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Abstract
Active inference is a novel brain theory based on the free energy principle, stating that every organism,
in order to stay alive, minimizes a certain free energy. This theory is being translated into robot control,
hoping to mimic the capabilities of the brain. Research in this field of robotics is still quite young, and
active inference has yet to mature into a reliable control theory. Implementations of active inference
are scarce, and hierarchical implementations, containing multiple layers of active inference, are almost
non­existent. This work presents the first implementation of hierarchical active inference performing
online control on a robot in continuous state­space. The robot in question is a skid­steering mobile
robot, on which two different active inference controllers are implemented and compared. The first
controller is a non­hierarchical active inference controller giving wheel speed commands to the default
PID controller of the robot manufacturer based on desired body velocities. The second controller is a
novel implementation of a hierarchical active inference controller, that besides the function of the first
controller, also replaces the low­level PID control with active inference, resulting in two­layers of active
inference ultimately taking desired body velocities as inputs and translating it into open loop voltage
commands for the motors. Both controllers are tuned to give roughly the same step responses in order
to get a clearer view on the differences between non­hierarchical and hierarchical active inference.
During the tuning process of the hierarchical controller, it became clear that no amount of tuning could
get the (causal) states to convergence sufficiently fast. This problem was identified to be caused by
the message passing in between the layers of active inference, where the prediction error from below
negatively impacts convergence. This impact scales together with the tuning parameters, and therefore
is not easily fixed by tuning alone. A potential solution is given in the form a an extra parameter in front
of the upwards prediction error, giving the ability the independently tune the impact of this error on
the behaviour of the system. This solution is used to fully tune the hierarchical controller, after which
the performance is compared to the non­hierarchical controller, using a series of experiments. A total
of 8 experiments are done where both controllers are tested performing two driving actions in two
situations, namely cornering and pivoting on the ground and with the wheels suspended. The non­
hierachical controller, as a baseline, performed satisfactory, but the hierarchical controller does not run
smoothly on the ground, potentially struggling with the stick­slip of the wheel­ground interactions. From
this it seems that using active inference for the low­level, as compared to something like PID, is less
suitable. However, that conclusion is too premature for this work as the available encoder feedback
frequency for the active inference is way lower than what the MCU­level PID has access to, making
the comparison less fair. The main contribution of this work lies in the insight in the implementation
structure of hierachical active inference for continuous state­space control, which can be further built
upon, using the lessons learned during implementation.
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List of symbols

ℱ free energy function/formula
𝜇 beliefs (non­hierarchical)
𝜇𝑥 beliefs on the hidden states
𝜇𝑣 beliefs on the causal states
𝑦 observations or measurements
𝑎 actions
𝜀𝜇 prediction error on the beliefs (non­hierarchical)
𝜀𝑥 prediction error on the beliefs about the hidden state
𝜀𝑣 prediction error on the beliefs about the causal states
𝜀𝑦 prediction error on the observations
𝜇̇ update rule on the beliefs (non­hierarchical)
̇𝜇𝑥 update rule on the beliefs about the hidden states
̇𝜇𝑣 update rule on the beliefs about the causal states
𝑎̇ update rule on the action
𝑔(𝜇) generative function mapping beliefs to observations (non­hierarchical)
𝑔𝑦(𝜇𝑥) generative function mapping hidden states to observations
𝑔𝑣(𝜇𝑥) generative function mapping hidden states to causal states
𝑓(𝜇𝑥) generative function encoding how the hidden states change over time
Π precision matrix ( = Σ−1)
Σ covariance matrix
𝜂 prior or user command (also denoted as 𝜇𝑑𝑒𝑠)
𝒟 shift operator, shifting values of a vector 1 spot upwards
𝛿𝑦
𝛿𝑎 forward model
𝑐 coefficient for the prediction error part in the update rule for the causal states
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1
Introduction

1.1. Active Inference
Active Inference is a novel brain theory based on the free energy principle. The free energy principle
entails the notion that every living organism or non­living system, in order to maintain a certain non­
equilibrium steady­state (staying alive), will try to minimize their free energy. The free energy can be
described as a mismatch between the system’s internal model of the world and the actual real world
process. One way to decrease this mismatch is to adjust the internal model to better match the real
world process, by means of perception. The other way is to get the real world process to get closer
to the internal model. This last part is done by means of performing actions on the world, hence the
’active’ in active inference.

Figure 1.1: Schematic overview of how the interaction takes place between internal and external states

This theory was first introduced in neuroscience by Karl Friston [5], and to this day a lot of research
still resides on the neuroscientific side, supported largely by Friston himself. These last years, however,
a transition is underway where this theory is being translated into control theory for robotics. Its moti­
vation being that if this is truly how the brain works, translating it to robotics potentially means getting
closer to ’true artificial intelligence’, and therefore better robot control. Because if we want to get robots
to behave more like humans, what better way to do that is to try to mimic how the brain works? Our
brain has the incredible ability to handle uncertainties and complex problems. These uncertainties can
stem from inexperience, but also uncertainties in perception, i.e. an obstructed view. Robots suffer
from similar problems, i.e. learning of a model, and the limited information a sensor provides, but are
still far away from handling them like humans can.

Nonetheless, great efforts are being made to get closer to this goal. These efforts started out mostly
as offline simulations [3, 10, 18], but recently more and more implementations are on real world robots
doing online closed­loop control [14, 16, 2]. The added value of these real world implementations,
apart from it being the end goal, is that much can be learned from early implementations, even though
some things might not yet be fully thought in theory. It sheds light on implementation problems early

1



2 1. Introduction

and ultimately give solutions that directly work in the real world. An example of this is the addition of a
temporal parameter by Baioumy et al [2], and this work will also serve as an example.

These efforts have now created a state in research where, although a lot of aspects still need
improvement, the implementation structure of an active inference controller is quite clear when talking
about simple systems, with a small amount of inputs and outputs, residing close to the action where
the actions still have a recognizable relationship with the goal. But for more complex systems, like our
brain, this single­layer ’barebones’ structure (as described in section 2.1.2) is not enough.

This is where hierarchy comes into play. For quite some time there has already been the notion
that the brain works in an hierarchical manner [4]. Karl Friston also gives an hierarchical model of
the brain [6] explaining how hierarchical active inference works in theory. Only a few efforts have been
made to translate this theory and use hierarchical active inference in practice, where some only include
perception [19, 9], others focus on machine learning [12], and the ones for robot control are only done
in simulations [21].

The purpose for this work is to fill the implementations gap of hierarchical active inference applied to
a real­world robot doing online closed­loop control. This work not only shows how hierarchical active in­
ference is implemented on a skid­steering mobile robot, but also shows how it expanded from an earlier
non­hierarchical implementation that the author also worked on (see Chapter 4). This non­hierarchical
implementation serves as a baseline to compare against in terms of structure, tuning and performance.
This baseline is chosen to keep the focus on the differences between non­hierarchical and hierarchical
active inference, contrary to stacking it up against other types of control, as raw performance is not the
main goal. To still get an indication of performance, a series of experiments are conducted at the end
that compare the two controllers while cornering and pivoting, both on the ground, and with the wheels
suspended.

1.2. Research goal
The detailed research goal is given below:

Implement a two­level hierarchical active inference velocity controller on a skid­steering mobile robot,
and compare its structure, tuning and performance with that of its non­hierarchical equivalent

The focus of this works predominantly lies with the practical implementation of hierarchical active infer­
ence, and less with the theory behind it. This is also where most of the labour went, in programming
an active inference controller in C++ within the ROS framework, and getting it to work on the research
platform (Jackal robot).

Figure 1.2: The Clearpath Jackal robot in the lab (for scale), tethered to a computer running an active inference node

An additional result of this thesis is a codebase1 of an hierarchical active inference controller that
has the flexibility to adapt to other applications as well. Even when the controller produced in this
1https://gitlab.tudelft.nl/active­inference­drive­control/active­inference­drive­control/­/
tree/hierarchical_aic

https://gitlab.tudelft.nl/active-inference-drive-control/active-inference-drive-control/-/tree/hierarchical_aic
https://gitlab.tudelft.nl/active-inference-drive-control/active-inference-drive-control/-/tree/hierarchical_aic


1.2. Research goal 3

thesis might still be quite ’barebones’, with adequate simplifications and assumptions (as mentioned
in section 9.1), it will hopefully also serve as a good starting point for further research on hierarchical
active inference utilizing the ROS framework.

In order to kickstart the implementation of active inference on the research platform, a team had
been setup of four master students, including the author, with the goal of getting a (non­hierarchical)
active inference controller working on the Jackal robot as fast as possible. From this work, that is
collabaratively summarized in Chapter 4, every contributor could fork into their own theses. This work
expands the collectively built controller to an hierarchical version and then compares it with the original,
as shown in Figure 1.3.

Figure 1.3: Schematic overview of the comparison that is going to be drawn in this thesis

With the non­hierarchical implementation still making use of a low­level controller for the regulation
of the wheels speeds, an opportunity has presented itself to replace this low­level controller (PID) with
an active inference controller. In this way an hierarchical active inference controller can be created
while keeping the inputs the same, namely desired body level velocities (linear and angular velocity).
The output differs however, as the hierarchical version outputs open loop wheel voltage commands
to the wheels, and the non­hierarchical version outputs wheel speed commands to the low­level PID
controller. This makes it not a pure comparison between forms of active inference, as the PID of the
manufacturer is also part of the control loop of the non­hierarchical version. This influences mostly
the comparison of performance (Chapter 7), and not the comparison in terms of controller structure
(Chapter 4 & 5) and tuning (Chapter 6).

1.2.1. Sub­goals
In order to arrive at the research goal of this thesis, it is divided into sub­goals. These are defined as
follows.

• Compare the controller structure of non­hierarchical and hierarchical active inference, showing
how one expands from the other

• Get a ’working’ solution of non­hierarchical and hierarchical active inference running on the Jackal
robot

• Tune both controllers and report differences in tuning techniques

• Compare the performance of both controller

Besides the goals for this thesis, some guidelines were followed for the practical implementation (coded
solution) as well, where it was desired to stay as close to the theory as possible. The implementation
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should be modular, and therefore easily expandable to more than two levels of hierarchy. The imple­
mentation should also be a good foundation where future improvements, regarding hierarchical active
inference, can be built upon.

1.3. Thesis overview
This work will continue with giving some additional background information on active inference in gen­
eral and the theory behind hierarchical active inference in Chapter 2. In Chapter 3,the research plat­
form is explained to give an idea of the hardware that is being controlled. An overview on how the
non­hierarchical controller is implemented as a collective is given in Chapter 4. This is followed, in
Chapter 5, by the hierarchical implementation, this work’s main contribution in terms of implementation
structure. After the structure of both controllers is know, they are tuned, of which the findings are re­
ported in Chapter 6, including a convergence problem together with a potential solution. In Chapter 7,
both controllers are compared in terms of performance, having both controllers conduct a series of driv­
ing tasks both on the ground and with the wheels suspended. The main conclusions are summarized
in Chapter 8, with a following discussion in Chapter 9, containing the simplifications and assumptions
made in this work, and a recommendation on interesting further studies.



2
Background information

The purpose of this chapter is to give some background information on how active inference can be im­
plemented in robotics, giving the equations needed and the controller structure. Additionally, the theory
behind hierarchical active inference is discussed. The information given in this chapter mostly covers
the information needed for implementation rather than the mathematical explanations and derivations
behind the equations.

2.1. Active inference for robotics
As mentioned in the introduction, every organism tries to minimize their free energy in order to stay
alive. This free energy characterizes the mismatch between the system’s internal model of the outside
world and the real process of the outside world. The real process is not fully known by the system
and is only partially observed through perception, which is why the system can only calculate the free
energy by comparing its internal model to what is observed. The system takes all of its decisions based
on the minimization of this free energy, including updating its internal states and taking actions.

