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Abstract 

Complete hydrological time series are necessary for water resources management and modeling. 

This can be challenging in data scarce environments where data gaps are ubiquitous. In many 

applications, repetitive gaps can have unfortunate consequences including ineffective model 

calibration, unreliable timing of peak flows, and biased statistics. Here, Direct Sampling (DS) is 

used as a non-parametric stochastic method for infilling gaps in daily streamflow records. A 

thorough gap-filling framework including the selection of predictor stations and the optimization 

of the DS parameters is developed and applied to data collected in the Volta River basin, West 

Africa. Various synthetic missing data scenarios are developed to assess the performance of the 

method, followed by a real-case application to the existing gaps in the flow record. The 

contribution of this study includes the assessment of the method for different climatic zones and 

hydrological regimes and for different upstream-downstream relations among the gauging 

stations used for gap filling. Tested in various missing data conditions, the method allows a 

precise and reliable simulation of the missing data by using the data patterns available in other 

stations as predictor variables. The developed gap-filling framework is transferable to other 

hydrological applications, and it is promising for environmental modeling. 

Keywords: missing values; discharge; data-driven model; stochastic method; Volta River basin; 

West Africa. 
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1 Introduction 

In many regions around the world, observed streamflow records contain missing values that 

hinder their use for water resources management, engineering applications or hydrological 

modelling (Giustarini et al., 2016; Tencaliec et al., 2015). When riddled with gaps, the usability 

of streamflow records dwindles substantially and therefore infilling gaps in time series (Enders, 

2010) is an essential step in planning, design and operation of water resources systems (Bárdossy 

and Pegram, 2014; Gyau-Boakye and Schultz, 1994).  

Missing data can occur because of the malfunctioning or failure of monitoring equipment, 

extreme weather conditions, limited accessibility to measurement sites, fortuitous absence of 

observers, human-induced errors, budget restraints, and public turmoil or political conflicts 

among other factors (Berendrecht and van Geer, 2016; Elshorbagy et al., 2000; Harvey et al., 

2010; Mwale et al., 2012; Serrat-Capdevila et al., 2016; Simonovic, 1995). Depending on the 

usually unpredictable factors for which missing data occurs, the gaps in the time series can vary 

from one time step (i.e. sub-daily to one day) to several months, or even a complete lack of data 

for several years. Problems related to missing data are universal in hydrology, but exacerbated in 

developing countries where limited resources exist for data collection, quality assessment, 

repository provision, and maintenance.  

For many applications, the recommended approach is to infill the gaps and flag the 

corresponding values (Giustarini et al., 2016; Gyau-Boakye and Schultz, 1994; Harvey et al., 

2010). Thus, the user can keep track of those flagged estimates when using the data for analysis. 

Several methods are available for infilling gaps in hydrological records. They range from simple 
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linear models to complex deterministic or stochastic techniques. The most common approaches 

include the simple nearest neighbor method by data transfer (Bárdossy and Pegram, 2014; 

Giustarini et al., 2016), interpolation techniques (Hughes and Smakhtin, 1996; Pappas et al., 

2014; Peterson and Western, 2018; Piazza et al., 2015; Rees, 2008; Teegavarapu, 2014), 

autoregressive models (Bennis et al., 1997; Tencaliec et al., 2015), simple and multiple 

regressions (Dumedah and Coulibaly, 2011; Hirsch, 1979; 1982; Miaou, 1990; Woodhouse et 

al., 2006), classification and regression trees (Giustarini et al., 2016; Sidibe et al., 2018), 

recession methods (Gyau-Boakye and Schultz, 1994), recursive models (Lambert, 1969), 

nonlinear and storage models (Coulibaly and Baldwin, 2005; Dawdy and O'Donnell, 1965), 

satellite data applications (Papadakis et al., 1993), dynamic state-space models (Amisigo and 

Van De Giesen, 2005; Berendrecht and van Geer, 2016), and various forms of artificial neural 

networks (Coulibaly and Evora, 2007; Dastorani et al., 2010; Elshorbagy et al., 2002; Khalil et 

al., 2001; Panu et al., 2000; Tfwala et al., 2013) among others (Bárdossy and Pegram, 2014; 

Dumedah and Coulibaly, 2011; Gyau-Boakye and Schultz, 1994; Harvey et al., 2012; Sidibe et 

al., 2018). Different studies provided a review of these methods (Gyau-Boakye and Schultz, 

1994; Harvey et al., 2012; Kottegoda and Elgy, 1977; Lepot et al., 2017; Marwala, 2009; Pigott, 

2001), which all have their limitations depending on the application (Amisigo and Van De 

Giesen, 2005; Mwale et al., 2012; Rees, 2008). For instance, the nearest neighbor method brings 

discontinuity in the time series (Gnauck, 2004; Lepot et al., 2017; Peterson and Western, 2018). 

