

Vertex-voting-based
polygonal object detection

MSc thesis in Computer Science

 Kang Lang

V E R T E X-V OT I N G - B A S E D P O LY G O N A L O B J E C T D E T E C T I O N

by

Kang Lang

A thesis submitted in fulfillment of the requirements
for the degree of

Master of Science in Computer Science

at the Delft University of Technology,
to be defended publicly on Monday November 2, 2020 at 10:00 AM.

Student number: 4795245

Thesis committee: Prof.dr. Jan van Gemert , TU Delft

Prof.dr. Asterios Katsifodimos , TU Delft

Prof.dr. Silvia Pintea , TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

P R E FA C E

This paper ”Vertex-voting-based polygonal object detection” is submitted as my
master’s graduation thesis. The research was conducted within Computer Vision
Lab at TU Delft, under the supervision of Prof.dr. Jan van Gemert and Yancong Lin
as my daily supervisor.

First, I would like to thank my thesis supervisor Prof.dr. Jan van Gemert and daily
supervisor Yancong Lin for their guidance throughout my thesis. They provided
many precious suggestions during the meetings and left me enough freedom to
experiment on my own ideas. Without their kindly help, I cannot steer the research
direction and get through all the difficulties.

Also, I want to thank Prof.dr. Silvia Pintea and Prof.dr. Asterios Katsifodimos for
being interested in my thesis and evaluation of my work. Prof.dr. Silvia Pintea also
gave me valuable suggestions during my work.

Finally, I need to say thanks to my parents and friends for their generous support.
They made the stressful study life to be also colorful and memorable.

Kang Lang
October, 2020

Vertex-voting-based polygonal object detection

Kang Lang
Computer Vision Lab

Delft University of Technology

Yancong Lin
Computer Vision Lab

Delft University of Technology

Jan C. van Gemert
Computer Vision Lab

Delft University of Technology

Abstract

Although the pixel-wise labelling approaches have been
exploited in depth and achieve good results in segmentation
tasks, the grouped pixels are not ideal output for many end-
users. In this paper, we propose a vertex-voting-based ap-
proach that can directly extract the polygon representations
of objects. In order to better solve overlapping scenarios,
we also propose a novel method that distinguishes objects
by learning a virtual depth axis. When compared with the
state-of-the-art method, our experiments demonstrate that
this voting-based method is more robust to occlusion and
shows a potential research direction.

1. Introduction
A fundamental task in computer vision is to extract

objects in a refined representation. This task is usually
solved by instance segmentation methods[4][19][8][38],
which perform object detection and semantic segmentation
simultaneously and produces a per-pixel classification re-
sult as the output. However, the grouped pixels are not ideal
for many applications like urban mapping or sketching and
have to be transferred to a more editable vector representa-
tion. Inspired by recent works[23][25][22], we investigate
the possibility to directly output a vectorized polygon rep-
resentation for each object in an image.

The idea for extracting a high-level, more abstract rep-
resentation for objects is particularly researched in ap-
plication fields like automated map generation. How-
ever, we notice that most related researches, such as
[25],[46],[47],[34],[33],[11],[18],[48], were conducted on
aerial images. We decide to jump out of the box and
compete with the state-of-the-art on datasets where occlu-
sion and overlapping scenarios exist. These scenarios were
rarely considered by other works before. We propose a
method to extract object depth information by importing a
triplet loss[43].

We notice that polygon objects usually have distinct cor-
ner vertices. It is natural to first detect object vertices and
assemble them into polygons. The mainstream polygonal

object detection methods like [25][23] also use this idea.
However, although they declared to follow a bottom-up
pipeline, their underlying methodology is not. These meth-
ods follow an instance-first strategy, which means they gen-
erate object proposals first, then refine the proposals to ex-
tract vertices or lines. Our approach tries to avoid region
proposal generation by using a voting method.

We validate our design on the gate detection dataset
and compare with the state-of-the-art instance segmentation
method. The proposed framework shows great potential in
occlusion cases and indicates a future research direction.

2. Related work

2.1. Instance segmentation

Instance segmentation tries to solve object detection and
semantic segmentation at the same time. Two major in-
stance segmentation methods are FPN(Fully Convolutional
Network[31])-based approaches and region-proposal-based
approaches.

Region-proposal-based approaches are usually instance-
first strategy, which means detecting instances first followed
by segmentation. One representative network from this type
is Mask RCNN[17]. By combining Faster R-CNN[40] and
an additional branch for binary mask generation, it achieves
the state-of-the-art when it was published and is widely used
as a baseline method.

FCN-based networks are usually superior in semantic
segmentation tasks but have some inherent problems when
transferred to instance segmentation due to the lack of trans-
lation variant features. To solve this problem, Dai et al.[10]
introduced a position-sensitive score map to FCN and used
a downstream network for object detection sub-task. Fol-
lowing Dai’s work, Li et al.[24] proposed fully convolu-
tional instance-aware semantic segmentation method(FCIS)
that shares the underlying convolutional representations and
score maps to both object detection and segmentation sub-
tasks. To generate box proposals, It combines RPN in-
stead of sliding windows in Dai’s work. However, FCIS
exhibits errors when it comes to overlapping objects. An-
other variant in this category is proposal free networks.

1

Works like [20][30][27] try to avoid proposal prediction.
Starting from per-pixel classification, they obtain instances
by splitting the pixels within the same category. Liang et
al. introduced Proposal-free Network[27], which predicts
pixel-wise instance location maps followed by clustering to
generate instance-level segmentation results. Similar works
like [19][39] also predict object locations and use clustering
methods to distinguish instances. Our paper uses the con-
cept of proposal free networks and the voting strategy, but
is different at its enhancement on the overlapping scenar-
ios. Moreover, it only uses object vertices for voting so as
to get vectorized polygon representation whose components
are detected vertices.

2.2. Polygonal object detection

Early works related to polygonal object detection is a
combination of contour extraction and subsequent contour
simplification. For contour extraction, methods like level
set[44], graph-cut[5] and the more advanced GrabCut[42]
solve the problem in an energy minimization fashion. Per-
formance of these methods rely on either color distribution
[42][5] or condition initialization[44], thus are not accu-
rate and require human intervention. Performance of the
alternative methods like superpixel grouping[21] or object
saliency detection algorithms[9] are also limited by line ev-
idence or image contrast. As for the simplification step,
it can be done on Douglas-Peucker algorithm[50]. These
multi-step approaches usually yield high accuracy loss in
practice.

Another strategy is based on assembling geometrical
primitives, like line segments in the image, into closed poly-
gons. Sun et al.’s work[45] detects polygonal objects by
partition a weighted line fragment graph.

Polygonal object detection can also be achieved by
grouping the over-segmented polygon cells in an im-
age. Polygonal partition can be achieved by methods like
[1][49][12][15][3], while the grouping can be done using
aggregation mechanisms [41][26]. This strategy’s perfor-
mance depends on fine polygonal partitions that fit the input
image well, which is hard to achieve in practice.

Neural network based polygonal detection is a new
research direction with limited works been done so far.
Polygon-RNN[7] proposed a semi-automatic approach to
annotate object instances. This work, however, requires a
human annotator to provide object bounding boxes. It’s
improved version [2] introduces a graph neural network
(GNN) to increase output resolution, but the system remains
non-automatic. More recent work like PolyMapper[25]
and [23] introduce automatic approaches to directly pre-
dict polygon representations. Both works solve polygon
detection using a two stage pipeline: keypoint detection
and grouping. PolyMapper[25] combines CNNs and RNNs
with convolutional LSTM modules, which shows good re-

sults on aerial images. While [23] avoids intermediate
learning of object boundaries in PolyMapper and uses a
fully geometric-based grouping method instead of deep
learning modules. Our design falls into this category but
is different on both keypoint detection and grouping stages.

3. Method

3.1. Object Representation

Instead of a group of pixels, we represent objects using
closed polygons for two reasons: (1). Compared to pixels,
polygons are not resolution-dependent and can be manipu-
lated more easily from the user’s point of view. (2). Polygon
can approximate man-made objects well as they are usu-
ally a combination of polygon shapes. Similar to works like
[22][25], we represent the polygons in a vector data struc-
ture where the elements are polygon vertices.

3.2. Overall Pipeline

Prior works like [25][23] tried to integrate ideas from
Region-proposal-based instance segmentation frameworks
[17][29]. They used region proposal network (RPN) to first
localize instances, followed by further refinement. Out of
the consideration that region proposal generation itself is a
challenging task and the data structure of polygon represen-
tation, it is natural to avoid instance-first strategy and use a
proposal-free design.

Our framework follows a bottom-up pattern, which
means the final results are built on early detected geometri-
cal cues. Firstly, object vertices are extracted. For each ver-
tex, a voting vector that points to its corresponding object
center will be predicted as well. Then, by adding the ver-
tices’ coordinates to the voting vectors, we can obtain a set
of predicted object centers. After that, if two vertices have
geometrically close predicted object centers, they will be
considered from the same object and be grouped together.
In the last step, all grouped vertices will be re-arranged in
particular orders so as the final vector representations can
form closed polygons. Figure 1 provides an overview of the
workflow.

We divide all tasks into two consecutive stages: (1). A
multi-task learning neural network is responsible for the
prediction of a set of feature maps which contains geomet-
rical cues. The feature maps include a junction likelihood
map for vertices detection, a voting vector map for object
center voting, a remapping map for accuracy compensa-
tion during re-scaling image and another feature map which
will be used to deal with overlapping scenarios. (2). A
post-processing stage which infers polygon representations
based on feature maps from the first stage.

2

(a) Vertices prediction (b) Center voting (c) Vertices grouping (d) Re-arranging vertices se-
quence

Figure 1: Workflow of the our approach.

3.3. Multi-task learning stage

Considering multiple objectives need to be solved in the
first stage, we propose a multi-task CNN architecture based
on [6],[28] and [19]. As shown in Figure 2, this architec-
ture is composed of a common feature extractor and four
single-task decoder branches. By sharing feature represen-
tations, this architecture can reduce computation run-time
when compared with training all branches individually.

Backbone network The backbone network functions as
a feature extractor for successive modules. As traditional
CNN modules use a layer-by-layer hierarchy to extract fea-
tures, an inbuilt multi-scale pyramid is formed implicitly.
Thus, when network depth increases, output feature maps
tend to have more abstract global features at the cost of lo-
cal information. In our case, the prediction of voting vec-
tors requires the receptive field to be large enough to include
both object vertices and object centers. On the other hand,
the prediction of vertices requires fine low-level informa-
tion from the smaller receptive field. As a result, we use the
Hourglass network as the backbone because it can provide a
balanced combination of global and local features due to the
use of skip layers. Similar to [37][51], we gradually refine
the feature maps by stacking hourglass modules accompa-
nied with intermediate supervision. The loss is the sum of
the losses on all stacked modules.

3.4. Decoder branches

The goal for decoder branches is to learn a mapping
from shared feature representations to target outputs. All
decoders in our network share identical structure and are
composed of several fully convolutional layers. The only
difference lies in the number of output channels and the at-
tached activation functions.

Object vertices localization branch: To extract the
probability for a pixel to be an object vertex from cer-
tain category, this branch performs pixel-wise classification.
The output has M + 1 channels where M represents the

number of given classes in a dataset and the additional one
channel means background. A Softmax function is used on
the output to normalize the probability distribution. We use
cross entropy loss as the loss function for this branch.

Voting vectors prediction branch: This branch is used
to predict a voting vector for every object vertices. We rep-
resent the vectors as a combination of its projection on x-
axis and y-axis, which results in a 2-channel output. As
the vectors pointing from vertices to object centers can
be either positive or negative, we use hyperbolic tangent
function(Tanh) as the activation function. During inference
phase, the output feature map will be re-scaled from range
[−1, 1] to original image space by multiplying the two out-
put channels with image width and image height.

Virtual z-axis prediction branch: One problem
bounded with voting based methods is poor handling on
overlapping objects. This is because clustering algorithms
cannot distinguish objects in 2D image space if their centers
are geometrically close to each other. We tackle this prob-
lem by importing an additional one-channel feature map for
depth information extraction. As no annotated depth infor-
mation is provided, we use the triplet loss function during
training. Its concept is similar to [36], all pixels from the
same object should be assigned similar values while values
for pixels from different objects will be pushed away from
each other. On output feature map O, the loss is calculated
as follows:

L(a, p, n) = max(0, D(Oa, Op)−D(Oa, On) +margin)

where a represents the anchor pixel, p is the positive pixel
which falls in the same category as the anchor. n is the neg-
ative pixel which belongs to a different category. All pixels
are randomly selected. Function D represents a distance
function. And the margin means the target interval between
D(Oa, Op) and D(Oa, On). We adapt the triplet loss by av-
erage over all anchor, positive, negative combinations. Al-
though we conjecture that this branch can learn object depth

3

information, the result is nothing like the traditional z-axis.
Thus we name it virtual z-axis.

Remapping offset prediction branch: This branch
serves to predict the decimal values that have been rounded
when we downsample the image. Values from this branch
will be added to the detection result before we rescale to
original image space in order to compensate for accuracy
loss. Due to the range of the offset along x-axis and y-axis
should be limited to [−1

2 , 1
2) ∗ [

−1
2 , 1

2), we apply a sigmoid
activation function and add a −0.5 shift value to the result.

