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PREFACE

This master’s thesis ’Traffic Safety Through Cooperative Automated Vehicle ’Herd Immunity” is a proof of con-
cept for herd immunity in car traffic. The idea that the concept of herd immunity could function for car traffic
immediately grabbed my attention as I was looking for possible topics to graduate in. Combining a number of
topics that interest me I was enthralled by how this concept would function realistically. This thesis is written
for my master’s graduation in Transport & Planning at the faculty of Civil Engineering and Geosciences at the
Delft University of Technology. This thesis was executed from April 2021 till January 2022. Throughout this
process a number of people have been absolutely incredible in helping me cross the finish line.

I am profoundly grateful to Simeon Calvert, my daily supervisor, who managed to give me focus when there
was otherwise none to be found. Our meetings always left me thinking critically of my work and raised the
academic level. Through thick and thin, regardless of COVID-19, he was able to motivate me and provide crit-
ical feedback. Next I would like to thank Eleonora Papadimitriou, my external supervisor, for going above and
beyond for what an external supervisor should take on her plate. She helped me immensely with the set up of
my report and keeping the big picture in mind. Although she might not always agree with simulation for safety
purposes, she kept bias aside and was an incredible help. Lastly I would like to thank my chair, Bart van Arem,
for providing critical discussion points during presentations and meetings. With his tremendous experience I
was pointed towards the right direction and I was able to scope my project appropriately.

Due to COVID-19 it has not been the smoothest process graduating at the Delft University of Technology, but a
number of people helped keep my sanity at a healthy level. Brian and Eline provided the much needed coffee
breaks and Olympics streams. Daphne, you were there when I needed someone to rant at and with. Igor, we
talked about everything and nothing, and that’s often exactly what I needed. Another thanks goes out to Ivo,
who helped me keep a healthy perspective and played more than enough chess with me. Finally, a special
thanks goes out to my mom, who helped me pick the topic, as well as providing brilliantly fancy lunches even
if it was never the most convenient for her.

This topic has helped broaden my knowledge on traffic safety and cooperative automated vehicles. I’m very
curious to see this work be continued by others and to see what conclusions it brings them.
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SUMMARY

The research of connected automated vehicles (CAVs) is an emerging topic within the field of transport & plan-
ning. It is not a question of whether the vehicles will be available for commercial use, but rather a question of
when they will arrive. The safety of these vehicles is a necessary and ongoing discussion. In current research,
a consensus is reached that crashes occur mainly due to human error. This human error is either due to negli-
gence of the driving activity, like drunk driving or texting while driving, or due to incorrect decision making at
critical moments. This study focuses on the topic of traffic safety with the principle of herd immunity in mind.
It is theorised that crash risk can behave similarly to how a virus behaves (where crash risk is the chance that
a crash occurs at a certain point in time). It spreads and infects vulnerable members of the population. The
aim of this study is to determine whether the principle of herd immunity can be applied to car traffic, and if
so, to what extent they can be compared through an impact assessment. The research question attached to
this is: "How is traffic safety influenced by connected (automated) vehicles considering the concept of herd
immunity?"

To discover the theorised safety impacts of CAVs, an extensive literature review was performed. Another pur-
pose of the literature review was to determine the effects that separate models could have on a simulation
model, and which of these models would be most appropriate for simulating CAVs and human drivers in the
same model. The first part of the literature review concerns the principle of herd immunity. Here it is defined
as the resistance to infection that a population has due to a proportion of the population having immunity
to said virus. The goal of this part of the literature review was to define the mechanisms that make up viral
spread and herd immunity. Gaining a better understanding of this topic made it possible to translate it to herd
immunity for car traffic. Many of the variables of either principle could translate quite directly, for example;
frequency of contact, crash risk/viral load, and traffic volume/agent volume. This could then be connected
to traffic safety. Traffic safety as part of the literature review had two functions, one considering which safety
metric to use to measure safety in the simulation model, and another to see the general effects of CAVs on traf-
fic safety. The results of this research indicated that CAVs could only provide benefits as most crashes occur
due to human inputs or interference. The chosen safety metric for vehicle simulation was safety fields. This
safety metric is an underutilised safety metric that has received little attention in previous research because it
is a fairly new development in traffic safety, and it is a bit more elaborate to apply than other safety metrics.
This safety metric provides much more than a standard safety metric as it incorporates more than just the ve-
hicles on the road, it includes a behavioural field as well as a static field of influence. The behavioural field is
especially useful as it helps distinguish between the behaviours of a CAV and a human driver.

The literature review was continued by the research into the different driving behaviours that distinguish a
CAV from a human driver. This section of the literature review was especially targeted to the driving behaviour
that could be simulated. For that purpose, this part of the literature review was done in tandem with the se-
lection of an appropriate car-following model. These car-following models make use of different parameters
to determine their specific driving behaviours. The intelligent driver model+ (IDM+) was chosen as the car-
following model because it is a transparent, straightforward model with sufficient distinguishing factors for
driving behaviour. Headways and speeds were the main methods in calculating the acceleration and deceler-
ation of the following vehicle. Several other car-following models were considered but IDM+ was considered
the most appropriate for the purposes of the research. The driving behaviour of CAVs and human drivers were
distinguished by there headways, reaction times, and driving risk. Human drivers were considered to have
a driving risk parameter value of 0.4 which is used when calculating the strength of the behavioural field for
safety fields, whereas CAVs have a driving risk of 0 because they are assumed to exhibit perfect driving. Reac-
tion times were also set to 0 for CAVs because they can instantly react to the actions of vehicles around them,
whereas human drivers have a 1 second reaction time (which is still considered an optimal reaction time). The
headways depended on the vehicle order, CAVs following other CAVs have a headway of 0.9 seconds, humans
following either type of vehicle had a headway of 1 second, and CAVs following human drivers used a desired
headway of 1.5 seconds.
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Lane-change models were researched to determine the effects that CAVs could have on the safety when con-
sidering lane-changes. Many lane-change models were considered in the literature review and it was agreed
that CAVs would provide benefits for lane changing because they do not desire risky manoeuvres. Vehicle
crashes occur frequently due to lane-changes and CAVs could lessen that because they are able to take in all
surroundings at all times, whereas human attention can only be focused in one direction at a time. The posi-
tive effects that CAVs could have on lane-changes is apparent, but for the purpose of this research, they would
not be used in the simulation model.

The simulation methodology is based on the decisions made in the literature review. After having chosen
the appropriate safety metric, car-following model, and driving behaviours, the simulation model could be
created. The methodology describes the design steps of the simulation model. The purpose of the simulation
model is to act as an impact assessment for the introduction of CAVs. To do this, all of the decisions made
previously had to be incorporated into the model. Depending on the type of vehicle as well as what vehicle they
are following, their simulation parameters are different. Attaining statistical significance was also included
in this methodology. This was reached by having a specific number of simulation runs which would vary
the order at which the vehicles would enter the road. This method of varying the runs was created so that
situations with different following situations would arise. Calibration was also included in the methodology
to ensure that the simulation inputs would create the most realistic situations. Here several input variables
were tested to determine their effects on total simulation time as well as reducing the potential for outliers.
Two separate simulation scenarios were designed. One was the baseline scenario which did not include any
disturbance, and the second was a single lane scenario with a disturbance being added at a specific location
for a certain amount of time. The data analysis was done for the second scenario. Safety fields do not have
a unit of measurement which is why it is only possible to compare it with other safety fields values. First, the
kinetic safety field strength is shown by Equation 1. The kinetic safety field strength is what is used to find the
behavioural field strength, and these two combined create the total safety field strength. The magnitude of the
kinetic safety field strength is mainly influenced by the proximity of the leading vehicle as well as the speed of
the leading vehicle. These factors along with the virtual mass of the following vehicle make up the safety field
strength.

EV = G ·Rc ·Mc∣∣r c j
∣∣k1

· r c j∣∣r c j
∣∣ ·e(k3vc cosθc ) (1)

Where:

• G : Gravitational constant

• Rc : Road condition influencing factor.

• Mc : Virtual mass of vehicle c.

• rc j : Distance between vehicles.

• k1 & k3: undetermined constant greater than zero (Wang et al. [1], 2015).

• vc : Velocity of vehicle c.

• θc : Angle between velocity of the leading vehicle and following vehicle.

Equation 2 shows the potential field equation necessary for calculating the total safety field strength. This
equation is not used in the simulated scenarios because there are no static objects in the simulations, which
foregoes the need for this part of the safety field strength.
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E R = G ·Rc ·Mc∣∣r c j
∣∣k1

· r c j∣∣r c j
∣∣ (2)

Where:

• G : Gravitational constant

• Rc : Road condition influencing factor.

• Mc : Virtual mass of vehicle c.

• rc j : Distance between vehicles.

• k1 : Undetermined constant greater than zero (Wang et al. [1], 2015).

The behaviour field depicted by Equation 3 is what determines the safety field strength due to the behavioural
impact. This is done by using the kinetic field strength in combination with a variable called "driving risk".
Each driver has a certain value of "driving risk" where the higher the number, the larger negative impact it has
on the level of safety.

E D = EV ·DRc (3)

Where:

• E D−c j : Behaviour safety field strength.

• EV−c j : Kinetic safety field strength.

• DRc : Driver risk (dimensionless value between 0 and 1).

E S = E R +EV +E D (4)

Combining the kinetic field, potential field, and behaviour field results in the total safety field strength as
shown by Equation 4.

Due to the lack of previous information on the topic, a relative safety field strength was created to analyse the
collected conflict data. This relative safety field strength is shown by Equation 5. This equation is the main
method for comparing the simulation data because it makes it possible to compare the safety field values even
when using multiple different types of vehicles.

ER, i , t = Ei , t −Ei , F (5)

Where:

• ER, i , t : Relative field strength of vehicle i and timestep t.

• Ei , t : Field strength of vehicle i at timestep t.

• Ei , F : Field strength of vehicle i at final timestep.

Table 1 and Table 2 show the most important tables of the results. Table 1 shows the number of conflicts
at different thresholds of relative safety field strength, and Table 2 shows the conflicts above a threshold of
2.1 as well as the following situation for each conflict. These tables show that there are clear benefits to be
gained from the introduction of CAVs into the simulation. A penetration rate (percentage of CAVs on the road
section) of 65% leads to the least number of conflicts, but this is partly caused because such a large range of
conflict severity is taken into account. When only looking at a safety field strength of 2.1 or above, the highest
penetration rates also have the fewest conflicts. This can be explained by the lack of conflicts that occur in the
following situation of CAV following an HDV (Human Driven Vehicle). The cautious nature of CAVs when they
follow a human driver ensures that they do not get into the critical conflict range.
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Table 1: Number of conflicts per conflict severity and penetration

Conflict Severity 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
1-1.5 5682 6147 6392 6636 6748 6841 6928 6949 6940 6879 6915 6818 6852 6429 6189
1.5-1.8 3159 3169 2953 2795 2766 2702 2736 2783 2847 2902 2994 3142 3556 3860 4481
1.8-2.1 3250 3159 3159 3135 3197 3169 3201 3340 3441 3663 3861 4192 4853 5439 6192
>2.1 8433 7260 6206 5406 5076 4769 4327 3862 3521 3172 2762 2466 1699 1201 661
Total 20524 19735 18709 17972 17787 17482 17192 16934 16749 16616 16531 16618 16960 16929 17523

Table 2: Relative safety field strength >2.1 conflict types per penetration

Threshold >2.1 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
HDV-HDV 8433 6535 4986 3745 3321 2790 2281 1827 1457 1174 875 703 239 52 0
HDV-CAV 0 700 1163 1578 1646 1825 1872 1846 1821 1722 1644 1452 1076 620 0
CAV-CAV 0 25 57 84 110 154 175 190 244 276 242 312 384 529 661
CAV-HDV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 8433 7260 6206 5406 5076 4769 4327 3862 3521 3172 2762 2466 1699 1201 661

On top of these results, a sensitivity analysis was performed to determine the effects of several input variables.
Here the maximum acceleration, maximum deceleration, driving risk parameter, and disturbance velocity
were tested. Varying the maximum deceleration yielded unexpected results, instead of increasing the num-
ber of conflicts, reducing the maximum deceleration resulted in fewer conflicts. The milder style of driving
benefited the simulation results as they were less likely to cause a conflict when braking hard. For maximum
acceleration, the number of conflicts increased with the maximum acceleration, but these changes were quite
mild. The changes made to disturbance velocity and driving risk were more significant. Increasing the driving
risk heavily affected the number of conflicts and showed that in situations with a lot of risky driving happening,
that CAVs would be even better able to solve potential conflicts on that road system. Changing the disturbance
velocity also changed the number of conflicts heavily. Here the slopes per penetration rate were not necessarily
affected, but the number of conflicts would increase or decrease by a certain margin. The slower the vehicles
would have to drive, the more conflicts occurred.

Both the literature review as well as the simulation results showed that traffic safety is positively influenced
by the introduction of CAVs onto the road. The literature review showed that it was possible to translate herd
immunity for viruses to herd immunity for car traffic. The mechanisms in either are similar and possible to
be translated. The impact assessment showed that not only do the number of conflicts decrease as the pene-
tration rate increases, it also decreases the severity of these conflicts. At a 100% penetration rate, CAVs follow-
ing other CAVs caused so few conflicts that the secondary effects of herd immunity are definitely displayed.
Returning to the research question: "How is traffic safety influenced by connected (automated) vehicles con-
sidering the concept of herd immunity?" the results show that the principle of herd immunity can definitely
be applied to car traffic including CAVs. These results should prove the concept, but there were some limita-
tions in the research as well. The main limitations were due to the limited comparison material. No previous
research was done on this topic and it makes it difficult to compare to any existing data. On top of that, the
safety metric of safety fields is still being developed and has seen limited use. Equation 5 was created specially
for this research and has potential in the future to help other researchers to be able to compare the the values
of the safety field strength. The lack of other research with safety fields did make it difficult to determine the
proper calibration values. The limitations do not reduce the quality of the results, but it shows that there is
sufficient additional research to be performed on this topic. The recommendations are based on expanding
the research done with this research as prior knowledge. Especially safety fields has the potential to become
an effective safety metric because it provides so much more information than any other safety metric. The
inclusion of the behavioural field and the static field adds to the effectiveness of this safety metric. Additional
scenarios would also help support this research, because if the concept can be proved for other scenarios, then
CAVs have that much more reason to be developed.
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1
INTRODUCTION

Connected Automated Vehicles (CAVs) are an emerging topic in the field of transportation. These vehicles are
able to communicate with other connected vehicles or surrounding infrastructure to share information. The
information shared can be anywhere from individual car actions to traffic data. For the rest of this paper, CAVs
concern levels 4 and 5 of the SAE levels of vehicle automation. CAVs come with a plethora of advantages rang-
ing from fewer crashes, to better traffic flow due to smaller headways and faster reaction times (Fagnant and
Kockelman [2], 2015). Although this might not seem like a big deal, the yearly crashes and subsequent fatalities
and injuries are still far too high. Not only that, but CAVs can make driving more efficient as they are better
able of keeping ideal speeds to reduce fuel expenditure. This master’s thesis focuses on the safety impacts that
CAVs can have on the surrounding vehicles through the concept of herd immunity. Herd immunity is a con-
cept that is used to describe the spread of a virus when members of the population start being immunised for
the virus. How the concept connects to CAVs is that the CAVs can be considered the immunised members of
the population. Through this, it is surmised that the safety of all vehicles on the road improves due to the intro-
duction of CAVs. This thesis looks to explore this concept through a literature review and through modelling
scenarios where CAVs are present. The literature review focuses on the types of car-following models and the
traffic safety of CAVs. The model itself makes use of car-following models and metrics of safety to determine
the safety of the scenarios.

1.1. PROBLEM ANALYSIS

There are a number of important topics to discuss in the problem analysis. Firstly, herd immunity has not
previously been used while modelling vehicles. This provides scientific relevance to the topic as it is a concept
not discussed previously. Therefore, the mechanism of how herd immunity functions needs to be researched.
Figure 1.1 shows how herd immunity works in a population. As more members of the population are immu-
nised, viral spread is reduced. In the case of vehicle traffic, the immunised vehicles would be the CAVs. The
CAVs are theorised to improve the safety of all surrounding vehicles. This concept is based on the idea that
CAVs can absorb errors made by the HDVs (human driven vehicles). Fagnant and Kockelman [2] (2015) claim
that 93% of all crashes are due to human error. The same papers goes on to describe that CAVs have a number
of aspects that humans cannot replicate:

• CAVs have an improved situational awareness through potential wireless communication with infras-
tructure or other connected vehicles.

• CAVs have a faster reaction time close to 0 seconds.

• CAVs can check all their surroundings simultaneously.

Through the above points, CAVs are able to improve the stability of a road. The improved stability stems from
smoother braking and fine speed adjustments (Fagnant and Kockelman [2], 2015). This reduces the turbulence
that occurs on a highway and improve the traffic flow, while also improving the road safety.
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Figure 1.1: Herd immunity

To compare herd immunity in organisms to herd immunity in CAVs it is necessary to look at how a virus
spreads. The core principles of how a virus spreads can be translated to herd immunity for cars. Gao et al.
[3] (2021), Arav et al. [4] (2020), and Bouchnita and Jebrane [5] (2020) have all done work in describing how
a virus spreads. The papers also go on to create node models to mathematically describe the spread of the
virus. Vehicles on a road are bound to act differently than a virus in a population, but the effects of immunised
members can be similar. This is why the comparison can be made. This similarity is depicted by Figure 1.2.
By effectively nullifying mistakes made by HDVs, CAVs can improve the safety of all surrounding vehicles. Pre-
vious studies have corroborated the idea that CAVs can improve the safety of a road, but not in the manner
proposed in this paper.

Figure 1.2: CAV Herd immunity

With the above concept in mind, MATLAB is used as a tool to simulate CAVs and HDVs to explore the concept of
herd immunity for car traffic. This is done in combination with metrics of safety to be able to measure the level
of safety of the simulated scenarios. There are a number of components necessary to create this model. First,
the scenarios have to be chosen. In order to prove the concept, scenarios are used that are simple by nature
such as, a single lane road. This decision was made because proving the concept of herd immunity is the main
objective of this research and adding unnecessary complexities could affect the quality of that research. The
driving process is dynamic by itself and making it more complex could make it more difficult to capture the
effect of herd immunity. The car-following model used should follow a similar structure. It should be simple
to understand and use for small scale scenarios.
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Figure 1.3: Blind spot interaction

Figure 1.3 depicts a vehicle crash due to lane-changing in a blind spot. CAVs could react to manoeuvres quickly
and make the necessary adjustments to stop an accident from happening. Additionally, by contacting sur-
rounding vehicles, they could let the rest of the vehicles on the road know that they had to change their path.
This is just one of the few ways in which CAVs could absorb the mistakes made by another driver and com-
pensate for that behaviour by contacting other connected vehicles to notify that turbulence will occur. This
leads to following vehicles reducing their speed and also reduces the need for hard braking. Another common
road crash is a rear-end collision. Staver [6] (2020) claims that rear-end collisions are the most common type
of crashes between two vehicles. Using the concept of herd immunity, connected vehicles could let upstream
vehicles know that there is congestion ahead. By letting the upstream vehicles know this, they can start reduc-
ing their speeds to make all vehicles start reducing their speed, significantly lowering the chances of a rear-end
collision. These are just two examples of how the concept of herd immunity can apply to vehicles on a highway.
The above statements are all possible scenarios, but the concept has to be proven in a simulation.

