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Robotic Skill Mutation in Robot-to-Robot
Propagation During a Physically

Collaborative Sawing Task
Rosa E.S. Maessen , J. Micah Prendergast , and Luka Peternel , Member, IEEE

Abstract—Skill propagation among robots without human
involvement can be crucial in quickly spreading new physical
skills to many robots. In this respect, it is a good alternative
to pure reinforcement learning, which can be time-consuming,
or learning from human demonstration, which requires human
involvement. In the latter case, there may not be enough humans
to quickly spread skills to many robots. However, propagation
among robots without direct human supervision can result in
robotic skills mutating from the original source. This can be
beneficial when better skills might emerge or when a new skill
is obtained to be used for other similar tasks. However, it can
also be dangerous in terms of task execution safety. This letter
studies the mutation of a robotic skill when it is propagated from
one robot to another during a physically collaborative task. We
chose the collaborative sawing task as a study case since it involves
complex two-agent physical interaction/coordination and because
its periodic nature can facilitate repetitive learning. The study
employs periodic Dynamic Movement Primitives and Locally
Weight Regression to encode and learn the motion and impedance
required to execute the task. To explore what influences mutation,
we varied several control and environment conditions such as the
maximum stiffness, robot base position, friction coefficient of the
sawed object, and movement period. The results showed that the
skill varied over propagation steps and we identified several key
aspects of mutation such as movement length, movement offset,
and trajectory shape. Based on the results we identified possible
benefits (skill mutations useful for different settings or different
tasks, and energy efficiency) and dangers (high forces and skill
mutations becoming useless for the original task) of the mutation.

Index Terms—Bioinspired robot learning, cooperating robots,
physical human-robot interaction, human-robot collaboration,
compliance and impedance control.
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I. INTRODUCTION

MODERN manufacturing, logistics and service often in-
volve many robots, whose collaborative tasks and work-

ing conditions can change rapidly. Therefore, new robotics skills
are needed quickly to enable robots to adapt to these changes
and prevent process disruption. Traditional manual program-
ming that is still commonly employed in industry fails in such
scenarios due to time-consuming nature of the approach. One of
the main alternatives is reinforcement learning, where robots
explore new tasks via a trial-and-error approach guided by
optimisation functions [1], [2], [3]. These optimisation functions
are human-defined and motivate the robot to autonomously
improve task performance in an iterative manner. Nevertheless,
the approach is still rather slow due to its trial-and-error nature.
Furthermore, if not properly constrained, autonomous explo-
ration can result in unsafe behaviour both for the robot and its
environment [4].

The other main alternative that overcomes these limitations
is Learning from Demonstration, which uses human demon-
strations to train robots [5]. The demonstrations are commonly
provided by kinesthetic teaching (i.e., physically guiding the
robot) [6], [7], [8] or teleoperation (controlling the robot through
an interface) [9], [10], [11]. The main advantage of this approach
is that the human can demonstrate safe skills directly. However,
as the robot learns directly from an expert, the skill is limited
by the ability of the expert to perform a task or provide a good
demonstration [12].

Learning from Demonstration can also be combined with an
exploration-based method like Reinforcement Learning [13],
[14], [15], where the human can provide demonstrations and
corrective feedback while the robot then improves upon that.
However, these studies were limited to single-agent tasks and
did not account for direct collaborative tasks. Furthermore, in a
scenario where there are many robots and few available human
teachers, the skill transfer bandwidth is limited by the amount
of possible human involvement. Concrete examples of this are
highly automatised factories or warehouse facilities where hu-
man workers are fewer compared to robots and act mostly in
supervisory roles.

The work in [16] proposed the concept of skill propagation
among robots through online physical collaboration. The con-
cept envisioned a Learning from Demonstration approach where
the demonstrators are robots themselves instead of humans. The
few robots that obtained the skill from the humans can propagate
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it among novice robots and when novice robots become experts
they can further propagate it among the remaining novice robots.
Thus, this approach can quickly spread the needed skills among
many robots. However, the results of the proof-of-concept
experiment in [16] showed variability in the behaviour of the
learning novice robot compared to the expert teacher robot.
Therefore, propagation among robots without direct human
supervision can result in what we define as a mutation of robotic
skills with respect to the original source.