Taking decisions in this way makes it that a controller based on active inference behaves different
from most controllers, where actions are directly, through gain or a model, calculated from the (filtered)
observations. Instead of working with states that are derived directly from filtered observations, the
system keeps a belief about its inner states that, although indirectly connected to observations, gets
updated independently. This can be seen as a form of filtering, making the active inference controller
serve as both the controller and the filter. The update of the beliefs, together with the update of the
actions the system is taking, are both done in such a way that it minimizes the free energy function.

The behaviour described above is very similar to that of optimal control (i.e. LQR and MPC) in the
sense that it minimizes a certain cost function. The key difference, however, is that active inference,
optimizes a cost function (free energy) for both perception and action, meaning it acts both as a filter
and a controller. Like MPC it also optimizes for the future, by keeping a belief about the transition of
the states. The way it does this is by storing information about the higher order derivatives of states,
called generalized coordinates of motion. For example, if a state describes the position of an object,
the system also stores information about its velocity, acceleration, jerk etcetera. The amount of higher
order derivates that are stored by the system is called the embedding order. Friston [5] talked about
the embedding order of an active inference system to be a maximum of 6, as after that the information
would not be of much value anymore. In this work we will be working with an embedding order of 3,
which is chosen quite arbitrarily during the tuning process in Chapter ??, where the tuning parameters
for these higher orders are chosen such that they don’t influence the system a lot, because the method
used for extracting the higher orders, as described in section 4.4 is quite sub­optimal and diverge greatly
for higher orders.

2.1.1. Continuous and discrete state space
Active inference can be applied to both the continuous and discrete state space. When comparing to
nature, it can be seen that the brain can take discrete decisions on a high level (planning), for example
taking either a left or right turn, while the same brain can handle the continuous control of the muscles

5



6 2. Background information

to make sure that the discrete decision is fulfilled. This thesis will focus on the continuous state space
implementation of (hierarchical) active inference. The structure and equations given in this thesis apply
to the continuous state space, and although the principle stays the same, it cannot be used for discrete
control, as that introduces other nuances.

2.1.2. Structure overview
The give an overview of the controller structure, in Fig. 2.1 a simplified diagram of the structure of an
active inference controller is given. This diagram is a novel contribution, serving as the author’s interpre­
tation of a simplified active inference controller, based on earlier implementations of non­hierarchical
active inference [16, 2]. This visualization of the structure should also be a reference of where the
upcoming equations are going to be in effect.

Figure 2.1: Simplified overview of the structure of an active inference controller

Starting from the beliefs about the internal states, by means of a generative model an expectancy
𝐸(𝑦) about what will be observed is created, together with an expectancy 𝐸(𝜇′) about how its beliefs
transition in time. These expectancies get compared with the incoming observations 𝑦 and the actual
transition in time 𝜇′ respectively to create the errors 𝜀𝑦 and 𝜀𝜇. These errors are the main ingredients
to the free energy formula, and characterize the mismatch between the internal model and the external
process asmentioned earlier. Subsequently, from the free energy formula the best update for the beliefs
𝜇̇ and the actions 𝑎̇ are chosen based on the gradients 𝛿ℱ

𝛿𝜇 and 𝛿ℱ
𝛿𝑎 by means of a gradient descent.

This gradient basically entails that if for example gradient 𝛿ℱ𝛿𝑎 turns out positive, meaning increasing
the 𝑎 will increase the free energy, it chooses to decrease 𝑎 as that will minimize the free energy. The
chosen actions get pushed to the plant (in this work a skid­steering mobile robot) and then the cycle
repeats, creating a continuous feedback loop.
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2.1.3. The free energy formula
A simplified version of the free energy formula can be seen in eq. 2.1, as used in other implementations
in robotics [16, 2]. A full derivation of the formula will not be given, instead a notion on where it stems
from. The free energy is based on Bayesian principles, where the marginal likelihood (model evidence)
needs to be maximized in order to give an accurate prediction on the occurrence of states. This means
giving a probability of the current states occurring in every single situation, caused by any source. This
gives an intractable solution, resulting in the simplification where the free energy is a best estimate of
the divergence (difference) between its internal model evidence and the real model evidence.

ℱ = 1
2

𝑝

∑
𝑖=0
[𝜀(𝑖)𝑇𝑦 Π𝑦(𝑖)𝜀

(𝑖)
𝑦 + 𝜀(𝑖)𝑇𝜇 Π𝜇(𝑖)𝜀

(𝑖)
𝜇 ] (2.1)

Where 𝑝 is the embedding order of the system, meaning that the total free energy consist of its ’0th
order’ free energy plus the free energy of every embedding order (higher derivative). The free energy
includes the errors 𝜀𝑦 and 𝜀𝜇, which are squared and then multiplied by their respective precision
matrices Π𝑦 and Π𝜇. The errors are created based on the difference between the expectation based
on inner beliefs and what can be observed. These errors are given below:

𝜀𝑦 = 𝑦 − 𝐸(𝑦) = 𝑦 − 𝑔(𝜇)
𝜀′𝑦 = 𝑦′ − 𝑔(𝜇′)
⋮

𝜀(𝑝)𝑦 = 𝑦(𝑝) − 𝑔(𝜇(𝑝))

(2.2)

𝜀𝜇 = 𝜇′ − 𝐸(𝜇′) = 𝜇′ − 𝑓(𝜇)
𝜀′𝜇 = 𝜇″ + 𝑓(𝜇′)
⋮

𝜀(𝑝)𝜇 = 𝜇(𝑝) + 𝑓(𝜇(𝑝))

(2.3)

The expectancies 𝐸(𝑦) and 𝐸(𝜇′) are created with the generative functions 𝑔(𝜇) and 𝑓(𝜇) respec­
tively. 𝑔(𝜇) denotes the (often kinematic) mapping between the beliefs and observations, and 𝑓(𝜇) is
a dynamic model that encodes how it beliefs the states change over time. 𝑓(𝜇) predicts what 𝜇′ will
be based on 𝜇 (or 𝜇‴ based on 𝜇″ etc.), then this prediction gets compared with the current 𝜇′. The
generative functions together form the system’s generative model.

2.1.4. The Generative model
The generative model is the system’s internal model of the generative process of the plant, like in Fig.
2.1. The generative process of an LTI­system as defined by Grimbergen [7] is of the form:

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑤(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑧(𝑡) (2.4)

with the generalized form:

𝒟𝑥̃ = 𝐴̃𝑥̃ + 𝐵̃𝑢̃ + 𝑤̃
𝑦̃ = 𝐶̃𝑥̃ + 𝑧̃

(2.5)

Where 𝑤 and 𝑧 are process and measurement noise, respectively. The 𝒟 operator is a shift operator
that shifts every value of a vector one spot upwards, and is given as a matrix full of zeroes, with ones
on the superdiagonal:

𝒟 =
⎡
⎢
⎢
⎣

0 1
0 ⋱

⋱ 1
0

⎤
⎥
⎥
⎦
⊗ 𝐼𝑛 (2.6)
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The matrix shown has a size corresponding with the embedding order (𝑝 × 𝑝) and 𝐼𝑛 corresponds to
the amount of different states 𝑛 (𝑛 × 𝑛 matrix). The generalized form of 𝐴, 𝐵 and 𝐶 correspond to:

𝐴̃ = 𝐼𝑝⊗𝐴
𝐵̃ = 𝐼𝑝⊗𝐵
𝐶̃ = 𝐼𝑝⊗𝐶

(2.7)

Assuming the noises 𝑤 and 𝑧 to be Gaussian and a mean of zero, the eq. 2.5 can be written as:

𝒟𝑥̃ − 𝐴̃𝑥̃ − 𝐵̃𝑢̃ = 0
𝑦̃ − 𝐶̃𝑥̃ = 0

(2.8)

This formulation transcribes to the process and measurement errors used in active inference as
follows:

[𝜀𝜇𝜀𝑦] = [
𝒟𝜇̃ − 𝐴̃𝜇̃ − 𝜂
𝑦̃ − 𝐶̃𝜇̃ ] (2.9)

Where 𝐵𝑢 is replaced by 𝜂, denoting a prior expectation of the states, which can be compared to
giving the system a reference signal like in traditional control. This means that for a LTI­system, the
generative functions 𝑓(𝜇) and 𝑔(𝜇), as seen in eq. 4.7 and 2.2 can be defined as:

𝑓(𝜇) = 𝐴𝜇 − 𝜂
𝑔(𝜇) = 𝐶𝜇 (2.10)

The generative function 𝑓(𝜇) can be seen to both have a dynamic model 𝐴 and its preference for the
prior 𝜂 encoded in its definition. This works for a simple LTI­system, but the problem however is when
systems become more complex and this 𝐴 is not that easily known by the system, and in addition can
no longer be written as a linear matrix multiplication. In that case it is not yet fully defined yet how and if
such nonlinear models should be implemented into active inference. Because on the one hand active
inference is explained to have an internal model, but on the other hand that model should ideally not
be bound to a structure based on any known equations (like the laws of physics), as for example when
trying to rotate an object the brain does not first calculate its inertia based on the second law of motion.

This brings us to the implementations of Pezzato [16] and Baioumy [2], where they successfully
implemented a version where the dynamics of the system are omissed and the 𝑓(𝜇) function only
consists of the preference to go to the prior by means of attractor dynamics. Pezzato [16] defined the
𝑓(𝜇) function as follows:

𝑓(𝜇) = 𝜇 − 𝜂 (2.11)

Instead of using the prior 𝜂 directly, it is encoded in the 𝑓(𝜇) function is a trajectory towards 𝜂.
Baiyoumy et al. [2] expanded this function towards to contain a temporal parameter 𝜏, which is basically
a gain parameter, that lets you have more control over this trajectory towards 𝜂 (for example a faster
convergence).

𝑓(𝜇) = (𝜇 − 𝜂)𝜏−1 (2.12)

By means of simplicity, this work uses the 𝑓(𝜇) function as defined in eq. 2.12, meaning no dynamic
model of a skid­steering mobile robot is needed or defined in this work. The 𝑔(𝜇) function that is used
is unchanged from eq. 2.10, making this function the only applications specific one of the two. It
is linear mapping that maps beliefs to observations, which for example in our specific application of a
mobile robot means a steady­state kinematic mapping of the beliefs of the body­level angular and linear
speed towards expected measured wheels speeds. The detailed description of how these functions
are defined for our specific application (skid­steering mobile robot) can be found in Chapter 4.
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2.1.5. The update rules
The update rules make sure that every update of the beliefs or actions are chosen in such a way that
it minimizes the free energy. It does this with the help of the respective gradients 𝛿ℱ

𝛿𝜇 and 𝛿ℱ
𝛿𝑎 and with

learning parameters 𝜅𝜇 and 𝜅𝑎 that form a type of gain on those gradients.

̇𝜇̃ = 𝒟𝜇̃ − 𝜅𝜇
𝛿ℱ
𝛿𝜇̃ = 𝒟𝜇̃ − 𝜅𝜇(

𝛿 ̃𝜀𝜇
𝛿𝜇̃

𝑇 𝛿ℱ
𝛿 ̃𝜀𝜇

+
𝛿 ̃𝜀𝑦
𝛿𝜇̃

𝑇 𝛿ℱ
𝛿 ̃𝜀𝑦

) (2.13)

𝑎̇ = −𝜅𝑎
𝛿ℱ
𝛿𝑎 = −𝜅𝑎

𝛿𝜀𝑦
𝛿𝑎

𝑇 𝛿ℱ
𝛿𝜀𝑦

(2.14)

where the gradients of eq. 2.13 are easily calculated from derivatives. In eq. 2.14, however, the
gradient 𝛿𝜀̃𝑦𝛿𝑎 is where the impact of the actions on the observations are needed to be known. This is
where the forward model comes in.