Determining the safety of each scenario is key to this research as there are many possible methods to apply.
There is no historical crash data available because SAE levels 4 or 5 vehicles have not been created yet. There-
fore, it is necessary to rely on other methods to determine the safety of a road. Many studies in the past (Huang
et al. [7], 2013, Vogel [8], 2003, Sayed et al. [9], 1994, Meng and Qu [10], 2012, and others) have made use of met-
rics of safety to quantify the safety of a road. This is done through counting the number of conflicts that occur
during the simulations. These studies provide reasoning for which metrics of safety are appropriate for each
type of scenario. In Chapter 2 the literature review is performed in which the safety metrics are described in
their definitions as well as their advantages and limitations.

Traffic safety is not the only topic in the literature review. More decisions have to be made regarding the model.
One of the aspects of the model is the driving behaviour of the HDVs and CAVs. For the concept of herd
immunity, it is important that the driving behaviour of HDVs and CAVs sufficiently differs. This can be done
using a microscopic car-following model in which the parameters change depending on the type of vehicle.

For road traffic, a general definition of risk is defined by Papadimitriou et al. [11] (2013): "A risk is the expected
road safety outcome, given a certain exposure (i.e. per unit of exposure)." More definitions of risk are available
in the paper, but all of these define risk as having a unit of measurement. For the purpose of this research,
crash risk is an inherent property of a group of vehicles on a road, that refers to the probability that a crash
would occur at a certain point in time. Crash risk is the term that is related to the risk of infection that is used
when considering a virus. The term crash risk is used in the research to compare the concept of herd immunity
for cars to the concept of herd immunity for viruses by relating crash risk to risk of viral infection.
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1.2. PROBLEM STATEMENT

The problem statement for this master’s thesis reads: "Connected Automated Vehicles are an emerging topic in
the transport sector. Research should be done and models must be created to determine how this innovation
affects the safety of the road because it can result in positive change in traffic safety. The existing principle of
herd immunity is theorised to also be able to take effect on CAVs where the CAVs act like immunised members
of the population. The principle requires an impact assessment to determine the extent at which the road
becomes safer."

1.3. RESEARCH QUESTION

This section is used to name all the research questions that are answered in the rest of the project. The section
is important because it helps aim the project. The conclusion in Chapter 6 answers each of these questions.

Combining the problem analysis with the problem statement leads to the following research question:

How is traffic safety influenced by connected (automated) vehicles considering the concept of herd immu-
nity?

To be able to answer this question, a number of subquestions must be answered before being able to answer
the main research question.

1. What are the differences between the driving behaviour of a CAV and an HDV?

2. What are the core principles of herd immunity and how can it be translated to traffic simulation?

3. Which car-following and lane-change model is most appropriate to model CAVs?

4. Which tactical manoeuvres should be implemented into the model?

5. What are suitable safety metrics for traffic simulation using CAVs?

6. At which penetration rates is there a significant difference in traffic safety due to the herd immunity
phenomenon?

The subquestions above are partly answered in the literature review and partly answered using the model. The
model uses a car-following model, a lane change model, and metric(s) of safety. These are discussed in the
following literature review. Each subquestion serves the purpose of filling in a part of the model. The driving
behaviour differences are used to distinguish the values of parameters between CAVs and HDVs. The core prin-
ciples of herd immunity are translated to car traffic to draw parallels between the concepts. The car-following
model and lane-change model provide the movement of the following vehicles and as such determine the dis-
tances between vehicles. This is important for the safety metrics that determine how many conflicts occur
during the car-following procedure. The last subquestion is answered in part by the literature review as pre-
vious research has been done to determine at what penetration of CAVs the overall traffic safety improves. To
ensure that the literature review is properly performed, Section 1.5 is a short methodology to describe how the
literature review is performed.

1.4. SCOPE

This section describes the scope of the project. Everything that is included or excluded regarding the research
project is mentioned here.
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As mentioned in the problem analysis, this project is focused on proving the concept of herd immunity for
an environment in which CAVs and HDVs are used. The necessary topics of research are herd immunity, car-
following models, lane-change models, and traffic safety. The theory behind each of these topics is discussed
in Chapter 2. The purpose for researching each of these topics is to be able to make decisions regarding the
simulation model. These decisions shape the model to make it best suited for simulating CAVs.

Herd immunity describes how a group of people or a population can become resistant to a virus due to im-
munisations. Determining how a virus spreads can give insight on how the safety of a road can be influenced
by CAVs. The mechanism of how a virus spreads can be dependent on a number of factors like distance, age,
and population density. These factors can be translated to how crash risk can spread in car traffic. The virus
in this research is related to road turbulence that can occur in traffic. Turbulence on a freeway is defined by
the individual changes in speed, headways, and lanes on the road, regardless of the cause of the changes (van
Beinum [12], 2018). Each of these factors determines how the virus in the road spreads, where the virus is the
inherent crash risk of a traffic system. For scoping purposes, translating herd immunity of viruses to that of
cars is done through the literature review, and an impact assessment is done using the simulation model. The
simulation model looks at the extent of the safety benefits that CAVs can provide rather than the theory of herd
immunity for car traffic.

The scenario has a number of requirements. Firstly the model only includes one lane. The single lane scenario
is used to demonstrate that the concept of herd immunity could prove to have merit. This is not to prove
that the concept works for all scenarios, but rather for this single situation, which could lead to it being tested
for additional situations. This is reliant on the single lane scenario proving that it is possible to apply the
concept to such a situation. The scenario makes use of CAVs. This is necessary because the idea is that the
CAVs will emulate the immunised members of the population. This means that the levels of automation 4
and 5 are implemented. Connected Vehicles (CVs) will not be held in consideration because a human would
be responsible for vehicle manoeuvres which results in a third set of driver behaviour. This would increase
the scenario complexity which is not necessary for the purpose of answering the research question. By using
CAVs, it is ensured that they follow the recommendations of other upstream CAVs when there is congestion
downstream. These recommendations could be to reduce speeds to limit the flow into the congested area, and
reduce the chances of a rear-end collision.

To ensure that the project is feasible within the allotted time it is necessary to introduce some boundaries
onto the research. This holds true especially for the different types of models that are available. Car-following
models as well as lane-change models are a popular topic and a lot of research has been done on it. The model
starts off small scale, therefore it is necessary to use microscopic car-following models. All macroscopic models
are ignored for the duration of this research. To further scope the project, the car-following models must be
appropriate for freeway situations. Signalised intersections will not be used because it would make the model
more complex and introduce more possible conflicts. Added complexities do not serve to prove the concept
of herd immunity. Similarly, the lane-change models that are considered should be appropriate for highway
situations. Macroscopic lane-change models will also be left out of consideration. Primarily the model only
considers a single lane situation. So a lane-change model is not necessary in the original scenario.

To measure safety in the model, it is necessary to quantify safety. This can be done through the use of safety
metrics. These metrics of safety count the number of conflicts that occur. This makes it possible to compare
scenarios with one another because the number of conflicts changes. This is especially important for when the
penetration rate of CAVs changes. This is the main method of measuring the safety of each scenario because
crash data is not available on vehicles that do not exist yet. In a single lane scenario, rear-end collisions are the
only type of collisions that can occur during simulation. This information is necessary for determining which
of the safety metrics is used during simulations.

The simulations take place as the second part of this thesis. First, a literature review is performed in which
all the driving behaviour parameters for both CAVs and HDVs is determined. Additionally, the car-following
model, lane-changing model, and appropriate metrics of safety are chosen to best fit the scenario. The litera-
ture review focuses on these decisions. The research includes previous research done by others to review the
effectiveness of the models chosen for each scenario that it has been chosen for.
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1.5. LITERATURE STUDY METHODOLOGY

The literature study is an important section of the paper. It provides the background information necessary to
create the model. Each of the decisions made in the literature study make up parts of the model.

The literature study is split into three sections:

1. Herd Immunity

2. Traffic Safety

3. Traffic Simulation

The herd immunity section provides information about how herd immunity functions. It is not possible to
translate the principles of herd immunity directly to traffic safety because the concepts that make up the quan-
tifiable danger are incomparable. The purpose of this section is to discover the important factors that make
up the mechanism of a virus spreading. This could be factors such as frequency for washing hands, popula-
tion density, and average proximity to another person. These factors could translate to factors of traffic safety
like vehicle speeds, average headway, and reaction time, which are all a part of road turbulence. Discovering
how these factors could be related to one another is the main purpose of the first section. Other than that, it
provides a background for how herd immunity works, as well as its definition.

The strategy for researching traffic safety depends on safety metrics. Safety metrics need to be used because
simulating crashes is not possible. In some types of software crashes or extreme congestion cause vehicles to
disappear to allow the simulation to continue. In other cases the vehicles overlap because the vehicles do not
contain any mass or area and the simulation would continue simply because it does not recognize the situation
as a crash. In simulations, quantifying safety relies on the conflicts that can be counted using metrics of safety.
The metrics of safety have to fit a number of requirements. The chosen metric of safety needs to function
for a single or double lane highway situation. Additionally, past research papers are compared to determine
when each metric of safety was effective. Another overview is created to make a comparison of all the types
of safety metrics. Additionally, a conceptual framework is necessary to be able to compare the mechanics of
virus transfer to the mechanics of crash risk transfer. This provides an overview to compare the two concepts
effectively.

The traffic simulation section of the literature review is primarily focused on car-following models, driving
behaviour, and lane change models, and to see which models and behaviours are the most appropriate for the
purpose of this paper.

Therefore, for car-following models, an overview is created that compares these models. The overview looks
at the types of car-following model as well as papers that have used them in the past. Most importantly, the
car-following models must fit a number of criteria. Namely: they must be microscopic car-following models,
appropriate for highway scenarios, and have the option to allow for CAV behaviour. Papers that used the mod-
els in the past are reviewed and compared to others to find the best possible model for this project. Following
this, the next section is the driving behaviour. The topics of the car-following model and driving behaviour
tie in well together because the car-following model needs to encompass HDV behaviour as well as CAV be-
haviour. This is done through the change in the parameters. These parameters can be reaction times, headway,
and more, but what is important is that the car-following model can appropriately model both.

The lane-change model is similar to the car-following model in that an overview is created to compare the
models. These models follow the same criteria as the car-following models in that they need to be microscopic
as well as having the ability to model CAVs. The strategy for researching these models is by comparing papers
that have used such models previously. The lane-change models combined with the car-following model will
make up the vehicle dynamics. Although all types of lane-change models are considered, some are more suit-
able in a designated software like VISSIM. The Wiedemann driving behaviour model is the default for VISSIM.
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1.6. REPORT STRUCTURE

The report is set up in the following manner: Chapter 2 is the literature review where most of the research
is presented and decisions about the model are being made. Chapter 3 is the methodology where the plan
for simulations is described. After this in Chapter 4 the simulation results are presented. These results are
discussed in Chapter 5. Finally Chapter 6 provides the conclusions and recommendations.
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2
LITERATURE REVIEW

This chapter presents the findings from the literature with a review in each section to describe the choices
made.

2.1. HERD IMMUNITY

This section is used to describe what herd immunity is, both in definition as well as how it is relevant to this
project. This section looks at how a virus spreads to try and describe how unsafe situations can occur in traffic.
These situations can range anywhere from rear-end collisions to missing a vehicle in the blind spot. Most of
these situations occur due to turbulence on the road which can be caused by any number of things, which is
discussed in this section.

2.1.1. DEFINITION

The definition of herd immunity is different between papers. One paper (John and Samuel [13] 2000) found
three leading definitions of it.

1. "The resistance of a group to attack by a disease because of the immunity of a large proportion of the
members and consequent lessening of the likelihood of an affected individual coming into contact with
a susceptible individual."

2. "It is not necessary to immunise every person in order to stop transmission of an infectious agent through
a population. For those organisms dependent upon person-to-person transmission, there my be a de-
finable prevalence of immunity in the population above which it becomes difficult for the organism to
circulate and reach new susceptibles. This prevalence is called herd immunity."

3. "It is well known that not everyone in a population needs to be immunised to eliminate disease - often
referred to as herd immunity. This is because successful immunisation reduces the number of suscep-
tibles in the population and this effectively reduces the efficiency with with the microbe is transmitted
from one person to the other. This has the same effect on the incidence of infection as a reduction in the
number of individuals in a population. The microbe cannot sustain itself and the disease disappears at
some level of vaccine coverage that is less than 100%..."

The third definition continues longer but is not relevant for the actual meaning of the concept. The first defi-
nition is the most straightforward and also most relevant to this paper. The immunised members of the pop-
ulation have a resistance to the virus. This translates to CAVs as the virus being the unsafe situations that can
occur in traffic. The CAVs are hypothesized to alleviate the risk that is inherent in any traffic scenario. Not only
with direct impacts, but also indirectly improving the safety of the entire road by absorbing the mistakes made
by human drivers. In the following sections the relation between virus spread and unsafe scenarios in traffic is
explained.
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2.1.2. VIRUS SPREADING MECHANISM

This subsection focuses on the manner in which a virus spreads. Arav et al. [4] (2020) claims that respiratory
viruses generally spread through three different ways; contact, droplet, and aerosol. Contact encompasses
everything from shaking someone’s hand to touching an object that an infected person has transferred the
virus to. Droplets can spread the virus when an infected person coughs or sneezes. These droplets can travel
1.5 meters and then stick to surfaces. Finally the virus can spread through aerosol by being suspended in the
air and then breathed by non-infected people walking through it. To help prevent the spread of a virus there
are a number of methods. This is done through cleaning hands and furniture more thoroughly. These methods
can be seen in Figure 2.1.

Figure 2.1: How a virus spreads according to Arav et al. [4] (2020)

A different study (Gao et al. [3], 2021) includes another method in which a virus can spread. This is through
long-range airborne transmission. This can happen due to an airflow within a space. This is depicted by
Figure 2.2. Ventilation in a room can cause the virus to spread throughout the room even if people remain
distant from one another. Gao et al. [3] (2021) also proceeds to create a multi-route transmission model. This
describes the total risk that an individual would have when visiting a location.
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Figure 2.2: How a virus spreads according to Gao et al. [3] (2021)

The transmission models in the paper by Gao et al. [3] (2021) differ depending on the type of exposure to a
virus. The total infection that an individual can be exposed to is dependent on the different types of exposure.
The infection risk is therefore given by Equation 2.1.
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factors that denote the exposure due to contact with a contaminated surface or direct hand to hand contact.
Each of these types of exposure are dependent on factors such as humidity, distance, droplet size, and even
the spreading angle of the cough or sneeze. The specifics of each of these models is not relevant for this paper
but it does provide insight on which factors have an impact on the risk of infection.

Another model was created by Bouchnita and Jebrane [5] (2020) which uses an area of 250 m2 where agents are
introduced who could all potentially be symptomatic of a virus (in this the SARS-CoV-2 virus). The paper wants
to simulate the transmission dynamics of such a virus. This is done by making the agents move in random
directions to reach their destination. The model takes into account the distance that two agents would want
to keep between one another. This is done using a force model depicted below by Equation 2.2.

f self
i = mi

vd ,i − vi

τi
(2.2)

This equation shows the driving force behind each agent. It makes use of an agent’s mass, desired velocity,
and relaxation time. The relaxation time depicts how long an agent takes to recover its velocity after its path
has been hindered. Although the model is focused on pedestrian dynamics, it can be relevant for cars as well.
The way the virus is transmitted is through close contact of the agents, this is also how conflicts can occur with
vehicles. The chance of being infected can be translated to the chances that a crash would occur. In regards to
simulations, it would have to be translated to the number of conflicts that occur.

The main conclusions to be drawn from the mechanics of virus transmission is that there are a number of
factors that take precedent when describing the transmission of the virus. Humidity, distance, frequency of
hand washing, and droplet size are factors that can influence the transmission. How this relates to vehicles is
that similar factors can affect traffic safety; average headway, average vehicle speeds, weather, reaction times,
and traffic volume to name a few. In the context of traffic safety simulation, the number of conflicts identified
by the metric of safety will be influenced.
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2.2. TRAFFIC SAFETY

This section reviews possible safety metrics used for car traffic, whether it be simulations or simply observing
traffic in real time. The purpose of this section is to determine how CAVs can have an impact on which safety
metric should be used in each scenario as well as considering an appropriate metric for the simulation model.

2.2.1. SAFETY METRIC REVIEW

To be able to measure the safety of the simulations, a review of the safety metrics is done. In this review
their suitability for different scenarios is discussed. Certain safety metrics are more suitable than others for
simulations and the types of possible collisions that can occur. The most common type of collision to occur
while driving is a rear-end collision. This type of collision is in the longitudinal direction instead of the lateral
direction. Different safety metrics are necessary for the two directions. Mahmud et al. [14] (2017) provides an
overview of the many safety metrics that can be used for measuring safety. Each of these metrics uses different
methods to measure safety. Table 2.1 and Table 2.2 provide an overview for each type of safety metric that can
be used, and what their limitations and advantages are. These tables make use of the papers by Mahmud et al.
[14], Papadoulis et al. [15] (2019), Åsljung et al. [16] (2016), Ye and Yamamoto [17] (2019), Wang et al. [1] (2015),
and Mullakkal-Babu et al. [18] (2020).

Table 2.1: Safety metric comparison part 1

Metrics of safety Type of indicator Definition Limitations Advantages

Time to collision
(TTC) (seconds)

Temporal proximal
indicator

Time till collision between two
vehicles if they follow their
current trajectories.

Consecutive vehicles keep constant speeds.
Ignore many potential conflicts due to
acceleration or deceleration discrepancies.
Can provide magnitude for crashes but not
the severity. Collision course must exist.
TTC index cannot be calculated if leading
vehicle is faster than following vehicle.

TTC is more informative than PET.
Many collision avoidance systems
or driver assistance systems have
used TTC as an important warning
criterion. Applicable for work zone
safety analysis. Applicable in
post-processor such as SSAM.

Time exposed
time-to-collision
(TET) (seconds)

Temporal proximal
indicator

Summation of all the moments
that a driver approaching another
vehicle with a TTC-value below
the threshold value of TTC.

Does not provide variation severity levels
of different TTC values below the threshold
value. If TTC-value is lower than threshold
value, then it does not affect the TET
indicator value. Data intensive.

Can be calculated separately for
per user class. Can be applied in the
comparison of a do-nothing case
with an adapted situation. Suited for
application in microscopic simulation
studies of traffic. Easy to include small
TTC value due to including of
time-dependent TTC values of all subjects.

