongside the Kendall’s τ values. In the same table we compare these parameters with the corresponding
estimated values.

As for the two dimensional case, from Table 3.4 we can conclude that for each family considered
the BIC value indicates that the model fitted using the original copula family is the one to consider.
In Table 3.5 we compare the original parameters to the ones fitted using the copula with the best BIC.
Once again, we observe that, even with a small dataset, the estimation proves to be successful. Both
the parameters and Kendall’s tau are rather close to their original values in most cases for all copulas
considered. Similarly to the bidimensional case, we will proceed by studying the evolution of the esti-
mation with the change of the sample size in the following Subsection 3.5.4.

True Distribution Gaussian Student-t Clayton Gumbel Frank
Gaussian -270 -268 -124 -137 -125

t -286 -305 -80 -60 -55
Clayton -376 -374 -491 -392 -333
Gumbel -283 -280 -236 -328 -280
Frank -1070 -1094 -899 -1024 -1124

Table 3.4: BIC values obtained by fitting a 4d copula generated as described using the distribution presented in
the first column. The results are presented after fitting a Gaussian, a Student-t, a Clayton, a Gumbel, and a

Frank copula to the simulated copula. We highlight in bold the lowest BIC value for each row.

True Dist True Θ True τ Estimated Θ̂ Estimated τ̂
Gaussian (0.5, 0.6, 0.72, (0.33, 0.42, 0.52, (0.44, 0.68, 0.82, (0.30, 0.49, 0.67,

0.4, 0.1, 0.8) 0.27, 0.07, 0.6) 0.44, 0.20, 0.84) 0.28, 0.18, 0.66)

Student-t (0.3, 0.4, 0.8, (0.19, 0.27, 0.60, (0.16, 0.28, 0.82, (0.10, 0.25, 0.62,
0.72, 0.4, 0.1), ν = 3 0.53, 0.24, 0.12) 0.73, 0.28, 0.05) , ν = 3.51 0.51, 0.25, 0.05)

Clayton 4 0.67 3.55 0.66
Gumbel 8 0.60 7.48 0.62
Frank 10 0.90 9.01 0.89

Table 3.5: Estimated parameters and Kendall’s τ of each copula, compared to the original ones. The
parameters are the ones of the family that resulted in the lowest BIC value (for all cases it coincides with the

original one).

Lastly, in Table 3.6 we provide the p-values of the White Goodness of Fit test, used to evaluate
the models, as discussed in section 3.4.3.1. All copula families have p-values that are greater than the
significance level 0.05, hence we cannot reject the null hypothesis. The data generated from the fitted
model come from the same distribution of the original datasets.

True Dist White’s p-value
Gaussian 0.67
Student-t 0.81
Clayton 0.99
Gumbel 0.48
Frank 0.24

Table 3.6: P-values of White’s Goodness of Fit test.
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3.5.4 Convergence of 4-Dimensional Copulas
Also for the four dimensional case we proceeded to study the estimators’ convergence. For simplicity
we only run the simulations for the Clayton, the Gumbel and the Frank copula using the parameters
presented in Table 3.5: these copulas are characterized by a single parameters even in higher dimensions.
The results are available in the appendix, in Section B.2.2.

Clearly, fitting a copula in higher dimensions results in additional challenges, which are reflected in
the MSE values of Figure 3.5. The MSE, in fact, are higher if compared to the ones of the bidimensional
case. Nevertheless, an increase in number of observations clearly improves of the estimations in terms
of MSE. From B.9 we can observe that, with the exception of Frank’s case, the median of the boxplots
is aligned with the true value already at N = 100, and the dispersion of the estimations decreases with
the growth of N.

Figure 3.5: Logarithmic scaled plot studying the convergence of the fitted parameters of the considered copulas.
On the x-axis we have the number of observations, on the y-axis the corresponding Mean Squared Error values.

Concluding the analysis, we evaluate the performance of the estimators for Kendall’s τ in Figures
B.10 and B.11. Similar to the bidimesnional case, these results are much more accurate that the
estimators of the parameters. Moreover, we have already good estimations for N = 50.

3.6 Conditional Copulas and the Simplifying Assumption
Particularly relevant for the introduction of vine copulas, that will be address in the following chapter 4,
is the discussion about conditional copulas. Representing an extension of traditional copulas, conditional
copulas are constructed from conditional distributions. They can be extremely complex, especially
when we are trying to perform a model inference. The simplifying assumption can help to reduce their
complexity since it implies that the copula does not depend directly on the conditioning variables. In
this section, we will introduce conditional copulas, discuss the importance of the simplifying assumption,
and some methods that can be used to assess whether this assumption is verified for a given copula.
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3.6.1 Conditional Copulas
If we have a random vector X ∈ Rd, we can divide it in two sub-vectors XI = (X1, ..., Xp) and
XJ = (Xp+1, ..., Xd), such that X = (XI ,XJ), with I ∪ J = {1, ..., d} and I ∩ J = ∅. From here we can
derive the conditional copula of the sub-vector XI , given the information of XJ .

Definition 13 (Conditional Copula). For any u = (u1, ..., up) ∈ [0, 1]p, a conditional copula on the
event (XJ = x), with xJ ∈ Rn−p is defined by Sklar’s theorem as:

CI|J(u|XJ = xJ) = FI|J(F
[−1]
1|J (u1|XJ = xJ), ..., F

[−1]
p|J (up|XJ = xJ)|XJ = xJ), (3.18)

where FI|J(xI |XJ = xJ) := P(XI ≤ xI |XJ = x) is the conditional CDF of XI given XJ , and where
F

[−1]
1|J is the Pseudo-inverse of this CDF (as previously defined in Theorem 4).

3.6.2 The simplifying assumption
The simplifying assumption is verified when a conditional copula is constant with respect to the value
its conditional variables. The definition is the following:

Definition 14 (Simplifying assumption). Suppose we are given two random sub-vectors XI and XJ ,
and a conditional copula CI|J(·|XJ = xJ). The conditional copula satisfies the simplifying assumption
if the value of the copula does not depend on xJ = (xp+1, ..., xn) for every u = (u1, ..., up) ∈ [0, 1]p.
Hence, the function xJ ∈ Rn−p → CI|J(u|XJ = xJ) is a constant function that depends only on u.

If the simplifying assumption is verified, we are then able to have simpler copula set to:

CI|J(u|XJ = xJ) := CI,s|J(u).

This last definition is possible since the influence of the conditional vector is passed only through the
conditional marginal distributions: the effect is directly on the values of the vector u, and can be
therefore removed from the conditional copula itself.

3.6.3 How to test the assumption
Here we will discuss some hypothesis testing used to verify if a copula satisfies the simplifying assump-
tion. The results are taken from [38], where additional tests can be found.

The main objective is to perform a hypothesis testing where the Null hypothesis is:

H0 : CI|J(·|XJ = xJ) does not depend on the value of XJ ,

while the alternative hypothesis H1 is that this condition is not verified. Derumigny and Fermanian
discuss various ways of testing if the above hypothesis is verified, providing a wide overview of the
possible methodologies that can be used to test the simplifying assumption. A particular use of the
simplifying assumption is discussed in Section 6.6, where it will be used to asses the time dependence
of the underlying copula structure.

The simplifying assumption, when confirmed, significantly reduces model complexity, and is particu-
larly helpful in high-dimensional scenarios. The assumption will not be the scope of this thesis, however
we provide further details on how to test it in Appendix G. Particularly interesting is the discussion on
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the advantages, and possible implications, of adopting the assumption even if we are not able to verify
it. [39], [40], and [41] explore contrasting opinions on this matter.

3.6.4 Simulation Study on the Simplifying Assumption
To illustrate the idea behind the simplifying assumption, and to illustrate how it is tested we propose a
small simulation study. We will generate data from two copulas: one where the simplifying assumption
holds, and another where it does not. Statistical tests will then be applied to assess the assumption on
the simulated data.

3.6.4.1 Case 1: The Assumption is Not Verified
We start by constructing a copula that does not satisfy the simplifying assumption. We simulate
N = 500 observations from a standard normal distribution, which will serve as the conditional variable
UJ . The bivariate copula is then simulated as follows:

• From a t-Student copula with parameters ρ = −0.3 and ν = 3 if UJ > 0.7.
• From a Clayton copula with parameter 5 if UJ ∈ [0.3, 0.7].
• From a Gumbel copula with parameter 8 if UJ < 0.3.

The simplifying assumption is then tested on the simulated data using CondCopulas package’s func-
tion bCond.simpA.CKT, which identifies a set of relevant partitions on the dataset using a binary trees
that compares the Kendall’s taus [42]. The function also provides a p-value to indicate if the simplifying
assumption is verified. More details on this function will be discussed in Section 6.6.

The identified decision tree is illustrated in Figure 3.7, where three different partitions are identified:

• uJ < 0.332;

• 0.332 < uJ < 0.716;

• uJ > 0.716.

These partitions are very close to the original partitions used to simulate the dataset. Additionally, the
p-value of the test is equal to 0, indicating that the simplifying assumption is not verified.

uJ < 0.716; τ1,2 = 0.747

uJ < 0.332; τ1,2 = 0.872 uJ > 0.332; τ1,2 = 0.663

uJ > 0.716; τ1,2 = −0.206

Figure 3.6: Decision Tree of the partitions identified on the simulated dataset of N = 500 samples. The tree
indicates the value of the conditional variable UJ , and the Kendall’s tau of the bivariate copula in the identified

partition, τ1,2.

3.6.4.2 Case 2: The Assumption is Verified
Subsequently, a bivariate copula of N = 500 points is simulated from a t-Students with parameters
ρ = −0.3 and ν = 3. Here, the simplifying assumption is verified, as the model does not depend on any
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conditional variable.

We again test the simplifying assumption, using the procedure described in the previous example,
conditioning on the same simulated data, uJ . The resulting tree is reported in Figure 3.7, where four
different partitions are identified.

uJ < 0.60; τ1,2 = −0.14

uJ < 0.41; τ1,2 = −0.18 uJ > 0.41; τ1,2 = −0.04

uJ > 0.60; τ1,2 = −0.24

uJ < 0.75; τ1,2 = −0.48 uJ > 0.75; τ1,2 = −0.13

Figure 3.7: Decision Tree of the partitions identified on the simulated dataset of N = 500 samples. The tree
indicates the value of the conditional variable UJ , and the Kendall’s tau of the bivariate copula in each

identified partition, τ1,2.

However, the p-value of the test is equal to 1, indicating that the simplifying assumption is verified,
as we do not have enough evidence to reject it.



4
Vine Copula Models

When working in higher dimensions, simple copula models can result to be ”restrictive with regard to
symmetry and tail dependence properties” [43]. In fact, each copula family is characterized by specific
properties that might not be shared by all variables of a dataset we aim to model. For instance, Gaus-
sian copulas exhibit tail independence, while t-Student copulas display high values of tail dependence.
A dataset may exhibit both features, depending on the variable pair under consideration. Given that
there are not many families available in dimensions higher than 2, simple copulas might not be able
to incorporate all the difference of information that characterize a multivariate dataset, particularly in
terms of tail dependence and symmetry. We are therefore in need of a more flexible tool, able to capture
specific behaviours of high dimensional datasets. In 2002 Bedford and Cooke proposed a new concept
that resolved this limitations by developing a model that uses only bivariate copulas: the vine models [5].

In this section we will discuss the definition of Vine models, their construction, and the estimation
of the parameters as presented in [39] and [31]. We will focus on Regular vines, which are generally
referred to as R-vines.

4.1 Decomposition in three dimensions
Vine models are obtained by decomposing multivariate distributions into bi-variate copulas, achieved
through conditioning. We illustrate the intuition behind their construction, by decomposing a three-
dimensional density. The computations can be generalized to higher dimensions.

In Section 3.1 we saw how, using Sklar’s theorem, we can compute the density of a vector of d-
dimensional random variables X in terms of the corresponding copula. The formulation obtained was
presented in equation 3.2. Moreover, the conditional density of a random variable can be rewritten as
the product of a copula density, and the marginal distribution of the conditional variable [27]:

f1|2(x1|x2) = c12(F1(x1), F2(x2))f2(x2). (4.1)

By using these two equations, we are able to derive the density f(x1, ..., xd) using recursive factor-
ization. The vine structure and decomposition, however, are not unique. For example, in the case of

52
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R-vines, there are d! × 2
(d−2)(d−3)

2 −1 possible combinations: finding the correct one is one of the main
challenges of dealing with vine models.

We can, for example, factorize the density of a 3-dimensional dataset as:

f(x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1),

where fi|J is the conditional density of Xi given the random vector XJ , and fi is the marginal density
if the i-th variable. By applying Eq.(3.2), we can rewrite the following conditional density as:

f13|2(x1, x3|x2) = c13|2(F1|2(x1|x2), F3|2(x3|x2)|F2(x2))f1|2(x1|x2)f3|2(x3|x2).

From Bayes’ theorem, we have that:

f3|12(x3|x1, x2) = f13|2(x1, x3|x2)f3|2(x3|x2).

Lastly, from equation 4.1:
f2|1(x2|x1) = c12(F1(x1), F2(x2))f2(x2),

f3|2(x3|x2) = c32(F3(x3), F2(x2))f3(x3).

Collecting all the previous computations, we obtain that the original density can be expressed as
the combination of three bivariate copulas, one of which is a conditional copula:

f(x1, x2, x3) =c13|2(F1|2(x1|x2), F3|2(x3|x2)|x2)c12(F1(x1), F2(x2))

× c32(F3(x3), F2(x2))f1(x1)f2(x2)f3(x3).
(4.2)

The set of bivariate copula that composes the above equation can be represented with a tree structure,
where each bivariate copula represents an edge. This is only one of the possible three combinations
of vine model that we can formulate for a three-dimensional copula: we can, however, consider this a
generalisation since we can always reassign the variables by renaming them. Also, let’s note that under
the Simplifying Assumption, discussed in Definition 14, we could rewrite the conditional copula as

c13|2(F1|2(x1|x2), F3|2(x3|x2)|x2) = c13|2(F1|2(x1|x2), F3|2(x3|x2)),

resulting in the final formulation of the simplified vine:

f(x1, x2, x3) =c13|2(F1|2(x1|x2), F3|2(x3|x2))c12(F1(x1), F2(x2))

× c32(F3(x3), F2(x2))f1(x1)f2(x2)f3(x3).
(4.3)

4.2 Definition
In [5] Bedford and Cooke derived a new class of graphical models, obtained from a nested set of Markov
trees, by weakening their conditional independence property. The new models are called vine models,
and they aim to study multivariate distributions by proposing a more flexible model that deploys only
bivariate conditional copulas.

A Markov tree distribution of a random vector is a tree where, two nodes that are not connected
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by an edge, will be independent conditionally on the variables located in the path between them. This
refers to the conditional independence property mentioned above. On the other hand, vine is defined
as a sequence of trees, where the edges of each tree Ti are the nodes of Ti+1. This is translated in
the proximity condition, which states that an edge between the nodes of Ti is only possible if the
corresponding edges in Ti−1 share a node [43]. By remembering that a graph is defined to be acyclic if
any two vertices are connected by exactly one path, then we can state the definition of tree:

Definition 15 (Tree). A tree T = {N,E} is an undirected acyclic graph, where N is the set of nodes,
and E is the set of edges (unordered pairs of nodes).

As previously discussed, the decomposition of Equation 4.2, and the corresponding higher dimen-
sionsional version, allow for different conditioning orders, and hence for different structures. Three
main type of vines can be identified from different tree construction ordering, and specific graphical
rules: the regular vines, or R-vines, the canonical vines (or C-vines), and the drawable vines (or D-vines).

R-vines, which were first introduced in [44], are the most common type of vines, as they represent
the most general case. C and D-vines represent special cases of vine structures. In fact, C-vines are
characterized by trees with a star-like structure around a single node, called the root, that connect all
other nodes. D-vines have path structures for each tree, meaning that every node has a maximum of
two neighbours, and that the structure of the first tree determines all the following ones [43]. In this
thesis we will focus on R-vines, which will be presented more carefully in the following Subsection. For
a more in depth analysis of C- and D-vines the reader can refer to section 4.2 of [27].

4.2.1 R-vines
A regular vine, or an R-vine, is characterized by a sequence of trees where each set of edges becomes
the nodes for the following tree. They are defined as follows:

Definition 16 (Regular Vine). The set of graphs V = (T1, . . . , Td−1) is a regular vine tree sequence on
d elements if:

1. T1 is a tree with node set N1 = 1, ..., d and edge set E1.
2. For j ≥ 2, Tj is a tree with node set Nj = Ej−1 and edge set Ej .
3. For j = 2, ..., d− 1 if two nodes in Tj are joined by an edge, the nodes must share a common node

in Tj−1 (Proximity condition).

We also introduce an alternative notation, which allows for more compact formulations. For any
edge ei ∈ Ei we define:

Ae = {j ∈ N1|∃e1 ∈ E1, ..., ei−1 ∈ Ei−1, s.t., j ∈ e1 ∈ ... ∈ ei−1 ∈ ei}, (4.4)

the complete union. The conditioning set of an edge e = {a, b} is then defined as De := Aa ∩ Ab, and
the conditioned sets Ce,a and Ce,b are defined as:

Ce,a = Aa\De and Ce,b = Ab\De. (4.5)

R-vines, being the most general type of vines, exhibit an elevated number of possible combinations,
reaching super-exponential growth for the number of variables d. This might pose a challenge in higher
dimensions; to address this issue, and to ensure that a valid factorization is produced, different tools
have been developed.
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4.3 Vine Models
In this Section we take a further step forward, providing the definition of an R-vine model, and by
discussing how to visualize its components in a more compact way.

Definition 17 (Vine Model). A vine model MV of a d-dimensional random vector X is characterized
by the triplet (F ,V,B). Where F is the vector of the marginal distributions of each random variable of X,
V is the R-vine sequence of tree structures of a total of d elements, and B = {Ce | e ∈ Ei; i = 1, . . . , d−1}
is the set of copula Ce, where Ei represents the edge set of the tree Ti.

Considering a simplified R-vine model, to which the simplifying assumption has been applied, [5]
provides a theorem that guarantees the existence of the regular vines:

Theorem 6 (Existence of R-vine distribution). Assume that (F ,V,B) satisfy the three properties that
define a regular vine (Def. 16), then there exists a d-dimensional distribution F with:

f1,...,d (x1, . . . xd) = f1 (x1)× · · · × fd (xd)

×
d−1∏
i=1

∏
e∈Ei

cCe,aCe,b;De

(
FCe,a|De

(
xCe,a | xDe

)
, FCe,b|De

(
xCe,b

| xDe

))
,

such that for each e ∈ Ei, i = 1, . . . , d− 1, with e = {a, b} we have for the distribution function of XCe,a

and XCe,b
given XDe

FCe,aCe,b|De

(
xCe,a , xCe,b

| xDe

)
= Ce

(
FCe,a|De

(
xCe,a | xDe

)
, FCe,b|De

(
xCe,b

| xDe

))
.

The one-dimensional margins of F are given by Fi(xi), i = 1, ..., d.

4.3.1 Compact Visualization
Generally, a vine model is presented by showing the set of trees graphically, where each edge represents
a specific pair copula. In addition, [45] developed a compact representation of the main components of
the model that made possible to represent the tree structure V using a d× d triangular matrix V . The
label of the j-th edge of tree Tt is obtained as:

(Vd−j+1,j , Vt,j |Vt−1,j , ..., V1,j).

Moreover, as for copulas, we can store the set of families of all bivariate copula that compose the vine
(each family has a corresponding integer value) in an upper d× d triangular matrix, which has entries
zero on the diagonal. Lastly, an upper triangular matrix Θ can be used to collect the parameter of
the bivariate copulas that compose the vine model: θt,j is the parameter of the j-th edge in the t-th tree.

To better understand the construction of matrix V, which can be challenging, we discuss its con-
struction for the 4-dimensional vine structure with the following decomposition:

f (x1, x2, x3, x4)

=c14;23
(
F1|23 (x1 | x2, x3) , F4|23 (x4 | x2, x3) ;x2, x3

)
× c13;2

(
F1|2 (x1 | x2) , F3|2 (x3 | x2) ;x2

)
× c24;3

(
F2|3 (x2 | x3) , F4|3 (x4 | x3) ;x3

)
× c34 (F3 (x3) , F4 (x4))× c23 (F2 (x2) , F3 (x3))× c12 (F1 (x1) , F2 (x2))

× f4 (x4) f3 (x3) f2 (x2) f1 (x1) .

(4.6)
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Figure 4.1: Structure of the tree presented in Equation (4.6).

The set of trees that correspond to equation (4.6) is presented in Figure 4.1, while the equivalent
matrix representation is given by:

V =


2 3 4 4

3 4 3 0

4 2 0 0

1 0 0 0

 .

How to interpret matrix V in practice? From the elements of the matrix we are able to compile the
edges of each tree. The j-th edge of tree Tt is obtained by the pair ((V )d−j+1,j , (V )t,j), conditioned to
the elements (Vt−1,j , ..., V1,j).

In more simple words, the goal is to construct a set of trees trees Tt, t = {1, . . . , d− 1}, by using the
elements on rows i, and columns j. In particular, to label element j of the t-th tree, we start from the
element on the counter-diagonal of column j, hence (V )d−j+1,j , and pair it with the element in row t and
column j, hence pair it with element (V )t,j . Then we condition on all the elements of the same column j,
located above element (V )t,j [43]. Let’s analyze some the steps required to construct Figure 4.1, from V .

We illustrate how to construct the elements of three T2 (t = 2), which will be characterized by two
pair copulas. The first copula, corresponding to j = 1, is composed starting from the element located
on the first column of the counter-diagonal, hence from (V )d−j+1,j = (V )4,1 = 1. The element is paired
with (V )t,j = (V )2,1 = 3. We then condition on the only element above (V )2,1, which is (V )1,1 = 2.
We therefore obtained the first edge of tree T2: the pair copula c13|2. Similarly we can determine the
element of the second edge, which will be c24|3.

4.3.2 Estimation and Selection of the Model
To summarize, each vine model is constructed of three main parts: the tree structure V, the set families
that characterize each bivariate copula, and the corresponding set of parameters. When we want to
select a proper vine model, we need to evaluate and estimate these three .components. However, not all
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problems are equally complex, in fact, as described in [43], estimating a vine copula model can imply
solving three different problems, presented here with increasing complexity:

• Given the vine tree sequence and a set of pair copula families, estimate the copula parameters.
• Given the vine tree sequence and a catalogue of pair copula families, select the best family and

estimate the corresponding parameters for each edge in the vine.
• Select the vine tree structure, the pair copula families and estimate the corresponding parameters

for each edge.

The last problem, particularly complex and potentially infeasible in higher dimensions, requires
some prior assumptions about the family used, and about the structure. The general approach would
involve evaluating all the possible combinations and choosing the one with the best Log, AIC, or BIC
value (for a more complete overview of the selection criteria adopted, check Def. 41 of the Appendix),
however we will discuss some simplifications that ensures a more feasible process.

Firstly, to estimate the parameters, we tend to prefer a step-wise approach, rather than directly using
the Maximum Likelihood estimator, which will be extensively discussed in the following Subsections.
Another simplification can derive from the simplifying assumption, introduced in Definition 14. However,
checking for the simplifying assumption in the context of vine models implies testing the assumption for
every pair-copula. This elevates the computational costs, and the complexity of the problem. Sometimes,
it is therefore simply assumed to hold true even without checking if it truly holds.

4.4 Structure and Family Selections
Assuming that we are in the most complex scenario, hence that we need to select the vine tree structure
and the pair copula families, while estimating their corresponding parameters for each edge, the follow-
ing steps can be followed. Typically, the parameters’ estimation, the tree structure selection,e and the
pair copula selection, are conducted simultaneously. The results are then compared, and the model
with a lower AIC or BIC value is chosen. To simplify the explanation, we will discuss each procedure
separately.

In particular, in Subsection 4.4.1 we will explain the Sequential Method, used to select an appropriate
vine structure by sequentially determining the edges of the tree structure. Subsection 4.4.2 will discuss
how to choose among different combinations of pair copulas’ families. The parameter estimation process
will be presented in Section 4.5.

4.4.1 The Sequential Method for Structure Selection
Assuming that we have no prior assumption on the vine model that we need to select, the first thing to
do is to select a proper vine structure. For R-vines the number of possible structures of a d-dimensional
vine model is d!

2 × 2(
d−2
2 ). Since this number increases rapidly with the dimension d, trying all possible

combinations or evaluating manually the best one can become extremely challenging and time consum-
ing, if not infeasible. To overcome this problem, [46] developed the sequential method, an algorithm
that selects each trees sequentially, by linking the pairs that show the strongest dependence.

The method uses Kendall’s τ (see Eq. (3.6)) as a measure of dependence, and applies a maximum
spanning tree (MTS) algorithm to find the tree structure that maximizes the sum of the empirical
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Kendall’s taus τ̂n for each tree. At each step we need to maximize the following optimisation problem:

max
∑

eij in spanning tree
|τ̂ij |. (4.7)

As the name suggests, the algorithm is sequential, we therefore start from the first tree T1, and
choose the complete graph that optimize the objective function (4.7). For all following trees Ti, we then
fit a bivariate copula to each pair of edges of the preceding spanning tree that satisfies the proximity
condition, in order to evaluate the conditional distributions. This last step allow to estimate the
empirical Kendall’s taus of the conditioned variables τ̂j,k|D. In the following steps, we proceed to find
the structure that maximizes the sum of the estimated τ of the conditional copulas:

max
∑

eij|D in spanning tree
|τ̂ij|D|.

The output of the algorithms is an R-vine copula specification (V,B). The method is not guaranteed
to converge, but provides some advantages. Firstly, it allows to obtain a sequence in a reasonable
amount of time, without computing all possible combinations. Moreover, choosing the pairs with
higher dependence first, allows to minimize the influence of rounding errors in later trees, since this
type of error is mostly attributable to strong dependence between the variables.

4.4.2 Family Selection
For a given structure of the vine model, we are required to find an appropriate family for each bivariate
copula on the vine trees. The selection can be carried out by comparing the value of the Likelihood, AIC,
or BIC of each family tested, and by choosing the family that produces the best value. The Bayesian
Information Criterion (Def. 41) is usually preferred, as it penalizes a higher number of parameters
compared to the other two criteria: we will adopt the BIC to select the set of families in our model.

4.5 Parameter Estimation
When estimating the set of parameters Θ of a vine Model, or in general of pair-copula constructions (or
PCC), many estimators that can be chosen. Certainly, the most popular one is the Maximum Likelihood
Estimator (see Def. 40) which is asymptotically efficient, but when the number of parameters increases
it becomes challenging to use. We therefore tend to prefer methods that treat the margins separately
(such as two-step estimators), or methods that estimate the parameters at each level by conditioning
on the parameters estimated on the previous levels. One example of the latter type of method would
be the Stepwise semiparametric estimator, or SSP, presented in the following subsection. The section
is a summary of [47], which focuses on the case of D-vines, and extend to C-vines (briefly introduced
in Subsection 4.2). However, the results can be applied to Regular vines as well.

4.5.1 Step-wise Semiparametric Estimator
The Stepwise Semiparametric Estimator, or SSE, is used when the number of parameters that have
to be estimated makes the computation too costly to be done simultaneously. The SSE, in fact, is
computed by treating the margins separately, and by estimating all other parameters level by level,
conditioning on the ones of the preceding levels of the structure [47].
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Assuming we want to estimate the parameters of a d-dimensional vector X, from the set of obser-
vations X1, . . . ,Xd, will result in d − 1 levels at which we will estimate the parameters. We start by
defining for j = 1, ..., d−1 the log pair-copula density of the j-th level of the vine structure for a generic
vector u = (u1, . . . , ud) ∈ [0, 1]d. If we define the conditioning set as Di,j = (Xk)k=i+1,...,i+j−1, we
obtain:

ψj(u1, . . . , ud;θ1, . . . , θj) =

=

d−j∑
i=1

log(ci,i+j|Dij
(Fi|Dij

(F−1
i (ui)|F−1

i+1(ui+1), . . . , F
−1
i+j−1(ui+j−1); θi→i+j−1),

Fi+j|Dij
(F−1

i+j(ui+j)|F−1
i+1(ui+1), . . . , F

−1
i+j−1(ui+j−1); θi+1→i+j); θi+j|Dij

)).

(4.8)

ci,j+1|Dij
is the conditional copula density of the pair of variables (Xi, Xi+j), given Dij ; the set of

parameter θi→j = {θs,s+t|Dst
: (s, s+ t) ∈ {i, ..., i+ j}}. Fi are the marginal CDFs, and F−1

i represent
the inverse of the same CDF, for each variable Xi. (4.8) refers to the particular case of D-vines copulas,
and is formulated under the simplifying assumption since, without this simplification, inference on the
models would not be feasible in practice [47].

At each level j of the vine model we estimate the parameter θ̂SSP
j , by conditioning on the parameters

estimated in the preceding level, and by maximising the pseudo-likelihood of the j-th level l̂j , with respect
to θj . Where l̂j is the sum of the log pair-copula densities, computed by applying the empirical marginal
distributions F̂i to the corresponding observations xi = (xi1, . . . , xiN ):

l̂j(θ1, ..., θj ;x) =

N∑
k=1

j∑
l=1

ψl(F̂1(x1k), ..., F̂d(xdk); θ1, ..., θl)). (4.9)

Moreover, [47] discusses the theoretical convergence and the asymptotic properties of the estimator.
In fact, under certain conditions which are listed by Tsukahara in [48] , θ̂SSP results to be consistent
for the set of parameters θ and asymptotically normal. According to [47], θ̂SSP exhibits a rate of
convergence of 1√

n
, which we will address in the following Section through a simulation study.

4.5.2 Goodness of Fit
Lastly, as previously discussed for copulas in Section 3.4.3, once we have selected a models we will be
left to evaluate it, using one of the many Goodness of Fit tests available.

Similarly to the copula case, one of the test that we will use to asses the goodness of the fitted
model is an hypothesis test based on White’s equality [36], which was already discussed in Section
3.4.3.1. The test’s version for Vine models is implemented in the R function ”RVineGofTest” of the
VineCopula package [34].

Another test would be the Vuong test (Appendix 3.4.3.2), an hypothesis test used to compare two
chosen distributions, by analyzing their Kullback–Leibler Information criterion. A practical application
of this test will be illustrated in the following simulation study. For a further discussion on the hypothesis
tests available, please refer to Appendix F.4.
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4.6 Simulation Study
To investigate the properties of the estimator θ̂SSP outlined in Subsection 4.5.1, and to offer a more
practical visualization of a simple vine model, we conducted a small simulation study.

The experiment has two main objectives, each carried out in separate stages. The first is to visualize
the convergence of parameter estimators by increasing the number of observations, and computing the
mean squared error (MSE). The second goal is to assess the consistency and accuracy of these estima-
tors for a fixed number of observations N, by estimating the parameters of a 3-dimensional Gaussian
vine copula. Different vine structures, which not necessarily corresponded to the original structure, are
considered and compared. The experiment is then extended to a t-Student and a Gumbel vine copula.

For all simulations, the original data is simulated from a 3-dimensional Gaussian vine copula, char-
acterized by the same structure shown in Figure 4.2, which we later refer to as structure V1. The
corresponding matrix is (refer to section 4.3.1 for an explanation of how to read the matrix):

V1 =

 1 3 3

3 1 0

2 0 0

 .

Figure 4.2: Structure of the tree chosen for the original model.

In part two of the simulation we will also use the two alternative structures allowed by a 3d vine
model, which will be referred to as V2, and V3. The corresponding matrix will be:

V2 =

 3 1 1

1 3 0

2 0 0

 ,

and

V3 =

 2 1 1

1 2 0

3 0 0

 .
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4.6.1 Part I: Estimators convergence
We started by performing an analysis of the rate of convergence of the estimators of the three parame-
ters of a 3-dimensional Gaussian vine model of known structure. As already anticipated, the structure
considered is the one presented in Figure 4.2. We know that the theoretical rate of convergence should
be 1√

N
, with N being the number of observations.

We assigned the following values to the vine’s parameters: (θ12, θ31, θ32|1) = (−0.8,−0.1, 0.4), which
correspond to the values of Kendall’s Tau (τ12, τ31, τ32|1) = (−0.59,−0.06, 0.26). We assumed the
structure and the family (Gaussian) known, estimating only the three parameters. We considered
different number of observations N, which were set equal to N = {50, 100, 200, 500, 1000, 2000}, and
for each N, we estimated the set of parameters. For each N, the experiment was replicated 100 times,
and computed the mean squared error (MSE) of each parameter from the true values. The results
are shown in Figure 4.3 of the Appendix, where we plotted the rate of convergence of the estimated
variables in logarithmic scale. In Figure B.12 of the Appendix, we provided the corresponding boxplots
of the estimated values.

Figure 4.3: Logarithmic scaled plot of the convergence of the three estimated variables, and the conditional
parameter. On the x-axis we have the number of observations, on the y-axis the corresponding Mean Squared

Error values.

From Figure 4.3, we can indeed conclude that all estimated parameters have a MSE that converges
to zero, with a speed that is coherent with the theoretical rate of 1√

N
. We also included the correlation

parameter θ23, which was computed manipulating Equation (4.10), a property of the correlation of
Gaussian distributions [47]:

θij|k =
θij − θikθjk√

(1− θ2ik)(1− θ2jk)
. (4.10)

The trend and speed of convergence are similar for all parameters, except for θ12, which shows
a steeper convergence, reaching 0 slightly faster than the other estimators. The result is coherently
expressed by the boxplots of Figure B.12, where only θ12 has sufficiently good results already for a
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sample size of N = 50, while remaining estimators only begin to align their medians with the true
values, and to exhibit reduced variability only around N = 500. This value is higher than the result
obtained for copulas in Section 3.5.4, where we performed a similar experiment. For the copulas case,
in fact, we concluded that N = 200 was a sufficient amount of data to reach satisfactory estimations.
This necessity for a larger dataset to attain accurate results, can be attributed to the higher complexity
of vine models, which involve more estimation steps, leaving more chances for errors in the estimations.

Additionally, for N = 50 and N = 100, the estimated values for θ31 shown in the boxplot of B.12
are concentrated around zero: this is a sign that the number of observations was not sufficient, as 0 is
generally returned by the algorithm when an estimate is failed to be produced. Lastly, trying to explain
the better performance of θ12, we notice that it is the parameter with the highest absolute value: a
higher correlation is more easily identifiable from the data, which would explain the steeper convergence.

