<]
TUDelft

Delft University of Technology

The Effect of Stress Wave Dispersion on the Drivability Analysis of Large-Diameter
Monopiles

Meijers, Peter; Tsouvalas, Apostolos; Metrikine, Andrei

DOI
10.1016/j.proeng.2017.09.272

Publication date
2017

Document Version
Final published version

Published in
X International Conference on Structural Dynamics, EURODYN 2017

Citation (APA)

Meijers, P., Tsouvalas, A., & Metrikine, A. (2017). The Effect of Stress Wave Dispersion on the Drivability
Analysis of Large-Diameter Monopiles. In F. Vestroni, V. Gattulli, & F. Romeo (Eds.), X International
Conference on Structural Dynamics, EURODYN 2017 (Vol. 199, pp. 2390-2395). (Procedia Engineering;
Vol. 2017, No. 199). https://doi.org/10.1016/j.proeng.2017.09.272

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.proeng.2017.09.272
https://doi.org/10.1016/j.proeng.2017.09.272

Available online at www.sciencedirect.com

® Procedia

Crosark ScienceDirect : :
Engineering

Procedia Engineering 199 (2017) 2390-2395
www.elsevier.com/locate/procedia

X International Conference on Structural Dynamics, EURODYN 2017
The Effect of Stress Wave Dispersion on the Drivability Analysis of
Large-Diameter Monopiles
P.C. Meijers®*, A. Tsouvalas®, A.V. Metrikine®

“Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

Abstract

Due to the increasing need for energy from renewable resources, a large number of offshore wind farms are planned to be con-
structed in the near future. Despite the plethora of available foundation concepts for offshore wind turbines, the monopile founda-
tion is the most widely adopted concept in practice. To predict the installation process for a monopile a so-called drivability study
is performed. Such a study allows one to decide on a number of key parameters for the installation process, such as, the appropriate
size of the hydraulic hammer, the number of hammer blows and energy input needed to reach the final penetration depth, and the
induced stresses in the system. The latter is important for the prediction of the fatigue life of the pile.

Currently, drivability studies are based on one-dimensional wave equation models as first proposed by Smith in the 1950s. These
models are valid as long as the diameter of the pile is small compared to the excited wavelengths in the structure due to the hammer
impact. For large-diameter monopiles that are currently being used in the offshore wind industry, the latter condition is not met and
the effect of stress wave dispersion can no longer be neglected.

In this paper the classical wave equation model is amended by an extra term which accounts for the lateral inertia of the cross-
section, resulting in the so-called Rayleigh-Love rod theory. With this new model, a parametric study is performed in which the
effect of stress wave dispersion on the induced stresses and the number of hammer blows needed to reach the final penetration depth
are assessed. A comparison with the results obtained from the classical model is also included in order to define the applicability
range of the models. It is shown that the effect of stress wave dispersion can not be neglected for a drivability study of large-diameter
monopiles.

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
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1. Introduction

Due to the increasing need for energy from renewable resources, a large number of offshore wind farms are planned
to be constructed in the near future. To accommodate wind turbines of larger capacity, the size of the support structures
is increased. The most commonly used support structure is a steel monopile [1]. Recently installed monopiles in the
North Sea reached a diameter of about 8 m and a length of over 80 m [2]. The dimensions are expected to increase in
the coming years as larger and more powerful wind turbines are designed.
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Monopiles are driven into the seabed in various ways. The most commonly used technique is to drive the pile to
the desired penetration depth with a hydraulic hammer. In order to determine the hammer type and the number of
blows needed to reach the final penetration depth a so called drivability study is performed. The induced stresses in
the structure are also computed as a prerequisite for an estimation of the fatigue damage inflicted by the pile driving
process [3]. Since fatigue damage depends on the number of stress cycles and their amplitudes, an accurate prediction
of the stress history during pile driving is of importance.

A drivability study is often performed using a wave analysis program such as GRLWEAP [4], which is based on
the one-dimensional wave equation model developed by Smith in the 1950s [5]. The resistance of the soil is usually
modelled with non-linear springs and dashpots representing the soil stiffness and damping respectively. To improve
the predictions of original model by Smith, several additional models have been introduced over the years, as for
example the ones by Randolph and Simons [6] and Lee et al. [7]. In parallel, more advanced models have also been
developed through the years which are primarily based on the use of the Finite Element Method (FEM) to describe
the soil together with a three-dimensional description of the structure [8,9]. Despite the fact that such models are
expected to increase the accuracy of the predictions, they are computationally expensive, hence, they never actually
replaced the original model by Smith.