Time integrated
Time-to-Collision
(TIT) (seconds)

Temporal proximal
indicator

Integral of the TTC-profile during
the time that it is below the
threshold.

Difficult to interpret the meaning for
complexity to determine. Not preferable
to use in comparative studies in which
simulation tools are aplied to generate
trajectories. Benefits is small due to
uncertainties in driver behaviour.

Level of safety of collision can
be derived. Can be applied in the
comparison of a do-nothing case
with an adapted situation. Suitable for
microscopic simulation studies of traffic.
Easy to include small TTC value due to
including of time-dependent TTC values
of all subjects.

Modified TTC
(MTTC) (seconds)

Temporal proximal
indicator

Modified model which consider
all potential longitudinal conflicts
due to acceleration/deceleration
discrepancies.

Obtaining field speed of both users and
distance gap in an evolution process is
difficult and relies on other approaches.
Not fit for lane-changing. Does not
reflect severity of collision.

More advanced than TTC. Considers
driver discrepancies. Severity of the
collision could be weighted using CI
indicators.

Crash Index (CI)
Temporal proximal
indicator

The influence of speed on kinetic
energy for collisions.

Describes only the safety information
about two vehicles at a certain time and
place. Not fit for lane-changing or
head-on collision.

Reflect the severity of a potential crash.
Describes the influence of speed on
kinetic energy involved in collisions.
Consider the elapsed-time before the
conflict occurred. Severity and the
likelihood of a potential conflict could
be interpreted.

Time-to-Accident
(TA) (seconds)

Temporal proximal
indicator

The time it takes from the moment
that one driver starts taking an
evasive action until the crash that
would have happened if same
trajectory was used.

Often criticised for relying heavily on
the subjective judgement of speed and
distance. Mainly rely on the evasive
action.

Widely used. Easy to measure. Can
be done by both manually or by video
analysis. Couple of manuals have been
developed in different countries.

Post-Encroachment
time (PET) (seconds)

Temporal proximal
indicator

The time between the moment that
a driver leaves the area of a
potential collision and the other
user arrives at the collision area.

Only useful in the case of transversal
trajectories. Cannot reflect changes
with the dynamics of safety-critical
events over a larger area. Levels of
severity as well as impact are not
taken into account.

PET is more appropriate than TTC for
intersecting conflicts. PET can be easily
extracted. PETs can be easily estimated
using photometric analysis in video or
simulated environment. PET represents
the driver behaviour.
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Table 2.2: Safety metric comparison part 2

Metrics of safety Type of indicator Definition Limitations Advantages

Potential Index
for Collision with
Urgent Deceleration
(PICUD) (meters)

Distance based
proximal indicator

Distance between two vehicles
considered when they completely
stop.

Mainly applicable in lane changing
condition when leading vehicle
apply emergency break. Threshold
value yet to be sated up. Does not
take lateral conflicts into account.

PICUD is more suitable than TTC for
evaluating the danger of collision of
the consecutive vehicles with similar
speeds. PICUD might detect the change
in traffic condition and conflicts more
sensitively than TTC.

Proportion of
Stopping Distance
(PSD) (meters)

Distance based
proximal indicator

Ratio between remaining distance
to the potential point of collision
and the minimum acceptable
stopping distance.

Based on evasive action. PSD
provide higher percentage of vehicles
interaction and time exposure to
conflict than TTC and DRAC, hence
there is less focus on specific safety
problem.

Single vehicle conflict with fixed or
unfixed objects can be evaluated. Easy
for observation and calculation.

Margin to Collision
(MTC) (dimensionless)

Distance based
proximal indicator

Ratio of the summation of the
inter-vehicular distance and the
stopping distance of the preceding
vehicle divided by the stopping
distance of the following vehicle.

Same as stopping distance. In
addition, does not consider a
response delay of the following
vehicle. A non-dimensional
parameter.

Same as stopping distance. It also
provides the possibility conflict
when the preceding and following
vehicle at the same time decelerate
abruptly.

Difference of Space
distance and
Stopping distance
(DSS) (meters)

Distance based
proximal indicator

Difference of the space and
stopping distance.

Provide information on the number
of unsafe vehicles but cannot consider the
degree of danger as well as the danger.

The calculation formula and
dangerous threshold value are simple
and clear.

Time Integrated DSS
(TIDSS) (meters)

Distance based
proximal indicator

Total value of the time integrated
value gap between DSS and the
dangerous threshold value.

Mainly suitable for rear-end conflict.
Considers the degree and the duration
of danger.

Unsafe Density (UD)
Distance based
proximal indicator

Level of "unsafe" in the relation
between two consecutive vehicles
on the road for a determined
simulation step.

The value of this parameter does not
have a sense in itself and must be used
only for comparison purposes. Fit for
only rear-end collision analysis.

Gives more accurate information
than typical micro-simulation outputs.
Comparative study between link can be
done.

Deceleration Rate to
Avoid a Crash
(DRAC) (m/s2)

Deceleration based
indicators

Differential speed between a
following/response vehicle and its
corresponding subject/lead vehicle
(SV) divided by their closing time.

Fails to accurately identify the potential
traffic conflict situation. Not suitable
for lateral movement.

Explicitly considers the role of
differential speeds and deceleration
in traffic flow.

Crash Potential
Index (CPI)

Deceleration based
indicators

Probability that a given DRAC
exceeds its maximum available
deceleration rate (MADR) during
a given time interval.

Not suitable for lateral movement,
mainly applicable at intersection.

Address some of the issues found in
DRAC like vehicle braking capability
for prevailing road and traffic conditions.

Criticality Index
Function (CIF)

Deceleration based
indicators

Multiplication of vehicle speed
with the required deceleration.

Like TTC, it considers constant speed
of consecutive vehicle, further evaluation
is needed using additional field data
for validation.

Chance of occurrence and severity
could be measured.

Safety Fields Other
Fields that surround each object
and exert a force on their
surroundings.

Lots of information is necessary for
safety fields to function. Not only
the vehicle information but also the
information of road conditions, nonmoving
objects, moving objects as well as vehicles,
and driver characteristics. The difficulty
to obtain this information might make the
application of this model difficult.
However, this could be remedied in the future
as sensor technology improves and becomes
commonplace in vehicles.

Compared with existing safety factors,
safety fields incorporate a greater
number of factors and is not limited to
any one type of driving scenario. It
can function on highways and on
intersections. Safety fields is also highly
applicable in complex scenarios, as
it is one of the few safety metrics
that can take all factors into account.

From the tables above a couple of safety metrics stand out as being appropriate for simulations. All types of
time to collision indicators are effective for longitudinal conflicts. The advantage that these safety metrics have
is that the values that are found are straightforward and simple to interpret. When a time to collision metric
has a value of 2 seconds, it is clear that a collision would occur if both drivers resume their current speeds
and trajectories. The main disadvantage is that these metrics are only useful in the longitudinal direction.
Furthermore, the severity of a conflict can not be defined using these metrics. Using headways as a metric of
safety can provide more information on the severity of the conflict simply by their distance apart. These safety
metrics function under the assumption that a conflict will always precede a collision Mahmud et al. [14] (2017).
Under this assumption, the term crash risk is used to describe the level of safety of the road and the number
and severity of conflicts is what affects the crash risk. This assumption is important for traffic simulation
regarding car-following models because crashes are not simulated. The term crash risk could be confusing
due to the lack of crashes occurring in simulation, but functioning under the assumption that conflicts precede
collisions, ensures that conflict data can be used to determine whether crash risk increases or decreases, and
consequently the level of road safety. A safety metric that combines many of these aspects while also including
driving behaviour is the safety metric of safety fields. Ultimately safety fields are an interesting topic to pursue
due to them being a new development as well as taking the behavioural field into account. Therefore, more
focus is put onto safety fields to describe how they function as well as an added description on their advantages
and limitations.
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2.2.2. SAFETY FIELDS

Safety fields are a relatively new development in traffic safety. Mullakkal-Babu et al. [18] (2020) describes these
safety fields as areas that can have an influence on the vehicles on the road. Each object on the road (cars,
traffic lights, the pavement, pedestrians, etc.) have an effect on the traffic safety. The concept of the driving
safety field is a physical field that includes all the influences of traffic factors on traffic safety (Wang et al.
[1], 2015). This field is different to other physical fields like gravitational fields and electromagnetic fields
because it varies over time and space. Finally, the driving safety field is made up of vectors to show the directed
influences of surrounding objects and vehicles. Each of these fields can be split into three different categories
as explained by Wang et al. [1] (2015):

1. The potential field is the physical field that shows the influence that static objects can have on the driving
safety. The field strength is determined by non-moving objects and road conditions.

2. The kinetic field is the physical field that shows the influence that moving objects can have on the driving
safety. The field strength is determined by the attributes and states of the moving objects and road
conditions.

3. The behaviour field Is the physical field that is dependent on driver behaviour characteristics. The mag-
nitude and direction of the field strength is determined by the behaviour characteristics of drivers. In
this way, aggressive drivers have a larger behaviour field than the drivers who drive more conservatively.

The behavioural, kinetic, and potential field added together make up the total safety field strength, as de-
scribed by Equation 2.3. Where E S is the field strength vector of the kinetic safety field, E R is the field strength
vector of the potential field, EV is the field strength vector of the kinetic field, and E D is the field strength vector
of the behaviour field.

E S = E R +EV +E D (2.3)

To provide an idea Figure 2.3 is used to visualise the kinetic field strength.

Figure 2.3: Visualisation of the kinetic field strength (Wang et al. [1], 2015)

The paper by Wang et al. [1] (2015) is based on the virtual mass of the safety field. The virtual mass of each of
these fields is dependent on the attributes of the object. This is its mass, type, moving state, and speed. This is
denoted by Equation 2.4. The virtual mass is necessary in order to calculate the value of the kinetic safety field
strength which leads to the value of the behavioural field.
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Mi = Mi (mi ,Ti , vi ) = Ti ·mi ·
(

1+∑
k
αk · vβk

i

)
(2.4)

Where:

• Ti : Vehicle type.

• mi : Physical mass of the vehicle.

• αk , βk : Undetermined constants (Determined by calibration).

• vi : Velocity of vehicle i.

The virtual mass of the vehicle is used in Equation 2.5. This equation shows how the kinetic safety field strength
is calculated.

EV = G ·Rc ·Mc∣∣r c j
∣∣k1

· r c j∣∣r c j
∣∣ ·e(k3vc cosθc ) (2.5)

Where:

• G : Gravitational constant

• Rc : Road condition influencing factor.

• Mc : Virtual mass of vehicle c.

• rc j : Distance between vehicles.

• k1 & k3: undetermined constant greater than zero (Wang et al. [1], 2015).

• vc : Velocity of vehicle c.

• θc : Angle between velocity of the leading vehicle and following vehicle.

The constant G is assumed to have a value of 0.001, k1 is assumed to have a value of 1, k3 is assumed to have
a value of 0.05, and the road influencing factor Rc is set to 1 as to have no influence. The virtual mass of the
vehicle can be calculated by Equation 2.4 and the distance between the vehicles is what can vary on both the
road and in a simulation environment.

E R in Equation 2.6 shows the potential safety field. It uses many aspects determined previously, except the
virtual mass of the vehicle will be different because the object is not moving, therefore the velocity will not
have an impact on its value.
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E R = G ·Rc ·Mc∣∣r c j
∣∣k1

· r c j∣∣r c j
∣∣ (2.6)

Where:

• G : Gravitational constant

• Rc : Road condition influencing factor.

• Mc : Virtual mass of vehicle c.

• rc j : Distance between vehicles.

• k1 : Undetermined constant greater than zero (Wang et al. [1], 2015).

The advantages of using a safety metric like safety fields is that it provides the severity of each conflict as well
as the number of conflicts. Another benefit is that safety fields include a greater number of traffic factors when
considering the safety. Most other safety metrics only consider other vehicles when determining potential
conflicts. Safety fields can take other objects into account like lane markings and the traffic barrier on the side
of a freeway. The model is not limited to specific scenarios like car-following and lane-changing, although that
is what it would be used for in this research.

The negative aspect of this model is that it is more complex than other models. This complexity means it
would be more difficult to apply and also more difficult to understand. It is also a recent development and
the calibration of the safety metric needs to be researched further. A benefit and a drawback of the safety
metric is that it uses the driving behaviour as another possible safety field. The driving behaviour is quantified
as a single value and using this system means that all human drivers have the same behaviour, which is far
from realistic. It is a benefit because it does provide for a more realistic judgement of the safety of a vehicle.
Mostly, the elements of safety fields show a lot of promise, but there is a limitation in the model when trying
to compare vehicles that have different headways. When traffic reaches stability, the safety field strength will
be solely reliant on the headway and the driving behaviour variable. Due to a set desired headway that could
differ between behaviour types or vehicle types, it can be difficult to derive meaning from the safety field
strength values between two or more behaviour types or vehicle types. The behaviour of the drivers is denoted
by DR (driving risk) and a value between 0 and 1 which is multiplied by its kinetic field in order to obtain the
effect. This does make it possible to obtain different driving behaviours such as; cautious behaviour, normal
behaviour, and reckless behaviour. These can be denoted by different values of DR. Equation 2.7 shows the
equation for calculating the impact of the behaviour field on the total safety field value.

E D = EV ·DR (2.7)

Where:

• E D−c j : Behaviour safety field strength.

• EV−c j : Kinetic safety field strength.

• DRc : Driver risk (dimensionless value between 0 and 1).

Higher values of E D indicate higher risk for the vehicle because the total safety field strength would also in-
crease. Very reckless drivers will have higher DR values than cautious drivers. This makes it possible to include
types of human driving into the safety calculations. Perfect driving would be assumed to have a driving risk of
0. This is the value that CAVs use for the purpose of this research. For humans a value of 0.4 is used to denote
standard driving skills (Wang et al. [1], 2015). This value will be used for calibration purposes but still prone to
change for the final results.
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Safety fields provide a dimensionless value which denotes the safety field strength at a certain point in time,
using distance and velocity as the varying terms. Depending on the vehicle type, the total field strength will
change due to the differences in the variable driving risk. The value of the total safety field strength does not
provide any meaning. It is simply used to compare the safety between scenarios. When varying the inputs
of the simulation, it is possible to compare the values of the total safety field strength with one another, to
discover whether the crash risk between scenarios increases or decreases. This crash risk is what was described
in Chapter 1 as being the ’virus’ that transfers between the members of the population. When one driver is
forced to brake hard, the ’virus’ would transfer from that driver to the following driver. These situations can be
considered a conflict. To identify the effect that this has on traffic safety, the severity of the conflicts is discussed
in Chapter 3. Regardless of what safety metric is used, the exact effect on the crash risk is unknown, but by
using number and severity of conflicts, it is possible to compare the different input values of the simulation to
relate the safety from scenario to the other.

2.2.3. HERD IMMUNITY FOR CAR TRAFFIC

How herd immunity functions for car traffic is similar to herd immunity for a virus. Instead of a virus, crash
risk can be transferred between road users. Crash risk refers to the probability that a crash could occur at
a certain point in time. Herd immunity for car traffic is defined as the resistance of a group of cars to crash
risk in both primary and secondary conflicts. Primary conflicts are the conflicts that occur when two or more
vehicles get too close together, and secondary conflicts are the conflicts that occur due to something having
happened downstream. As described in Figure 2.4, CAVs would act as the immunised members of the group
which would build the resistance to the virus (crash risk). CAVs are assumed to be able to absorb the mistakes
made by human drivers by reacting quickly and correctly to those mistakes. Not only do CAVs improve the
safety of their own driver, they would improve the safety of vehicles upstream because the mistake will not
cause more conflicts to occur.
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How virus
epidemiology

translates to traffic
safety

Viral spread variables 
 

Use of facial masks
Humidity
Droplet size
Etc.

Crash risk variables 

Human factors
Average vehicle speeds
Weather conditions
Etc.

Virus Epidemiology Traffic Safety

How does a virus transfer? 

Direct: Contact between two members of
population in close proximity.

Indirect: Contact between healthy member of
population and infected surface.

How herd immunity for a virus functions 

Concept: Group's resistance to viral infection due
to immunised members of the population.

Primary: Vaccinated members do not get sick.

Secondary: Infection does not spread through
vaccinated members reducing total infection rate.

How herd immunity functions for drivers 

Concept: Group's resistance to crash risk due to
penetration of CAVs.

Primary: Increase in direct safety due to better
decision making inherent to CAVs. More CAVs
linearly improve safety.

Secondary: CAVs upstream resolve conflicts more
effectively than human drivers, causing less
turbulence affecting upstream drivers. Resistance to
crash risk increases due to these secondary
benefits.

How does crash risk transfer? 
 

Drivers: Errors through driver's condition. (e.g.
fatigue, distraction). Manoeuvres made by drivers
causing reactions and more manouevres increasing
crash risk.

Environmental: Road and weather conditions.

Figure 2.4: Conceptual diagram of herd immunity for car traffic

The idea behind the arrows in Figure 2.4 is that the yellow solid lines indicate a direct connection to the sub-
sequent boxes. The green dotted lines indicate that a translation between the two objects is possible. For virus
epidemiology the virus transfer can be split into two main methods, either direct or indirect. This translates to
the traffic safety branch in two ways, driver transfers, and environmental transfers. These relate quite directly
as direct and indirect transfer methods. Drivers can directly transfer crash risk (crash risk being the "virus"
that spreads between vehicles) either through their state of being, or through more manoeuvres being per-
formed. The environmental transfer is through road and weather conditions. These could impact the driver’s
ability to perform optimally, either due to poor visibility or other debilitating factors.

Next the concept of herd immunity is discussed for both cases. For both a virus and crash risk the concept
of herd immunity is defined as the group’s resistance to "infection" due to a certain percentage of immunised
members or CAVs. This occurs due to the primary and secondary impacts that the immunised members pro-
vide to the population. For a virus this means that vaccinated members are less likely to show symptoms, and
in turn are less contagious to the rest of the population, meaning the spread of the virus reduces in its entirety.
What also occurs is a ’tipping point’, where the reduction of the virus spreading is so profound that the majority
of the population becomes safer due to the percentage of immunised members. For CAVs this could function
similarly and this research aims to also discover whether there is a specific tipping point of a percentage of
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CAVs where the safety of all drivers is improved. These secondary effects is what defines the concept of herd
immunity for both crash risk and a virus.

Lastly both branches go to the variables that can have effect on the spread of a virus and on the spread of crash
risk. Viral spread can be largely affected by factors relating to the environment, like the humidity, or on human
factors like the use of facial masks. These can impede the spread of a virus or lack of facial masks can also
cause it to spread easily. Crash risk can spread through a number of human factors, like the tendency to drive
faster or slower on a stretch of highway, weather conditions, and more. These factors have to be clearly defined
to determine what the impacts are of these variables.

2.3. TRAFFIC SIMULATION

This section describes impacts that the driving behaviour, car-following models, and lane-change models can
have on the simulation model as well as the impacts CAVs can have on the decision.