This can be beneficial when better skills might emerge or
when a new skill is obtained to be used for other similar tasks.
However, it can also be dangerous in terms of task execution
safety. While skill mutation could be observed in the learned
trajectories of the desired position and stiffness of the robot
in [16], the study was limited only to a few propagation steps
and did not explore the underlying reasoning for these mutations.
It is important to have insight into these mutations to understand
the generation of potentially beneficial or dangerous skills.
Therefore, there is a fundamental knowledge gap about skill
mutations during robot-to-robot skill propagation.

To address this critical knowledge gap, we perform a study to
explore the mutation of a skill. This is examined in a scenario
when novice robots are learning a physically collaborative task
from expert robots online during the task execution. Learning
skills online is challenging but it offers more natural interaction
with other agents and the environment for real-time skill adjust-
ments. This is especially important for collaborative tasks where
the execution also depends on the actions of other agents. In our
study, we first examine when and how the skill mutates. We
then test how different factors influence the mutations. Finally,
we investigate the repeatability of the mutation when using the
same conditions. Therefore, the key contribution is new insights
into skill mutations during robot-to-robot propagation.

We gain these insights through simulations and experiments
using two different types of KUKA LBR iiwa robots (i.e., 7 and
14) performing and learning a collaborative sawing task. During
the initial propagation of the skill, one robot is an expert while
the other is a novice without the target skill. To teach the novice
robot the skill, we extend an online learning approach based
on [16]. After learning, the novice is assumed to have become
an expert, and this new expert then propagates its learned skill
among other novice robots in a similar manner.

II. METHODS

The mutation of robotics skills during skill propagation
was investigated on a setup involving a collaborative saw-
ing task (Fig. 1). The robots were controlled using a hybrid
force/impedance controller, where force control is responsible
for maintaining contact with the environment, and impedance
control governs the sawing movement and coordination between
the agents. At the start, one robot was an expert and the other
was a novice. During the task execution, the expert propagated its
skill to the novice, who became an expert and could then spread
the skill to a new novice (Section II-B). To learn the sawing task,
a three-staged learning scheme is used (Section II-C). The skills
were encoded using Dynamic Movement Primitives (DMPs)
and learned online via Locally Weighted Regression (LWR)
(Section II-D).

Fig. 1. Skill propagation workflow. An expert robot (green) propagates its
skill to a novice robot (red) online during collaborative task execution. Robots
were controlled by a hybrid force/impedance controller, which uses an existing
skill (for the expert) or a three-staged learning scheme (for the novice). The first
stage is used for learning the desired motion, the second for the stiffness, and
the final one to execute the task as equal partners.

A. Task and Robot Control

We chose a collaborative task because it is more challeng-
ing and offers more variability in terms of multiple agents
influencing each other. For this purpose, we use a collabora-
tive sawing task as a use case. The advantage of this task is
that the skill consists of a periodic movement, which enables
repetitions and the evolution of the mutation is clearly visible.
In addition, it incorporates the leader/follower roles that are
periodically exchanged in different phases during the execution.
When executing the collaborative sawing task, it is desired to
have a high stiffness when pulling (leader) and a low stiffness
(high compliance) when pushing (follower) not to oppose each
other in different stages [17].

We controlled the robots using a hybrid force/impedance
controller, which enables simultaneous control of force and
motion on different axes. The force controller ensured that
the saw maintained contact with the environment while the
impedance controller was used to control the movement of
the saw. We employed a PI controller to maintain the desired
contact force with the object in the vertical (z-axis). The desired
force was set to F d = −5 N. The impedance controller was
defined as

F imp = K (xd − xa) +D (ẋd − ẋa) , (1)

where xa and ẋa are the actual position and velocity of the
end-effector of the robot respectively, K is the stiffness matrix,
and D is the damping matrix. The goal of the learning process
(Section II-C) is to learn the desired position xd and the corre-
sponding stiffness matrix. The damping matrix is defined as a
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function of the stiffness matrix to achieve a critically damped
system [18].