The original drivability model developed by Smith is based on the classical one-dimensional wave equation in
which geometrical dispersion effects are neglected. For slender piles in which the excited wavelengths in the sys-
tem are much longer compared to the pile diameter such effects can indeed be neglected. However, for larger-size
monopiles excited at relatively low frequencies dispersive effects can be quite significant around the ring frequency of
the cylindrical shell structure. In his PhD-thesis, Deeks [9] concludes that for thin-walled piles stress wave dispersion
is present and that further research is needed. In the more recent work by Deng et al. [10], it is mentioned that the
simple one-dimensional model is not capable of describing accurately the stress wave propagation in large-diameter
piles during pile driving.

In this paper a simple extension of the one-dimensional drivability model is proposed to include the geometrical
dispersion effects associated with large-diameter monopiles used in industry today. A parametric study is conducted
to reveal the applicability range of the various models. Finally, conclusions are reached as to the influence of the
geometrical dispersion in the stress wave propagation along the pile and the possible influence in the pile driving
process.

2. Drivability model

A sketch of the pile driving process is shown in Fig. 1. A linear elastic cylindrical hollow pile is partially embedded
into a uniform soil layer. The pile is considered to be thin-walled with outer radius r, wall thickness & and cross-
sectional area A ~ 2arh. The material properties of the pile are Young’s modulus E, Poisson’s ratio v and density
p, whereas soil properties are similar but have the subscript s. To prevent soil plugging in the pile, which would
complicate the analysis, the tip of the pile is considered to be closed by a round plate.

The displacement of the pile, u(z, f), is assumed to be governed by the Rayleigh-Love rod theory [11, p. 116-121],
which is an improvement of the classical rod theory to include the effect of lateral inertia of the cross-section. The
governing equation is

8u 8u &*u
pAW —EAa—Zz +R_Y—[pv21,,at2—622] =0, (D)
in which R; is the non-linear resistance of the soil and /, is the polar second momentum of area of the cross-section.
The term in square brackets is the additional Rayleigh-Love correction term, which is not included in the original
wave equation model by Smith [5].
From the displacement u(z, f), the axial stress o7(z, ) in the pile can be computed as

o(z, 1) = E@ +
0z

where r, = 4/I,,/A is the radius of gyration. Again, the term between square brackets emerges from the Rayleigh-Love
theory and is neglected in classical wave equation approach.
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Fig. 1. Sketch of the pile driving process (left) and the drivability model (right).

At t = 0 the system is assumed to be at rest and the boundary conditions are given by

(0,0 = F(n)/A, @
o(L,t) = Ps/A, 3)

where F'(¢) is the hammer force and P; the soil response at the pile tip.

The soil is modelled by distributed non-linear springs and dashpots, following the classical approach of Randolph
and Simons [6]. This model has been developed originally for piles of relatively small diamter and assumes a local
reaction of the soil. In equation (1), the soil resistance along the pile shaft per unit length of the pile, Ry, is given by

R = Ku + CS% when |K5u + CJ%| < 2nrq,,
Y \2nrg, otherwise,

where the soil stiffness K; = 2.9G, and the soil damping C, = 2nr v/G,p;, in which G; is the shear modulus and p; is
the density of the soil. The magnitude of the soil resistance is limited by the ultimate friction coefficient g, of the soil
multiplied by the circumference of the pile.

Similarly, the soil response at the pile tip (P, in equation (3)) is given by

(9 P
P {K,u +C when [Ku| < A, P™,

APT™ 4+ C ,% otherwise,
where K, = 4G,r/(1 - v,) and C; = 3.4r* \/G,p,/(1 — v,) with v, the Poisson’s ratio of the soil. Furthermore, Py is
the ultimate soil resistance and A, = 72 is the cross-sectional area of the pile tip. The final set of the pile after one
hammer blow is equal to the displacement of the pile head when the system is at rest again.

3. Cases

To investigate the effect of lateral inertia on the stress wave dispersion, predictions of a classical wave equation
model [6] are compared with the results of the present model for three different cases. The cases consider piles of
different radii while keeping induced stress levels and frequency content of the hammer force equal. The numerical
values used for all piles are presented in Table 1 and case specific quantities are provided in Table 2.
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Table 1. Pile and soil properties used for all cases

Pile parameter ~ Value Soil parameter ~ Value Soil parameter ~ Value
E 210 GPa Gy 24.25 GPa Qu 100 kN/m?
v 0.3 Vs 0.48 pimax 900 kN/m?
p 7750 kg/m? Ds 1900 kg/m?
L 58 m H 23 m

Table 2. Case specific parameters and values for the final set of the pile after a single hammer blow

Case rim]  h[mm] «[] f[Hz]l fFI ucw [mm]  wry [mm]  Au [%]
1 0.4572 20 1.0 1900 0.23 5.57 5.55 -0.36
2 2.0 40 8.75 434 1.00 6.00 6.02 0.33
3 3.5 70 26.8 248 1.73 5.64 5.87 4.08
w [Hz]
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Fig. 2. Time signal of the input force for Case 1 (small pile) in black. The corresponding amplitude spectrum is shown in gray, with foo = 430 Hz
indicated by the vertical dashed line. The ring frequencies for the three considered cases are indicated with an x.