2.1.6. Forward model
The forward model describes the system’s knowledge of how the actions relate to the observations.
This relations needs to be known to be able to predict how updating an action influences the free energy.
The gradient 𝛿𝜀̃𝑦𝛿𝑎 needs to be known, and in order to calculate this the forward model (or gradient) 𝛿𝑦𝛿𝑎
is needed. In simple systems this equates to a linear matrix transformation as shown below:

𝑦 = 𝐻 ⋅ 𝑎 (2.15)

𝛿𝑦
𝛿𝑎 = 𝐻 (2.16)

For themore complex systems the same discussion as in subsection 2.1.4 arises where it is possible
to incorporate a complex (forward) model, but that kind of superseeds the goals for active inference.
Instead [16] showed that the system also works with just knowing the signs within this forward model.
This can result in a forward model filled with only 1, ­1 or 0, indicating whether changing the action has
a positive, negative or no effect on the observations. In this work’s implementation of hierarchy this last
type of forward model is used, as can be seen in Chapter 5. For the non­hierarchical implementation
a linear transformation is partly used in the forward model, as can be seen in Chapter 4.

2.1.7. Precision Matrices
The precisionmatricesΠ𝜇 andΠ𝑦 as defined in eq. 2.1 are the parameters that in theory says something
about how reliable the error signals 𝜀𝜇 and 𝜀𝑦 are. This includes information about the noise, where
more noise equals a lower precision. The precisionmatrices can be calculated from variance as follows:

Π𝜇 = Σ−1𝜇 =
⎡
⎢
⎢
⎢
⎣

( 1𝜎1 )
2 0 0

0 ( 1𝜎2 )
2 0

0 0 ( 1𝜎3 )
2

⎤
⎥
⎥
⎥
⎦

(2.17)

Π𝑦 = Σ−1𝑦 =
⎡
⎢
⎢
⎢
⎣

( 1𝜎1 )
2 0 0

0 ( 1𝜎2 )
2 0

0 0 ( 1𝜎3 )
2

⎤
⎥
⎥
⎥
⎦

(2.18)

The above situation is specifically for a situation where the noise is assumed independent, which is
why only the diagonal is filled. 𝜎1, 𝜎2 and 𝜎3 are, depending on the precision matrix, the variances of
the signals 𝜇1, 𝜇2 and 𝜇3 or 𝑦1, 𝑦2 and 𝑦3. As can be seen, for this example the amount of belief states
are assumed to be 3 and measurement states as well, in reality these amounts can of course differ
and depend on the application. Because generalised coordinates of motion are being used, besides
having different variances in between the different states (i.e. 𝜇1, 𝜇2, 𝜇3 etc.), the variance also differs
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between the higher orders (i.e. 𝜇1, 𝜇′1, 𝜇″1 etc.). The generalized precision matrices, for an example of
2 embedding orders can be seen below:

Π̃𝜇 = [
Π𝜇 0 0
0 Π′𝜇 0
0 0 Π″𝜇

] (2.19)

Π̃𝑦 = [
Π𝑦 0 0
0 Π′𝑦 0
0 0 Π″𝑦

] (2.20)

Choosing the values of the precision matrices is not so straightforward. For Π𝑦 the variance of the
measurements 𝑦 can be calculated and used as these are quite consistent and is independent of the
controller, this will give quite a good approximation. For Π𝜇, however, it is less clear on what values
should be taken as the variance also depends on the controller parameters (including its own preci­
sion). Not knowing exactly how to setup these precision matrices is not that big of a problem, this is
because of the way these precision matrices are used. In practice these matrices serve as weight pa­
rameters that determines the ratio of influence between not only 𝜀𝜇 and 𝜀𝜇, but also between different
states and additionally between the higher orders of these states. This makes it for example possible
with the precision matrices to make the system rely more on its beliefs, favor particular measurements,
and by giving more weight to a higher order include more damping. This results in the precision matri­
ces, although brought as something to be determined from the process, actually being an extra tuning
parameter to the active inference controller. This is the reason why in this work the precision matrices
seem to be quite arbitrarily chosen as to just make the system ’work’.

2.1.8. Generalised coordinates and generalization
Active inference makes use of generalised coordinates of motion for the beliefs of all its states. This
means also keeping track of higher derivatives of states. Keeping beliefs this way means that it does
not only have a belief on its current state, but also a belief on its future states, because if you know
the higher derivatives you can predict future states, for example by means of Taylor expansion. This
means that keeping those higher order beliefs, in theory, should also minimize free energy on future
states, making the minimization more effective.

There is a problem though, for the calculation of ̃𝜀𝑦 a generalized form of the observations 𝑦 is
needed. However, these higher order measurements are not available to the system, and therefore
needs to be established. This is done by generalization. The most simple form of this is backwards
differentiation, this takes measurements from the past and the differences between them to establish
the higher order derivatives that are needed for the generalized form. This is only an approximation
however, because themeasurements from the past only gives you derivatives from the past, which does
not have to equate the current derivatives. How this is implemented is further explained in Chapter 4.
Other techniques can also be used to try to predict the current derivatives, an example could be the
use of a predictive coding network (PredNet).

𝜇̃ =

⎡
⎢
⎢
⎢
⎢
⎣

𝜇1
𝜇2
𝜇′1
𝜇′2
𝜇″1
𝜇″2

⎤
⎥
⎥
⎥
⎥
⎦

(2.21)

The above equation shows an example of how a vector of generalized beliefs looks like for a system
of 2 states and an embedding order of 2. An updated version of the structure overview in Fig. 2.1 can
be seen below in Fig. with the incorporation of generalized coordinates and generalization.
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Figure 2.2: updated overview of the controller structure incorporating generalised coordinates and generalization

2.2. Hierarchical active inference
This section gives an overview of what principles gets added when you expand active inference to a
hierarchical system, and the interpretation of the author on how it changes the controller structure.

Hierarchical active inference could be seen as active inference inference on top of active inference,
meaning that the output of one active inference layer is the input of another. However, it is more
nuanced than just connecting outputs and inputs. There are two main aspects that get changed in
hierarchical active inference. The first one is the addition of causal states 𝜇𝑣, and the second one lies
in the message passing or information exchange between levels of hierarchy.

Only the lowest level in hierarchy is taking actions on the environment, this means that for levels
higher than the lowest level, the actions 𝑎 and its update rule get replaced by the causal state 𝜇𝑣 with its
own update rule. The causal states are the system’s beliefs about what the causes are to the system’s
current hidden states 𝜇𝑥 (formerly known as just internal state 𝜇), for example a causal state of a force
that corresponds to a hidden state of an acceleration. The hidden state is what was previously called
beliefs or internal states in general, denoted as 𝜇 in Fig. 2.2. In non­hierachical implementations the
internal states can also be called hidden states, but the usage of this name becomes more prominent
when using hierarchy, because of the addition of the causal state. This causal state is the link between
levels of hierarchy and serves as a prior on the active inference layer below and enters at the 𝑓 function
of its generative model, shown as 𝜇𝑑𝑒𝑠 in Fig. 2.2.

A schematic illustration of a two­level hierarchical system is given in Fig. 2.3, in which the interaction
between the hidden and causal states are visualized. The 𝜂 is themost high level prior, which in robotics
basically entails the desired state the user gives to the active inference controller. With more levels of
hierarchy, this user command becomes more abstract as well, for example instead of ’move arm 𝑥
amount’ it could handle ’grab object 𝑥’. The lowest levels of hierarchy that commands actions, and
therefore reside closer to the hardware, are typically also the levels where the observations 𝑦 flow
into. It is however still possible for higher levels to gather observations, and thus the implementation
mentioned in this work can handle both.
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Figure 2.3: Schematic illustration of state interaction in non­hierarchical vs. hierarchical (two­level)

Hierarchical active inference is often depicted with the use of circles connected with arrows, like in
Fig. 2.3. This notation stems from neuroscience, and is often used to describe the system in a high
level. Papers discussing hierarchical active inference often talk about it on the higher level, not showing
equations [17], and the papers that do [15], do not show them fully worked out and do not show them
in relation to a controller structure. In Chapter 5, this work visualizes the changes in controller structure
when going from non­hierarchical to hierarchical, and shows the corresponding changes in equations,
including the values used for the application specific parameters (i.e. generative model, forward model
and mappings).



3
Experimental Setup

This chapter gives an overview of the robot that is being used as the research platform for the im­
plementation of Active Inference. In addition it will explain some of the choices that were made for
the implementation tools and will explain why the comparison is drawn between hierarchical and non­
hierarchical active inference, and not compared with another type of controller.

3.1. Jackal robot
The Jackal robot is a four­wheeled mobile research platform from Clearpath. It maneuvers around with
the use of skid­steering, comparable to how an armored tank steers. The Jackal robot is equipped with
wheel encoders and an inertial measurement unit (IMU), making it possible to get feedback on wheel
speeds, angular velocity and linear accelerations. There is only one encoder measurement per side,
as the wheels are mechanically linked from front to back.

Figure 3.1: Jackal side and front view1

The available measurement frequencies for the wheel encoders and the IMU are 20Hz and 70Hz
respectively. One thing to note is that especially the wheel encoder feedback frequency is rather low,
making it more difficult to do low level wheel speed control. The feedback is also after transmission,
making the readings less accurate. We do suffer from these low frequencies, as with this work’s imple­
mentation of hierarchical active inference, the low­level speed control of the wheels get replaced. That
control was previously done by means of PID on the micro­controller unit (MCU) to which the user does
not have access. Now, with active inference, the implementation is bound to the 20Hz measurements
that are available within ROS.

Full sizing and specifications can be found on Clearpath’s website1

1https://clearpathrobotics.com/jackal­small­unmanned­ground­vehicle/

13
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There are three control modes for the Jackal robot. The first one is through kinematic commands,
where a desired linear and angular velocity is given to the robot, then the stock controller will turn those
into wheel commands . The second control mode is via wheel velocity commands, where the user gives
desired wheel speeds, for which the low­level PID will do the regulating. The third one is giving open
loop voltage commands to the motor driver. Control mode 2 is where the non­hierarchical controller is
built on top of. Control mode 3 is where the hierarchical controller is built upon.

The stock controller for control mode 1 is not used in this work, but it is interesting to note that this
controller uses a differential drive controller, which calculates wheel commands based on a forward
kinematic model. This forward kinematic model is similar to the model that is used in this work for the
matrices of the generative and forward model within active inference. This forward kinematic model is
called extended differential drive, and is the most common kinematic model used in skid­steer mobile
robots. It relates body­level velocities to wheel velocities in the following way:

[
𝑥̇
𝑦̇
𝜃̇
] = 𝑟 [

1
2

1
2

0 0
− 1
𝑏̂

1
𝑏̂

] [𝜔𝐿𝜔𝑅] (3.1)

where 𝑟 is the radius of the wheels, and 𝑏̂ is the virtual width of the wheelbase as if it had two wheels
instead of four. For the Jackal robot these values are 𝑟 = 0.098𝑚 and virtual width 𝑏̂ = 0.5621𝑚. The
virtual width was determined empirically using two different wheel speeds as input, and measuring the
corresponding angular velocity with the IMU.

3.2. ROS and C++
The robot has an on­board computer that runs a version of the Robot Operating System (ROS). ROS
is based on a system of nodes where each node runs its code independently and subscribes and/or
publishes values to a topic.

Figure 3.2: ROS structure, where topics are illustrated with rectangles and nodes are displayed as ellipses

ROS nodes can be programmed with either C++ or Python. Although Python makes for better
readability, benefitting knowledge transfer, the author’s choice was to go with C++, based on prior ex­
perience and the Jackal’s stock ROS nodes also being in C++. Furthermore, the decision has been
made to not implement the controller as a ros_controller, a framework for control within ROS. The con­
trol is done with independent nodes, where the interaction with the user and the hardware are manually
programmed. One reason for this is the lack of experience with ros_control of the implementation team
that built the non­hierarchical version, which highlights an additional benefit as a potential next student
working with the same code does not first have to familiarize themselves with ros_control. Another
reason is that building it from scratch, means that the controller is not tied to traditional control structure
and can have a structure that expands horizontally and vertically in hierarchy, like the brain. The full
overview of the implementation structure within ROS for the hierarchical implementation can be found
in Appendix B.