2.3.1. DRIVING BEHAVIOUR

This section describes the differences between the driving behaviour of a CAV and an HDV. Much research
has been done previously to describe how CAVs would improve the flow of a road. The paper by Wen-Xing
and Li-Dong [19] (2018) explains that in order to model CAVs, it is necessary to allow for shorter headways
in the model. The paper adapts a Bando car-following model to make it more appropriate for CAVs. The
paper by Zhu et al. [20] (2018) describes another car-following model for CAVs. According to the paper, it is
necessary because there are a number of weaknesses that traditional car-following models have. The issues
raised were; limited accuracy, poor generalisation capacity, and an absence of adaptive updating. The limited
accuracy points towards the simple nature of most car-following models. Fewer parameters leads to a lower
computational complexity and therefore faster simulations. This does decrease the accuracy of the highly
complex nature of car-following. Poor generalisation capacity is due to each car-following model needing
to be calibrated to the specific scenario that is being tested. Therefore, a car-following model should not be
generalised to multiple traffic scenarios. Adaptive updating is also not possible with traditional car-following
models. When average driver’s characteristics are applied to all simulated vehicles, then it can never reflect an
actual driver’s behaviour as each driver is different.

The above paragraph explains some of the intricacies that can occur when modelling cars. It does not explain
the specific values for certain parameters like: headway, maximum deceleration, maximum acceleration, and
reaction times. To determine these parameters, previous studies are researched to determine how effectively
different values have been used in the past. The study by Zhu et al. [20] (2018) uses a deep reinforcement
learning to model car-following behaviour. The neural network model makes use of parameter inputs. In
this paper they make use of relative speed, desired speed, follower speed, and gap distance as inputs to predict
follower acceleration. These inputs were extracted from a data acquisition system. Using the means of this data
resulted in the inputs used. Depending on the nature of the scenarios, the desired speeds would change. In the
paper by Zhu et al. [20] (2018) the values were based on two separate types of driving behaviour, conservative
and aggressive.

In a paper by Martin-Gasulla et al. [21] (2019) looks to improve the throughput using CAV platooning. This
paper makes assumptions for the headway that are based on the Wiedemann-99 parameters that are used in
VISSIM. These headway assumptions are different depending on the type of car following that is occurring. If
an HDV is following an HDV or a CAV then the headway assumption is 0.9 seconds, but when a CAV is following
then the value for the headway is different. When a CAV is following an HDV, there is uncertainty involved and
the CAV would try to keep a distance of minimum 1.5 seconds up to and including 2.5 seconds. If a CAV is
following another CAV then they allow a headway of 0.6 seconds. This is due to the communicative nature of
CAVs. Instead of relying on what the sensors notice, they can communicate instantly about the manoeuvres
that occur resulting in a quicker reaction from the following vehicle.
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Although CAVs can communicate with one another, there is a delay in these communications. This can have
an effect on the reactions of those vehicles. This should be taken into account when considering the reaction
time of a CAV. Bian et al. [22] (2019) used simulations to determine the effects of slower communication. The
reason this is taken into consideration is because reaction time is another factor that can have an effect on the
driving behaviour of a CAV. In theory the reaction time of a CAV is as quick as the time needed to determine
what the best possible course of action is, but delay of communication has an effect on it. This reaction time
is shorter than that of an HDV.

A paper by Ye and Yamamoto [17] (2019) focuses on the safety impacts that a CAV can have. The paper dis-
cusses the driving behaviour of a CAV and how it could have impact on traffic safety. This paper assumes that
a CAV would have a reaction time of 0 and behaves similarly to a vehicle using adaptive cruise control when
considering the acceleration of the vehicle. This paper also corroborates what Martin-Gasulla et al. [21] (2019)
claimed. When a CAV would be following an HDV a more cautious strategy would be applied, and when a CAV
follows another CAV, a much smaller headway can be used. Liu and Fan [23] (2020) provides parameters for
a revised Intelligent Driver Model (IDM) where CAVs and HDVs are compared. Here, the caution described
by Martin-Gasulla et al. [21] (2019) is also taken into account, where the time headway would be 0.6 seconds
between two CAVs, and 0.9 seconds between a CAV and an HDV.

The driving behaviours of both HDVs and CAVs have to be determined for the model, but the driving behaviour
parameters depend on the car-following and lane-changing models that are considered. The chosen models
determine which driving parameters are used.

2.3.2. CAR-FOLLOWING MODELS

This section mentions the possible car-following models and reviews them based on previous studies making
use of them. An important criteria for these models is that they have the ability to model the differences
between CAVs and HDVs.

Aghabayk et al. [24] (2015) presents a review of many car-following models that have been used in previous
research. There are classic models and artificial intelligence models. Artificial intelligence models are poten-
tially the most complicated models to use and are reviewed to gain a better understanding of the workings of
car-following models, but they are not suitable for this research because the inner workings are not clear to
the modeller. Artificial intelligence models could produce a realistic driving behaviour, but since they are not
transparent, they are less suited to the research. There are four main types of car-following models; stimulus
response, collision avoidance, desired headway, and psychophysical. There are two types of artificial intelli-
gence models; fuzzy logic and neural network. The differences between these types of models is the general
procedure that takes place per model. Table 2.3 reviews many of the possible car-following models. They are
described more later in the chapter.
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Table 2.3: Review of car-following models

Car-following model Type Advantages Disadvantages
GHR model [25]
Hoefs; Aron [26]
Linear model; Helly [27]
Optimal velocity; Bando et al. [28]
IDM; Treiber et al. [29]

Stimulus response
Easy calibration, transparent models, easy to
understand

Only appropriate for modelling a road vehicle and not
for bicycles or pedestrians. The models assume that
small changes in the stimulus will be noticed and that
the individual drivers will react to it. This could be
inconsistent with normal driving behaviour as normal
drivers do not react to small changes that much. It also
assumes that reaction time is the same for all drivers
and it ignores the differences between drivers and
vehicle types.

IDM +; Schakel et al. [30]

Adapted IDM to achieve reasonable capacity values.
Apply a minimization over the free flow and the
interaction terms. This changes the fundamental
diagram to a triangle instead of a smoothed top.

Pipes [31]
Kometani & Sasaki [32]
Gipps [33]

Collision avoidance

Has a way of calculating a safe distance threshold
and when that safe distance threshold is reached,
then the collision is unavoidable. So it is a first step
for measuring the safety of a road using a
car-following model.

These models cannot replicate real conditions in many
cases because the capacity and traffic volume are
underestimates. This typ of model does not consider
drivers’ perception so small changes will not be
noticed by the following driver. This type of model
does not consider heterogeneity of drivers and vehicle
types.

Bullen; [34] Desired headway

Based on a simple assumption and no method for
calibration. Different drivers in different situations
might follow leaders, but this model does not capture
the key points of it. The model does not consider
the driver’s ability to perceive small changes and so,
small changes will not be recognized by the following
vehicle. Additionally, the model is not able to capture
the different car-following behaviour of drivers in a
mixed traffic stream.
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Michaels [35]
Wiedemann [36]
as cited in Aghabayk et al. [24]
Espie et al. [37]
as cited in Aghabayk et al. [24]

Psychophysical

Better able to consider a human’s perception over
other classical models. Like an oversensitive reaction
to small changes. The calibration of these models is
far more difficult compared to the classical models.
These models also use a global set of thresholds to
model car-following behaviour and it does not
accurately replicate the differences between vehicle
types.

Only consider movement in a lane, may only be
appropriate for road vehicle movements but not
other modes of transport. None of these models look
at driving behaviour. Generally they look at the
outcome of the behaviour by measuring the spacing,
velocity, and acceleration of these vehicles. The
models all use a single value for the model parameters
which points towards them not being able to
distinguish between different driving behaviours.
Another assumption is that the models all use the
same reaction time. Most of the models only
consider two vehicles and the interaction of a
queue of vehicles might not be accurate.

Kikuchi & Chakrolborty [38]
McDonald, Wu, and Brackstone [39]

Fuzzy Logic

Biggest problem is to determine the fuzzy rules as
usetd by a human. If the drivers’ perceptions are
not applied properly then the model will be
unrealistic and will not predict the behaviour
properly.

Hongfei et al. [40]
Panwai and Dia [41]

Neural network

Can suffer from overstudy/understudy during
training process. Another issue with this type of
model is that the behaviour of the model is not
easily explained. The neural networks could be
using inputs without providing any knowledge of
the internal workings. It makes it more difficult to
judge the model. Also, as with many other models,
this CF model only considers movement in a lane
and therefore is not appropriate for other modes.
Also, the model only considers 2 vehicles, and not
necessarily an entire queue of vehicles.
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STIMULUS RESPONSE MODELS

These models are based on a stimulus to which the following vehicle reacts by changing their acceleration.
Within this type there are many 4 models explained by Aghabayk et al. [24] (2015). The GHR (Gerhaz-Herman-
Rothery) model, Linear model, Optimal Velocity model, and the IDM (Intelligent Driver Model). IDM and
IDM+ are described below whereas the review of the other models is in Subsection A.1.1.

IDM

This model was created by Treiber et al. [29] (2000, as cited in Aghabayk et al. [24], 2015). This model is con-
sidered as a stimulus-response model but it has some safe driving in it which puts it close to the safe-distance
type of car-following models. The model is represented by Equation 2.8.

a = a0

[
1−

(
v

v0

)δ
−

(
S∗
S

)2
]

(2.8)

Here, the first part of the equation is the free acceleration. When the following vehicle gets too close to its
leader, then the braking takes effect, where S∗ is the effective minimum gap given by Equation 2.9. S is the

actual gap between two vehicles. The free acceleration is given by a0

[
1−

(
v

v0

)δ]
.

S∗ = S0 + vT + v ·∆v

2
√

a0 ·b
(2.9)

T here is the driver’s desired minimum headway, S0 is the jam distance, and b is the desired deceleration.

There is another version of the IDM which is called IDM+ (Equation 2.10. This model is different in a small way,

it takes the minimum of either the free acceleration or the deceleration strategy (denoted by 1−
(

s′(ν,∆v)
s

)2
)

instead of either having effect on the other (Schakel et al. [30], 2010). The reasoning behind IDM+ is that
it provides a clearer difference between the two types of car-following behaviour. This shown by Figure 2.5
which compares the fundamental diagrams of IDM and IDM+. As is shown in the figure, the fundamental
diagram is not smooth for IDM+ which shows the difference between the two different states of car-following.

d v

d t
= a ·min

[
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v
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,1−
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s

)2
]

(2.10)

Figure 2.5: Intelligent Driver Model fundamental diagram (Schakel et al. [30], 2010)
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Summary

Each of the stimulus-response models have advantages and disadvantages which can apply to each of them.
Stimulus-response models are transparent and therefore easy to use. The equations determining acceleration
as well as the calibration of each of these models is more straightforward than other models described later
in this section. However there are drawbacks when applying stimulus-response models. The models can only
consider movement in a single lane. This is appropriate for cars, but not for cyclists and pedestrians where
overtaking is common. The models assume that drivers are able to notice subtle changes to the leader’s speed
when that is not the case in reality. Additionally, the models take only a single value for model parameters
which assumes homogeneous driving behaviour when in reality driving behaviour is heterogeneous depend-
ing on the specific driver. This criticism is something that many car-following models suffer from because
they assume that human driving behaviour is homogeneous. This is also true for the assumptions made for
reaction time and desired headway. Each driver is assumed to have the exact same reaction time for simplicity.
Most of the models also only consider two vehicles instead of a possible queue. The interaction between many
vehicles on a road could differ heavily from simplifying it to two vehicles (Aghabayk et al. [24], 2015).

COLLISION AVOIDANCE MODELS

Collision Avoidance models (also known as safe-distance models) follow Pipes’ rule when it comes to car-
following. The rule is as follows: "A good rule for following another vehicle at a safe distance is to allow yourself
at least the length of a car between you and the vehicle ahead for every ten miles an hour of speed at which
you are travelling." (Pipes [31], 1953) This rule is what the Collision Avoidance models are based on. In the
event that the car that is being followed behaves unpredictably, then this provides sufficient distance for the
following vehicle to take the necessary precautions. Two models are described in Subsection A.1.2; Kometani
& Sasaki, and Gipps model.

This type of model is commercially popular but has some drawbacks. They have a strong base but cannot
replicate real conditions in a few cases. Also, in reality, drivers use many more sources of information when
making driving decisions, and they do not keep to the safe-distance that is calculated in these collision avoid-
ance models. It does not take very small changes into account to which a real driver would react to (Aghabayk
et al. [24], 2015).

DESIRED HEADWAY MODELS

This type of model relies on the assumption that the following vehicle will keep to a certain headway between
its front bumper and the rear bumper of the leader. Bullen [34] created the model called ’Pitt CF model’ based
on this fixed headway. The model is denoted by Equation 2.11.

an(t +T ) = xn−1(t )−xn(t )−Ln−1 −hvn(t )− [vn(t )− vn−1(t )]T + 1
2 an−1(t +T )T 2

T
(
h + 1

2 T
) (2.11)

Where an is the acceleration of the following vehicle and an−1 is the acceleration of the leader. This model
is based on a simple assumption and there is no method of calibrating it. Furthermore, the model does not
consider the driver’s ability of recognizing small changes, and the following vehicle will react to every small
change made by the leader. This does not reflect reality as drivers are typically not able to recognize minute
changes Aghabayk et al. [24] (2015). Additionally, the model does not take different car-following behaviour
into account when there is mixed traffic.

PSYCHOPHYSICAL MODELS

Psychophysical models were developed based on the assumption that drivers can estimate the leading vehicle’s
speed and can react based on the visual angle changes that are made by the front vehicle. This type of model
was originally introduced by Michaels [35] (1963). This model is described by Equation 2.12. θ denotes the
visual angle changes that are made by the front vehicle. Many models have been made using this theory. The
simulation program VISSIM runs using this car-following model (Wiedemann [36], 1974).

23



dθ/dt =−w(∆v/∆x)2 (2.12)

The models make use of 4 different driving schemes; free driving, closing process, following process, and emer-
gency braking. Depending on which driving scheme is being used, the behaviour of the driver and the accel-
eration can be estimated. The benefits of these types of models is that they are able to consider the human
perception more effectively than other classical car-following models. They can overcome problems that other
models run into like reacting to minute differences in a leader’s speed. The drawback of this type of model is
that they require extensive calibration. Also, they have the issue of not being able to replicate the difference in
behaviour between vehicle types which is similarly present in stimulus-response car-following models and in
desired headway models.

ARTIFICAL INTELLIGENCE MODELS

The models that have been described previously differ from artificial intelligence models in one key aspect,
they have equations to describe the behaviour of the following driver. These equations are transparent and
provide the programmer with the necessary tools to understand what happens at each time step of the simu-
lation. Human behaviour is complex and different per driver. Artificial intelligence models attempt to predict
human behaviour and are gaining popularity with computers becoming faster and more powerful over time
(Aghabayk et al. [24], 2015). The artificial intelligence car-following models are split into the following two
types: Fuzzy Logic Models and Neural Network Models.

Fuzzy Logic Models

Fuzzy logic models function on the idea that not all factors are considered when making decisions regarding
driving behaviour. As a follower approaches a leader, they might decide to not consider the exact differences in
speed and spacing because they base all their decisions on experience, logic, and judgements (Aghabayk et al.
[24], 2015). Kikuchi and Chakroborty [38] (1992) were the first to use fuzzy logic for car-following behaviour.
Many others have also attempted to use fuzzy logic to model car-following behaviour but one main problem
persisted. Determining the fuzzy rules as used by a human is difficult. If these rules are not properly applied
to the model then the model will behave unrealistically and cannot predict the drivers’ behaviours properly.
Another issue with the fuzzy logic models is that none of the groups that attempted to use fuzzy logic to model
car-following behaviour considered traffic’s heterogeneity, which is a problem that the classical models also
suffered from.

Neural Network Models

Neural networks function differently from most other models as it tries to replicate the functions of a human
brain in a fundamental manner. This is based on neurobiological studies and modern human brain’s cogni-
tive science (Aghabayk et al. [24], 2015). Neural networks were used broadly in the 1990s as driving behaviour
and autonomous vehicles gained popularity as topics within the transport sector. Hongfei et al. [40] (2003)
made use of a ’back propagation’ algorithm to develop a car-following model using data collected by a tech-
nique called the ’five-wheel system’. Similarly to psychophysical models, the drivers were split into categories
depending on their behaviour. Here there are three categories; risky, ordinary, and conservative. These cat-
egories are based on the observed speed. If the drivers were in the top 15 percent of speeds observed they
would be classified into the ’risky’ category, the lowest 15 percent were ’conservative’ drivers, and everything
in between were ordinary drivers. Using this information the neural network is able to predict the acceleration
and deceleration of the following vehicle.

Panwai and Dia [41] (2007) developed another type of neural network for car-following models using a data
set from previous research presented by Manstetten et al. [42] (1997, as cited in Aghabayk et al. [24], 2015).
Using this Panwai and Dia [41] developed the car-following behaviour by using the speed of the vehicles and
the distance headways. This model was based on maintaining the desired distance headway. A benefit of
using a neural network model for car-following behaviour is that it is an adaptive system which can change its
structure during the learning phase. This benefit could also be considered a drawback because the model is not
transparent. It does not provide insight into its internal workings. In the training process of a neural network
model, there is the issue of under-study and over-study phenomenon. The first problem being that there are
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insufficient data points which makes the model inaccurate. The problem of over-study can be controlled by
reducing the total training time, but under-study is a difficult phenomenon to control.

Summary

Artificial intelligence car-following models are quite different from one another. Fuzzy logic models function
very differently from neural network models. Fuzzy logic models function by applying fuzzy rules and fuzzy
sets whereas neural network model are an adaptive system which changes their structure during the learning
phase. This summary is split into two sections; fuzzy logic and neural network models.

Fuzzy logic models make use of fuzzy values, it does not make use of exact equations and magnitudes. Also, the
distances, speeds, and accelerations are all relative values instead of absolute. This brings the negative aspects
of these types of models which is that identifying the fuzzy rules is difficult, as well as that these models can
not take different vehicle types into account at the moment.

Neural network car-following models use training and testing in order to create their model. They are able to
take humans’ imprecise perceptions into account in their model. The models themselves also get relatively
complicated when compared to traditional car-following models. This heterogeneity of human behaviours is
effective for a human behaviour study but carries risk with it as well. The learning process can suffer from
over- and under-study as well as a lack of transparency. Often the lack of transparency can be fixed by using
a black box model to be able to see the inner workings of the AI. The inputs and outputs become transparent
but the inner workings and processes will not.