Interpolation techniques offer a limited representation of the space-time structure of the time 

series, being therefore unsuitable for periods with floods, major rainfall events, or long 

sequences of gaps (Di Piazza et al., 2011). Linear regression methods assume linearity between 
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variables, which may not always be valid (Mwale et al., 2012). Multiple regression approaches 

ignore existing information in the target variable and need many explanatory variables, which 

can lead to multicolinearity issues (Miaou, 1990). Autoregression and recession models require 

considerable amount of data for training and validation (Amisigo and Van De Giesen, 2005). 

Dynamic state-space models require prior knowledge of the model parameters and the modeling 

system while the conditioning is done only on past observations (Amisigo and Van De Giesen, 

2005; Berendrecht and van Geer, 2016). Regression trees like Random Forests (Breiman, 2001) 

suffer of a lack of understanding of the construction of the trees (Sidibe et al., 2018). Artificial 

neural networks (ANNs) have complex formulations leading to intense calculations with high 

computational cost (Dawson et al., 2002), and the resulting model parameters generally have no 

physical interpretation. A comparison of these methods is out of the scope of this research, but 

findings from comparison studies revealed that methods can outperform each other depending on 

the dataset used (Campozano et al., 2015; Harvey et al., 2012). The choice of an appropriate 

infilling technique depends on factors including the length of the gaps, the seasons of gap 

occurrence, the climatic region of the measurement sites, the length and characteristics of the 

existing records, the availability of ancillary or proxy data, the accuracy of the estimates versus 

the complexity of the approach, and the purpose of the use of the gap-filled records (Gyau-

Boakye and Schultz, 1994; Mwale et al., 2012; Rees, 2008). 

Here, the Direct Sampling (DS) method (Mariethoz et al., 2010) is proposed as an alternative to 

the above approaches. It is a multiple-point statistics (MPS) algorithm (Guardiano and 

Srivastava, 1993) suited to pattern reproduction. The main advantage of DS, as a stochastic 

method, is its ability to provide probabilistic estimates of the missing values, which allows 
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uncertainty quantification, a very important feature in hydrograph estimation (Bárdossy and 

Pegram, 2014; Beven, 2016), in contrast to deterministic methods. Moreover, as a data driven 

approach, it can fit various data structures and simulate the outcome of a complex natural process 

without assuming a specific statistical model (Oriani et al., 2016). Other advantages of DS are 

the simplicity of its application, the multisite capability, the possibility to use auxiliary variables 

and predictors that contains gaps, and the ability to condition the simulation on both past and 

future observations for a given gap. In the present study, DS is used to infill gaps in daily 

streamflow data in the transboundary Volta River basin (VRB), located in West Africa. It is a 

data scarce region with a poor streamflow gauging density, and the available data often present 

long gaps in the time series (Dembélé et al., 2018). On average, many stations show gaps up to 

80% of daily records per year, while about 10% of them have complete time series in some years 

between 1950 and 2016 (Figure 1). 

In the VRB specifically, some studies have proposed different methods to infill gaps in 

streamflow records. Gyau-Boakye and Schultz (1994) developed a Decision Support System for 

infilling missing sections of runoff time series in Ghana. Three catchments were selected to be 

representative of some major climatic regions in West Africa. The Decision Support System was 

built by comparing ten different methods based on the input data requirements in response to the 

availability and data characteristics of the records. Amisigo and Van De Giesen (2005) 

formulated a spatiotemporal linear dynamic model cast in a state-space form for patching short 

gaps in daily river flow data in the southern part of the VRB. They combined a Kalman filter and 

smoother with an expectation-maximization (EM) algorithm to estimate the state variables, the 

model parameters and the missing values. Taylor et al. (2006) used both a simple rainfall-runoff 
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linear model and the Thornthwaite-Mather hydrological model (Thornthwaite and Mather, 1955) 

for infilling gaps in discharge data of the VRB. 