To validate this last observation that a higher absolute value of correlation leads to faster con-
vergence of the estimator, we added a further step to the experiment. We fixed the parameters
θ31 = −0.5 and θ23|1 = 0.4, and replicated the previous experiment for the following values of
θ12 = {−0.9,−0.7,−0.5,−0.3,−0.1, 0.1, 0.3, 0.5, 0.7, 0.9}, to see if different values would lead to dif-
ferent convergence rates. The experiment can be generalized by simply changing the variables’ name.
For each value of the parameter θ12, we performed a nonlinear regression using the Least Squares
method to estimate the parameters α and β of the convergence rate curve: logMSE(N) = α logN +β.
Where α, is the rate of convergence, while β is the intercept of the fitted linear relationship.

Based on the results obtained, we were able to draw the conclusion that indeed the observation holds
true. If fact, we were able to observe how the value of the coefficient α became more negative if we
increased the absolute value of the parameter θ12. Moreover, for all values considered, the convergence
rate was always equal, or below, the theoretical α = − 1

2 , aligning our results with the theoretical rate
of convergence discussed in section 4.5 (in fact, α = − 1

2 corresponds to a linear rate of convergence of
1√
N
). We conducted additional iterations of the experiment using different values of θ32, and the results

were consistent and comparable.

4.6.2 Part II: Vine structures Equivalency
In the second part of the simulation study, we generated a three-dimensional Gaussian vine model with
N = 1000 observations, following the structure presented in Figure 4.2. The choice of 1000 observa-
tions followed from the first part of our study, as it was found to guarantee estimates with reasonable
accuracy. This observation held true for all parameters and copula families under consideration.

To conduct the simulation, we vary the combinations of the parameters (θ12, θ31, θ32|1) (as listed in
Table 4.1). For each parameter set, we replicate the experiment 100 times. Subsequently, we fit a vine
model to the resulting data frame, assuming it was generated from Gaussian bivariate distributions
with unknown parameters. We perform this process for all three possible vine structures allowed by a
3D vine model, hence for structures V1, V2, and V3.

Figure B.13 illustrates some of the results obtained. For each parameters considered, we plotted
the boxplot displaying the 100 different estimated values, divided by the underlying vine structure used
to fit the model. This enables to study the influence of different structures on the estimation, and to
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compare the results with the true value, represented by a red dashed line. Additionally, we compared,
two by two, the models with different underlying vine structures, using Vuong test, to assess if they were
equivalent. We repeated the test for all 100 iterations, and in Table 4.1 we provided the percentages of
times the test did not reject the null hypothesis: hence we provide the percentage of how many times
two models resulted equivalent fits to the original one.

(θ12, θ31, θ23|1) (τ12, τ31, τ32|1) Vuong V3 vs V1 Vuong V2 vs V1 Vuong V3 vs V2
(0.4, 0.3, 0.8) (0.26, 0.19, 0.59) 96% 93% 93%
(-0.99, 0.4, 0.6) (-0.90, 0.26, 0.41) 98% 97% 99%
(0.4, 0.86, 0.1) (0.26, 0.65, 0.06) 96% 96% 95%
(-0.2, -0.5, -0.9) (-0.12, -0.33, -0.71) 95% 92% 88%
(-0.4,0.86,0.1) (-0.26, 0.65, 0.06) 100% 98% 98%
(0.2, -0.5, 0.9) (0.12, -0.33, 0.71) 97% 95% 91%

Table 4.1: Percentages of P-values of the Vuong test greater than 0.05, obtained by comparing the results from
fitting the different vine structures, compared two by two. The results are reported for all six combinations of

parameters that we analyzed. We also provide the corresponding values of Kendall’s Tau for each copula
analyzed.

For Gaussian vine copulas the structures should be equivalent. The results obtained from this simu-
lation confirm the theory: the underlying structure does not influence the estimation of the parameters,
and the three structures are equivalent. This is evident by the high percentages shown in Table 4.1,
and from the boxplots B.13 that display very similar distributions of the estimated parameters. Addi-
tionally, we can observe that the estimation is generally successful, with the exception of a few outliers
(mainly with a value θ = 0, which indicates that the algorithm encountered an error). The estimated
parameters have a mean that coincides with the true one for all models.

Lastly, we extended the previous experiment by relaxing some restrictions. In the new experiment,
we simulate a Gaussian vine model with N = 1000 observations, for each parameter set provided in
Table 4.1. But, instead of imposing a predefined set of families for the bivariate copulas in the vine
structure, we let the algorithm determine the best fitting set of families, based on the comparison of BIC
values. Although this approach results in slower computations, we expect more satisfactory outcomes.

In Table 4.2, we calculate the frequency at which the bivariate copulas composing the fitted vines,
out of the total number of replications (N = 100), had the same set of families as the original vine (i.e.
were Gaussian bivariate copulas). Due to the variability across iterations, we do not provide boxplots
as the different families obtained may have incomparable parameters. Finally, in Table 4.3, we present
the frequency of acceptance for the null hypothesis of the Vuong test, computed using the newly fitted
vine models.

After analyzing both Tables 4.2 and 4.3, we can once again draw the conclusion that the specific
structure of a Gaussian vine model does not significantly impact the results. In fact, from Table 4.2,
the occurrence frequency of Gaussian bivariate copulas within the vine structure is consistently high,
with values exceeding 50% for the majority of cases. Moreover, there is a general accordance among the
different structures chosen, hence the frequency tends to be consistent for all three structures considered.
Table 4.3 also suggests equivalency the three models, as the frequencies are coherent and similar to the
ones observed in Table 4.1.
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(θ12, θ31, θ32|1) Structure V3 Structure V1 (True) Structure V2
(c12, c31, c32|1) (c12, c31, c32|1) (c12, c31, c32|1)

(0.4, 0.3, 0.8) (78%, 96%, 10%) (78%, 60%, 98%) (60%, 96%, 54%)
(-0.99, 0.4, 0.6) (96%, 78%, 92%) (96%, 78%, 92%) (78%, 78%, 88%)
(0.4, 0.86, 0.1) (78%, 68%, 96%) (78%, 100%, 10%) (100%, 68%, 26%)
(-0.2, -0.5, -0.9) (50%, 86%, 94%) (50%, 82%, 90%) (82%, 86%, 88%)
(-0.4, 0.86, 0.1) (78%, 68%, 94%) (78%, 92%, 22%) (92%, 68%, 54%)
(0.2, -0.5, 0.9) (36%, 90%, 90%) (36%, 76%, 92%) (76%, 90%, 92%)

Table 4.2: Frequency that indicates how many times, for each fixed vine structure, the fitted set of families of
the bivariate copulas coincide with the original set (gaussian). Only family coincidence is considered, without

regard to parameters.

(θ12, θ31, θ32|1) Vuong V3 vs V1 Vuong V2 vs V1 Vuong V3 vs V2
(0.4, 0.3, 0.8) 96% 92% 100%
(-0.99, 0.4, 0.6) 98% 84% 84%
(0.4, 0.86, 0.1) 100% 100% 94%
(-0.2, -0.5, -0.9) 90% 84% 90%
(-0.4, 0.86, 0.1) 94% 100% 94%
(0.2, -0.5, 0.9) 98% 80% 92%

Table 4.3: Frequency of P-values of the Vuong test greater than 0.05, obtained by comparing the results from
fitting the different vine structures, compared two by two. The results are reported for all six combinations of

parameters that we analyzed.

4.6.3 t-Student Vine Copula
Subsequently, we conducted two additional experiments by modifying the vine model family to a t-
Student copula at each level. In the first experiment, we fixed the parameters to be (θ12, θ31, θ32|1) =

(−0.9,−0.1, 0.4), and (ν12, ν31, ν32|1) = (3, 4, 5). For the second experiment, we varied the parameter
values according to the specifications provided in Table 4.4, and set the degrees of freedom to ν = 3 for
all bivariate pairs. The results obtained from these experiments are presented in the following Figures
B.14, and B.15 of the Appendix, and in Tables 4.4, and 4.5.

The convergence plot (Figure 4.4) appears again faster than the theoretical rate, similarly to the
results obtained for the Gaussian case. Specifically, the parameter θ12 = −0.9 has a faster convergence
compared to the other parameters. This behavior can be attributed to θ12 having the highest absolute
value, which aligns with the observations made in the Gaussian case. We also plotted the convergence
of the estimators for the degrees freedom ν, which appear to have much slower convergence compared
to the parameter θ. This discrepancy might be attributed to the broader range of potential values for
ν, as it can assume values in the interval [1,∞].
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Figure 4.4: Plot of the evolution of the convergence of the three variables, and the conditional parameter. On
the x-axis we have the number of observations on a logarithmic scale, and on the y-axis the corresponding Mean

Squared Error values.

For the second part of the experiment, we simulated N = 1000 points from t-student vine copulas
with tree structure of 4.2, the same used for the Gaussian case, and using the parameters listed in Table
4.4.

(θ12, θ31, θ23|1) (τ12, τ31, τ32|1) Vuong V3 vs V1 Vuong V2 vs V1 Vuong V3 vs V2
(0.4, 0.3, 0.8) (0.26, 0.19, 0.59) 95% 99% 100%
(-0.99, 0.4, 0.6) (-0.90, 0.26, 0.40) 94% 33% 43%
(0.4, 0.86, 0.1) (0.26, 0.65, 0.06) 67% 79% 95%
(-0.2, -0.5, -0.9) (-0.12, -0.33, -0.71) 81% 93% 84%
(-0.4,0.86,0.1) (-0.26, 0.65, 0.06) 55% 67% 92%
(0.2, -0.5, 0.9) (0.12, -0.33, 0.71) 77% 90% 86%

Table 4.4: Percentage of p-value of the Vuong test was greater than 0.05. The test was performed by
comparing the three different vine structures, two by two. Each vine structure considered is composed of

t-Student bivariate copulas, with original parameters indicated in column (θ12, θ31, θ32|1). We also provide the
corresponding values of Kendall’s Tau for each copula analyzed.

In Figure B.15 we report the results of the vine generated from a t-Student with parameters
(θ12, θ31, θ32|1) = (−0.4, 0.86, 0.1), and hence (τ12, τ31, τ32|1) = (−0.26, 0.65, 0.06). From the Figures,
we can observe how having the correct underlying structure can positively impact the estimation of the
parameters. This is confirmed by the results provided in Table 4.4, where the Vuong test suggests that
the three models are not equivalent anymore. For example, in the case (θ12, θ31, θ32|1) = (−0.4, 0.86, 0.1)

we have that, while the two alternative structures seem to be equivalent according to the Vuong tests
performed (in 92% of cases the two structures result equivalent), if they are compared to the origi-
nal structure the Vuong test rejects the equivalency in almost half of the cases (55% and 67% the
times they result equivalent). Not all set of parameters considered apply to this observation (e.g.
(θ12, θ31, θ32|1) = (0.4, 0.3, 0.8), (τ12, τ31, τ32|1) = (0.26, 0.19, 0.59)), but in general we can conclude that
the choice of a correct structure matters to guarantee a good convergence of the parameters.
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Moreover, Table 4.5 presents extremely high frequencies, meaning that, independently of the vine
structure chosen, the model selection results almost in all cases in a vine structure model composed by
bivariate t-Student copulas.

(θ12, θ31, θ32|1) Structure V3 Structure V1 (True) Structure V2
(c12, c31, c32|1) (c12, c31, c32|1) (c12, c31, c32|1)

(0.4, 0.3, 0.8) (100%, 100%, 100%) (100%, 98%, 90%) (98%, 100%, 94%)
(-0.99, 0.4, 0.6) (98%, 100%, 96%) (98%, 98%, 96%) ( 98%, 100%, 98%)
(0.4, 0.86, 0.1) (98%, 100%, 70%) (98%, 92%, 98%) (92%, 100%, 100%)
(-0.2, -0.5, -0.9) (100%, 92%, 100%) (100%, 90%, 96%) (90%, 92%, 94%)
(-0.4,0.86,0.1) (100%, 100%, 62%) (100%, 90%, 100%) (90%, 100%, 100%)
(0.2, -0.5, 0.9) (98%, 92%, 82%) (98%, 100%, 98%) (100%, 92%, 84%)

Table 4.5: Frequency that indicates how many times, for each fixed vine structure, the fitted set of families of
the bivariate copulas coincide with the original set (t-Student). Only family coincidence is considered, without

regard to parameters.

4.6.4 Gumbel’s Copula
Lastly, we replicated the two experiments, setting the vine model family to a Gumbel copula at each
level. For the first experiment, we set the values of the parameters equal to (θ12, θ31, θ32|1) = (10, 4, 8),
corresponding to (τ12, τ31, τ32|1) = (0.9, 0.75, 0.88). For the second experiment, the values used are
available in Table 4.6. For vine models composed of Gumbel’s bivariate copulas, the conclusions drawn
from the previous experiments do not hold, as we find that selecting the appropriate vine structure
becomes crucial for parameter estimation.

Figure 4.5: Plot of the evolution of the convergence of the three variables, and the conditional parameter. On
the x-axis we have the number of observations on a logarithmic scale, on the y-axis the corresponding Mean

Squared Error values.

Based on Figures 4.5 and B.16, we observe that all three variables exhibit a similar rate of conver-
gence. However, Figure B.17 highlights how, for most sets of parameters, only the choice of the original
vine structure Model V1 guarantees that the boxplots have average values closely aligned to the true
ones. This observation is further supported by Table 4.6, where the provided percentages indicate that
the three models are no longer equivalent. The most evident cases are (θ12, θ31, θ32|1) = (15, 14, 16) and
(θ12, θ31, θ32|1) = (10, 17, 8), where the Null hypothesis of the Vuong test is always rejected, indicating



4.6. Simulation Study 67

that the models fitted using different structures are indeed significantly different.

(θ12, θ31, θ23|1) (τ12, τ31, τ32|1) Vuong V3 vs V1 Vuong V2 vs V1 Vuong V3 vs V2
(3, 5, 1) (0.66, 0.8, 0) 13% 73% 63%
(10, 5, 3) (0.9, 0.8, 0.66) 36% 0% 1%
(10, 17, 8) (0.9,0 0.94, 0.87) 0% 0% 0%
(3,4,8) (0.66, 0.75, 0.87) 1% 6% 1%
(15, 14,16) (0.93, 0.92, 0.93) 0% 0% 0%

Table 4.6: Gumbel: Percentage of p-values of the Vuong test are greater than 0.05, by comparing the results
from fitting the different vine structures, compared two by two. The results are reported for all six combinations

of parameters considered. We also provide the corresponding values of Kendall’s Tau.

Lastly, from Table 4.7, we can observe from the high percentages that for the bivariate copulas
of the first tree (c12 and c31), there is a general tendency to choose a Gumbel copula. While for the
conditional copula c23|1 of the second tree, Gumbel’s family is almost never the best fit, particularly if
we consider different structures from the original one. In fact, only for structure 213 (the original one)
we can observe a high frequency of Gumbel bivariate copulas in the second tree. This consideration is
coherent with the original observation that for Gumbel’s vine models, the underlying structure influ-
ences the outcome. Moreover, the importance of choosing the correct structure is again confirmed by
4.8. Here, with the exception of the first two parameter combinations, the Vuong test suggests that the
three structures produce significantly different results: case (θ12, θ31, θ32|1) = (15, 14, 16) is the most
evident.

(θ12, θ31, θ32|1) Structure V3 Structure V1 (True) Structure V2
(c12, c31, c32|1) (c12, c31, c32|1) (c12, c31, c32|1)

(3, 5, 1) (80%, 76%, 0%) (80%, 72%, 0.00%) (72%, 76%, 0%)
(10, 5, 3) (94%, 70%, 0%) (94%, 86%, 80%) (86%, 70%, 0%)
(10, 17, 8) (92%, 0%, 0%) (92%, 96%, 70%) (96%, 0%, 0%)
(3, 4, 8) (86%, 50%, 0%) (86%, 88%, 86%) (88%, 50%, 0%)

(15, 14, 16) (98%, 0%, 0%) (98%, 96%, 96%) (96%, 0%, 0%)

Table 4.7: Frequency that indicates how many times, for each fixed vine structure, the fitted set of families of
the bivariate copulas coincide with the original set (Gumbel). Only family coincidence is considered, without

regard to parameters.

(θ12, θ31, θ32|1) Vuong V3 vs V1 Vuong V2 vs V1 Vuong V3 vs V2
(3, 5, 1) 72% 92% 96%
(10, 5, 3) 70% 10% 28%
(10, 17, 8) 4% 8% 2%
(3, 4, 8) 8% 20% 32%

(15, 14, 16) 0% 0% 32%

Table 4.8: Frequency of P-values of the Vuong test greater than 0.05, obtained by comparing the results from
fitting the different vine structures, compared two by two. The results are reported for all six combinations of

parameters that we analyzed.



5
Time Series

Time series are defined as a collection of random variables X1, X2, . . . that are ordered in time [49].
They are used to develop mathematical models to describe sampled data, and are particularly relevant
to financial applications. These variables enable us to understand patterns, trends, and dependencies
in data, facilitating forecasting, risk assessment, and investment decision-making.

In this chapter, we will introduce the key definitions and tools necessary for analyzing financial
time series. We will discuss the most common time series models used in finance, and how parameter
estimation and model selection are conducted.

5.1 Time Series Models
Before jumping to the definitions, it is important to understand the concepts of stationarity and White
Noise, or WN, which will be crucial to discuss the various time series models [49].

A desirable property for time series is stationarity, characterized by two distinct definitions: strict
stationarity, and weak stationarity [49]. We will further discuss this property in Section 5.3.1.

Definition 18 (Stationarity). A time series is strictly stationary if the joint distribution of every
collection of variables {Xt1 , . . . , Xtk} is identical to that of the time shifted set {Xt1+h, . . . , Xtk+h},
hence we have that ∀k = 1, 2, . . . , ∀t1, ..., tk, ∀x1, ..., xk ∈ R, and for all time shifts h = 0,±1,±2, . . . :

P(Xt1 ≤ x1, . . . , Xtk ≤ xk) = P(Xt1+h ≤ x1, . . . , Xtk+h ≤ xk).

A weakly stationary time series, Xt, is a finite variance process that has:

• a constant mean value function µXt = E(Xt), independent of time t, and
• the autocovariance function γX(t, s) = E(Xs−µs)(Xt−µt), defined as the second-moment product

for all time points t and s of the same series, that depends on s and t only through their difference
|s− t|.

Moreover, a White Noise is defined as follows.

68
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Definition 19 (White Noise). A weakly stationary time series wt (see Def 18), with mean µw = 0,
and autocovariance

γw(h) =

σ2
w if h = 0

0 else,

is a White Noise series wt ∼WN
(
0, σ2

w

)
. The autocovariance is defined as γX(h) = cov(Xt+h, Xt).

5.1.1 AR, MA, and ARMA
Autoregressive Models are models based on the intuition that the value of the time series Xt, at time
t, can be explained as a function of the past values Xt−1, . . . , Xt−p, and hence they are obtained by
regressing on the past [49].

Definition 20 (Autoregressive Model (AR)). An Autoregressive model of order p, AR(p), is of the
form

Xt = α+

p∑
i=1

ϕiXt−i + wt, (5.1)

where Xt is weakly stationary (see Def. 5.3.1), wt ∼ WN
(
0, σ2

w

)
, and α, ϕ1, ϕ2 . . . , ϕp are constants

(ϕp ̸= 0).

An example of Autoregressive Model is shown in Figure 5.1. The plot displays N = 150 points,
obtained by simulating from an AR(1) of parameters ϕ1 = 0.9, σ = 1, and with initial observation
X1 = 20. Due to the high value of ϕ, the series is characterized by high memory, where each observation
is strongly influenced by the preceding one. This high autocorrelation results in a plot that appears
smooth, with persistence of values causing extended periods of gradual increases or decreases. A clear
example of gradual decay can be noticeable in the first period, where the high initial value is slowly
brought toward the mean 0.

Figure 5.1: Example of an AR(1) time series of 150 points, with parameters α = 0, ϕ1 = 0.9. wt ∼ N(0, 1).

Moving Average models are derived as a function of the white noise, observed at different times [49].
They are defined as:

Definition 21 (Moving Average Model (MA)). A moving average model of order q, or MA(q) model,
is defined as

Xt = wt +

q∑
j=1

θjwt−j , (5.2)
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where wt ∼WN
(
0, σ2

w

)
, and θ1, θ2, . . . , θq (θq ̸= 0) are the model’s parameters.

Figure 5.2 shows N = 150 data simulated from a MA(1) time series, with parameters θ1 = 0.9,
and wt ∼ N(0, 1). The series is characterized by short term dependence, where a shock in the data
affects the following observation, but not further ones. The series appears less smooth than the AR(1)
plot, with higher variance. Additionally, MA time series are generally characterized by mean reversion.
This means that deviations from the mean are usually followed by observations that contrast the effect,
stabilizing the series around its mean.

Figure 5.2: 150 sampled points from a MA(1) time series with parameters θ1 = 0.9, and wt ∼ N(0, 1).

Time series with constant volatility can also be described using ARMA(p, q) models, which are a
combination of AR and MA models. Both time series imply a linear relationship with past observations
of the stationary time series, and are characterized by the orders p, hence the number of autoregressive
terms, and q, the number of lagged forecast errors [50]. The formal definition is the following:

Definition 22 (Autoregressive Moving Average Model (ARMA)). A time series Xt, t = 0,±1,±2, . . .

is ARMA(p, q) with mean µ, if it is stationary and

Xt = α+

p∑
i=1

ϕiXt−i + wt +

q∑
j=1

θiwt−j ,

where wt ∼WN
(
0, σ2

w

)
, and α = µ(1−ϕ1 − · · · − ϕp). Moreover, we have that σ2

w > 0, ϕp ̸= 0, θq ̸= 0.

In Figure 5.11 we show a simulation of an ARMA(1,1) time series with parameters ϕ1 = 0.9, θ1 = 0.7,
and with wt ∼ N(0, 1). The plot exhibit characteristics of both AR and MA processes. The strong
influence of the past, due to the high value of the AR parameter results in a rather smooth plot. However,
the series appears less predictable than a pure AR process, with isolated peaks where high volatility
affects only the following observation, a characteristic associated with the MA component.
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Figure 5.3: 150 sampled points from an ARMA(1,1) time series with parameters ϕ1 = 0.9, θ1 = 0.7, and with
wt ∼ N(0, 1).

5.1.2 ARCH, and GARCH
Financial assets, such as stock returns, often exhibit volatility clustering and non-linearity of the vari-
ance, features that are captured both by the Autoregressive Conditional Heteroscedasticity model
(ARCH), and by the Generalized Autoregressive Conditional Heteroscedasticity, two of the mostly used
time series models. As the name suggests, in fact, they are used to characterize heteroscedastic pro-
cesses, hence processes that exhibit a non-homogeneous and time-varying variance. An ARCH process
of order 1 is defined as:

Xt = µ+ σtϵt,

where: ϵt = σtwt,

σ2
t = α0 + α1X

2
t−1.

Xt is the value of the asset return at time t, µ the mean of the time series. wt ∼ N(0, 1) represents
independently and identically distributed white noise. The conditional variance, σ2

t , is determined by
α0 and α1, which are parameters that capture the impact of squared past observations X2

t−1, on the
current conditional variance [49].

GARCHmodels, introduced by [51] in 1986, are widely used for option pricing and studying volatility.
They serve as an extension of ARCH models, where the variance is not a linear function of past
observations anymore, but it incorporates information gained by including lagged conditional variances.
The definition of a GARCH of order p, q is taken from [52], and is the following:

Definition 23 (GARCH(p, q)). A process ϵt is called a GARCH(p, q) process if its first two conditional
moments exist and satisfy:

1. E(ϵt|ϵu, u < t) = 0, t ∈ Z.

2. There exist constants α0, αi, i = 1, . . . , 1, and βj, j = 1, . . . , p such that:

σ2
t = α0 +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjσ
2
t−j .
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An example of a simulated GARCH(1,1) time series is shown in Figure 5.4. In the plot, we can
recognize some volatility clustering, a behavior typical of GARCH models. This is characterized by
periods of high variance alternating with periods of lower volatility. Moreover, GARCH plots exhibit
mean reversion, making the series appear rather random with no clear trends.

Figure 5.4: Example of a GARCH(1,1) time series, generated sampling 150 points from a GARCH with
ω = 0.1, α = 0.1, β = 0.9.

5.1.3 ARMA-GARCH
ARMA-GARCH time seris are a combination of the previously discussed models, the ARMA component
is used to model the mean of the time series, while the GARCH component is used to describe its variance
[53]. In particular, we can consider these models as an extension of ARMA models, where the error ϵt
is not a white noise, but follows a GARCH process [54].

Definition 24 (ARMA-GARCH). A time series Xt, t = 0,±1,±2, . . . is ARMA(p, q)-GARCH(l,h) if
it is stationary, and is characterized by the following structure:

Xt = µ+

p∑
i=1

ϕiXt−i + ϵt +

q∑
j=1

θiϵt−j ,

σ2
t = α0 +

l∑
i=1

αiϵ
2
t−i +

h∑
j=1

βjσ
2
t−j ,

ϵt = σtwt,

where αi and βj are constant coefficients, l and h are orders, and wt ∼ WN
(
0, σ2

w

)
is a white noise

sequence. Moreover, we have that σ2
w > 0, ϕp ̸= 0, θq ̸= 0.

In Figure 5.5 we can find an example of simulation of an ARMA-GARCH. The plot exhibits a
combination of ARMA and GARCH effects: the high ϕ value leads to long memory, resulting in a
smoothed plot where future observations are influenced by past values. Additionally, the presence of
volatility clustering can be observed, which is attributed to the high value of the parameter β1 in the
GARCH component.
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Figure 5.5: Example of an ARMA(1,1)-GARCH(1,1) time series, generated sampling 150 points from a time
series with parameters ϕ1 = 0.9, θ1 = 0.3, α0 = 1, α1 = 0.3, β1 = 0.5.

5.1.4 Other Models
Several other time series models can be explored, including HAR models, ARFIMA models, and
EGARCH, among many others. For more comprehensive details on these models, readers can refer
to the book by Shumway and Stoffer titled ”Time Series Analysis and its Applications” [49].

Additionally, a natural evolution involves considering the relationship between different time series:
multivariate time series analyze the interdependencies among data of a multivariate dataset. In finan-
cial data analysis, several multivariate time series models are commonly used to capture the complex
dynamics and interdependencies among different financial variables. Some of the most widely used
models include: Vector Autoregression (VAR) and VARMA(p, q).

5.2 Box–Jenkins Methodology
We have now presented the main time series models, but the process of identifying an appropriate fit
for a given dataset, is more complex and involves several steps. One widely recognized methodology for
analyzing time series, and for developing forecasting models is the Box-Jenkins Methodology [52], which
has a structure that resembles the ones previously discussed for copulas and vine models. Named after
its creators, George Box and Gwilym Jenkins, this iterative approach is composed of six main steps:

1. A priori identification of the trends and patterns observed in the data, which may require trans-
formations such as differencing (Yt = Xt − Xt−k) or a log-transformation (Yt = log(Xt)), to
stationarize the data (i.e., make its statistical properties constant over time);

2. A priori identification of the orders p and q or the autoregressive (AR) and moving average
(MA) components of the ARMA model are determined based on the autocorrelation and partial
autocorrelation functions;

3. Estimation of the parameters of the time series;
4. Validation of the selected parameters, and diagnostic;
5. Choice of a model: if the selected model does not provide satisfactory Goodness of Fit results, we

iteratively refine the model, re-fitting the parameters, and eventually changing the used model;
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6. Once a satisfactory model is identified, it is deployed to generate forecasts for future observations.

To illustrate each step, we provide a practical example involving a simulated Moving Average (MA)
time series, introduced in Section 5.3.4. The example will help to the steps illustrate more in depth.

5.3 Preliminary Analysis
In time series analysis, the initial phase involves some preliminary analysis of the considered dataset,
aimed at identifying its main characteristics, and to determine if any preprocessing is necessary to
ensure reliable analysis. Generally, this analysis begins with data visualization, which provides an initial
glimpse of the presence of any seasonality or patterns. A more in-depth diagnosis then requires analyzing
the stationarity of the time series, examining the ACF and PACF plots (which will be discussed in section
8.4), and testing for heteroskedasticity.

5.3.1 Stationarity
A stationary time series, which was defined in Def. 18, is one that does not show any seasonality,
pattern nor trend: this allows to have a simpler modeling process and enables the application of various
statistical tools and techniques. Most collections of data are not originally stationary, but the property
can sometimes be achieved by applying transformations, such as differencing or a logarithmic transfor-
mation [49].

Consequently, a first approach to verify whether a time series is stationary is to conduct a visual
inspection of the time series, and its residuals. The presence of clear trends, cycles, or systematic
patterns suggests non-stationarity. Alternatively, a more formal approach is hypothesis testing. The
Dickey-Fuller Test is commonly employed for this purpose.

5.3.1.1 The Dickey-Fuller Test
To test stationarity, many hypothesis testing have been developed. One of the most common ones is
the Dickey-Fuller (DF) Test. The test is a unit root hypothesis test, which is used to assess if a specific
time series process has a stochastic trend or exhibits non-stationarity.

The intuition behind a unit root can be extracted by considering an autoregressive process Xt of
order p = 1, as defined in Def. 20. If ϕ1 = 1, hence if the root ϕ1 lays on the unit circle, we have that
sharp changes at one point in time strongly influence the future, making the time series not station-
ary. Contrarily, if |ϕ1| < 1, this considerations does not hold anymore: in this case the root lays inside
the unit circle, and we do not have a unit root. The time series in this case can be considered stationary.

This is exactly what the Dickey-Fuller (DF) test does, which is discussed by [49] for an AR(p)
process. Testing for a unit root can be translated in the following hypothesis:

H0 : |ϕ| = 1 vs H1 : |ϕ| > 1,

where |ϕ| is the norm of the vector of autoregressive roots, obtained by solving the corresponding
characteristic equation ϕ(z) = 1 − ϕ1z − ϕ2z

2 − · · · − ϕpz
p = 0 for z. If the unit roots lie outside the

complex unit circle, then the time series exhibits stationarity.
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The test statistic for the case of an AR(1) is (ϕ̂− 1) appropriately normalized, where ϕ̂ is the least
squared estimator, computed as:

ϕ̂ = 1 +
1
n

∑n
t=1 wtXt−1

1
n

∑n
t=1X

2
t−1

.

The p-value is computed by comparing the value of the test statistic to some critical values. In
particular, the p-values of the test can be extracted from [55]. For more detailed information on how
the regression is performed, and how to compute the test statistic refer to [56].

A more general test, is the Augmented Dickey-Fuller test, or ADF, which has been developed
to detect non-stationarity in ARIMA(p,d,q) models, by applying an autoregression [56]. The test’s
hypothesis are the following:

H0 : The time series has a unit root,

H1 : The time series is stationary.

This is tested using the following test statistic:

tn =
ϕ̂1 − 1

ˆStd(ϕ̂1)
,

where ϕ̂1 represents the ordinary least squares (OLS) estimator of the first autoregressive term, while
ˆStd(ϕ̂1) represents the estimator of the standard deviation of ϕ̂1. The distribution of the test statistic is

non-standard, and can be found in [57]. Again, for a p-value smaller than 0.05 we are able to conclude
that the analyzed time series is stationary.

Once we have established stationarity, we can explore various statistical measures to analyze and
understand the dependencies within the time series. One such measure is the autocorrelation function,
which is used to measure the linear dependence between two different time points of the same time
series Xt and Xs. It is, therefore, a way of expressing numerically how much lack of independence there
is between the points.

5.3.2 ACF and PACF
The Autocorrelation Function, or ACF, and the Partial Autocorrelation Function, or PACF, are two
of the main statistical tools used in time series analysis to understand the autocorrelation and partial
autocorrelation patterns in a given sequence of observations. Their importance lies in identifying sta-
tionarity, determining the order of a specific model, and gaining insight for forecasting. The subsequent
sections will provide further details on these concepts.

Definition 25 (Autocorrelation Function). The autocorrelation function, or ACF, is:

ACF (s, t) =
γX(s, t)√

γX(s, s)γX(t, t)
,

where γX(s, t) = cov(Xs, Xh).

The ACF, which has values ACF (s, t) ∈ [−1, 1], is a measure of the linear predictability of the series
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at a certain time t, having the value at time s. A stationary time series will generally have a ACF close
to zero, or an ACF that decreases exponentially with the lag, which is the distance between the time
points t and s.

For some time series, it is also worth computing the Partial Autocorrelation function, or PACF,
which is a measure of the correlation between two random variables removing the linear effect of a third
variable. For a stationary time series process the definition is the following:

Definition 26 (Partial Autocorrelation Function). The PACF of a stationary process Xt is:

PACF (h) =

corr(Xt+1, Xt), h = 1

corr(Xt+h − X̂t+h, Xt − X̂t), h ≥ 2,

where X̂t is obtained as X̂t = β1Xt+1 + β2Xt+2 + + βh1Xt+h−1, with coefficients βi chosen to
minimize thee MSE (Def. 39) of X̂t from the true value Xt. Additionally, corr(Xt+h, Xt) = γX(h)

γX(0) ,
denotes the autocorrelation of Xt at lag h.

Both ACF and PACF can prove to be useful to identify the orders p and q of an AR, a MA or an
ARMA model. In particular, from the PACF model we can identify the order p of the AR model: if
the PACF plot shows a significant spike at lag p and then trails off, it suggests that the autoregressive
order is p. Similarly, from the ACF plot we can identify the order of the moving average component q.

5.3.3 Heteroskedasticity
Lastly, as previously discussed for GARCH models in Section 5.1.2, a time series can exhibit time-
varying variance. Testing for heteroskedasticity becomes therefore crucial to assess whether an ARCH
or a GARCH model could potentially provide a good fit for the considered time. One example of a
hypothesis test that can be employed in this context is the McLeod-Li Test.

5.3.3.1 McLeod-Li Test
The McLeod-Li test is an hypothesis test introduced in 1983 in [58], to detect if a model is conditionally
heteroskedastic.

The test is based on the Ljung-Box Test (F.4.2), with Null and Alternative hypothesis:

H0 : The residual are homoscedastic.

H1 : The residual of the time series are heteroscedastic.

The test statistic is given by:

Q = n(n+ 2)

H∑
h=1

ÂCF
2
(h)(ϵ2)

n− h
,

where n is the sample size, ÂCF
2
(h) is the sampled autocorrelation function at lag h of the squared

residuals ϵ2. Q asymptically follows a χ2 distribution, with (H − p − q) degrees of freedom, where H
represents the maximum lag, while p and q the autoregressive and the moving average order respectively
[52].
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5.3.4 A practical Example: MA
As already anticipated in the previous section, throughout this Chapter we will support the theory
by illustrating time series with a practical example. We therefore start by simulating a MA(1) times
series of N = 500 time points, length similar to the one of the real-data application of Chapter 8. The
time series is simulated using parameter θ1 = 0.9, while the white noise follows a normal distribution
(wt ∼ N(0, 1.5)). The results are shown in the following Figure 5.6 below, where as discussed for Figure
5.2, we can notice a rather volatile time series, characterized by sharp changes and mean reversion.