According to Liebel et al.’s research[28], a decoder may
favor certain feature representations learned by the encoder,
while some of them may also be exploited by other de-
coders. Thus this multi-task joint learning approach is be-
lieved to be able to boost the overall performance when
compared with training the branches separately.

3.5. Post-processing stage

The post-processing stage is a combination of several un-
supervised learning algorithms. It takes all output feature
maps from the previous stage to infer the polygon approxi-
mations of objects.

The first step for post-processing is vertices extraction.
This is done by extracting the top N pixels with the highest
objectness score on the junction likelihood map predicted
in the previous stage.

Secondly, for each candidate vertex i, we sum its co-
ordinates [Xi, Yi] with its corresponding voting vector
[V xi, V yi] to obtain the predicted object center [Cxi, Cyi].

As vertices of the same object tend to vote for geometri-
cally close centers, we can assign all vertices from the same
class category to different objects by applying a clustering
algorithm. We use DBSCAN[14] as the clustering method
in our paper. DBSCAN, which is a non-parametric density-
based clustering algorithm, can efficiently group closely
packed points. We choose it for two reasons: (1). It re-
quires no prior knowledge of the number of clusters like
K-means[32]. (2). It has reasonable time complexity. On
average DBSCAN’s time complexity is O(n log n). Thus it
will not bring too much computation cost.

As shown by the input image in figure 2, overlapping ob-
jects can have very close centers, and their vertices may be
incorrectly grouped together. To separate them, we perform
DBSCAN the second time along the virtual z-axis.

By far, the vertices from the same object should be
grouped together. However, all the vertices need to be ar-
ranged in certain order so as to correctly represent the poly-
gon that encloses the target object. To obtain the vector-
ized polygon representations, we apply Graham scan[16]
on the vertices. Graham scan is an algorithm that can find
a convex hull of a given set of points with time complexity
O(n log n).

Input image has been downsampled in the first stage to

reduce computation pressure, and all post-processing steps
by far are applied on the shrunken image. As a result, the
last step is to remap detection results back to the original
image space. To compensate for the accuracy loss men-
tioned in the previous section, we add the predicted decimal
values to vertices’ coordinates before re-scaling them. For
the detected polygonal objects, its class label is identical to
its vertices’ labels. Moreover, its confidence score, which
is used to filter out weak predictions, is the mean of all its
vertices’ objectness scores.

4. Experiments

4.1. Dataset

Testing of polygon detection approaches is usually lim-
ited to their application fields. Experiments are conducted
mainly on satellite imagery like the crowdAI dataset[35].
However, there is usually no overlapping scenarios in such
datasets, which we are also interested in. In this respect,
we use the gate detection dataset from P. Duernay et al.’s
work[13].

The gate detection dataset is synthesized using Epic’s
Unreal engine1 and AirSim-Plug-In2 by Microsoft. Hol-
low racing gates are randomly scattered in various environ-
ments.

We select four sub-datasets from the gate detection
dataset to validate our design. Details of the datasets are
shown in table 1 and figure 4.

Dataset name Number of im-
ages

Illumination
condition

Basement1 2441 Low
Basement3 1407 Low
Iros1 3163 Medium
Daylight1 3412 High

Table 1: Details of the datasets used in this paper

There are several flaws in this dataset that may degrade
the performance of our approach. The first problem is that
some annotations of gate vertices are out of image space.
Those vertices are not usable in our framework as we use
per-pixel classification for vertices extraction. We resolve
this problem by recalculating alternative vertices within im-
age space, which results in many pixels around image cor-
ners being marked as vertices even though they contain no
object information at all. Another issue is that the vertices
annotations are not accurate. This issue may reduce the per-
formance of the vertex-voting-based method by a large mar-
gin as the network is distracted to learn background instead

1https://www.unrealengine.com/en-US/what-is-unreal-engine-4
2https://github.com/Microsoft/AirSim

4

Figure 2: An overview of our network architecture

of object features. Both issues are shown by the gate whose
ground truth boundary is marked in red in image 3.

Figure 3: An example of the flaws bounded with this dataset

4.2. Implementation Details

For our multi-task learning network, we implement the
encoder following Zhou et al.’s design[51]. The input im-
age, after brightness augmentation and rotation augmenta-
tion, will be first processed by a 7× 7 stride-2 convolution.
Then, three residual blocks accompanied with stride-2 max-
pooling will be applied to downsample the input image to
128× 128 with channel = 256. The intermediate features
will be further processed by two stacked hourglass modules
for feature extraction and sent to four successive single-task
branches. The depth of hourglass is set to be 4. As for the
four branches, a 3×3 convolutional layer and a 1×1 convo-
lutional layer are used with ReLU between them as the acti-
vation function. After being converted to the target dimen-

sion by the 1× 1 convolution, each branch applies different
activation functions and loss functions as demonstrated in
the previous section. The loss function is a combination of
the losses from all individual branches and intermediate su-
pervision. The loss contributed by negative background pix-
els is multiplied by a factor that equals 0.0005 so as to solve
the class imbalance problem. Inspired by [28], we introduce
four learnable weights to maintain the balance between each
branch’s loss contribution. We use Adam as the optimizer
and initialize learning rate as 4× 10−4. Weight decay is set
to be 1×10−4. Identical to Zhou et al.’work[51], we reduce
the learning rate by 10 after 10 epochs.

In the post-processing stage, we extract 50 candidate
vertices with highest objectness score after applying Non-
maximum suppression(NMS) with a 3 × 3 max-pooling.
When DBSCAN is used in 2D image space, we set its hy-
perparameters as epsilon=7 and minPts=1. For the second
time when we apply DBSCAN on virtual z-axis, we use ep-
silon=2 and minPts=1. A confidence threshold that equals
0.5 is used to filter out objects with low confidence.

4.3. Comparison to State-of-the-art

To evaluate the performance of our network, We
use average precision(AP, averaged over IoU thresholds).
AP50(IOU threshold = 0.5),and AP75(IOU threshold =
0.75). We additionally evaluate average recall(AR) to mea-
sure the proportion of gates extracted by our approach with
respect to the ground truth. Both AP and AR are calculated
based on mask IOU, but we need to mention that in our
framework the outputs are polygon representations rather
than pixel-wise masks.

5

(a) Basement1 (b) Basement3 (c) Iros1 (d) Daylight1

Figure 4: Examples of the gate detection dataset. (a) and (b) are from Basement1 and Basement3 respectively, where gates
are set in a basement with low artificial illumination. In (c), illumination is a combination of natural light and artificial light.
(d) is from the Daylight1 dataset with intense natural light through windows.

We compare our network with the state-of-the-art
method Mask R-CNN[17]. The Mask R-CNN uses
ResNet50+FPN as backbone with scale jittering and hori-
zontal flipping as augmentation methods. Compared with
our design with only 10,475,790 parameters, Mask R-CNN
is implemented with 43,918,038 parameters, almost 4 times
as many as ours. We train both networks on Basement1
dataset using two NVIDIA GTX 2080Ti GPUs for 100
epochs. Batch size is set to maximize GPU memory usage.
The training takes about a day to finish.

We test both networks on three datasets with different
illumination conditions. The test results are shown in ta-
ble 2. During inference, Mask R-CNN uses 0.055 s/image
on average while our design uses 0.085 s/image on neural
network stage, and 0.006 s/image on post-processing stage.
This shows that our post-processing method will not bring
too much computation pressure when the number of vertex
candidates is low.

After being trained on Basement1 dataset with low illu-
mination condition, both networks experience gradual per-
formance drop when tested on datasets with medium and
strong illumination. Mask R-CNN performs better than our
framework on all datasets. However, we suspect that Mask
R-CNN’s advantage is not gained from learning more ro-
bust feature representations of gates. As racing gates are
hollow objects, the majority pixels within a gate belong to
the background image. Compared with the vertex-voting-
based method whose result is obtained from grouping ver-
tices, Mask R-CNN may also take background pixels as a
hint of objects. Thus, although illumination changes, the
similar indoor scenery can still provide a performance boost
for Mask R-CNN.

To validate our idea, we pad three textures inside the rac-
ing gates. The three textures are sky, lava and stone brick,
which are irrelevant to the indoor scenery in gate detection
dataset. Examples of texture padding are shown in figure 5.

The padding experiment, although may block some over-
lapping objects, is fair to both networks. We test both net-
works on the padded datasets and show the results in ta-
ble 3. In general, the voting-based method is slightly better
than Mask R-CNN. One exception is on the padded day-
light1 dataset where Mask R-CNN still has advantages. We
attribute the failure on daylight1 dataset to missing vertices.
As shown in image 4d, some object vertices are hard to rec-
ognize even for human due to the intense light. As a gate
only consists of four vertices, Losing even one vertex will
cause significant IOU reduction between predicted objects
and the ground truth. We expect to ease this problem by
predicting more vertices, which is one of the future direc-
tions.

Based on these two experiments, the vertex-voting-based
approach appears to focus more on the learning of object
features while Mask R-CNN tends to import more context
information during prediction. It reveals that our voting-
based approach is more robust to context changes and oc-
clusion scenarios.

4.4. Ablation Study

In this section, we study our proposed network by com-
paring it with two of its variants. The results are shown in
table 4.

Virtual z-axis prediction branch: To validate the ef-
ficiency of virtual z-axis, we train another network which
shares the identical design with our proposed method ex-
cept for the virtual z-axis prediction branch. In general, the
performance of our design is higher by a small margin. The
exception on daylight1 dataset can also be attributed to the
loss of vertices due to intense illumination. In daylight1
dataset, many object vertices cannot be extracted. By apply-
ing an additional clustering along virtual z-axis, the grouped
vertices will be further split into smaller groups, leading to
an insufficient number of points to form closed polygons.

6

(a) Sky texture (b) Lava texture (c) Brick texture

Figure 5: Examples of texture padding on gate detection dataset.

Dataset Basement3 Daylight1 Iros1
Metrics AP AP50 AP75 AR AP AP50 AP75 AR AP AP50 AP75 AR

Mask R-CNN 69.0 89.8 82.5 72.5 31.9 53.9 37.2 37.6 63.9 84.3 74.9 68.2
Ours 64.8 82.8 77.2 69.6 21.6 37.8 24.9 32.6 54.8 75.1 66.6 62.7

Table 2: Evaluation results on gate detection dataset

Interpretable object detection approach: We force
the network to solve object detection in an interpretable
way. The network is trained to first look for potential ob-
ject centers in 2D space, followed by distinguishing over-
lapping objects using depth information. We compare our
design with a network which is trained to directly vote in 3D
space. In the 3D voting network, the virtual z-axis predic-
tion branch and the 2D voting vectors prediction branch are
replaced with a branch that can predict three-dimensional
voting vectors. The only constraint for this variant is that
vertices from the same object should vote for geometrically
close location. As shown in table 4, our interpretable ap-
proach has much better performance. We conjecture it is
related to the constraints imported by the interpretable ap-
proach during optimization.

5. Conclusion

In this paper, We have proposed an vertex-voting-based
approach which is able to extract vectorized polygon repre-
sentations for objects. We have shown that by importing a
triplet loss, voting based method can improve its ability to
distinguish overlapping objects. We have also shown that
forcing network to learn an interpretable solution is benefi-
cial to its performance due to the imported constraints dur-
ing optimization. Although our approach is not better than
the state-of-the-art in all cases, it still shows its potential to
occlusion and background context changes.

There are still many questions left unanswered. Firstly,
as finding optimal hyper-parameters is hard and time-
consuming, how to make the voting-based method end-to-

end? Secondly, how to further improve the depth learning
branch? Is it also possible to extract depth information in a
comprehensive way rather than using triplet loss? Last but
not least, will the increase of vertex voters improves our de-
sign’s false tolerance? If so, how to control the complexity
of the extracted polygon?

References
[1] R. Achanta and S. Susstrunk. Superpixels and polygons us-

ing simple non-iterative clustering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4651–4660, 2017. 2

[2] D. Acuna, H. Ling, A. Kar, and S. Fidler. Efficient interactive
annotation of segmentation datasets with polygon-rnn++. In
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 859–868, 2018. 2

[3] J.-P. Bauchet and F. Lafarge. Kippi: Kinetic polygonal par-
titioning of images. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3146–
3154, 2018. 2

[4] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee. Yolact: Real-time
instance segmentation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), October
2019. 1

[5] Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for op-
timal boundary & region segmentation of objects in nd im-
ages. In Proceedings eighth IEEE international conference
on computer vision. ICCV 2001, volume 1, pages 105–112.
IEEE, 2001. 2

[6] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. In Pro-

7

Dataset Basement3 Daylight1 Iros1
Metrics AP AP50 AP75 AR AP AP50 AP75 AR AP AP50 AP75 AR

Mask R-CNN 55.2 77.7 67.1 58.7 22.0 38.8 23.2 27.1 43.9 62.8 52.6 48.0
Ours 59.6 75.2 70.5 64.7 15.8 27.0 17.8 24.3 44.0 58.1 53.4 49.5

Table 3: Evaluation results on the paded gate detection dataset

Dataset Basement3 Daylight1 Iros1
Metrics AP AP50 AP75 AR AP AP50 AP75 AR AP AP50 AP75 AR

Ours 64.8 82.8 77.2 69.6 21.6 37.8 24.9 32.6 54.8 75.1 66.6 62.7
No virtual z-axis 64.2 82.1 76.4 69.2 23.9 42.2 27.3 33.5 52.4 71.2 63.8 59.1

3D voting 26.2 34.4 32.2 31.6 2.2 3.8 2.5 4.2 19.6 28.4 23.0 25.7

Table 4: Ablation study. We compare our original design with two variants of our network. One of them uses no virtual
z-axis and another is trained to directly vote in 3D space.

ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 7291–7299, 2017. 3

[7] L. Castrejon, K. Kundu, R. Urtasun, and S. Fidler. Annotat-
ing object instances with a polygon-rnn. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 5230–5238, 2017. 2

[8] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng,
Z. Liu, J. Shi, W. Ouyang, C. C. Loy, and D. Lin. Hybrid
task cascade for instance segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 1

[9] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M.
Hu. Global contrast based salient region detection. IEEE
transactions on pattern analysis and machine intelligence,
37(3):569–582, 2014. 2

[10] J. Dai, K. He, and J. Sun. Instance-aware semantic segmen-
tation via multi-task network cascades. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3150–3158, 2016. 1

[11] M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruz-
zone. Morphological attribute profiles for the analysis of
very high resolution images. IEEE Transactions on Geo-
science and Remote Sensing, 48(10):3747–3762, 2010. 1

[12] L. Duan and F. Lafarge. Image partitioning into convex poly-
gons. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3119–3127, 2015. 2

[13] P. Duernay. Detecting empty wireframe objects on micro-air
vehicles. 2018. 4

[14] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231,
1996. 4

[15] J. Forsythe, V. Kurlin, and A. Fitzgibbon. Resolution-
independent superpixels based on convex constrained
meshes without small angles. In International Symposium
on Visual Computing, pages 223–233. Springer, 2016. 2

[16] R. L. Graham. An efficient algorithm for determining the
convex hull of a finite planar set. Info. Pro. Lett., 1:132–133,
1972. 4

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on com-
puter vision, pages 2961–2969, 2017. 1, 2, 6

[18] P. Kaiser, J. D. Wegner, A. Lucchi, M. Jaggi, T. Hofmann,
and K. Schindler. Learning aerial image segmentation from
online maps. IEEE Transactions on Geoscience and Remote
Sensing, 55(11):6054–6068, 2017. 1

[19] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using
uncertainty to weigh losses for scene geometry and seman-
tics. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7482–7491, 2018. 1,
2, 3

[20] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and
C. Rother. Instancecut: from edges to instances with mul-
ticut. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5008–5017, 2017. 2

[21] A. Levinshtein, C. Sminchisescu, and S. Dickinson. Optimal
contour closure by superpixel grouping. In European Con-
ference on computer vision, pages 480–493. Springer, 2010.
2

[22] M. Li, F. Lafarge, and R. Marlet. Approximating shapes in
images with low-complexity polygons. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8633–8641, 2020. 1, 2

[23] Q. Li, L. Mou, Y. Hua, Y. Sun, P. Jin, Y. Shi, and X. X. Zhu.
Instance segmentation of buildings using keypoints. arXiv
preprint arXiv:2006.03858, 2020. 1, 2

[24] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolutional
instance-aware semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2359–2367, 2017. 1

[25] Z. Li, J. D. Wegner, and A. Lucchi. Topological map ex-
traction from overhead images. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1715–
1724, 2019. 1, 2

[26] Z. Li, X.-M. Wu, and S.-F. Chang. Segmentation using su-
perpixels: A bipartite graph partitioning approach. In 2012
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 789–796. IEEE, 2012. 2

8

[27] X. Liang, L. Lin, Y. Wei, X. Shen, J. Yang, and S. Yan.
Proposal-free network for instance-level object segmenta-
tion. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2978–2991, 2017. 2

[28] L. Liebel and M. Körner. Auxiliary tasks in multi-task learn-
ing. arXiv preprint arXiv:1805.06334, 2018. 3, 4, 5

[29] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object detection.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2117–2125, 2017. 2

[30] S. Liu, J. Jia, S. Fidler, and R. Urtasun. Sgn: Sequential
grouping networks for instance segmentation. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 3496–3504, 2017. 2

[31] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3431–3440, 2015. 1

[32] J. MacQueen et al. Some methods for classification and anal-
ysis of multivariate observations. In Proceedings of the fifth
Berkeley symposium on mathematical statistics and proba-
bility, volume 1, pages 281–297. Oakland, CA, USA, 1967.
4

[33] D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani,
M. Datcu, and U. Stilla. Classification with an edge: Im-
proving semantic image segmentation with boundary detec-
tion. ISPRS Journal of Photogrammetry and Remote Sens-
ing, 135:158–172, 2018. 1

[34] D. Marmanis, J. D. Wegner, S. Galliani, K. Schindler,
M. Datcu, and U. Stilla. Semantic segmentation of aerial
images with an ensemble of cnss. ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sci-
ences, 2016, 3:473–480, 2016. 1

[35] S. P. Mohanty. Crowdai dataset,
https://www.crowdai.org/challenges/mapping -
challenge/dataset files. 2018. 4

[36] A. Newell, Z. Huang, and J. Deng. Associative embedding:
End-to-end learning for joint detection and grouping. In
Advances in neural information processing systems, pages
2277–2287, 2017. 3

[37] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-
works for human pose estimation. In European conference
on computer vision, pages 483–499. Springer, 2016. 3

[38] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learn-
ing to refine object segments. In European conference on
computer vision, pages 75–91. Springer, 2016. 1

[39] C. R. Qi, O. Litany, K. He, and L. J. Guibas. Deep hough
voting for 3d object detection in point clouds. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 9277–9286, 2019. 2

[40] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages
91–99, 2015. 1

[41] Z. Ren and G. Shakhnarovich. Image segmentation by cas-
caded region agglomeration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2011–2018, 2013. 2

[42] C. Rother, V. Kolmogorov, and A. Blake. ” grabcut” inter-
active foreground extraction using iterated graph cuts. ACM
transactions on graphics (TOG), 23(3):309–314, 2004. 2

[43] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 815–823, 2015. 1

[44] J. A. Sethian. Level set methods, evolving interfaces in ge-
ometry, fluid mechanics comuputer vision, and materials sci-
ences. Cambridge Monographs on Applied and Computa-
tional Mathematics, 3, 1996. 2

[45] X. Sun, C. M. Christoudias, and P. Fua. Free-shape polyg-
onal object localization. In European Conference on Com-
puter Vision, pages 317–332. Springer, 2014. 2

[46] P. Tokarczyk, J. D. Wegner, S. Walk, and K. Schindler. Be-
yond hand-crafted features in remote sensing. ISPRS Annals
of the Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, 3:W1, 2013. 1

[47] M. Volpi and V. Ferrari. Semantic segmentation of urban
scenes by learning local class interactions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 1–9, 2015. 1

[48] M. Volpi and D. Tuia. Dense semantic labeling of sub-
decimeter resolution images with convolutional neural net-
works. IEEE Transactions on Geoscience and Remote Sens-
ing, 55(2):881–893, 2016. 1

[49] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Ran-
dall. Lsd: A fast line segment detector with a false detection
control. IEEE transactions on pattern analysis and machine
intelligence, 32(4):722–732, 2008. 2

[50] S.-T. Wu and M. R. G. Marquez. A non-self-intersection
douglas-peucker algorithm. In 16th Brazilian symposium on
computer graphics and Image Processing (SIBGRAPI 2003),
pages 60–66. IEEE, 2003. 2

[51] Y. Zhou, H. Qi, and Y. Ma. End-to-end wireframe parsing. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 962–971, 2019. 3, 5

9

C O N T E N T S

1 introduction 1

1.1 Research questions . 1

1.2 Outline . 1

2 background 2

2.1 Convolutional Neural Network . 2

2.1.1 Representation Learning . 2

2.1.2 Early stage feature learning methods 2

2.1.3 Convolutional Neural Network(CNN) 2

2.1.4 Basic architecture of CNN . 3

2.2 Common tasks in computer vision . 4

2.2.1 Image classification . 4

2.2.2 Object Detection . 4

2.2.3 Semantic segmentation . 8

2.2.4 Instance segmentation . 10

2.3 Polygonal object detection . 11

2.4 Multitask learning . 12

2.5 DBSCAN . 13

2.6 Graham scan . 14

3 data 15

3.1 Explanation for using gate detection dataset 15

3.2 Details of the dataset . 15

3.3 Pre-processing . 16

3.4 Flaws of dataset & pre-processing strategy 18

4 methodology 19

4.1 General pipeline . 19

4.2 Network design . 19

4.2.1 Multi-task learning . 19

4.2.2 Feature extractor . 20

4.2.3 Decoder branches . 21

4.2.4 Intermediate supervision . 21

4.2.5 Loss . 22

4.3 Post processing . 22

5 experiments 25

5.1 Implementation Details . 25

5.2 Evaluation metrics . 25

5.3 Comparison to Mask R-CNN . 26

5.4 Ablation Study . 27

6 conclusion and future work 29

6.1 Conclusion . 29

6.2 Answer to research questions . 29

6.3 Drawbacks and Future work . 30

a appendix 36

a.1 Abbreviations . 36

a.2 Results . 36

L I S T O F F I G U R E S

Figure 2.1 Basic CNN architecture . 3

Figure 2.2 Movement of CNN kernel . 4

Figure 2.3 Pipeline for object detection . 5

Figure 2.4 Illustration of R-CNN . 6

Figure 2.5 Illustration of spatial pyramid pooling layer 6

Figure 2.6 Illustration of Fast-RCNN . 7

Figure 2.7 Illustration of RPN module . 8

Figure 2.8 Illustration of YOLO network 8

Figure 2.9 Illustration of FCN . 9

Figure 2.10 Illustration of U-net . 10

Figure 2.11 Illustration of hourglass module 10

Figure 2.12 Illustration of Mask RCNN . 11

Figure 2.13 Illustration for DBSCAN . 13

Figure 2.14 Illustration of Graham scan . 14

Figure 3.1 Examples from gate detection dataset 16

Figure 3.2 Annotation recalculation for dateset 17

Figure 3.3 Target feature maps of input data 18

Figure 4.1 Illustration of the overall pipeline of our approach. 19

Figure 4.2 Architecture of our network . 20

Figure 4.3 An Example of our network’s output 20

Figure 4.4 Illustration of post-processing strategy 24

Figure 5.1 Examples of texture padding on gate detection dataset. 26

L I S T O F TA B L E S

Table 3.1 Details for datasets . 17

Table 5.1 Evaluation results on gate detection dataset 27

Table 5.2 Evaluation results on the paded gate detection dataset 27

Table 5.3 Ablation study . 28

1 I N T R O D U C T I O N

Instance segmentation, as a fundamental task in computer vision, aims at perform-
ing object detection task and semantic segmentation task simultaneously. Most
existing instance segmentation frameworks produce a per-pixel classification result
as the output. However, the grouped pixels are not ideal for many applications
like urban mapping or sketching and need to be transferred to a more editable
vector representation. Thus, we decide to directly provide the vectorized polygon
representations for objects in an image through our work.

We decide to represent objects using polygons in a vector data structure where
the components are object vertices. This is due to the following reasons: (1). Com-
pared to pixels, polygons are not resolution-dependent and can be manipulated
more easily from the user’s point of view. (2). Man-made objects are usually a
combination of polygon shapes, thus can be represented well by polygons.

Moving away from pixel-wise labelling to polygon detection is a rather new field.
There are limited works in this field[15][8][4][2][3][48][40][37]. Motivated by the sat-
isfactory result from Zuoyue et al.’s work[40], we design the network in a bottom-up
fashion, which means detecting geometrical cues(vertices) first and inferring final
result based on them. Different from Zuoyue’s work, we don’t generate region
proposals due to the consideration that proposal generation itself is a challenging
task. Instead, inspired by [42][32][52], we draw polygon predictions using a vot-
ing method. We only use object corners as voters as they have better localization
properties than normal texture pixels which locate within object boundary. Our
framework has two stages: the first stage is responsible for vertices detection and
object center prediction for each vertex, which is done by the neural network. The
second stage uses an unsupervised learning algorithm to group detected vertices
and provide the final polygon representation for every object. We also enhance
our network’s ability to deal with overlapping scenarios using a virtual depth axis
predicted by the network.

1.1 research questions
We have following research questions addressed in this paper:

• How to avoid explicit pixel-wise labeling and provide more abstract represen-
tations for objects

• How to deal with the overlapping or occlusion scenarios as they are rarely
considered in other polygonal detection works

1.2 outline
This paper is arranged in the following structure. In Chapter 2, we will provide
needed background knowledge for our paper. Chapter 3 illustrates the data set we
used in our experiments. Chapter 4 introduces the detailed design of our frame-
work. Then in chapter 5, we will describe the experiment setting and results to
answer the research questions. Chapter 6 will provide a conclusion and some flaws
of our design for future study.

1

2 B A C KG R O U N D

This chapter will provide the required knowledge for readers to understand other
parts of the thesis. First, the vision-task-oriented deep learning technique - Convo-
lutional Neural Network will be introduced. Then, general introduction to several
computer vision tasks will be covered. We will provide some knowledge about
polygonal detection, multitask learning and some algorithms we used in our de-
sign at the end of this chapter.