3.3. Tuning experiments
In order for the comparison of the non­hierarchical and hierarchical controller to be fair, they both have to
be tuned in the same way. As they both have different structures, it is not possible to tune to roughly the
same tuning parameter values. To keep the comparison somewhat fair, the tuning of both controllers
is done using roughly the same tuning strategy as explained in Chapter 6. Tuning is done until the
step response on the wheel measurements settles fast enough (about <0.5s) to the expected values
for both controllers. For the non­hierarchical controller, it was possible to do some initial tuning on the
Jackal simulation in Gazebo, however this simulation was not able to take voltage command inputs
for the wheels (command mode 3), making it impossible for the hierarchical version to be tuned in this
way. Eventually all tuning, including non­hierarchical, was done with experiments on the real robot.
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These experiments were done with the wheels suspended, with the Jackal placed on a box, making it
so that the robot would not crash into things if the controller rendered unstable. After the on­box tuning
(setup showed in Fig. 3.3), the robot is ready to be placed on the ground, these results are discussed
in Chapter 7.

3.4. Comparison experiments
When the controllers are done being tuned, they are ready to be compared to eachother. The reason
these controllers are being compared, as opposed to comparing with a traditional controller, is to keep
the focus on the differences between non­hierarchical and hierarchical active inference, as opposed
to raw controller performance. These controllers both achieve the same task, making the wheels turn
based on a desired linear and angular body velocity. The non­hierarchical controller, however, is built
on top of a MCU­level PID controller doing the low­level wheel speed control with access to much higher
frequency encoder data, as opposed to the low frequency (20Hz) the low­level active inference layer
of the hierarchical controller has access to in ROS. This makes a performance comparison between
the two less fair, which is why the main focus does not lie in comparing performance, but more with a
comparison of what it takes to get both controllers to behave in the same way. As mentioned earlier,
the baseline (non­hierarchical) is built by a group of students, including the author.

Eventually both controllers are compared with a total of 8 experiments, 4 experiments per controller.
This includes driving in a circle (cornering), and turning in place (pivoting) for both on the ground and
with its wheels suspended in the air.

on box on ground
pivoting exp. 1 exp. 3
circle driving exp. 2 exp. 4

Table 3.1: the different experiments done for both controllers

Figure 3.3: A photo of the Jackal robot for the the on­box experiments, where the wheels are suspended in the air





4
Non­Hierarchical Implementation

This chapter was written in collaboration with 3 other Masters students as a documentation of the
collective effort to get a first implementation of Active Inference running on the Jackal robot.

This chapter explains the active inference velocity controller that was created to track the velocity of
the Jackal UGV. In section 4.1 an overview of the controller is given, section 4.2 describes the chosen
dynamical model while section 4.3 explains the free energy formulation. Lastly section 4.4 explains the
generalization node of the controller.

4.1. Overview of the active inference velocity controller
The controller for the Jackal robot needs to send and receive information to and from the plant. This
communication is handled by ROS, which is inherently present on the Jackal robot. There are many
topics available, but for the controller only a few are needed. An overview is shown in Figure 4.1.
Sensory input from the wheel speeds are published on the topic /joint_states, while the speed of the
center of mass 𝜇 is published on /imu/data, containing 𝑥̈, 𝑦̈ and 𝜃̇. The sensory data are read by a
generalization node that calculates the derivatives of the wheel speeds. These derivatives are then
published on an intermediate topic: /sensor_generalized. These generalized measurements, com­
bined with the desired velocity of the center of mass that is published on /jackal_aic/set_point, are the
actual input for the AIC. The AIC calculates the action required to bring down the Free Energy and
publishes drive commands on /cmd_drive when using the robot and /jackal_left_wheel/command and
/jackal_right_wheel/command when using Gazebo. These topics contain the velocities that the left­ and
right wheel of the Jackal should have: 𝜔𝐿 and 𝜔𝑅. Ideally an immediate connection to the actuators
would be used, but that is not yet implemented. Currently an internal lower­level controller transforms
the drive commands to actuator voltages.

4.2. Choice of dynamic model
For the control of a skid­steering mobile robot, often no dynamical model is used [11, 1, 13, 22, 20].
Instead, only a kinematic mapping between the body velocity and the wheel velocities is often used.
This gives a steady­state solution of the body velocity resulting from the wheel velocities. In this way,
using inverse kinematics, the desired body velocity input by the user (linear and angular) can be con­
verted by the controller to give corresponding wheel speed inputs to the wheels. This method however,
does not contain any dynamics, and therefore cannot adjust well for any disturbances, like unknown
slippage.

Dynamic modelling takes the forces and accelerations into account. This will generally lead to an
increase in control performance because the vehicle is modeled on a deeper level. However, this type
of modeling only makes sense when you know the torques that are applied to each wheel, otherwise it
is best to stick to a kinematic model. To keep things simple, the dynamic model is often only used in 2D
(top­down view of the vehicle) where a simple 2D chassis model is implemented. The forces acting on
the chassis, that determine its motion, are the driving forces and friction forces. The driving forces can
be derived from the motor torques, whereas the friction forces on the chassis come from the wheel­
ground interaction. For this last part an abundance of wheel­ground interaction models (or friction

17
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Figure 4.1: An overview of all components involved and through what ROS topics they communicate. A full­page view of the
block diagram depicted within the AIC block can be found in the Appendix A.

models) are used in literature, varying widely in complexity. But taking even the simplest friction model,
the resulting overall dynamic model will still be non­linear. For the implementation of active inference,
we are looking for a simple solution, as we are focusing on the implementation in the hardware, instead
of focusing on complex models. Therefore, we chose to opt out of a traditional dynamic model, and use
attractor dynamics instead. This technique is already used in a few active inference implementations
[16, 2], where we will use the version with the time constant [2]. These attractor dynamics will encode
a preference of the states to be moving towards a prior (desired state), stated as follows:

𝑓(𝜇) = (𝜇𝑑 − 𝜇)𝜏−1 (4.1)

where 𝜇 are the beliefs (states in active inference), 𝜇𝑑 is the prior belief (desired state) and 𝜏 is a
time constant.
While not using any dynamic model from literature, we still need a mapping from the states to observa­
tions (body velocities to wheel velocities) in order to compare with measured values. For this we opted
for the extended differential drive model (as used by [11]), because this is the most simple and most
used kinematic mapping available, while still giving sufficient performance:

[
𝑥̇
𝑦̇
𝜃̇
] = 𝑟𝛼 [

1
2

1
2

0 0
− 1
𝑏̂

1
𝑏̂

] [𝜔𝐿𝜔𝑅] (4.2)

𝑟𝛼 [

1
2

1
2

0 0
− 1
𝑏̂

1
𝑏̂

] = 𝐺 (4.3)

where 𝛼 is a slip parameter and 𝑏̂ is the virtual width of the vehicle (as if it had two wheels). These are
both trained empirically. For the 𝑔(𝜇) of the generative model, we need the mapping from the states to
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observations. And as we have access to the gyroscope, encoder and accelerometer measurements,
it will look as follows:

⎡
⎢
⎢
⎢
⎣

𝜃̇
𝜔𝐿
𝜔𝑅
𝑥̈
𝑦̈

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0 0 1
𝐺−111 𝐺−112 𝐺−113
𝐺−121 𝐺−122 𝐺−123
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

[
𝑥̇
𝑦̇
𝜃̇
] (4.4)

where 𝐺−1 is the pseudo­inverse of the kinematic mapping mentioned above.

4.3. Free energy formulation
This section will focus on the definition of the free energy formula for the active inference velocity
controller of the Jackal robot. In the previous paragraph the generative model of the sensory data and
of the state dynamics are defined. Equation 5.1 displays the general free energy formula as it was
defined by Pezzato et al.[16]

𝐹 = 1
2

𝑛𝑑−1

∑
𝑖=0

[𝜀(𝑖)(𝑇)𝑦 Σ−1𝑦(𝑖)𝜀
(𝑖)
𝑦 + 𝜀(𝑖)(𝑇)𝜇 Σ−1𝜇(𝑖)𝜀

(𝑖)
𝜇 ] (4.5)

Based on the models defined earlier the error terms, 𝜀𝑦 and 𝜀𝜇, can be computed. These can be
found in equations 4.6 and 4.7. Furthermore, to find the first generalized order these questions are
differentiated once to obtain equations 4.8 and 4.9. Note that in this example only the first derivative is
shown. However, in the actual application the derivatives can go up to the 5th order.

𝜀𝑦 = 𝑦 − 𝑔(𝜇) = 𝑦 − 𝑅𝜇 =
⎡
⎢
⎢
⎢
⎣

𝜃̇
𝜔𝐿
𝜔𝑅
𝑥̈
𝑦̈

⎤
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎣

0 0 1
1
𝑟𝛼 0 −𝑏̂

2𝑟𝛼
1
𝑟𝛼 0 𝑏̂

2𝑟𝛼
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

[
𝑥̇
𝑦̇
𝜃̇
] (4.6)

𝜀𝜇 = 𝜇′ − 𝑓(𝜇) (4.7)

𝜀𝑦 = 𝑦 − 𝑅𝜇
𝜀′𝑦 = 𝑦′ − 𝑅𝜇′
⋮

𝜀(5)𝑦 = 𝑦(5) − 𝑅𝜇(5)

(4.8)

𝜀𝜇 = 𝜇′ − 𝑓(𝜇) = 𝜇′ − (𝜇𝑑 − 𝜇)𝜏−1
𝜀′𝜇 = 𝜇″ + 𝜇′𝜏−1
⋮

𝜀(5)𝜇 = 𝜇(6) + 𝜇(5)𝜏−1

(4.9)

For readability, equations 4.8 and 4.9 can be written in matrix form (equation 4.10). Furthermore,
the same can be done for the precision matrices, which is done in equation 4.11. Note that in this case
𝜀 and Π̃ consist of all generalized orders.

𝜀 = [𝜀𝑦𝜀𝜇] (4.10)

Π̃ = [Π̃𝑦 0
0 Π̃𝜇

] (4.11)
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Combining equations 5.1, 4.10 and 4.11 equation 4.12 can be found. This is the free energy formula
for the active inference velocity controller for a jackal robot.

𝐹 = 1
2𝜀

𝑇Π̃𝜀 (4.12)

From the free energy formula the belief update can be found, the belief update is defined in equation
4.13. In equation 4.14 this has been written out for 2 generalized orders.

̇𝜇̃ = 𝐷𝜇̃ − 𝑘𝜇(
𝛿 ̃𝜀𝜇
𝛿𝜇̃

𝛿𝐹
𝛿 ̃𝜀𝜇

+
𝛿 ̃𝜀𝑦
𝛿𝜇̃

𝑇 𝛿𝐹
𝛿 ̃𝜀𝑦

) (4.13)

[
𝜇̇
𝜇̇′
𝜇̇″
] = [

0 𝐼 0
0 0 𝐼
0 0 0

] [
𝜇
𝜇′
𝜇″
] − 𝑘𝜇([

𝐼
𝜏 0 0
𝐼 𝐼

𝜏 0
0 𝐼 𝐼

𝜏

] [
Π𝜇𝜀𝜇
Π𝜇′𝜀𝜇′
Π𝜇″𝜀𝜇″

] − [
𝑅𝑇 0 0
0 𝑅𝑇 0
0 0 𝑅𝑇

] [
Π𝑦𝜀𝑦
Π𝑦′𝜀𝑦′
Π𝑦″𝜀𝑦″

]) (4.14)

Lastly the action update is defined in equation 4.15. This has been written out for 2 generalized
orders of motion in equation 4.17. Note that the term 𝛿𝜀̃𝑜

𝛿𝑎 is replaced by the forward model (F) as
defined in equation 4.16.