While these studies present valuable approaches for gap filling, they often consider a subset of 

the VRB, with only small data gaps. Moreover, they focus on the period from the 1930s to the 

1990s, which is not necessarily representative of the most recent changes expected in the 

hydrological cycle of the VRB, as well as changes in water management and consumption from 

2000 onwards (Mahe et al., 2010; Williams et al., 2016). Gyau-Boakye and Schultz (1994) 

assessed various methods, but only focusing on the southern and downstream part of the basin, 

and used daily data with a proportion of missing data ranging between 8% and 14% in a 15-year 

period. Amisigo and Van De Giesen (2005) used daily data with up to 8% of missing data per 

year with a deterministic approach that was applied to only one year at a time. Moreover, no 

station on the White Volta was considered, while it is one of the main tributaries of the Volta 

River, with a different hydrological regime characterized by intermittent annual flows. Taylor et 

al. (2006) used monthly data and reported an average of 20% but up to 50% of missing data in 

the records for about 20 years, with a conceptual approach that requires rainfall and 

evapotranspiration data, which can be difficult to obtain in data scarce regions.  

The aim of this study is to formulate a simple infilling method that is relevant for the entire VRB 

and accessible to a large audience so that different water resources practitioners can adopt it. The 

method should be user-friendly and only require basic analytic skills, limited computational 

power, and solely streamflow records to avoid dependence on supplemental data. Therefore, a 

good candidate to that demand is the DS technique. Among other applications in geoscience, the 

DS algorithm has been successfully used to simulate daily rainfall data of different climatic 
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regions in Australia (Oriani et al., 2014), self-potential data of the Volund agricultural site in 

Denmark (Mariethoz et al., 2015), and missing values in hydrological flows from two karst 

springs of the Jura mountains in Switzerland (Oriani et al., 2016). The current study extends the 

gap-filling approach with DS to a large number of stations and assesses for the first time the 

performance of the method at a large scale. The benefit of this work is the development of a 

thorough gap-filling framework with a stepwise implementation of the method that includes the 

choice of the predictor station and the setup of the algorithm. This involves the consideration of 

different climatic zones, the upstream-downstream and spatiotemporal relations among a large 

number of gauging stations with different flow regimes, the strong streamflow seasonality, and 

the application to an entire river basin, which altogether constitute the novelty of this study. The 

resulting complete daily streamflow dataset can be used for a better understanding of the water 

balance in the entire VRB, and more specifically for water accounting purposes (Dembélé et al., 

2017b). 

The remainder of the paper is organized as follow. Section 2 presents the study area and the 

datasets used. Section 3 describes the DS method and its use for gap-filling. Section 4 presents 

the results of the scenario developed to test the efficiency of the DS and its application to the 

existing gaps in the streamflow records, with a discussion of the findings. The last section 

concludes and offers suggestions for future studies.  

 

2 Study area and dataset 

The Volta River basin (VRB) is one of the major drainage basin of West Africa where the 

number of ground-based hydro-meteorological measurements is gradually decreasing as in many 
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other places since the 1980s (Serrat-Capdevila et al., 2016). The VRB encompasses six countries 

and covers approximately 410,000 km2 (Figure 1). The Volta River flows north to south from 

Burkina Faso to Ghana over a distance of 1,850 km before it drains into the Atlantic Ocean at the 

Gulf of Guinea (Williams et al., 2016). Before reaching the Atlantic Ocean, it flows into Lake 

Volta, which is the World’s largest manmade lake with an area of about 8,500 km2 and has been 

formed in 1965 as a result of the construction of the Akosombo dam in Ghana (ILEC, 2017). The 

river system (Figure 1) comprises three main tributaries known as Black Volta (Mouhoun in 

Burkina Faso), White Volta (Nakambe in Burkina Faso) and Oti (Pendjari). The river network is 

poorly gauged with an estimated average density of about 3,000 km2 per station (Dembélé et al., 

2017a) while the World Meteorological Organization (WMO) recommends a maximum of about 

1,900 km2 per station (WMO, 2008). 
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Figure 1. Proportion of missing data between 1950 and 2016 per streamflow gauging stations 

located in different climatic zones in the VRB  

 

The Inter-Tropical Convergence Zone (ITCZ) controls the climate in the VRB, which varies 

from predominately semi-arid to sub-humid with a south-north gradient of increasing aridity. 