B. Skill Propagation

The process of skill propagation describes how one agent
passes a skill to another agent, who then passes it to the next, and
so on. One of these steps is implemented using the three-staged
learning scheme, as described in Section II-C. For the sake of
a controlled and systematic study, this research implements the
steps of skill propagation linearly (robot 1 teaches robot 2, robot
2 teaches robot 3, and so on). However, the reality would look
like an exponentially growing tree. If robot 1 has taught robot 2
the task, it will continue teaching robot 3, followed by robot 4,
and so on.

To standardise the process, we mathematically defined the
skill of the initial expert robot, consisting of the desired mo-
tion and corresponding stiffness. Since human sawing move-
ments from past studies exhibit periodic sinusoidal form [16],
[19], [20], [21], we define the mathematical model as xd(φ) =√

1+n2

1+n2x2
sin(φ)

xsin(φ)
Δx0

2 , where xsin(φ) = sin( 2πτ t), n =

0.5 is a constant responsible for “flattening out” the sine func-
tion, τ = 2 seconds is the period of the signal, andΔx0 = 0.15 m
is the initial stroke length. The last two values were defined based
on the results of [16].

Based on past studies, the human manifest leader/follower
behaviour in collaborative sawing in a reciprocal manner [16],
[17]. Therefore, we defined the stiffness as a function of the time
derivative of the trajectory, the velocity ẋd. When the velocity is
negative, a high stiffness (Kmax) is applied, as the robot should
be pulling. When the velocity is positive, the robot should push
so the stiffness is set to zero, which means the robot is compliant

K =

{
Kmax if ẋd ≤ 0,

0 if ẋd > 0.
(2)

The reference frame for each robot is defined in a way that the
x-axis points towards the other robot (see Fig. 1). Equation (2)
is from the perspective of a novice robot.

C. Learning Scheme

For the robot to obtain the skill needed for the sawing task, a
three-staged learning scheme based on [16] was implemented.
See Fig. 1 for an illustration. This method assumes that there are
two agents: a novice who has no knowledge of the skill and an
expert who is already skilled. In the examined task, the goal was
to learn the desired motion and the corresponding stiffness. The
desired motion was learned in stage 1 of the learning scheme,
and the corresponding stiffness in stage 2. Since the task is
periodic, the desired motion and stiffness can be defined as a
function of the phase φ ∈ [0, 2π].

The goal of the first stage is to learn the desired motion. During
this stage, the expert robot has a high constant stiffness, which
allows it to be the demonstrator and thus has complete control of
the movement. The novice robot will be fully compliant allowing
the expert to guide it. As the two robots are physically coupled
through the saw, the movement is transferred between them.

The goal of the second stage is to learn the stiffness required
for reciprocal leader/follower role coordination. Now the expert
assumes the novice knows the desired movement and starts to
exchange the stiffening pattern as would be expected in a true
collaboration. The novice then infers when it needs to stiffen
up by observing whether the actual movement is following the
learned desired one: if it does, the novice remains compliant to
let the expert lead, if it does not, the novice stiffens up to become
the leader. In this research, the desired stiffness Kd is computed
using a continuous function as

Kd(φ) =

⎧⎨
⎩
(

|e(φ)|
eth

)2

Kmax if |e(φ)| < eth,

Kmax if |e(φ)| ≥ eth,
(3)

e(φ) = xd(φ)− xa(φ) (4)

where eth = 0.02 m is the threshold of the error, and Kmax

the maximum stiffness value. As opposed to the previous work
in [16], where the function Kd was discrete, here we made it
continuous to improve the approach in terms of smoothness.

The third stage is used to demonstrate the learned behaviour
in a true collaboration, using the learned trajectory and stiffness
obtained in the previous two stages. During this stage, the novice
and the expert robot will use their trajectory and stiffness as
inputs for their impedance controller.