𝑎̇ = −𝜅𝑎
𝛿𝜀𝑦
𝛿𝑎

𝛿𝐹
𝛿𝜀𝑦

(4.15)

𝐹 = [
−𝑟𝛼
𝑏̂ 1 0 0 0
𝑟𝛼
𝑏̂ 0 1 0 0] (4.16)

𝑎̇ = −𝜅𝑎 [
𝐹 0 0
0 𝐹 0
0 0 𝐹

] [
Π𝑦𝜀𝑦
Π𝑦′𝜀𝑦′
Π𝑦″𝜀𝑦″

] (4.17)

4.4. Generalization
Active Inference also requires the measurements to be generalized. The states of 𝜇 are generalized
easily by just taking multiple derivatives. However this is not as straight forward for generalizing mea­
surements.

There is only a limited amount of derivatives real sensors can measure. Think of a position sensor,
a velocity sensor and an acceleration sensor. These link the derivatives directly through measurements
of each other. In this case this would mean that we can only measure up to an embedding order of
two directly. But what if some of these type of sensors are not available or what if the highest state
is acceleration and we need derivatives of that? In that case we need to synthesize the higher order
derivatives from the available measurements.

4.4.1. Finite differences
The following part is based off the Master’s thesis of I.L. Hijne [8]. A robot receives measurement
samples in discrete time. In that case we can use a simple differentiating technique by using finite
differences. It is possible to extract higher order derivatives from a Taylor expansion. The Taylor
expansion computes signal 𝑦𝑘+𝑗 from 𝑦𝑘 and a weighted sum of 𝑦𝑘 ’s higher order derivatives and is
defined as:

𝑦𝑘+𝑗 =
𝑖𝑚𝑎𝑥
∑
𝑖=0

(𝑗ℎ)𝑖
𝑖! 𝑦(𝑖)𝑘 (4.18)

where (𝑖) denotes the i­th order derivative of 𝑦𝑘 and ℎ is an interval step that is sufficiently small.
Note that 𝑖𝑚𝑎𝑥 goes to infinity and 𝑗 is used for looking 𝑗 steps forward/backwards and note that 00 = 1.

The goal here is to extract every order of derivatives up to a defined 𝑖𝑚𝑎𝑥. So for the 1st order we
can write the Taylor expansion as:
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𝑦𝑘−1 = 𝑦𝑘 − ℎ𝑦(1)𝑘 + 𝒪(ℎ2)

𝑦(1)𝑘 = 1
ℎ(𝑦𝑘 − 𝑦𝑘−1) + 𝒪(ℎ) (4.19)

Here, 𝒪(ℎ𝑛) denotes the order of magnitude of the error terms. Similarly, we can do this approximation
for the second derivative by eliminating the terms until we only end with the second order terms on the
right side.

When

𝑦𝑘 = 𝑦𝑘
𝑦𝑘−1 = 𝑦𝑘 − ℎ𝑦(1)𝑘 + 12ℎ

2𝑦(2)𝑘 + 𝒪(ℎ3)

𝑦𝑘−2 = 𝑦𝑘 − 2ℎ𝑦(1)𝑘 + 2ℎ2𝑦(2)𝑘 + 𝒪(ℎ3)

are combined linearly to eliminate all but the second order terms we find.

1
2𝑦𝑘 − 1𝑦𝑘−1 +

1
2𝑦𝑘−2 =

1
2ℎ

2𝑦(2)𝑘 + 𝒪(ℎ3) (4.20)

This can then be solved for 𝑦(2)𝑘 :

𝑦(2)𝑘 = 1
ℎ2 (𝑦𝑘−2 − 2𝑦𝑘−1 + 𝑦𝑘) + 𝒪(ℎ) (4.21)

and has the coefficients 𝑐 = [1, −2, 1].
The error term still scales linearly with the step ℎ. This error term will be the same for higher

order derivatives as well. However this error term can be reduced by taking more past samples into
consideration. For example if we took 4 past samples for calculating 𝑦(2)𝑘 , then the error term scales
quadratic with the interval step ℎ: 𝒪(ℎ2).

Now the problem turned into finding the appropriate coefficients of the linear combinations of Taylor
series. I.L. Hijne [8] tabulated these coefficient up to the 5th order derivative for an accuracy of 𝑂(ℎ).
The coefficients for zero to higher order derivatives can be written in a 6 × 6 matrix and is shown in eq
(4.22). This solution has error terms that scale by 𝑂(ℎ).

4.4.2. Matrix forms
In Active Inference the generalized coordinates of the sensory input is for embedding order 𝑝:

ỹ = [𝑦(0)𝑘 , 𝑦(1)𝑘 , ..., 𝑦(𝑝)𝑘 ]

We can approximate ỹ by using backwards differentiation of numerous previous samples of 𝑦(0)𝑘 . This
can be written as:

ỹ = 𝐸y̌, y̌ = [𝑦𝑘−𝑠 , 𝑦𝑘−𝑠+1, ..., 𝑦𝑘]
In this equation 𝑠 is the amount of samples backwards. For 𝑝 = 5 and 𝑠 = 5 and an error term of 𝒪(ℎ)
the system of equations looks like eq (4.22).

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦(0)𝑘

𝑦(1)𝑘

𝑦(2)𝑘

𝑦(3)𝑘

𝑦(4)𝑘

𝑦(5)𝑘

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 1

0 0 0 0 − 1
ℎ

1
ℎ

0 0 0 1
ℎ2 − 2

ℎ2
1
ℎ2

0 0 − 1
ℎ3

3
ℎ3 − 3

ℎ3
1
ℎ3

0 1
ℎ4 − 4

ℎ4
6
ℎ4 − 4

ℎ4
1
ℎ4

− 1
ℎ5

5
ℎ5 − 10

ℎ5
10
ℎ5 − 5

ℎ5
1
ℎ5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦𝑘−5

𝑦𝑘−4

𝑦𝑘−3

𝑦𝑘−2

𝑦𝑘−1

𝑦𝑘

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.22)
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Interestingly, the absolute values of the coefficients follow the same pattern as in Pascal’s triangle.
This matrix does solve the problem and we get the generalized coordinates of the sensory input with
a constant ℎ. However for an implementation of this it is required to keep track of old data samples,
which causes the information to have overlap. This equation can be rewritten to only contain data of
the sample we are interested in and the previous sample plus its derivatives. A special vector ̌ỹ can
be constructed that contains the current sample and the previous sample with higher order derivatives
of the previous sample.

ỹ = 𝑄 ̌ỹ, ̌ỹ = [y𝑘 ,y⊤𝑘−1]⊤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦(0)𝑘

𝑦(1)𝑘

𝑦(2)𝑘

𝑦(3)𝑘

𝑦(4)𝑘

𝑦(5)𝑘

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
1
ℎ − 1

ℎ 0 0 0 0
1
ℎ2 − 1

ℎ2 − 1
ℎ 0 0 0

1
ℎ3 − 1

ℎ3 − 1
ℎ2 − 1

ℎ 0 0
1
ℎ4 − 1

ℎ4 − 1
ℎ3 − 1

ℎ2 − 1
ℎ 0

1
ℎ5 − 1

ℎ5 − 1
ℎ4 − 1

ℎ3 − 1
ℎ2 − 1

ℎ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦𝑘

𝑦(0)𝑘−1

𝑦(1)𝑘−1

𝑦(2)𝑘−1

𝑦(3)𝑘−1

𝑦(4)𝑘−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.23)

This form is initialized with the higher order derivatives at zero.

4.4.3. Implementation Summary
The form eq (4.23) is used in the Jackal robot. The sensor measurements are synchronized so that
ℎ is the same for all measurements during a time step. Their derivatives are computed based on eq
(4.23). However instead of making one large matrix that matches the size of ̌ỹ, it is more efficient to
split this ̌ỹ into several single vectors of a measurement 𝑦̌𝑘,𝑖 = [𝑦𝑘,𝑖 , 𝑦(0)𝑘−1,𝑖 , 𝑦

(1)
𝑘−1,𝑖 , 𝑦

(2)
𝑘−1,𝑖 , 𝑦

(3)
𝑘−1,𝑖 , 𝑦

(4)
𝑘−1,𝑖],

where each 𝑦̌𝑘,𝑖 is a unique sensor measurement denoted by 𝑖. Then use these smaller vectors and
the 6 × 6 matrix 𝑄 to calculate its derivatives as:

𝑦̃𝑘,𝑖 = 𝑄𝑦̌𝑘,𝑖 𝑦̌𝑘,𝑖 = [𝑦𝑘,𝑖 , 𝑦(0)𝑘−1,𝑖 , 𝑦
(1)
𝑘−1,𝑖 , 𝑦

(2)
𝑘−1,𝑖 , 𝑦

(3)
𝑘−1,𝑖 , 𝑦

(4)
𝑘−1,𝑖]

This way 𝑄 only has to be calculated once and can be reused for every vector of 𝑦̌𝑘,𝑖.



5
Hierarchical Implementation

This chapter gives an overview of the changes in structure and equations when expanding towards
hierarchical active inference, and presents it in a ’building block’ fashion. This way of visualizing hierar­
chical active inference is novel, and hopefully this modular way of representing active inference layers
can help build hierarchical implementations in the future. After this visualization, the full structure is
given of the hierarchical active inference controller as implemented in the Jackal robot, together with
a general overview of the states and observations of the system, and a description of the forward and
generative models used.

5.1. Changes in structure
Below on the left, a different representation is given of the structure depicted in Fig. 2.1. This repre­
sentation makes it easier to show how the structure changes for the hierarchical layers. The change
indicated below is to see how one layer of hierarchical active inference (all but the lowest level) differs
from the single layer implementation for non­hierarchical active inference. How the structure changes
for the lowest level can be seen in Fig. 5.3, and to see how these layers are stacked, a full overview
can be seen in Fig. 5.4

Figure 5.1: Differences in structure between non­hierarchical and hierarchical for higher levels (all but the lowest)

23
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The biggest change takes place in the levels that don’t take action but pass down a causal state as
prior to the level below, in practice this is every level that has an inference layer below it, or in other
words, every level above the lowest level. As can be seen in Fig. 5.1, the action gets replaced by a
causal state 𝜇𝑣. The update rule for this causal state incorporates the free energy of the current level
and the prediction error of the level below that got passed upwards. Like the prediction error it gets
from below, the layer also needs to pass its prediction error upwards, to be used in an inference layer
above. An extra error 𝜀𝑣 gets added to the free energy formula, denoting the error on the causal states,
which is calculated by a difference between the causal states and the expectancy of those causal states
based on the hidden states. This expectancy is calculated with 𝑔𝑣(𝜇𝑥), which entails a steady­state
mapping between 𝜇𝑥 and 𝜇𝑣. Because this mapping looks a lot like the mapping between 𝜇𝑥 and 𝑦,
it was given a similar name. The mapping between between 𝜇𝑥 and 𝑦, formerly known as just 𝑔(𝜇),
now becomes 𝑔𝑦(𝜇𝑥). The addition of 𝑔𝑣(𝜇𝑥) is novel, as in theory the causal state 𝜇𝑣 gets compared
to a prior 𝜂 to create the error 𝜀𝑣. The source of this prior about the causal state is not exactly defined
in literature [15], but as we only give a manual prior to the hidden state of the top level, it seemed the
most logical to calculate the prior for 𝜇𝑣 from the hidden states 𝜇𝑥 of the level it is in, such that 𝑔𝑣(𝜇𝑥)
becomes a mapping that indicates what the prior expectancy of the causal states are, given the hidden
states. As the hidden states of the top level are influenced by the manually set prior through 𝑓(𝜇𝑥),
the causal states are therfore also indirectly influenced by the prior, slowed by the update rule ̇𝜇𝑥, and
transformed by 𝑔𝑣(𝜇𝑥).