2.1 convolutional neural network

2.1.1 Representation Learning

Generally, whether machine learning algorithms can be effective is highly related
to the representations of input data. The large Intra-class and inter-class varia-
tion make manually designed feature representations unreliable when it comes to
changes like illumination condition, resolution etc. Also, further improvements
of AI require it can automatically understand and extract useful information from
observed data with less human interfering. As a result, representation learning
methods received rapid development and led to the transfer from human-designed
representations to CNN-based representations in computer vision field.

2.1.2 Early stage feature learning methods

Based on the idea that gradient distributions and edge directions can have a good
description for local objects’ appearance and shape, gradient-based descriptors like
Scale-invariant feature transform(SIFT)[47], histograms of oriented gradients(HOG)[14],
as well as edge-based descriptors are widely used in the early stage of computer
vision.

These traditional feature extraction methods received reasonable results in many
tasks, including real-world challenges. For example, in Dalal et al[14]’s work, the
combination of SVM and gradient-based descriptor shows satisfactory results on
pedestrian detection.

However, traditional feature representations have a significant problem that it is
not intelligent enough. This period’s ’Artificial Intelligence’ cannot automatically
learn useful hidden information from observed data. Instead, in order to achieve
higher performance, most efforts are devoted to designing proper feature represen-
tations. This so-called ’feature engineering’ uses domain-dependent prior knowl-
edge and thus does not have good generalization ability[5].

2.1.3 Convolutional Neural Network(CNN)

Inspired by the concept of receptive field from the breakthrough research in animal
visual cortical system[31], Fukushima et al.[23] proposed ’neocognltron’, which is a
multilayered network consisting neural-like cells. ’neocognltron’ imports a hierar-
chical structure. shallower layers can only observe a narrow area of the input image
and are in charge of extracting simple features while deeper layers extract more com-
plicated features based on extracted information from previous layers. ’Neocognl-

2

2.1 convolutional neural network 3

tron’ marks the start of convolutional neural network. In 1990, LeCun et al.[35] took
one step further by combining the idea of back-propagation learning procedure[58]
and multi-layer network and achieving the state-of-the-art in real-world handwrit-
ten digit recognition problem. Due to convolutional neural network’s potential on
large practical tasks, it has become a research hotspot especially in computer vision
field and brought about many effective solutions to problems related to image clas-
sification, object detection, semantic segmentation and instance segmentation etc.
Subsequently, finding efficient network architecture has replaced feature represen-
tation and become the core task.

2.1.4 Basic architecture of CNN

Figure 2.1: Basic CNN architecture

Figure 2.1 illustrates the basic CNN architecture. Convolutional layer and Sub-
sampling layer together form a layer in Convolutional Neural Network. By stacking
CNN layers, more abstract features can be extracted at the cost of more computa-
tional overhead.

Convolutional Layer: In convolutional layer, a small kernel is slid through the
input image. Image patches overlapping with the sliding kernels are weighted
summed and added with a bias vector. Certain features will have unique responses
after processing. Thus we can see these kernels as feature detectors. To add non-
linearity, results are usually processed by nonlinear functions before being sent to
the next layer. There are two advantages of the convolutional layer. The first is
that it can reduce the number of parameters during training. Each image patch is
processed by detectors with shared weights. When compared with fully connected
network, this local connectivity constraint tremendously reduces the number of pa-
rameters. Another advantage is that the convolutional layer imports certain levels
of distortion and translation invariance. When the input is shifted, the response
will also shift with unchanged value. When convolutional layers are stacked after
each other, more complex and abstract features can be extracted from the increased
receptive field. This abstraction ability brings tolerance to slight distortion and
translation.

Figure 2.2 illustrates the convolution action. The kernel marked in orange slide
through whole image space and functions as feature detectors. In every step, matrix
multiplication is applied on the kernel and the overlapping portion of image. Then
the kernel shifts S pixels before being applied the same operation. S is called stride
length. To avoid the dimensionality reduction of the output feature map, zero

2.2 common tasks in computer vision 4

Figure 2.2: Movement of kernel

padding is usually applied before convolution. Assume padding length is P, image
size is W*W, kernel size is K*K, then the output feature map will have size O as:

O = (W + 2P− K)/S + 1 (2.1)

Sub-Sampling layer: Directly feed the outputs of the convolutional layer to the
following network will cause heavy computation pressure and will have a higher
probability to cause over-fitting problem. Sub-Sampling layers serve as a method to
reduce dimensionality and de-noise. On the other hand, the same pooling features
will be obtained even if a small translation happened. Max-pooling and Average-
pooling are two main types of the pooling methods.

2.2 common tasks in computer vision
Although this thesis is more closely related to object detection and instance seg-
mentation, four different computer vision tasks, namely image classification, object
detection, semantic segmentation and instance segmentation, will be covered due
to their close connections. Although goals are different, these four tasks show incre-
mental steps from coarse inference to fine inference[27].

2.2.1 Image classification

Compared to other tasks covered in this section, image classification is the simplest
and most basic as it has no further requirements apart from the classification task.
Its concept is to extract a set of features which will then be processed and help to
label a given image with one or more predefined categories according to confidence
scores.

Before the era of deep learning, the most challenging part of this task results from
the large amount of intra-class variability. Manually designed features like Gabor
features, local binary patterns (LBP), SIFT and HOG can perform well under certain
data or tasks[9]. However, the handcrafted features cannot generalize well and be
adapted easily to different data sets.

2.2.2 Object Detection

Object Detection goes one step further than image classification. As one of the fun-
damental problems in computer vision, object detection aims at not only predicting
objects’ classes but also obtaining their corresponding locations by enclosing ob-
jects in rectangular boxes[44]. The common pipeline for object detection, as shown
in image 2.3, consists of following three stages:

• Feature extraction. It is the most important section because all other tasks
are built upon image features. Images are high dimensional signals, and as a

2.2 common tasks in computer vision 5

Figure 2.3: Pipeline for object detection. First, feature extractor obtains the appropriate repre-
sentations for current task. Afterwards, Classification and localization stage take
charge of deriving bounding boxes in a compact manner with corresponding
class names

result of ’the curse of dimensionality’, performance will suffer if other stages
are directly run on original image feature space. It is more desirable to extract
features that can provide a semantic and robust representation[47]. Thanks
to the development of deep learning, CNN extracted features perform bet-
ter than the traditional ones like Scale-invariant feature transform(SIFT)[47],
histograms of oriented gradients(HOG)[14] by a large margin[20][61].

• Informative region selection. As only the objects are of value during ob-
ject detection while a large portion of the image is occupied by background
scenery, selecting potential regions can help to filter out redundant informa-
tion so as to reduce computation stress. Usually, the spatial locations of an
object are coarsely represented by rectangle-box-like bounding boxes. The
evolution from R-CNN and Fast R-CNN’s selective search to Faster R-CNN’s
Region Proposal Network demonstrates the close connection between detec-
tion speed and informative region selection methods.

• Classification. Classification is performed based on derived image features
from the informative region selection stage. One or more predefined class
labels are attached to each region proposals. Like in previous stages, Old
school classifiers like the supported vector machine(SVM)[12], AdaBoost[22]
and deformable part-based model (DPM)[19] are also outperformed by deep
learning based classifiers.

When it comes to the taxonomy of object detection techniques, in general it can be
classified into two categories. One is the region proposal-based framework, which
generates object proposals at the beginning and then classifies each of them into
different categories. Another one tries to obtain object locations and class labels
simultaneously with a unified framework. This approach values object detection as
a regression or classification problem.

Region proposal-based architectures. This type of methods is also called two-
stage object detection as they first perform a coarse scan over images and then
focus on the classification of region of interest(ROIs).

• R-CNN: Girshick et al.’s work[25] combines the region proposal generation
algorithm with CNN features and thus is named R-CNN. Image 2.4 is the
system overview of R-CNN. For every image, about 2000 region proposals
are extracted and warped to a common size. CNN feature extractors are ap-
plied to each proposal. For the extracted features, several class-specific linear
SVMs are used to achieve class labels. On top of the SVM classifiers, a lin-
ear regression model is used to re-locate the detection windows’ coordinates,
which was given by the selective search algorithm, for error reduction purpose.
Non-maximum suppression(NMS) is then used to only retain regions with top
scores. Several drawbacks exist in R-CNN’s design. First of all, although the
selective search algorithm has reasonable recall, it can produce redundant re-
gion proposals and is time-consuming(2 seconds for 2000 region proposals).
Secondly, due to the use of fully connected layer, input image needs to have

2.2 common tasks in computer vision 6

fixed size. Moreover, warping proposals may import distortions and incorrect
features which would undermine performance. Apart from that, the training
procedure is complex as it consists of multiple stages, including Convolu-
tional network, SVM and bounding-box regressors. Last but not least, the
whole CNN feature extractor needs to be run individually on each proposal,
thus leads to high computation overhead.

Figure 2.4: System overview of R-CNN, image is from the original paper[25]

• SPP-Net: To solve R-CNN’s fixed input size issue and increase scale-invariance,
Kaiming et al.[30] proposed Spatial Pyramid Pooling(SPP) network. Image 2.5
illustrates the spatial pyramid pooling method. In contrast to pooling using a
sliding window whose output size depends on input image size, spatial pyra-
mid pooling divides the image into several bins and pools from them. As the
size of bins is proportional to the image and the number of bins is fixed, the
output size has fixed length and can be directly fed to fully connected layer.
Another contribution of this architecture is that it only runs convolutional lay-
ers once over the entire image and shares the features to all successive layers.
When compared with R-CNN, SPP-net yields a speedup of over 100 times.

Figure 2.5: Illustration of spatial pyramid pooling layer. Image is from the original paper

• Fast-RCNN: SPPnet didn’t improve R-CNN’s multi-stage training problem
and suffers accuracy loss when the network gets deeper. To solve this issue
Fast-RCNN[24] uses a multi-task loss on classification and bounding box re-
gression. The network, except the region proposal section part, has only one
unified stage and thus greatly improve training and testing speed. Figure 2.6
gives an overview of Fast-RCNN’s architecture. The process of Fast-RCNN
starts with passing an entire image to convolutional layers, followed by max
pooling to obtain feature maps. Then ROIs generated by algorithms like se-
lective search will be used to extract local features from the output feature
map. The extracted features will then be processed by an ROI pooling lay-
ers, which serves as a special case of spatial pyramid pooling, to get fixed
length feature vectors. After being processed by multiple fully connected lay-
ers, the feature vectors will be passed to two different branches. One is used

2.2 common tasks in computer vision 7

to produce K+1(number of given categories plus background) softmax proba-
bility for class prediction. Another is to regress the bounding boxes. The loss
function for Fast-RCNN is as follows:

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(tu, v) (2.2)

p is a discrete class distribution and u is the ground-truth class distribution.
Lcls is calculated using a cross entropy loss. tu is the predicted bounding box
for class u and v is the ground truth bounding box. Lloc is computed with
smooth L1 loss. λ represents a factor to balance the contribution of these
classification and regression branches.

Figure 2.6: Illustration of Fast-RCNN. Image is from the original paper

• Faster R-CNN: SPPnet and Fast-RCNN’s success in reducing the running time
of detection network leaves region proposal algorithm as the computational
bottleneck. To solve this problem, Shaoqing et al.[54] observed that the convo-
lutional features used by region proposal based networks like Fast-RCNN can
also be used to generate object proposals. He introduced a region propose net-
work(RPN) that simultaneously predict bounding boxes and objectness score.
By merging RPN and Fast-RCNN, the proposed Faster-RCNN imports ’atten-
tion’ mechanism in the prediction process. Image 2.7 illustrates the process
of Region proposal network. This small network acts as a replacement of
Selective search algorithm and shares the convolutional features with the de-
tection network. It slides over convolutional features with an intermediate
layer and uses the output for two sibling branches. At each sliding window
position, multiple proposals with different scale and aspect ratio, which is
named ’anchor’, are processed simultaneously. Anchor’s functionality is sim-
ilar to image pyramid and serves as references at multiple scales and aspect
ratios. RPN uses one branch for anchor box regression and another for anchor
box classification. The positive anchor boxes will be further classified and
regressed by latter network modules.

Regression/classification-based architectures. Two-stage approaches’ training is
usually cumbersome due to the combination of multiple correlated stages. Even
Faster-RCNN needs to use alternative training so as to share convolutional parame-
ters between RPN and detection network. Regression/classification-based architec-
tures algorithms are usually referred as one-stage object detection as they aim to
bring the training of separate stages together as a global regression/classification
task.