2.3.3. LANE CHANGING MODELS

Lane changing models are used to model potential lane changes when simulating traffic. Commonly they are
used in combination with car-following models to produce the most realistic driving behaviour. There are 4
man types of lane changing models; rule based models, discrete-choice based models, artificial intelligence
models, and incentive based models. These are described by Rahman et al. [43] (2013) in a review of many
possible lane change models. Table 2.4 describes the limitations and advantages of each type of model and
names the specific models per type. This section does not focus on the models that can be used for simu-
lations, but rather their general impact on modelling CAVs. Li et al. [44] (2020) describes the possibilities of
CAVs in traffic regarding lane changes, as well as a possible lane changing model to use to best simulate them.
The difficulty in lane change models with CAVs is the possibility of communication between the vehicles and
the infrastructure. The reason for this study being conducted was that many crashes can be attributed to lane
changes. According to the paper, in the US there were 240,000 to 610,000 crashes annually due to lane changes.
Exploring the impact that lane changes can have on the safety of a road is an integral element for this research.
Li et al. [45] (2020) explains that lane changing manoeuvres are performed due to traffic heterogeneity of trav-
elling speeds on different lanes. These lane changes can cause disturbances on the traffic flow and driving
behaviour, which in turn, has a negative effect on the safety. Although AVs and CAVs are more capable of re-
acting appropriately to these lane changes, the disturbance is still noticed. Regardless of the lane-changing
model used, Li et al. [44] (2020) assumes that CAVs would be beneficial for the safety of the road concerning
lane changes. The communicative part of CAVs here would have great impact due to the other connected
vehicles being able to react to certain lane changes that are occurring upstream.
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Table 2.4: Lane-change models

Lane-change models Type of model Limitations Advantages
Gipps Model
CORSIM Model
ARTEMiS Model
Cellular Automata Model
Game Theory Model

Rule Based Model
Difficulties in calibrating the model
parameters. Uses only primary
variables. Binary answers (yes/no)

Simplicity in modelling. Decision
process in one simple stage.
Small number of variables.

Ahmed’s Model
Toledo et al. Model

Discrete-Choice
Based Model

It is required to calculate probability
functions to determine the utility
of each choice.

Decide on the basis of maximum
gained utility. Probabilistic
results instead of binary answers
(yes/no).

Fuzzy-Logic-Based
Models
ANN Model

Artificial Intelligence
Models

Difficulties and complexity in fuzzy
rules, membership functions.
Requires large amount of data.

Consider humans’ imprecise
perception, requires numerical
data, calibrated using optimization
algorithm.

MOBIL
LMRS

Incentive Based
Models

Fit in congestion is unclear. MOBIL
only considers operational process.

Small number of parameters.
Takes driver variability into
account.

Concluding this chapter is a collection of the main findings of the literature review. At first glance, herd immu-
nity for humans and for road traffic have many similarities. The secondary effects (that the resistance to viral
risk and crash risk is improved for the entire group except for only the individual) function in a similar fashion
that the majority benefits from the inclusion of immunised members/CAVs in the population. The two con-
cepts can almost be directly translated to one another in how they function. Part of this function are the types
of variables that affect each concept. Both concepts consider distance, frequency of contact, and traffic/agent
volume. Those variables are similar for either concept. Not all variables can be translated so directly, other
variables for viral infections includes the viral load that someone is carrying which could loosely translate to
the inherent crash risk of a human driver. Not all aspects can be directly translated, but they are similar enough
to be able to draw some parallels between the two herd immunity concepts.

In theory, as explained above, it is more than possible that the two concepts can be translated to one another.
To check the above statement, a simulation model is created to determine whether this corroborates the the-
ory. Creating such a simulation model requires a safety metric. Part of the research for the safety metric is
determining how the use of CAVs affects the choice of a safety metric. Many of the traditional safety metrics
like TTC (time-to-collision) and PET (post-encroachment-time) are very direct and do not include anything
about the behaviour of the vehicles. In short, time-to-collision and post-encroachment-time are not affected
by the type vehicles used. Safety fields is a new development in the world of traffic safety and provides a
number of benefits not apparent in other safety metrics. The behavioural field allows for the use of driving
behaviour to affect the severity of a conflict and the static field gives all static objects on a road an impact on
drivers. TTC and PET only look at other road users when used for simulations, whereas with safety fields, it
is possible to look at road users, their behaviour, and the impact of road side objects like trees and the guard
rail. It provides a much more complete image of the effects of surrounding objects as well as the differences in
driving behaviour.

In order to use the above safety metric, the driving behaviour of a CAV and an HDV has to be defined. For the
purpose of safety fields, this is described by ’driving risk’ a value between zero and one, where the higher values
denote more reckless driving. This driving behaviour is split between CAVs and HDVs. CAVs are assumed to
have perfect driving, resulting in a driving risk value of 0, effectively removing the behavioural field for their
value of the safety fields. According to Wang et al. [1] (2015) a conservative driving risk value would be at
0.2, and risky behaviour at 0.6. Therefore, driving risk is given a value of 0.4 to be between the two types of
behaviour. Other ways to distinguish between the types of driving behaviour is reaction time. Reaction time
includes the time required to recognise and react to the situation occurring in front of them. Between CAVs
and HDVs, CAVs are assumed to be able to instantly react to the actions happening ahead of them, giving them
a reaction time of 0. Where HDVs are concerned, they are given a reaction time of 1 second which is considered
an optimal reaction time for humans.

For the car-following model, it is necessary to include the driving behaviour differences between humans and
automated vehicles. The simulation model is based mainly on the car-following model which is why each
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car-following model is explored more thoroughly than other parts of the simulation model. As explained, the
car-following model has to account for the differences between CAVs and humans. Possibly the most effective
(but also time consuming) car-following models are those based on artificial intelligence. These contain a lot
of drawbacks though, the processes that those models take are not always transparent and the modes can be
under- or over-trained. Although these models could be most effective at modelling heterogeneous traffic,
they are beyond the scope of this research. Ultimately the IDM+ (Intelligent Driver Model +) was chosen as
the car-following model. This model accommodates transparency, is comprehensible at all stages, and allows
for the necessary driving behaviour differences. For IDM+ vehicle headways are used to determine the accel-
eration of the following vehicle. For this, Martin-Gasulla et al. [21] (2019) has used three different headways
depending on the following situation, which in turn provides another distinguishing factor between the ve-
hicles. Implementing the reaction times would be the second distinguishing factor between CAVs and HDVs.
The chosen model needed to accommodate the use of CAVs. This affected the decision substantially as there
are a limited number of aspects in road traffic that are different between CAVs and HDVs. IDM+ offered a
straightforward method that was able to include the differences between CAVs and HDVs.

Finally lane-change models were researched to discover the impact that they could have on simulating CAVs. Li
et al. [44] (2020) explains that lane changes can cause 240,000 to 610,000 crashes annually in the US. CAVs can
impact this heavily by reacting more appropriately and effectively absorbing the sudden manoeuvres made by
downstream vehicles. The lane-change models were researched to discover the impact that CAVs could have
on these models. Especially rule-based models could be changed depending on the type of vehicle regarding
the amount of space between vehicles. Due to lower reaction times, CAVs would be better able to fit themselves
into tighter spots in traffic. On top of that, due to the possible communication, CAVs can react to manoeuvres
occurring downstream and can take necessary precautions to reduce the number of conflicts happening in
their environment.
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3
RESEARCH METHODOLOGY

This chapter describes the research methodology for the simulations. This includes the decisions made for
which car-following model is used, the lane-changing model that is used, and the metrics of safety that are ap-
plied. Additionally, model calibration is described and a sensitivity analysis is discussed. Model calibration is
performed by using the literature from the previous chapter to determine the exact values necessary for a free-
way scenario. The sensitivity analysis is necessary to determine the effects of both the calibrated parameters
as well as other factors like reaction time, desired speed, and desired headway.

3.1. RESEARCH APPROACH

The research approach is described in part in Chapter 1 where the method for the literature review is discussed.
The research approach for the simulations is based on the research question presented in Section 1.3. The sim-
ulation results should aid the literature review in answering how traffic safety is impacted by Connected Auto-
mated Vehicles considering herd immunity. The research approach for the simulations is based on reflecting
reality in the most effective manner. The simulations represent a highway on which certain disturbances occur
in the form of a lower speed area and an on-ramp. Both of these disturbances cause turbulence because the
drivers have to make adjustments to their speeds which in turn affects the headway. The type of data collected
is the number of conflicts that occur due to the inclusion of a disturbance. Depending on the type of scenario,
the type of disturbance also changes. The number of conflicts that occur relate directly to the turbulence of
the road. Each conflict will cause a change in the headway and the speed of the vehicles. To obtain this data, a
safety metric must be used. Safety fields are an appropriate safety metric because even though the individual
numbers do not mean anything when extracted from the data, it is possible to determine a critical threshold
which determines whether a conflict occurs. Determining this critical threshold is part of Subsection 3.2.3 later
in the chapter. The critical threshold for conflicts depends on the relative safety field strength that is described
in Subsection 2.2.2. Collecting the conflict data and comparing that data between different CAV penetration
rates will be the main method of data analysis. These are described in Section 3.3 and Section 3.4 respectively.

3.2. MODELLING APPROACH

To satisfy the research approach, a realistic model is created through the following steps. To remain feasible,
the car-following model used is IDM+ (Intelligent Driver Model +). This model is most appropriate for the
research purposes because it is transparent, effective for longitudinal car-following scenarios, and easy to un-
derstand. What makes the model transparent is that at every point of the simulation it is possible to determine
exactly what the model is supposed to do. Each time step can be inserted into the equation with the accompa-
nying speeds and headways to determine what each following vehicle should do. Furthermore, it is more than
appropriate for longitudinal car-following scenarios because it uses the preceding vehicle’s speed and distance
to determine the acceleration of the following vehicle. A car-following model was provided in which the rest of
the model was built. Figure 3.1 shows the steps taken to create the model.
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Step 1: Simulation
Base Adapt IDM to IDM+

Randomize order of
HDVs and CAVs and

implement seeds
Implement headways

and reaction times

Step 2: Calibration
Determine

appropriate values for
personal and safety

parameters

Step 3: Scenarios

Determine number of
seeds to obtain
sufficient results

Single Lane Scenario

On-ramp Scenario

Determine location
and time duration of

disturbance

Determine on-ramp
location

Determine initial
personal parameters
of on-ramp vehicles

Determine
penetrations

Methodological
approach

Figure 3.1: Modelling Approach

The above figure can be split into 3 steps. The simulation base, calibration, and scenarios. They are put into
this order because each following step can be dependent on its predecessor.

Starting with the simulation base, the simulation model is created. This model is dependent on the research
done in Chapter 2. In Chapter 2 decisions are made that affect the input variables of the simulation model.
Additionally, the choice of safety metric and car-following model is decided on. As shown in the figure, IDM+
has been chosen for the car-following model. Creating the simulation base is one of the most time consuming
processes simply due to it requiring the most programming. This section is also exploratory in sense that it at-
tempts to combine aspects of the safety metric along with IDM+. This step is also responsible for creating the
different types of seeded runs. The seeded runs are created by varying the vehicle orders so many combina-
tions of CAVs and HDVs are possible. Then, depending on the following situation headways are implemented.
The purpose of each of these steps is to prepare the simulation model for the following steps. The purpose of
this research is to discover the safety impacts that CAVs can have and therefore, it is important that the base
simulation model properly implements the driving behaviour differences between the two types of vehicles.
The results from the model will be based on this difference.

The following step concerns the simulation model calibration. This step is necessary to determine whether
the input variables are valid. The calibration step will focus on the driving behaviour to observe what occurs
when these values are changed as well as a basic simulation parameter; the number of time steps. On top of
that, the results found need to be statistically significant. To ensure that, a test is performed to determine how
many seeds are necessary for 95% reliability.

Finally the scenarios will determine what situations will be used. This is split over varying the penetrations
as well as varying the type of disturbance that occurs. The disturbances need to make a sufficient impact so
that all vehicles will have to react. On top of that, the locations have to be determined. These locations will be
based on how long it takes the scenario to reach stability. After that the disturbance can be introduced.
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3.2.1. DRIVING BEHAVIOUR

For this section, the specific parameters will be given values. The calibration parameters will be discussed in
the next section. Table 3.1 presents the the driving behaviour parameters used for IDM+ with their accom-
panying values for the simulations. The table shows HDV and CAV parameters to compare the two. Certain
parameters do not have any differences between CAVs and HDVs. These are things like comfortable braking
speeds and desired speed as these should not differ between types of vehicles. The largest difference exists in
the headway and reaction time. The paper by Martin-Gasulla et al. [21] investigates the effects of this headway
on the throughput of a road. In this research they vary the headway depending on what a CAV is following,
ranging from 0.6 seconds to 1.5 seconds. The reaction time exhibited by human drivers is considered the opti-
mal value. The reason this is used is described in the calibration section of the paper.

Table 3.1: IDM driving behaviour parameters

Parameter Denoted by CAV value HDV Value
Comfortable Acceleration a 0.73 m/s2 0.73 m/s2

Desired Speed v0 30 m/s 30 m/s
Minimum Headway s0 2 m 2 m
Desired time headway T 0.6/1.5 seconds 1 second
Reaction Time t 0 seconds 1 second
Comfortable Deceleration b 1.67 m/s2 1.67 m/s2

3.2.2. SIMULATION BASE

To create the simulation base, a model was provided. This model included the IDM as well as the necessary
time-stepping and potential disturbances in the MATLAB environment. It was necessary to prepare this model
in order to incorporate the necessary additions. These additions include IDM+, different driving behaviours
depending on the type of vehicle, and the safety metric. For IDM+ there are two main differences; the headway
and reaction times. To apply the differences in headways each vehicle needs to identify the vehicle that they
are following. For a single lane scenario this never changes, but as more vehicles are added to the scenario
these headways will change. The desired time headway of an HDV following any type of vehicle is 1 second, a
CAV following another CAV is 0.6 seconds, and a CAV following an HDV has a headway of 1.5 seconds. These
differences are due to the unpredictable nature of HDVs as well as the reaction time. The reaction time is
the next part to be implemented into the model. This is done by having the HDVs react to the time step that
occurred 1 second previously rather than reacting immediately.

3.2.3. CALIBRATION

This section is necessary to identify the parameters that will need to be calibrated. IDM+ is straightforward
to calibrate and has been used many times in the past. Automated vehicles have also been simulated using
IDM+. Additionally, it is possible to incorporate a reaction time into the model. This is done by having the
following HDVs react to the time step a second before the current time step. This is helpful because it provides
flexibility and allows for the differences in driving behaviour for the CAVs and HDVs. For IDM+ the necessary
parameters are: the comfortable acceleration, desired speed, minimum headway, desired time headway, the
reaction time, and the comfortable deceleration.

Calibration is done for simulation parameters and for safety parameters. The purpose of calibration is to search
for a combination of parameter values that will best serve the purpose of the research. In this particular case it
means using parameter values that results in the most realistic simulation model, while still remaining feasible
in the allotted time-frame. This combination between realism and feasibility is the optimal parameter setup
and the main purpose of performing calibration for the simulation model. The personal parameters are ini-
tially implemented to be as realistic as possible. Through initial testing of the model these personal parameters
are adjusted. This is necessary because the most realistic parameters result in a model that does not reach a
steady state for the traffic quickly enough to remain feasible for the simulations (steady state traffic meaning
that there is constant velocity for each individual vehicle). To maintain the degree of realism, traffic speeds
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of Dutch freeways are used. 30 m/s is close enough to these speed limits to use it as the desired speed. The
safety parameters are more difficult to calibrate due to the limited research done on safety fields. In the paper
by Wang et al. [1] the methods for calibrating the safety fields are explained, but each of these make use of the
surroundings extensively.

NUMBER OF SEEDS

With simulations it is generally necessary to determine the required number of seeds for statistic significance.
The seeds randomise the order of the vehicles. This results in new combinations that can yield interesting
results. To determine the number of necessary seeds Equation 3.1 is used.

N ′ ≥ t 2
1
2α,N−1

(
1+ 1

2
ξ2

)
X 2

s

X 2
d

(3.1)

Where:

• N : The sample size.

• Xs : The sample standard deviation.

• Xd : The accepted deviation.

• α: The reliability.

• ξ: The abscissa or normal distribution excess value.

• t 1
2α,N−1: The value of the student t-test distribution.

This equation makes use of the abscissa but because the results are an average value, the abscissa is equal to
zero. The data used for determining the seeds is the number of conflicts that occur. To obtain the necessary
data, a conflict needs to be defined. At what values of the safety field strength would a conflict occur. Using
Equation 3.2 the relative safety field strength is found per vehicle. An important factor here is defining at
what value of the relative field strength a conflict occurs. The severity of conflicts can also be determined,
but for calibration purposes, the conflict threshold was set at a safety field strength of 1.9. Using 10 seeds at
a penetration of 50% resulted in 28 seeds being necessary per penetration in order to reach 95% reliability.
Due to the many seeds and the calculation time necessary per seed, only varying the penetration rates should
provide sufficient information for the purpose of this research.

HEADWAYS

Initially the headways were set at their optimal values. For a CAV following another CAV this is 0.6 seconds,
1 second for an HDV following any type of vehicle, and 1.5 seconds for a CAV following an HDV. These initial
headways caused a good mix of conflicts to occur. In this set up the CAVs with 0 reaction time and a time
headway of 1.5 seconds caused 0 conflicts above a relative safety field strength of 1.9 at all penetrations. When
adjusting these headways the number of conflicts that occurred drastically changed. Over multiple seeds the
standard deviation of the number of conflicts increased by a lot. In order to maintain 95% reliability it would
require an incredible increase in the number of runs necessary using Equation 3.1. This would raise it towards
levels of 300 seeds in order to keep 95% reliability. 300 seeds is not a feasible number of seeds in the time
available. The headway of a CAV following another CAV was changed to 0.8 seconds to provide more space
for manoeuvring. With this change, CAVs that follow other CAVs are less sensitive to sudden braking and have
some space before it is considered a conflict.
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TIME STEP SIZE

The model started with time steps of 1 second, but that also meant that each vehicle only reacted once every
second, when driving is a process in which drivers do react more often than that. Realistically, a human driver
would react to all stimuli constantly, reducing the time steps further, but that would be difficult to simulate.
The time step size of 1 second caused the vehicles to experience a large amount of turbulence without any
added disturbance. This was abetted by reducing the time step size to 0.1 seconds so all drivers would react
more often which also reduced the overall turbulence on the road.

REACTION TIME

Another part of the calibration is the reaction time of the HDVs. Optimal human reaction times are about
1 second. When calibrating the reaction time to go to non-optimal reaction times, the total simulation time
is increased. This is because higher reaction times caused additional instability and therefore more time for
the model to reach stability. To counteract the instability, the initial distance between vehicles needs to be
increased which also affected the total simulation time.

3.2.4. SCENARIOS

This section describes the different scenarios used for data collection. These scenarios have the purpose of
simulating turbulence and that turbulence should cause safety conflicts. Then, by using different penetration
rates the number of conflicts can start to change which makes it possible to compare those different penetra-
tion rates. Furthermore, each scenario can also be varied in other ways like total traffic volume, or through the
personal parameters. Table 3.2 shows the scenarios as well as the variables per scenario. Each of the scenarios
could increase in traffic volume, in these cases it might be necessary to adjust to total simulation time as well
as change the location of the disturbance. This would happen because the model would take longer to reach
stability.