Figure 5.6: Example of a MA(1) time series, generated sampling 500 points from a MA(1) of parameter
θ1 = 0.9, and White Noise wt ∼ N(0, 1.5).

The goal of this simulation is to explore different aspects of time series analysis, including model
diagnostic, model fitting and selection, residual analysis, and predictions. With these analysis on
simulated data, we can gain insight about the behavior of time series models under different conditions
and better understand their strengths and limitations. Additionally, the simulation study is useful to
validate the methodologies for analyzing real-world time series data that will be deployed in Chapter 8.
In Section 5.8, we will extend this simulation to other time series models.

5.3.4.1 Preliminary Analysis
Assuming that we do not know the original distribution used to simulate the MA(2) time series, we
can start to analyse the plot of Figure 5.6, and to make some preliminary analysis following the steps
discussed in this Section.

From a a first glance, the time series plot does not show any pattern nor seasonality, which might
indicate stationarity; moreover, there isn’t any clear sign of volatility clustering, and the overall plot
seams to have a generally constant volatility, suggesting homoskedasticity. Proceeding with a more
in-depth analysis, Figure 5.7 shows the ACF and PACF of the time series. In particular, the ACF has
one relevant spike, suggesting that the order of the moving average (MA) of the time series should be
q = 1. On the other hand, the PACF might indicate an AR component of order 1, or 2.
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Figure 5.7: ACF, PACF of a MA(1) of parameter θ1 = 0.9, wt ∼ N(0, 1.5).

Additionally, the Augmented Dickey-Full test for stationarity (see 5.3.1), resulted in a p-value of
0.01. Since the p-value is lower than 0.05 we can reject H0, and conclude that the time series is indeed
stationary, coherently with the observations made previously. It is also important to remark that MA
time series are always stationary, since they lack a direct influence of the past observations (which is
indeed the AR term). Lastly, we tested the heteroskedasticity by fitting and ARMA model on the time
series, and by performing a McLeod-Li test on the residuals. The p-value of 0.13 indicates homoschedas-
ticity.

In conclusion, based on the results obtained in this preliminary analysis, we may consider fitting an
AR(2), a MA(1), or even an ARMA(2,1). Now that we have identified a set of potential time series
models suitable for our dataset, two questions arise: how do we estimate the parameters of a time series
model, and how do we select the best-fitting model? Answers to both questions will be provided in the
following section.

5.4 Model Fitting
In this section, we will discuss how to estimate the parameters of a time series, and how to compare
different models in order to choose the best fit. We will end by resuming the MA(1) example of Section
5.3.4.

5.4.1 Parameter Estimation
When estimating the parameters of simple time series models, two methodologies are generally preferred:
the method of moments, and the maximum likelihood method [49]. The idea behind the method of mo-
ments is to find the estimators by matching the theoretical moments to the empirical ones. An example
of a moment would be the expected value, corresponding to k = 1, where its empirical correspondent
is the mean. On the other hand, the Maximum likelihood estimate (MLE) of a specific parameter θ,
denoted as θ̂ML, is obtained as the value that maximizes the Likelihood function L(θ), introduced in
Definition 40. It is often derived by setting the partial derivatives of the Log-Likelihood function to
zero. Further discussion on this approach can be found in Section F.1.1 of the Appendix.
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For more complex models, such as GARCH models, more advanced methods are required. An
example of method used would be the Quasi-Maximum Likelihood Estimator (QMLE), introduced in
Chapter 7 of [52].

5.4.2 Model Selection
In the context of time series analysis, model selection is generally performed by comparing the Akaike’s
Information Criterion (AIC) or the Bayesian Information Criterion (BIC), and selecting the model with
the lowest value, procedure that has been already discussed for copulas and vine models. BIC values
are often preferred due to their penalty for model complexity, thereby mitigating the risk of overfit-
ting. However, the results frequently agree with those obtained from comparing the AIC. Therefore, for
simplicity, we will use AIC, as it is often already implemented in the functions used for this analysis in R.

For more insight into AIC and BIC, the reader can consult Definition 41 in the Appendix, where we
discuss both criteria.

5.4.3 The MA Example
Coming back to the example presented in Section 5.3.4, we proceed by fitting different time series fam-
ilies to the dataset, and compare the relative AIC values to see if the best one aligns with the one used
to simulate the dataset. Specifically, we fitted MA, ARMA, and GARCH models with orders ranging
from 1 to 3, and in Table 5.1 we present the AIC values obtained for the best fit for each family. The
overall best model, hence the one with lower AIC, results to be a MA(1), which is aligned with the
model used to simulate the original dataset.

AIC Parameters
True 1881 θ1 = 0.9, σ = 1.5

MA(1) 1878 θ̂1 = 0.817, σ̂ = 1.574

ARMA(1,2) 1885 (ϕ̂1, θ̂1, θ̂2) = (0.252, 0.543,−0.239), σ̂ = 1.573

GARCH(1,1) 2095 (α̂0, α̂1, β̂1) = (3.198, 0.193, 0.001)

Table 5.1: AIC values obtained by fitting different time series models to the dataset simulated using a MA(1)
model, and the corresponding fitted parameters. We highlighted the best values in bold.

The chosen model has fitted parameters equal to θ̂1 = 0.817, σ̂ = 1.574, which are close to the
original values, resulting in an absolute error of 0.083 for θ1, and 0.074 for the standard deviation of
the white noise.

5.5 Model Evaluation
In the previous Sections we have discussed how to fit the parameters of a time series model, and how
to select the model based on the AIC or BIC criteria. However, the selection of a model based on these
criteria doesn’t guarantee its adequacy. In this section, we explore how to evaluate a chosen model to
determine its suitability for the original dataset. In particular, we will discuss analysis of the innovations
and some Goodness of Fit tests that can be performed.
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5.5.1 Evaluation of the Innovations
One possibility of evaluating if the chosen model produces a reasonable fit, would be to examine its
residuals or innovations. These residuals represent the difference between the observed values of the
time series and the corresponding one-step-ahead predictions made by the fitted model. Mathematically,
they are computed as et = Xt − X̂t−1

t , and are generally used for ARMA models. Additionally, for
standardization and easier interpretation, it is also common to compute standardized residuals:

et =
Xt − X̂t−1

t√
P̂ t−1
t

, (5.3)

where P̂ t−1
t is the estimated one-step-ahead error variance [49].

In a good fit, residuals should be approximately independent and identically distributed (iid), with
mean zero and variance equal to one. This property can be checked by observing the QQ-plot in case
of normality, or by conducting a Ljung-Box test. The Ljung-Box is, in fact, an hypothesis test that has
as null hypothesis the independence of the data considered, while the alternative hypothesis suggests
dependence. More details are provided in the Appendix, in Section F.4.2.

Additionally, we can perform the Augmented Dickey-Fuller test and the McLeod-Li test, discussed
in Section 5.3, on the residuals. In a good fit, these tests should indicate stationarity and homoscedas-
ticity. Furthermore, we can analyze the autocorrelation function (ACF) plots of the residuals, which
should not exhibit any patterns or significant values [49].

Lastly, in the case of multivariate time series we could perform a Q-test, to check if the noise is a
white noise (WN): more details on this hypothesis test are reported in Subsection F.5.1 of the Appendix.

5.5.2 The MA Example
From the fitted model of the MA(1) example that was derived in Section 5.4.3, we proceed to evaluate
the fit by performing some Goodness of Fit test on the obtained residuals, following the steps outlined
above.

In Figure 5.12 the plot of the ACF, and the QQ-plot of the residuals can be visualized. The first
exhibits low values of ACF, indicating that the chosen model could be a good fit for the original datasets.
The points of the QQ-plot align with the diagonal line, indicating that the distributions of the residuals
is aligned with the normal one, and hence suggesting that the fitted model is good.
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Figure 5.8: ACF, PACF and QQ-plot of a MA(1) of parameter θ1 = 0.9.

The Ljung-Box test yields a p-value of 0.205, indicating independence of the residuals. Additionally,
the Augmented Dickey-Fuller (ADF) test returns a p-value of 0.01, suggesting stationarity. Finally,
the McLeod-Li test produces a value of 0.332, indicating homoskedasticity. These results support the
conclusion drawn from observing the autocorrelation function (ACF) and QQ-plot.

With the goodness of fit confirmed, we can now leverage our fitted model to mimic the behavior of
the original dataset. This offers various applications, one of which would be making predictions. We
will cover this particular application in the following Section.

5.6 Forecasting
When fitting a time series model to a sequence of observationsX1, X2, . . . , Xt, where t represents present
time, and obtaining a set of estimated parameters Θ̂, we are able to leverage the information gained to
predict future values of the time series X̂t(m), m = 1, 2, . . . . Here, t is defined as the forecast origin,
and m as the lead time. The forecasted value is typically computed as the minimum mean square error,
expressed as:

X̂t(m) = E[Xt+m|X1, . . . , Xt],

where Xt+m represents the value of the times series at time t+m. Additionally to the predicted value,
we should also provide a prediction interval that reflects the uncertainty of the forecast [59].

To evaluate the prediction we can use two different parameters. One choice is to compute the relative
Root Mean Squared Error, or rRMSE, which is formulated as follows:

rRMSE =

√√√√ 1
n

∑N
t=1(Xt − X̂t)2∑N

t=1 X̂
2
t

, (5.4)

where Xt is the value of the original dataset at time t, while X̂i represents the corresponding
predicted value. This is an alternative formulation of the MSE, which allows for better comparison
with other methods by normalizing the data.

5.6.1 The MA Example
Since the goodness-of-fit test performed on the fitted MA(1) model presented in Section 5.3.4 indicated
a satisfactory fit, we can proceed to make predictions. The model was trained using N = 470 data points



5.7. Time Windows 82

from the original time series, hence the training set. The remaining N = 30 data points are reserved
as the test set, to evaluate the performance of the predictions. We make one day ahead predictions,
adjusting the model each day. The result are shown in Figure 5.9, along with the prediction interval.

Figure 5.9: 1-day-ahead predictions of a MA(1) time series. The predictions are compared with the true
realization of the original dataset. The green area represents the 95% prediction interval at each time point,

given the past.

To evaluate the prediction, we computed the rRMSE (see (5.4), which resulted rRMSE = 0.222:
the resulted forecasts are close to the original values. We can, in fact, also see from the plot how the
prediction follow a similar trend to the one of the original dataset.

5.7 Time Windows
Lastly, time series analysis often uses different types of time windows to capture and analyze data
trends, dividing the dataset into smaller partitions created in various ways. Here we illustrate the most
common ones.

An expanding window approach starts with an initial subset of data and progressively includes more
data points as time advances. This method ensures that all available observation at a specific time are
used [60].

Alternatively, a rolling window approach can be employed. This method involves a fixed-size window
that moves forward through the data, offering a consistent time frame for analysis at each step. This
allows to account for structural changesand updating the model by forgetting past data, which could
wrongly influence the present by holding outdated information [60].

Another approach is the sliding window. Similar to the rolling window, it can vary in size and
overlap, offering flexibility in capturing short-term and long-term trends simultaneously.
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5.8 Simulation Study
Following the methodology employed in the analysis of the Moving Average model discussed in the
preceding sections, we extend our simulation study to include an AR(1) and a AR(1)-GARCH(1,1)
model. This aims to provide a more in depth understanding of working with time series data, offering
insights into various modeling techniques. By incorporating these additional models, we aim to validate
the methodologies for analyzing real-world data, which will be applied in Chapter 8. Additionally, to
support and test the methodology used in this simulation study, in Appendix C we provide a deeper
analysis, focusing on each step separately.

5.8.1 AR(1)
We simulate N = 500 points from an AR(1) characterized by parameter ϕ1 = 0.9, and white noise
wt ∼ N(0, 1.5). The resulting time series is shown in Figure 5.10, where no trend, seasonality, nor
volatility clustering is identifiable. The choice of such a high parameter value allow for long memory
of the time series. Consequently, if something unusual happens, its effect propagates over several sub-
sequent days. This allows for easier identification of autoregressive (AR) effects. This is, for example,
visible at the beginning of the plot in Figure 5.10, where the time series, starting from a high initial
value (X1 = 10), takes some time to adjust around its mean, which should be zero.

Figure 5.10: Example of an AR(1) time series, generated sampling 500 points with parameter ϕ1 = 0.9 and
wt ∼ N(0, 1.5).

5.8.1.1 Preliminary Analysis
Based on the ACF and PACF plots shown in Figure 5.11, we could assume that the time series could
be modelled with an AR of order p = 1 (as indicated by the PAC). The ACF has significant values
for many lags, which is still an indicator of stationarity, as it decays exponentially [49]. Moreover, this
may suggest a Moving Average (MA) order equal to zero. However, it might be worth mentioning that
there is a strong duality between AR and MA processes. They are, in fact, mathematically equivalent
under inversion, property that is commonly known as ”reversibility”. Specifically, an AR(p) process can
be represented as an MA(∞) process, and vice versa [61].
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Figure 5.11: ACF, PACF of an AR(1) time series, generated sampling 500 points with parameter ϕ1 = 0.9
and wt ∼ N(0, 1.5).

The low p-values obtained from the Augmented Dickey-Fuller test (p− value = 0.01), suggests that
the time series should be stationary. This is coherent with our expectations. As discussed in Subsection
5.3.1.1, we can analytically determine whether a time series is stationary by finding the roots of the
characteristic equation, which in this case is ϕ(z) = 1 − 0.9z = 0. The corresponding root is z = 10

9 ,
which lies outside the unit circle, confirming that the time series is indeed stationary.

Moreover, we tested for heteroskedasticity of the time series by computing the p-value of the McLeod-
Li test, which resulted equal to 0.112. Since we cannot reject H0, the time series should be homoskedas-
tic, which corresponds to expectations.

5.8.1.2 Model Fitting
As for the MA case, we start by fitting different time series with orders ranging from 1 to 3 to the
dataset. Then, for each family considered we select the best fit by comparing the AIC values, and
compare the results in Table 5.2. We then select the model with the lower AIC value, which is an
AR(1), which corresponds to the original time series used to simulate the data.

AIC Parameters
True 1805 ϕ1 = 0.9, σ = 1.5

AR(1) 1804 ϕ̂1 = 0.87, σ̂ = 1.463

MA(1) 2114 θ̂1 = 0.712, σ̂ = 1.994

ARMA(1,1) 1806 (ϕ̂1, θ̂1) = (0.859, 0.043), σ̂ = 1.461

GARCH(1,1) 1831 (α̂0, α̂1, β̂1) = (1.629 ∗ 10−3, 7.4 ∗ 10−10, 0.998)

AR(1)-GARCH(1,1) 1832 (ϕ̂1, α̂0, α̂1, β̂1) = (0.864, 2.12 ∗ 10−3, 5.88 ∗ 10−10, 0.998)

Table 5.2: AIC values obtained by fitting different time series models to the dataset simulated using an AR(1)
model, and the corresponding fitted parameters. We highlighted the best values in bold.

The parameters of the chosen fitted model are ϕ̂1 = 0.87, σ̂ = 1.463. The fitted values are rather
close to the original ones, with a maximum absolute difference between the original and fitted parameter
of 0.03, which is a rather good result.
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Figure 5.12: ACF,and QQ -plot of the residuals of a fitted ARMA(2,2) time series.

We then proceed to evaluate the goodness of the fit of the selected model. From Figure 5.12, both
the extremely low values of ACF, and the aligned QQ-plot, suggest stationarity of the residuals. In
addition, the high p-value (0.849) of the Ljung-Box test suggests that the residuals are independent
over time, while the p-value of the McLeod-Li, equal to 0.130, indicates that they should not present
any heteroskedasticity. Lastly, a p-value of 0.01 for the ADF test suggests stationarity of the residuals.
All those indicators suggest that the chosen model might be a good fit for the dataset.

5.8.1.3 Predictions
In Figure 5.13, we present the predictions generated by fitting an AR(1) model to the initial N = 470

days, and then by using the fitted model to predict the last N = 30 days. The predictions are plotted
against the test set. The prediction results in an rRMSE = 0.111 (see 5.4), which is a very good result:
this might be due to the high parameter value of both the original dataset, and the fitted model, which
allow to easily make 1 day ahead predictions, since they are highly influenced by the preceding time
series value. We also computed the percentage of times the true time series lies between the upper and
lower bound, which resulted equal to 93.3%, confirming that we have a good result.
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Figure 5.13: 1 day ahead prediction of a AR(1) time series. The predictions are compared with the true
realization of the original dataset. The green area represents the 90% prediction interval at each time point,

given the past.

5.8.2 AR-GARCH
Lastly, we conclude this simulation study by repeating the same steps of the previous simulations for an
AR(1) - GARCH(1,1) of parameters (ϕ̂1, α̂0, α̂1, β̂1) = (0.9, 1, 0.3, 0.5), and noise wt ∼ N(0, 1.5), which
is shown in the following plot.

Figure 5.14: Time series generated sampling 500 points from an AR(1) - GARCH(1,1) of parameters
(ϕ̂1, α̂0, α̂1, β̂1) = (0.9, 1, 0.3, 0.5), and noise wt ∼ N(0, 1.5).
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5.8.2.1 Preliminary Analysis
As for the AR case, the autocorrelation function (ACF) and partial autocorrelation function (PACF)
displayed in Figure 5.15, might indicate the presence of an AR(1) model. In fact, the PACF has only
one significant lag, suggesting an order p = 1 of the AR component. On the other hand, the ACF
has many significant lags that decay exponentially, suggesting no MA order. An alternative would be
to consider different models, such as GARCH as a fit. These observations are supported the p-value
of 0 of the McLeod-Li test, which suggests that the time series might be heteroskedastic. Moreover,
in Figure 5.14 some volatility clustering are evident, a further indication of potential heteroskedastic-
ity. The low p-value of the Dickey-Fuller test (equal to 0.01) suggests stationarity of the data considered.

Figure 5.15: ACF, PACF of a time series generated sampling 500 points from an AR(1) - GARCH(1,1) of
parameters (ϕ̂1, α̂0, α̂1, β̂1) = (0.9, 1, 0.3, 0.5), and noise wt ∼ N(0, 1.5).

5.8.2.2 Model Fitting
We proceed to fit various time series models with orders spanning from 1 to 3 to the dataset. Sub-
sequently, for each model family, we identify the best fit and compare the outcome of the different
models. Ultimately, we choose the model with the lowest AIC value, which happened to be an AR(1)-
GARCH(1,1) model, coherently with the model used to simulate the original dataset: the results are
provided in 5.3.

AIC Parameters
True 2586 (ϕ̂1, α̂0, α̂1, β̂1) = (0.9, 1, 0.3, 0.5)

AR(1) 2673 ϕ̂1 = 0.891, σ̂ = 3.486

MA(1) 3049 θ̂1 = 0.767, σ̂ = 5.082

ARMA(1,1) 2674 (ϕ̂1, θ̂1) = (0.878, 0.059), σ̂ = 3.482

GARCH(1,1) 2583 (α̂0, α̂1, β̂1) = (1.846, 0.368, 0.5063)

AR(1)-GARCH(1,1) 2582 (ϕ̂1, α̂0, α̂1, β̂1) = (0.884, 1.870, 0.363, 0.508)

Table 5.3: AIC values obtained by fitting different time series models to the dataset simulated using an
AR(1)-GARCH(1,1) model, and the corresponding fitted parameters. We highlighted the best values in bold.

If we compare the original values of the parameters, with the ones obtained by estimating the param-
eters of the best fit, which are (ϕ̂1, α̂0, α̂1, β̂1) = (0.884, 1.870, 0.363, 0.508), we can see how the values
are rather close to the original ones, with the only exception of α̂0, which has a absolute difference of
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0.87 from the original parameter. This might be a good sign that the fitted model is a good fit for the
original dataset.

Additionally, to evaluate if the selected model, we proceed to perform some Goodness-of-Fit analysis
on the residuals. We start by analyzing the ACF and QQ-plot of the residuals, shown in Figure 5.16.
The very low ACF values, and normality of data from the QQ-plot, are generally associated with a good
fit. Moreover, we provide the p-values of the Ljung-Box test, of the ADF test, and of the McLeod-Li
test. The first is equal to 0.849, suggesting that the residuals should be independent. The ADF results
in a p-value of 0.01, indicating stationarity, and the McLeod-Li in a p-value of 0.130, which indicates
homoskedasticity of the residuals. All indications that we have a good fit.

Figure 5.16: ACF, and QQ-plot of the residuals of a fitted AR(1)-GARCH(1,1) time series.

5.8.2.3 Predictions
In Figure 5.17, we compare the N = 30 predicted data points, using the fitted model analyzed in
the previous Subsection to make 1 day ahead predictions. The predictions exhibit a rather reactive
behaviour, that mimic the one of the original dataset. The rRMSE = 0.145, is a very good result.
Moreover, 90% of the original dataset falls within the forecasting interval, which correponds exactly
with the expectation.
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Figure 5.17: 1 day ahead days ahead prediction of an AR(1)-GARCH(1,1) time series. The predictions are
compared with the true realization of the original dataset. The green area represents the 90% prediction interval

at each time point, given the past.



6
Copula-GARCH Models

In previous Chapters we have separately treated the concepts of copulas, vine copulas, and time series
analysis. However, these models are frequently combined together to study the dependence structure
of multivariate time series, which were briefly introduced in Section 5.1.4.

A widely used approach, particularly relevant in financial applications, is the one of copula-GARCH
models. These models combine the strengths of copulas in studying dependence structures with the
flexibility of GARCH models in capturing volatility dynamics, to accurately model datasets. They prove
useful in examining cross-sectional dependence, which focuses on the relationship between different
random variables at a specific time t. The main idea behind copula-GARCH models is filtering the
margins with a time series, and then fitting an appropriate copula or vine model to the resulting
innovations [62], [63].

6.1 Copula - GARCH Models
Copula-GARCH models are a class of statistical models used to analyze the dependence structure and
volatility dynamics of a multivariate time series (Xt)t=1,...,T = (Xt,1, . . . , Xt,d)t=1,...,T . Their construc-
tion can be structured using three distinct steps [64].

The initial step involves applying a GARCH filter to each variable in the multivariate time series.
By fitting a GARCH model (Def. 5.1.2) to each stationary variable, heteroskedasticity in the data is
effectively removed. Consequently, for each variable Xt,i, t = 1, . . . , T , a set of independent and identi-
cally distributed innovations {et,i}t=1,...,T is obtained (refer to Section 5.5.1). Alternatively, we could
consider filtering the time series with an ARMA-GARCH, a combination of the Autoregressive Moving
Average and GARCH models, introduced in Section 5.1.3.

Subsequently, a probability distribution is fitted to the innovations of each variable, to model their
marginal behavior. This step involves obtaining the cumulative distribution function (CDF) Fi for each
residual, and transforming the residuals with the transformation ut,i = Fi(et,i) for t = 1, . . . , T and i =
1, . . . , d, to achieve a uniformly distributed multivariate time series. In case fitting the marginal distribu-
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tion resulted too challenging, transforming data with the relative empirical CDF remains an option (see
Def. 12). The result is a set of uniformly distributed time series (Ut)t=1,...,T = (Ut,1, . . . , Ut,d)t=1,...,T .

Lastly, the newly obtained time series is used to fit an appropriate copula model [65], or Vine model,
following the steps discussed in Section 4.3.2, [66].

Examples of applications of copula-GARCH models can be found in [67] and [64]. A practical
application of this methodology will be discussed in the simulation study of Section 6.7, or in the real
data application presented in Chapter 8, where we will apply this methodology to real financial data.

6.1.1 Assumptions
When working with copula-GARCH models, we have to make sure that the following assumptions are
verified at each step of the modelling process, to guarantee that the final model is able to produce a
satisfactory fit for the original dataset.

• Stationarity of Marginal Time Series: The time series should be stationary (see Def. 18), mean-
ing that their statistical properties do not change over time. In case of non-stationary, we can
intervene by applying different transformations to make sure this property is satisfied.

• IID, Stationary and Homoskedastic Innovations: The residuals obtained from fitting time series
models should be independent. Moreover they should be stationary, and homoskedastic. All these
are a sign of goodness of fit, so if not satisfied, we might consider a different model.

• Stable Copula Structure: The copula structure used to model dependence should be stable over
time, and hence should not be time dependant. As a consequence, the dependency parameter
should be constant [65]. Alternatively, we will have to consider a more complex, time dependant
model. We will discuss this extension in Section 6.6.

We will discuss how to test these assumptions in Section 6.4.1.

6.2 Other Models
In addition to copula-GARCH models, several extensions offer an alternative for modeling complex
dependencies in multivariate time series data. A more advanced type of Vines, specifically Stationary
Vines (or S-Vines), can be used to model simultaneously cross-sectional and temporal dependencies of a
multivariate time series [66], [63]. Other possible extensions incorporate long-term memory such as the
ones discussed in [68]. Others propose a model that accounts for non-stationarity, as proposed by [69].
Alternatively, [63] proposes a simplification of S-Vines, by assuming that the multivariate time series is
a Markov chain, implying that most conditional pairs in higher trees will be independent. While these
extensions offer interesting advantages, and opportunities to improve copula-GARCHmethodology, they
fall outside the scope of this thesis and will not be further explored.

6.3 Model Estimation and Selection
The process of selecting an appropriate copula-GARCH model is conducted sequentially. In this Section
we will outline the main steps.
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6.3.1 GARCH Selection
Initially, a GARCH model (or ARMA-GARCH) is fitted to each variable of the dataset individually.
The parameters of the GARCH models are estimated using Maximum Likelihood Estimation (MLE)
or Quasi-Maximum Likelihood Estimation (QMLE), both of which have been previously discussed in
Section 5.4. Following the GARCH fitting, the various models considered are compared using criteria
such as the Akaike Information Criterion (AIC) or the Bayesian Information Criterion, or BIC, (refer
to Def. 41 for additional information), to determine the best fit. Once the optimal GARCH model is
identified, the corresponding innovations are computed.

6.3.2 Marginal Model
The next step is to determine a suitable marginal distribution for each vector of residuals to obtain
the corresponding Cumulative Distribution Function (CDF) necessary for transforming the data to
uniformly distributed variables. This involves parameter estimation using methods such as Maximum
Likelihood Estimation (MLE). Again, the selection of the best-fitting marginal distribution is based
on criteria such as log-likelihood, AIC, or BIC values. In alternative a semi-parametric procedure can
be adopted, where the marginal selection is skipped, and the data are transformed by applying the
correspondent empirical CDF [64].

6.3.3 Copula Selection on the Innovations
After projecting the data onto the unit hypercube, the final step involves fitting a copula model. The
copula’s parameters are estimated via MLE estimation (refer to Sect. F.1.1 of the Appendix), or with a
Canonical MLE, as already discussed in Section 3.4.1. For more complex structures like vine models, a
Stepwise MLE approach may be employed (see Sect. 4.5.1). Also the selection of the best copula models
is carried out by comparing the AIC or BIC values of the different models taken into consideration.

6.4 Model Diagnostic
The diagnostic of the chosen model is conducted in different steps.

6.4.1 Assumption Testing
The initial step is to verify the hypotheses outlined in Section 6.1.1. Each verification can be performed
using the following tests:

• Stationarity of Marginal Time Series: Stationarity can be assessed using statistical tests such as
the Augmented Dickey-Fuller test, or ADF, which was introduced in Section 5.3.1.1, or by visual
inspection of the time series plots.

• IID, Stationary and Homoskedastic Innovations: Independence can be evaluated using diagnostic
tests such as the Ljung-Box test for autocorrelation in the residuals. Stationarity can again be
tested using the ADF test, while heteroskedasticity tests, such as the McLeod-Li test (see 5.3.3.1)
can be employed to check for constant variance in the residuals of the Copula-GARCH model.

• Stable Copula Structure: Stability of copula structure can be examined by partitioning the data
into different time periods and comparing copula parameters or structures. Alternatively, we
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could consider to test the time dependence with tests used to assess the simplifying assumption
discussed in Section 3.6. In this case, the conditional variable, X3, is time. We will further discuss
this option in Section 6.6.

6.4.2 Goodness of Fit
Once the hypotheses are validated and suitable models are fitted, the goodness of fit of these models
must be assessed. The procedures are the following:

• GARCH Model: The goodness of fit of the GARCH model can partly be associated with verifying
the second hypothesis mentioned above, hence by studying the characteristics of the obtained
residuals. A further test involves analyzing the Autocorrelation Function (ACF) plot of the in-
novations, which should not have any significant value, or decay exponentially, and conducting a
Q-test to check if the noise is White Noise (WN), as discussed in Section 5.5.1.

• Copula or Vine Model: To evaluate the goodness of fit of the chosen copula or vine model, a
Vuong test (discussed in Sect. 3.4.3.2) can be performed to determine if a selected distribution
significantly outperforms alternative ones. Alternatively, a Goodness of Fit test based on the
matrix equality of White (see Sect. 3.4.3) can be employed to compare the selected distribution
with the distribution of the original dataset.

6.5 Predictions
Once the parameters of each variable Xt,i of the copula-GARCH model have been estimated form his-
torical data, and a model has been selected, future values of the time series can be predicted for a
specified lead time. The lead time, denoted as m, represents the number of days-ahead at which the
prediction is made: for the predictions considered in this thesis, we will always consider m = 1. The
predicted values X̂t,i(m) are computed from the forecast origin, t, which represents the current time
point, using the estimated parameters of the model and appropriate forecasting techniques, such as
Monte Carlo simulations (see F.6) [70], [71].

In particular, assuming we want to simulate the one-day-ahead value of a d-dimensional time series
considered, X̂t,i(1), i = 1, . . . , d we can use the following steps, outlined by [72].

1. Simulate Q realizations U (j)
t,i from the fitted copula model U(j) ∼ C(·), j = 1, . . . , q (or equivalently

from the fitted vine model).
2. For each i, compute the corresponding innovation, by applying the inverse transformation
ê
(j)
t,i (1) = F

[−1]
i (U

(j)
t,i ).

3. From the obtained innovation ê(j)t,i (1), use the fitted parameters of the GARCH, or ARMA-GARCH
model, to compute the corresponding value X̂(j)

t,i (1).
4. Compute the forecasted value as the average of the simulated values:

X̂t,i(1) =
1

Q

Q∑
j=1

X̂
(j)
t,i (1).

Additionally to the single point forecast, we are able to provide an interval, which is aimed at quan-
tifying the uncertainty associated with the prediction. The prediction interval for each variable i of
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level 1− α ∈ (0, 1) is estimated by taking the estimated quantiles of order α
2 , and 1− α

2 among the set
of simulated values X̂(j)

t,i (1), j = 1, . . . , Q. We will generally consider Q = 1000.

Lastly, to evaluate the quality and accuracy of the predictions we can use different metrics, such as
the Root Mean Squared Error (RMSE), which was presented in equation (5.4).

6.6 Extension to Time Dependant Models
As discussed in Section 6.4.1, the stability assumption for copula-GARCH models can be relaxed by
allowing for time-dependent models. Practically, this involves assessing the time dependence of the
underlying structure and dividing the dataset into relevant partitions where the copula’s structure
remains stable.

6.6.1 Time Dependence Test and Partitions’ Identification
To test the time dependence of the considered copula, we use an already implemented function from the
R package CondCopulas, ”bCond.simpA.CKT” [42]. This function assesses the simplifying assumption
by splitting the dataset into partitions, or boxes. In our application, we substitute the conditional
variables with an ordered vector T = {0, . . . , 1}, representing time.

The function works by recursively dividing the conditioned observations. It employs a set of bi-
nary trees to identify relevant partitions by comparing different Kendall’s tau values, and identifying
those with the largest difference in Kendall’s tau values among all pair copulas considered. Hence, at
each level of the decision tree, by identifying the time t∗ at which the difference |τ̂i,j|XJ∈A∩{−∞,t∗} −
τ̂i,j|XJ∈A∩{t∗,∞}| is maximal, for each pair of copulas i, j, where τ̂ is the estimated Kendall’s tau (see
3.2.1), and A corresponds to a subset of the space of the conditioning variable XJ [73].

The function also computes a test statistic to evaluate the null hypothesis:

H0 : The Kendall’s taus between the variables do not change over time,

opposed to the alternative, which indicates relevant changes in the τ . For a p-value lower than 0.05, we
reject the null hypothesis, indicating that the identified partitions reflect significant changes in Kendall’s
tau. For the bidimensional case, the test statistic is equal to:

τn := ŴT
1,2T

T (T ∆̂TT )−1TŴ1,2,

where Ŵ1,2 :=
√
n
(
τ̂1,2|XJ∈A1,J

− τ1,2|XJ∈A1,J
, . . . , τ̂1,2|XJ∈Am,J

− τ1,2|XJ∈Am,J

)⊤, the random vector
representing the differnce between the estimated τ and its true value for all subsets Ai,J considered,
while ∆̂ is the empirical variance-covariance matrix. T is a matrix that represents a subset S of q pairs
of indexes (ki, li) ∈ {1, . . . ,m}2, with m being the sample size: each row i of T has all components
equal to zero, exept the ki − th and the li − th one. The test statistic is asymptotically distributed as
a chi-squared with m− 1 degrees of freedom [73]. For the multivariate version of the test statistic refer
to the original paper of Derumigny, Fermanian, and Min.

Additionally, the function allows to have unbiased p-values by splitting the sample in two parts
(generally using 50% of the sample is advised). One part is used to construct relevant partitions,
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while the other is used to construct the test statistic. This approach ensures that the results are not
contaminated, as it prevents the use of the same data for both partition construction and test statistic
calculation.

6.7 Simulation Study
The aim of this simulation study is to illustrate the steps required to create a copula-GARCH model,
capable of capturing the behavior of multivariate time series. The focus will be to highlight the advan-
tages of introducing copulas when we want to understand, and model, dependencies in a time series
model. In particular, we compare the predictions obtained by assuming that the two simulated vari-
ables are independent, and modelling each separately, with the predictions obtained from fitting a
copula-GARCH. The study, will be later extended to include the case of a time-varying copula. In this
simulation, the analysis is restricted to bivariate time series, but the results can easily be extended to
higher dimensions, and the copula can be substituted with a Vine copula.

6.7.1 Case 1: Constant Copula
We simulate a customized bivariate time series of N = 500 observations. The choice of the sample
size, as for the simulation studies of the previous Chapters, is aimed at mirroring the expected amount
of data that will be used in the real-data application discussed in Chapter 8, as it has been studied
previously that this number guarantee satisfactory results for parameter estimation.