• YOLO: YOLO[53] is one of the most important breakthroughs among one-
stage object detection frameworks. It treats the detection task as a regression
problem and runs only one single convolutional network to simultaneously
predict bounding boxes and corresponding confidence score. Apart from
being fast, unlike sliding window-based techniques, YOLO can encode con-
textual information about classes and make less false positive predictions on

2.2 common tasks in computer vision 8

Figure 2.7: Illustration of RPN module from Faster-RCNN paper. Assume k anchors are
processed, the classification score is a 2k-dimension vector as at this stage, regions
are roughly classified as object or background. the 4k dimension vector from
regression branch originates from the coordiantes for object center x, y and width,
height. This image is from the original paper.

the background image. Figure 2.8 illustrates the training/testing process of
YOLO. It first divides the image into S*S grid cells. A grid cell is responsi-
ble for detecting objects whose centers fall into it. Then in each cell, B box
locations(x,y,width,height) and their confidence scores are predicted. Last but
not least, a set of conditional class probability is predicted regardless of the B
bounding boxes. Formula:

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (2.3)

gives the class-specific confidence score for each box. Results are extracted
by setting a threshold to filter out low confidence boxes and applying NMS.
YOLO shows a trade-off between speed and accuracy. Although being fast, it
cannot precisely localize objects, especially small ones.

Figure 2.8: Illustration of YOLO network. Prediction is a S*S*(B*5+C) tensor, S,B,C repre-
sent number of grids, number of bounding boxes and number of given classes
respectively. Image is from the original paper.

2.2.3 Semantic segmentation

Fields like autonomous driving and robotics require to further understand a scene,
including object shapes, textures etc. Semantic segmentation is one step to fill
the blank. The goal of semantic segmentation is to label every pixel with the
class of the object that encloses it. There are mainly two different approaches
in this field, namely region-proposal-based approach and FCN(fully convolutional
network)-based approach.

2.2 common tasks in computer vision 9

• Region-proposal-based approach: The region-proposal-based approach usu-
ally starts with region proposal generation. It then classifies the pixels within
the region. One representative framework using this approach is RCNN. Dif-
ferent from the object-detection-oriented framework, RCNN for semantic seg-
mentation uses CPMC algorithm to generate proposals. It then encloses the
regions in rectangular windows and wraps them to fixed-size square windows.
Segmentation task is fulfilled by running a detection network on the square
windows and assign the predicted class labels to region proposals enclosed
in the windows. However, this method doesn’t ignore the convolutional fea-
tures generated by the background image. So author optimizes the design by
feeding both foreground features and full features(background+foreground)
to the network. This approach can also be used by RCNN’s successor like
Fast-RCNN and Faster-RCNN.

• Fully Convolutional Network (FCN): One problem bounded with the region-
proposal-based approach is that it can only process fixed-size images due
to the use of fully connected layer. Moreover, the wrapping and ROI pool-
ing will cause the loss of spatial details and degrade segmentation accuracy.
J.Long et al. [46] proposed a fully convolutional network that can solve this
problem. FCN takes an arbitrary size input image and predicts a feature map
which is the same size as input. Each pixel within the feature map will be
assigned a class label. As it is named, FCN only consists of convolutional lay-
ers. To compensate the dimension reduction in output feature maps caused
by sub-sampling, author imports deconvolution layers. To further improve
the prediction’s details, skip layers are introduced so as both low level, fine
information and high level, coarse information can be used at the same time.
The architecture of FCN is shown in figure 2.9.

Figure 2.9: Architecture of FCN. Image is from the original paper

Dilated Residual Network[66] is another FCN-based architecture. It tries to
avoid the spatial information loss caused by subsampling and uses dilated
convolution instead.

Based on FCN’s finding, finer predictions can be achieved by passing context
information from contracting paths to higher resolution layers in expansive
paths. Olaf et al.[56] modified FCN by adding more channels in expansive
paths and replace the sum operation with concatenation. The final network
structure, which is shown in figure 2.10, is symmetric and looks like a U shape.
Thus it is named U-net.

Another variation of FCN-based network is hourglass network[51]. Unlike
FCN, which is heavy in bottom-up processing but light in top-down process-
ing, Hourglass Network is more symmetric and similar to U-net. More differ-
ence between FCN and hourglass network lies in that hourglass network does
not use deconvolution layer, instead it uses nearest-neighbor interpolation to
perform upsampling. As for the differences between U-net and hourglass
network, U-net uses concatenation in top-down processing while hourglass

2.2 common tasks in computer vision 10

Figure 2.10: Architecture of U-net. Image is from the original paper

uses addition. Hourglass network also uses residual modules instead of sim-
ple convolutional layers. More importantly, hourglass network shows great
performance increase when stacked together accompanied with intermediate
supervision. An hourglass module is shown in figure 2.11

Figure 2.11: Illustration of a single hourglass module. Image is from the original paper

2.2.4 Instance segmentation

Instance segmentation tries to solve object detection and semantic segmentation
at the same time. It not only provides the class label for each pixel but can also
distinguish the instances. Instance segmentation can also be classified into FCN-
based and region-proposal-based frameworks. Region-proposal-based frameworks
are usually instance-first strategy, which means detecting instances followed by seg-
mentation. Early work like [28],[10] which utilize the region proposal methods as
the requisite all fall in this category.

Another representative network from this type is Mask RCNN. It achieved state-
of-the-art performance when it was published. Figure 2.12 illustrates Mask RCNN’s
architecture. It has an identical first stage(RPN) as Faster RCNN but adds an ad-
ditional branch in the second stage. This new branch is responsible for binary
mask generation. However, different from works like [13], mask prediction branch,
bounding box classification and offset prediction branch are run in parallel with no
interaction. This design reduces competition among tasks and is proved to have
better performance. Mask generation branch produces one binary mask per class,
resulting in that the output is Km2 dimension where K represents the number of
given categories and m2 represents the resolution of ROI. The class label predicted
by bounding box classification and offset prediction branch will then be used to
filter the masks and obtain the final result. Due to the promising result of RCNN,
we choose it as our baseline.

2.3 polygonal object detection 11

Figure 2.12: Mask RCNN’s architecture. Image is from the original paper

While FCN-based networks are usually superior in semantic segmentation tasks,
they have some inherent problems when transferred to instance segmentation. The
problem of FCN frameworks lies in that convolution is translation invariant. ’Trans-
lation invariant’ means that the same pixel will get the same response after transla-
tion. Thus FCN cannot differentiate two pixels from different objects at different po-
sition if they share similar value. One solution is to add translation variant property.
Dai et al.[13] introduced a position-sensitive score map to FCN for mask proposal
generation, which is followed by a downstream network for detection. Following
Dai’s work, Li et al.[39] proposed fully convolutional instance-aware semantic seg-
mentation method(FCIS) that shares the underlying convolutional representation
and score maps to both object detection and segmentation sub-tasks. FCIS also
combines RPN to operate on box proposals instead of sliding window in Dai’s
work. However, FCIS exhibits errors when it comes to overlapping objects. An-
other variant in this category is proposal free networks. As generating proposal
itself is a challenging task, works like [33][45][42] try to avoid proposal prediction.
Starting from per-pixel classification, they obtain instances by cutting the pixels
from the same category. Liang et al.[42] proposed Proposal-free Network, which
predicts pixel-wise instance location maps followed by clustering technique to gen-
erate instance-level segmentation results. Similar work like [32][52] also predict
object location(object center) and use clustering methods to obtain instances. Our
paper fits in this category but is different at its enhancement on the overlapping
scenarios and its robustness to occlusion.

2.3 polygonal object detection
Early works related to polygonal object detection is a combination of contour extrac-
tion and subsequent contour simplification. For contour extraction, methods like
level set[60], graph-cut[6] and the more advanced GrabCut[57] solve the problem in
a energy minimization fashion. Performance of these methods rely on either color
distribution [57][6] or initialization[60], thus are not accurate and require human
intervention. Performance of the alternative methods like superpixel grouping[36]
or object saliency detection algorithms[11] are also limited by line evidence or im-
age contrast. As for the simplification step, it can be done on Douglas-Peucker
algorithm[65]. These multi-step approaches usually yield high accuracy loss in
practice.

Another strategy is based on assembling geometrical primitives like line segments
in the image into closed polygons. Sun et al.’s work[62] detects polygonal objects
by partition a weighted line fragment graph.

Polygonal object detection can also be achieved by grouping the over-segmented
polygon cells in an image. Polygonal partition can be achieved by methods like
[1][63][15][21][4], while the grouping can be done using aggregation mechanisms
[55][41]. This strategy’s performance depends on fine polygonal partitions that fit
the input image well, which is hard to achieve in practice.

2.4 multitask learning 12

Neural network based polygonal detection is a new research direction with lim-
ited works been done so far. Polygon-RNN[8] proposed a semi-automatic approach
to annotate object instances. This work, however, requires a human annotator to pro-
vide object bounding boxes. It’s improved version [2] introduces a graph neural net-
work (GNN) to increase output resolution, but the system remains non-automatic.
More recent work like PolyMapper[40] and [38] introduce automatic approaches to
directly predict polygon representations. Both works solve polygon detection using
a two stage pipeline: keypoint detection and grouping. PolyMapper[40] combines
CNNs and RNNs with convolutional LSTM modules, which shows good results
on aerial images. While [38] avoids intermediate learning of object boundaries in
PolyMapper and uses a fully geometric-based grouping method instead of deep
learning modules. Our design falls into this category but is different on both key-
point detection and grouping stages.

2.4 multitask learning
Multitask learning focuses on simultaneously solving multiple tasks from a single
input. Usually, multitask learning follows an encoder-decoder structure where the
encoder learns the feature representations and share them to successive decoders.
The decoders are the task solvers which forms several single-task branches.

It is proved that multitask learning can help to improve individual tasks’ per-
formance and reduce the computation time when compared with training tasks
separately. The explanation for this benefit is that features learned by one task may
help other tasks as well. In Liebel et al.[43]’s work, author verify this concept by
importing auxiliary tasks which are irrelevant to the main application. Although
unrelated to main tasks, the added auxiliary task does improve the overall perfor-
mance. Liebel attributes the performance boost to a more robust common represen-
tation learned by the encoder. As the network is forced to generalize to more tasks,
parameter space is also added with more restrictions during optimization. In other
words, tasks act as regularizers to each other, leading to better feature representa-
tions.

One problem bounded with multitask learning is the overall loss. As tasks’ losses
may have different scales, their contributions to the overall loss are not balanced. In
early works like [59][34][17], the overall loss function is formed as a weighted sum
of all tasks:

Loverall = ∑
i

ωiLi (2.4)

Where i represents the i-th task. The weights are set to be uniform or manually
tuned using grid search. Tuning weights manually can be time-consuming and may
not be able to obtain the optimal combination. In Kendall et al.’s paper[32], the high
correlation between performance and weights is discovered. Kendall proposed an
idea to use task uncertainty to capture loss weights. The loss function is shown
below:

For regression tasks, assume they follow a Gaussian distribution. x,y denote
model’s input and ground truth label. f W(x) is the network’s output when input is
x and weight is W. The likelihood is:

p(y| f W(x)) = N(f W(x), σ2) (2.5)

Scalar σ represents the observation noise. By maximizing likelihood of this model,
the loss for a model with two regression tasks is:

L(W, σ1, σ2) =
1

2σ2
1

L1(W) +
1

2σ2
2

L2(W) + logσ1 + logσ2 (2.6)

2.5 dbscan 13

The observation noise σ in loss function 2.6 can be seen as learnable weights for
different tasks. A large σ can decrease the loss contribution from a task. In case σ
being too large, logσ is used as a regularizer to penalize large values. In practice,
logσ2 is favored more as a regularizer because it is more numerically stable.

Liebel et al.[43] improves loss function 2.6 by replacing the regularizer to ln(1 +
σ2) so as the regularization values can always be positive. The adapted loss function
for multiple tasks is:

Loverall = ∑
t∈τ

[
1

2σ2
t

Lt + ln(1 + σ2
t)], τ is the task set (2.7)

2.5 dbscan
Density-based spatial clustering of applications with noise(DBSCAN)[18] is a non-
parametric density-based clustering method. It can group geometrically close points
and mark points in low-density regions as outliers. The algorithm is described as
follows:

hyperparameters for DBSCAN:
1.minPts 2.ε
Assume p and q are two different points from the input, DBSCAN classifies all
the input points using following rules:

• p is marked as a core point if no less than minPts points are within dis-
tance ε of it.

• q is directly reachable from p if q is within distance ε from core point p.
Points are only said to be directly reachable from core points.

• q is reachable from p if the path p1, ..., pn exists, where p1 = p and pn = q
and all pi+1 is directly reachable from pi. The Reachability in DBSCAN is
not a symmetric relationship.

• All points that are not reachable from a core point are marked as outliers.

A core point and all other points that are reachable from it together form a
cluster.

Figure 2.13: Illustration for DBSCAN. Yellow points are reachable from red core points and
they together form a cluster. Blue point is an outlier.

An example1 is shown in image 2.13. We use DBSCAN as it requires no prior
knowledge of the number of clusters and its low time complexity. The average time
complexity for DBSCAN is O(n log n).

1 The image is from https://en.wikipedia.org/wiki/DBSCAN

2.6 graham scan 14

2.6 graham scan
Graham scan[26] is an algorithm that can find a convex hull of a given set of points
with time complexity O(n log n). Given a set of points, Graham scan extracts a
convex hull that covers all points using the following Pseudocode:

An example of Graham scan is shown in 2.14
2.

Figure 2.14: Illustration of Graham scan

2 Image is from https://www.geeksforgeeks.org/convex-hull-set-2-graham-scan/

3 DATA

This chapter has three sections. The first section illustrates what dataset we use in
our paper and why we use it. Next section provides details of the dataset. The
third section provides the pre-processing applied to the dataset. The last section
will reveal some flaws of the dataset and pre-processing strategies we applied.