BASELINE

A baseline scenario is created to see whether any conflicts occur with the current relative threshold for the
safety fields. This is simply the same scenario as the scenario with the disturbance, but then lacking the distur-
bance. Headways and reaction times will still be changed depending on the identity of each vehicle. If many
conflicts occur during the baseline scenario then either the threshold for conflicts will have to be adjusted or
some personal parameters so that those conflicts do not occur.

SCENARIO 1: SINGLE LANE HIGHWAY WITH A DISTURBANCE

This scenario is used to show how the vehicles react to a disturbance occurring on a single lane highway. This
is the starting scenario as it is also the most simple. The purpose of this disturbance is to cause turbulence. The
turbulence in turn causes safety conflicts due to the many changes in speed and headway that the network of
vehicles experiences.

The disturbance on this single lane highway causes a decrease in the speed of all vehicles passing a certain
point. This is ideal to cause turbulence on the road and forces conflicts to occur. The disturbance is created
by designating a time period to have a lower speed. The lower speed only applies to the first vehicle in the
queue and this will cause all following vehicles to react to this speed difference. The disturbance will occur at
a distance of 5500 meters from the start, and continues for 500 meters till 6000 meters. This location is chosen
so that the traffic has enough time to stabilize before a disturbance occurring. At higher vehicle volumes this
could be put on a later time step because the disturbance could cause a stop-and-go wave that spills back to
the start of simulation. Additionally, with higher traffic volumes the total number of time steps could increase
from 5000 time steps (0.1 seconds per time step) to a high value in order to fit all the vehicles in the allotted
space.
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Table 3.2: Scenarios

Scenarios Seeds Driving dynamics Penetration rate
Baseline 1 IDM+ 0, 10, 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100
Single lane disturbance 28 IDM+ 0, 10, 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100

3.3. DATA COLLECTION

Data collection will occur through through the simulations. All data that is used for those simulations can also
be collected. Everything is saved in the MATLAB environment which makes it possible to call every piece of
data that has been used throughout the simulation. This is why transparency has been mentioned so often
as a benefit of using the intelligent driver model. The type of data collected is quantitative due to it being a
simulation. This will also be the only type of data collected throughout the simulation because the topic of
research is very niche and no past research fits the research question in a similar manner. The main results will
be based on the safety fields. This includes both the dynamic field as well as the behavioural field. Safety fields
is described in Chapter 2. The magnitude of the safety fields describes the severity of the conflict between the
two vehicles. Safety fields are used as the safety metric because it applies both a behavioural field as well as
a kinetic field. The data collected is the number of conflicts, and each of these conflicts falls into a certain
level of severity based on their relative safety field strength. The relative safety field strength is described by
Equation 3.2. The formula for the relative safety field strength is also described there. The ranges for these
severities are 0-1, 1-1.5, 1.5-1.8, 1.8-2.1, and >2.1. This severities simply

3.4. RESULTS ANALYSIS

The simulation results only gain meaning when a disturbance is added to the scenario, in order to determine
the effectiveness of each penetration of CAVs. Until the simulation has reached stability, the conflicts recorded
can be ignored. Data collection should start from the moment the disturbance has effect. A critical step for the
data analysis is ensuring that outliers are ignored because they can impact the total number of conflicts that
occur during a run. Outliers are defined as vehicles that make extreme manoeuvres during the simulations.
The results are analysed by finding the strength of the relative safety field per different car-following situation
as described by Equation 3.2. Additionally, single runs will be performed to visualise the effect that the distur-
bance has on the rest of the vehicles. Furthermore, the total conflicts per penetration rate at each severity level
can be compared and analysed.

The total number of conflicts per penetration rate can be tested using the independent samples t-test for sig-
nificance. Although 28 simulation runs are done per scenario, testing for significant difference can still be
effective. This test provides certainty that the differences in the values between the different penetration rates
is significant. Furthermore, descriptive statistics will be used to point out any obvious trends in the data.

RELATIVE SAFETY FIELD

In the simulation environment the only objects affecting the safety field strength are the other vehicles and
the driving behaviour of the vehicle. The proposed values in that research paper will be used because the trial
simulations showed results that can be compared with one another. No extreme values were found which
makes it possible to establish a scale of severity for the safety field values. This threshold not be the absolute
value of what the safety fields provide, but rather a relative value. This is because safety fields are affected by
distance between vehicles, and due to the headway depending on what vehicles are following one another, a
relative value would make more sense to compare. A CAV following another CAV has a lower headway which
would point towards there being a higher safety field strength which would indicate a higher chance of there
being a conflict, when this should not be the case. This the relative safety field strength value was calculated as
shown by Equation 3.2. This is necessary in order to compensate for the limitation of safety fields that vehicles
with different headways will have different safety field strengths that they tend towards during stable road
conditions.
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ER, i , t = Ei , t −Ei , F (3.2)

Where:

• ER, i , t : Relative field strength of vehicle i and timestep t.

• Ei , t : Field strength of vehicle i at timestep t.

• Ei , F : Field strength of vehicle i at final timestep.

Figure 3.2: Safety field Strength in each following situation

Figure 3.2 shows a single run where each single line represents a vehicle. Its colour represents the type of
following situation as shown in the legend. The figure illustrates how each type of following situation returns
to a separate baseline. This is what the relative safety field strength will counteract. Figure 3.3 shows the
relative safety field strength of a single run. This way the conflicts can be compared more effectively with one
another. These figures are used to illustrate the effects of Equation 3.2. The second figure clearly shows that
the safety field strengths are closer to one another to compensate for the differences created by the different
headways of the following situations.
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Figure 3.3: Relative Safety Field Strength of a single run

The relative safety field strength can be found by subtracting the safety field strength value that each individual
vehicle tends towards. When the disturbance is resolved and the model reaches stability; 0 changes in speed
and acceleration, each individual vehicle will have a certain safety field strength. This safety field strength
is denoted by Ei , F . This is the value of the safety field that each individual vehicle tends towards. To give
meaning to the relative safety field values, a scale for the severity of conflicts is created. This scale is based on
the collected results of the model. With a maximum relative safety field value of 2.53, the upper limit of the
scale is at 2.6 and the lowest is 0. This upper limit is limited to this scenario.
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4
RESULTS

This chapter discusses the direct simulation results, a sensitivity analysis for robustness, and analyses the
results using statistical testing.

4.1. SIMULATIONS

The results of the simulations are based on the scenarios that are tested. The scenario was tested using 28
seeds at each penetration to vary the vehicle order. In order to interpret the data, the definition of a conflict
for this simulation situation should be clarified. Measuring the level of safety is done using the safety metric
safety fields. This safety metric makes use of the leading and following vehicle’s velocity and distance from one
another to determine the safety field strength. This is then adjusted to find the relative safety field strength at
every time step. A conflict in this situation can be defined as having a relative safety field strength greater than
0, but that would result in a conflict every time a micro-adjustment is made to the speed of a vehicle as the
following vehicle will react. Therefore the term conflict severity is used. This term describes how dangerous
the conflicts are through the use of value ranges of the relative safety field strength. The higher the values of
the relative safety field strength, the more dangerous the conflicts. A combination of the number of conflicts
and the conflict severity reflects the safety of the scenario. Therefore, the crash risk would increase when the
conflicts get more severe and numerous, and subsequently the level of safety would decrease.

To introduce the results Figure 4.1 shows a single run of the model at 50% penetration. Figure 4.1 is similar
to Figure 3.2 and Figure 3.3 because it shows the relative safety field strength at each timestep as well as the
vehicle number in the queue.
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Figure 4.1: Visualisation of conflicts at 50% penetration

The above figure shows the number of conflicts to happen per vehicle at each timestep. As expected, the
number of conflicts is low for the first few vehicles and that number grows as the simulation time increases.
The relative safety field strength is shown to vary between just under 2 and between 2 and 2.5. These values
change due to the different following situations that occur. This figure in itself is not enough to draw any
conclusions, and as such, other tables and figures are included below.

Table 4.1 shows the number of conflicts per severity range at each penetration rate. This table is used to show
the total number of conflicts that occur at each penetration. Conflict severity is what makes it possible to
compare the CAVs with the HDVs. The conflict severity is based on the relative safety field strength and it
provides the possibility to compare the number of conflicts over each separate threshold.

Table 4.1: Number of conflicts per conflict severity and penetration

Conflict Severity 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
1-1.5 5682 6147 6392 6636 6748 6841 6928 6949 6940 6879 6915 6818 6852 6429 6189
1.5-1.8 3159 3169 2953 2795 2766 2702 2736 2783 2847 2902 2994 3142 3556 3860 4481
1.8-2.1 3250 3159 3159 3135 3197 3169 3201 3340 3441 3663 3861 4192 4853 5439 6192
>2.1 8433 7260 6206 5406 5076 4769 4327 3862 3521 3172 2762 2466 1699 1201 661
Total 20524 19735 18709 17972 17787 17482 17192 16934 16749 16616 16531 16618 16960 16929 17523

Table 4.1 ignores the range of a relative safety field strength value of 1 or below, because these are not consid-
ered conflicts. These values are too mild to consider them as conflicts. The table ignores the vehicle orders
for now, simply to show how the number of conflicts changes over the penetrations. At a relative safety field
strength of above 1, the least number of conflicts are found at 65%. The highest number of conflicts is found
at a penetration rate of 0%. As assumed, the total number of conflicts seems to decrease as the penetration of
CAVs increases, but it was not expected that the lowest number of conflicts would occur at 65%. This does ac-
count for all conflicts so it does not yet consider the severity of these conflicts. At a relative safety field strength
of more than 2.1, the number of conflicts decreases almost linearly over the penetration rates. The decrease
per penetration rate does start at a higher rate and the change decreases as the penetration rate increases.
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Table 4.2: Change in number of conflicts per penetration

Penetration (%) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Change 1173 1054 799 637 907 690 706 767 498 540

Table 4.2 shows the change in the number of conflicts per penetration rate at a severity threshold of 2.1. As
shown the relationship is not linear, but the number of conflicts does decrease a substantial amount. At 100%
penetration, the total number of conflicts is about 3000 conflicts fewer than at 0%. This does not tell the whole
story, as there are far more severe conflicts at 0% than at 100% penetration.

Per severity range the types of conflicts were also collected. The types of conflicts are defined by the types of
following situations. There are four possible following situations; HDV following an HDV, HDV following a CAV,
CAV following a CAV, and CAV following an HDV. The types of conflicts that occur provide insight into which
situations are most dangerous. Table 4.3 shows the number of conflicts for each following situation at a relative
safety field strength of more than 2.1.

Table 4.3: Relative safety field strength >2.1 conflict types per penetration

Threshold >2.1 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
HDV-HDV 8433 6535 4986 3745 3321 2790 2281 1827 1457 1174 875 703 239 52 0
HDV-CAV 0 700 1163 1578 1646 1825 1872 1846 1821 1722 1644 1452 1076 620 0
CAV-CAV 0 25 57 84 110 154 175 190 244 276 242 312 384 529 661
CAV-HDV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The above table indicates that HDVs are part of most conflicts to occur for the severity level of more than 2.1.
Even at 90% penetration where the majority of vehicles are CAVs, there are more conflicts with HDVs following
CAVs than CAVs following CAVs. Figure 4.2 shows the graph from which it is possible to view the trend.
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Figure 4.2: Relative safety field strength threshold above 2.1

As depicted by the figure above, there are no crashes in the following situation of CAV behind an HDV. This
is a trend that holds true for most thresholds. Only at the relative safety field strength threshold of 1 to 1.5
are there any conflicts in that specific following situation. Altogether, the total number of conflicts decreases
as the penetration rate increases. It is necessary to compare this to the other threshold levels to determine
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whether this trend continues. Table 4.4 shows the relative safety field strength value from 1.8 to 2.1 for each
penetration rate and following situation.

Table 4.4: Relative safety field strength 1.8 to 2.1 conflict types per penetration

Threshold 1.8-2.1 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
HDV-HDV 3250 2776 2330 1845 1609 1382 1128 931 732 596 451 353 156 30 0
HDV-CAV 0 330 602 835 896 965 1014 1023 983 914 878 762 591 313 0
CAV-CAV 0 53 227 455 691 822 1059 1386 1726 2154 2532 3077 4106 5096 6192
CAV-HDV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

What can immediately be observed is the larger number of conflicts for CAVs following CAVs at 100% penetra-
tion. This value is also a lot higher than the total number of conflicts at 0% penetration. What this shows is
that CAVs are better able to deal with most conflicts, but the more severe conflicts are moved to lower conflict
thresholds. Figure A.1 depicts the number of conflicts in the range from 1.8 to 2.1 at each penetration rate and
following situation.

Figure A.1 clearly shows that the total number of conflicts for CAVs following CAVs is a lot larger than that of
the HDVs following other HDVs. By looking at the total number of conflicts that are above a relative safety field
strength of 1.8, it is possible to see which penetrations and following situations have more conflicts. This is
depicted by Table 4.5.

Table 4.5: Relative safety field strength greater than 1.8 per penetration

Threshold >1.8 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
HDV-HDV 11683 9311 7316 5590 4930 4172 3410 2758 2189 1770 1326 1056 395 82 0
HDV-CAV 0 1031 1764 2413 2542 2791 2886 2868 2803 2636 2522 2213 1667 933 0
CAV-CAV 0 77 285 539 801 976 1233 1576 1970 2429 2775 3389 4490 5625 6853
CAV-HDV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 11683 10419 9365 8542 8273 7938 7528 7202 6962 6835 6623 6658 6552 6640 6853

This table shows that the total number of conflicts that occur is lower at 100% penetration than at 0%. The
least number of conflicts occurs at 80% penetration. The results from the above table show that CAVs were
better able to deal with situations deemed more extreme. As the penetration rate increases both the number
of conflicts decreases, as well as the severity of those conflicts. To illustrate this, Figure 4.3 shows the figure
where the relative safety field strength is above 1.8.
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Figure 4.3: Relative safety field strength threshold greater than 1.8

The purpose of the above figure is to show how each conflict scenario varies over the penetration rate. Clearly
the total number of conflicts is a lot lower at the higher penetration rates.

Table 4.6: Relative safety field strength 1.5 to 1.8 conflict types per penetration

Threshold 1.5-1.8 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
HDV-HDV 3159 2817 2229 1676 1473 1234 1026 851 649 523 398 304 133 30 0
HDV-CAV 0 323 560 746 777 842 878 895 864 793 759 636 565 260 0
CAV-CAV 0 29 164 372 516 626 832 1037 1335 1587 1837 2202 2858 3569 4481
CAV-HDV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.7: Relative safety field strength 1.0 to 1.5 conflict types per penetration

Threshold 1-1.5 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
HDV-HDV 5682 4667 3748 2824 2511 2121 1763 1444 1118 918 702 548 241 45 0
HDV-CAV 0 534 921 1263 1302 1398 1480 1492 1444 1358 1320 1112 906 470 0
CAV-CAV 0 56 244 567 857 1043 1340 1689 2109 2459 2843 3325 4186 4984 6189
CAV-HDV 0 890 1479 1982 2077 2279 2345 2324 2268 2144 2050 1833 1519 931 0

Table 4.6 and Table 4.7 show the tables of the relative safety field strength of the thresholds of 1.5-1.8 and 1-1.5.
These tables are quite similar except for the CAV following an HDV situation finally has conflicts. Furthermore,
the conflicts transfer from the HDV following an HDV situation to the CAV following a CAV situation. This is
what happens across all different conflict thresholds due to the change in the penetration of CAVs.

From the collected results above, it is clear that there are benefits that CAVs provide. Not only does the total
number of conflicts decrease, their severity is also reduced. This is clear from the graphs showing the relative
safety field strength of above 2.1 and 1.8. In the milder thresholds CAVs take part in more conflicts than HDVs,
but this is because they lack so many of the conflicts above the threshold level of 2.1. The tables used show
the exact number of conflicts per scenario. When considering all conflicts, it was unexpected that the least
number of conflicts would occur at a penetration rate of 65%. This is subject to change depending on on what
can be defined as a conflict. Currently everything above a relative safety field strength of 1 is considered a
conflict, but if this value would increase, then the conflict numbers at 80% or 90% penetration would be the
least over all the penetration rates. As the current results show, CAVs have the fewest critical conflicts and these
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can be the most important where safety is concerned. There are other inputs that can also have an impact if
they are changed. These are described in the following Section 4.2.

4.2. SENSITIVITY ANALYSIS

A sensitivity analysis is performed to determine the effects that changing a single variable has on the rest
of the simulation. During calibration many of the parameters were tested to find the optimal set up for the
simulations. Those parameters are not taken into account as their values have already been justified. The
sensitivity analysis concerns the ’driving risk’ value of humans, maximum acceleration/deceleration, and the
desired speed during the disturbance. The ’driving risk’ value is the value that is used in the safety fields cal-
culations. The sensitivity analysis tests the robustness of the model and increases the understanding of the
relation between the input variables and output variables.

4.2.1. DRIVING RISK

Driving risk is the variable used in the safety metric of safety fields, given to the human drivers to differentiate
their behaviour from that of the CAVs. Inherently it is assumed that CAVs do not make mistakes while driving
and thus their driving risk is set to 0. Driving risk range from 0.2 to 0.6 to determine the effect of this parameter
and which value is appropriate for this research. The effect of changing this value is determined through the
number of conflicts that occur at each level of severity.

As expected, when the driving risk value of humans increases, so do the number of conflicts that occur at
each severity. This is due to the safety field strength increasing even compared to its new relative safety field
strength. Table 4.8 shows the gradation of the conflicts per penetration. As shown, the driving risk clearly
increases the number of conflicts at each penetration except at a 100%. This is logical because the driving risk
directly impacts the HDVs and not the CAVs, which explains why at 100% penetration the conflict values are
constant.

Table 4.8: Driving risk safety field strength above 2.1 per penetration

Driving risk 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
0.2 2058 1662 1346 1156 1130 1046 914 788 741 657 534 577 487 570 661
0.3 6165 5186 4309 3705 3495 3276 2936 2580 2353 2136 1823 1693 1208 946 661
0.4 8433 7260 6206 5406 5076 4769 4327 3862 3521 3172 2762 2466 1699 1201 661
0.5 10051 8766 7599 6655 6250 5878 5347 4805 4351 3913 3426 3031 2084 1370 661
0.6 11316 9980 8766 7735 7250 6815 6208 5590 5029 4505 3939 3456 2364 1505 661

Figure 4.4 expands on the claims made that higher driving risk results in more conflicts. It especially illustrates
the change in the slope per penetration rate. At a driving risk of 0.6, the largest number of conflicts occur, but
it also has the highest slope of each driving risk value. Since the driving risk has no impact on the number of
conflicts for CAVs following other CAVs, each of the lines gathers towards the same number of conflicts.
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Figure 4.4: Varying driving risk conflicts per penetration rate

4.2.2. MAXIMUM ACCELERATION

Maximum acceleration affects the change in speed of every vehicle. For car traffic this variable can be split
into two versions, a comfortable and a maximum acceleration. Maximum acceleration is based on what the
vehicle is capable of. It is assumed that the physical capabilities of the simulated vehicles is homogeneous
across all HDVs and CAVs. The maximum acceleration will vary from 0.8 m/s2 to 1.2 m/s2 with 1.0 m/s2 being
the original value used for calibration.