D. Skill Encoding

We used periodic Dynamic Movement Primitives (DMPs)
[22], [23] to encode the skill of the robot, i.e., position and
stiffness variables, which are dependent on the given phase of
the task. Each variable (position or stiffness) has its own DMP
learning system, whose input is the respective measured variable
and phase, while the output is the learned phase-dependent vari-
able. The outputs are then used as references for the impedance
controller. In order to learn the weights of the DMPs, Locally
Weighted Regression (LWR) is used. LWR is suitable for online
learning due to its ability to quickly update the model [23].
This method updates the weights using a recursive least-squares
method, which is based on the error between the desired trajec-
tory shape and the currently learned trajectory shape. Compared
to alternative methods based on global regression, such as Gaus-
sian Process Regression (GPR), LWR is a local regression and in
combination with the recursive least-squares update rule it excels
in real-time online learning and is thus commonly applied in
DMPs [22], [23]. Once learning is complete, the learned weights
can be saved such that the DMPs may be used at a different
time, for example, during the next skill propagation step. We
investigated and defined DMP and LWR parameters through
preliminary experiments. The DMP parameters were set as: the
number of kernels to 50, the width of kernels to 2.5, gains α = 8
and β = 2. The forgetting factor for LWR was set to 0.995.

III. EXPERIMENTS & SIMULATIONS

A. Setup & Protocol

The setup included KUKA LBR iiwa7 and iiwa14 robots
(right and left, respectively, in Fig. 1). Initially, the task was
implemented in real-world experiments (see the multimedia
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TABLE I
COMPARISON OF THE FACTORS

material for a video). However, when considering a large number
of trials (that include many propagation steps), different com-
binations of parameter settings, and a number of environmental
conditions to be explored, it became clear that real-world experi-
ments would be infeasible for a study of this scope. Furthermore,
the amount of wood needed for the sawing would be enormous
and unsustainable. Finally, since the mutations during robot-to-
robot skill propagation have not yet been explored, the resulting
behaviour can be potentially dangerous. Therefore, we resorted
to simulations where many trials and combinations necessary
for this study could be obtained in a reasonable time frame
and sustainable and safe manner. An additional advantage of
using a simulation is that many confounding factors, such as
environmental conditions, can be fixed to make trials repro-
ducible. This approach allows for a more controlled, repeatable
and systematic investigation of the influence of these factors on
the mutations. We used Gazebo to simulate the robots interacting
with their environment. The robot control and communication
were implemented via ROS.

The sawing axis was defined to be along the x-axis of the robot
base frame. The base frame’s x-axis of each robot was pointing
toward the other robot. The object that was to be cut had a size of
0.565 × 1.0 × 0.1 m, while the baseline saw length was 0.45 m
and mass was 0.5 kg. The movement of the saw along the y-axis
was constrained by the groove of the incision on both sides. The
gravity vector was along the z-axis of the robot base frame.

We conducted numerous experiments to investigate the muta-
tion during the robot-to-robot skill propagation. One three-stage
skill transfer using the learning scheme described in Section II-C
is referred to as a run. Each stage of the learning took 10 seconds,
resulting in a total time of 30 seconds per run. The entire skill
propagation process between 30 robots (robot 1 teaches robot
2,... robot 29 teaches robot 30) that results in 30 runs is called
a trial. In this research, we conducted 5 trials per experimental
setting defined by factors presented in Table I. The experiments
are split into two groups: the group using the baseline setting of
the factors, and the group with changed values for the factors.
To examine them systematically and in an isolated manner, each
factor was changed individually to investigate whether changing
these values would influence the mutation, and if so, how. This
meant that each factor would be set to its baseline value during
this group of experiments, except the one being investigated. The
baseline setting is used for two purposes: as a baseline, which

Fig. 2. Graphical representation of the used metrics. The red line represents
one period of end-effector motion trajectory in the x-axis as measured by the
novice robot (i.e., the highlighted robot on the left). The metrics are defined as
follows: amplitude/stroke length (difference between the global maximum and
minimum value), travelled distance (total distance of trajectory), the midpoint
of movement (between maximum and minimum value), average value/stroke
offset, and the number of peaks (local maximums).

is used to compare the influence of the changed factors, and to
check whether the mutation is repeatable.