3.1 explanation for using gate detection dataset
Deep neural networks require a large amount of annotated data for training. Due
to the polygonal object detection task involves the detection of polygon vertices, we
need datasets that accurately annotated object corners. Annotating polygon vertices
itself is less cumbersome than annotating masks for regular instance segmentation
tasks, but is still time-consuming. Thus we decide to utilize existing datasets. The
choices are very limited. One dataset is the crowdAI dataset[49] which consists of
280741 tiles of satellite imagery for training and 60317 images for validation. The
dataset is too large to perform experiments considering our limited time. Moreover,
satelite dataset does not contain any overlapping objects, thus cannot verify our
research question on overlapping scenarios. As a result, we choose another dataset
at hand, which is the gate detection dataset. This dataset originates from another
TU Delft student’s work[16] related to drone racing.

This dataset is synthesized using Epic’s Unreal engine1 and AirSim-Plug-In2 by
Microsoft. As shown in figure 3.1, racing gates are scattered in various environ-
ments at different locations with random angles and captured by cameras to create
2D images. All images are of size 416*416 pixels.

As shown in image 3.1c and 3.1d, overlapping occasionally happen in this dataset,
which may distract detectors during training if one gate contains another. This
overlapping scenario makes gate dataset perfect for us to verify our second research
question.

The gates are originally not complex polygons, but different angles of gate direc-
tions and the rotation of camera import distortions to target objects(as shown in
3.1b). Another challenge lies in that gates are hollow, which means the majority
part of pixels within a gate belongs to the background image. While effective fea-
tures of a gate are hard to detect due to its thin structure. Thus, training on only
one dataset can easily cause overfitting as detectors may take background pixels as
a hint for objects.

3.2 details of the dataset
Based on the consideration that illumination condition can vastly influence object
appearance, we select four sub-datasets from gate detection dataset with different
illumination. The datasets are exhibits in table 3.1:

1. Basement1: Environment of this dataset is a basement with only weak artificial
light source. This dataset is used for training. An example is shown in 3.1a.

1 https://www.unrealengine.com/en-US/what-is-unreal-engine-4
2 https://github.com/Microsoft/AirSim

15

3.3 pre-processing 16

(a) Basement1 (b) Basement3

(c) Daylight (d) IROS2018

Figure 3.1: Examples from gate detection dataset. (a) is the training dataset which is set in
a basement with low artificial illumination. (b),(c),(d) are used for testing which
respectively has low,high,medium illumination condition

2. Basement3: Illumination is similar to Basement1. This dataset is for testing
use and is shown in 3.1b.

3. Daylight1: Gates are placed in a room with windows, through which daylight
can pass. Windows can cause strong variation between different parts of a
gate. As can be seen in 3.1c, the upper parts of gates at the far side can hardly
be recognized under intense daylight.

4. Iros1: The environment of this dataset simulates IROS Autonomous Drone
Race 2018. Both artificial light source and daylight through windows exist.
Illumination condition is in between Basement13 and Daylight1. An example
is shown in 3.1d.

We expect the testing results will be high on basement3 due to its similarity with
training dataset but can drop sharply when using daylight dataset. The perfor-
mance on iros1 should lie between daylight and basement3.

3.3 pre-processing
First of all, we upsample the image to 512*512 pixels using bilinear interpolation
for convenience as in the backbone network the image can be downsampled by 2*2

maxpooling with stride 2 for four times.
For each gate, the annotation consists of the 2D coordinates of 4 gate corners V

and the gate center C. However, as shown in image 3.2a, some gate corners are out
of image space and thus are not usable for us as we use per-pixel classification for

3.3 pre-processing 17

Dataset details

Dataset name number of images illumination condi-
tion

Basement1 2441 Low

Basement3 1407 Low

Daylight1 3412 High

Iros1 3163 Medium

Table 3.1: Details for datasets been used in this paper

vertices detection. We resolve this problem by replacing unusable vertices with the
intersections of object boundary and image boundary. Image corners are also used
as vertices when necessary. The recalculated ground truth is shown in image 3.2b

(a) Ground truth (b) Recalculated ground truth

Figure 3.2: Annotations are recalculated if they are outside image space

After the recalculation, we generate three maps as target feature maps for differ-
ent tasks in our network:

1. A junction likelihood map for vertices detection use. It is a binary mask
where 1 represents a pixel is an object vertex. An example is shown in 3.3b.

2. An offset map. In our design, for every vertex, we predict the offset from it
to its corresponding object center(centroid). The offset is calculated as [Cx −
Vx, Cy − Vy] where the subscript x,y indicates the coordinates on x-axis and
y-axis. The offset map has two channels, one is its projection on the x-axis,
another is on the y-axis. Offset map on x-axis is shown in 3.3c.

3. A remapping map. We predict this map because we perform post-processing
on a downsampled image space. Remapping is required to recover detected
objects back to the original image space. This remapping process, however,
can cause accuracy loss. For example, if one ground truth vertex on a 512*512

input image is [105, 105], after being downsampled to a 128*128 image space,
the coordinates of this vertex are rounded to [26, 26]. If we detected this vertex
on the shrunk image and remap it back, the coordinates will be [104, 104]. A
one-pixel accuracy loss emerges! Although the accuracy loss is not huge, we
still use one branch in our network to compensate it. We use the remap-
ping map for this very task. Similar to the offset map, remapping map
also has two channels representing remapping offsets along x-axis and y-axis
respectively. A remapping map along the x-axis is shown in 3.3d, values

3.4 flaws of dataset & pre-processing strategy 18

on remapping maps can be either positive or negative and is bounded by
[1/2, 1/2)× [1/2, 1/2).

(a) Recalculated ground truth (b) Junction likelihood map

(c) Offset map (d) Remapping map

Figure 3.3: According to the recalculated object(shown in 3.3a) center and vertices We gener-
ate 3 maps as ground truth for different tasks in our network

3.4 flaws of dataset & pre-processing strategy
In image 3.3a or 3.2b, it is noticeable that some vertices are not annotated well. The
annotated vertex coordinates can have a shift from where it should be. We decide
not to relabel the dataset due to time limitation. The shifts will downplay the
performance of the networks trained on the dataset, especially our vertex-voting-
based approach.

Another potential problem is related to our pre-processing strategy. As men-
tioned above, some image corners are used as object vertices so as to form a closed
polygon. But as shown in image 3.3a or 3.2b, these image corners contain very
little information of the gate. We conjecture that those recalculated vertices can dis-
tract our network to use the features from background image for gate detection and
undermine the generalization ability. However, we don not have a better solution.

4 M E T H O D O LO GY

In this section, we will illustrate our framework in detail. In the first section, we will
provide a general explanation about how to process object detection in a polygon
detection fashion. The second section will show the detailed network design. Then
we illustrate the post processing stage in the third section.

4.1 general pipeline
Similar to [42][32][52], we propose a voting based proposal-free network for object
detection. Our framework has two stages. The first stage uses a neural network to
predict several feature maps which will then be fed to the second stage. The second
stage is a post-processing stage that infers target objects based on the input feature
maps. The overall pipeline is as follows:

Extract object vertices⇒ Each vertex votes for its object center⇒ Group

vertices that have geometrically close object centers⇒ Link grouped

vertices in certain sequence to form final polygon representation

Figure 4.1 illustrates this process with an example input image from the gate detec-
tion dataset.

(a) 1. vertices prediction (b) 2. center voting (c) 3. vertices grouping (d) 4. final result

Figure 4.1: Illustration of the overall pipeline of our approach.

4.2 network design

4.2.1 Multi-task learning

Our post-processing strategy requires a junction likelihood map for vertices de-
tection, an offset map for object center prediction, a remapping map for accuracy
compensation during re-scaling image and another feature map which is used to
deal with overlapping scenarios. This requires that our neural network can learn
multiple objectives with high efficiency. Considering Multi-task learning’s ability
to reduce computation run-time by sharing representations, and its ability to im-
prove accuracy due to the regularization effect between different tasks, we propose
a multi-task CNN architecture based on [43] and [32].

Due to the computation pressure brought by high-resolution images, we first
downsample the input from 512*512 pixels to 128*128. Then a backbone network

19

4.2 network design 20

is used for feature extraction. The feature representations will be shared by four
different branches, as shown in figure 4.2. In figure 4.3, we show an example of the
network’s output after feeding an image from the gate detection dataset.

Figure 4.2: An overview of our network’s architecture

Figure 4.3: An Example of our network’s output

4.2.2 Feature extractor

Multi-task learning is usually implemented in an encoder-decoder style. A common
encoder extracts feature representations for the successive decoders. The decoders
solve their respective tasks individually and form several single-task branches which
are attached to the encoder.

We follow this concept and use the hourglass network as our feature extractor.
This is due to the issue embedded with CNN. As CNN uses a layer-by-layer hier-
archy to extract features, it forms an inbuilt multi-scale pyramid inexplicitly. Thus
higher layers tend to have more abstract features that are robust to variation in trans-
lation or deformation but lack of low-level information due to resolution reduction.
In comparison, lower layers that have smaller receptive fields contain more details

4.2 network design 21

but are ignorant of global information. As we are forcing our network to learn an
offset pointing from vertices to object centroids and localize the vertices at the same
time, both fine low-level local information and coarse high-level global information
are needed. Hourglass Network’s skip layer provides a solution to obtain both of
them at the same time. The hourglass module we use is identical to [51].

4.2.3 Decoder branches

All of the decoders use identical structure. They share the same feature represen-
tations from the backbone hourglass network and predict their respective feature
maps with several fully convolutional layers. The only differences between them
are the number of output channels and the attached activation functions.

• Corner localization branch: In order to obtain the probability that a pixel
belongs to a certain category, this branch performs pixel-wise classification. It
predicts M + 1 channels where M is the number of given classes in a dataset
and 1 means background. In our case, M=1 as we only have the gate class in
gate detection dataset. We use a Softmax function on the output to normalize
the probability distribution. The result will be used to extract vertices in the
post-processing stage.

• Offset vector prediction branch: For every vertex, we predict its offset to
object center along x-axis and y-axis separately. Thus the output contains
two channels. As the offset can be either positive or negative, we use hyper-
bolic tangent function(Tanh) as the activation function. Moreover, due to the
ground truth offsets can be very large values while the range of Tanh’s out-
puts is limited within range [-1,1], we rescale the output by multiplying its 2

channels with image width and image height respectively.

• Virtual z-axis prediction branch: As illustrated in section 3, overlapping can
occur in the gate detection dataset. If two overlapping gates have geomet-
rically close object centers, the voting&grouping strategy cannot distinguish
them in 2D space. That is why we import this branch to predict an additional
axis. We train this branch to predict different values for pixels if they are from
gates with different distances to the camera. Although we conjecture that by
using a triplet loss, this branch can learn object depth information, the learn-
ing result is not guaranteed to reveal this in a comprehensive way. Thus we
call it virtual z-axis. The concept of this branch is similar to Associative Em-
bedding method introduced by Newell et al.[50]. The output of this branch
has only one channel.

• Remapping offset branch: In this branch, a two-channel feature map is pre-
dicted by this decoder. It serves to predict the decimal values that have been
rounded and lost when we downsample the image. Values from this branch
will be added to detection results before we rescale to original image space.
Due to the range of offset should be limited to [−1

2 , 1
2) ∗ [

−1
2 , 1

2), We apply a
sigmoid activation function and add a -0.5 shift to the output feature map.

A decoder may favor certain feature representations learned by the encoder, while
some of them may also be exploited by other decoders. Thus this multi-task fashion
joint learning is believed to be able to boost the overall performance[43].

4.2.4 Intermediate supervision

Inspired by [51],[64] and [7], we use an iterative prediction architecture and import
intermediate supervision. The total loss is the sum of the losses at all iterations.

4.3 post processing 22

4.2.5 Loss

We use different loss functions for different branches. We use an average cross
entropy loss for object vertices prediction. Smooth L1 loss is used for offset vector
prediction as it is less sensitive than L2 loss and in some cases can prevent exploding
gradients. We also use smooth L1 loss in the remapping offset branch. For virtual z-
axis prediction branch, we use a margin-based triplet loss to excavate the underlying
depth information of objects. If two pixels are from the same object, they should
contain similar depth information and will be projected in the near-by region on the
virtual z-axis. In contrast, pixels which are from objects with different depth will
be pushed further from each other. The triplet loss function we use is as follows:

L(a, p, n) = max(0, D(a, p)− D(a, n) + margin) (4.1)

where a means anchor, p represents positive and n is negative. function D(a, p)
and D(a, n) calculate the L2 distance between samples. This function tries to make
the distance between anchor and positive smaller than the distance between anchor
and negative by a margin. For every image, we calculate the loss by summing below
losses and taking the average:

• L(background pixel a, background pixel b, gate pixel)

• L(gate pixel a, gate pixel b, Another gate′s pixel)

• L(gate pixel a, gate pixel b, background pixel)

During training, we discovered huge class imbalance. The majority of pixels be-
longs to the background while only a few pixels are the positive gate vertices. This
imbalance may cause the network to emphasize more on the correct classification on
less challenging negatives and lead to sub-optimal results. We address this problem
by introducing a weight factor on corner localization branch, offset vector predic-
tion branch and remapping offset branch. The factor is set to be the inversed class
frequency.