Four types of climatic zones (Figure 1) can be identified according to the Food and Agriculture 

Organization (FAO) eco-climate zones classification for West Africa (FAO/GIEWS, 1998; Mul 

et al., 2015): i) the Sahelian zone located in the northern part of the basin and above the 14° N 

parallel, with less than 500 mm yr-1 of rainfall; ii) the Soudano-Sahelian zone located between 

the 11° 30’ N and 14 °N parallels, with 500-900 mm yr-1 of rainfall; iii) the Sudanian Zone 

located below 11° 30’ N parallel, with 900-1100 mm yr-1 of rainfall; and iv) the Guinean Zone 



11 

 

extending from approximately 6° N to 10° N, with more than 1100 mm yr-1 of rainfall. Mean 

monthly temperature decreases from north to south and ranges between 27°C to 36°C in the 

north and 24°C to 30°C in the south (Oguntunde, 2004). The relief is quite flat as 95% of the 

basin lies below 400 m, and 87% of the basin is comprised between 200 and 400 m above sea 

level (Lemoalle and De Condappa, 2009). The distribution of seasonal rainfall and the general 

topography along a north-south corridor are the two factors that determine the shape of the 

annual hydrograph along the principal tributaries of the Volta River (UNEP-GEF, 2013). 

Data acquisition in West Africa is a rather complicated task (Paturel et al., 2003; Taylor et al., 

2006). For this study, daily streamflow records were obtained from different national 

hydrological services, regional project databases, and global online platforms (see the 

acknowledgement section). The time series are available between 1950 and 2016 and, for 81 

streamflow gauging stations spread all over the VRB (Figure 1), with different completeness per 

year and per station. In the preprocessing phase, the data collected from different sources have 

been quality-checked and merged into a unique dataset. As the datasets were gathered from 

different sources, it often happens that a gauging station has data from several sources. 

Therefore, a first comparison was done among the sources to complete the missing portions of 

the time series when they had similar data in overlapping periods. The data from the official or 

national data center was kept when differences were found in the data from several sources. 

Moreover, errors in floating point notation were corrected. No-data values were uniformed in all 

sources and streamflow units were converted from cfs to m3 s-1 for some stations. 
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3 Methodology 

3.1 Direct Sampling method 

The principle of the Direct Sampling (DS) algorithm (Mariethoz et al., 2010) is that it generates 

new simulated values based on a conditional resampling of a provided training dataset (TI). The 

newly simulated values are called simulation grid (SG). The methodology is generic and can be 

adapted to various application cases of stochastic conditional or unconditional simulations, 

requiring the definition of a specific simulation framework, i.e. the choice of the TI, the SG, the 

nature of the auxiliary variables, and the parametrization of the algorithm. In the proposed 

framework, the simulated data (stored in the SG) are sampled from the historical record of the 

same station (used as TI), where a similar neighborhood data pattern occurs. Only uninformed 

time steps (i.e. missing values in the time series) are simulated in the SG, and the existing data is 

used for conditioning. Other auxiliary variables can be used as conditioning dataset to better 

inform the simulation. The auxiliary variables can be streamflow time series from other stations. 

Those stations can be chosen based on their proximity and their similarity with the target station 

(Rees, 2008; Wagener et al., 2007). The DS implementation used in this paper is DeeSse 

(Straubhaar, 2017). The code is available upon request to the Randlab team at the University of 

Neuchâtel. Here, the target variable is simulated with one or more auxiliary variables that are 

used for conditioning, and can be partially or fully informed (i.e. with or without gaps). The 

description of the workflow for continuous variables hereafter is based on previous studies 

(Mariethoz et al., 2010; Oriani et al., 2014; Oriani et al., 2016; Straubhaar et al., 2016). 
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The inputs required for the simulation are: 1) a TI that contains the target variable Z at informed 

time steps, as well as auxiliary variables, and 2) a simulation grid (SG) that is a time vector 

hosting the simulated target variable. The time steps are uniformly spaced and identical in both 

TI and SG. The simulation of the target variable follows a random path and completes the SG at 

nonconsecutive time steps. The SG is filled progressively and becomes the actual output of the 

simulation.  