The observations 𝑦 shown in Fig. 5.1 is needed for the non­hierarchical controller to function, as it
is only one layer, but because the hierarchical controller exists of multiple layers, not every layer nec­
essarily has observations flowing into its active inference loop. Most higher layers of active inference,
while still possible, will probably not have access to observations, in which case that part can be omitted
from the structure as follows:

Figure 5.2: Differences in structure between non­hierarchical and hierarchical for the lowest levels

For the lowest layers of active inference not much changes. The only thing that gets added is a
prediction error to be passed upwards towards the active inference layers above, as can be seen in
Fig. 5.3
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Figure 5.3: Differences in structure between non­hierarchical and hierarchical for the lowest levels

5.2. Changes in equations
The free energy as denoted in eq. 2.1 changes for the higher layers , with causal states, to the following:

ℱ = 1
2

𝑝

∑
𝑖=0
[𝜀(𝑖)𝑇𝑦 Π𝑦(𝑖)𝜀

(𝑖)
𝑦 + 𝜀(𝑖)𝑇𝑥 Π𝑥(𝑖)𝜀

(𝑖)
𝑥 + 𝜀(𝑖)𝑇𝑣 Π𝑣(𝑖)𝜀

(𝑖)
𝑣 ] (5.1)

The squared error term with 𝜀𝑣 gets added to the equation, and the error formerly known as 𝜀𝜇 gets
his name changed to 𝜀𝑥. This name change is because both 𝜀𝑥 and 𝜀𝑣 handle beliefs 𝜇, and could also
be written as 𝜀𝜇𝑥 and 𝜀𝜇𝑣 , but the shorter version was chosen. The addition of error term 𝜀𝑣, besides
being used in the update rule for the causal states 𝜇𝑣, also changes the behaviour of the update rule for
𝜇𝑥, such that hidden states are chosen that correspond better to the causal state. 𝜀𝑣 is defined below:

𝜀𝑣 = 𝜇𝑣 − 𝑔𝑣(𝜇𝑥) (5.2)

𝑔𝑣(𝜇𝑥) is a mapping of 𝜇𝑥 to the causal state 𝜇𝑥, and encodes what the system expect the causal
states to be with the current hidden states.

The precision matrix Π𝑣 is very similar to Π𝑥, in a way that it is not quite sure how to determine its
values, as discussed in subsection 2.1.7, because its signal variance is dependent on the controller
behaviour, which the precision matrix itself also influences.

With the addition of the causal state, it also needs a way of updating. The update rule ̇𝜇𝑣 for the
causal state is defined below in the non­generalized form:

̇𝜇𝑣 = 𝒟𝜇𝑣 − 𝜅𝑣(
𝛿ℱ
𝛿𝜇𝑣

− 𝛿ℱ
(ℎ−1)

𝛿𝜇𝑣
) (5.3)

where the first part of the equation is very similar to the update rule 𝜇̇𝑥, with its own learning param­
eter 𝜅𝑣. The gradient 𝛿ℱ

𝛿 ̃𝜇𝑣
makes sure that the causal state gets updated in such a way that the free

energy of the same level gets minimized. The added parameter 𝛿ℱ
(ℎ−1)

𝛿𝜇𝑣
) is the gradient on how the

free energy of the level below gets influenced by a change in 𝜇𝑣. This works out towards a precision
weighted prediction error that gets passed from below, with an additional gradient that says how this
passed prediction error is changed by changing 𝜇𝑣, as can be seen below:
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̇𝜇𝑣 = 𝒟𝜇𝑣 − 𝜅𝑣(
𝛿ℱ
𝛿𝜇𝑣

− 𝛿𝜀
ℎ−1
𝑥
𝛿𝜇𝑣

Π𝑥𝜀ℎ−1𝑥 ) (5.4)

The reason that the precision weighted prediction error that is gotten from the level below only
consist out of 𝜀𝑥 is because the causal state that gets passed down as a prior only influences 𝜇𝑥, as
can be seen in Fig. 5.2.

The worked out version of eq. 2.13 about 𝜇𝑥 changes to have an extra part added that includes the
influence of 𝜇𝑥 on the free energy by means of 𝜀𝑣.

̇𝜇𝑥 = 𝒟𝜇𝑥 − 𝜅𝑥
𝛿ℱ
𝛿𝜇𝑥

= 𝒟𝜇𝑥 − 𝜅𝜇𝑥(
𝛿𝜀𝑥
𝛿𝜇𝑥

𝑇 𝛿ℱ
𝛿𝜀𝑥

+
𝛿𝜀𝑦
𝛿𝜇𝑥

𝑇 𝛿ℱ
𝛿𝜀𝑦

+ 𝛿𝜀𝑣
𝛿𝜇𝑥

𝑇 𝛿ℱ
𝛿𝜀𝑣

) (5.5)

This concludes the section about the general changes for a hierarchical system. In the next sections
the specific structure for our implementation is shown, accompanied with the chosen application specific
parameters (i.e. generative model, forward model and mappings).

5.3. Controller structure
In Fig. 5.4 the two­level hierarchical structure of the active inference controller is shown. These in­
dividual blocks and their equations were already shown in section 2.2, but are now stacked on top of
eachother.

Figure 5.4: Schematic of the hierarchical structure as implemented in the jackal robot



5.4. Overview of states and observations 27

This implementation stacks only two levels of active inference, but the potential of this structure
reaches beyond that, as the top level structure can easily be duplicated and stacked on top as many
times as the application requires. However, this ’building block’ structure, as depicted in this work, is
currently only focused on vertical hierarchical expansion, meaning every inference layer only has a
maximum of one inference layer below or on top. This limitation is in place because of the choice to
regard the causal state as part of an inference layer (above), while in reality this should actually be
a separate entity floating in between the active inference layers with its own update rule containing
elements of the free energy of every inference layer that is attached (both as an input or an output).
The reason for the structure that has been chosen in this work was partially guided by the fact that, for
the implementation in code, it is more practical to have the causal state as part of the active inference
layer, as this gives less components overall that has to interact with eachother, meaning less nodes on
ROS.

5.4. Overview of states and observations
The hidden states 𝜇𝑥 of the top layer consists of the body level velocities. Subsequently, the prior 𝜂 on
these hidden states is in the form of a commanded angular and linear body velocities from the user.
The observations flowing in the top layer only consists of the angular velocity measurements from the
IMU. The causal state 𝜇𝑣 that gets updated by this layer contains the left and right wheel speeds that
the system thinks are the causes of the body level speeds. These wheel speeds get passed down as
a prior. The states for the top layer are given below:

𝜇𝑥 = [
𝑥̇
𝑦̇
𝜃̇
] (5.6)

𝜂 = [
𝑥̇
𝑦̇
𝜃̇
] (5.7)

𝜇𝑣 = [
𝜔𝐿
𝜔𝑅] (5.8)

𝑦2 = [𝜃̇] (5.9)

The bottom layer gets the causal state from above as a prior 𝜂 on the hidden state 𝜇𝑥, meaning both
of them have the same form as eq. 5.12. The observations flowing into this layer are also in this same
form as these are wheel speeds as measured by the left­ and right­side encoder. The actions are the
open loop voltage commands that needs to be pushed to the motor drivers, depicted as PWM­values.

𝜇𝑥 = [
𝜔𝐿
𝜔𝑅] (5.10)

𝜂 = [𝜔𝐿𝜔𝑅] (5.11)

𝑎 = [𝑃𝑊𝑀𝐿𝑃𝑊𝑀𝑅] (5.12)

𝑦1 = [
𝜔𝐿
𝜔𝑅] (5.13)
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5.5. Generative model
The generative functions that are specific to this application are the different 𝑔­functions, 𝑔𝑦(𝜇𝑥) and
𝑔𝑦(𝜇𝑥). The 𝑓(𝜇𝑥) function uses the same attractor dynamics as in the non­hierarchical version, and
therefore does not change. The generative functions for the top layer are:

𝑔𝑦(𝜇𝑥) = [0 0 1] [
𝑥̇
𝑦̇
𝜃̇
] (5.14)

𝑔𝑣(𝜇𝑥) = [
1
𝑟𝛼 0 −𝑏̂

2𝑟𝛼
1
𝑟𝛼 0 𝑏̂

2𝑟𝛼

] [
𝑥̇
𝑦̇
𝜃̇
] (5.15)

The mapping for 𝑦 is quite straightforward as the hidden state is directly measured. For the mapping
towards the causal state 𝜇𝑣 however, the same forward kinematic model is used as in eq. 4.6. This
represents a stead­state approximation of the wheels speeds corresponding to the body speeds. 𝑟 , 𝑏̂
and 𝛼 are the wheel radius, virtual width and slip parameter (set to 1.0, could be cut from equation) re­
spectively. For the bottom layer only 𝑔𝑦(𝜇𝑥) is used. Because the hidden states are directly measured,
this mapping is just an identity matrix:

𝑔𝑦(𝜇𝑥) = [
1 0
0 1] [

𝜔𝐿
𝜔𝑅] (5.16)

5.6. Forward model
The forwardmodel 𝛿𝑦𝛿𝑎 is used in the update rule for the action, and therefore only is present in the bottom
layer. The forward model relates how a change in open loop voltage commands gives a change in
measured wheel speeds. These two are correlated, but next to the voltage, the change in wheel speeds
is also dependent on the load on the wheels and the motor parameters. This load is not measured,
and therefore a very accurate forward model could not be given, instead only a model based on sign
change [16] is used. The only behaviour encoded in this model is the knowledge that if you increase
the voltage on the motor, it can be expected that the wheel speed will also increase, assuming the load
stays the same. This results again in an identity matrix like in eq. 5.16:

𝛿𝑦1
𝛿𝑎 = [1 0

0 1] (5.17)

For the top layer, there is no forward model for the actions, as there are no actions to be taken.
However, the update rule for the causal state 𝜇𝑣, as depicted in eq. 5.4, consists of the gradient

𝛿ℱ
𝛿𝜇𝑣

.
This gradient indicates the influence of a change of 𝜇𝑣 on the free energy, and because there are
also observations flowing into this level, the gradient 𝛿ℱ

𝛿𝜇𝑣
also partly consists out of the gradient 𝛿𝜀𝑦𝛿𝜇𝑣

,
indicating the what the change of causal state 𝜇𝑣 has for influence on the observational error 𝜀𝑦. To
know this, a sort of forward model of the causal state towards the observations 𝛿𝑦2

𝛿𝜇𝑣
needs to be known.

How this model is exactly defined is not exactly sure, as this is not straightforward, as the feedback
loop also runs through an active inference layer before it reaches the plant. As can be imagined, this
loop gets more complicated when more layers gets added. For this reason, in this work this gradient
is omitted, and therefore assuming the causal state 𝜇𝑣 does not influence the observations 𝑦2. If it is
desired to still want to incorporate this, an approximation based on sign change can be given. This
encodes the expectation that an increase in left wheel speed will decrease angular body velocity, and
an increase in right wheel speed will increase angular body velocity, as depicted below:

𝛿𝑦2
𝛿𝜇𝑣

= [−1 0
0 1] (5.18)

That concludes the implementation structure of the hierarchical active inference controller. The
system is set up to use the stacking of building blocks on top of one another, but the way these building
blocks are defined for this application, still only makes it able to stack vertically, where only one block
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can be stacked on top of another. To be able to stack multiple blocks on one block, to spread out
horizontally in hierarchy, the causal state should behave as a separate block with its own update loop
directly connected to one or more active inference nodes above and below. In this work however, the
causal state and its update loop is joined together with the active inference loop that resides above it,
shown as part of the building block, this is partly done because the hierarchical system was only viewed
as purely vertical, and at the end of the work became clear another solution is needed to account for
horizontal expansion as well. The decision to keep it inside the active inference loop, was also driven
by the the notion that the causal states could be seen as a replacement of the actions for the higher
levels. Not having a separate loop for the causal state, also means less nodes (ROS) to implement,
but this is only true for the simpler systems, like the one discussed in this work.





6
Tuning

This chapter indicates the tuning technique that was used to tune both the non­hierarchical and hierar­
chical active inference controller, while reporting on the issues that were encountered during the tuning
process. The purpose of tuning, besides getting the robot to work in a satisfactory manner, is to get a
roughly similar step response for both controllers, making their comparison more fair.