For the maximum acceleration it is hypothesised that the higher values will cause more conflicts. This is due
to the vehicles needing more time to reduce their acceleration back to zero, so on average they would be closer
to the vehicle that they are following. Especially HDVs could suffer from this due to the higher speeds that they
reach with a reaction time of 1 second. Table 4.9 shows the number of conflicts above the threshold relative
safety field value of 2.1 at each penetration.

Table 4.9: Maximum acceleration safety field strength above 2.1 per penetration

Maximum Acceleration 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
0.80 5557 5089 4601 4101 3831 3560 3216 2853 2527 2232 1929 1615 972 480 0
0.85 6332 5684 5051 4460 4167 3858 3488 3092 2747 2431 2105 1787 1079 551 0
0.90 7063 6236 5465 4786 4473 4148 3759 3332 2967 2619 2266 1926 1184 622 0
0.95 7835 6825 5912 5172 4851 4536 4107 3648 3293 2938 2540 2187 1422 863 118
1.0 8433 7260 6206 5406 5076 4769 4327 3862 3521 3172 2762 2466 1699 1201 661

Figure 4.5 depicts the graph for the data presented in Table 4.9. The purpose of this depiction is to show how
the slope changes per different maximum acceleration. The maximum acceleration has a limited effect on
the number of conflicts and they remain similar throughout. Only at the earlier penetrations is the number of
conflicts substantially different. They tend towards each other as the penetration rates increase.
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Figure 4.5: Varying maximum acceleration conflicts per penetration rate

4.2.3. MAXIMUM DECELERATION

The maximum deceleration is similar to the maximum acceleration because it is split into two categories.
Comfortable deceleration and maximum deceleration. Comfortable deceleration is generally around 3 m/s2

and maximum deceleration at 5 m/s2. It will vary from comfortable deceleration to maximum deceleration to
determine its effects on the number of conflicts and their severity.

The maximum deceleration does not have a clear trend that is followed by all penetration rates. At 100% pene-
tration, the number of conflicts remains very similar at each maximum deceleration. The earlier penetrations
do suffer from an increase in the number of conflicts when the maximum deceleration increases. This is what
is expected because vehicles must react more quickly and with a higher deceleration, which in turn increases
the turbulence of the entire road and therefore increases the number of conflicts. At higher penetrations the
number of conflicts becomes more consistent and the magnitude of the changes is limited. The table showing
the penetration rates and maximum deceleration is shown by Table 4.10.

Table 4.10: Maximum deceleration safety field strength above 2.1 per penetration

Maximum Deceleration 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
-3.0 6438 5778 5114 4484 4196 3929 3602 3238 2915 2624 2337 2068 1524 1127 665
-3.5 6661 5932 5221 4570 4279 4006 3670 3295 2974 2679 2383 2108 1544 1148 663
-4.0 7116 6258 5455 4764 4463 4183 3822 3428 3107 2801 2484 2202 1595 1188 669
-4.5 7826 6788 5845 5096 4783 4490 4086 3657 3323 3004 2640 2346 1674 1195 664
-5.0 8433 7260 6206 5406 5076 4769 4327 3862 3521 3172 2762 2466 1699 1201 661

Figure 4.6 shows the data from Table 4.10. Similarly to the maximum acceleration, the total number of conflicts
is substantially different at the earlier penetrations. Later penetrations all tend towards the same number of
conflicts which is separated by very few conflicts. A lower maximum deceleration results in fewer conflicts
occurring, which would mean that the drivers and CAVs react in a milder fashion to vehicles slowing down in
front of them which could create a conflict between those two vehicles, but it causes less of a disturbance for
the vehicles upstream.
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Figure 4.6: Varying maximum deceleration conflicts per penetration rate

4.2.4. SPEED DURING DISTURBANCE

The speed during the disturbance denotes the severity of the disturbance. The disturbance causes the vehicles
to heavily reduce their speeds which causes a shock wave effect upstream. The disturbance causes the conflicts
to occur but the value of the reduced speed can have a large impact on the number of those conflicts. The
reduced speed of the disturbance will vary from 12 m/s to 18 m/s with 15 m/s being the original value used
during calibration.

The speed during the disturbance has a direct impact on the number of conflicts at a relative safety field
strength threshold value of more than 2.1. The lower the disturbance velocity, the more conflicts at every
single penetration. As the disturbance velocity increases, the number of conflicts decreases. This is because
the difference between the desired velocity and disturbance velocity decreases as the disturbance velocity in-
creases. When this difference becomes smaller then the vehicles have a lower change in velocity which results
in fewer conflicts occurring. Table 4.11 shows the total conflicts per penetration rate and disturbance velocity.

Table 4.11: Disturbance velocity safety field strength above 2.1 per penetration

Disturbance Velocity 0 10 20 30 35 40 45 50 55 60 65 70 80 90 100
12 15086 13740 12448 11115 10597 10061 9467 9048 8544 8099 7685 7180 6129 5167 3978
13 12810 11488 10268 9137 8683 8226 7701 7285 6848 6448 6052 5630 4683 3839 2960
14 10656 9406 8254 7291 6894 6511 6028 5588 5198 4843 4450 4104 3243 2495 1844
15 8433 7260 6206 5406 5076 4769 4327 3862 3521 3172 2762 2466 1699 1201 661
16 4187 3551 2901 2468 2309 2137 1906 1649 1473 1316 1162 1057 696 377 0
17 1547 1130 805 642 594 537 449 366 317 254 198 177 80 61 0
18 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 4.7 shows how the number of conflicts varies per different disturbance velocity. Varying the disturbance
velocity results in the largest differences in the number of conflicts, ranging from 15,000 conflicts to 0 conflicts
at a penetration rate of 0. What Figure 4.7 especially shows is that the lowest disturbance velocities have a more
extreme slope. This slope becomes milder as the disturbance velocity increases.
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Figure 4.7: Varying disturbance velocity conflicts per penetration rate

4.2.5. SENSITIVITY ANALYSIS SUMMARY

From each of the inputs tested in the sensitivity analysis, the number of conflicts changed according to the
increase in the input variable. This section seeks to answer whether it is necessary to change any of the input
variables. For driving risk, a value of 0.4 seems appropriate. It denotes medium driving risk for humans and
has been used in previous research to denote standard driving. The other input variables should also remain
as they are, changing any of the parameters results in a change in the total number of conflicts, but each value
was chosen during the literature review as being the most appropriate value. A maximum deceleration of -5
m/s is quite standard, even if it is less than the comfortable deceleration, it better reflects potential emergency
braking. The maximum acceleration should also remain at its current value of 1 m/s because the lower values
of the acceleration reduce the number of conflicts quite heavily. At 100% penetration there are barely any
conflicts and the maximum value of 1 m/s is based on the literature. The speed during the disturbance affects
the number of conflicts most heavily. Any of the velocities above the original 15 m/s results in very few conflicts
at the higher penetration rates. Therefore the higher disturbance velocities should not be used. At the lower
disturbance velocities, the number of conflicts increases heavily, even at the higher penetration rates. Due to
this extreme increase, 15 m/s remains an appropriate value for the reduced velocity during the disturbance.

The sensitivity analysis also gave light to the changes in the slopes of each variable as they were varied. Espe-
cially driving risk and disturbance velocity had a large impact on the slope whereas the maximum deceleration
and acceleration were more mild. Especially driving risk followed the expectation where it directly impacted
the number of conflicts depending on its value. The higher this driving risk variable, the higher the total num-
ber of conflicts. The sensitivity analysis shows that changing any of these variables would have a significant
impact on the number of occurring conflicts. Even the ones where the change seems minimal, the difference
between the maximum and minimum values tested result in a change of at least a thousand conflicts. This is a
substantial difference and it shows that the number of conflicts is stable when changing an individual parame-
ter. The part that does remain stable over the different parameter changes would be the trend of the number of
conflicts over the penetration rate. Only the disturbance velocity shows a larger change in the trend by having
0 conflicts occur at the higher disturbance velocities.
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5
DISCUSSION

This chapter is used to interpret and discuss the results found in Chapter 4, address the limitations inherent to
the research, and provide recommendations to continue and improve the research.

5.1. MAJOR FINDINGS

This section is aimed at summarising the major findings of the literature review and the simulation model.
Both the literature review and the simulation model aimed towards answering the research question ’How is
traffic safety influenced by connected (automated) vehicles considering the concept of herd immunity?’ From
both the literature review and the simulation model, the results indicate that traffic safety is positively influ-
enced by the introduction of connected automated vehicles. They provide benefits beyond the direct safety
benefits that AVs provide, because the communicative part allows them to absorb the mistakes of human
drivers more effectively. The simulation model does well to show that, as the penetration rate increased not
only do the total number of conflicts decrease, also their severity is decreased. The sensitivity analysis demon-
strated how the number of conflicts would change as certain simulation inputs were changed. Especially the
inputs of ’driving risk’ and disturbance velocity had a huge impact on the number of conflicts. ’Driving risk’ is
the value used to describe driving behaviour for the calculations of safety fields. As the ’driving risk’ increased
so did the number of conflicts for HDVs, and the disturbance velocity changed the number of conflicts for all
drivers involved.

5.2. INTERPRETATION OF RESULTS

This section is used to discuss the significance of the results and how they answer the research questions.

Literature review

The literature review demonstrates that the concept of herd immunity can be used for both viral infections
and for traffic safety. Many of the indicators used for either concept can be translated to one another. These
indicators include distance, agent/vehicle volume, and frequency of contact. Not only that, but both concepts
consider both the primary and secondary effects of herd immunity. According to John and Samuel [13] (2000)
the definition of herd immunity is "The resistance of a group to attack by a disease because of the immunity of
a large proportion of the members and consequent lessening of the likelihood of an affected individual coming
into contact with a susceptible individual." This definition can be used for car traffic with the idea of crash risk
being used instead of disease. Crash risk refers to the probability of a crash occurring in a traffic system. The
core concept behind this is that herd immunity has both primary and secondary effects. The primary affects
concern the direct protection that CAVs provide, and the secondary effects are the protection of the entire
group due to a certain percentage of CAVs being part of that group. The group becomes more resistant to
crash risk due to the CAVs being able to absorb the mistakes made by human drivers. This is the case if CAVs
are proved to reduce the crash risk of everyone on the road. Considering that the concept of herd immunity can
be applied to car traffic, additional research was done to determine the effects that CAVs can have on different
safety metrics. A distinguishing factor between safety metrics was what type of information was considered
when calculating their separate values. Most safety metrics are temporal or spatial by nature, which looks at the
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absolute value of speeds, times, or distances between vehicles. There was one safety metric that made use of a
behavioural factor. CAVs affect this behavioural factor because they are assumed to have perfect driving, which
is also why this safety metric was used for the simulation model so that there was another way to distinguish
between human drivers and CAVs. From the literature review itself, it indicates that CAVs are theorised to
always have a positive effect on the safety of car traffic. Most papers claim that the crashes occur due to human
influence.

The literature was primarily responsible for determining the differences between driving behaviour of a CAV
and an HDV. For simulation purposes these differences are straightforward. Bian et al. [22] (2019) mentions
that the reaction time of a CAV is the time needed for the CAV to respond to the actions of the vehicle it is
following. Practically this time can be considered zero because it is assumed to be near instantaneous. At the
rate at which information travels, even at longer distances, the total time taken should remain very low.

Moving on, more decisions had to be made regarding the simulation model, and how CAVs can impact the
decisions made for that. Starting off with driving behaviour, this is the largest differentiating factor between
humans and CAVs. Humans have a reaction time and CAVs do not. More than that, CAVs prefer different
following distances when following separate vehicles. CAVs exhibit cautious driving when following a human
and can follow more closely when following another CAV. This impacted the choice on which car-following
model to use because it needed to be able to include reaction times as well as headways. This was found in
the Intelligent Driver Model+. Lane-change models were also researched to find out the effects that CAVs can
have on the safety of those manoeuvres. Many crashes occur during lane changes and CAVs would reduce this
by communicating the extra turbulence to upstream vehicles, which could influence their own driving to solve
the disturbance quickly. What each of these studies agrees is on is that there are benefits for traffic safety to be
gained by introducing CAVs into road traffic.

Simulation Model

The results found from the simulation model agree with the potential safety improvements. On the higher
penetrations of CAVs not only do the number of conflicts reduce, but also the severity of these conflicts. A lot
of the most severe conflicts occurring for HDVs was made more mild at the higher penetrations, but it does
mean that the overall crash risk is reduced drastically. While these main results do indicate benefits, it only
shows these benefits in a limited scenario with variables that remain static throughout. These benefits are
in line with what was hypothesized. The literature agrees that CAVs would only have positive effects on the
number of conflicts. For the core concepts of herd immunity, CAVs do reduce the crash risk of everyone on
the road, which means that the secondary effects that are necessary for herd immunity for CAVs are proved.
As the penetration rate of CAVs increases, the number of conflicts and their severity decreases. These benefits
originate from the different driving behaviours assigned to the vehicle types. Both reaction time and headways
have a huge impact on the differences in the number of conflicts that occur. During calibration in Chapter 3
these inputs were tested to determine what would be the optimal values for the simulation model. During
calibration it seemed that optimal human reaction time would be appropriate for this simulation model be-
cause increasing that time ensured that conflicts would occur without a disturbance present. Therefore, the
inherent crash risk would be too high if the reaction time was too high. Stability in the simulation model would
not be reached quickly and would increase the simulation time substantially. The calibration for the headways
follows a similar story, increasing the headways ensured a significant increase in the simulation time due to
the stability taking longer. Ultimately an optimal headway of 1 second was used to optimise simulation time
as well as portray the best human behaviour. Using optimal reaction times and headways for humans makes
the decrease in conflicts at higher penetrations more significant.

The different conflict thresholds did play a role in counting the total number of conflicts. It is entirely possible
to change these thresholds to focus on a different relative safety field strength. Focusing on different thresholds
could shed light on where each conflict takes place. For example, reducing the relative safety field strength
ranges to 0.1 can better show at what value each conflict occurs, but it runs the risk of providing too much
information which would confuse rather than explain or detect trends. At the moment, the higher threshold
is set at a relative safety field strength of 2.1, if this value would be higher, then there would be even fewer
conflicts at 100%. The highest conflict value found was between an HDV following another HDV at 2.53. If a
higher threshold value is taken then only conflicts between HDVs would be left which shows even more that
the conflicts and their severity are decreased with the introduction of CAVs.
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To test the effects of simulation inputs, a sensitivity analysis was done. The sensitivity analysis showed that the
inputs can be changed to have a large effect on the immediate results. Changing the driving risk variable heav-
ily impacted the number of conflicts, especially for the human drivers. The disturbance velocity also heavily
impacted the number of conflicts, but this was for all types of following situations. Contrary to expectations,
decreasing the maximum deceleration to the comfortable deceleration actually resulted in a decrease in the
number of conflicts. Without the possibility of braking at 5 m/s2 it was expected that the total number of con-
flicts would increase because the following vehicles might not be able to react quickly. This could be due to
the homogeneous vehicle types and desired vehicle parameters (speed, disturbance velocity speed, maximum
acceleration/deceleration, etc.). The only difference between vehicles at the moment is whether they are CAVs
or HDVs. Exploring additional vehicle types with different settings would better reflect the realistic situation
as driving behaviour should be heterogeneous rather than homogeneous. The same thing goes for the distur-
bance that is used. Although a certain desired velocity is provided for most vehicles, following that exactly is
not how human drivers would function. Assigning a varying desired speed to the vehicles is a method in which
the behaviour can become more realistic, even for CAVs.

For both the sensitivity analysis and the initial simulations, the penetration rate had a direct effect on the num-
ber of conflicts. The total conflicts decreased and their severity was lessened at every step that the penetration
increased. The most notable penetration was at 65%. Here there were the fewest conflicts. This was depen-
dent on the conflict thresholds used. For the total number of conflicts the conflicts started at a relative safety
field strength of 1, when this could have been an entirely different value as well. Interestingly even, at 65% the
conflict severity of 1-1.5 had one of the higher number of conflicts. By increasing the lowest threshold for the
conflicts, 65% would show even fewer conflicts. This goes against expectations as it would be expected that
the higher penetrations would provide the fewest conflicts. This can be explained by that at the penetrations
of 80 and 90% each HDV has a significant impact on the number of conflicts. At a relative safety field strength
of more than 1.8 and penetration rate of 90%, around 20% of the conflicts occur with an HDV involved. At
80% penetration, around 30% of the total conflicts contain an HDV. This could be an explanation as to why
the higher penetrations have more conflicts than 65%. For 100% penetration, the fewest high severity conflicts
take place, which goes in line with expectations, but it has more milder conflicts in comparison. This results
in it having more conflicts than at lower penetrations. This could be due to the lower desired headway that all
CAVs exhibit when following other CAVs. The disturbance causes more mild conflicts which increases the total
number of conflicts for a 100% penetration rate.

In summary, the results of the simulation model generally followed expectations. Most unexpected situations
stemmed from the ranges of the conflict thresholds. When only looking at the most severe conflicts, expecta-
tions were followed as CAVs reduced the total conflicts that occurred. Only at the milder conflicts did this not
necessarily prove to be true. Defining the conflict thresholds was therefore a large part of evaluating the results.
Ignoring the lowest threshold range of 1-1.5 could provide different results for the total conflicts. The sensi-
tivity analysis showed that the robustness of the simulation could be lacking due to the significant changes in
the number of conflicts. Changing the input values has a sufficient impact to consider separate scenarios to
discover what happens at all conflict thresholds when the inputs are changed.

5.3. LIMITATIONS OF THE RESEARCH

The limitations of the research were caused in a large part by the exploratory nature of this thesis. Simulating
CAVs has definitely been done before with other studies, but this is one of the first to look at the concept of
herd immunity for car traffic. There was little to no previous research to compare this to. Especially the safety
metric of safety fields has seen such limited use that there was limited information about what the safety field
strength actually means. The relative safety field strength and the conflict thresholds were concocted for this
research specifically to be able to compare CAVs to HDVs. This is a limitation in the sense that it will not work
for all future studies. It was dependent on the specifics of this research. Another limitation apparent in this
research is the lack of additional scenarios. Although the sensitivity analysis did provide some insight into what
would happen when the input variables are changed, it was not explored as thoroughly as another scenario
would have been. This lack of extra scenarios makes the study quite limited, but it does achieve the goal of
proving the concept of herd immunity for car traffic in this specific scenario.