With the time vectors 𝑥 = [𝑥ଵ, … , 𝑥] allocated to the SG and 𝑦 = [𝑦ଵ, … , 𝑦] allocated to the 

TI, the algorithm runs through the following steps: 

1. Each continuous variable is linearly normalized to a range of [0,1] using the transformation 

𝑍 → 𝑍 ∙ (𝑚𝑎𝑥(𝑍) − 𝑚𝑖𝑛(𝑍))ିଵ  for patterns comparison at step 6. 

2. A random simulation path 𝑡 ∈ {1, ⋯ , 𝑀} of same length as the SG is generated by doing a 

random permutation of the index vector in the SG. 

3. An uninformed time step 𝑡 of the SG is chosen for simulation by following the random 

simulation path. 

4. A data event 𝑑(𝑥௧) = ൛𝑍൫𝑥௧ାభ
൯, ⋯ , 𝑍൫𝑥௧ା

൯ൟ, representing a pattern of neighboring data 

of 𝑡, is retrieved from the SG according to a radius 𝑅 centered on 𝑥௧. It consists of at most 

𝑁 informed time steps, closest to 𝑥௧. This defines a set of lags 𝐿 = {𝑙ଵ, … , 𝑙} with |𝑙| ≤

 𝑅 and 𝑛 ≤  𝑁. For example, if 𝑅 = 50 and 𝑁 = 10, the pattern is composed by the 10 

informed time steps closest to 𝑡 inside the time span [𝑡 ±  50]. The size of 𝑑(𝑥௧) is 

therefore limited by 𝑁 and the available informed time steps inside the search 

neighborhood window of 2𝑅. 
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5. A random time step 𝑦 is scanned and the corresponding data event 𝑑(𝑦) is retrieved to be 

compared with 𝑑(𝑥௧) based on the same time lags. 

6. A distance 𝐷൫𝑑(𝑥௧), 𝑑(𝑦)൯ is calculated as a measure of dissimilarity between both data 

events, defined as follows:  

 𝐷൫𝑑(𝑥௧), 𝑑(𝑦)൯ =
1

𝑛
ห𝑍൫𝑥൯



ୀଵ

− 𝑍൫𝑦൯ห, ( 1 ) 

where 𝑛 is the number of elements of the data event. Independently from their position, 

the elements of 𝑑(𝑥௧) play an equivalent role in conditioning the simulation of 𝑍(𝑥௧). 

The normalization at step 1 ensures the distances to be in the range [0,1].  

7. If 𝐷൫𝑑(𝑥௧), 𝑑(𝑦)൯ is below a defined threshold 𝑇 ∈ [0,1], meaning that the two data events 

are sufficiently similar, the iteration stops and the datum 𝑍(𝑦) is assigned to 𝑍(𝑥௧) for all 

uninformed variables. Otherwise, the procedure is repeated from step 5 to 7 until a suitable 

𝑑(𝑦) is found or a prescribed TI fraction 𝐹 is scanned. 

8. In case no time step corresponding to 𝐷൫𝑑(𝑥௧), 𝑑(𝑦)൯ < 𝑇 is found, the datum 𝑍(𝑦
∗) 

minimizing this distance is assigned to 𝑍(𝑥௧). 

9. The procedure from step 3 to 8 is iterated for the simulation at each 𝑥௧ until the entire SG 

is completely informed. 

10. The variables are linearly back transformed to their original range. 
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The auxiliary variables simultaneously undergo the same simulation steps as 𝑍(𝑦௧). Figure 2 

gives a synthesized description of the DS algorithm. More details on the method can be found in 

the work of Mariethoz et al. (2010) and Straubhaar et al. (2016). 