Both variables are simulated from an AR(1)-GARCH(1,1) (see Def. 24) with the following structure:Xt+1,1 = ϕ1,1Xt,1 + ϵt+1,1

Xt+1,2 = ϕ1,2Xt,2 + ϵt+1,2,
(6.1)

where the autoregressive parameters are (ϕ1,1, ϕ1,2) = (0.9, 0.8).

The volatility of each variable is obtained from the following equations, with parameters (α0,1, α1,1, β1,1) =

(1, 0.3, 0.5), and (α0,2, α1,2, β1,2) = (1, 0.2, 0.6):σ2
t+1,1 = α0,1 + α1,1ϵ

2
t,1 + β1,1σ

2
t,1

σ2
t+1,2 = α0,2 + α1,2ϵ

2
t,2 + β1,2σ

2
t,2.

(6.2)

And the residuals are given by: ϵt+1,1 = σt+1,1wt+1,1

ϵt+1,2 = σt+1,2wt+1,2,
(6.3)

where the vector (wt+1,1, wt+1,2) is obtained by generating a bivariate copula (ut,1, ut,2) ∼ Clayton(5),
and then by transforming the uniformly distributed variables with the transformation ϵt,i = F [−1](ut,i),

i = {1, 2}, where F (·) represents the CDF of the marginals. We will consider as marginals two t-student
with parameters ν1 = 8 and ν2 = 4, hence we will have ϵt,i ∼ t(νi). In Figure 6.1 we provide the plot
of the simulated data.
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Figure 6.1: Time series of N = 500 observations simulates using the the formulas provided in 6.1.

The resulting residuals are shown in Figure 6.2, where we can recognise the typical feature of Clay-
ton copulas, which are characterized by higher left-tail dependency.

Figure 6.2: Distribution and correlation of the residuals used to simulate the time series of Figure 6.1.

We start by making some preliminary analysis on the simulated time series. Subsequently we will fit
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a model, considering two separate cases. The first simply fits a time series to both variables, the second
follows the step outlined in Section 6.1. Both methodologies will then be used to simulate one-day-ahead
predictions for 30 days, which will be carefully evaluated and compared.

6.7.1.1 Preliminary Analysis
In Figure 6.3 we have the plots showcasing the ACF, and PACF of both time series, which have similar
results. In fact, for both plots the ACF plot displays many significant values, which decay exponentially:
this might indicate that there is not a moving average component for both time series, which reflects
the original model. Moreover, the PACFs suggest that the order of the AR components should be equal
to p = 1, since they both have one significant lag.

Figure 6.3: ACF, and PACF of the two time series simulated form an AR(1)-GARCH(1,1).

These observations are supported by Table 6.1, where for both variables the p-value of the McLeod-Li
test suggests that the time series might be heteroskedastic. Moreover, the low p-value of the Dickey-
Fuller test suggests stationarity of the data considered.

True Distr. Dickey-Fuller McLeod-Li
Xt,1 0.01 0
Xt,2 0.01 0

Table 6.1: P-values of Augmented Dickey-Fuller to verify the stationarity of the GARCH time series, and of
the McLeod-Li for heteroskedasticity.

6.7.1.2 Marginal Fitting
We then proceed to fit an AR(1)-GARCH(1,1) model to the simulated time series to estimate its pa-
rameter (we assume the order of the time series known). The estimated parameters are presented in
Table 6.2, where they are compared with the original parameters.
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Variable Original Param. Estimated Param
Xt,1 (α0,1, α1,1, β1,1) = (1, 0.3, 0.5) (1.131, 0.249, 0.565)

ϕ1,1 = 0.9 0.928
Xt,2 (α0,2, α1,2, β1,2) = (1, 0.2, 0.6) (0.751, 0.236, 0.660)

ϕ1,1 = 0.8 0.792

Table 6.2: Parameters obtained fitting an AR(1)-GARCH(1,1) model to the simulated bivariate time series.

From the table we can observe how the estimated parameters appear rather close to the original val-
ues, with a maximum absolute difference of 0.249 for α̂0,2, while the other estimated parameters appear
much closer to the original ones. To assess the goodness of this fit, we proceed with some diagnostic of
the fitted model on the obtained residuals.

We start by analyzing the ACF and QQ-plot of the residuals, shown in Figure 6.4. The very low
ACF values, indicate a good fit, while the QQ-plot are not exactly aligned with the normal line, sug-
gesting that the residuals might not follow a normal distribution: this is a good indication that we need
a more complex model to study the distribution of the innovations.

Figure 6.4: ACF,and QQ-plot of the residuals of the two fitted AR(1)-GARCH(1,1) time series.

Moreover, in Table 6.3, we provide the p-values of the Ljung-Box test, the ADF test, and the
McLeod-Li test. The Ljung-Box test suggests that the residuals of both variables should be indepen-
dent. The ADF result in a p-value of 0.01 for both variables, indicating stationarity. However, the
McLeod-Li’s p-values are smaller than the significance level, suggesting that the residuals could still
exhibit heteroskedasticity. While the results of the Ljung-Box and ADF tests might indicate a good
fit, the McLeod-Li test result suggests that the fit might not be perfect. This confirms the need for
further refinement to achieve a better fit for the original dataset. With this observation in mind, we
will proceed to fit a copula to the innovations in Section 6.7.1.4.
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True Distr. Ljung-Box Dickey-Fuller McLeod-Li
Xt,1 0.124 0.01 2.99*10−13

Xt,2 0.361 0.01 8.04*10−11

Table 6.3: P-values of Augmented Dickey-Fuller to verify the stationarity of the residuals of the fitted time
series, of the McLeod-Li for heteroskedasticity, and of the Ljung-Box test.

6.7.1.3 Predictions Independent Variables
While the GoF suggested that the obtained fit might not be perfect, we still proceed to use the fit-
ted model to simulate one-day-ahead predictions, leveraging the results obtained by fitting an AR(1)-
GARCH(1,1) model, hence by assuming that the two variables are independent. The results are shown
in Figure 6.5.

Figure 6.5: 1 day ahead days ahead prediction of an AR(1)-GARCH(1,1) time series, computed from the
time series fit. The predictions are compared with the true realization of the original dataset. The green area

represents the 90% prediction interval at each time point, given the past.

The predictions seem to mimic the behaviour of the original variable quite well, especially for Xt,2.
Moreover, in Table 6.4 we have the rRMSE of the predictions, which are both rather low, and the
percentage of observations within the prediction interval. The first variable falls within the prediction
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interval only 70% of the times, which is lower than the expected 90%, hinting that some improvement
can be done; the second variable however detains much better results.

True Distr. rRMSE Perc Inside
Xt,1 0.310 70%
Xt,2 0.195 93.3%

Table 6.4: rRMSE of the forecasts, and percentage of times that the observed value lays within the prediction
interval.

6.7.1.4 Copula Fitting on Residuals
Starting from the residuals obtained in Section 6.7.1.2, instead of assuming independence of the inno-
vations, we use the filtered data to fit a copula model, following the steps discussed in Section 6.1.

We start by fitting a marginal distribution to both set of residuals, and transform the residuals ob-
tained above to a uniformly distributed dataset. For both variables, we obtained that the best marginal
fit is a t-student with parameters ν̂1 = 9.135, and ν̂2 = 5.268.

To make sure the copula is not time dependant, we test the third assumption discussed in Section
6.1.1 on the transformed dataset, using the procedure presented in Section 6.6. We obtain a p-value of
0.89, that suggests the copula does not change with time.

We therefore proceed to fit a copula model assuming the family known. The result is a Clayton
copula with estimated parameter θ̂ = 4.281 (the original was θ = 5). To evaluate the goodness of fit,
we compute the p-value of the GoF test for bivariate copula models discussed in Section 6.4.2, which
results to be equal to 0.18, indicating that parametric family of Clayton copula cannot be rejected.
Hence, we should have a good fit.

6.7.1.5 Predictions
Lastly, following the steps discussed in Section 6.5, we leverage the information gained from fitting an
AR(1)-GARCH(1,1), and a copula to the obtained innovations, to forecast 30 1-day ahead predictions.
The results are shown in Figure 6.6.
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Figure 6.6: 1 day ahead days ahead prediction of an AR(1)-GARCH(1,1) time series, computed fitting a
copula-GARCH model. The predictions are compared with the true realization of the original dataset. The

green area represents the 90% prediction interval at each time point, given the past.

In Table 6.5, we present the rRMSE results from the true realization, along with the percentages
of times the realization falls within the 90% prediction interval. The results are still satisfying, and
comparable to the ones reported in Table 6.4, hence the ones obtained by only fitting a time series
model. The true improvement from the previous case can be seen by comparing the perectages rela-
tive to the 90% prediction interval, which appears much better and colser to the expected one for the
copula-GARCH case.

True Distr. rRMSE Perc Inside
Xt,1 0.249 86.6%
Xt,2 0.212 96.6%

Table 6.5: rRMSE of the forecasts, and percentage of times that the observed value lays within the prediction
interval.
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The predictions for both cases yield rather satisfactory results and exhibit similarities. Figure 6.7
shows that the predicted values are very similar to each other for both variables, with only small varia-
tions between the predictions. This similarity can be attributed to the high value of the autoregressive
(AR) component (ϕ1,1 = 0.9), which causes the predictions to be heavily influenced by past values.
Additionally, similar results are expected as the advantage of copulas lies in modeling the dependence
structure, rather than influencing the marginal predictions. This is evidenced by the improved interval
percentages, and will be further examined in the following Section.

Figure 6.7: Comparison between the 1 day ahead days ahead prediction of an AR(1)-GARCH(1,1) time series
derived by fitting only a time series to the original dataset (blue), or with one that also fitted a copula to the

filtered residuals, hence a copula-GARCH model (red).

6.7.1.6 Additional Results
To further validate the advantages of applying copula-GARCH to forecasting, we decide to compare
the distributions of the 95% percentile of the one-day-ahead predictions generated by the two methods,
with the one of the points generated from the true distribution.

In particular, starting from the true realization of X470, we simulated N = 1000 points using the
true distribution, using the parameters obtained from the AR(1) − GARCH(1, 1) fit, and lastly from
the copula-GARCH model fitted above. We then selected the 95% of each set of simulated data. The
results are compared in Figure 6.8.



6.7. Simulation Study 103

Figure 6.8: 95% percentile distribution clouds from one-day-ahead predictions using AR(1)−GARCH(1, 1)
and copula-GARCH models, compared with points sampled from the true distribution.

Both methods appear to have values that are aligned with the ones of the true model. However
one advantage of copula-GARCH is quite evident: the fitted model is much better at imitating the
behaviour of the original dataset when considering extreme events. In fact, the forecasts produced from
the fitted time series are more concentrated toward the mean, while the copula-GARCH’s predictions
appear more spread out, which is aligned with the behaviour of the original dataset.

Moreover, if we compute the CVaRs of the simulated clouds of points, provided in Table 6.13, we
can see how the result for the copula-GARCH appears to be much closer to the one obtained from the
true model, highlighting the importance of correctly modelling the underlying copula. This particular
advantage will be useful in the optimisation application that will be discussed in Chapter 8.

Method CVaR95%

Original 1.983
AR-GARCH 1.093

Copula-AR-GARCH 1.772

Table 6.6: Conditional Value at Risk obtained from the 95% percentile distribution clouds from one-day-ahead
predictions using AR(1)−GARCH(1, 1), and a copula-GARCH model, compared with points sampled from the

true distribution.

For this particular case the advantages of fitting a copula are clear, but not obvious. However, in
Section C.2 of the Appendix C we provide further examples, which consider different combinations
of parameters, and different time series family, which further support the advantages of using copula-
GARCH models.

6.7.2 Case 2: Time Dependant Copula
We repeat the simulation, by generating N = 500 points of a bivariate AR(1)-GARCH(1,1) time series,
characterized by the same parameters as the one described in Eq. (6.2), with the only exception that
the underlying copula used to simulate the residuals is now time varying.

The vector of residuals (ϵt,1, ϵt,2) is obtained by generating a bivariate copula (ut,1, ut,2) ∼ Gumbel(5),
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for the first N = 250 observations, and subsequently a t − Student(5) copula, for the remaining ones.
The marginals will again be distributes as two t-student with parameters ν1 = 8 and ν2 = 4. In Figure
6.9 the plot of the simulated data is given.

Figure 6.9: Time series of N = 500 observations simulated from a AR(1)-GARCH(1,1) time series, with
time varying residual generated from a bivariate copula.

The resulting distribution of the residuals are shown in Figure 6.10.
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Figure 6.10: Distribution and correlation of the residuals used to simulate the time series of Figure 6.9.

6.7.2.1 Preliminary Analysis
In Figure 6.11 we find the plots showcasing the ACF, and PACF of both time series. For both time
series, the ACF appear significant for many lags, and decays exponentially, while the both PACFs only
have one significant lag: from this observation, we could conclude that the time series only have an AR
component of order 1, hence an AR(1).

Figure 6.11: ACF, and PACF of the two simulated time series form a AR(1)-GARCH(1,1).

These observations are supported Table 6.7, where the tests suggest heteroskedasticity, and station-
arity. We should therefore also consider a GARCH component when fitting a time series.

True Distr. Dickey-Fuller McLeod-Li
Xt,1 0.025 0
Xt,2 0.01 0

Table 6.7: P-values of Augmented Dickey-Fuller to verify the stationarity of the AR-GARCH time series, and
of the McLeod-Li for heteroskedasticity.
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6.7.2.2 Marginal Fitting
We then proceed to fit an AR(1)-GARCH(1,1) model to the simulated time series to estimate its
parameter, assuming the order of the time series known. The estimated parameters are presented in
Table 6.8.

Variable Original Param. Estimated Param
Xt,1 (α0,1, α1,1, β1,1) = (1, 0.3, 0.5) (0.601, 0.297, 0.561)

ϕ1,1 = 0.9 0.911
Xt,2 (α0,2, α1,2, β1,2) = (1, 0.2, 0.6) (0.835, 0.171, 0.683)

ϕ1,1 = 0.8 0.865

Table 6.8: Parameters obtained fitting an AR(1)-GARCH(1,1) model to the simulated bivariate time series.

From the table we can observe how, with the exception of the estimated values for parameters α0,
the estimations result rather accurate, in accordance with the results discussed for the time series sim-
ulation study. To assess the goodness of the fit, we therefore proceed with some diagnostic of the fitted
model on the obtained residuals.

We start by analyzing the ACF and QQ-plot of the residuals, shown in Figure 6.12. The very low
ACF values, indicate a good fit, while the QQ-plot suggests that the residual of Xt,2 might not follow
a normal distribution: this is a good indication that we need a more complex model to study the dis-
tribution of the innovations. The residuals of the first variable, however appear rather alienated with
the normal line, hinting that they might be normally distributed.

Figure 6.12: ACF,and QQ-plot of the residuals of the two fitted AR(1)-GARCH(1,1) time series.

Moreover, in Table 6.9 we provide the p-values of the Ljung-Box test, of the ADF test, and of
the McLeod-Li test. The Ljung-Box, suggests that both set of residuals should be independent. The
ADF results in a p-value of 0.01, indicating stationarity. However, both McLeod-Li p-value are lower
that 0.05, indicating heteroskedasticity of the residuals: coherently with expectations, this might be
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an indicator that we might need further modelling to achieve a good fit for our time series, able to
incorporate all information.

True Distr. Ljung-Box Dickey-Fuller McLeod-Li
Xt,1 0.716 0.01 9.50*10−05

Xt,2 0.167 0.01 3.95*10−07

Table 6.9: P-values of Augmented Dickey-Fuller to verify the stationarity of the residuals of the fitted time
series, of the McLeod-Li for heteroskedasticity, and of the Ljung-Box test.

6.7.2.3 Predictions Independent Variable
Leveraging the results obtained by fitting a AR(1)-GARCH(1,1) model, hence by assuming that the two
variables are independent, we proceed to use the fitted model to simulate one-day-ahead predictions.
The results are shown in Figure 6.15.
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Figure 6.13: 30 days ahead prediction of the two AR(1)-GARCH(1,1) time series. The predictions are
compared with the true realization of the original dataset. The green area represents the 90% prediction interval

at each time point, given the past.

The predictions seem to mimic the behaviour of the original variable quite well. Moreover, in
Table 6.10 we provide the rRMSE of the predictions, which are both rather low. The percentage of
observations within the prediction interval, which is expected to be around 90% are also listed: the first
variable has a satisfactory result, however, the interval for the second variable falls a little bit lower
than its expected value.

True Distr. rRMSE Perc Inside
Xt,1 0.126 96.6%
Xt,2 0.195 83.3%

Table 6.10: rRMSE of the forecasts, and percentage of times that the observed value lays within the prediction
interval.

The results obtained by only fitting the time series, and assuming the residuals independent resulted
rather satisfactory in this case, but this might be explained by the choice of the AR component, which
strongly influences the forecasts. In the following Section, we will analyze the effect of introducing
copula models to fit the residuals.

6.7.2.4 Copula Fitting on Residuals
Starting from the residuals obtained in Section 6.7.2.2, we use the filtered data to first fit the marginal
distribution of each variable’s residuals, and subsequently fit a copula model to the transformed dataset,
following the steps discussed in Section 6.1.

Once the data are transformed, we test the time dependence of the copula, using the procedure
discussed in Section 6.6. The decision tree, represented in Figure 6.14, identifies two partitions, each
identified by a specific Kendall’s tau value.
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t < 0.455; τ1,2 = 0.817 t > 0.455; τ1,2 = 0.626

Figure 6.14: Decision Tree assessing the time dependence of the simulated underlying copula, where time is
considered an ordered vector with values in [0, 1]. The Kendall’s Tau value corresponding to each partition is

also provided.

The p-value of the test is equal to 0.002, which suggests the copula structure to be time depen-
dant. Two partitions are identified, one corresponding to 45.5% of the dataset, and the other to the
remaining observations. Considering that the original dataset was simulated by simulating half of the
residuals from a Gumbel, and half from a t-Student, we can consider the obtained result to be satisfying.

In the following sections we will compare the results obtained by ignoring this information, and
therefore by fitting a single copula to the entire dataset, with the ones obtained by fitting different
copulas to the partitioned dataset.

6.7.2.5 Predictions Constant Copula
As already anticipated, we start by fitting one copula to the whole dataset, ignoring its time dependence.
The result is a Clayton copula with estimated parameter θ̂ = 1.01, which is clearly different from the
original copula used. To evaluate the goodness of fit, we compute the p-value of the Goodness of Fit
test for bivariate copulas, which results to be equal to 0, indicating that parametric family of Clayton
copula must be rejected, supporting the conclusion that the fitted model is not correct. However, we
still proceed to use the fitted model to forecast the last 30 days, and evaluate the efficiency of the model.
This will help us to draw some conclusions on the importance of fitting a good model, once the results
will be compared with the ones obtained from fitting a time varying copula.

Following the steps discussed in Section 6.5, we leverage the information gained from fitting an
AR-GARCH, and a copula to forecast 30 1-day-ahead predictions. The results are shown in Figure
6.15.
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Figure 6.15: 30 days ahead prediction of the two AR(1)-GARCH(1,1) time series. The predictions are
compared with the true realization of the original dataset. The green area represents the 90% prediction interval

at each time point, given the past.

The prediction, despite being generated with residuals simulated from an incorrect copula, appear
rather good. They follow the behaviour of the original time series for both variables, and the errors
obtained are very good, as it can be seen from Table 6.11. In particular, the forecasts for Xt,2 showcase
an improvement from the results obtained by assuming independence of the residuals in the percentage
of observations, as it corresponds to the expected 90%.
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True Distr. rRMSE Perc Inside
Xt,1 0.113 96.7%
Xt,2 0.223 90%

Table 6.11: rRMSE of the forecasts, and percentage of times that the observed value lays within the prediction
interval.

6.7.2.6 Time Varying Copula Fitting on Residuals
Lastly, from the residuals obtained in Section 6.7.2.2, we want to fit a copula model. This time, however,
we do not assume that the underlying copula is constant over time, but rather that changes, as we have
discussed how the hypothesis testing suggested the copula to be time dependant.

To address this time dependency, we fit a copula to each partition identified in Section 6.7.2.4.
Based on the identified change-points, we split the dataset and fit two separate copula models to the
transformed dataset. The results are a Gumbel of parameter θ̂ = 3.76 for the first partition, and a
t-Student of estimated parameters θ̂ = 0.83, ν̂ = 5.71. The results are rather close to the original
parameters.

Lastly, we assess the goodness of fit of the the second fitted copula (the one we are interested in for
the predictions), by using the test discussed in 6.4.2, which results in a p-value of 0.65, an indicator of
a good fit.

6.7.2.7 Predictions Time Varying Copula
Following the steps discussed in Section 6.5, we leverage the information gained from fitting a time
varying copula-AR(1)-GARCH, to forecast 30 1-day-ahead predictions. The results are shown in Figure
6.16.
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Figure 6.16: 30 days ahead prediction of the two GARCH(1,1) time series. The predictions are compared
with the true realization of the original dataset. The green area represents the 90% prediction interval at each

time point, given the past.

The rRMSE values shown in Table 6.12 are comparable to the ones obtained from fitting a constant
copula to the residuals, and to the ones obtained by only fitting a time series. On the other hand, we
can notice an improvement in the intervals, which are both above the expected 90%. We will investigate
the reason behind this improvement in Section 6.7.3.

True Distr. rRMSE Perc Inside
Xt,1 0.112 96.7%
Xt,2 0.211 93.3%

Table 6.12: rRMSE of the forecasts, and percentage of times that the observed value lays within the prediction
interval.

6.7.3 Additional Results
The predictions for all cases provided rather satisfactory results and exhibit similarities. Figure 6.17
shows that the predicted values are very similar to each other for both variables, with only small varia-
tions between the three methods.
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Figure 6.17: Comparison between the 1 day ahead days ahead prediction of an AR(1)-GARCH(1,1) time
series derived by fitting only a time series to the original dataset (blue), or with one that also fitted a copula to

the filtered residuals, hence a copula-GARCH model (red).

The similarity can be attributed to the high value of the autoregressive (AR) component (ϕ1,1 = 0.9),
which causes the predictions to be heavily influenced by past values. Additionally, similar results are
expected as the advantage of copulas lies in modeling the dependence structure, rather than influencing
the marginal predictions. This is evidenced by the improved percentages.

Moreover, as already seen for Case 1, in Section 6.7.1.6, the advantages of fitting a copula to the
transformed residuals, translates into an improvement of the ability of capturing extreme events. This
ability is evident from Figure 6.18, where it is possible to observe how only the time varying model
(orange) is able to produce predictions that mimic the behaviour of the original model, while using the
wrong copula (green) does not provide any advantage, and in particular assuming independence of the
time series (pink) is reflected in more condensed simulated values, which are not able to imitate the
extreme events of the original dataset.
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Figure 6.18: 95% percentile distribution clouds from one-day-ahead predictions using AR(1)−GARCH(1, 1),
a copula-GARCH model, and a time varying copula-GARCH model, compared with points sampled from the

true distribution.

To validate this observation, we also computed the CVaRs for the different simulated clouds, as
reported in Table 6.13. The results clearly indicate that the correct copula-GARCH model produces
a risk estimate that closely matches the one derived from the original dataset. Although the constant
copula-GARCH model also performs relatively well, it is still less accurate than the correct copula-
GARCH model. The CVaR obtained from the time series model is less satisfactory.

Method CV aR95%

Original 1.296
AR-GARCH 1.036

Copula-AR-GARCH 1.596
Time Dep. Copula-GARCH 1.233

Table 6.13: Conditional Value at Risk obtained from the 95% percentile distribution clouds from
one-day-ahead predictions using AR(1)−GARCH(1, 1), a copula-GARCH model, and a time varying

copula-GARCH model, compared with points sampled from the true distribution.



7
Mean-CVaR Portfolio with Copula-GARCH

Method

In the previous Chapter 6, we linked the concept of time series to the one of copulas, through the
introduction of copula-GARCH models. The results obtained can also be extended to vine models, by
fitting a vine model to the residuals instead of a copula. However, one step still needs to be discussed.
In this Chapter, we will connect these models to the discussion about Portfolio Optimization presented
in Chapter 2. In particular, we will build upon the CVaR simplified model of equation (2.28), to derive a
new conditional formulation. This formulation incorporates the information gained from fitting copula-
GARCH models, enhancing our understanding of portfolio optimization in dynamic market conditions.

The procedure presented in this Chapter expands on the simulation discussed in Section 2.6.7, and
represents the final piece of the theoretical framework, allowing the reader to have a clear understanding
of all the steps necessary for the practical application of Chapter 8.

7.1 New Conditional CVaR Formulation
In the time series context, the construction of A portfolio is CONDUCTED taking into account the
information contained in the time series up to time T , to predict the behaviour of the portfolio at a spe-
cific time T+h, h = 1, 2, . . . . If we have a multivariate time series (Xt)t=1,...,T = (Xt,1, . . . , Xt,d)t=1,...,T ,
we will compute the risk measures conditioning on ΩT , the information set at T [74]. Specifically, we
can derive a new definition of Conditional Value at Risk at time T +h, which is computed conditionally
on the information set at time T :

CV aRβ,T+h(L)|ΩT =
1

1− β

∫
L(w,XT+h)≥V aRβ,T+h(L|ΩT )

L(w, xT+h)f(xT+h|ΩT )dxT+h, (7.1)

where also the V aRβ,T+h(L|ΩT ) is obtained conditioning on the past.
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Similarly, we can proceed with the simplification discussed in equation (2.28) of Chapter 2, and
obtain the discretized formulation of the Conditional Value at Risk, conditional to ΩT :

F̃β,T+h(L,α)|ΩT = α+
1

Q(1− β)

Q∑
k=1

(L(w, X̂k,T+h)− α)1L(w,X̂k,T+h)≥α. (7.2)

where {X̂k,T+h}k=1,...,Q represent the Q sampled vectors of returns at time T+h, simulated from the
information gained from the observations up to time T . This discretized version of the CVaR allow for
the derivation of the Monte Carlo allocation method that will be discussed in the following Subsection,
and is a time series adaptation of Problem (2.29).

7.1.1 Monte Carlo Allocation Method
Starting from the copula-GARCH model fitted on the observations at time 1, . . . , T , we can sample a
set of return vectors at time T + h, X̂1,T+h, . . . , X̂Q,T+h, from which we can derive the following linear
optimization problem, through the employment of the auxiliary variable uk,T+h:



minw,α,u α+ 1
Q(1−β)

∑Q
k=1 uk,T+h

s.t. L(w, X̂k,T+h) + α+ uk,T+h ≥ 0 ∀k = 1, . . . , Q

s.t. uk,T+h ≥ 0 ∀k = 1, . . . , Q

s.t. wTµT+h = x0

s.t.
∑N

i=1 wi = 1

s.t. wi ≥ 0

s.t. α ∈ [0, 1].

(7.3)

Iterating this problem to a set of target returns x0, allow us to obtain the set of points of the efficient
frontier at time T +h. The difference in this new formulation from the problem discussed in [16], is that
we now have a dynamic model, which will change over time and evolve as new information is added.

7.2 Steps
In Chapter 8, we will integrate all the methodologies discussed in the previous chapters to create an
optimal portfolio, by fitting a Copula-GARCH model to stock returns, and constructing the efficient
frontier using Monte Carlo Simulations. We will iterate the process for various partitions of the dataset,
enabling us to account for changes in the underlying structure. The main steps to be undertaken are
firstly schematized in Section 7.2.1, and subsequently explained more in detail right below, following
the structure presented in [75].



7.2. Steps 117

7.2.1 Overview

1. DATA Selection,
Processing,

and Analysis

2. ARMA-GARCH
Fitting

3. Marginal Fitting
on Innovations

4. Fit
COPULA

4b. Fit
VINE COPULA

5. MONTE CARLO
Allocation Method

6. Mean-CVaR
FRONTIER

7. Select
OPTIMAL PORTFOLIO

8. Result
EVALUATION

- Clean missing data
- ACF and PACF
- Study Stationarity
and Heteroskedasticity

- Fit Time Series
- Compare AIC
- Goodness of Fit
on residuals

- Fit Distribution
- GoF
- Transform to Uniform

- Simulate Q = 1000 points
- Inverse transformation of Marginals
- Generate Q forecasts from fitted TS
and estimated residuals

- Target Return
- Minimize CVaR

- STARR Ratio
- Optimal weight set

- Apply weights to Test Set
- Compare with Benchmark
- Compute STARR
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7.2.2 More in Detail
The steps that will be followed in Chapter 8 are the following.

1. Select d financial assets that will compose the portfolio. It is important to choose instruments
characterized by readily available data, without too many missing data, and with a sufficiently
large history. Perform data cleaning, and processing.

2. Follow the steps discussed in Section 5.2 to fit an ARMA-GARCH model. Compute the corre-
sponding innovations et,i at each time point t considered.

3. Fit a marginal distribution to the set of residuals of each variable, using a MLE estimator, and
use the estimated model to project the innovations to the unit hypercube, applying the transfor-
mation ut,i = F̂i(et,i), i = 1, . . . , d, where F̂i represents the estimated CDF for variable i.

4. Fit a copula or a vine model on the uniformly distributed variables ut,i, by using the methods
described in Sections 3.4 and 4.4.1. Evaluate the goodness of fit of the resulting model.

5. Generate Q = 1000 uniform random vectors (ûk,t,1, . . . , ûk,t,d)k=1,...,Q from the estimated copula
or vine model.

6. Transform the simulated uniformly distributed variables by applying the inverse of the marginal
distribution estimated in step 3, to obtain a set of standardized residuals (êk,t,1, . . . , êk,t,d)k=1,...,Q =

(F̂−1
1 (ûk,t,1), . . . , F̂

−1
d (ûk,t,d))k=1,...,Q.

7. Use the estimated residuals obtained in the previous step, to forecast the returns at time t + h,
by applying the fitted time series model obtained at step 2:

X̂1,T+h, . . . , X̂q,T+h.

8. Use the forecasted returns to perform a Monte Carlo allocation, and obtain the corresponding
Mean-CVaR efficient frontier by optimizing problem (7.3).

9. Select the portfolio on the frontier that maximises the STARR ratio as the optimal portfolio (refer
to Section 2.4.2).

10. Evaluate the resulting portfolio, by comparing it to a set of benchmarks. The comparison is
carried out by computing the main metrics of the different portfolios, as well as by studying the
out-of-sample efficiency of each of them [76]. In particular, we compute statistics such as the
mean and variance of the different portfolios. Additionally, we compare the STARR ratios, the
CVaRs, and the cumulative returns. Since the goal is to obtain a balanced portfolio, we primarily
focus on the STARR ratio to determine the model’s success. The cumulative return at time t is
obtained by applying the selected set of weights w, to the log-return vector r(ti) at each time ti
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of the test set, Ti = [t1, . . . , t], as follows:

R(t) =

t∑
ti=1

wT r(ti). (7.4)

7.3 Simulation Study
As for the previous Chapters, we conclude this Chapter with a a simulation study illustrating the steps
discussed above, to provide the reader with a full overview of the methodologies used in this thesis. In
particular, we will discuss the construction of the portfolios once the estimation of the copula-GARCH is
concluded, and the evaluation of the optimal portfolios. We will assume that the model estimation was
properly conducted, and proceed with steps (7) to (10) of Section 7.2.1. In particular, we will discuss two
separate cases: a portfolio constructed from two set of returns simulated from an AR(1)-GARCH(1,1),
and one with the returns derived from a GARCH(1,1).

7.3.1 AR(1)-GARCH(1,1)
In this first simulation, we pick up from the results obtained in Section 6.7.1. We simulate two set of
returns of N = 500 data points from an AR(1)-GARCH(1,1) model with the same parameters as those
used in the previous Chapter in Section 6.7.1. The residuals of these returns are assumed to follow a
Gumbel copula with parameter equal to 5. We then assume to have fitted a copula-AR-GARCH model
to the training set, consisting of N = 470 points. Using this fitted model, we perform a Monte Carlo
simulation to construct an optimal portfolio based on the two sets of returns, following the problem
outlined in (7.3).

The results from this optimal portfolio will be compared to:

• an equal weight portfolio;
• a portfolio obtained by applying Markovitz’s mean-var optimization (refer to 2.3.1);
• a portfolio derived by applying the Monte Carlo allocation method to only the time series fit of

the dataset, hence neglecting the copula fit of the residuals.

We start by setting the risk free rate equal to rf = 1.7, and by computing the equal weight port-
folio. We then proceed by finding the optimal weights for the mean-variance portfolio on the training
set, following the steps outlined in Chapter 2. The results are compared in Figure 7.1, where both
Markowitz’s portfolio and the Equal Weight one lie on the frontier, hence both resulting optimal.
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Figure 7.1: Mean-Variance efficient frontier, computed optimising a portfolio of two sets of returns, derived
from a copula-GARCH model. In blue we find Markovitz portfolio, while in red the EW portfolio.

Subsequently, we simulate Q = 1000 points from the fitted copula-GARCH, and from the AR-
GARCH fit, starting from the values of the real data at T = 470. The resulting clouds of simulated points
are shown in Figure 7.2. We can notice how the copula-GARCH points present a more distinguished
shape, which is strongly influenced by the underlying copula, while the points simulated from the time
series fit appear more concentrated around the starting point. This plot clearly demonstrates that
only the copula-GARCH model effectively captures the dependence structure of the variables, which is
distinctly positive, while the points simulated from the AR-GARCH appear independent.

Figure 7.2: 95% percentile distribution clouds from one-day-ahead predictions using AR(1)−GARCH(1, 1),
and the copula-AR-GARCH model.

The simulated points are then used to construct an optimal mean-CVaR frontier using the steps
illustrated in Section 7.1 for h = 1, hence for the following day, and to identify the portfolio with the
best STARR ratio. The result for the copula-GARCH case is shown in Figure 7.3, while the one for
the time series case is shown in Figure 7.4. The weights, and corresponding results will be commented
on the following Section, but it is already visible how the Copula-GARCH one opts for a more risky
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portfolio.

Figure 7.3: Mean-CVaR efficient frontier, computed with a Monte Carlo Allocation method, where we
generate Q = 1000 data from a fitted copula-GARCH model. The results are obtained optimising a portfolio of

two sets of returns, derived from a copula-GARCH model.

Figure 7.4: Mean-CVaR efficient frontier, computed with a Monte Carlo Allocation method, where we
generate Q = 1000 data from a fitted AR(1)-GARCH(1,1) model. The results are obtained optimising a

portfolio of the two simulated sets of returns.

7.3.1.1 Evaluate the Portfolio
The portfolios obtained from each method are compared in Table 7.1. In particular, as already antici-
pated, the copula-GARCH portfolio appears more extreme, preferring to invest mainly on the first asset,
which results in a greater risk appetite: the portfolio is characterized by higher return, and higher CVaR.
The Mean-var portfolio detains the best Sharpe ratio, while the copula-GARCH portfolio presents the



7.3. Simulation Study 122

best STARR ratio.