B. Metrics

To analyse the properties of mutations in the propagated robot
skill (motion and stiffness) and its resulting behaviour, we used
several metrics, which are graphically depicted in Fig. 2. As we
are interested in the evolution of the skill throughout the different
runs, we defined these metrics as a function of the different runs.
To do so, we computed the value per metric over the span of one
period. Since each experiment consists of 5 trials, the results are
shown as the average of the five trials (per run) and their standard
deviation. This additionally allows for the investigation of the
repeatability of the skill, with a low standard deviation indicating
that the main trends occurring in the different mutations are
similar.

Peak-to-peak amplitude: The difference between the global
maximum and minimum of a signal over one period is called
the peak-to-peak amplitude: |max(x(φ))−min(x(φ))|. For
motion, this metric is referred to as stroke length.

Travelled distance: The distance travelled by the end-effector
of the robot during one period

∫ 2π

0 |δx(φ)dφ|. This metric is
only applicable to motion and not stiffness.

Midpoint of the movement: The point halfway between the
global maximum and minimum: max(x(φ))+min(x(φ))

2 . This met-
ric is only applicable to motion and not stiffness. In the case of
the baseline setting, the bases of the iiwa7 and iiwa14 (right
and left, respectively, in Fig. 1) are located at x = −0.7 m and
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Fig. 3. Skill evolution of the expert and novice robots showed using one period of stage 3 of the learning scheme for different runs throughout one trial. On the
left, four images describing the different metrics have been visualised. In the graph, from left to right, different runs are shown from one trial. Note here that the
runs are not linearly spaced from 0–30. Each of the graphs (a)–(d) show both the results of the novice (blue) and expert (green). From top to bottom: (a) Visualises
the desired motion xd, here means a high value that the end-effector of the robot is further away from the robot’s origin. (b) Shows the stiffness. (c) Illustrates the
actual motion xa of the robots. (d) Shows the forces sent to the robot, with the left axis showing the forces of the novice robot and the right axis showing the forces
of the expert robot.

x = 0.7 m, respectively, in the global frame located midway
between the base frames. A value lower and higher than 0.0 m
indicates that the overall movement shifted closer to the iiwa7
and iiwa14, respectively.

Average value of the data:
∫ 2π
0 x(φ)dφ

t2π−t0
. For motion, this metric

is referred to as the stroke offset.
Number of peaks: Determined by counting the local maxi-

mums in the signal and gives an indication of the data complex-
ity. Note that for stiffness, a flattened peak is often found where
the maximum stiffness was reached. These “flattened” peaks are
counted as only one.

IV. RESULTS

We tested the variation of ten factors and their effect on skill
mutations, which were initially identified through a combination
of a literature survey and preliminary experiments. Four factors
showed visible differences compared to the baseline setting and
are thus closely examined in the results. These factors are the
maximum stiffness, the length of the period, the robot base
position offset, and the friction coefficient (see Table I for the
baseline and varied settings). These factors can be generalised to
other tasks that involve periodic co-manipulation with physical
interaction. The other factors were: initial stroke length, robot
base position distance, saw length, saw mass, robot hardware
(alternating iiwa7 and iiwa14 between runs or keeping them
fixed), and error threshold (from (3)). Some are task-specific
(e.g., initial stroke length), while others can be generalised to
other co-manipulation tasks, objects and scenarios (e.g., length
and mass are relevant in other co-manipulated objects). The error
threshold is learning method-specific but may be generalised
to other position-tracking tasks. In terms of results structure,
we first examine mutations for the baseline setting, using the
previously discussed metrics, to give an intuitive starting point.
The analysis of variations in settings is structured based on
mutation patterns rather than individual factors. This is because

Fig. 4. Analysis of the desired motion learned by the novice robot in stage
1 of the learning scheme. Different metrics are used for this analysis. (a)–(d)
Illustrate the stroke length, the travelled distance, the midpoint of the movement,
and the stroke offset, respectively.

often different tested factors resulted in similar patterns. The
patterns discussed are the influence of the phase lag, overshoot
on the desired motion, effect of the joints states, and approaching
torque limits. In the analysis, we look at both the mutations in
the encoded skills (desired motion and stiffness) as well as the
behaviour that results from it (measured actual motion).