6.1. Tuning strategy
6.1.1. General
Because there is no simulation of the Jackal robot available for the driving mode (open loop voltage
commands) that the hierarchical controller uses, there was no other option than to tune the system in
real time. For the safety of its own and surrounding equipment, and to save time with resetting the
position, the robot is tuned while residing on top of a box with its wheels suspended in the air. How the
behaviour changes when it is put on the ground can be seen in Chapter 7. The tunable parameters for
each layer of an active inference system are:

• 𝜅𝑥, learning rate on the hidden states

• 𝜅𝑎, learning rate on the action (if bottom)

• 𝜅𝑣, learning rate on the causal states (if top)

• 𝜏, the temporal parameter inside 𝑓(𝜇𝑥)

• Π𝑥, Π𝑦 and Π𝑣, the precision matrices

Increasing the learning rate 𝜅 of a parameter gives a faster convergence of that parameter. Lowering
the temporal parameter 𝜏 will increase the convergence of 𝜇𝑥 towards the prior 𝜂, resulting in a faster
step response, but giving a bigger bias towards 𝜂, which makes the hidden state react less to changes
in observations.

The variances inside the precision matrices should be chosen in such a way that it decreases the
noise in the free energy, which in practice means putting a very high variance for every embedding order
higher than zero, resulting in almost no influence of these higher orders on the system. Depending on
your generalization technique, the generalized measurements can explode in magnitude for higher
orders, which means when starting out it is safer to set the variances very high, and deal later with how
to incorporate these higher orders better into the system.

The initial learning parameters should be chosen quite low (<1.0) and the temporal parameter set to
1.0, to prevent instabilities, from there you should probably have a system that has a low convergence
on both the actions and internal states. If there is still instability, decrease the learning parameters
furthers, making sure that, at the start of the explained strategies in the next sections, a stable low­
converging system is present
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6.1.2. Non­hierarchical tuning order
The order of tuning used for the non­hierarchical system is given as:

1. Get the hidden states 𝜇𝑥 to converge faster, by means of increasing the learning parameter 𝜅𝑥
and/or decreasing the temporal parameter 𝜏.

2. Get the actions 𝑎 to converge faster, making the measurements resemble the hidden state 𝜇𝑥 by
means of increasing the learning parameter 𝜅𝑥 and/or decreasing the temporal parameter 𝜏.

6.1.3. Hierarchical tuning order
The order of tuning used for the hierarchical system is given as:

1. Perform the tuning strategy of subsection 6.1.2 on the bottom layer of active inference while
disconnected from its layer above, meaning manually giving a prior 𝜂. This results in a bottom
layer that is capable of converging fast towards a given prior.

2. For the top layer get the hidden states 𝜇𝑥 to converge faster, by means of increasing the learning
parameter 𝜅𝑥 and/or decreasing the temporal parameter 𝜏.

3. Lastly get the causal state 𝜇𝑣 to converge faster by increasing the learning parameter 𝜅𝑣. The
reason this parameter is last is because first the independent layers have to converge well sepa­
rately before it can be reliably connected by the causal state. As can be seen later in this chapter,
getting this to converge is not so straightforward.

The overall order can be seen as bottom­up approach regarding the order of layers to tune, and
top­down regarding the tuning of the parameters inside those layers. At least for manual tuning, this is
the only distinguished way to get a result. Theoretically, for bigger hierarchical systems (>10 layers),
the layers still need to be added one by one on top of the bottom layer and tuned accordingly. If this is
done manually, this will takes a lot of time, meaning researching self­tuning algorithms become more
interesting.

6.2. Tuning results
6.2.1. Low­level tuning graphs
The tuning results are shown for the tuning of the hierarchical system. First, the bottom layer needs to
get tuned separately. In order to tune the system and also get a better understanding of the influence
of different parameters, from a certain stable point of convergence, the different tuning parameters are
altered independently and the results are logged in graphs. The upcoming graphs show the influence
of the tuning parameters, on a non­hierarchical system (as the bottom layer gets tuned independently),
by showing the step response to a prior 𝜂 = 3 rad/s for both wheels:
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Figure 6.1: This graph shows the influence of changing the temporal parameter 𝜏 on the convergence of the beliefs or hidden
states. Decreasing 𝜏 shows a faster convergence, but results in a high bias towards the prior seen in the way that the beliefs do
not respond to the fluctuations in the encoder measurements

Figure 6.2: This graph shows the influence of 𝜅𝑥 on the convergence of the beliefs or hidden state. Increasing the learning
rate 𝜅𝑥 will increase the convergence, but will also increase the influence of the observations on the beliefs. This is showing
in the left­most graphs, where the fluctuations of the observations gets translated to the beliefs, but in the right graphs those
fluctuations of the belief is not present.
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Figure 6.3: This graph shows the influence of 𝜅𝑎 on the convergence of the actions towards the beliefs. A higher learning
parameter 𝜅𝑎 results in a faster convergence, when comparing the encoder measurements to the beliefs. From these graphs
can be concluded that the learning parameter for the action is the one that is the most prone to instabilities. A learning rate 𝜅𝑎
= 0.1 seems to give satisfactory results (encoder measurements following the beliefs well)

Figure 6.4: This graph shows the influence of the loop frequency of the active inference layer on the behaviour of the system.
Starting from equal to measurement frequency (20Hz) the loop frequency is increased. The graphs show that the system can
handle this no problem, and that it actually creates smoother graphs for the motor commands and the encoder measurements
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A few things can be concluded for this specific tuning process:

• The learning rate 𝑘𝑥 should be set more towards 0.5.

• The learning rate 𝑘𝑎 around 0.1 should be fine

• The temporal parameter 𝜏 should be set more towards 0.1

• A loop frequency of 500Hz can be used, striking an arbitrary balance between the observed
benefits of a higher loop frequency and the data processing done in matlab, as higher frequency
means more data as it records a lot of states and their higher orders.

• Adjust the variances of the precision matrices upwards to get cleaner graphs for the free energy.

This cycle of logging the results of the independent changes of tuning parameters, whereafter the
graphs are analyzed and the new parameters are estimated, can be repeated until satisfied with the
result. The resulting graph for the independent tuning of the bottom layer is shown below:

Figure 6.5: This graph shows the step response of the newly tuned bottom layer reacting to a prior of 𝜂 = 3, after which the prior
is changed to 5, and then back to 3. Additionally, the variances in the precision matrices are adjusted upwards, such that we can
now clearly see the change in prior in the free energy graph.

6.2.2. Hierarchical tuning problem
The newly tuned bottom layer, as shown in Fig. 6.5 can be connected back to the top layer, after which
the tuning of this layer can commence. It is already known that the bottom layer will converge to a prior,
so the only things left to do is to get the hidden states 𝜇𝑥 of the top layer to converge faster towards the
prior given by the user, and then get the causal states 𝜇𝑣 to converge faster towards the expected value
based on those hidden states 𝜇𝑥. The first part is not a problem, and can easily be done by adjusting
𝜅𝑥 and 𝜏, a problem however arises when trying to converge the causal states 𝜇𝑣. These causal states
do not seem to easily want to converge towards the values expected from 𝜇𝑥. An example is shown
below in three subsequent figures where the learning rate 𝜅𝑣 is adjusted upwards to try to get the causal
states to converge. The first figure has a 𝜅𝑣 = 1.0, the second figure a 𝜅𝑣 = 3.0 and the third has a
𝜅𝑣 = 4.0. The priors given to the system is a linear x velocity of 0.2 m/s, and an angular velocity of 0.4
rad/s. The resulting causal states 𝜇𝑣 are expected to be around 1 rad/s for the left wheel and 3 rad/s
for the right wheel. The figures show a slow convergence for 𝜅𝑣 = 1.0, and a tripling of the learning
rate to 3.0 having almost no effect on the convergence, where with other learning rates a doubling or
tripling gives observable changes. At 𝜅𝑣 = 4.0 the whole systems even gets unstable.
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Figure 6.6: This graph shows the step response of a hierarchical system with a prior on linear velocity of 0.2 and prior on angular
velocity of 0.4. This systems shows that in every aspect the system behaves fine, except for the convergence of the causal state
𝜇𝑣. The convergence of the bottom layer towards this slow converged causal state is fast enough, as well as the convergence
of the top layer hidden states 𝜇𝑥 towards the given priors

Figure 6.7: This graph has a 𝜅𝑣 of 3.0 as opposed to 1.0 of the previous graph. This indicates that a tripling of the learning rate
does not give an observable difference in the convergence
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Figure 6.8: This graph has a 𝜅𝑣 of 4.0, and is completely not working. Other values higher than 4.0 also show this behaviour,
meaning the learning rate can not be further increased than this.

The potential explanation of this problem could be found in the update rule for the causal state ̇𝜇𝑣,
as given in eq. 5.4. The update rule for the action takes into account the prediction error from the
layer below. This prediction error has a negative impact on convergence, because when a change in
causal state gets passed to the layer below as a prior it creates an error with the hidden state of that
layer. This error gets passed back up again to the update rule of the causal state with instructions
on how to change that error (second term between brackets in eq. 5.4). This part of the update rule
thus works against the system and will try too keep the causal states equal to the hidden states of
the bottom layer, rejecting any change. Increasing the learning rate 𝜅𝑣 will also increase the negative
effect of the prediction error on the convergence, because this effect get also multiplied by that learning
rate. In addition to this, if a slightly faster convergence is accomplished, this also means that the initial
prediction error between the causal state and the hidden state of the bottom layer will be bigger.

A potential solution to this problem can be to add a coefficient (<1.0) to the prediction error term in
order to decrease its negative influence on the convergence. This coefficient 𝑐 is placed in the eq. 5.4
as follows:

̇𝜇𝑣 = 𝒟𝜇𝑣 − 𝜅𝑣(
𝛿ℱ
𝛿𝜇𝑣

− 𝑐𝛿𝜀
ℎ−1
𝑥
𝛿𝜇𝑣

Π𝑥𝜀ℎ−1𝑥 ) (6.1)

Choosing this coefficient to be c = 0.1 for the initial tests gave the following graph:
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Figure 6.9: This graph has a 𝜅𝑣 of 4.0, but has an extra coefficient 𝑐 = 0.1 in front of the prediction error term in the update rule
for the causal state. Immediately it can be seen that the causal state 𝜇𝑣 converges much better, especially as the system was
previously unstable on this learning rate

The addition of the extra parameter seems to be a success. Interesting to note is that with that
parameter of 𝑐 = 0.1 the same unstable behaviour returns at 𝜅𝑣 = 40.0 instead of the 4.0 without the
added coefficient. Eventually, for the system, as compared in the next chapter, a coefficient of 𝑐 = 0.05
is chosen.

6.2.3. Tuning lessons
The concluding lessons to be taken away from the tuning experiments are:

• The active inference loop can run without problems at a much higher frequency than the incoming
observations.

• Tuning order from low level to high level seems to be desirable, only connecting the level above
when the bottom is fully tuned.

• The causal state should be tuned last, after the layer below is fully tuned and the hidden states
converge. This is because the causal state seems to give the most problems.

• The causal state will not converge without an extra parameter to help decrease the negative effect
of the prediction error on the convergence.
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Results

The purpose of this chapter is to show that the hierarchical implementation works in practice, and show
how it stacks up in terms of performance against the non­hierarchical controller as presented in Chapter
4

7.1. Setup
As discussed in section 3.4, four experiments are carried out per controller, shown below in table 7.1,
resulting in a total of 8 experiments. Pivoting consists of giving a prior for the angular velocity of 𝜃̇ = 0.4
and 𝑥̇ = 0.0, resulting in a rotation in place. Circle driving means giving a prior for the angular velocity
of 𝜃̇ = 0.4 and linear velocity of 𝑥̇ = 0.2. On box means with the wheels suspended, resulting in a
stationary robot. On ground means the robot is placed on the ground and is free to move.

on box on ground
pivoting exp. 1 exp. 3
circle driving exp. 2 exp. 4

Table 7.1: the different experiments done for both controllers

7.2. Non­hierarchical results
The results of the experiments for the non­hierarchical controller are shown in the graphs below:

Figure 7.1: These graphs show the states of a non­hierarchical active inference controller during a step response towards a prior
on 𝑥̇ = 0.0 and 𝜃̇ = 0.4, resembling pivoting in place. This is experiment is done with the wheels suspended, and therefore a
stationary robot, consequently not measuring changes in the angular velocity in the first graph. The second graph shows a fast
convergence of the hidden states towards the prior. The free energy, shown in the fourth graph, is seen to have a spike at the
initial command, whereafter the free energy is quickly brought back to (and kept at) zero.
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Figure 7.2: These graphs show the states of a non­hierarchical active inference controller during a step response towards a
prior on 𝑥̇ = 0.2 and 𝜃̇ = 0.4, resembling circle driving. This is experiment is done with the wheels suspended, and therefore
a stationary robot, consequently not measuring changes in the angular velocity in the first graph. The second graph shows a
fast convergence of the hidden states towards the prior. The third graph shows the difference in motor commands as the robot
is cornering instead of pivoting. The fourth graph shows the free energy spike at the initial command, whereafter it is quickly
brought back to (and kept at) zero.