Method Weights Mean CVaR Sharpe STARR
EW (50%, 50%) 3.019 9.412 4.3% 14.0%
Mean-var (59.15%, 40.85%) 3.241 9.428 4.5% 16.3%
Copula-GARCH (99.12%, 0.88%) 4.213 14.307 3.3% 17.6%
AR-GARCH (28.35%, 71.65%) 2.492 10.919 2.6% 7.3%

Table 7.1: Table comparing the portfolios obtained by optimizing the weights of two returns simulated from a
copula-GARCH model, using different methods. The table reports the weights and the results of the risk

measures and ratios computed numerically on the training set of N = 470 points.

Subsequently, we proceed with an out-of-sample efficiency evaluation of the portfolios considered. We
apply the selected weights from each method to the N = 30 points of the test set, plotting the obtained
cumulative returns computed using equation (7.4), the Conditional Value at Risks, and ultimately
comparing the STARR ratios. The results are plotted in Figure 7.5 and Figure 7.7, while in Figure 7.6
the differences of the first two plots are highlighted.

Figure 7.5: Evolution of the Cumulative Returns and Conditional Value at Risks obtained by applying the
optimal weights from each method to N = 30 data points of the test set.

Figure 7.6: Difference of the evolution of the Cumulative Returns and Conditional Value at Risks obtained by
applying the optimal weights from each method to N = 30 data points of the test set.
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In the first period of the plot above, we can see how the cumulative returns obtained for the different
methodologies are rather comparable, and the results vary at different times considered. This is even
more clear by observing the plot of the difference of cumulative returns in Figure 7.6, where the returns
of all other portfolios are subtracted from the copula-GARCH one: the difference is oscillating above
and below zero, without a clear best. On the contrary, the copula-GARCH appears to be riskier for the
entire period considered, as all differences appear positive in the CVaR plot.

Figure 7.7: Evolution of the STARR ratios obtained by applying the optimal weights from each method to
N = 30 data points of the test set.

Lastly, we compare the STARR ratios of each portfolio across the test set period, to determine which
one is the best performing one. Clearly, for all 30 days considered, the copula-GARCH portfolio (in
pink) outperforms the others, as it has the highest ratio. To confirm this improvement, we compare the
considered metrics at time T = 30 of the test set in Table 7.2. The GARCH portfolio appears to have
the highest cumulative return, the copula-GARCH one however confirms to be the riskiest one, but most
importantly the best one in terms of STARR ratio, outperforming the other ones, with approximately
a 1.20%. improvement from the second best, which would be Markowitz’s portfolio.

Method Cumulative Return CVaR STARR
Equal Weight 118.48 9.242 14.8%
Mean-Variance 117.90 9.301 16.7%
Copula-GARCH 115.34 14.159 16.9%
GARCH 119.86 10.68 8.5%

Table 7.2: Cumulative returns, CVaRs and STARR ratios for each method at the last day of the test set,
hence at T = 500.
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7.3.2 GARCH(1,1) Case
For the second example, we repeat the procedure illustrated in the fist simulation, simulating two return
vectors from a GARCH(1,1), characterized by the following parameters: (α0,1, α1,1, β1,1) = (1, 0.7, 0.2),
and (α0,2, α1,2, β1,2) = (1, 0.8, 0.1). The residuals are again obtained simulating the data from a Gumbel
of parameter equal to 6, and by transforming the uniform data to two t-students of parameters ν1 = 3

and ν2 = 4. We split the dataset in a training set of N = 470 observations, and a test set of N = 30

points, for a total of 500 simulated points. The risk free rate is again set equal to rf = 1.7.

In Figure 7.8, we present the mean-Variance frontier, and compare its optimal portfolio (blue triangle)
with the equal weight portfolio, which lies as well on the frontier, hence both resulting optimal.

Figure 7.8: Mean-Variance efficient frontier, computed optimising a portfolio of two sets of returns, derived
from a copula-GARCH model. In blue we find Markovitz portfolio, while in red the EW portfolio. The blue line

represents the market line.

We then simulate Q = 1000 points from the fitted copula-GARCH, and the fitted GARCH(1,1),
starting from the values of the real data at T = 470. The resulting clouds of simulated points are shown
in Figure 7.9. The copula-GARCH simulated points exhibit a more elongated shape, derived by its
ability to incorporate While the points simulated from the time series appear independent and more
concentrated around a central point, which is comparable to the results obtained in the AR-GARCH
case previously discussed.
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Figure 7.9: 95% percentile distribution clouds from one-day-ahead predictions using GARCH(1, 1), and the
copula-GARCH model.

The simulated points are then used to construct a optimal mean-CVaR frontier using the steps
illustrated in Section 7.1 for h = 1, and to identify the portfolio with the best STARR ratio. The
resulting frontier for the copula-GARCH case is shown in Figure 7.10, while the time series case is
presented in Figure 7.11.

Figure 7.10: Mean-CVaR efficient frontier, computed with a Monte Carlo Allocation method, where we
generate Q = 1000 data from a fitted copula-GARCH model. The results are obtained optimising a portfolio of

two sets of returns, derived from a copula-GARCH model.
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Figure 7.11: Mean-CVaR efficient frontier, computed with a Monte Carlo Allocation method, where we
generate Q = 1000 data from a fitted GARCH(1,1) model. The results are obtained optimising a portfolio of

the two simulated sets of returns.

7.3.2.1 Evaluate the Portfolio
The portfolios obtained for the different methods are compared in Table 8.18. In particular, we compare
the weights of the different portfolios, noting how both portfolios obtained applying the Monte Carlo
allocation method appear more extreme, but selecting opposite variables. Each set of weights is then
applied to the original dataset, to compare the different measures.

The GARCH(1,1) portfolio appears to have lower return than the other ones, but higher risk (CVaR)
than the first two: this indicates that the obtained portfolio is not optimal, and the procedure involving
only time series fitting might not be appropriate for this case. This underlines the importance of fitting
a good model able to incorporate all the information of the original one results important to achieve
good results, which was already discussed in the simulation study of the previous Chapter (Section 6.7).
On the other hand, the copula-GARCH portfolio appears to have higher risk, but also characterized by
greater return. The Equal Weight portfolio detains the best Sharpe ratio, while the best STARR ratio
is obtained by the copula-GARCH portfolio, highlighting again the efficacy of this model.

Method Weights Mean CVaR Sharpe STARR
EW (50%, 50%) 2.401 3.023 10.8% 23.2%
Markovitz (35.14%, 64.86%) 2.197 3.045 10.1% 16.3%
Copula-GRACH (98.10%, 1.90%) 3.062 5.198 6.7% 26.2%
GARCH (0.05%, 99.95%) 1.714 4.809 0.2% 0.3%

Table 7.3: Table comparing the portfolios obtained by optimizing the weights of two returns simulated from a
copula-GARCH model, using different methods. The table reports the weights and the results of the risk

measures and ratios computed on the training set of N = 470 points.

We continue with an out-of-sample efficiency evaluation of the portfolios considered. We apply the
selected weights to N = 30 points of the test set, computing the cumulative returns, the CVaRs and
the STARR ratio at each time step, and plotting the obtained results in Figures 7.12 and 7.14.
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Figure 7.12: Evolution of the Cumulative Returns and Conditional Value at Risks obtained by applying the
optimal weights from each method to N = 30 data points of the test set.

In the first plot above, we can see how the copula-GARCH portfolio is characterized by greater
cumulative returns throughout the entire test period considered, with a small exception toward the end,
this is even more clear from the plot of the differences shown in Figure 7.13, where the differences of the
cumulative returns are shown. Moreover, coherently with the results discussed for the AR-GARCH case,
the copula-GARCH portfolio also remains the riskiest, having the greatest CVaR for all the N = 30

days considered. While the GARCH portfolio appears clearly under-performing the other ones, as it
still has high CVaR, while consistently showing the lowest cumulative returns.

Figure 7.13: Difference of the evolution of the Cumulative Returns and Conditional Value at Risks obtained
by applying the optimal weights from each method to N = 30 data points of the test set.

Lastly, we compare the STARR ratios of each portfolio, to determine the best performing one. For
all 30 days considered, the copula-GARCH portfolio (in pink in Figure 7.14) outperforms the others, as
it is characterized by the highest ratio.
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Figure 7.14: Evolution of the STARR ratios obtained by applying the optimal weights from each method to
N = 30 data points of the test set.

To confirm the superiority of the copula-GARCH portfolio, we compare the considered metrics at
time T = 500 in Table 7.4. Once again, the GARCH portfolio appears to have the lowest cumulative
return, but still high CVaR, which result in a very poor STARR value. On the other hand, the copula-
GARCH portfolio, the riskiest, stands out as the best in terms of the STARR ratio, outperforming the
other ones, with approximately a 10.32% improvement from the second best, which would be the Equal
Weight portfolio.

Method Cumulative Return CVaR STARR
EW 98.29 2.839 26.4%
Mean-Var 96.28 2.842 19.0%
COPULA 104.83 4.905 29.0%
GARCH 91.51 4.518 1.1%

Table 7.4: Cumulative returns, CVaRs and STARR ratios for each method at the last day of the test set,
hence at T = 500.



8
Application to Financial Returns

In this Chapter, we will combine the theory previously discussed, and apply the models to a real dataset.
Specifically, the closing prices of four of the main international stock indexes will be modeled to con-
struct an optimal portfolio. A Vine copula-ARMA-GARCH model will be constructed to describe the
relationship between four of the main stock indexes: the German index (DAX), the French Index (CAC),
the Japanese Nikkei 225 (N225), and the American S&P500 (GSPC).

We will start by conducting some data preparation, and proceed to fit an appropriate time series to
the transformed dataset. The filtered dataset will be used to fit a Vine model (Chapter 4), using the
procedure introduced in Chapter 6. Lastly, the copula-GARCH fit of the time series will be used to
construct an efficient frontier on the Mean-CVaR plane, as discussed in Chapter 7.

8.1 Data Selection, Collection, and Processing
An important aspect of portfolio optimisation involves choosing a diverse basket of financial instru-
ments. From the investor’s prospective, the goal is to assemble a well-rounded portfolio composed of
different instruments, thereby achieving diversification — a fundamental principle in finance, crucial
for risk reduction. As discussed in Chapter 2, investors tailor their selection to align with their risk
preferences, but a generally good approach would be to alternate secure stocks, such as state indexes
of more developed countries, and riskier ones.

Instead of focusing on diversification, for the real application described in this Chapter we will
prioritize data quality. Hence, we will prioritize a selection of stocks with clean data, minimal data
gaps, and a substantial data history. This will ensure the availability of reliable information for a
reasonable time frame, allowing the creation of a statistically significant and more stable model.

8.1.1 Data Selection
We start by collecting the daily closing prices pi of the four indexes selected: the German index (DAX),
the French Index (CAC), the Japanese Nikkei 225 (N225), and the American S&P500 (SP500). The
time series are considered in the period between October 23rd, 2014 and July 5th, 2024.

129
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Figure 8.1: Closing prices of the German index (DAX), French Index (CAC), Japanese (N225), and
American (SP500), computed in the period from 23/10/2014 to 5/7/2024.

8.1.2 Data Cleaning
Once the basket of assets is chosen, the next step involves data pre-processing to ensure a clean dataset.
This requires identifying the largest time window at which all stocks have data available, and merging
the data into a single dataframe. We then look for missing data: a few missing data points may not
pose a significant issue. Various methods, such as using the last available value, the first value available
afterward, or employing some type of interpolation, can be used. However, we prefer to simply remove
the dates with missing data, as this ensures that we do not wrongly influence the volatility, and that
the data retains its underlying structure, without altering the properties of the time series.

The observations for the weekends are not available and are therefore neglected. Moreover, the
Japanese index presented 21 missing data. The issue has been resolved by deleting the dates for all
indexes considered: we are left with 2289 observations for each index.

8.1.3 Data Processing
Once the dataframe is cleaned, we are able to compute the daily log-returns for each asset by applying
equation (2.3). The results are shown in Figure 8.2. Coherently with what we expected, the time series
appear stationary, showing volatility clustering typical of financial series.
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Figure 8.2: Log-Returns of the closing price of the German index (DAX), French Index (CAC), Japanese
(N225), and American (SP500), computed in the period from 23/10/2014 to 5/7/2024.

8.2 Preliminary Analysis
To gain insights on the data and understand their characteristics, we proceed to analyze the dataframe.
We start by computing the main statistics of each time series. Once we have a general overview of the
data, we proceed to test some of the main features that are required for time series analysis. We there-
fore compute and plot the ACF and PACF of each time series (see Def. 25 and 26). Lastly, we proceed
to test the stationarity (discussed in Sect. 5.3.1) of the log-returns, by performing a Dickey–Fuller Test
(Sect. 5.3.1.1), and their heteroskedasticity (Sect. 5.3.3) with a McLeod-Li Test.

In Table 8.1 we provide the main summary statistics of the log-returns. All four data present a mean
value very close to zero. Moreover, for most geographies considered, we observe a negative skew and a
high kurtosis, which implies the presence of heavy tails and of a slightly left-skew; the only exception
is the French index, which is characterized by a positive skew. Lastly, we performed a Jarque–Bera
Test (JB), a statistical test that combines the values of Kurtosis and Skewness to test the normality
of the returns: the high values indicate that the null hypothesis must be rejected, and hence that the
distributions of all log-returns cannot be considered normal.



8.2. Preliminary Analysis 132

Index Mean St Dev Skewness Kurtosis JB
DAX 1.11 * 10−4 0.014 -0.785 8.675 7429
CAC 1.06 * 10−4 0.020 0.101 7.007 4698
N225 4.34 * 10−4 0.013 -0.097 4.266 1745
SP500 4.58 * 10−4 0.012 -0.967 16.172 25352

Table 8.1: Summary statistics of the considered log-Returns computed from the closing price of the German
index (DAX), French Index (CAC), Japanese (N225), and American (SP500).

Lastly, we provide in Figure 8.3 the scatter plots of all pair of variables, the histograms showing their
distribution and the Kendall’s tau values for each pair, from which we can extract that the German
index and the American one are the most correlated ones, with a value of τ = 0.49.

Figure 8.3: Summary plot showing the histograms of the log-return of each index, the scatterplot of each pair
combination, and Kendall’s tau correlation of the different pairs.

8.2.1 ACF and PACF
In Figure 8.4, the ACF and PACF plots of the log returns of the four indexes are shown. The ACFs of all
indexes have extremely low values, indicating that the MA component should be zero for all variables,.
The PACFs also present rather low values, with the exception of the CAC and SP500 log-returns, which
suggest that the time series might have an AR component of order p = 1.
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Figure 8.4: ACF AND PACF of the log-returns of the closing price of the DAX index, CAC Index, N225, and
the SP500, computed in the period from 23/10/2014 to 5/7/2024.

8.2.2 Stationarity of the dataset
Furthermore, we perform an Augmented Dickey–Fuller Test (ADF) to assess the stationarity of the
time series considered. The results are reported in Table 8.2, where all times series considered show a
p-value lower than the 0.05 fixed significance level. Thus, we can reject the null hypothesis that the
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time series have a unit root in favor of the alternative. The time series can be considered stationary.

Index ADF p-Value
DAX 0.01
CAC 0.01
N225 0.01
SP500 0.01

Table 8.2: P-values of the Augmented Dickey-Fuller test for stationarity of a time series.

8.2.3 Heteroskedasticity of the Dataset
Lastly, in Table 8.3 the results of the McLeod-Li test are shown. For all time series considered, the
p-value appear lower than the 0.05, suggesting that the log-returns of each index are heteroskedastic.
When fitting a time series model, we will therefore include a GARCH component, to ensure that we
correctly incorporate this property in the fit.

Index McLeod-Li p-Value
DAX 6.43×10−10

CAC 0
N225 0
SP500 0

Table 8.3: P-values of the McLeod-Li test for heteroskedasticity of a time series.

8.3 ARMA-GARCH Fitting
For each time series considered, we then proceeded to fit an appropriate time series model. To ac-
complish this, we conducted a grid search fitting all combinations of ARMA(i, j)-GARCH(k, k), with
i, j, k ∈ {0, 1, . . . , 4}. The parameters were fitted by applying a Quasi-Maximum-Likelihood approach,
which is a simplification of the Maximum Likelihood method described in Subsection F.1.1 of the Ap-
pendix. The model with the lowest AIC value was chosen.

In Tables 8.4, 8.5, 8.6, and 8.7 we compare the fit of different ARMA-GARCH models. By examin-
ing the AIC values, we determine that the GARCH(1,1) model consistently provides the best fit. The
selected combinations, and the corresponding fitted parameters are summarized in Table 8.8.

AIC DAX Parameters
ARMA(0, 0)-GARCH(1, 1) 13351 (α̂0, α̂1, β̂1) = (0, 0.101, 0.868)

ARMA(1, 0)-GARCH(1, 1) 13355 (ϕ̂1, α̂0, α̂1, β̂1) = (−0.036, 0, 0.099, 0.871)

ARMA(0, 1)-GARCH(1, 1) 13355 (θ̂1, α̂0, α̂1, β̂1) = (−0.036, 0, 0.099, 0.871)

ARMA(1, 1)-GARCH(1, 1) 13358 (ϕ̂, θ̂1, α̂0, α̂1, β̂1) = (0.537,−0.569, 0, 0.099, 0.870)

Table 8.4: AIC values obtained by fitting different time series models to the log-returns of the German DAX
index. We highlighted the best values in bold.
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AIC CAC Parameters
ARMA(0, 0)-GARCH(1, 1) 11976 (α̂0, α̂1, β̂1) = (0, 0.079, 0.893)

ARMA(1, 0)-GARCH(1, 1) 11989 (ϕ̂1, α̂0, α̂1, β̂1) = (−0.078, 0, 0.073, 0.902)

ARMA(0, 1)-GARCH(1, 1) 11989 (θ̂1, α̂0, α̂1, β̂1) = (−0.078, 0, 0.074, 0.901)

ARMA(1, 1)-GARCH(1, 1) 11992 (ϕ̂, θ̂1, α̂0, α̂1, β̂1) = (−0.378,−0.302, 0, 0.726, 0.904)

Table 8.5: AIC values obtained by fitting different time series models to the log-returns of the French CAC
index. We highlighted the best values in bold.

AIC N225 Parameters
ARMA(0, 0)-GARCH(1, 1) 13645 (α̂0, α̂1, β̂1) = (0, 0.107, 0.850)

ARMA(1, 0)-GARCH(1, 1) 13649 (ϕ̂1, α̂0, α̂1, β̂1) = (−0.035, 0, 0.107, 0.849)

ARMA(0, 1)-GARCH(1, 1) 13649 (θ̂1, α̂0, α̂1, β̂1) = (−0.032, 0, 0.107, 0.849)

ARMA(1, 1)-GARCH(1, 1) 13655 (ϕ̂, θ̂1, α̂0, α̂1, β̂1) = (−0.658,−0.615, 0, 0.107, 0.850)

Table 8.6: AIC values obtained by fitting different time series models to the log-returns of the Japanese N225
index. We highlighted the best values in bold.

AIC SP500 Parameters
ARMA(0, 0)-GARCH(1, 1) 14828 (α̂0, α̂1, β̂1) = (0, 0.203, 0.772)

ARMA(1, 0)-GARCH(1, 1) 14834 (ϕ̂1, α̂0, α̂1, β̂1) = (−0.050, 0, 0.021, 0.771)

ARMA(0, 1)-GARCH(1, 1) 14835 (θ̂1, α̂0, α̂1, β̂1) = (−0.048, 0, 0.020, 0.771)

ARMA(1, 1)-GARCH(1, 1) 14841 (ϕ̂, θ̂1, α̂0, α̂1, β̂1) = (−0.715,−0.664, 0, 0.208, 0.768)

Table 8.7: AIC values obtained by fitting different time series models to the log-returns of the American
SP500 index. We highlighted the best values in bold.

Index Model (α̂0, α̂1, β̂1)
DAX ARMA(0, 0) + GARCH(1, 1) (0, 0.100, 0.869)
CAC ARMA(0,0) + GARCH(1, 1) (0, 0.079, 0.891)
N225 ARMA(0, 0) + GARCH(1, 1) (0, 0.107, 0.850)
SP500 ARMA(0, 0) + GARCH(1, 1) (0, 0.204, 0.771)

Table 8.8: Time Series Model chosen for each variable.

From the fitted model, we extracted the residuals ϵi,t, i = {DAX, CAC, N225, SP500}, which are
computed as the standardized difference between the true value and the fitted one (see Def. 5.3). The
plot of the time series of the residuals is shown in Figure 8.5,
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Figure 8.5: Residuals of the fitted time series of the Log-returns of the closing price of the German index
(DAX), French Index (CAC), Japanese (N225), and American (GSPC), computed in the period from

23/10/2014 to 5/7/2024.

8.3.1 Residual Analysis
To assess the Goodness of Fit of the models selected in the previous Section, we perform some GoF
analysis on the obtained residuals.

Staring from the ACF and QQ plots, shown in Figure 8.6. The very low ACF values, indicate a
good fit, while the QQ-plot are not aligned with the normal line, suggesting that the residuals might
not follow a normal distribution: this is a good indication that we need a more complex model to study
the distribution of the innovations.



8.3. ARMA-GARCH Fitting 137

Figure 8.6: ACF,and QQ-plot of the residuals of the fitted time series of the Log-returns of the closing price
of the German index (DAX), French Index (CAC), Japanese (N225), and American (GSPC), computed in thof

the two fitted AR(1)-GARCH(1,1) time pseriod from 23/10/2014 to 5/7/2024.es.
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Moreover, in Table 8.9, we provide the p-values of the Ljung-Box test, the ADF test, and the
McLeod-Li test. The Ljung-Box test suggests that the residuals should be independent only for the
SP500 case. The ADF result in a p-value of 0.01 for all variables, indicating stationarity. However, the
McLeod-Li’s p-values are smaller than the significance level, suggesting that the residuals could still
exhibit heteroskedasticity.

The results obtained are in accordance to those of the simulation study of Section 6.7: while the
ADF results might indicate a good fit, the McLeod-Li test result suggests that the fit might not be
perfect. This confirms the need for further refinement to achieve a better fit for the original dataset. In
this context, the application of copulas and vine models might be beneficial. With this observation in
mind, we proceed to transform the dataset into a uniformly distributed one, and to fit a vine copula in
the following Sections.

Index Ljung-Box Augmented Dickey-Fuller McLeod-Li
DAX 4.42× 10−12 0.01 0
CAC 1.03× 10−12 0.01 0
N225 0 0.01 0
SP500 0.21 0.01 0

Table 8.9: P-values of Augmented Dickey-Fuller to verify the stationarity of the residuals of the fitted time
series, of the McLeod-Li for heteroskedasticity, and of the Ljung-Box test.

8.4 Marginal Fitting
Lastly, we transform the residuals to uniform scale, by fitting a marginal distribution, and by applying
the corresponding Cumulative Distribution Function (CDF).

The distribution of each marginal, shown in Figure 8.7, appear bell-shaped, rather symmetrical, but
slightly heavy tailed. These are all indication that a t-Student might be an appropriate choice to fit
to each marginal. We therefore proceed to fit a t-Student to each variable of the dataset, the results
are provided in Table 8.10. For each variable, we also test the GoF by computing the p-value of the
Kolmogorov-Smirnov test (see F.4.1). All p-values indicate that the t-student family cannot be rejected.

Index Degree of Freedom Mean St Deviation p-value KS
DAX 3.247 2.63× 10−4 0.009 0.275
CAC 3.196 −2.19× 10−4 0.013 0.900
N225 3.899 2.78× 10−6 0.009 0.563
SP500 2.914 −4.23× 10−5 0.007 0.053

Table 8.10: Fitted t-Students distribution to each time series considered, and the corresponding p-value of the
Kolmogorov-Smirov test, assessing the GoF.

Additionally, to support the choice of a t-Student for the marginals we plotted the fitted distributions
against the distribution of each marginal (in red) in Figure 8.7, where we can observe how the fitted
models describe rather accurately the original distributions. Moreover, in Figure 8.9, we present the Q-
Q plots for the t-Student distribution. The plots show that the data points closely follow the theoretical
t-Student line, confirming the appropriateness of the t-Student distribution for modeling the marginals.
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Figure 8.7: Comparison of the fitted t-Student distributions (in red) with the empirical density distributions
of each marginal, for each of the four index considered.

Figure 8.8: Q-Q plots testing that the distribution of the residuals of the fitted time series models is a
t-student.
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Figure 8.9: Q-Q plots testing that the distribution of the residuals of the fitted time series models is a
t-student.

The fitted marginals are used to transform the data into uniformly distributed variables, by applying
the CDF as ut,i = Fi(et,i) for t = 1, . . . , T and i = {DAX,CAC, SP500, N225}. The obtained results
are summarized in Figure 8.10.

Figure 8.10: Summary plot showing the histograms of the ranked data of each index, the scatterplot of each
pair combination, and Kendall’s tau correlation of the different pairs.

Moreover, to check that each transformed variable is indeed uniformly distributed, a Kolmogorv-
Smirnov test is performed. All the obtained p-values, which are reported in Table 8.11, are above the
0.05, indicating that all variables can be considered uniformly distributed, as we do not have enough
evidence to reject the H0 hypothesis. The dataset is now ready to be used to fit a vine model, as it will
be discussed in the following Section.



8.5. Check Time Dependence 141

Index p-value KS
DAX 0.275
CAC 0.900
N225 0.563
SP500 0.144

Table 8.11: P-value of the Kolmogorov-Smirov test, assessing that the transformed dataset have indeed a
uniform distribution.

8.5 Check Time Dependence
Additionally, we test the time dependence of the considered time series, by testing the third assumption
discussed in Section 6.1.1 on the transformed dataset. By applying the decision tree presented in Section
6.6 used to identify relevant partitions by comparing the Kendall’s taus, we are able to identify a set of
14 partitions, illustrated in Figure 8.11. The p-value of the test is equal to 0.02, suggesting that indeed
we should consider time dependence when fitting a vine structure to the dataset.

Additionally, it is interesting to notice how period characterized by strong economic stress, such
as 2018, or 2020, display partitions of short duration, meaning that the underlying structure changes
rather quickly.

Figure 8.11: Identified partitions, each indicating time periods with the same underlying vine copula model.

However, in Section 4.6.1, we discussed the convergence of the estimators for Vine copulas and
concluded that a sample size of N = 500 points is necessary to ensure a reliable model. The partitions
identified depicted in Figure 8.11, sometimes contain only 50 points, which would be insufficient to
produce a good model.

To address this, we re-ran the test with a constraint on the minimum length of each partition. The
results are described in the following Subsection.

8.5.1 Updated Partitions
Although a minimum of N = 500 would be ideal, it is not always feasible. Therefore, we compromised
with a minimum of 170 observations per partition. This number should be a sufficient sample size to
ensure a satisfactory fit, while still allowing the identification of different partitions.
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The new decision tree has a p-value of 0.03, which supports the time dependence of the underlying
vine structure. 5 partitions are identified by the following decision tree, shown in Figure 8.12 along
with the corresponding Kendall’s tau value.

t < 0.909; τDAX,N225 = 0.143

t < 0.083; τDAX,N225 = 0.017 t ≥ 0.083; τDAX,N225 = 0.156

t < 0.834; τDAX,N225 = 0.168

t < 0.561; τDAX,CAC = 0.156 t ≥ 0.561; τDAX,CAC = 0.309

t ≥ 0.834; τDAX,N225 = 0.034

t ≥ 0.909; τDAX,N225 = 0.014

Figure 8.12: Decision Tree identifying 5 partitions on the four dimensional dataset, where time t is identified
by values ranging from 0 to 1, which represent the period between dates 24/10/2014 and 05/07/2024. The

values of the Kendall’s taus used to identify the partitions are also provided.

The partitions identified are presented in Table D.1, and represented in Figure 8.13. It is notewor-
thy that the second and third partitions contain a substantial number of data points, which should
ensure robust results when fitting a vine model. In contrast, the remaining partitions consist of fewer
data points, potentially limiting the reliability of the models. Despite this, we proceed with fitting a
copula-GARCH model to each partition. It is important to acknowledge these differences and consider
their implications for the reliability of the results.

Figure 8.13: Identified partitions, each indicating time periods with the same underlying vine copula model.

Additionally, it is interesting to highlight in Table D.1 how some of the identified breaks between
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the partitions reflect changes in the global economy and crises. In particular, the third partition starts
in March 2020, which corresponds to the start of the COVID-19 pandemic, period that signified a
significant shock wave in the economy. Moreover, October 2022, which marks the beginning of the
fourth partition, coincides with the escalation of the war in Ukraine, which had a profound impact
on global markets, particularly in energy and agricultural sectors, leading to increased volatility and
economic uncertainty [77]. In addition, August 2015, where the break between partitions 1 and 2 occur,
could be associated with the start of China’s stock market turbulence; while June 2023 (start of the
last partition) is close to the [78].

Dates Length
Partition 1 24/10/2014 - 10/08/2015 187
Partition 2 11/08/2015 - 03/03/2020 1076
Partition 3 04/03/2020 - 11/10/2022 615
Partition 4 12/10/2022 - 29/06/2023 170
Partition 5 30/06/2023 - 05/07/2024 241

Table 8.12: Partitions of the dataset.

Unfortunately, the results obtained by applying the copula-GARCH model to the partitions consid-
ered, which are reported and discussed in Appendix D, highlighted the importance of having a dataset
with a sufficient number of points. In fact, a larger dataset ensures more accurate partitioning and
stable estimation of the copula parameters, leading to more reliable results and conclusions, while the
partitions with fewer data (1 and 4) led to poorer results. For this reason, we decided to re-run the
analysis to a new set of customized partitions, which are discussed in the following Subsection.

8.5.2 Final Partitions
As already anticipated, the partitions discussed above have financial sense, as the identified breaks
correspond to significant changes in the global economy. However, some partitions resulted in too few
data points, leading to unsatisfactory results. To address this issue, we created a new set of customized
partitions, ensuring a sufficient number of data points for each partition, while keeping the financial
relevance of the break points.

We decided to keep the partition starting in 2020, which aligns with the outbreak of the COVID-19
pandemic. Additionally, we introduced a new break corresponding to the 2018 market crash, a signifi-
cant moment for the global economy, which seemed to be particularly relevant in the identification of
the first set of partitions (see Figure 8.11).

We therefore ended up with three separate partitions, illustrated in Figure 8.14 and detailed in
Table 8.13. We also tested the relevance of the partitions by testing the Simplifying Assumption on
the identified partitions (see Section 6.6), which resulted in a p-value of 0.03, which indicates that the
underlying vine models should still be considered time dependant. The results obtained from these
partitions will be discussed in the following Sections.
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Figure 8.14: Identified partitions, each indicating time periods with the same underlying vine copula model.

Dates Length
Partition 1 24/10/2014 - 05/01/2018 757
Partition 2 06/01/2018 - 03/03/2020 505
Partition 3 04/03/2020 - 05/07/2024 1027

Table 8.13: Partitions of the dataset.

8.6 Portfolio Optimization
Having divided the dataset into different partitions, we will now proceed to test the procedure developed
in this thesis for each of them. The process begins by splitting each partition into a training set and a
test set. The length of the training set will vary depending on the partition: the priority is to guarantee
a sufficient amount of points on the training set to provide a good fit (around 500, as it was already
discussed in the previous Sections). We then aim at having at least N = 30 days on the test set, to
have enough material to evaluate the performance of each portfolio. For larger partitions, we will use
an even greater proportions of the data for testing (around 20 to 30 percent of the points).

Subsequently, we will fit a vine model to each training set, evaluate the goodness of fit of the model,
and use the fitted model to determine the weights of the optimal portfolio with the methodology de-
scribed in Section 7.1. This involves simulating from the fitted model Q = 1000 points, and optimizing
the portfolio through a Monte Carlo allocation method. The obtained weights will be applied to the
original dataset to compute key metrics (Mean, Variance, CVaR, Sharpe ratio, STARR ratio). The
chosen weights will then be applied to the log-returns of the test set to evaluate the performance of the
portfolios out-of-sample. Similarly to the example proposed in Section 7.3, the cumulative log-returns,
the Conditional Value at Risks and the STARR ratios will be evaluated and compared to those of an
equal weight portfolio and of the tangent portfolio of the Markowitz model obtained optimized the
training set (refer to Section 2.3.1). Once again, we will consider the copula-GARCH successful if able
to outperform the others in therm of STARR ratio.

The result will be discussed separately for each partition in the following Subsections.
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8.6.1 Partition 1
The first partition, is characterized by N = 757 data points, as it covers the period between 24/10/2014

and 05/01/2018. The amount of data should be sufficient to guarantee a satisfactory fit for the vine
model. For our analysis, the dataset is split into a training set and a test set, the first consisting of
N = 623 points (around 80% of the dataset), and the second of N = 134 points.

8.6.1.1 Evaluate the Portfolio
Firstly, we analyze the overall performance of the vine copula model on the train set, constructed by
fitting a proper vine copula model to the transformed residuals of the train set of the first partition.
The result is represented in Figure 8.15, and the corresponding parameters are given in Table 8.14. We
can notice how the Kendall’s tau of the bivariate copulas of the first tree are characterized by mod-
erate positive relationship, which tends to disappear in the following trees, till we reach independence
in the last tree. In addition, the highest τ value in the one between the German and the American
indexes which, in the period before Wall Street stock market crash, were two of the strongest economies.

The goodness of fit of the vine is assessed using the White test discussed in Section 4.5.2, obtaining
a p-value of .225 which indicates that we cannot reject the null hypothesis, and hence that we should
consider it to be a good fit. In addition, we test for the simplifying assumption (refer to Definition 14),
obtaining that it cannot be rejected for any of the bivariate copulas considered.
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Figure 8.15: Vine structure of the fitted Vine models of the Residuals, transformed using their empirical CDF.

Tree Edge Distribution Parameters
T1 CAC, SP500 Frank par = 3.99, τ = 0.39

DAX, SP500 Normal par = 0.73, τ = 0.52
N225, DAX Survival Gumbel par = 1.14, τ = 0.13

T2 DAX, CAC; SP500 Joe 90 par = −1.06, τ = −0.03
N225, SP500; DAX t Student ρ = 0.10, ν = 4.83, τ = 0.06

T3 N225, CAC; DAX, SP500 Independent τ = 0

Table 8.14: Parameters of the vine copula model fitted on the first partition at T = 14/06/2017.

The fitted vine copula discussed above is used to simulate Q = 1000 points, which are then trans-
formed using the appropriate marginal distributions (the ones reported in Table 8.10), and used to
construct the copula-GARCH model’s mean-CVaR efficient frontier. The optimal portfolio, found by
optimizing the STARR ratio among the frontier’s points’ has weights:

(wDAX , wCAC , wSP500, wN225) = (0, 64.35%, 0, 35.65%).