We noticed that in our experiment, losses from different branches have diverse
scale. Instead of balancing all tasks’ loss contributions with fixed weight factors, we
follow [32] and [43] and use learnable weights to our network. The total loss of our
network is as follows:

Ltotal = ∑
s∈S

∑
t∈τ

[
1

2σ2
t

Lst + ln(1 + σ2
t)] (4.2)

where S represents the number of stages from intermediate supervision. τ is the
task set in our model.

4.3 post processing
In this section, we continue to use the input image shown in figure 4.3 to illustrate
the post-processing method and show it in figure 4.4. Post-processing stage takes all
output feature maps predicted by neural network as input and uses the following
procedures to infer objects.

1. Extract vertices: As mentioned above, the vertices prediction branch will pre-
dict a (M + 1)-channel feature map where M represents the number of given
categories in the dataset. From the generated feature map, we extract N pixels
with the highest objectness score(calculated by 1 - the probability for a corner
being background) as candidate vertices. Then, we label every candidate vertex
with the class that has the highest confidence score at this location.

4.3 post processing 23

2. Vote for object center: Assume the coordinates of the i-th candidate vertex
are [Xi, Yi], and the feature map generated by offset vector prediction branch
has Ox−axis and Oy−axis at location[Xi, Yi], for every candidate we calculated
the voted object center by:

[Xi + Ox−axis[Xi][Yi], Yi + Oy−axis[Xi][Yi]]

3. Cluster the voted object centers: We first separate candidate vertices accord-
ing to their class labels. Then we perform a simple clustering algorithm on
candidates that belong to the same category. The clustering algorithm we use
is DBSCAN, which is a density-based clustering method. DBSCAN will group
geometrically close object centers together. By remapping the grouped centers
back to their voters, we know which vertices are grouped together.

4. Cluster along virtual-z axis: As shown in ??, overlapping objects’ centers can
be very close. Thus vertices from different objects may be grouped together
in step 3. To separate them, we perform DBSCAN the second time, using the
learned depth information to distinguish the vertices.

5. Infer polygon representations: By far, we already grouped vertices from the
same objects together. However, to provide the vectorized polygon represen-
tation, we need to link vertices in the correct order. We use Graham scan
algorithm to obtain the vector representation of a convex hull which covers
all the grouped vertices. If the target object is also in a convex polygon shape,
like the gates in the gate detection dataset, then the convex hull can approxi-
mate the target object well. For the detected objects, its class label is assigned
the same as its vertices’ label. And the confidence, which is used to filter out
weak predictions, is the mean of all vertices’ objectness scores. In other words,
vertices vote for object locations, their classes, and their confidence scores.

6. Rescale to original image space: As mentioned in the previous section, we
downsampled the image four times. To compensate for the accuracy loss,
we add the predicted remapping offsets to candidates’ coordinates before re-
scaling them to original image space.

4.3 post processing 24

Figure 4.4: Illustration of post-processing strategy

5 E X P E R I M E N T S

5.1 implementation details
For our multitask learning neural network, we implement the encoder following
Zhou et al.’s design[67]. We start by applying brightness augmentation and ro-
tation augmentation on the dataset. An input image will be first processed by a
7× 7 stride-2 convolution. Then three residual blocks accompanied with stride-2
max-pooling are applied. By far, the image is downsampled to 128× 128 with chan-
nel=256. Two stacked hourglass modules further process the intermediate features
and send the extracted representations to four successive branches. The depth of
hourglass is set to be 4. As for the four single-task branches, a 3× 3 convolutional
layer and a 1× 1 convolutional layer are used with ReLU as activation function be-
tween them. After being converted to the target dimension by the 1× 1 convolution,
each branch applies different activation function as demonstrated in the previous
section.

The loss function is a combination of losses from all individual branches and the
intermediate supervision. A factor that equals 0.0005 is multiplied to the loss gener-
ated by negative background pixels to solve the class imbalance problem. Then we
introduce four learnable weights to balance each branch’s contribution following
[43]. We use Adam as the optimizer and initialize the learning rate as 4 × 10−4.
Weight decay is set to be 1× 10−4. Identical to Zhou et al.’work[67], we reduce the
learning rate by 10 after 10 epochs.

In the post-processing stage, we extract 50 vertex candidates with highest ob-
jectness scores after applying Non-maximum suppression(NMS) with a 3× 3 max-
pooling. When DBSCAN is used in 2D image space, we set its hyperparameters
as epsilon=10 and minPts=1. For the second time when we apply DBSCAN on vir-
tual z-axis, we use epsilon=1 and minPts=1. After that, a confidence threshold that
equals 0.5 is used to filter out instances with low confidence.

We train the network on two NVIDIA GTX 2080Ti GPUs for 100 epochs. Batch
size is set to be 10 to maximize GPU memory usage. The training takes about a day
to finish.

5.2 evaluation metrics

We choose a subset of the evaluation metrics used by COCO, namely AP,AR,APIoU=.50

, and APIoU=.75. Average precision, also referred as mean average precision(mAP),
is considered as the most important metric in COCO. Before demonstrate it, two
metrics need to be introduced.

precision =
number o f true positives

number o f true positives + number o f f alse positives

recall =
number o f true positives

number o f true positives + number o f f alse negatives

If the Intersection over Union(IOU) between a predicted object and the ground truth
object is larger than a threshold, this object is considered to be correctly detected.

25

5.3 comparison to mask r-cnn 26

The number of true positives in the previous formula means the number of objects
correctly detected. False positives are those wrong predictions with no correspond-
ing ground truth. The false negatives are ground truth objects that have not been
detected. Thus, precision is a measurement of how many of the detected objects
are correct detections. While recall measures how many objects can be extracted
among all the objects.

As the number of true positives, false negatives and false positives are depen-
dent on the IOU threshold, In COCO, AP and AR are averaged over multiple IOU
thresholds to reward detectors with better localization ability. The AR we use is
calculated using ten IOU thresholds ranging from 0.5 to 0.95 at a 0.05 interval. We
also use AP50 and AP75, which means the AP calculated when threshold equals 0.5
or 0.75. AR10, which means the recall given 10 detections per image, is also used to
measure the performance. Both AR and AP are measured using mask IOU.

5.3 comparison to mask r-cnn
We compare our network with the state-of-the-art method Mask R-CNN[29], which
is implemented by Facebook Research team1. The Mask R-CNN uses ResNet50

+ FPN as backbone with scale jittering and horizontal flipping as augmentation
methods. Compared with our design with only 10,475,790 parameters, Mask R-
CNN is implemented with 43,918,038 parameters, almost 4 times as many as ours.
We train both networks on Basement1 dataset using two NVIDIA GTX 2080Ti GPUs
for 100 epochs. Batch size is set to maximize GPU memory usage. The training takes
about a day to finish.

We test both networks on three datasets with different illumination conditions.
During inference, Mask R-CNN uses 0.055 s/image on average while our design
uses 0.085 s/image in neural network part, and 0.006 s/image in post-processing
section. This shows that our post-processing method will not bring too much com-
putation pressure when the number of vertex candidates is low. The test results are
shown in table 5.1. After being trained on a dataset with low illumination condi-
tion, both networks experience gradual performance drop when tested on datasets
with medium and strong illumination. Mask R-CNN performs better than our
framework on all datasets. However, we suspect that Mask R-CNN’s advantage is
not gained from learning more robust feature representations of gates. As racing
gates are hollow objects, the majority pixels within a gate belong to the background
image. Compared with the vertex-voting-based method whose result is obtained
from grouping vertices, Mask R-CNN may also take background pixels as a hint of
objects. Thus, although illumination changes, the similar indoor scenery can still
provide a performance boost for Mask R-CNN.

(a) Sky texture (b) Lava texture (c) Brick texture

Figure 5.1: Examples of texture padding on gate detection dataset.

To validate our idea, we pad three textures inside the racing gates. The three
textures are sky, lava and stone brick, which are irrelevant to the indoor scenery

1 https://github.com/facebookresearch/detectron2

5.4 ablation study 27

in gate detection dataset. Examples of texture padding are shown in figure 5.1.
The padding experiment, although may block some overlapping objects, is fair to
both networks. We test both networks on the padded datasets and show the results
in table 5.2. In general, the voting-based method is slightly better than Mask R-
CNN. One exception is on the padded daylight1 dataset where Mask R-CNN still
has advantages. We attribute the failure on daylight1 dataset to missing vertices. As
shown in image 4.1d, some object vertices are hard to recognize even for human due
to the intense light. As a gate only consists four vertices, Losing even one vertex will
cause significant IOU reduction between predicted objects and the ground truth. We
expect to ease this problem by predicting more vertices, which is one of the future
directions.

Based on these two experiments, vertex-voting-based approach appears to focus
more on the learning of object features while Mask R-CNN tends to import more
context information during prediction. It reveals that our voting-based approach is
more robust to context changes and occlusion scenarios.

Dataset Basement3 Daylight1 Iros1

Metrics AP AP50 AP75 AR AP AP50 AP75 AR AP AP50 AP75 AR

Mask R-CNN 69.0 89.8 82.5 72.5 31.9 53.9 37.2 37.6 63.9 84.3 74.9 68.2

Ours 64.8 82.8 77.2 69.6 21.6 37.8 24.9 32.6 54.8 75.1 66.6 62.7

Table 5.1: Evaluation results on gate detection dataset

Dataset Basement3 Daylight1 Iros1

Metrics AP AP50 AP75 AR AP AP50 AP75 AR AP AP50 AP75 AR

Mask R-CNN 55.2 77.7 67.1 58.7 22.0 38.8 23.2 27.1 43.9 62.8 52.6 48.0

Ours 59.6 75.2 70.5 64.7 15.8 27.0 17.8 24.3 44.0 58.1 53.4 49.5

Table 5.2: Evaluation results on the paded gate detection dataset

5.4 ablation study
In this section, we study our proposed network by comparing it with two of its
variants. The results are shown in 5.3.

Virtual z-axis prediction branch: To validate the efficiency of virtual z-axis, we
train another network which shares the identical design with our proposed method
except for the virtual z-axis prediction branch. In general, the performance of our
design is higher by a small margin. The exception on daylight dataset can also be
attributed to the loss of vertices due to intense illumination. In daylight1 dataset,
many object vertices are not recognizable. By applying an additional clustering
along virtual z-axis, the grouped vertices will be further split into smaller groups,
leading to an insufficient number of points to form closed polygons.

Interpretable object detection approach: We force the network to solve object
detection in an interpretable way. The network is trained to first look for potential
object centers, followed by distinguishing overlapping objects using depth informa-
tion. We compare our design with a network which is trained to directly vote in
3D space. The only constraint for this variant is that vertices from the same object
should vote for geometrically close location. As shown in table 5.3, interpretable ap-
proach has much better performance. We conjecture it is related to the constraints
imported by interpretable approach during optimization. We haven’t tested the di-
rectly voting network on higher dimension, because it is proved that if a network
can successfully predict high-dimensional embeddings, it should also be possible
to project them in lower dimensions as long as it has enough network capacity[50].

5.4 ablation study 28

Dataset Basement3 Daylight1 Iros1

Metrics AP AP50 AP75 AR AP AP50 AP75 AR AP AP50 AP75 AR

Ours 64.8 82.8 77.2 69.6 21.6 37.8 24.9 32.6 54.8 75.1 66.6 62.7

No virtual z-axis 64.2 82.1 76.4 69.2 23.9 42.2 27.3 33.5 52.4 71.2 63.8 59.1

3D voting 26.2 34.4 32.2 31.6 2.2 3.8 2.5 4.2 19.6 28.4 23.0 25.7

Table 5.3: Ablation study. We compare our original design with two variants of our network.

6 C O N C L U S I O N A N D F U T U R E W O R K

6.1 conclusion
In this paper, We have proposed an vertex-voting-based approach which is able
to extract objects’ vectorized polygon representations. We have shown that by im-
porting a triplet loss, voting based method can improve its ability to distinguish
overlapping objects. We have also shown that forcing network to learn an inter-
pretable solution is beneficial to its performance due to the imported constraints
during optimization. Although our approach is not better than the state-of-the-art
in all cases, it still shows its potential to occlusion and background context changes.

6.2 answer to research questions
• How to avoid explicit pixel-wise labeling and provide more abstract repre-

sentations for objects:

We found that the polygon representation is an effective approximation for
man-made objects. So we transfer the object detection problem to polygon
detection.

Polygonal objects can be seen as a composition of vertices. Thus we see the
first step of obtaining polygon representations as extracting object vertices. It
is found to be a workable solution to extract vertices using a junction likeli-
hood map.

We found it is possible not to use region proposal network but use a voting
method to localize objects. Moreover, object centers are found to be good
indications of objects and can be used to train voting vectors.

We also found that using traditional machine learning algorithms is able to
extract the polygon representation. And the time cost is not high by choosing
low time-complexity algorithms.

In summary, a voting-based approach is proved to be able to solve this prob-
lem and still have enough room for improvement.