A. Baseline Setting

We will first examine the mutation of the skill for the baseline
setting as defined in Table I. A quantitative analysis of the
mutation in the skill of both the expert and novice robot is
visualised in Fig. 3. This graph shows one period of the learned
skill (stage 3) for multiple runs of one trial.

By observing Fig. 3(a), we can see that the stroke length of
the desired motion xd, as learned in stage 1, increased from run
0 to run 6, after which it plateaued. This plateau is confirmed
when looking at the analysis of the stroke length in Fig. 4(a).
The plateau of the stroke length resulted from reaching the
environment’s boundaries, i.e., the inner parts of the saw handle
on both sides began to touch the object it is sawing. This limit
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Fig. 5. Analysis of the stiffness learned by the novice robot in stage 2. Different
metrics are used for this analysis. (a) Shows the average value of the stiffness.
(b) Shows the number of peaks per period.

was at 0.45 m, which is equal to the length of the saw. There
is a similar pattern visible for the distance travelled (Fig. 4(b)).
Based on these metrics, we could assume that the desired motion
is smooth with only one peak. This is substantiated by looking
at Fig. 3(a). The results of the midpoint and the stroke offset
of the desired motion (Fig. 4(c) and (d)) show similar patterns.
Based on this and the results in Fig. 3, it can be concluded that
the general motion characteristics in one direction are similar
to the other direction. If these were different, the stroke offset
would be shifted compared to the midpoint of the movement.

By analysing the stiffness learned by the novice in stage
2 (Fig. 5), we see that the stiffness’s average value increases
throughout the different runs. The raw data showed that in the
later runs, the error between the desired and actual position of the
robot increased. As the computed stiffness depends on this error
(3), the stiffness was often set to its maximum value. Therefore,
peaks only occurred when the desired motion crossed the actual
motion, which for most cases was only twice. The complexity of
the stiffness will be further examined in the following sections
that present mutation patterns occurring when settings were
varied from the baseline.

B. Factor Variations

While Table I shows a more general overview of skill
mutations based on different settings and factors, we will also
more closely examine several concrete cases. Fig. 6(a) shows
learned desired motion and actual motion for different parameter
settings. Here we define “phase lag” property used in the
analysis, which is a shift in the desired motion pattern compared
to the actual motion pattern along the phase. For example, the
peak motion when the saw reaches one end might be shifted
along the phase during the runs. The phase lag is larger for the
low maximum stiffness setting Kmax = 500 N (Fig. 6(a.2))
compared to the baseline setting (Fig. 6(a.1)), which is natural
since lower stiffness produces less force and thus desired
motion following is less strict. It is interesting that both show
an overall increase in the stroke length throughout the different
runs (Fig. 6(b.1)) and as a result of the phase lag difference,
the increase over runs happens faster in the low stiffness case
compared to the baseline case.

While the low stiffness case exhibits some differences in
mutation compared to the baseline case, the faster movement
speed/frequency case (τ = 1 s) has much bigger effects on the
mutation. By observing Fig. 6(a.3), we can see a larger phase
lag even when stiffness is the same as in the baseline case. This
phase lag resulted in a drift in the stroke offset from run 4
to 30 (Fig. 6(b)). This indicates that the expert robot always

Fig. 6. Influence of the phase lag on the mutation of the learned motion.
(a) Shows from left to right the desired and actual motion of the expert during
the second and third periods of stage 1 of different runs. From top to bottom, the
baseline setup (1), a setup where the maximum stiffness was changed to Kmax

= 500 N (2), and a setup where the period was set to τ = 1 s is visualised (3).
(b) Shows the evolution of the stroke length (1) and the stroke offset of the
learned trajectory of the novice robot during the different runs (2).