The results are compared with the optimal mean-variance portfolio, obtained by selecting the weights
that guarantee the best Sharpe ratio among the ones of the Markowitz frontier (refer to Section 2.3.1.1),
which corresponds to:

(wDAX , wCAC , wSP500, wN225) = (0, 71.33%, 28.67%, 0).

The portfolios obtained for the two methods are compared in Table 8.15, with an equal weight port-
folio. In particular, we compare the portfolio’s weights, noticing how both prefer investing the biggest
percentage in the French index (CAC). The vine copula approach selects the Japanese index (N225) as
the second preference, Markowitz’s prefers to invest in the American SP500. Each set of weights is then
applied to the train set of the original dataset, to compare the different performance metrics.

Markowitz’ portfolio showcases a greater risk appetite, reflected by a higher CVaR value and higher
mean return. The copula-GARCH portfolio has slightly smaller mean value, but also lower risk, re-
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sulting in the best STARR ratio among the portfolios. This suggests a promising performance for
out-of-sample evaluation. Lastly, the Equal Weight portfolio is characterized by more conservative
mean and risk, which result in the best Sharpe ratio.

Method Weights Mean CVaR Sharpe STARR
EW (25%, 25%, 25%, 25%) 0.48 21.00 0.61% 2.27%
Mean-Var (0, 71.33%, 28.67%, 0) 0.71 26.84 0.53% 2.65%
copula-GARCH (0, 64.35%, 0, 35.65%) 0.70 25.65 0.58% 2.75%

Table 8.15: Table comparing the portfolios obtained by optimizing the weights of the four indexes, using
different methods. The table reports the weights and the results of the risk measures and ratios computed on the

partition of N = 623 points of the first partition.

8.6.1.2 Out of Sample Evaluation
We continue with an out-of-sample efficiency evaluation of the portfolios considered. We apply the
selected weights from each method to the test set, composed of the last N = 134 points of the partition.
At each point, computing the cumulative returns, shown in Figure 8.16, the Conditional Value at Risk
of Figure 8.18 and the STARR ratio in Figure 8.19. Moreover, in Figures 8.17 and 8.20, we provide the
differences of Cumulative returns and STARR Ratio respectively.
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Figure 8.16: Evolution of the Cumulative Returns obtained by applying the optimal weights to the test set of
N = 134 points.
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Figure 8.17: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio, of Markovitz’ portfolio and of the EW one on the set of the first partition.

In terms of cumulative returns, it is hard to determine the best-performing portfolio, as all portfolios
exhibit similar behavior. However, by examining the differences illustrated in Figure 8.17, it becomes
clearer that the copula-GARCH portfolio outperforms Markowitz’s portfolio. The Equal Weights portfo-
lio generally shows a higher cumulative return but is occasionally outperformed by the copula-GARCH
portfolio.

Given that our goal is to achieve a good balance between return and risk, evaluating the portfolio’s
efficacy requires more than just analyzing returns. Thus, we also consider other performance metrics.

Figure 8.18: Evolution of the Conditional Value at Risk obtained by applying the optimal weights to the test
set of N = 134 points.
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From the CVaR plots shown in Figure 8.18, we can see how coherently with the previous observa-
tions, the mean-variance portfolio remains the riskiest, with a Conditional Value at Risk (CVaR) that
remains above 26. In contrast, the Equal Weight (EW) portfolio appears more conservative, showcasing
the lowest CVaR value across the entire period considered.

We conclude this analysis by examining the performance of each portfolio in terms of STARR ratios,
as shown in Figure 8.19. The differences reveal that the copula-GARCH portfolio consistently achieves
the best ratio throughout the entire test set, indicating that the portfolio successfully meets its goal
and maintains its superiority over all 134 points considered. On the other hand, it is interesting to
notice the switch between the other two portfolios: for the first 90 days, Markowitz’s portfolio holds
the second-best position, which is subsequently taken over by the EW portfolio.

Figure 8.19: Evolution of the STARR Ratios obtained by applying the optimal weights of the optimal
copula-GARCH portfolio, of Markovitz’ portfolio and of the EW one to the test set of N = 134 points.
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Figure 8.20: Difference between the STARR ratios obtained from the weights of the optimal copula-GARCH
portfolio, of Markovitz’ portfolio and of the EW one on the set of the first partition.

Lastly, to confirm the out-performance of the copula-GARCH portfolio, we compare the considered
metrics at time T = 757, the last day of the test set, in Table 8.16. The copula-GARCH indeed holds
the best STARR ratio, with approximately a 4.3%. improvement over the second best, which would be
the Equal Weight portfolio. Markowit’s portfolio appears to have the lowest performance, showing low
cumulative return, higher risk, and the lowest STARR ratio among those considered. The Equal Weight
portfolio performs rather well, with the highest cumulative return and relatively low risk. However, this
performance, derived from the stability and diversification (being the only one investing in all four
stocks) of the EW portfolio, will not be consistent in the following partitions.

Method Cumulative Return CVaR STARR
EW 86.40 19.86 2.44%
Mean-Var 20.86 26.23 2.32%
copula-GARCH 49.79 24.65 2.57%

Table 8.16: Cumulative returns, CVaRs and STARR ratios for each method at the last day of the test set,
hence at T = 05/01/2018.

8.6.2 Partition 2
The second partition containsN = 505 observations, covering the period from 06/01/2018 to 03/03/2020.
To ensure a good model fit, given that the number of observations is marginally sufficient, the dataset
is divided into the following sets: N = 475 days for the training set, and N = 30 days for the test set.
This choice guarantees the around 500 observations needed to fit a good vine model, and enough points
to evaluate the model’s performance.

8.6.2.1 Evaluate the Portfolio
In this Section we will discuss the portfolios obtained by fitting a model to the entire partition 2. The
resulting weights will then be applied on an out of sample test set.

The trees corresponding to the C-vine fitted on the transformed residuals of the second partition are
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represented in Figure 8.21, while the corresponding parameters are given in Table 8.17. The Kendall’s
tau on the first tree reveal a moderate positive dependence in all bivariate copulas. In contrast, the
conditional trees show relatively low Kendall’s tau values, indicating weaker conditional dependence.
The nodes in the final tree are independent. These results are similar to those from the previous par-
tition, however the Kendall’s tau values appear decreased in the second partition, indicating weaker
dependence.

Additionally, a p-value of 0.975 of White’s Goodness of Fit test indicates that the fit should be good;
moreover, testing the simplifying assumption resulted in not enough evidence to reject the assumption,
which allows for a much more simple model.

Figure 8.21: Vine structure of the fitted Vine models of the Residuals, transformed using their empirical CDF.



8.6. Portfolio Optimization 152

Tree Edge Distribution Parameters
T1 SP500, DAX t Student ρ = 0.64, ν = 2.55, τ = 0.45

SP500, CAC t Student ρ = 0.51, ν = 3.29, τ = 0.34
N225, SP500 t Student ρ = 0.32, ν = 3.44, τ = 0.20

T2 N225, DAX; SP500 Gumbel par = 1.10, τ = 0.09
N225, CAC; SP500 t Student ρ = −0.10, ν = 7.21, τ = −0.06

T3 CAC, DAX; N225, SP500 Independent τ = 0

Table 8.17: Parameters of the Vine copula fitted on the second partition at T = 14/01/2020.

The fitted vine copula is used to simulate Q = 1000 points, which are then transformed and used
to construct the efficient frontier for the copula-GARCH model. The optimal portfolio has weights:

(wDAX , wCAC , wSP500, wN225) = (0, 0, 78.91%, 21.09%).

Indicating that the optimal portfolio should be composed solely of the American and the Japanese
indexes, avoiding the European ones.

The results are then compared with the optimal mean-variance portfolio, which corresponds to:

(wDAX , wCAC , wSP500, wN225) = (0, 1.41%, 66.11%, 32.48%).

This portfolio aligns with the copula-GARCH model in terms of the selected indexes, with the minor
addition of the French index, to which only 1.41% is allocated. The percentages are slightly different,
but maintain a similar balance, suggesting that we can expect comparable results from both portfolios.

More in detail, we compare the two portfolios with an equal weights one in Table 8.18, where it is
clear how the vine copula portfolio outperforms the other two methods considered. In fact, both the
Sharpe ratio (5.78% better than Markowitz’) and the STARR ratio (5.37% better than Markowitz’)
appear to be greater than the other two, confirming the positive performance of our method for the
partition considered.

The vine copula portfolio appears to be more risky than the other ones, but also characterized
by greater expected value. On the other hand, the equal weight portfolio showcases a very poor per-
formance, as it has the lowest expected value, but also a higher risk (CVaR) that the mean-variance
portfolio: this is a sign that the diversified and balanced equilibrium achieved by an equal weight might
perform well (as seen in the previous partition), but can also be extremely unreliable, as we can conclude
from this example.

Method Weights Mean CVaR Sharpe STARR
EW (25%, 25%, 25%, 25%) 0.092 20.046 0.16% 0.46%
Mean-Var (0, 1.4%, 66.1%, 32.5%) 0.278 19.636 0.49% 1.41%
copula-GARCH (0, 0, 78.9%, 21.1%) 0.320 21.470 0.52% 1.49%

Table 8.18: Table comparing the portfolios obtained by optimizing the weights of the four indexes, using
different methods. The table reports the weights and the results of the risk measures and ratios computed on the

partition of N = 475 points of the second partition.
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8.6.2.2 Out of Sample Evaluation
We continue with an out-of-sample efficiency evaluation of the portfolios considered. We apply the
selected weights from each method to the N = 30 points of the test set. We start by computing the
cumulative returns plotted in Figure 8.22.

Figure 8.22: Evolution of the Cumulative Returns obtained by applying the optimal weights to the test set of
N = 30 points of the second partition.

Figure 8.23: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio, of Markovitz’ portfolio and of the EW one on the set of the second partition.

In Figure 8.23, the differences between the cumulative returns are illustrated, showing that the
vine-copula-GARCH portfolio outperforms the other two portfolios for most of the dataset, with only
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few exceptions. This result is further validated by Table 8.19, where the cumulative returns of our
portfolio at the end of the test set appear grater than those of the other two portfolios considered. This
result is a confirmation that using a vine copula to model the underlying structure provides a long-term
advantage. By understanding the relationships among the variables, the vine-copula-GARCH approach
enables to achieve better results over extended periods, rather than short-term gains. We will now
proceed to analyze the CVaR and the STARR ratio performance as well.

Figure 8.24: Evolution of the Conditional Value at Risk obtained by applying the optimal weights to the test
set of N = 30 points of the second partition.

As already seen in Table 8.18, Figure 8.24 shows that the copula-GARCH portfolio is the riskiest,
exhibiting the highest CVaR value throughout the entire test set. On the other hand, the Equal Weight
portfolio, which was characterized by the lowest cumulative returns, appears to be riskier than the
mean-variance one, confirming its poor performance in this partition.

Lastly, we compare the STARR ratios in Figure 8.25, and the corresponding differences in Figure
8.26. From both plots, it is clear that our portfolio outperforms the other two for the entire test set,
displaying the highest ratio value. There is a drop in the last few days where the EW portfolio, which
has a low but stable ratio value, nearly catches up. It is also interesting to note the similar behaviour
of the copula-GARCH portfolio and Markowitz’s one. Their ratios have close values and maintain a
similar trend, particularly evident in the drop that does not affect the more balanced EW portfolio.
This observation is coherent with expectations, as we previously discussed how the two portfolios had
similar compositions.
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Figure 8.25: Evolution of the STARR Ratios obtained by applying the optimal weights of the optimal
copula-GARCH portfolio, of Markovitz’ portfolio and of the EW one to the test set of N = 30 points.

Figure 8.26: Difference between the STARR Ratios obtained from the weights of the optimal copula-GARCH
portfolio, of Markovitz’ portfolio and of the EW one on the set of the second partition.

To confirm the observations previously stated, we provide the cumulative returns, CVaR values and
STARR ratios of each portfolio on the test set at time T = 30 in Table 8.19, from which we can conclude
that the vine copula-GARCH portfolio clearly outperforms the other ones, as it has higher returns, but
also the highest STARR ratio.
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Method Cumulative Return CVaR STARR
EW -115.1 22.02 0.46%
Mean-Var -106.8 21.82 0.34%
copula-GARCH -104.4 23.67 0.47%

Table 8.19: Cumulative returns, CVaRs and STARR ratios for each method at the last day of the test set,
hence at T = 03/03/2020.

8.6.3 Partition 3
The third partition, is again characterized by a sufficient amount of point to guarantee a satisfactory fit.
It is composed of N = 1027 observations, from 04/03/2020 to 05/07/2024, and the dataset is split in
731 days for the training set, and 296 for the test set, which correspond to around 30% of the partition.

8.6.3.1 Evaluate the Portfolio
The vine fitted on the third partition is characterized by the structure shown if Figure 8.27, and with
the parameters of Table ??. The fitted model obtains a p-value equal to 0.27 on the White test, which
suggests a goodness of fit. Moreover, the simplifying assumption is not rejected for any copula consid-
ered.

From the Kendall’s taus reported in table ?? we can notice that, similarly to the previous two
partitions, we have a moderate positive correlation among the variables that compose the first tree,
while the correlations in the second tree is almost zero, suggesting that there is not a strong conditional
relationship among the different geographies. Lastly, the last tree, differently from the one fitted on
the first partition, does not display independence, however the value of Kendall’s tau is still extremely
low.
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Figure 8.27: Vine structure of the fitted Vine models of the Residuals, transformed using their empirical CDF.

The fitted vine copula discussed above is used to simulate Q = 1000 points, which are then trans-
formed and used to construct the mean-CVaR efficient frontier of the copula-GARCH case. The obtained
optimal portfolio has weights:

(wDAX , wCAC , wSP500, wN225) = (0, 0, 31.22%, 68.78%).

The results are compared with the optimal mean-variance portfolio obtained by selecting the weights
that guarantee the best Sharpe ratio, which corresponds to:

(wDAX , wCAC , wSP500, wN225) = (0, 0, 43.56%, 56.44%).

Both portfolios, as for the previous partition analysed, invest only in the American and Japanese
indexes. However, this time the preference is shifted to the Japanese one for both portfolios. Lastly, as
for the previous section, the percentages obtained from the two methods are rather close, so we expect
them to have similar performances.

From Table 8.20, we observe that the equal weight portfolio is again extremely inefficient, with
the lowest mean value and the highest risk. The mean-variance portfolio, despite being the most risk-
exposed with the highest mean and highest CVaR, achieves the best Sharpe ratio, showing only a 1.48
% increase over the copula-GARCH portfolio. On the other hand, the copula-GARCH portfolio holds
the best STARR ratio, 0.7% greater than Markowitz’s portfolio.

Method Weights Mean CVaR Sharpe STARR
EW (25%, 25%, 25%, 25%) 0.165 33.297 0.08 % 0.49%
Mean-Var (0, 0, 43.56%, 56.44%) 0.371 27.217 0.270 % 1.36%
copula-GARCH (0, 0, 31.22%, 68.78%) 0.368 26.830 0.266% 1.37%

Table 8.20: Table comparing the portfolios obtained by optimizing the weights of the four indexes, using
different methods. The table reports the weights and the results of the risk measures and ratios computed on the

partition of N = 731 points of the third partition.
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8.6.3.2 Out of Sample Evaluation
It is left to evaluate the performance of the vine copula fit on an out of sample dataset. We apply the
weights obtained to N = 300 points of the test set, and compare the different metrics obtained with
the other two method.
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Figure 8.28: Evolution of the Cumulative Returns obtained by applying the optimal weights to the test set of
N = 296 points of the third partition.

Figure 8.29: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio, of Markovitz’ portfolio and of the EW one on the set of the third partition.

In Figure 8.28 the cumulative returns of the three portfolios are compared. Both from this plot and
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the corresponding differences in Figure 8.29, we can see how the vine copula-GARCH portfolio is able to
maintain a higher return throughout the entire N = 296 points that compose the dataset, outperforming
the other two, as the initial lower value is rapidly overcome. These results further confirm that using a
vine copula to model the underlying structure provides a long-term advantage. By understanding the
relationships among the variables, the vine-copula-GARCH approach enables to achieve better results
over extended periods, rather than short-term gains. Moreover, coherently with expectations, the mean-
var portfolio showcases a behaviour that is extremely similar to the copula one. On the contrary, the
EW portfolio has a significantly worse performance.

Figure 8.30: Evolution of the Conditional Value at Risk obtained by applying the optimal weights to the test
set of N = 296 points of the third partition.

As already seen in Table 8.20, Figure 8.30 shows that the copula-GARCH portfolio is the least
risky, exhibiting the lowest CVaR value throughout the entire test set. On the other hand, the Equal
Weight portfolio, which was characterized by the lowest cumulative returns, also detains the highest
risk, confirming how this method does not perform well in terms of balancing return and risk, as it does
not take into account any information of the underlying assets.

Lastly, we compare the STARR ratios in Figure 8.31, and analyse the corresponding differences
in Figure 8.32. From both plots, it is clear that the vine-copula-GARCH portfolio outperforms the
other two for the entire test set, maintaining a positive difference. It is also interesting to note the
similar behaviour of the copula-GARCH portfolio and Markowitz’s one, which is derived by the similar
compositions of the two portfolios. This was a trend that was discussed also in the previous partition,
hence in Section 8.6.2. In fact, the ratio of both portfolios have close values and maintain a similar trend.
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Figure 8.31: Evolution of the STARR Ratios obtained by applying the optimal weights of the optimal
copula-GARCH portfolio, of Markovitz’ portfolio and of the EW one to the test set of N = 296 points.

Figure 8.32: Difference between the STARR Ratio obtained from the weights of the optimal copula-GARCH
portfolio, of Markovitz’ portfolio and of the EW one on the set of the third partition.

To confirm the out-performance of the copula-GARCH portfolio, we compare the considered metrics
at time T = 05/07/2024, the last day of the test set, in Table 8.21. The copula-GARCH indeed holds
the best STARR ratio, with approximately a 1.20%. improvement over the second best, Markowitz’s
portfolio. The copula-GARCH portfolio also detains the best cumulative return value, confirming the
superiority of the chosen method. Coherently with expectations, the values of the mean-variance port-
folio are rather close to the former one, but slightly worse. Lastly, as already discussed throughout this
section, the EW’s performance is bad: it has the lowest return, as well as being exposed to the highest
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risk, which results in a very poor STARR ratio value.

Method Cumulative Return CVaR STARR
EW 163.1 29.21 0.01%
Mean-Var 325.2 24.07 2.46%
copula-GARCH 331.7 24.03 2.49%

Table 8.21: Cumulative returns, CVaRs and STARR ratios for each method at the last day of the test set,
hence at T = 05/07/2024.

8.7 Conclusions
Our study highlights several points regarding the application of vine-copula-GARCH models for port-
folio optimization.

Firstly, the long-term advantage of the vine-copula-GARCH approach is clear. For all partitions, we
observed an improvement in the STARR ratios compared to portfolios constructed using other meth-
ods, demonstrating the robustness and effectiveness of this model in capturing complex dependencies
over time. This improvement resulted also in higher cumulative returns for most of the test periods
considered, meaning that a potential investor would have gained more if he decided to invest according
to the proposed portfolio throughout the test set considered.

Moreover, a portfolio such as the Equal Weight one, which is not derived by taking into account
the information of the underlying assets, can sometimes perform well (refer to Section 8.6.1). However,
this success is inconsistent, and most of the time, understanding the relationships among the variables
proves essential to guarantee satisfactory results. This is particularly evident in the other two partitions
discussed in Sections 8.6.2 and 8.6.3.

Additionally, throughout all partitions considered, the vine copula fit showed consistent results in
terms of Kendall’s tau. Specifically, the first tree was always characterized by bivariate copulas with
moderate positive correlations between the variables, while the conditional copulas of the subsequent
trees had correlations that tended to zero.

Lastly, the initial analysis conducted on the original set of partitions (Section 8.5) highlighted the
importance of having a dataset with a sufficient number of points, ideally N = 500. In fact, a larger
dataset ensures more accurate partitioning and stable estimation of the copula parameters, leading to
more reliable results and conclusions.
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Conclusion

In this thesis, we proposed to analyze the advantages and disadvantages of introducing more sophisti-
cated mathematical models in portfolio optimization. We explored the impact of using time-dependent
vine models, applied to the residuals of time series models, for portfolio optimization. We compared
the performance of these models with more traditional approaches like Markowitz’s Mean-Variance ap-
proach and simpler models such as the Equal Weight portfolio, aiming to address the following questions
introduced in the introduction:

What are the advantages of introducing copulas and vine models, in the context of portfolio optimisa-
tion theory? How can the properties of these models be used to improve and understand the optimisation
process?

To answer these questions, we developed a vine-copula-GARCH model by introducing each com-
ponent in different chapters of this thesis, like pieces of a puzzle that we carefully evaluated before
assembling. This model incorporates various mathematical tools to understand and mimic the dynam-
ics of time series, including GARCH models, copulas, and vine models. Through simulation studies,
we verified the performance of these instruments in a controlled environment, where outcomes could be
predicted, ensuring everything was working correctly. In other words, the simulation studies were not
only a tool to provide to the reader some examples to understand each step, but were also a way of
testing the methodology developed, and to verify that the expected results were achieved.

The simulation studies helped us calibrate the model correctly, ensuring its proper functioning. For
instance, we determined the necessity of having at least N = 500 observations to achieve satisfactory
parameter estimation in vine copula models. But more in general, this approach allowed to gain an over-
all overview on the different components: from selecting the most appropriate risk measure in Chapter
2, to determining the appropriate number of points needed to fit a good model in Chapters 3 and 4,
to verifying the efficacy of all instruments combined together in Chapters 6 and 7. Each of these steps
was carefully executed, leading to the successful construction of the final model, which was applied to
real financial data in the application of Chapter 8.

162
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The created model also proved to be successful in the real data application, highlighting the im-
portance of using a model able to understand and exploit the complex relationships that hold across
different variables. Some of the main advantages will be discussed in the following Section.

9.1 Model’s Advantages
The real-world application of Chapter 8 demonstrated the practical utility and robustness of the vine-
copula-GARCH model in portfolio optimization. By applying our model to actual financial data, we
could observe how well it performed compared to traditional models over different market conditions
and time periods. The empirical results highlighted several key points:

1. Optimized Risk-Adjusted Performance: Our vine-copula-GARCH model consistently showed bet-
ter risk-adjusted performance metrics. In particular, the model exhibited a better STARR ratio,
compared to the traditional Mean-Variance and Equal Weight portfolios. This suggests that in-
corporating the dependence structure through vine copulas provides a significant advantage in
managing risk while optimizing returns.

2. Long-term advantage: For all partitions, we observed an improvement in the STARR ratios com-
pared to portfolios constructed using other methods that was prolonged in the entire test set,
demonstrating the robustness and effectiveness of this model in capturing complex dependencies
over time. This improvement resulted also in higher cumulative returns for most of the test peri-
ods considered, meaning that a potential investor would have gained more if he decided to invest
according to the proposed portfolio throughout the test set considered.

3. Robustness Across Different Partitions: The model demonstrated robustness across various par-
titions of the dataset, consistently outperforming other models in terms of STARR ratio. This
consistency underscores the model’s reliability and potential for long-term investment strategies.
This feature is particularly evident if compared to the Equal Weight portfolio. In fact, as we
observed in Section 8.6.1, this portfolio can sometimes perform well. However, because it does
not account for the information of the underlying assets, its success is inconsistent. Most of the
time, understanding the relationships among the variables proves essential for guaranteeing satis-
factory results. This is particularly evident in the other two partitions where the EW portfolio’s
performance is clearly inferior.

4. Insights into Dependencies: The consistent results in terms of Kendall’s tau across different par-
titions reinforced the importance of understanding the underlying dependencies among assets, as
well as giving insights about the stronger dependencies across different geographies, as well as in
the conditional dependencies.

In conclusion, this thesis demonstrates that incorporating advanced mathematical models, partic-
ularly vine-copula-GARCH models, into portfolio optimization provides clear benefits over traditional
methods. By accurately capturing the dependencies among financial instruments and adapting to
changing market conditions, these models offer a robust framework for constructing optimal investment
portfolios. While the model shows significant promise, there is still room for possible improvements and
extensions, which will be discussed in the following sections.
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9.2 Suggested Improvements
While the created model produced satisfactory results, there are several areas where improvements can
be made. These improvements were not explored due to time constraints, but they offer potential for
enhancing the model’s accuracy and robustness.

The first improvement would be to consider longer histories of data. As discussed in Section 8.5, the
division into partitions obtained from the method illustrated in Section 6.6 proved to be unsuccessful
as some of the identified partitions did not have enough points to guarantee a good fit. Using a longer
dataset could enable a more accurate subdivision of time based on correlation differences. This would
lead to partitions characterized by consistent underlying models, enhancing the model’s overall perfor-
mance.

In addition, some improvements can be made in the context of applying Monte Carlo simulations.
To improve the precision of the estimates, variance reduction techniques such as importance sampling,
antithetic variates, or control variates could be considered. Furthermore, portfolio revaluation could be
implemented to reduce the time between different scenarios, reducing the errors [79].

9.3 Possible Extensions and Future Developments
There are several potential extensions and future developments that could enhance the scope and
applicability of this thesis, although they were not explored due to time and resource constraints. The
main areas of focus include:

• Scalability
• Diversification

Scalability refer to the selection of indexes discussed in the real data application of Chapter 8. The
model was applied to the returns of four of the main stock indexes. However, copula and vine models
are capable of incorporating data from many more variables. The model developed can be applied to
different stock markets, and include more geographies simultaneously. For lack of time we did not have
time to expand the model to further indexes, but the flexibility of vine model enables to create much
more bigger (and hence more diversified) portfolios.

Moreover, the model is not limited to stock indexes alone. Expanding the model to other types of
financial assets would be a logical next step. This could include bonds, commodities, or other investment
assets. The choice to focus on stock indexes in this thesis was due to data availability. In fact, the
data for the stock indexes of the main geographies are available online, rather complete and most
importantly they guarantee a substantial data history, allowing us to divide the dataset in partitions,
and have enough data to guarantee a proper model fit.
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A
Proofs

A.1 Proofs Chapter 2
A.1.1 Theorem 2
Here we discuss the proof of Theorem 2, which discusses the convexity and differentiability of the func-
tion Fβ , introduced to simplify the optimization of Conditional VaR. Both the theorem and the proof
are taken from [16].

But first, we need to introduce a lemma, which is derived from proposition 2.1 of [80]:

Lemma 1. With R fixed, let G(α) =
∫
Rm g(α, r)f(r)dr, where g(α,R) = [L(w,R) − α]+. Then G is

a convex, continuously differentiable function with derivative

G′(α) = F (α)− 1, (A.1)

where F is the cumulative distribution function of R.

Proof. Immediately from 1, we get that the function Fβ(L,α), as defined in 2.21, is convex, continuously
differentiable function with derivative:

∂Fβ

∂α
= 1 +

1

1− β
(F (α)− 1) =

1

1− β
(F (α)− β). (A.2)

Being convex, there exits only one minimum of Fβ(L,α), located at the point that satisfies ∂Fβ

∂α , hence
the point such that F (α) − β = 0. Since we consider the CDF F (α) to be continuous, non decreasing
with limit 1 as α → ∞, and limit 0 as α → −∞, we obtain that the solution form a non empty closed
interval, which corresponds to (2.23). And subsequently proves (2.24), defining the V aRβ(L) as the left
end point of Aβ(L).

In particular, we have that the minimum of Fβ is obtained when α = V aRβ(L), hence:

min
α∈R

Fβ(L,α) = Fβ(L, V aRβ(L))
Def. (2.21)

= V aRβ(L)+
1

1− β

∫
L(w,R)≥V aRβ(L)

(L(w, r)−V aRβ(L))f(r)dr.
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Then if we apply linearity to the last integral, we can split it in:∫
L(w,R)≥V aRβ

(L(w, r)−V aRβ(L))f(r)dr =

∫
L(w,R)≥V aRβ

L(w, r)f(r)dr−V aRβ

∫
L(w,R)≥V aRβ

f(r)dr.

Where
∫
L(w,R)≥V aRβ

L(w, r)f(r)dr is the conditional expectation of the loss L, conditional to
L(w,R) ≥ V aRβ , which corresponds to the definition of (1−β)CV aRβ (see Def. 2). While,

∫
L(w,R)≥V aRβ

f(r)dr =

1− F (V aRβ), from the definition of CDF.

By combining these results, we obtain that:

min
α∈R

Fβ(L,α) = V aRβ(L) +
1

1− β
((1− β)CV aRβ − V aRβ(L)(1− F (V aRβ)),

but since F (V aRβ) = β, we obtain that:

CV aRβ = min
α∈R

Fβ(L,α),

which corresponds to (2.22).

A.1.2 Analytical Computation of the Mean-Var Efficient Frontier
Here is the proof of the results from Theorem 1 in Section 2.3.1.1, where we computed the analytical
formula of Markovitz’ Mean-Variance efficient frontier. The Variance can in fact be computed as a
function of the vector of target returns r0. The final formula is the one shown in 2.15:

Var(r0) =
cr20 − 2br0 + a

∆
,

where, 
a = µ⊤Σ−1µ

b = µ⊤Σ−11

c = 1⊤Σ−11.

(A.3)

The corresponding weight vector is:

w (r0) =

(
cΣ−1µ− bΣ−11

)
r0 +

(
aΣ−11− bΣ−1µ

)
∆

. (A.4)

The proof is taken from [3].

Proof. Given the Lagrangian corresponding to problem 2.10, where the Risk is the Variance:

L (ω, λ1, λ2) = ω⊤Σω − λ1
(
µ⊤ω − r0

)
− λ2

(
ω⊤1 − 1

)
,

we can derive the critical points by solving the following partial derivatives:

∂L
∂ω

= 2ω⊤Σ− λ1µ
⊤ − λ21 = 0 (A.5)
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⇒
ω⊤ =

1

2

[
λ1Σ

−1µ− λ2Σ
−11

]
, (A.6)

and
∂L
∂λ1

= −µ⊤ω + r0 = 0 (A.7)

⇒
r0 = µ⊤ω

(A.5)
=

1

2
λ1µ

⊤Σ−1µ+
1

2
λ2µ

⊤Σ−11
(2.15)
=

1

2
λ1a+

1

2
λ2b. (A.8)

And lastly:

∂L
∂λ2

= −wT1 − 1 = 0 (A.9)

(A.5)⇒
1 = −wT1 =

1

2
λ1µ

⊤Σ−11 +
1

2
λ21

TΣ−11
(A.3)
=

1

2
λ1b+

1

2
λ2c. (A.10)

From which we obtain the system:

1

2

[
a b

b c

][
λ1

λ2

]
=

[
r0

1

]
which, if we set ∆ ≥ 0, has solution:

1

2
λ1 =

r0c− b

∆
,

1

2
λ2 =

a− r0b

∆
,

from which we obtain the weights vector that we presented in 2.16, by substituting the values of λ1
and λ2 in equation A.6:

w (r0) =

(
cΣ−1µ− bΣ−11

)
r0 +

(
aΣ−11− bΣ−1µ

)
∆

.

Lastly we can compute the variance vector of the efficient frontier as:

V ar = w⊤Σw =

(
cr20 − 2br0 + a

)
∆

,

which represents the parabola presented in 2.15.

A.1.3 Analytical Computation of the Mean-Var Tangent Portfolio
In Section 2.3.1.1, we proposed the formula to derive the set of weights that satisfy (2.10), which cor-
responds to what we refer to as the Tangency Portfolio. Here we go through the main steps to derive
such a result.

Starting from problem (2.30), and setting the variance as risk, we can express the corresponding
Lagrangian:

L(w, λ) = wTµ− rf√
wTΣw

− λ(wT1 − 1).

From which we set equal to zero the partial derivatives with respect to w and λ, to find the solution
of the maximization problem:
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∂L
∂w

=
µ
√
wTΣw − (wTµ− rf )Σw

(wTΣw)
3
2

− λ1 = 0; (A.11)

and:

∂L
∂λ

= wT1 − 1. (A.12)

With a few substitutions and small algebraic computations, we finally find that the vector weight is
the following:

wtp =
Σ−1(µ− rf1)

1TΣ−1(µ− rf1)
,

which corresponds to the weights of the optimal portfolio on the Markowitz efficient frontier that
maximizes the Sharpe Ratio. It is the same formulation reported in Equation 1.

A.1.4 Analytical Computation of VaR
In Section 2.3.2.1 we provided the formulation of the VaR for normally distributed variables:

VaRβ(R) = Φ−1(β)σP + µP . (A.13)

Proof. Starting from the Definition 1 of VaR:

V aRβ = min
z

{FR(z) ⩾ β} translation
=

{
z s.t. Φ

(
z − µP

σP

)
= β

}
=

{
z s.t. z − µP

σP
= Φ−1(β)

}
=

=
{
z s.t. z = Φ−1(β)σP + µP

}
.

The VaR is therefore obtained from the following formula:

VaRβ(R) = Φ−1(β)σP + µP .

A.1.5 Analytical Computation of CVaR
Analogously to the VaR case, we can analytically derive the CV aRβ of a of a portfolio composed by
Gaussian assets, which is the following, as already discussed in Section 2.3.3.1:

CVaRβ =
1

1− β
φ
(
Φ−1(β)

)
σP − µP ,

where φ(·) is the density of a standard normal, and Φ−1(·) the inverse of the CDF of a standard normal.
The proof is taken from [19].

Proof. Starting from Definition 2 we have:

(1− β)CV aRβ(L) =

∫
L(w,R)≥V aRβ(L)

L(w, r)f(r)dr

However, since we are in the Gaussian case, hence r ∼ N (µP ,Σ), the loss function L(w, r) = −wT r, is
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also Normally distributed L(w, r) ∼ N (µP , σP ). So, making a change of variable, we obtain that:∫
L(w,R)≥V aRβ(L)

L(w, r)f(r)dr =
∫ +∞

V aRβ(L)

t√
2πσP

exp

{
− (t− µP )

2

2σP 2

}
dt =

{add +µP−µP }
=

∫ +∞

V aRβ(L)

t+ µP√
2πσP

exp{− (t+ µP )
2

2σ2
P

}dt−
∫ ∞

V aRβ(L)

µP√
2πσP

exp{− (t+ µP )
2

2σ2
P

}dt

From here we obtain the following:

CVaRβ =
1

1− β

[∫ +∞

VaRβ(L)

t+ µP√
2πσP

e
− (t+µP )2

2σ2
P dt− µP

∫ +∞

V aRβ(L)

1√
2πσP

e
− (t+µP )2

2σ2
P dt

]
(A.14)

If we then consider separately the two integrals in A.14, we obtain the following results.