 

Figure 2. Synthesized workflow of the DS algorithm for continuous variables. 𝑅 is the radius of 

the search neighborhood window ([𝑡 ± 𝑅]) composed by a number of neighbors 𝑁 closest to 𝑥௧, 

with lags 𝐿 = {𝑙ଵ, … , 𝑙}, such that 𝑙 ≤ 𝑅 and 𝑛 ≤ 𝑁. 𝐷 is the minimum dissimilarity found in 

the TI. 𝐹 is the maximum TI fraction scanned. 
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The main DS user-defined parameters are the search window radius 𝑅, the maximum number of 

conditioning neighbor data 𝑁, and the threshold 𝑇 for the dissimilarity measure. Each of them 

can have a different value for each variable. Another parameter is the maximum TI fraction 

scanned, called 𝐹.  

The resampling technique used in DS has two main features that make it different from the k-

nearest neighbor bootstrap (k-NN) technique (Efron, 1992). First, the algorithm uses a random 

path during the simulation and completes the SG at nonconsecutive time steps. Consequently, the 

simulation at each 𝑥௧  allows conditioning on both past and future time steps, as opposed to the 

classical Markov chain techniques that uses a linear simulation path conditioned on past data 

only. Secondly, the simulation follows a variable conditioning scheme that uses the 𝑛 informed 

neighbors closest to 𝑥௧. Large-scale patterns are used at the beginning of the simulation and 

denser small-scale patterns toward the final iterations as the SG becomes more populated. This 

variable time-dependence allows the preservation of the statistical structure of the data without a 

prior formulation of a high-dimensional statistical model (Oriani et al., 2014). Figure 3 shows 

the simulation procedure with the DS technique. The method is implemented with the MATLAB 

software. The procedural implementation developed in this study will be made available to 

interested parties. 
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Figure 3. Sequential simulation of streamflow time series with DS. The dashed rectangle 

represents the search window defined as twice the radius 𝑅, and contains the data event that is 

formed by the simulated datum in green and the 𝑁 neighboring data in red.  

 

3.2 DS setup for gap-filling of streamflow data 

The DS setup adopted for this study is composed of the target variable 𝑍(𝑦) and several 

auxiliary variables. A typical example of the setup is described in Table 1. 𝑄(𝑦) is the 

streamflow at another correlated station, preferably located nearby, called the predictor station. 

The target variable contains the missing portions that are generated during the simulation and its 

informed time steps are considered as conditioning data. The correlated streamflow variable 

𝑄(𝑦) is given as auxiliary variable. In the example of Table 1, 𝑄(𝑦) is complete, but in practice 

it can also present missing data. It helps restricting the uncertainty and provides guidance around 
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the missing values. Considering the strong annual seasonality of streamflow in the VRB, two 

out-of-phase periodic triangular functions ൫𝐴ଵ(𝑦) and 𝐴ଶ(𝑦)൯, each with a period of 365.25 

days, are used as auxiliary variables to constrain the position of the simulated values inside the 

annual cycle.  

 

Table 1. Example of a training dataset (TI) with DS parameters (𝑅: search window radius; 𝑁: 

maximum number of conditioning neighbor data; 𝑇: distance threshold; and 𝐹: maximum TI 

fraction scanned, 𝐹 = 0.5). 

Variables R N T  TI example 

𝑍(𝑦) 200 3 0.005 

D
ai

ly
 s

tr
ea

m
fl

ow
 [

m
3  

s-1
] 

 

𝑄(𝑦) 200 7 0.01 

 

𝐻(𝑦) 200 10 0.1 [-
] 

    

𝐴ଵ(𝑦) 1 1 0.05 

   
   

   
[-

] 

    
𝐴ଶ(𝑦) 1 1 0.05 

Time [years] 
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Another auxiliary variable is the recession indicator 𝐻(𝑦), computed based on 𝑄(𝑦) and used to 

constrain the occurrence of high and low flows. It takes a value of 𝐻 = 0 for a rising hydrograph 

limb and 𝐻 = 1 during a recession. Its computation requires two user-defined parameters (𝑤, 𝑣) 

as follows: the minimum and maximum (local extremes) of 𝑄(𝑦) are identified inside a moving 

temporal window [𝑦 ± 𝑤]. Each new extreme is considered only when its difference with the 

previous extreme is greater than 𝑣, and the next extreme is of a different type (minimum or 

maximum). A logical test is finally used to obtain 𝐻. A rising limb is activated with a local 