Another limitation that the research contains is a more global limitation for testing safety with vehicle simu-

48



lation. A simple car-following simulation model which uses IDM+ lacks the ability of simulating crashes. It is
only possible to collect a value dependent on the safety metric being used. While it was checked whether any
of the headways were lower than 5 meters (to denote a critically dangerous situation), IDM+ ensures that the
simulated vehicles perform well and do not get into critically dangerous situations even with a reaction time
being added. This connects to the limitation of the homogeneous nature of the vehicle types. Including more
vehicle types will better reflect realistic scenarios. Car traffic is by nature heterogeneous, but due to just having
two vehicle types (CAV and HDV), all the vehicles behave similarly. This starts the discussion on the limita-
tions of the car-following model. IDM+ provides some benefits compared to the normal IDM by introducing
two separate states (free acceleration and deceleration strategy), it still limits exactly what is used to determine
speed. The model makes use of headway and vehicle speeds to determine the new acceleration when this is
not something a human driver knows with 100% certainty. When driving, humans are affected by more than
just the vehicle they are following, but also by the direct surroundings, which is not something that is used in
this simulation model. For the purpose of this research, it is not necessary that this is done, but it does take
away from the supposed realistic nature of the simulation model.

Driving behaviour is another way in which the simulation model is limited. Driving behaviour of an HDV is
difficult to define because every person’s driving behaviour is different. On top of that, driving behaviour for a
CAV can only be presumed and not completely certain. Determining the driving behaviour for humans as well
as CAVs is a limiting factor in this research. For the simulation model the two behaviours were distinguished
by their headways, ’driving risk’ values, and reaction time. It is unknown how exactly CAVs of levels 4 and 5 will
act because it has not been fully developed yet. As it stands, using IDM+, changing these factors is the most
effective way of distinguishing between the two types of driving behaviour and is also more than sufficient for
the purpose of this research. So although this is a limiting factor for the research, it is a limiting factor for all
research regarding the driving behaviour of CAVs and humans. This leads to the next limitation which is the
number of assumptions made during the research. The driving risk variable for safety fields is one where an
assumption is made that directly impacts the number of conflicts as shown by the sensitivity analysis. This
and the other assumptions made during this research are unavoidable for a couple of reasons. One of these
reasons is that human driving behaviour is difficult to quantify. Each driver has a unique driving style that
is not possible to effectively incorporate into IDM+. Therefore, it was assumed that all human drivers had a
homogeneous driving behaviour as well as all CAVs having a homogeneous driving behaviour. Another reason
why the assumptions are unavoidable is that not enough is known about the true driving behaviour of CAVs.
There are only indications to what their driving behaviour should be, but due to the lack of CAVs on the road
currently, there is little information on their true driving behaviour.

The results themselves have some limits. The simulation model makes use of 28 different seeds in order to vary
the vehicle orders to obtain different types of vehicle following situations. It is not easily possible to discover
outliers when using this many different seeds. Nonetheless, these seeds were necessary to obtain statistically
significant results but it could make it possible to miss blatant outliers or other anomalies. Other than that the
results are quite direct in reporting the number of conflicts that occur. This is a strength as it shows exactly
how the varying penetrations have an effect on the safety of the simulation model.

5.4. RECOMMENDATIONS

Further research is necessary especially to determine whether the concept of herd immunity still holds true for
other situations with different vehicle inputs and traffic volumes. This was a small scale simulation where the
conflicts were over a short distance with a small traffic volume. More information can be gained when the scale
of the simulations increases, perhaps the second order effects of herd immunity have an even larger impact
when more vehicles are involved. The same holds true for a scenario with lane changes. Lane changes can be
detrimental to road safety. They increase the overall turbulence existent on the road. Providing a scenario with
an incentive for lane changes could offer a better view whether herd immunity would continue to function in
such a scenario.

Another aspect to research further is the number of vehicle types that are simulated. The simulations could
benefit from introducing more driving behaviours for humans and for CAVs to see how this would affect the
conflicts. This would be done in order to better reflect reality as there is no one manner in which humans drive.
These could be split simply into cautious, normal, and risky driving styles. Something that was definitely out of
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the scope of this project is to use an artificial intelligence car-following model. What this would provide is het-
erogeneous behaviour among both the CAVs and the human drivers. In turn, it also provides the most realistic
simulation possibilities. The different vehicles types can also incorporate different vehicle inputs. That some
vehicles use comfortable acceleration/deceleration whereas others would use the possible maximum values.

Further studies should focus on extending the research on safety fields. This paper provides a method in
which the safety fields of different types of vehicles can be compared. It could be valuable for future research
regarding CAVs to be able to judge the severity of certain conflicts. This paper provides a possible baseline to
be used in future research. Other papers can make use of the idea of a relative safety field strength rather than
the absolute values. Further simulation work with safety fields would benefit both simulation work and safety
work as more reference work is created. Safety fields has a lot of potential for future work because the safety
metric has a lot of potential. Being able to map the behavioural field and static field on top of the dynamic
field offers so much more than a standard safety metric for vehicle simulation. The driving process has so
many aspects that can affect the safety of the road, that safety fields is one of the metrics that incorporates the
most of these aspects and future research into safety fields would be incredibly beneficial.
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6
CONCLUSIONS AND RECOMMENDATIONS

This chapter concludes the research on simulating CAVs (Connected Automated Vehicles) with the concept of
herd immunity in mind. The purpose of this chapter is to answer the research questions discussed in Chapter 1
as well as summarise and reflect on the research.

6.1. CONCLUSIONS

This research was aimed at answering the following research question, How is traffic safety influenced by
connected (automated) vehicles considering the concept of herd immunity?. This concept has never be-
fore been considered for car traffic and the innovation of CAVs could make it a reality. The principle of herd
immunity required an impact assessment to determine how much the safety of the road could be affected.

Through an extensive literature review and simulation model this thesis has shown how traffic can be influ-
enced by CAVs as well as how the concept of herd immunity can be translated to road traffic. To do that, the
driving behaviour differences between CAVs and human drivers had to be defined for there to be any differ-
ence between the two. According to the literature, the main difference between a human driver and a CAV is
that CAVs do not make human errors. This difference translates to the model by them having a reaction time
of 0 seconds as well as a driving risk variable value of 0, denoting perfect driving. Next, the concept of herd
immunity had to be defined. For a virus this is based on viral risk, whereas for car traffic it is defined by crash
risk. For herd immunity to function for car traffic, a clear secondary effect needed to be defined. The inclusion
of CAVs should ensure that the entire group of vehicles is made safer. The CAVs need to absorb the mistakes
made by humans to reduce the total crash risk in their direct environment as well as upstream. Not only do
the CAVs improve the safety of themselves, but also those around them. For this concept to be proved, it was
necessary to show second order effects in the simulation model. The literature review backed the idea that
CAVs could have huge safety impacts, but without evidence, it only theorises the benefits.

Additionally, in the literature review, focus was put on the type of car-following and lane-changing model that
should be used when modelling CAVs. For the purpose of this research, only the car-following model was used
in the simulations. The lane-change models were researched in part to determine how lane-changes affect the
level of safety of a road and how CAVs could alleviate any dangers. After reviewing many possibilities, IDM+
was considered the most effective for the purpose of the research. It provides clarity on the decisions made
by each vehicle and was straightforward to implement. To use this in conjunction with CAVs, a reaction time
was introduced into IDM+ as well as different headways being used depending on the following situations. To
measure the level of safety of the road, safety metrics are often used. Many of these are straightforward and
calculate values like a time-to-collision. Many of these safety metrics are suitable for this project, but there
was one safety metric that implemented driving behaviour differences which made it stand out in comparison
to the rest. This safety metric is called safety fields. Safety fields make use of three different fields in order to
measure the level of safety of a road. The higher the safety field strength gets, the more likely a crash is going
to occur. This was considered most suitable for the simulation model because it makes use of the behaviour
differences between CAVs and human drivers.

The simulation model showed that there were benefits to be gained from CAVs in car traffic. Using the dif-
ferences in driving behaviour, the CAVs not only reduced the total number of conflicts when compared to
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other penetrations, but also reduced the severity of those conflicts. Reducing the severity of the conflicts is
what helps prove the concept of herd immunity for car traffic. The most critical conflicts occurred far less
frequently at 100% penetration when compared to any other penetration. When considering all defined con-
flicts, a penetration rate of 65% showed the fewest conflicts, but still far more critical conflicts than at 100%.
The combination of reducing the total number of conflicts along with their severity is what shows that the con-
cept has merit. There is no clear tipping point at which the level of safety improves drastically, but this is due to
the number of conflicts decreasing at an almost linear rate. The main evidence that points to herd immunity
having merit for this scenario is that the number of severe conflicts decreases heavily as the penetration rate
increases. If a tipping point would have to be defined, it would be at the 65% penetration as it has the fewest
total conflicts. After this the number of conflicts might increase, but their severity decreases.

To return to the main research question, traffic safety is positively influenced by the introduction of CAVs.
As demonstrated by the results from the literature review and the simulation model, the number of conflicts
decreases as well as the severity of those conflicts. Herd immunity applies to this specific scenario of the
simulation model due to both the primary and the secondary effects of herd immunity being satisfied. There
are almost 8000 fewer critical conflicts (conflicts above a 2.1 severity level) at 100% penetration compared to
there being 0 CAVs. This evidence shows that for this scenario, herd immunity would apply and have great
safety benefits. Furthermore, the reviewed literature supports this assessment as many papers claim that all
human error can be eliminated through the introduction of CAVs.

6.2. RECOMMENDATIONS

Although recommendations were made in Chapter 5, this section looks at the implications of the research as
well as reflects on the research done.

Safety fields were used to judge the change in safety over all the penetration rates, and it has shown that it
is a valid safety metric. By using the relative safety field strength it was possible to compare the conflict val-
ues. It was a valid method of testing the safety for this specific situation. Safety fields is an area in which
much more research can be done to make it a more commonly known safety metric. It shows such promise
for future research because it looks at more than just the cars on the road. It makes it possible to include
a static field as well, for simulation research into urban areas with different types of driving behaviour. The
car-following model IDM+ was effective in that it did exactly what it was required to. It made it possible to
differentiate between driving behaviours through the headways and the reaction times. On top of that, it was
quite straightforward in its use and transparent, so that it was possible to determine the process at every step.
It was the most appropriate car-following model to use in the situation.

The methodology for the simulation model was targeted specifically for creating a proof on concept. With
that in mind, it successfully achieved what it set out to do. It should be mentioned though that there are a lot
of possibilities regarding this topic. For further testing, additional scenarios should be created with additional
tactical manoeuvres and making use of safety fields. From the conclusion it is clear that there are benefits to be
gained from introducing CAVs onto this type of road, but there are more potential benefits to be gained when
lane changes are present. This increase in the turbulence of the road is where CAVs could show even more
how they could reduce the total number of conflicts as well as their severities. Next steps could include traffic
control on top of the other tactical manoeuvres to introduce additional disturbances affecting the turbulence
of the road. Each of these different test scenarios could finally lead to the concept being tested on real-life road
traffic, but this could only be done when there are a sufficient number of CAVs on the road.

Another recommendation is targeted towards the driving behaviour that has to be defined for both humans
and CAVs. The results showed that CAVs following HDVs resulted in zero conflicts above the threshold level
of 1.5. CAVs used a more cautious following distance when following HDVs, but that cautious nature served
the purpose of this research. Varying these headway values could be part of future research to determine the
effects of this cautious behaviour. For improving traffic flow, lower headways could be considered for CAVs
because they have a quicker reaction time than that of humans. In general, more research should be done on
the driving behaviour of CAVs. Due to it being such an innovative technology, their true driving behaviour is
still being developed and the literature on it is inconsistent.
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Finally, returning to the problem statement, the principle of herd immunity is theorised to function for car
traffic as it does for the spread of a virus. The research performed in this thesis was meant to provide a proof
of concept for the principle of herd immunity for car traffic. The simulation model was supposed to provide
an impact assessment to determine to what extent herd immunity could be applied to vehicle traffic. The
literature study established that there was no previous knowledge on using this principle for car traffic and
the results of the simulation model confirmed that herd immunity can be applied to car traffic. This proves
that more research should be done to expand the knowledge on this topic. Crash risk was used as the "virus"
during this research, but this can be explored further by defining different means by which the "virus" transfers.
There are more options regarding this that do not just focus on the degree of turbulence, but rather specific
mathematical models that could denote the spread of crash risk.
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A
APPENDIX

A.1. CAR-FOLLOWING MODELS

This section is used to describe a number of car-following models in further detail including their acceleration
equations as well as some calibration methods per car-following model.

A.1.1. STIMULUS-RESPONSE MODELS

GHR model

The GHR model was created at the General Motors research laboratories simultaneously with Kometani and
Sasaki in Japan. The model is shown by Equation A.1.

an = cvm
n (t )

∆v(t −T )

∆x l (t −T )
(A.1)

Where:

• an : Acceleration of the (n)th vehicle at time t.

• c,m, l : Calibration parameters.

• vn : Velocity of the (n)th vehicle.

• ∆v : Relative speeds between the (n)th and the (n-1)th vehicles.

• ∆x: Relative spacing between the (n)th and (n-1)th vehicle.

• T : Reaction time.

Much research has been performed to calibrate the model. Chandler et al. [25] (1958, as cited in Aghabayk
et al. [24], 2015) proposed that m and l should be equal to zero, but later studies (Edie [46], 1961, as cited in
Aghabayk et al. [24], 2015) found that the calibration would improve if the parameters were set to 1. This model
did not take braking into consideration and that was put into the linear model, otherwise known as the "Helly"
model. The GHR model also does not limit the acceleration and the deceleration, when in reality, these are
limited by the vehicle.

Linear model

The linear model added some terms into the first GHR model to deal with the braking of a leading vehicle. The
model simplifies to Equation A.2.

an(t ) = c1∆v(t −T )+ c2 [∆x(t −T )−Dn(t )] (A.2)
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Where:

• an : Acceleration of the (n)th vehicle at time t.

• ∆v : Relative speeds between the (n)th and (n-1)th vehicles.

• ∆x: Relative spacing between (n)th and (n-1)th vehicles.

• T : Driver’s reaction time.

• c1,c2: Model calibration parameters.

• Dn(t ): Desired following distance formulated by Equation A.3.

Dn(t ) =α+βvn(t −T )+γan(t −T ) (A.3)

Where:

• vn : Velocity of the (n)th vehicle.

• α,β,γ: Calibration parameters

This model was calibrated by using a wire linked vehicle for both congested and uncongested traffic condi-
tions (Hanken and Rockwell [47], 1976, as cited in Aghabayk et al. [24], 2015). This model and the GHR model
were both calibrated many times to obtain the ideal calibration parameters, but a number of issues get raised
with both of these models. Brackstone and McDonald [48] (1999) mentions that one main difference between
the GHR model and the Linear model is that the Linear model is able to derive a desired distance relation-
ship which is consistent through previous calibration attempts. A major strength of the Linear model is the
inclusion of a possible ’error’. The model may be implemented so that when a certain acceleration has been
calculated, that it does not change until there is a sufficiently large change in ∆x or ∆v . This better represents
human driving behaviour and is an advantage over the GHR model.

Optimal Velocity model

The Optimal Velocity model takes the difference between the desired velocity and current velocity as the stimu-
lus for the driver’s actions (Aghabayk et al. [24], 2015). This model is represented by Equation A.4. Equation A.4
represents the driver’s response.

an = c
[

V desired
n (t )− vn(t )

]
(A.4)

Where:

• an : Acceleration of the (n)th vehicle at time t.

• V desired
n : Desired speed of the (n)th vehicle.

• vn : Velocity of the (n)th vehicle.

• c: Model calibration parameter.

The acceleration of the following vehicle is different. This is shown by Equation A.5. This model takes more
into account than just the leading vehicle. It takes the relative spacing of the two successive vehicles into
account.

an(t ) = c
[
V ◦opt(∆x(t ))− vn(t )

]
(A.5)

Where:
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• ∆x: Relative spacing between the (n)th and (n-1)th vehicles.

• V opt(∆x): A sigmoid function of ∆x represented by Equation A.6.

V opt(∆x) =


0 ∆x <∆xA ,
f (∆x) ∆xA <∆x <∆xB ,
vmax ∆xB <∆x.

(A.6)

In order to use the Optimal Velocity model it is necessary to calibrate the model using Equation A.6. The
Optimal Velocity model suffers from the same problems as all the other stimulus-response models and could
also introduce very large acceleration rates (Nagel et al. [49], 2003, as cited in Aghabayk et al. [24], 2015). Due
to those flaws, the model has not been used extensively.

A.1.2. COLLISION AVOIDANCE MODELS

Kometani & Sasaki

Kometani and Sasaki created a model based on a safe following distance using physical motion equations
(Kometani and Sasaki [32], 1958, as cited in Aghabayk et al. [24], 2015). This model claims that a collision
becomes unavoidable when a leading vehicle moves unpredictably and the following vehicle is within the safe
following distance described by Equation A.7.

∆x(t −T ) =αv2
n−1(t −T )+β1v2

n(t )+βvn(t )+b0 (A.7)

Where:

• ∆x = xn−1 −xn : Relative spacing between the (n)th and (n-1)th vehicles.

• vn−1: Velocity of the (n-1)th vehicle.

• vn : Velocity of the (n)th vehicle.

• T : Driver reaction time.

• α,β1,β,b0: Model calibration parameters.

Gipps

As described in Gipps [33] (1981), Gipps created a model that is based on collision avoidance depending on
two constraints for the follower’s velocity.

• The speed of the following vehicle should not exceed its desired speed and its free acceleration should
first increase with speed as engine torque increases and then decreases to zero as the follower approaches
the leader.

• The follower must be certain that an emergency brake is possible if the leader were to make a sudden
braking manoeuvre. In previous models of this type there was no margin for error and therefore a reac-
tion time was included equal to T/2, where T is the reaction time.

This resulted in the following formulation of the equations (Equation A.8). (Gipps [33], 1981)

vn(t +T ) =min

{
vn(t )+2.5anT (1− vn(t )/Vn) (0.025+ vn(t )/Vn)1/2

bnT +{
b2

nT 2 −bn
[
2(xn−1(t )− sn−1 −xn(t ))− vn(t )T − v2

n−1(t )/b̂
]}1/2

,
(A.8)

Where:
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• an : Maximum acceleration that the driver of vehicle n would want to use.

• bn : Maximum braking that the driver of vehicle n is willing to undertake.

• sn−1: Effective size of the leading vehicle.

• Vn : Desired speed of vehicle n.

• xn(t ): Location of vehicle n at time t.

• vn(t ): Speed of vehicle n at time t.

• b̂: Estimation of bn−1 employed by the driver of vehicle n.

A.2. ADDITIONAL RESULTS
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Figure A.1: Relative safety field strength threshold between 1.8 and 2.1

Figure A.1 is put into the appendix because it could give the wrong idea about the number of conflicts that
occur. Due to it not being a complete picture, it does not illustrate that most critical conflicts are reduced to
this conflict range.
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