µP

[
1

1− β

∫ +∞

V aRβ(L)

1√
2πσP

e
− (t+µP )2

2σ2
P dt

]
Def of VaR

= µP
1

1− β
· (1− β) = µP .

And:

1

1− β

∫ +∞

V aRβ(L)

t+ µP√
2πσP

e
− (t+µP )2

2σ2
P dt =

1

1− β

[
− σP√

2π
exp

{
−
(
t+ µP√
2σP

)2
}]+∞

V aRβ(L)

=

=
1

1− β

σP√
2π

exp

{
− (V aRβ(L) + µP )

2

2σ2
P

}
Eq.A.13

=
1

1− β

σP√
2π

exp

{
−
(
���−µP − σPΦ

−1(β) +��µP

)2
2σ2

P

}
=

=
1

1− β

σP√
2π

exp

{
−��σ

2
P (Φ

−1(β))2

2��σ
2
P

}
=

σP
1− β

1√
2π

exp

{
− (Φ−1(β))2

2

}
DensityN(0,1)

=
1

1− β
σPφ

(
Φ−1(β)

)
.

By combining the two results, we finally obtain:

CVaRβ =
1

1− β
φ
(
Φ−1(β)

)
σP − µP .

A.2 Proofs Chapter 3
In this Section we discuss the proof of two theorems that illustrate how to express the theoretical
definition of Kendall’s tau and Spearman’s correlation with copulas. Both proofs are taken from [27].

A.2.1 Theorem 3.7
Proof. We want to prove that τ = 4

∫
[0,1]2

C (u1, u2) dC (u1, u2)− 1.

Let (X1, Y1) and (X2, Y2) be independent and identically distributed pairs. Starting from definition
(3.2.1) we have:

τ(X,Y ) = P((X1 −X2)(Y1 − Y2) > 0)− P((X1 −X2)(Y1 − Y2) < 0).

For continuous variables, we can define the probability of disconcordance as:

P ((X1 −X2) (Y1 − Y2) < 0) = 1− P ((X1 −X2) (Y1 − Y2) > 0) ,
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⇒

τ = 2P ((X1 −X2) (Y1 − Y2) > 0)− 1. (A.15)

Furthermore, we can rewrite:

P ((X1 −X2) (Y1 − Y2) > 0) = P (X1 > X2, Y1 > Y2) + P (X1 < X2, Y1 < Y2) , (A.16)

Now by applying the CDF to project the variables to the unit cube, hence by applying ui := Fi (xi),
we can show that the first probability of (A.16) is equal to:

P (X1 > X2, Y1 > Y2) = P (X2 < X1, Y2 < Y1)

=

∫ ∞

−∞

∫ ∞

−∞
P (X2 < x1, Y2 < x2) dC (F1 (x1) , F2 (x2))

Def.33
=

∫ ∞

−∞

∫ ∞

−∞
F (x1, x2)dC (F1 (x1) , F2 (x2))

Eq.(3.1)
=

∫ ∞

−∞

∫ ∞

−∞
C (F1 (x1) , F2 (x2)) dC (F1 (x1) , F2 (x2))

ui:=Fi(xi)
=

∫ 1

0

∫ 1

0

C (u1, u2) dC (u1, u2) .

Similarly we can show that:

P (X1 < X2, Y1 < Y2) =

∫ 1

0

∫ 1

0

C (u1, u2) dC (u1, u2) ,

obtaining that:

P ((X1 −X2) (Y1 − Y2) > 0) = 2

∫ 1

0

∫ 1

0

C (u1, u2) dC (u1, u2) .

We then substitute the result in Equation A.15, concluding the proof.

A.2.2 Theorem 3.8
Proof. Starting from the definition of Spearman’s ρs in 5, and applying the transformation Ui = Fi (Xi),
we obtain:

ρs = Cor (F1 (X1) , F2 (X2)) = Cor (U1, U2) ,

We can now express the correlation as:

Cor(X,Y ) =
E[XY ]− E[X]E[Y ]√
V ar(X)

√
V ar(Y )

,

and since we know that if Ui ∼ U [0, 1], we have that E[Ui] =
1
2 , and V ar(Ui) =

1
12 , we obtain that:

ρs =
E (U1U2)− 1

4
1
12

= 12E (U1U2)− 3 = 12

∫ 1

0

∫ 1

0

u1u2dC (u1, u2)− 3,

concluding the proof.



B
Simulation Studies

In this Section of the Appendix we collect some figures obtained by the simulation studies performed
in different Chapters of this thesis.

B.1 Chapter 2
This figures are some of the results that are discussed in Chapter 2, and more in particular in Section
2.6. In this section we simulate different set of returns from different distributions, and compare the
optimization results obtained by applying three different risk measures: variance, Value-at-Risk and
Conditional Value-at-Risk.
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B.1.1 Gaussian Case
Results obtained in Section 2.6.4.

Figure B.1: Plots showcasing the evolution of the risk measures considered, and the relative ratios in relation
to the change of weights. In particular, in the X-axis we find the percentage of the first asset (less risky).
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B.1.2 The Exponential Case
Here we present the results related to Section 2.6.5.

Figure B.2: Plots showcasing the evolution of the risk measures considered, and the relative ratios in relation
to the change of weights. In particular, in the X-axis we find the percentage of the first asset (less risky).
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Figure B.3: Mean-Variance, Mean-V aRβ, and Mean-CV aRβ efficient frontiers, computed optimising from
two exponentially distributed returns. In blue we observe the market line, whose intersection with the frontier

identifies the optimal frontier. The results are compared with the EW portfolio (red dot).
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B.1.3 Gaussian 3-dimensional case
Results associated with Section 2.6.6 of the second Chapter, where we compare the three methods of
portfolio optimization for a three dimensional portfolio whose returns are normally distributed.
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Figure B.4: Mean-Variance, Mean-V aRβ, and Mean-CV aRβ efficient frontiers, computed optimising the
returns that follow a Gaussian distribution (3-dimensional case). In blue is presented the market line, whose
intersection with the frontier identifies the optimal frontier. The results are compared with the EW portfolio

(red dot).

B.1.4 Copula case
Results associated with Section 2.6.6 of the second Chapter, where we compare the three methods of
portfolio optimization for a three dimensional portfolio whose returns are simulated from a Gaussian
copula, and then transformed to translated exponential by applying their inverse CDF.
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Figure B.5: Mean-Variance, Mean-V aRβ, and Mean-CV aRβ efficient frontiers, computed optimising the
returns simulated from a Gaussian copula, and then transformed to translated exponentials by applying their
inverse CDF. In blue we observe the market line, whose intersection with the frontier identifies the optimal

frontier. The results are compared with the EW portfolio (red dot).
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B.2 Chapter 3
We provide some of the results discussed in Section 3.5 of Chapter 3.

B.2.1 Convergence for 2-Dimensional Copulas

Figure B.6: Boxplots showing the improvement of the estimated values for the parameters of each
bi-dimensional copula considered as the number of observations N increases, compared with the value of the

original dataset in red.
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Figure B.7: Logarithmic scaled plot studying the convergence of the estimated Kendall Tau of the fitted
copulas. On the x-axis we have the number of observations, on the y-axis the corresponding Mean Squared

Error values.
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Figure B.8: Boxplots showing the improvement of the estimated values for the Kendall’s Tau of each
bi-dimensional copula considered as the number of observations N increases, compared with the value of the

original dataset in red.
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B.2.2 Convergence for 4-Dimensional Copulas

Figure B.9: Boxplots showing the improvement of the estimated values for the parameters of each
4-dimensional copula considered as the number of observations N increases, compared with the value of the

original dataset in red.
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Figure B.10: Logarithmic scaled plot studying the convergence of the estimated Kendall Tau of the fitted
copulas. On the x-axis we have the number of observations, on the y-axis the corresponding Mean Squared

Error values.
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Figure B.11: Boxplots showing the improvement of the estimated values for the Kendall’s Tau of each
3-dimensional copula considered as the number of observations N increases, compared with the value of the

original dataset in red.
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B.3 Chapter 4
We provide some of the results discussed in Section 4.6 of Chapter 4.

B.3.1 Estimators convergence of Vine copula

Figure B.12: Boxplots showing the improvement of the estimated values for each parameter (and the
computed θ23) as the number of observations N increases.
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B.3.2 Vine structures Equivalency

Figure B.13: Boxplots showing the results of the simulation conducted to estimate the parameters
(θ12, θ31, θ32|1) = (0.2,−0.5, 0.9). Each image shows the 100 fitted values by each fit generated using the three

vine structures V3, V1 and V1, and the true value with a red dotted line.
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B.3.3 t-Student Vine Copula

Figure B.14: Plot of the boxplots of the improvement of the estimated values for each parameter, as the
number of observations N increases.



B.3. Chapter 4 193

Figure B.15: Boxplots showing the results of the simulation conducted to estimate the parameters
(θ12, θ31, θ32|1) = (−0.4, 0.86, 0.1) of a t-Student copula with ν = 3 degrees of freedom. Each image shows the
100 fitted values, generated using the three vine structures the three vine structures V3, V1 and V1. The true

value is represented by the red dotted line.
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B.3.4 Gumbel’s Vine Copula

Figure B.16: Boxplots of the improvement of the estimated values for each parameter, as the number of
observations N increases.
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Figure B.17: Boxplots showing the results of the simulation conducted to estimate the parameters
θ32|1 = {1, 1, 8, 16}, which are some of the most evident examples of how the correct structure influences the

estimation. Each image shows the 100 fitted values by each fit generated using the three vine structures V3, V1

and V1. The true value is represented by the red dotted line.



C
Simulation Studies: Further Checks

In this Section of the Appendix we will run some further analysis on the procedures and functions used
throughout this thesis, to make sure the code is correctly implemented and the results obtained in the
practical application are obtained using a methodology that has been carefully evaluated. In particular
we focus on assessing the performance of the tools employed in the simulation studies of Chapter 5
(Sect 5.8) and of Section 6.7 of Chapter 6.

C.1 Chapter 5
In this Section we analyze the steps used in the simulation study of Chapter 5, in particular we will
focus on analyzing the accuracy obtained in the Estimation process, in the Selection Process, and in
the Predictions.

In this case we will consider simple models that have a behaviour that can be intuitively be under-
stood, which results in easier checks of the correctness of the procedure. In particular, we will simulate
an AR(1) of parameter ϕ = 0.9, a MA(1) with θ = 0.9, an ARMA(1,1) of parameters ϕ1 = 0.9, θ = 0.5,
and lastly a GARCH(1,1) with (α0, α1, β1) = (1, 0.8, 0.1).

C.1.1 Estimation
Similarly to the study conducted for copulas and vine models in Sections 3.5 and 4.6, we verify the
convergence of the MLE estimators to the original parameters of the time series considered, by changing
the size of the dataset to N = {50, 100, 200, 500, 1000, 2000}. For each time series considered we provide
a logarithmic plot of the MSE ((39)), and the corresponding boxplots showcasing the distribution of
the estimate parameters for each size of the simulated data considered. We do not discuss each case
individually, but provide general conclusions in Section C.1.1.5.
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C.1.1.1 AR(1)

Figure C.1: Simulated plot of an AR(1), of parameters ϕ1 = 0.9, σ = 1.5.

Figure C.2: Logarithmic scaled plot studying the convergence of the estimated Parameters of the AR(1)
model. On the x-axis we have the number of observations, on the y-axis the corresponding Mean Squared Error.
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Figure C.3: Boxplots showing the improvement of the estimated values for the parameters of the AR(1) time
series considered, as the number of observations N increases, compared with the value of the original dataset in

red.

C.1.1.2 MA(1)

Figure C.4: Simulated plot of an MA(1), of parameters θ1 = 0.9, σ = 3.
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Figure C.5: Logarithmic scaled plot studying the convergence of the estimated Parameters of the MA(1)
model. On the x-axis we have the number of observations, on the y-axis the corresponding Mean Squared Error.

Figure C.6: Boxplots showing the improvement of the estimated values for the parameters of the MA(1) time
series considered, as the number of observations N increases, compared with the value of the original dataset in

red.
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C.1.1.3 ARMA(1,1)

Figure C.7: Simulated plot of an AR(1), of parameters ϕ1 = 0.9, σ = 1.5.

Figure C.8: Logarithmic scaled plot studying the convergence of the estimated Parameters of the ARMA(1,1)
model. On the x-axis we have the number of observations, on the y-axis the corresponding Mean Squared Error.
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Figure C.9: Boxplots showing the improvement of the estimated values for the parameters of the ARMA(1,1)
time series considered, as the number of observations N increases, compared with the value of the original

dataset in red.
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C.1.1.4 GARCH(1,1)

Figure C.10: Simulated plot of an GARCH(1,1), of parameters ϕ1 = 0.9, σ = 1.5.

Figure C.11: Logarithmic scaled plot studying the convergence of the estimated Parameters of the
GARCH(1,1) model. On the x-axis we have the number of observations, on the y-axis the corresponding Mean

Squared Error.
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Figure C.12: Boxplots showing the improvement of the estimated values for the parameters of the
GARCH(1,1) time series considered, as the number of observations N increases, compared with the value of the

original dataset in red.

C.1.1.5 General comments on Estimation
For all models considered, we can observe how the length of the dataset significantly influences the
efficacy of the estimators. In particular, it is possible to notice how N = 500 is the minimum size
required to obtain reliable estimations of the parameters: this will be similar to the size considered in
the practical application of Chapter 8. Nevertheless, we can consider this experiment as successful, as
we observe a convergence of the estimators to the true parameters for all time series considered.

C.1.2 Model Selection
In this Section, we analyze the efficiency of comparing different fits through the comparison of the AIC
values. Generally the selection proved to be accurate. In particular, here we provide the results for the
MA(1) and the GARCH(1,1) case.

In Table C.1, the percentage of times that an MA(q) model is selected when fitting the MA(1) time
series simulated with parameters θ1 = 0.9, σ = 3, for each dataset length N considered. We can see
how, especially for longer datasets, the correct time series family is selected, however sometimes a more
complex model than the original (q > 1) is preferred. This is one of the disadvantages of using AIC,
rather than BIC. However, the results are still satisfactory and this criteria is much easily found in R’s
built in functions, that we decided to keep using this criteria for our implementation.

Better results are achieved for the GARCH case, whose results are reported in Table C.2, where a
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GARCH model is selected 100% of times for all datasets considered with length greater than N = 100.

C.1.2.1 MA(1)

N 100 200 500 1000 2000
MA(1) 41 52 61 64 68

MA(q),q>1 45 40 33 32 26
TOT 86 % 92 % 94 % 97 % 95 %

Table C.1: Percentage of times that the model selection process selected the original model (MA(1)), or
correct time series, but of incorrect order.

C.1.2.2 GARCH(1,1)

N 100 200 500 1000 2000
GARCH(1,1) 98 % 100 % 100 % 100 % 100 %

Table C.2: Percentage of times that the model selection process selected the original model (GARCH(1,1)).

C.1.3 Predictions
In order to check the implementation of the predictions, we proceeded to make 1 day ahead predictions
using the original parameters (instead of the fitted ones used in the simulation study) of the AR(1), the
MA(1) and the AR(1)-GARCH(1,1) considered also for the previous steps. The results are presented
below.

C.1.3.1 AR(1)

Figure C.13: 1-day-ahead predictions of a AR(1) time series. The predictions are compared with the true
realization of the original dataset. The green area represents the 90% prediction interval at each time point,

given the past.
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The prediction appears to be following the behaviour of the original time series rather well, which is
coherent with the high value of the parameter ϕ1, which suggests strong influence of the past. The
predicted time series results to have an rRMSE = 0.059, which is an extremely good results. Moreover,
83% of the times the true value is located withing the 90% prediction interval, the result is a little lower
than expected but still satisfactory.

C.1.3.2 MA(1)

Figure C.14: 1-day-ahead predictions of a MA(1) time series. The predictions are compared with the true
realization of the original dataset. The green area represents the 90% prediction interval at each time point,

given the past.

The rRMSE for the MA(1) prediction is equal to 1.66, which is still a good result considering that a
moving average is influenced by past observations only though the value of the white noise. In this case
only 75.86% of times the original time series is contained within the prediction interval, value that is a
little lower than the expected 90%.
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C.1.3.3 AR(1)-GARCH(1,1)

Figure C.15: 1-day-ahead predictions of a AR(1)-GARCH(1,1) time series. The predictions are compared
with the true realization of the original dataset. The green area represents the 90% prediction interval at each

time point, given the past.

Lastly, for the AR(1)-GARCH(1,1) case, the rRMSE = 0.065, which is a good result. Analogously
to the AR case, the influence of the past due to a high ϕ1 value reflects positively to the predictions.
Moreover, 83.3% of the times the true value is located withing the 90% prediction interval, the result
is a little lower than expected but still satisfactory.

C.2 Chapter 6
Expanding on the results presented in Section 6.7.1.6 of the Simulation study of Chapter 6, we repeated
the experiment for a GARCH(1,1), an AR(1)-GARCH(1,1) of different parameters than the ones consid-
ered in Chapter 6, and for an ARMA(1,1)-GARCH(1,1). The goal again is to compare the distribution
of the 95% percentile of the one day ahead forecasts, made starting from the last observation, and
comparing the distribution of the clouds obtained from the true model, from only fitting a time series,
and from applying a copula-GARCH model. The results are presented below, and will be discussed in
Section C.2.3.1.

C.2.1 GARCH(1,1)
We construct the cloud of predictions after having simulated the original dataset from two GARCH(1,1)
of parameters: (α0,1, α1,1, β1,1) = (0.6, 0.7, 0.2), (α0,2, α1,2, β1,2) = (0.5, 0.8, 0.1). The residuals are
obtained from a Clayton(10).
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Figure C.16: 95% percentile distribution clouds from one-day-ahead predictions using GARCH(1, 1) and
copula-GARCH models, compared with points sampled from the true distribution.

C.2.2 AR(1)-GARCH(1,1)
We construct the cloud of predictions after having simulated the original dataset from two AR(1)-
GARCH(1,1) of parameters: (α0,1, α1,1, β1,1, ϕ1,1) = (1, 0.7, 0.2, 0.7), (α0,2, α1,2, β1,2, ϕ1,2) = (1, 0.8, 0.1, 0.5).
The residuals are obtained from a Clayton(6).

Figure C.17: 95% percentile distribution clouds from one-day-ahead predictions using AR(1)−GARCH(1, 1)
and copula-GARCH models, compared with points sampled from the true distribution.

C.2.3 ARMA(1,1)-GARCH(1,1)
Lastly, we construct the cloud of predictions after having simulated the original dataset from two
ARMA(1,1)-GARCH(1,1) of parameters: (α0,1, α1,1, β1,1, ϕ1,1, θ1,1) = (1, 0.7, 0.2, 0.7, 0.1), (α0,2, α1,2, β1,2,
ϕ1,2, θ1,2) = (1, 0.8, 0.1, 0.5, 0.2). The residuals are obtained from a Clayton(6).
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Figure C.18: 95% percentile distribution clouds from one-day-ahead predictions using AR(1)−GARCH(1, 1)
and copula-GARCH models, compared with points sampled from the true distribution.

C.2.3.1 General Comments
As for the results discussed in Sections 6.7.1.6, and 6.7.3, we can notice how fitting a proper copula
model positively influences the ability of simulating more extreme values. For all time series considered,
with a more evident example for the GARCH time series, we can see how the cloud of points produced
by the time series fit results to be more concentrated, while fitting a proper copula to the innovations
enables the cloud to spread out more, and mimic the extreme behaviour of the original model.



D
Additional Results Chapter 8

D.1 Chapter 8
In this Section of the Appendix we collect some additional tables and results obtained in Chapter 8,
where we apply the model to real time data. The results of this section refer to the partitions discussed
in section 8.5.1, which have been updated for the final results, as the upcoming results highlighted the
need for a sufficient amount of points to guarantee a good fit on the vine model.

The partitions used are the followings:

Dates Length
Partition 1 24/10/2014 - 10/08/2015 187
Partition 2 11/08/2015 - 03/03/2020 1076
Partition 3 04/03/2020 - 11/10/2022 615
Partition 4 12/10/2022 - 29/06/2023 170
Partition 5 30/06/2023 - 05/07/2024 241

Table D.1: Partitions of the dataset.

D.1.1 Partition 1
The first partition is composed of 187 points, 158 of which in the training set, and 29 in the test set
(representing 15% of the original dataset).

D.1.1.1 Cumulative Returns
We start by analyzing the cumulative returns obtained from the Mean-var portfolio, and using the
copula-GARCH method on the test set, shown in Figure D.1, while the difference between the two lines
is reported in Figure D.2.
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Figure D.1: Evolution of the Cumulative Returns obtained by applying the optimal weights to the expanding
test set.

Figure D.2: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio and the ones of the Markowitz’ portfolio on the tets set.

From both pictures, we can observe how the Markowitz method is able to outperform the customized
model for the entire dataset. Despite having a good p-value for the goodness of fit tests performed for
each fitted model, we can conclude that for this partition the created model was not successful at
optimizing the portfolio on the test period. This disadvantage might be linked to lack of data, in fact,
as already anticipated, we should need around 500 days to guarantee a good convergence of the fitted
parameters.

D.1.1.2 Evaluate the Portfolio
More in detail, we proceed with analysing the results obtained for the last day of the test set, T = 187.
The corresponding fitted model is the C-vine illustrated in Figure D.3. The parameters of each bivariate
copula are provided in Table D.2, where a positive dependence is clear in the bivariate copulas of the
first tree, while the conditional trees appear to have rather low Kendall’s tau values, which indicate
rather weak conditional dependence.

The goodness of fit of the vine is assessed using the White test discussed in Section 4.5.2, obtaining
a p-value of 0.805 which indicates that we cannot reject the null hypothesis, and hence that we should
have a good fit. In addition, we test for the simplifying assumption (refer to Section 14), obtaining that
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it cannot be rejected for any of the bivariate copulas considered.

Tree Edge Distribution Parameters
T1 DAX, SP500 Gaussian ρ = 0.69, τ = 0.48

CAC, SP500 rotated BB7 (180 deg) par 1.64, par2 = 1.03, τ = 0.46
N225, SP500 rotated Joe (180 deg) par = 1.56, τ = 0.16

T2 DAX, N225; SP500 rotated Tawn 2 (90 deg) par = 1.09, τ = 0.08
N225,CAC; SP500 Independent τ = 0

T3 DAX,CAC; N225,SP500 rotated Tawn 2 (270 deg) par −3.98, par2 = 0.05, τ = −0.05

Table D.2: Parameters of the Vine copula fitted on the first partition.

Figure D.3: Vine structure of the fitted model on the first partition of the filtered residuals of the log-returns
of the four stock indexes considered, transformed using the corresponding CDF.

The fitted vine copula is used to obtain the optimal vine copula-GARCH portfolio; the results are
compared with Markowitz’s portfolio. Each optimal portfolio is obtained by finding the corresponding
best ratio, with a risk free rate of r = 0.

The obtained weights are the following; for Markowitz:

(wDAX , wCAC , wSP500, wN225) = (1.49%, 25.52%, 1.79%, 71.2%),

while from the vine copula Model:

(wDAX , wCAC , wSP500, wN225) = (17.82%, 0%, 0%, 82.18%).
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The corresponding metrics of the two portfolios are shown in Table D.6, and are compared to an
equal weight portfolio. It is again possible to notice how Markowitz’s method outperforms the other
two in both the Sharpe ratio and the STARR ratio.

Method Weights Mean CVaR Sharpe STARR
EW (25%, 25%, 25%, 25%) 0.425 20.693 0.6% 2.1 %
Mean-Var (1.49%, 25.52%, 1.79%, 71.2%) 0.826 22.205 1.1 % 3.7 %
COPULA (17.82%, 0%, 0%, 82.18%) 0.763 23.038 0.9 % 3.3%

Table D.3: Table comparing the portfolios obtained by optimizing the weights of two returns simulated from a
copula-GARCH model, using different methods. The table reports the weights and the results of the risk

measures and ratios computed on the partition of N = 187 points.

D.1.1.3 Out of Sample Evaluation
We conclude the evaluation of the model fitted on the first partition by assessing its performance on
N = 50 days.

We apply the weights obtained, reported in Table D.3, to the four stocks, and compute the cumulative
returns of the obtained portfolios. The evolution of those returns are shown in Figure D.4, while the
difference of the cumulative returns between the copula-GARCH portfolio, and the other two portfolios
are depicted in Figure D.5.

Figure D.4: Evolution of the Cumulative Returns obtained by applying the optimal weights from different
methods to n = 50 data points of the test set.
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Figure D.5: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio, and the ones of the Markowitz’ portfolio, or the best mean-CVaR portfolio.

From the two images provided above, we can start to recognize an advantage in the vine copula
approach compared to the other two portfolios. As already observed in the simulation study of Section
7.3, the copula-GARCH portfolio seems to perform better in the long term, as it is the only method
considered that takes into account the relationship among the different financial stocks. However, this
advantage is not consistent over time. Although Figure D.5 clearly shows that the positive differences
highlight a significant advantage, these positive differences oscillate. This again could be connected to
an inadequacy of the fitted model, due to a lack of data. In the following subsections, we will examine
how an increased amount of data can improve this feature.

Lastly, in Table D.4 the cumulative returns at time T = 50 of the second partition are provided.
Here, it is possible to notice how the vine copula-GARCH portfolio outperforms the other portfolios
considered.

Method Cumulative Return
EW 25.183
Mean-Var 26.671
COPULA 28.339

Table D.4: Cumulative returns on test set, for each method at T = 208.

D.1.2 Partition 2
The second partition, is characterized by a significant amount of data points, N = 1076, as it covers
the period between 11/08/2015− 03/03/2020. The amount of data should be sufficient to guarantee a
satisfactory fit for the vine model. For our analysis, the dataset is split into a training set and a test
set, each consisting of N = 538 points (50% of the dataset). As we progress, the test set data will be
incrementally included in the model using an expanding time window approach.

D.1.2.1 Cumulative Returns
Firstly, we analyze the overall performance of the vine copula model on the test set, constructed daily
by fitting a proper vine copula model, finding the corresponding mean-CVaR efficient frontier with the
Monte Carlo allocation method, and by identifying the portfolio with the optimal STARR ratio. The
results are then compared the portfolio obtained by optimizing the mean-variance efficient frontier and
shown in Figure D.6, while in Figure D.7 the difference between the cumulative returns of the two
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portfolios are reported.

It is again clear how Markowitz’s method is much better at identifying the correct set of weights
on a daily basis. However, does this still hold in the long term? We will address this question in the
following Subsection.

Figure D.6: Evolution of the Cumulative Returns obtained by applying the optimal weights to the expanding
test set.

Figure D.7: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio and the ones of the Markovitz’ portfolio on the tets set.

D.1.2.2 Evaluate the Portfolio
In this Section we will discuss the portfolios obtained by fitting a model to the entire partition 2. The
resulting weights will then be applied on an out of sample dataset.

The C-vine fitted to the transformed residuals of the second partition is represented in Figure D.8,
and the corresponding parameters are given in Table D.5, where we can notice how the Kendall’s tau of
the bivariate copulas of the first tree are characterized by moderate positive relationship, which tends
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to disappear in the following trees. A p-value of 0.37 of White’s GoF test indicate that the fit should
be a good one; moreover, testing the simplifying assumption in this partition resulted in not enough
evidence to reject the assumption, which allows for a much more simple model.

Figure D.8: Vine structure of the fitted Vine models of the Residuals, transformed using their empirical CDF.

Tree Edge Distribution Parameters
T1 DAX, SP500 t Student ρ = 0.69, ν = 2.91, τ = 0.49

CAC, SP500 BB7 par 1.56, par2 = 0.55, τ = 0.37
N225, SP500 t Student ρ = 0.28, ν = 3.36, τ = 0.18

T2 DAX, N225; SP500 Gumbel par = 1.09, τ = 0.08
N225,CAC; SP500 t Student ρ = −0.10, ν = 10.77, τ = −0.06

T3 DAX,CAC; N225,SP500 Independent τ = 0

Table D.5: Time Series Model Chosen for each variable.

The fitted vine copula discussed above is used to simulate Q = 1000 points, which are then trans-
formed and used to construct the efficient frontier, where the optimal portfolio has weights:

(wDAX , wCAC , wSP500, wN225) = (0, 14.8%, 84.7%, 0.5%).

The results are compared with the optimal mean-variance portfolio obtained by selecting the weights
that guarantee the best Sharpe ratio, which corresponds to:

(wDAX , wCAC , wSP500, wN225) = (0, 5.8%, 63.3%, 30.9%).
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The portfolios obtained for the different methods are compared in Table D.6. In particular, we
compare the weights of the different portfolios, noting how both portfolios prefer investing in the Amer-
ican index (SP500), while the second index is the French index (CAC) for the vine approach, and the
Japaneese one according to Markowitz’s portfolio. Each set of weights is then applied to the original
dataset, to compare the different measures.

The vine copula portfolio appears to be more risky than the other ones, but also characterized
by greater expected value. The Mean-CVaR portfolio detains both the best Sharpe ratio (equal to
Markovitz’s one), the best STARR ratio. However, the copula-GARCH portfolio is still characterized
by very promising results, with a Sharpe and STARR ratio very close to the best one.

Method Weights Mean CVaR Sharpe STARR
EW (25%, 25%, 25%, 25%) 0.295 20.259 0.5 % 1.5%
Mean-Var (0, 5.8%, 63.3%, 30.9%) 0.379 18.980 0.7 % 2.0%
COPULA (0, 14.8%, 84.7%, 0.5%) 0.433 22.448 0.6 1.9%

Table D.6: Table comparing the portfolios obtained by optimizing the weights of two returns simulated from a
copula-GARCH model, using different methods. The table reports the weights and the results of the risk

measures and ratios computed on the partition of N = 1076 points.

D.1.2.3 Out of Sample Evaluation
We continue with an out-of-sample efficiency evaluation of the portfolios considered. We apply the
selected weights from each method to the first N = 50 points of the test set, computing the cumulative
returns and plotting the obtained results in Figure D.9.

Figure D.9: Evolution of the Cumulative Returns obtained by applying the optimal weights from different
methods to n = 50 data points of the test set.

In the very first period of the plot above, we can see how the cumulative returns obtained for the
different methodologies are rather comparable, and the results vary at different times considered, with
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a small preference for the mean-variance method, which confirms its superiority in the short term pe-
riod. However, the vine copula-GARCH portfolio starts to outperform the others once the length of
the dataset considered expands.

More in detail, we provide the evolution of the difference from the cumulative returns of the copula-
GARCH portfolio with Markovitz’s portfolio, and the classical Equal weight one in Figure D.10, where
it is clear than starting from t = 10 of the test set, the performance of the copula-GARCH appears
superior.

Figure D.10: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio, and the ones of the Markovitz’ portfolio, or the best mean-CVaR portfolio.

To confirm this improvement, we provide the cumulative returns on the test set at time T3 = 50 in
Table D.7, from which we can conclude that the vine copula-GARCH portfolio clearly outperforms the
other ones.

Method Cumulative Return
EW 25.493
Mean-Var 26.283
COPULA 28.068

Table D.7: Cumulative returns on test set, for each method at T3 = 50.

D.1.3 Partition 3
The third partition, is again characterized by a sufficient amount of point to guarantee a satisfactory
fit, as it has N = 615 observations. We split the dataset in 462 days for the training set, and 153 for
the test set (25 % of the dataset).

D.1.3.1 Cumulative Returns
We start by analyzing the performance of the vine copula approach on the test set, which assigns the
weights following the procedure discussed in Section 7.2. The results are presented in Figures D.11 and
D.12.
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Figure D.11: Evolution of the Cumulative Returns obtained by applying the optimal weights to the expanding
test set.

Figure D.12: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio and the ones of the Markovitz’ portfolio on the tets set.

Differently from the previous two partitions, the fitted model on the third partition is character-
ized by a performance that is clearly better than the one achieved by the portfolios constructed using
Markowitz’s method. The results are clear from the second plot, where the difference in the cumulative
returns appear to be positive for all points of the test set, with the exception of a few points around
T3 = 25.

We proceed by analyzing the performance on the last day of the test set.

D.1.3.2 Evaluate the Portfolio
The vine fitted on the third partition is characterized by the structure shown if Figure D.13, and with
the parameters of Table D.8. The fitted model obtains a p-value equal to 0.155 on the White test,
which suggests a goodness of fit. Moreover, the simplifying assumption is not rejected for any copula
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considered.

From the Kendall’s tau we can notice that we have a moderate positive correlation among the vari-
ables that compose the first tree, while the correlation in the higher trees is almost zero, suggesting
that there is not a strong conditional relationship among the different geographies.

Figure D.13: Vine structure of the fitted Vine models of the Residuals, transformed using their empirical
CDF.

Tree Edge Distribution Parameters
T1 CAC, SP500 Frank ρ = 2.63, τ = 0.27

DAX, SP500 rotated BB1 (180) par 0.62, par2 = 1.50, τ = 0.49
N225, DAX rotated BB1 (180) par = 0.13, par2 = 1.12, τ = 0.16

T2 DAX, CAC; SP500 Gumbel par = 1.09, τ = 0.08
N225, SP500; DAX t Student ρ = 0.07, ν = 5.40, τ = 0.05

T3 N225,CAC; DAX,SP500 rotated Gumbel (90) par −1.05, τ = −0.04

Table D.8: Time Series Model Chosen for each variable.

Proceeding to finding the weights of the optimal portfolios for each method, we obtain the optimal
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frontiers. Markowitz’ portfolio is characterized by weights:

(wDAX , wCAC , wSP500, wN225) = (0, 22.4%, 0, 77.6%);

while for the vine copula approach, the optimal portfolio has weights equal to:

(wDAX , wCAC , wSP500, wN225) = (100%, 0, 0, 0).

The results for the two method are rather different, as we can notice that the copula method suggest
investing only in the German DAX index, while Markowitz’s one prefers the Japanese index.

More in detail, we compare the two portfolios with an equal weights one in Table D.9, where it is
possible to notice how for the first time the portfolio constructed with the vine copula approach performs
better than the other two methods considered. In fact, the Sharpe ratio is equal to Markowitz’s portfolio,
while its STARR ratio is greater than the other two. This improvement could be associated with the
fact that the amount of data available in this partition should be sufficient to guarantee the convergence
of the estimators of the parameters of the vine copula considered.

Method Weights Mean CVaR Sharpe STARR
EW (25%, 25%, 25%, 25%) 0.064 22.899 0.1 % 0.3%
Mean-Var (0, 22.4%, 0, 77.6%) 0.321 22.032 0.3 % 1.5%
COPULA (100%, 0, 0, 0) 0.588 37.878 0.3 % 1.6%

Table D.9: Table comparing the portfolios obtained by optimizing the weights of two returns simulated from a
copula-GARCH model, using different methods. The table reports the weights and the results of the risk

measures and ratios computed on the partition of N = 615 points.