Fig. 7. Influence of the phase lag on the mutation of the learned stiffness.
(a) Shows two periods of the actual and desired motion of the novice robot
in stage 2 and its normalized desired stiffness (stiffness divided by maximum
stiffness). This is shown for different maximum stiffness values during run 8. (b)
Shows the evolution, throughout the different runs, of the normalized average
value and the number of peaks of the learned stiffness of the novice robot during
one period.

moves the entire movement slightly closer to its base position.
Furthermore, when the iiwa7 robot is the expert, the entire
movement shifts more towards its base than when the iiwa14
is the expert. However, unlike for the baseline and low stiffness
cases, the stroke length remained relatively constant and did not
mutate for the high-frequency case.

Besides the trajectory, the phase lag also influences the learned
stiffness in stage 2. Fig. 7 shows results for three different values
of stiffness where the different stiffness values were normalised
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Fig. 8. Influence of overshoot on the desired motion on the actual motion.
(a) Shows an example of the results of two phases of stage 1 of the desired
and actual motion (1) and its corresponding force along the x-axis (2) for the
expert robot using two different periods (τ = 2 s and τ = 3 s). (b) Shows the
complexity of the trajectories learned by the novice in different runs.

to 1 for easier comparison. When the stiffness was low (Kmax

= 500 N), the phase lag increased, resulting in a larger error
between the desired and actual motion than for the cases with
higher stiffness. This meant that the transitions between stiff and
compliant behaviour according to the stiffness learning rule in
(3) were smoother in the lower stiffness case than in the higher
stiffness case. To confirm this, Fig. 7 shows fewer peaks in the
stiffness trajectory for the lower stiffness settings, where the
complexity of the trajectory increased with increased peaks for
the higher stiffness setting.

Fig. 8(a) shows the variation of sawing speed: a shorter (τ
= 2 seconds) and a longer period (τ = 3 seconds). For the
shorter period (baseline setting) the resulting robot force is quite
natural: negative while pulling (moving in the negative direction)
and positive while pushing (trajectory moving in the positive
direction). This is not the case for the case with a longer period
(lower sawing speed). The small error between the desired and
actual motion often results in the expert robot overshooting the
desired motion. The robot compensates for this overshoot by
applying a counterforce, resulting in a rougher force signal,
i.e., more peaks. As the novice learns from this measured ac-
tual motion, a trajectory including these irregularities will be
learned. The extent of these irregularities increases throughout
the different runs, which is shown by analysing the peaks of the
learned trajectory (Fig. 8(b)). This indicates that the trajectory
becomes rougher throughout the different runs. A benefit of this
mutation can be found when looking at energy efficiency. This
efficiency is computed using the work W =

∫
K(xd − xa)dx.

As the examples provided in Fig. 8(a) have different periods, we
decided to compare them by computing the work per period.
The results for τ = 2 seconds is 33.3 kJ/period, whereas it
was 11.3 kJ/period for τ = 3 seconds. These results indicate
a trade-off between the smoothness (low complexity) of the
trajectory and its energy efficiency.

C. Repeatability

We also investigated the repeatability of the mutation by
comparing the same runs of different trials (baseline setting).

Fig. 9. One period of the skill learned by the novice robot during multiple
(random) runs of different trials is shown. From left to right, four different runs
are visualized. The upper graphs (a) show the learned desired motion and the
bottom graphs and (b) show the learned stiffness.

The results are shown in Fig. 9. The repeatability of the mutation
is defined as the ability of the robot to reproduce the same skill
(desired motion and stiffness), during each trial. The desired
motion of the different trials exhibits minimal variability and is
thus very repeatable. On the other hand, the stiffness mutations
are much less repeatable. An example of this is provided in trial
1 of run 18 (Fig. 9(b)), where the characteristics of the learned
stiffness were completely different compared to the other trials.
However, for most of the other cases, we often only identified two
peaks. The analysis of the stiffness, in Fig. 5, does show similar
trends for the stiffness, as the standard deviations are relatively
small, again indicating a similar trend for the different trials.