• How to deal with the overlapping or occlusion scenarios as they are rarely
considered in other polygonal detection works:

Overlapping or occlusion are rarely seen in aerial images and was seldom
considered in polygonal object detection. We found that occlusion scenarios
can be solved by using a voting method. The vertex voters are object parts. By
inferring an object based on these object parts, it can in turn force the network
to focus more on object features rather than context features. It is proved in
our experiment that this method is more robust to environment changes or
occlusion scenarios.

For the overlapping problem, it is not solvable by the voting method in a
2D space if two objects have very close centers. We found that, although the
annotation of depth information is not provided, it can still be extracted by

29

6.3 drawbacks and future work 30

using a triplet loss. The extracted depth information is proved to be useful for
dealing with overlapping objects.

6.3 drawbacks and future work
There are two major drawbacks in our framework which should be improved in
future research:

• Vertices extraction: Although object vertices are usually object corners and
are considered to have better localization property than normal points, we
still found that extracting vertices can be problematic when illumination con-
dition changes. This problem is not eased by illumination augmentation as
some vertices are even hard to recognize by human. As polygons are abstract
representations which are composed of only several points, losing vertices can
significantly deform the polygon and cause a huge performance drop. One
potential solution to be verified in the future is increasing the polygon repre-
sentation’s complexity. By importing more points, losing a small amount of
them will not affect performance too much. We expect the points on object
boundaries to be a good choice for this idea.

• Post-processing: Although the time cost for post-processing is much lower
than the neural network part when the number of candidate vertices is low,
it still needs to be improved as the selection of optimal hyperparameters is
hard. We currently do not have a workable neural-network-based solution in
mind for vertices grouping. As for the Graham scan, which can only provide
convex polygons, is more prone to cause performance loss if objects are in
non-convex shapes. One potential solution is to use LSTM to replace Graham
scan for vertices linking.

B I B L I O G R A P H Y

[1] Achanta, R., and Susstrunk, S. Superpixels and polygons using simple non-
iterative clustering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2017), pp. 4651–4660.

[2] Acuna, D., Ling, H., Kar, A., and Fidler, S. Efficient interactive annotation of
segmentation datasets with polygon-rnn++. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (2018), pp. 859–868.

[3] Bastani, F., He, S., Abbar, S., Alizadeh, M., Balakrishnan, H., Chawla,
S., Madden, S., and DeWitt, D. Roadtracer: Automatic extraction of road
networks from aerial images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2018), pp. 4720–4728.

[4] Bauchet, J.-P., and Lafarge, F. Kippi: Kinetic polygonal partitioning of im-
ages. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (2018), pp. 3146–3154.

[5] Bengio, Y., Courville, A., and Vincent, P. Representation learning: A re-
view and new perspectives. IEEE transactions on pattern analysis and machine
intelligence 35, 8 (2013), 1798–1828.

[6] Boykov, Y. Y., and Jolly, M.-P. Interactive graph cuts for optimal boundary &
region segmentation of objects in nd images. In Proceedings eighth IEEE interna-
tional conference on computer vision. ICCV 2001 (2001), vol. 1, IEEE, pp. 105–112.

[7] Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. Realtime multi-person 2d pose
estimation using part affinity fields. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2017), pp. 7291–7299.

[8] Castrejon, L., Kundu, K., Urtasun, R., and Fidler, S. Annotating object
instances with a polygon-rnn. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2017), pp. 5230–5238.

[9] Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., and Ma, Y. Pcanet: A simple
deep learning baseline for image classification? IEEE transactions on image
processing 24, 12 (2015), 5017–5032.

[10] Chen, Y.-T., Liu, X., and Yang, M.-H. Multi-instance object segmentation with
occlusion handling. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2015), pp. 3470–3478.

[11] Cheng, M.-M., Mitra, N. J., Huang, X., Torr, P. H., and Hu, S.-M. Global
contrast based salient region detection. IEEE transactions on pattern analysis and
machine intelligence 37, 3 (2014), 569–582.

[12] Cortes, C., and Vapnik, V. Support-vector networks. Machine learning 20, 3

(1995), 273–297.

[13] Dai, J., He, K., and Sun, J. Instance-aware semantic segmentation via multi-
task network cascades. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2016), pp. 3150–3158.

[14] Dalal, N., and Triggs, B. Histograms of oriented gradients for human de-
tection. In 2005 IEEE computer society conference on computer vision and pattern
recognition (CVPR’05) (2005), vol. 1, IEEE, pp. 886–893.

31

bibliography 32

[15] Duan, L., and Lafarge, F. Image partitioning into convex polygons. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015),
pp. 3119–3127.

[16] Duernay, P. Detecting empty wireframe objects on micro-air vehicles.

[17] Eigen, D., and Fergus, R. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In Proceedings of
the IEEE international conference on computer vision (2015), pp. 2650–2658.

[18] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Kdd (1996),
vol. 96, pp. 226–231.

[19] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. Ob-
ject detection with discriminatively trained part-based models. IEEE transac-
tions on pattern analysis and machine intelligence 32, 9 (2009), 1627–1645.

[20] Fischer, P., Dosovitskiy, A., and Brox, T. Descriptor matching with convo-
lutional neural networks: a comparison to sift. arXiv preprint arXiv:1405.5769
(2014).

[21] Forsythe, J., Kurlin, V., and Fitzgibbon, A. Resolution-independent super-
pixels based on convex constrained meshes without small angles. In Interna-
tional Symposium on Visual Computing (2016), Springer, pp. 223–233.

[22] Freund, Y., and Schapire, R. E. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences
55, 1 (1997), 119–139.

[23] Fukushima, K., and Miyake, S. Neocognitron: A new algorithm for pattern
recognition tolerant of deformations and shifts in position. Pattern recognition
15, 6 (1982), 455–469.

[24] Girshick, R. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision (2015), pp. 1440–1448.

[25] Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition (2014), pp. 580–587.

[26] Graham, R. L. An efficient algorithm for determining the convex hull of a
finite planar set. Info. Pro. Lett. 1 (1972), 132–133.

[27] Hafiz, A. M., and Bhat, G. M. A survey on instance segmentation: state of
the art. International Journal of Multimedia Information Retrieval (2020), 1–19.

[28] Hariharan, B., Arbeláez, P., Girshick, R., and Malik, J. Simultaneous de-
tection and segmentation. In European Conference on Computer Vision (2014),
Springer, pp. 297–312.

[29] He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask r-cnn. In Proceedings
of the IEEE international conference on computer vision (2017), pp. 2961–2969.

[30] He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep con-
volutional networks for visual recognition. IEEE transactions on pattern analysis
and machine intelligence 37, 9 (2015), 1904–1916.

[31] Hubel, D. H., and Wiesel, T. N. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of physiology 160, 1

(1962), 106.

bibliography 33

[32] Kendall, A., Gal, Y., and Cipolla, R. Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics. In Proceedings of the IEEE
conference on computer vision and pattern recognition (2018), pp. 7482–7491.

[33] Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., and Rother, C. In-
stancecut: from edges to instances with multicut. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2017), pp. 5008–5017.

[34] Kokkinos, I. Ubernet: Training a universal convolutional neural network for
low-, mid-, and high-level vision using diverse datasets and limited memory.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2017), pp. 6129–6138.

[35] LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hub-
bard, W. E., and Jackel, L. D. Handwritten digit recognition with a back-
propagation network. In Advances in neural information processing systems (1990),
pp. 396–404.

[36] Levinshtein, A., Sminchisescu, C., and Dickinson, S. Optimal contour clo-
sure by superpixel grouping. In European Conference on computer vision (2010),
Springer, pp. 480–493.

[37] Li, M., Lafarge, F., and Marlet, R. Approximating shapes in images with
low-complexity polygons. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2020), pp. 8633–8641.

[38] Li, Q., Mou, L., Hua, Y., Sun, Y., Jin, P., Shi, Y., and Zhu, X. X. Instance seg-
mentation of buildings using keypoints. arXiv preprint arXiv:2006.03858 (2020).

[39] Li, Y., Qi, H., Dai, J., Ji, X., and Wei, Y. Fully convolutional instance-aware
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2017), pp. 2359–2367.

[40] Li, Z., Wegner, J. D., and Lucchi, A. Topological map extraction from over-
head images. In Proceedings of the IEEE International Conference on Computer
Vision (2019), pp. 1715–1724.

[41] Li, Z., Wu, X.-M., and Chang, S.-F. Segmentation using superpixels: A bipar-
tite graph partitioning approach. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition (2012), IEEE, pp. 789–796.

[42] Liang, X., Lin, L., Wei, Y., Shen, X., Yang, J., and Yan, S. Proposal-free
network for instance-level object segmentation. IEEE transactions on pattern
analysis and machine intelligence 40, 12 (2017), 2978–2991.

[43] Liebel, L., and Körner, M. Auxiliary tasks in multi-task learning. arXiv
preprint arXiv:1805.06334 (2018).

[44] Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., and Pietikäinen,
M. Deep learning for generic object detection: A survey. International journal of
computer vision 128, 2 (2020), 261–318.

[45] Liu, S., Jia, J., Fidler, S., and Urtasun, R. Sgn: Sequential grouping networks
for instance segmentation. In Proceedings of the IEEE International Conference on
Computer Vision (2017), pp. 3496–3504.

[46] Long, J., Shelhamer, E., and Darrell, T. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition (2015), pp. 3431–3440.

[47] Lowe, D. G. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision 60, 2 (2004), 91–110.

bibliography 34

[48] Marcos, D., Tuia, D., Kellenberger, B., Zhang, L., Bai, M., Liao, R., and

Urtasun, R. Learning deep structured active contours end-to-end. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018),
pp. 8877–8885.

[49] Mohanty, S. P. Crowdai dataset, https://www.crowdai.org/challenges/mapping
-challenge/dataset files.

[50] Newell, A., Huang, Z., and Deng, J. Associative embedding: End-to-end
learning for joint detection and grouping. In Advances in neural information
processing systems (2017), pp. 2277–2287.

[51] Newell, A., Yang, K., and Deng, J. Stacked hourglass networks for hu-
man pose estimation. In European conference on computer vision (2016), Springer,
pp. 483–499.

[52] Qi, C. R., Litany, O., He, K., and Guibas, L. J. Deep hough voting for 3d object
detection in point clouds. In Proceedings of the IEEE International Conference on
Computer Vision (2019), pp. 9277–9286.

[53] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (2016), pp. 779–788.

[54] Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information
processing systems (2015), pp. 91–99.

[55] Ren, Z., and Shakhnarovich, G. Image segmentation by cascaded region
agglomeration. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2013), pp. 2011–2018.

[56] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention (2015), Springer, pp. 234–241.

[57] Rother, C., Kolmogorov, V., and Blake, A. ” grabcut” interactive foreground
extraction using iterated graph cuts. ACM transactions on graphics (TOG) 23, 3

(2004), 309–314.

[58] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representa-
tions by back-propagating errors. nature 323, 6088 (1986), 533–536.

[59] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun,
Y. Overfeat: Integrated recognition, localization and detection using convolu-
tional networks. arXiv preprint arXiv:1312.6229 (2013).

[60] Sethian, J. A. Level set methods, evolving interfaces in geometry, fluid me-
chanics comuputer vision, and materials sciences. Cambridge Monographs on
Applied and Computational Mathematics, 3 (1996).

[61] Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. Cnn
features off-the-shelf: an astounding baseline for recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition workshops (2014),
pp. 806–813.

[62] Sun, X., Christoudias, C. M., and Fua, P. Free-shape polygonal object local-
ization. In European Conference on Computer Vision (2014), Springer, pp. 317–332.

[63] Von Gioi, R. G., Jakubowicz, J., Morel, J.-M., and Randall, G. Lsd: A fast
line segment detector with a false detection control. IEEE transactions on pattern
analysis and machine intelligence 32, 4 (2008), 722–732.

bibliography 35

[64] Wei, S.-E., Ramakrishna, V., Kanade, T., and Sheikh, Y. Convolutional pose
machines. computer vision and pattern recognition (cvpr). In 2016 IEEE Con-
ference on (2016), vol. 2.

[65] Wu, S.-T., and Marquez, M. R. G. A non-self-intersection douglas-peucker
algorithm. In 16th Brazilian symposium on computer graphics and Image Processing
(SIBGRAPI 2003) (2003), IEEE, pp. 60–66.

[66] Yu, F., Koltun, V., and Funkhouser, T. Dilated residual networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition (2017),
pp. 472–480.

[67] Zhou, Y., Qi, H., and Ma, Y. End-to-end wireframe parsing. In Proceedings of
the IEEE International Conference on Computer Vision (2019), pp. 962–971.

A A P P E N D I X

a.1 abbreviations
AP: Average precision

AR: Average recall

CNN: Convolutional Neural Network

DBSCAN: Density-based spatial clustering of applications with noise

FCN: Fully convolutional network

FCIS: fully convolutional instance-aware semantic segmentation

NMS: Non-maximum suppression

ROI: Region of interest

RPN: Region propose network

SPP: Spatial Pyramid Pooling

SIFT: Scale Invariant Feature Transform

SVM: Support Vector Machine

Yolo: You only look once

a.2 results
Some test results on basement3 dataset is shown in this section. First column shows
Mask R-CNN’s predictions and the ground truth masks. The second column shows
our approach’s results. The third column shows detected vertices and voted centers.

36

a.2 results 37