D.1.3.3 Out of Sample Evaluation
Lastly, it is left to evaluate the performance of the vine copula fit on an out of sample dataset. We apply
the weights obtained to N = 50 points of the test set, and compare the cumulative returns obtained
with the other two method in Figure D.14.
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Figure D.14: Evolution of the Cumulative Returns obtained by applying the optimal weights from different
methods to n = 50 data points of the test set.

The portfolio obtained from the vine copula approach seems to be the least stable among the three,
however we can see how its peaks are significantly higher than the other two portfolios. The performance
of the mean-variance portfolio is the worst one. More in detail, in Figure D.15 the difference between
the cumulative returns is reported, and the advantage of the copula-GARCH portfolio is evident, as its
positive peaks are significantly greater than the negative ones. This result is confirmed by Table D.10,
where the overall cumulative return of the vine copula-GARCH portfolio appears to be better than the
other portfolios considered.
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Figure D.15: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio, and the ones of the Markovitz’ portfolio, or the best mean-CVaR portfolio.

Method Cumulative Return
EW 24.781
Mean-Var 23.134
COPULA 26.551

Table D.10: Cumulative returns on test set, for each method at T4 = 50.

D.1.4 Partition 4
The fourth partition, is the one with lowest number of observations, as it has only N = 170 points, 144
of which compose the training set, and its 15%, hence 26 points, the test set. The test set data will be
incrementally included in the model using an expanding time window approach.

D.1.4.1 Cumulative Returns
The overall performance of the vine copula-GARCH method on the test set is shown in Figure D.16,
where the obtained cumulative returns are compared with those of the mean-variance optimal portfolios.
The difference between the two returns is available in Figure D.17, where it is possible to notice how the
vine copula approach proves to perform better in the first period of the test set, while in the last period
it performs worse. This is a further confirmation that there are no apparent advantages in choosing
the vine copula approach for optimizing the portfolios in short term periods, such as the daily refitting
that is used in this example.
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Figure D.16: Evolution of the Cumulative Returns obtained by applying the optimal weights to the expanding
test set.

Figure D.17: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio and the ones of the Markovitz’ portfolio on the tets set.

D.1.4.2 Evaluate the Portfolio
We proceed by evaluating the portfolio obtained by fitting a vine copula to the entire fourth partition.
We however have to keep in mind that, similarly to the first partition, the entire partition is composed
of only N = 170 data points, which might not be sufficient to guarantee a fitted model that is truly able
to understand and mimic the relationships of the original dataset, as ideally we should have around 500
observations.

The structure of fitted vine, which has a p-value of 0.385 for the goodness of fit test (which indicates
a good fit), is provided in Figure D.18. Moreover the simplifying assumption is not rejected for any of
the trees considered. The corresponding fitted parameters are discussed in Table D.11, where a rather
low positive correlation can be deducted from the Kendall’s tau of the copulas of the first tree, while the
following trees are characterized by independence for the conditional copulas. In this case particularly,
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the advantages of fitting a vine copula model to the residuals might be not effective, as it appears that
there are no conditional relationship among the variables.

Figure D.18: Vine structure of the fitted Vine models of the Residuals, transformed using their empirical
CDF.

Tree Edge Distribution Parameters
T1 SP500, CAC Tawn2 par 1.66, par2 = 0.36, τ = 0.20

DAX, SP500 Gaussian ρ = 0.71, τ = 0.50
N225, DAX rotated Joe (180 deg) par = 1.15, τ = 0.08

T2 DAX, CAC; SP500 Independent τ = 0
N225, SP500; DAX Independent τ = 0

T3 N225, CAC; DAX,SP500 Independent τ = 0

Table D.11: Time Series Model Chosen for each variable.

Despite having no dependence in the conditional copulas of tree 2 and 3 of the vine structure, and
having only few data points, we still proceed to evaluate the portfolio obtained by applying the vine-
copula-GARCH approach to the fourth partition. The corresponding optimal portfolio is characterized
by weights:

(w1, w2, w3, w4) = (63.1%, 5.4%, 0%, 31.5%).

The results are compared to those of the best mean-variance portfolio, which has weights equal to:

(w1, w2, w3, w4) = (11.7%, 1.4%, 36.0%, 52.1%).
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Lastly, both portfolios are compared to an equal weight one in Table D.12, where we can clearly see
that the mean-variance portfolio outperforms the other two, as it has the best Sharpe ratio, and the
highest STARR ratio.

Method Weights Mean CVaR Sharpe STARR
EW (25%, 25%, 25%, 25%) 0.128 17.096 2.0 % 7 %
Mean-Var (11.7%, 1.4%, 36.0%, 52.1%) 0.986 12.972 2.1 % 7.6 %
COPULA (63.1%, 5.4%, 0%, 31.5%) 0.876 17.451 1.3 % 5 %

Table D.12: Table comparing the portfolios obtained by optimizing the weights of two returns simulated from a
copula-GARCH model, using different methods. The table reports the weights and the results of the risk

measures and ratios computed on the partition of N = 170 points.

D.1.4.3 Out of Sample Evaluation
Once again, we conclude the analysis of the performance of the method studied in this thesis on an out
of sample dataset, and compare the obtained cumulative results in Figure D.19.

Figure D.19: Evolution of the Cumulative Returns obtained by applying the optimal weights from different
methods to n = 50 data points of the test set.

In Figure D.20, the differences between the cumulative returns are illustrated, showing that the
vine-copula-GARCH portfolio generally outperforms the other two portfolios for most of the dataset.
This result is confirmed by Table D.13, where once again the cumulative returns of our portfolio appear
grater than those of the other two portfolios considered. These results further confirm that using a
vine copula to model the underlying structure provides a long-term advantage. By understanding the
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relationships among the variables, the vine-copula-GARCH approach enables to achieve better results
over extended periods, rather than short-term gains.

Figure D.20: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio, and the ones of the Markovitz’ portfolio, or the best mean-CVaR portfolio.

Method Cumulative Return
EW 24.068
Mean-Var 23.703
COPULA 24.300

Table D.13: Cumulative returns on test set, for each method at T5 = 50.

D.1.5 Partition 5
The last partition, is characterized byN = 205, as it covers the period between 30/06/2023−05/07/2024.
The dataset is divided in N = 211, the training set, and a test set of N = 30 points. As we progress, the
test set data will be incrementally included in the model using an expanding time window approach.

D.1.5.1 Cumulative Returns
Firstly, we analyze the overall performance of the vine copula model on the test set. The results are
compared the portfolio obtained by optimizing the mean-variance efficient frontier. and shown in Fig-
ure D.21, while in Figure D.22 the difference between the cumulative returns of the two portfolios are
reported.

Surprisingly, despite the rather low number of points of the training set, the obtained portfolios
seem to outperform the mean-variance one throughout the entire test set, as it is clear from the plot of
the differences of Figure D.22. In addition, the difference between the two lines seems to progressively
increase with the passing of time.
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Figure D.21: Evolution of the Cumulative Returns obtained by applying the optimal weights to the expanding
test set.

Figure D.22: Difference between the Cumulative Returns obtained from the weights of the optimal
copula-GARCH portfolio and the ones of the Markovitz’ portfolio on the tets set.

D.1.5.2 Evaluate the Portfolio
By fitting a vine model on the last partition, we obtain the structure shown in Figure D.23, and param-
eters provided in Table D.23. The goodness of fit test is again positive, with a p-value of 0.615, as well
as the test for the simplifying assumption, which is never rejected.

Similarly to the previous partition, we can notice how the conditional copulas of the second and
third trees appear to be independent, or with a Kendall’s tau that is close to zero. While the bivariate
copulas of the first tree are characterized by moderate positive correlations.
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Figure D.23: Vine structure of the fitted Vine models of the Residuals, transformed using their empirical
CDF.

Tree Edge Distribution Parameters
T1 DAX, CAC Gaussian ρ = 0.36, τ = 0.24

DAX, SP500 rotated BB7 (180 deg) par 1.99, par2 = 1.85, τ = 0.57
N225, SP500 Joe par 1.22, τ = 0.11

T2 CAC, SP500; DAX Independent τ = 0
N225,DAX; SP500 rotated Clayton (270 deg) par −0.18, τ = −0.08

T3 N225,CAC; DAX,SP500 Independent τ = 0

Table D.14: Time Series Model Chosen for each variable.

The fitted vine copula is used to simulate 0Q = 1000 points, which are then transformed and used
to construct the efficient frontier. The corresponding optimal portfolio is characterized by the weights:

(w1, w2, w3, w4) = (46.5%, 0.1%, 22.9%, 30.4%).

The results are compared with the optimal mean-variance portfolio obtained by selecting the weights
that guarantee the best Sharpe ratio, which corresponds to:

(w1, w2, w3, w4) = (11.6%, 0.2%, 36.1%, 52.1%).

More in detail, we compare the two portfolios with an equal weights one in Table D.15, where it is
possible to notice that the portfolio constructed with the vine copula approach performs better than the



D.1. Chapter 8 229

other two methods considered. In fact, both the Sharpe ratio and the STARR ratio appear to be greater
than the other two, confirming the positive performance of our method for the partition considered.

Method Weights Mean CVaR Sharpe STARR
EW (25%, 25%, 25%, 25%) 0.665 15.123 0.9 % 4.4 %
Mean-Var (11.6%, 0.2%, 36.1%, 52.1%) 0.954 14.044 1.8 % 6.8 %
COPULA (46.5%, 0.1%, 22.9%, 30.4%) 0.977 12.744 2.1 % 7.7 %

Table D.15: Table comparing the portfolios obtained by optimizing the weights of two returns simulated from a
copula-GARCH model, using different methods. The table reports the weights and the results of the risk

measures and ratios computed on the partition of N = 205 points.



E
Probability Background

In this part of the Appendix, we will provide a brief overview of the main Probabilistic tools that will
be necessary to introduce more advanced notations and definitions. In this section we will discuss the
concepts as they are presented in the book [81], and in [82].

E.1 Event, Probability of an Event
When discussing Probability, it is necessary to start by introducing the concept of sample space Ω, which
is the set of all possible outcomes of an experiment. The subsets of Ω are called events and denoted
with a capital letter (e.g., the event A ∈ Ω). An event has occurred if, after performing an experiment,
the outcome is an element of A. Moreover, we can introduce the concept of Probability of an event A,
P(A).

Definition 27 (Probability function). A Probability measure, defined on a σ-algebra A of the sample
space Ω, is a function P : A → [0, 1] that has the following properties:

1. P(Ω) = 1,
2. Given two disjoint events A and B, P(A ∪B) = P(A) + P(B).

The probability expresses how much a certain event is likely to happen. We now want to introduce
the concept of conditional probability, which requires the notion of intersection of two events A and B
(A ∩B).

Definition 28 (Conditional Probability). The conditional probability of an event A given C is:

P(A|C) = P(A ∩ C)
P(C)

,

where P(A ∩ C) is the probability of the intersection of the two events, and P(C) > 0 is the probability
of the event C.

The conditional probability describes the probability of event A, given the fact that event C has
occurred.
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Finally, two events A and B are independent if the following property is verified:

P(A ∩B) = P(A)P(B).

E.2 Random Variables
Definition 29 (Discrete Random Variable). Given a sample space Ω, a discrete random variable is a
function X : Ω → R that can assume only a finite number of values a1, a2, ..., an or a countable one
a1, a2, ...

Moreover, we can introduce the concept of continuous random variables. In this thesis, we will focus
on the continuous case, so the discrete case will not be further discussed.

Definition 30 (Continuous random variable). A random variable X is continuous if for some function
f : R → R, and ∀a, b ∈ R, with a ≤ b:

P(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

The function f is called the probability density function of X and has to satisfy the following properties:

1. f(x) ≥ 0.

2.
∫∞
−∞ f(x)dx = 1.

Continuous random variables are also characterized by their cumulative distribution function.

Definition 31 (Cumulative distribution function). The Cumulative distribution function of a random
variable X is the function F : R → [0, 1] which is defined as:

F (a) = P(X ≤ a) ∀a ∈ R.

Let’s notice that F is non-decreasing and holds the following relationship with the density function
f: F (x) =

∫ x

−∞ f(u)du.

E.2.1 Normal Distribution
A Normal distributed random variable Xi ∼ N(µi, σ

2
i ) is a fundamental concept in probability and

statistics. The distribution is characterized by a mean, µi, and a standard deviation σi. The density
function of Xi is given by:

fi(x) =
1√
2πσ2

exp

{
−1

2

(x− µi)
2

σ2

}
,

and its cumulative distribution function, or CDF, by:

Fi(x) = P(z ⩽ x) = Φ

(
x− µi

σi

)
,

where Φ(·) denotes the CDF of a standard normal distribution. A standard normal variable is denoted
as N(0, 1), and is one of mean 0, and variance 1. Additionally, we introduce Φ−1(·) as the inverse
function of the standard normal CDF.
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E.3 Random Vectors
The concept of random variable can also be extended to the one of random vectors.

Definition 32 (Random Vector). A random vector X = (X1, X2, ..., Xd) is a function that maps
outcomes of a random experiment to a vector in a vector space, hence X : Ω → Rd. Each component of
the vector is a random variable.

E.3.1 Multivariate Distributions
By extending the concept of random variables to the one of random vectors, it is needed to extend
the previously given definitions to the multivariate case. We can define the joint distribution function,
which describes the relationship among the random variables and how they influence each other, and the
marginal distribution function which describes the behavior of a single variable of the random vector.

Definition 33 (Joint distribution function). Given a random vector X = (X1, X2, ..., Xd) of d compo-
nents, the joint distribution function F is a function F : Rd → [0, 1] defined as:

F (x1, ..., xd) = P(X1 ≤ x1, ..., Xd ≤ xd) ∀xi ∈ R, i = 1, .., d.

Definition 34 (Marginal distribution function). Let F (x1, ..., xd) be the joint distribution function of
a random vector X = (X1, X2, ..., Xd), then we can define the marginal distribution function of the
component Xi, ∀x ∈ R:

Fi(x) = P(Xi ≤ x) = lim
x1,...,xi−1,xi+1,...,xd→∞

F (x1, ..., xi−1, x, xi+1, ..., xd).

In the continuous case, we can also provide the definitions of the joint probability density function,
and of marginal probability density function of each variable, which is obtained by integrating over the
remaining variables.

Definition 35 (Joint probability density function). Given a random vector X = (X1, X2, ..., Xd),
the variables Xi have a joint continuous distribution if for some function f : Rd → R, such that
f(x1, ..., xd) ≥ 0 and

∫∞
−∞ ...

∫∞
−∞ f(x1, ..., xd)dx1...dxd = 1, we have that :

P(a1 ≤ X1 ≤ b1, ..., ad ≤ Xd ≤ bd) =

∫ b1

a1

...

∫ bd

ad

f(x1, ..., xd)dx1...dxd

for all values ai ≤ bi. f(x1, ..., xd) is the joint probability density function.

From the previous definition, we can derive the marginal density of each component Xi of the
random vector as follows:

fi(x) =

∫ ∞

−∞
...

∫ ∞

−∞
f(x1, ..., xd)dx1...dxi−1dxi+1dxd. (E.1)



F
Statistical Background

The main definitions of statistical models and estimators are necessary to gain the background knowledge
used to introduce the concept of copulas. These concepts, together with methods for comparing and
evaluating different models will be discussed in the following section, based on how they are introduced
in [81], and [82]. We will also introduce the concept of hypothesis testing, which is used throughout
this thesis.

F.1 Statistical Models and Estimators
A random sample is a collection of mutually independent random variables X1, X2, ..., Xd with the
same probability distribution. We define a collection of events (Ai)i to be mutually independent if
P(∩i∈J) =

∏
i∈J P(Ai). The collection of all possible probability distributions of a given observation X

composes a statistical model, which is defined as follows:

Definition 36 (Statistical Model). A statistical model M is a collection of probability distributions on
a given sample space Ω.

This means that a statistical model is constructed of repeated and independent measurements of the
same quantity, hence the random sample. The collection of these elements is the dataset that composes
the model. A random sample can have a distribution F, called the model distribution, and a density f.
In other words, a dataset x1, ..., xd is the realisation of the random sample X1, ..., Xd.

We can extend Definition 36 to the one of parametric models, which are a particular case of statistical
models.

Definition 37 (Parametric Model). A parametric model M is a family of probability distributions that
has a finite number of parameters:

Mθ = {Pθ : θ ∈ Θ},

where Θ is the set of parameters, and θ ∈ Θ is one of the possible parameters of the model.

A statistical model is a collection of different probability distributions. But there is a unique distri-
bution from which the sample originates, this distribution is called the ”true” distribution. In the case
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of parametric models, the latter distribution is characterized by its parameters that we define as the
”true” parameters θ∗.

Finding a good distribution means estimating the distribution function F (and eventually the density
f in the continuous case), which translates into estimating the parameters of the distribution. An
estimator θ̂ is the random variable that corresponds to the estimates of the ”true” parameters, and has
the following definition:

Definition 38 (Estimator). Given the estimate t = h(x1, ..., xd), a function that depends only on the
dataset x1, ..., xd, t is the realisation of the random variable:

θ̂ = h(X1, ..., Xd).

The random variable θ̂ is the estimator.

The estimator of a parameter is unbiased if its expected value is the parameter itself, otherwise, it
is called biased. If we want to compare two estimators, not necessarily unbiased, we can use the mean
squared error.

Definition 39 (Mean Squared Error). Given an estimator θ̂ of a parameter θ, the mean squared error
of θ̂ is defined as the expected value of the squared difference of the estimator θ̂ and the parameter θ:

MSE(θ̂) = E[(θ̂ − θ)2].

This definition holds when the expectation exists, hence when θ̂ ∈ L2(Ω,A,P).

The MSE can also be viewed as the sum of the estimator’s variance plus the squared bias. In
the following subsections, we introduce the Maximum Likelihood, one of the most commonly used
estimators, and two measures used to select the best estimator: the AIC and the BIC.

F.1.1 Likelihood
One of the most used estimators is the maximum likelihood estimator, or MLE. The idea behind the
MLE is to find the parameters that are more likely to be the true parameters of the original model, this
is called the Maximum Likelihood principle. In order to define the MLE we will first need to introduce
the Likelihood function:

Definition 40 (Likelihood). Given a dataset x1, ..., xd of realizations of the continuous random sample
X1, ..., Xd. Given density fθ of X, and θ the parameter we want to estimate. The Likelihood function
L(θ) can be defined as:

L(θ) = fθ(x1)fθ(x2)...fθ(xd).

We can also define the Log-Likelihood as the logarithm of L:

l(θ) = logL(θ).

The Maximum likelihood estimate of the parameter θ, is the value θ̂ML that maximizes the Likeli-
hood function L(θ). It is generally computed by calculating the partial derivatives of the Log-Likelihood
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with respect to each parameter that we want to estimate, and by setting each partial derivative to zero.

The Likelihood proves also to be helpful to compare different models. In fact, when we have different
distributions to describe a dataset, the Likelihood can be used to select which model is more likely to
be the best one. Of course, this is not a quantification of the goodness of the model, but rather a way
of comparing different ones. We will later discuss how to determine if a model is ”good”.

F.1.2 AIC and BIC
When using the Likelihood to compare and select distributions, we generally tend to prefer larger ones,
since more parameters help to reach an optimal fit. But larger models are also computationally more
expensive, harder to represent, and have a higher risk of overfitting. We, therefore, introduce two
criteria that present a penalty for the dimension, hence they allow us to choose the best model by
penalizing the most complex ones. These criteria are called the AIC and the BIC.

Definition 41 (AIC). Given a random sample X, and given a model M, with set of parameters Θ, of
length |d|. If l(θ) is the Log-likelihood, then the Akaike’s Information Criterion is defined as:

AIC := −2l(θ̂d) + 2|d|. (F.1)

Hence, it is minus two times the log-likelihood computed for the maximum likelihood estimator of di-
mension |d|, θ̂d, to which we add two times its dimension.

The Bayesian information criterion, or BIC, on the other hand is defined as follows:

BIC := −2l(θ̂d) + |d| ln(n), (F.2)

where n is the sample size.

For both AIC and BIC we choose the model that has the lower value. We can notice that the BIC
tends to penalize complexity more.

F.2 Confidence Intervals
When we are estimating a parameter θ, instead of giving a single value, we can provide a range of
acceptable values along with a level of confidence that the true value would lie in this interval: the
confidence intervals.

Definition 42. Given a dataset x1, ..., xd of realisations of the random variables X1, ..., Xd, and given
a number γ ∈ [0, 1]. If we want to estimate the parameter θ, and if there exist sample statistics
Ld = g(X1, ..., Xd) and Ud = h(X1, ..., Xd) for every value of θ s.t.

P(Ld < θ < Ud) = γ ∀θ

then (ld, ud) is the 100γ%−confidence interval for θ, where ld = g(x1, ..., xd) and ud = h(x1, ..., xd). The
number γ is the confidence level.
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F.3 Hypothesis Testing
Hypothesis testing is a statistical tool that is used when we have two alternative theories, or hypothesis
indeed, and we want to choose between one of them. This is carried out by formulating a Null hypothesis
and an alternative one, and by accepting the first or rejecting it in favour of the latter.

F.3.1 Null and Alternative hypothesis
As already discussed before, an hypothesis test has as its objective to accept or refuse a certain hypoth-
esis, to which we refer to as the Null hypothesis H0. We also formulate a complementary hypothesis,
the Alternative hypothesis H1. H0 is assumed to be true until we can prove otherwise, and hence refuse
it in favour of H1. Generally, H1 is what we really intend to prove.

In order to fully discuss hypothesis testing, we need to define what a test statistic is:

Definition 43 (Test statistics). Suppose the dataset to be the realisation of the random variables
X1, ..., Xd, then a test statistic is any sample statistic T = h(X1, ..., Xd) whose numerical value is used
to decide whether we reject H0.

The realisation t of the test statistic is a function of the dataset, whose numerical value will determine
whether we accept or refuse H0.

F.3.2 P-value
One way to determine the outcome of an hypothesis testing, is to compute the p-value. The p-value is
the left tail probability (or right tail depending on the direction of the values of the test statistic T in
H1), and it indicates how strong is the evidence against H0. The p-value therefore indicates how likely
T is ”at least as extreme as the value t observed from the data”, [81], meaning that for a small p-value
we can reject H0 in favour of the Alternative.

But how do we decide the value of the p-value, to decide when to reject the Null hypothesis? There
is not a general rule, but generally, it is fixed around the value of 5%, which is called the significance
level α. α, which has values in [0, 1], is the largest probability of committing a type I error, hence the
probability of rejecting H0 when true.

Lastly, we can define the Critical region of a given hypothesis test with hypothesis H0 and H1, for
a given significance level α: it is the set K ⊂ R of values of the test statistic T for which we reject H0.

F.4 Goodness of Fit tests
A Goodness of fit test is a test that is aimed at evaluating whether the distribution of a sample test, and
a theoretical distribution are coherent with each other. They are therefore used to discuss whether a
chosen distribution is a good fit for a specific dataset. Here we discuss two tests: the Kolmogorv-Smirnov
test, and the Vuong test.

F.4.1 Kolmogorov-Smirnov test
The Kolmogorov-Smirnov test is a statistical test used to investigate whether a model is a good fit for
the original dataset. The idea behind it is to compute the maximum difference between the chosen
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theoretical distribution F0 that we want to test, and the empirical CDF, which is the step function
F̂N (x) = k/N , with k the number of points with a value lower than x, and N the sample size. The test
is therefore carried out by computing the distance:

d = max
x

|F0(x)− F̂N (x)|.

For a chosen significance level α, and for a chosen hypothetical distribution F0, we can compute
the maximum vertical distance dα,N , for each specific sample size N. If the empirical CDF exceeds the
given distance from F0, then we reject the initial hypothesis that F0 is the true distribution F , in favor
of:

H1 : F (x) ̸= F0(x) for some x,

which is the alternative hypothesis [83]. Moreover, the test can be two-sided or one-sided. The p-values
can be extracted by finding the obtained maximum distance dα,N in the table provided by [84], where
further details on the method can be found. For the continuous case, the distribution of the test statistic
converges to the Kolmogorov distribution Dn.

The Kolmogorov-Smirnov test is also available as a two-sample test, and is used as a Goodness of Fit
test. It is a rank-based test that is aimed at discussing whether two samples of observations x1, . . . , xn
with distribution Fx, and y1, . . . , ym with distribution Fy, n ≥ m, have the same distribution, hence if
Fx = Fy [85]. We, therefore, use the test statistic:

dn = sup
u

|Fx,n(u)− Fy,m(u)|,

which indicates the maximum distance between the two empirical distributions. We want this statistic
to be minimal in order to be able to prove the null hypothesis:

H0 : Fx(x) = Fy(x),

for all x ∈ R. While the alternative H1 corresponds to having the underlying distributions to be
significantly different, hence to having Fx ̸= Fy. Again, the test can also be performed in the one-sided
version where the hypothesis becomes H0 : Fx ≥ Fy and H1 : Fx < Fy, or the opposite. A formula for
the exact p-value, which corresponds to computing the probability P(dn ≤ x) does not exist, but the
p-values can be extracted from the Table provided by [84].

F.4.2 Ljung-Box Test
Lastly, we introduce the Ljung-Box, an hypothesis test that aims to verify whether the residuals of a
sample are independently distributed. The Null and Alternative hypothesis are the following:

H0 : The data are independently distributed.

H1 : The data are not independently distributed; hence they exhibit serial correlation.

The test statistic is given by:

Q = n(n+ 2)

H∑
h=1

ˆACF
2
(h)

n− h
,
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where h represents the lag, hence the difference between two time points, H is the maximum lag
considered and is normally, arbitrarily set to H = 20. Lastly ˆACF (h) is the sample autocorrelation of
the residuals at a specific lag h. Q asymptotically follows a χ2

h [49].

F.5 Other Tests
F.5.1 Q-Test
The multivariate Q-test is an hypothesis test that wants to assess weather the noise of a time series is
a White Noise. Hence, if we have a multivariate time series with noise wt, the two hypothesis are:

H0 : wt is white noise (WN).

H1 : wt is not white noise (WN).

Thus, not unexpectedly, the Q-test rejects the null hypothesis that the noise is white. The Q-test
statistic is given by:

Q = n2
H∑

h=1

1

n− h
Tr(Γ̂w(h)Γ̂w(0)

−1Γ̂w(h)Γ̂w(0)
−1),

where Γ̂w(h) = n−1
∑n−h

t=1 ŵt+hŵ
′
t, h is the lag, ŵt is the residual process. Let’s note that Q has an

asymptotic χ2 distribution with k2(H − p) degrees of freedom [49].

F.6 Monte Carlo Simulations
Monte Carlo simulations, named after the famous casino in Monaco, refer to a set of computational
methods introduced by E. Fermi, J. von Neumann, and S. Ulamn during the Manhattan Project. [79],
[86] offer a broad overview of the methods, including potential extensions and applications. In this
Section we will discuss the main idea behind the method and the principal characteristics.

Monte Carlo Methods are a series of methods based on random sampling, which are aimed at
estimating a certain quantity. The intuition behind it relies in associating the probability and volumes,
in particular we try to estimate the probability of an event as the volume of random observations that
fall within a given set, compared to the universe of all possible outcomes. And its convergence to the
correct value is guaranteed by the Law of Large Numbers. The method are various, but a general
scheme can be outlined:

• model a system as a probability density functions f (see 30);
• repeatedly sample from the densities;
• compute the statistics of interest.

The applications of these simulation are numerous, ranging from quantum physics, to simulating
stochastic processes for financial models [87]. While Monte Carlo methods are extremely useful to
model complex systems that would be otherwise unobtainable analytically, they have some drawbacks,
as they ca for example be computationally costly.



G
The Simplifying assumption

In Section 3.6 we introduced the concept behind the simplifying assumption for conditional copulas.
Here we will discuss some hypothesis testing used to verify if a copula satisfies the simplifying assump-
tion. The results are taken from [38], where additional tests can be found.

The main objective is to perform an hypothesis testing where the Null hypothesis is:

H0 : CI|J(·|XJ = xJ) does not depend on the value of xJ ,

while the alternative hypothesis H1 is that this condition is not verified.

Derumigny and Fermanian discuss various ways of testing if the above hypothesis is verified, pro-
viding a wide overview of the possible methodologies that can be used to test the simplifying assumption.

Firstly, they discuss the Brute-force test, which computes the distance between the conditional cop-
ulas CI|J , estimated with and without the simplifying assumption. It can be performed using either a
Kolmogorov-Smirnov statistic, which implies the use of an L∞ distance, hence it is computed using the
sup over xI and over xJ of the absolute value of the difference of the two estimated copulas; or with a
Cramer von-Mises type statistics, which uses an L2 distance between the copulas.

They also discuss some dependence-based type of tests. These tests are based on the observation
that the Null hypothesis H0 for the simplifying assumption is equivalent to testing if the random vector
XJ is independent of the vector ZI|J = (F1(X1|XJ), . . . , Fp(Xp|XJ)), the vector of the conditional
marginal CDF (Proposition 4 of [38]). The latter assumption can be tested using bootstrap techniques
on pseudo-samples, computing their empirical distribution, or by using tests that compute the distance
between distributions, or again with tests based on a comparison between copulas.

Moreover, the two authors provide a parametric approach, which is carried out by testing the
following hypothesis:

Ĥ0 : CI|J(·|XJ) = Cθ(·), for some θ ∈ Θ, for almost every XJ ,

239
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hence we to test if the parameters of the copula θ are constant and do not depend on the conditional
variables XJ . To perform the test, Maximum Likelihood and Kernel-Smoothing techniques are used
to estimate the parameters of the conditional copula CI|J . The estimated θ̂ are compared with the
parameters θ̂0, estimated from a simplified copula.

Finally, several Bootstrap methods for verifying the simplifying assumption were described, along
with the Boxes-method. These two methods will be further discussed in the following subsections.

G.1 Bootstrap for the Simplifying Assumption
The idea behind the Bootstrap method is to approximate the limiting law of a test statistic τ of a given
sample S = (X1, ..., Xd), by constructing new samples S∗ = (X∗

1 , ..., X
∗
d ) from the initial one, and by

extracting the test statistic τ∗ of each new sample. The distribution of the new test statistics will be
an approximation of the original one.

One way to extract the new sample statistics S∗ is to draw each X∗
i independently with replacement

from the original sample. This can be used to verify the simplifying assumption of a given copula. We
can construct the sample S∗ = ((Ẑ∗

1,I|J , X
∗
1,J), ..., (Ẑ

∗
n,I|J , X

∗
n,J )), where each pair (Ẑ∗

i,I|J , X
∗
i,J) is the

pseudo-sample constructed by drawing X∗
i,J from the components of the original random vectorXi,J ,

and Ẑ∗
i,I|J independently from the observations Ẑi,I|J . With the new sample, we can then test the

dependence-based hypothesis described in the previous subsection. This method is called the ”pseudo-
independent bootstrap”. The paper also proposes a ”conditional bootstrap”, where the sample is con-
structed drawing independently from the estimated conditional law of XI , a ”parametric independent
bootstrap” where we firstly estimate the parameters of the conditional copula, and then draw the
samples independently from the estimated copula. Finally, they provide a ”parametric conditional
bootstrap” method where the samples Z∗

i,I|J,θ̂∗
i

are drawn independently from the copula corresponding
to the previously drawn sample X∗

i,J .

G.2 Test the Simplifying Assumption with ”boxes”
Paper [38] also proposes additional methods, constructed by partitioning the conditioning sub-set XJ

into boxes, which allows for a simpler model, especially when dealing with dimensions higher than three.
This translates into replacing a point-wise conditioning event to conditioning on the event XJ ∈ AJ ,
where AJ is a borelian subset. In this new setting, the copulas will be defined as:

P(XI ≤ x|XJ ∈ AJ) = CAJ

I|J (P(X1 ≤ x1|XJ ∈ AJ), ...,P(Xd ≤ xd|XJ ∈ AJ)|XJ ∈ AJ). (G.1)

Let’s also consider the following proposition:

Proposition 1. Assume that the function h : Rd → [0, 1], defined by h(y) := P(XI ≤ yI |XJ = yJ) is
continuous everywhere. Let xJ ∈ Rd−p such that Fi|J(|̇xJ) is strictly increasing for every i = 1, ..., d.
Then, for any sequence of boxes (A

(n)
J (xJ)) such that ∩n(A

(n)
J (xj)) = {xj}, we have that:

lim
n
C

A
(n)
J

I|J (uI |XJ ∈ A
(n)
J (xJ)) = CI|J(uI |XJ = xJ)

for every uI ∈ [0, 1]p.
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Starting from this proposition, we can reformulate a new Null hypothesis H̃0, which will imply the
original H0. The new hypothesis will be:

H̃0 : CAJ

I|J (uI |XJ ∈ AJ) does not depend on the value of AJ ∈ AJ , for any uI .

Unfortunately the opposite assumption does not hold, hence H0 does not necessarily imply H̃.
However, if we consider the family of disjoint subsets ĀJ = {A1,J , ..., Am,J} we can obtain the following
proposition:

Proposition 2. Assume that, for all AJ ∈ ĀJ and for all i ∈ I,

Fi|J(x|XJ = xJ) = Fi|J(x|XJ ∈ AJ), ∀xJ ∈ AJ , x ∈ R.

Then, H0 implies the following null hypothesis:

H̄0 : AJ → CAJ

I|J (·|XJ ∈ AJ)is constant over ĀJ .

This is a weaker assumption than the previously made one, but it has many interesting possible
applications. First of all, it is important to notice that testing H̄0 allows also us to consider parame-
ters that are continuous functions of XJ . Moreover, if the latter set of variables is discrete, this Null
hypothesis is equivalent to H0. In general, testing for H̄0 allows to significantly simplify the model, by
restricting the ”the information set of the underlying conditional copula to a fixed number of conve-
niently chosen subsets AJ”, [38].

Again testing the Simplifying Assumption using the previously described partition can be performed
in different ways. The testing can be performed with a Non-parametric test, which implies estimating
the conditional copulas from the empirical conditional marginal CDFs, and the empirical CDF of the
conditional joint distributions: the hypothesis is then tested by computing the sum of the distance
between the estimated copulas conditional to each partition considered. Alternatively, one can per-
form the test with a parametric approach, by estimating the parameters of the conditional copula, for
each AJ ∈ ĀJ , using the maximum likelihood, and then by comparing them: under the Simplifying
assumption the estimated θ̂(AJ) should be equal. Lastly, a bootstrap method can be used.
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