V. DISCUSSION

The testing of different settings revealed both benefits and
risks associated with the mutations. An example of potential
risk can be observed in Fig. 3 where in some cases, the mutated
skill produced relatively higher forces. Though higher force may
be needed in different conditions (e.g., heavier tool, stronger
material, etc.), and thus can also be beneficial. An example of
potential benefit can be observed in Figs. 3 and 4(a), where
the movement trajectory significantly increased its stroke length
after propagation compared to the original run. The increase in
stroke length could be beneficial when using a longer saw or
when cutting a larger object. The increased stroke length also
benefited in terms of force manipulability (i.e., a better capacity
to transform joint torques into endpoint forces). As the range
of the movement increased, the point where the saw switched
direction, from now on referred to as the switch-over point,
moved further away from the base of the robot that had to start
pulling. Therefore, the force manipulability of the robot at this
switch-over point was much higher, producing more endpoint
force in the sawing axis for the same joint torques. Having high
force manipulability at the switch-over point is helpful since
the inertial and stiction forces needed to overcome due to the
switching direction are the highest. Therefore, this mutation
optimised the actions in terms of the force manipulability of
both robots.

The result in Fig. 6(b) showed a case when mutation caused
movement of the offset to drift toward one of the robots. In this
case, one robot is benefiting from an improved force manipu-
lability (the one the offset drifts away from) and the other is
being disadvantaged (the one the offset drifts toward). While
this can be unwanted when two similar robots are used, it can be
beneficial when we have one strong and one weak robot and the
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disproportional manipulability may help them balance out their
strengths and prevent the weak one from being overpowered.

In some cases, the stiffness mutated from a reciprocal
exchange pattern to almost constantly stiff behaviour (e.g.,
Fig. 6(a) left graph). While this is not very useful for collab-
orative tasks where reciprocally exchanging effort is required,
it may be a useful starting skill when executing collaborative
tasks requiring mirrored behaviour [17], or in adapting the task
from collaborative to single-agent where the robot must be stiff
all the time.

We also observed cases where the alternations of the charac-
teristics of the skill were much larger leading to more complex
behaviours (e.g., see Fig. 8). While the mutated behaviour was
less smooth than the original in terms of measured forces,
the task execution was not significantly affected. However, the
rougher behaviour was more energy efficient as the work exerted
by the robot was less: 33.3 kJ/period for smooth compared to
11.3 kJ/period for rough, as was already mentioned in the results.
Besides energy efficiency, there is also a task-related tradeoff be-
tween smoothness or roughness of behaviour. For some delicate
tasks, rough interaction is unwanted or even dangerous, and thus
such skill would not be beneficial. However, other tasks may
benefit from rough interaction, such as polishing off hard stains
from a surface.

Finally, other variables such as forces may be affected by
mutations of skills. In the particular example shown in Fig. 3,
the force peaks gradually increased on both robots roughly
equally in the initial runs and stabilised in run 10. However,
in subsequent runs, novice skill further mutated and its forces
decreased with respect to expert. This may be due to mutation
exhibiting inclination of the saw angle towards the novice robot
and thus reducing its pulling efforts.

In summary, this study identified several key aspects of
skill mutation such as movement length, movement offset, and
trajectory characteristics. Based on the results we identified
possible benefits (skill useful for different settings or different
tasks, energy efficiency, improvement of manipulability) and
dangers (high forces and skill becoming useless for the original
task) of the mutation. However, there are some limitations of
this study that open possibilities for future work. While the
sawing task is an excellent case study as it provides many
aspects like motion, stiffness, coordination, and physical in-
teraction with both environment and another agent, exploring
other tasks would be interesting as well. Furthermore, if many
robots and experimental resources are available over a prolonged
time, it would be interesting to repeat the study fully in a real
setup.
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