Figure 7.3: These graphs show the states of a non­hierarchical active inference controller during a step response towards a prior
on 𝑥̇ = 0.0 and 𝜃̇ = 0.4, resembling pivoting in place. This is experiment is done on the ground, with the robot moving. As can
be seen in the first graph, the robot is actually rotating, indicated by the blue line. The second, third and fourth graph are very
similar to the on box experiment indicating no influence on performance.

Figure 7.4: These graphs show the states of a non­hierarchical active inference controller during a step response towards a prior
on 𝑥̇ = 0.2 and 𝜃̇ = 0.4, resembling circle driving. This is experiment is done on the ground, with the robot moving. The noise in
the encoder signal of the outside wheel, as indicated in yellow in the first graph, seems to intensify. These oscillations however
are not noticeable by eye. The performance is on par with the on box experiment.

From the graphs above it can be concluded that the non­hierarchical implementation was success­
ful, and looking at the smoothness of the IMU signal, makes smooth turns as well. There is also no
difference in performance between driving with the wheels suspended or on the ground.

7.3. Hierarchical results
The results of the experiments for the hierarchical controller are shown in the graphs below:
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Figure 7.5: These graphs show the states of a non­hierarchical active inference controller during a step response towards a prior
on 𝑥̇ = 0.0 and 𝜃̇ = 0.4, resembling pivoting in place. This is experiment is done with the wheels suspended, and therefore a
stationary robot, consequently not measuring a change in angular velocity. As can be seen in the first graph, the hidden states
of the top layer converge quickly but not to exactly the right value. This seems to be attributed to the robot being on a box,
measuring zero for angular velocity, as this error is solved when the robot is put on the ground. There is however no explanation
as to why this is not the case for the non­hierarchical controller. Another thing to notice is the free energy for the high level having
a distinguishable single peak for the initial command, but the low level having multiple peaks of roughly the same height as the
initial one, possibly indicating a more gradual change in prior.
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Figure 7.6: These graphs show the states of a non­hierarchical active inference controller during a step response towards a
prior on 𝑥̇ = 0.2 and 𝜃̇ = 0.4, resembling circle driving. This is experiment is done with the wheels suspended, and therefore a
stationary robot, consequently not measuring a change in angular velocity. The circle driving experiment does not differ much
from the pivoting experiment for the on­box situation, still showing a slight error in angular velocity for the hidden states of the
top level.
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Figure 7.7: These graphs show the states of a non­hierarchical active inference controller during a step response towards a prior
on 𝑥̇ = 0.0 and 𝜃̇ = 0.4, resembling pivoting in place. This is experiment is done on the ground, with the robot moving. The
slight error in the hidden state for the angular velocity is fixed in the ground experiment, indicating the problem was probably
due to the robot not being able to move. The step response on the encoder measurements, as seen in the bottom­left graph, is
slightly slower than the non­hierarchical version. Nonetheless it converges to a quite stable rotation, with only slight oscillations,
as indicated by the bottom­right graph.
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Figure 7.8: These graphs show the states of a non­hierarchical active inference controller during a step response towards a prior
on 𝑥̇ = 0.2 and 𝜃̇ = 0.4, resembling circle driving. This is experiment is done on the ground, with the robot moving. This is where
the lack of performance is the most clear. The inner wheel oscillates greatly in speed, as can be seen in the bottom­left graph.
This makes it such that the turning is not observed to be smooth, as indicated by the bigger oscillations in the bottom­right graph.

From the graphs above it can be concluded that, when suspended on a box, the hierarchical con­
troller is very similar to the non­hierarchical controller in performance. However, when putting the robot
on the ground, and especially during the circle driving experiment, the hierarchical active inference
controller struggles a lot to turn smoothly. The angular velocity oscillates around the desired value,
and this behaviour is highlighted more when driving in a circle as compared to pivoting in place.

This behaviour can probably be attributed to the stick­slip behaviour of the wheel­ground interaction.
The stick­slip can be better handled by the non­hierarchical version as this benefits from the PID wheel
speed control having access to high frequency encoder and/or motor measurements. The hierarchical
version only has access to the 20Hz feedback that is supplied within ROS. Values of the learning rate
𝜅𝑎 has also been played with to see if this oscillating behaviour can be dampened, but to no avail. The
difference in encoder feedback makes it such that it is too premature to conclude that active inference
is less suited to handle low level control, although it does seem that way from the results. Another
interesting observation is the slight error in the settling value for the hidden state of the angular velocity,
when the robot is not able to move. This error probably will increase when the observation of the angular
velocity is tuned to have a bigger impact. This might be the reason why this error was only noticed in
the hierarchical version, as the observation of the angular velocity was probably tuned to have more
influence on the update rule of the hidden state than it did for the non­hierarchical version. Lastly, the
free energy spikes that can be clearly identified in the non­hierarchical version, and the highest layer
of the hierarchical version, seem to be less prominent in the lower level, which would make sense, as
the top level command has a more indirect influence on the free energy of the lower level.
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Conclusion

This first goal of this thesis was to show how the structure of an hierarchical active inference controller
expands from its non­hierarchical version. This is done in a ’building block’ way, showing how multiple
layers of active inference can be stacked. A novel mapping was added from the hidden states towards
the causal states, serving as the prior for the causal states. In this work, the causal state update loop is
joined together with an active inference layer, making hierarchy only possible vertically, meaning only
one instance of active inference can be stacked on top of another. In order tomake the structure suitable
to handle different branches in hierarchy (horizontal expansion), the causal state has to be taken out
of the active inference layer and its update loop, and create its own layer between the different layers
of active inference, independently updating its states.

The second, and arguably most important goal, was to get a ’working’ solution of both controllers.
This was achieved, proving the implementation structure, as described in this work, was successful
and because of its modular nature could also be successful for other applications.

A big part of getting the controller to work was managed by the third goal, the tuning of both con­
trollers. During tuning it was discovered that the hierarchical implementation has trouble with the con­
vergence on the causal state, mainly due to the identified negative influence of the prediction error
passed from below to the update rule of this causal state. A potential solution in the form of a coeffi­
cient in front of the prediction error part in the update rule equation was introduced. This work does
not claim that this is the best solution to that problem, but it presents a potential fix. The best way to
tune a hierarchical system seems to be from bottom to top, independently tuning the layer(s) below
and only connecting the layer(s) above when the layer below is fully tuned. Because during tuning
the main difficulties arise with getting the causal states to converge, this should be tuned only after to
layer above and below are fully tuned. Tuning experiments further showed that the active inference
layers have no problem running at much higher frequencies than the measuring frequency. Choosing
and tuning precision matrices are done in a such a way the free energy graphs look clean, resulting
in a situation where for convenience the variances are chosen so high that the higher orders almost
have no influence anymore on the system. Then later on if the system works with the lower orders, the
variances can be adjusted downwards to bring in more influence of the higher orders in the update of
states. One reason behind this is the fact that the generalized measurements get really noisy for the
higher orders, and you just be better off not using them. These higher orders blowing up is due to the
generalization technique (backward differentiation) that is being used. Better generalization techniques
might suffer less from this issue.

The performance of the hierarchical active inference controller is compared to the non­hierarchical
version, being the fourth and final sub­goal. In the scenario with the wheels suspended, both controllers
are similar in performance, but when the wheels touch the ground, the hierarchical controller suffers
from stick­slip issues. This can probably be attributed to the very low feedback frequency on the wheel
speeds that are available to the hierarchical system, as opposed to the MCU­level PID control on which
the non­hierarchical system relies for its wheel speed control. This makes it not really a fair comparison,
but it does show that both controllers do work fine and that active inference, although it still needs further
investigation with higher feedback frequencies, probably is less suited for the very low­level control. In
the on­box experiments for the hierarchical controller, it was also noticed that the hidden states of the
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angular velocity does not fully converge to the prior, probably attributed to the inability of the robot to
move. However, this did not occur in the non­hierarchical version, which might be explained by the
possibility that observations are tuned to have less influence in the update rule of the hidden states.
Lastly, the top­level commands can be distinguished very well as peaks in the free energy graphs of
the non­hierarchical controller and the top level of the hierarchical version, but these peaks showed to
be less identifiable in the bottom active inference layer, as might be expected.

This work has delivered a proven codebase for a flexible andmodular implementation of hierarchical
active inference in the ROS framework. Hopefully this can be used and improved upon to help further
the research on hierarchical active inference for robotics.
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Discussion

9.1. Simplifications and assumptions
The first simplification is made with choosing the generative function 𝑓(𝜇𝑥) this function contains the
dynamics of the system, in this work it is chosen to not implement a dynamic model, but instead only
use attractor dynamics that encodes the preference to move towards the prior.

The noise on the system is assumed to be independent, and therefore only the diagonals of the
precision matrices Π are filled.

For practicality, these precision matrices Π are tuned in such a way that higher orders of the gener­
alized beliefs do not have much influence anymore on the system.

The system only keeps track of 3 higher orders of the states, meaning an embedding order of 3.
Although not really a big simplification, as these higher orders are probably tuned away as well, but
keeping higer orders means using more information of the system. Friston [5] mentioned that we should
probably strive to an embedding order of 6.

The forward model 𝛿𝑦𝛿𝑎 is only used for the first order. For higher orders this is assumed zero. The
reason for this is that you cannot accurately tell what the higher orders on the wheels speeds, like
acceleration and jerk will do with only a change in voltage.

The generalization technique used, backwards differentiation, is a very simple way of calculating
the higher order derivatives of a system based on past measurements. The problem with this technique
is that, besides not giving the best representation of current higher orders because it says something
about past higher orders, the higher orders also diverge very quickly and get blown up to a point where
variances of over the millions needs to be used to not let it affect the system.

The hierarchical system is structured in such a way that it can only handle 1­to­1 vertical expansion.
This is done mostly because of when the causal state can get incorporated in an active inference layer,
the system needs less separate loops to run.

9.2. Further research recommendations
Based on the simplifications, it would be interesting to see how an active inference controller behaves
with a complex dynamic model, instead of only attractor dynamics. The noise could also be further
investigated, together with a strategy for choosing, calculating or tuning the precision matrices. It
would also be interesting to see how this hierarchical system performs with a better generalization
technique, based on a model, instead of only past values. If the generalization is better, then maybe
the precision matrices will not need to have very high variances to ’tune away’ the data. It will then
also be interesting to see how these higher orders would get tuned back into the system and on a
system or experiment where the benefits of keeping track of those higher orders can be clearly pointed
out. The implemented hierarchy structure can also be expanded to more levels hierarchy, for which a
suitable application needs to be found, for example on top of this controller, an inference layer for the
position of the robot in the global frame, and another inference layer on top of that tracking objects in
the environment, with another layer on top taking decisions on where to go next. This implementation
can probably be done with the current structure, but the structure could also be adapted to handle
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horizontal expansion as well, creating a web of active inference layers like neurons in a brain, instead
of just a stack. A suitable practical implementation for this still needs to be found.



A
Appendix A

The next page includes a full­page view of the controller structure of the non­hierarchical active infer­
ence controller that has been implemented as a collective effort between 4 masters students.
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