minimum until the occurrence of a local maximum activates a recessing limb, with a continuous 

alternation of both states (Oriani et al., 2016). The values 𝑤 ∈ [10 − 30] and 𝑣 ∈ [80 − 120] 

are used in the current setup. The DS parameters for each variable for an example of TI are given 

in Table 1. Following Meerschman et al. (2013), the DS parameters values were taken in the 

ranges: 𝑅 ∈ [100 − 300], 𝑁 ∈ [3 − 20] and 𝑇 ∈ [0.002 − 0.1]. 𝑅 and 𝑁 are in the unit of the 

time series in the TI, and 𝑇 is unitless. For variables 𝐴ଵ(𝑦) and 𝐴ଶ(𝑦) which have a predictable 

behavior, high-order conditioning is not necessary and therefore R and N are set to 1. The 

maximum TI fraction scanned is set to 𝐹 = 0.5 for all the simulations. This value allows 

sampling a sufficient portion of the TI and avoids the phenomenon of verbatim copy, which 

results in mimicking portions of the TI (Meerschman et al., 2013).  

 

3.3 Calibration and evaluation 

In a first step, a calibration procedure is carried out to obtain an adequate set of DS parameters. 

Contrary to the DS setup in (Oriani et al., 2016), where the target variable 𝑍(𝑦) and the predictor 
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variable 𝑄(𝑦) have the same DS parameters, in this case study all variables can have different 

parameters values. Consequently, several sets of parameters are used to simulate the same time 

series and the resulting realizations are compared to the reference data using six pairwise 

statistical indicators. The statistical indicators, as described in (Dembélé and Zwart, 2016), are: 

(1) the Pearson correlation coefficient (𝑟) that evaluates the strength and the direction of the 

linear association of two variables; (2) the Spearman rank-order correlation coefficient (𝑟௦) that 

estimates the degree of the monotonic relationship; (3) the Mean Error (𝑀𝐸) that assesses the 

average estimate error; (4) the 𝐵𝑖𝑎𝑠 that reflects the degree to which the reference value is 

systematically over- or underestimated; (5) the root mean square error (𝑅𝑀𝑆𝐸) that measures the 

average magnitude of the estimate errors; (6) and the Nash–Sutcliffe Efficiency coefficient 

(𝑁𝑆𝐸) that shows how well the estimate predicted the observed time series. The best set of 

parameters is chosen as the one yielding the smallest prediction error. The rank of each set of 

parameters is calculated for each of the statistical indicators. The best set of parameters is taken 

as the one with the best cumulative rank. As observed in previous applications (Meerschman et 

al., 2013; Oriani et al., 2016), the algorithm is suitable for such a manual setup since it has low 

number of algorithmic parameters which are relatively well defined for a given application. All 

results are evaluated based on visual comparison and statistical indicators. Quantile-Quantile 

(QQ) plots (Chambers, 2017) are used to compare the probability distribution of the simulated 

gap portions and reference data portions, for daily QQ-plots. The monthly and yearly QQ-plots 

represent the 1-month and 1-year moving average of daily values for the entire reconstructed 

time series. 
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3.4 Gap-filling framework 

This section presents the approach adopted for gap-filling of streamflow data in a large river 

basin with different gauging stations and climatic zones, using the VRB as a case study. First, the 

DS performance is assessed on a set of scenarios with artificial gaps created in the target 

variable. Secondly, the method is used to infill real gaps in streamflow records. The following 

sections give a description of the experimental set-up for each of the above-mentioned steps. 

3.4.1 Experimental set-up for various gap scenarios 

To assess the DS performance, artificial random gaps are created inside the streamflow records 

of some stations having long and complete records. Representative stations are selected based on 

their locations in different sub-catchments with specific climatic and physical characteristics to 

account for different hydroclimatic settings in the VRB (Figure 1). For each station, a predictor 

station 𝑄(𝑦) is selected, which can be fully or partially informed. The Daboya station is chosen 

as the target station for all the gap-filling scenarios proposed hereafter. It is located at the outlet 

of the White Volta sub-catchment and receives the water drained from the semi-arid to the sub-

humid zone of the VRB. A strong annual seasonality of the streamflow is depicted in Figure 4, 