The hammer force F(¢) in equation (2) for Case 1 is generated using the hammer model developed by Deeks and
Randolph [12] with m, = 4000 kg, m, = 1000 kg, ¢c. = 0 Ns/m, k. = 3.5 GN/m, vy = 6.5 m/s, Z = AvEp =
2.3 MNs/m. The resulting time signal is shown in Fig. 2 together with the amplitude spectrum of the signal, |F(w)|.
In Fig. 2, the upper bound of the frequency range containing 90% of the energy, foo, is indicated. This characteristic

frequency is defined as
90 00
f |F(w)| dw = O.9f |F(w)| dw.
0 0

In order to keep the frequency content (and therefore foq) of the hammer force equal for the three cases, only the
amplitude of the force signal is scaled with scaling parameter « as presented in Table 2. The magnitude of @ is chosen
such that the stresses induced at the pile head are equal for all cases.
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A characteristic for the wave propagation in a monopile is the ring frequency. This frequency corresponds with the
breathing mode of the cylindrical shell structure and is given by [13]

1 E
= 2 \p =)

For larger radii, the value of the ring frequency decreases, as can be seen in Table 2. By defining the dimensionless
frequency

= _ Joo
f =0
fr
an indication is given whether the ring frequency of the pile lies outside (f < 1) or within (f > 1) the energy containing
frequency range of the force signal.

4. Numerical set-up

The problem defined above is solved numerically by means of the Finite Element Method using FEniCS [14]. The
pile is divided into 250 linear elements, resulting in Ax = 0.232 m. An explicit Newmark time marching scheme
(B = 0.25 and y = 0.5) [15] with a time step of At = 1 - 1073 s is chosen for the time integration of the governing
equations.

5. Discussion

The axial stress distributions of the incident wave (¢ = 0.10 s, black) and the reflected wave (¢ = 0.21 s, gray) are
shown in Fig. 3 for the three cases. For f < 1 the stress profiles predicted by both models do not differ from each
other. When f ~ 1 the profiles start to differ: the shape is similar, but a time shift is observed. Due to the similarity
in stress wave shape, fatigue predictions for this case will not differ when the classical model or the proposed model
is used since the number of stress cycles does not change. However, for f > 1, the dispersion of the stress wave as a
result of lateral inertia, is no longer negligible. A careful examination of the presented stress wave profiles shows that
the dispersion causes additional alterations of compressive and tensile stresses in the pile compared to the classical
approach. This means that number of stress cycles increases. Therefore, predictions of consumed fatigue life of the
pile based on the new model will be higher.

A drivability study is also used to predict the penetration of the pile into the soil due to a single hammer blow,
giving an indication of the total number of impacts needed to reach te desired penetration depth. The pile set from one
hammer blow determined with both models is presented in Table 2 for each of the three cases. The difference between
the predicted set of the classical model (#cw) and of the dispersive model (ugy ) is also given as a percentage of ucw.
When the shape of the stress wave is similar (case 1 and 2, f < 1) both models predict a comparable penetration. For
f > 1, the difference between the set predicted by both models becomes larger, which results in a different prediction
of the number of blows to reach the desired penetration depth.

6. Conclusion

Currently, a drivability analysis ignores the stress wave dispersion caused by the lateral inertia of the cross-section,
since it is based on a classical wave equation model. In this paper, the effect of lateral inertia is included by adding
the Rayleigh-Love correction term to the governing equations, while the soil is modelled with distributed non-linear
springs and dashpots conform to the classical approach. A case study shows that for large-diameter monopiles two
aspects of the drivability analysis, the induced axial stress levels and the predicted pile set, are altered by stress wave
dispersion. These two quantities are of importance for the prediction of the fatigue damage of the pile caused by the
pile driving process. Therefore, the effect of lateral inertia should be considered in a drivability analysis when the ring
frequency of the pile lies within the energy containing frequency range of the hammer force, i.e. when f > 1.
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Fig. 3. Axial stress distributions along the pile axis at = 0.10 s (black) and ¢ = 0.21 s (gray) for different values of f. The dashed lines (.—) are the
results from the classical wave equation model and the solid lines () the results from the newly proposed method. From top to bottom f=023,
f=1.00and f = 1.73, respectively.
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