which also shows the artificial gaps. The randomly created gaps vary in size from 5 to 30 

consecutive days and represent 50% of the whole time series over a period of 6 years. Ten 

scenarios (Table 3) are developed to assess the performance of the DS method. Among them, 

five scenarios are developed by simulating 𝑍(𝑦) with the time series of a predictor station 𝑄(𝑦) 

that is fully informed (i.e. without gaps). Those scenarios are numbered with odd numbers 

between 1 and 9. The predictor stations in scenarios 1 and 3, the Yarugu and Nuwuni stations 

respectively, belong to the same sub-catchment as the target station Daboya. However, in 
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scenarios 5, 7 and 9, the predictor stations, Akosombo, Lawra and Saboba respectively, belong to 

different sub-catchments from Daboya. They are located downstream of the Lower Volta, Black 

Volta and Oti sub-catchments (Figure 1), respectively. Therefore, they all receive streamflow 

from different sub-catchments and with different characteristics from that of Daboya. 

 

Figure 4. Time series of the target station with artificial gaps 

The five remaining scenarios, numbered with even numbers between 2 and 10, are duplicates of 

the scenarios in the first group with the exception that the time series of the predictor stations are 

not fully informed (i.e. contain gaps). For each scenario, 𝑍(𝑦) always contains 50% of gaps, and 

when 𝑄(𝑦) contains gaps, they represent 30% of the time series or about 2 out of 6 years of 

missing values. To determine whether the dependence between target and predictor variables is 

maintained in the simulated values, the corresponding correlations before and after simulation 

are given in Table 3 for each scenario. The predictor variables are chosen purposely to have 

some with weak correlation and others with strong correlation with the target variable. For each 

scenario, ten realizations of the target variable are produced. A comparison of DS with linear 

regression is carried out and the results can be found in the supplementary materials (SM Figure 

1). After demonstrating the performance of the DS for infilling gaps in streamflow time series 
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with various scenarios, the method is used to infill real gaps in the streamflow records of the 

VRB. The predictor station selection and the simulation procedure are described hereafter. 

3.4.2 Predictor station selection for real gaps reconstruction 

The selection of the most appropriate predictor station is not a trivial task (Giustarini et al., 2016; 

Harvey et al., 2012; Peterson and Western, 2018). Here, the most similar station to the target 

station is chosen as predictor. Only one predictor is used to condition the target station (Harvey 

et al., 2012; Hughes and Smakhtin, 1996): this avoids conflicting information among potential 

predictors, prevents unrealistic simulated time-series structures, and reduces computational time. 

Therefore, the choice of the predictor station is crucial and depends on its similarity with the 

target station (Rees, 2008; Wagener et al., 2007). Both 𝑟 and 𝑟௦ are used to estimate the statistical 

similarity of the variables. When several stations show the same correlation with the target 

station, the one with the longest overlapping time steps, the smallest proportion of gaps and the 

highest spatial proximity (Rees, 2008) with the target is chosen as the predictor station. A similar 

approach for the predictor station selection is adopted in the work of Giustarini et al. (2016). A 

priority index based on these criteria allows ranking all the stations of the river network from the 

one that is easiest to be gap-filled, to the one that is the most challenging. In a first run, only the 

overlapping periods are simulated, i.e. common years of data between the target and the 

predictor stations. Thereafter, the next best predictor candidate is considered to simulate the 

remaining portions. This procedure is executed with different predictors until a fully informed 

SG is obtained. In case there is no other predictor that overlaps the remaining non-covered 

portions of the data after the first run, the first predictor is used to fully inform the SG.   
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3.4.3 Simulation procedure for real gaps 

The simulation is done in two steps: 1) additional gaps are created in the target variable before 

the simulation. A calibration is done based on the simulation of these newly created gaps only. It 

allows obtaining a suitable set of parameters that yield the best scores for the statistical indicators 

in section 3.3. This step is similar to the scenarios (section3.4.1), but additional gaps are created 

in the target variable that already contains gaps; 2) the suitable set of parameters obtained in the 

first step is used to simulate the real missing values in the target variable, and therefore to 

reconstruct the entire time series. Six applications (Table 2) for real gaps reconstruction are 

presented and discussed using representative stations of the hydrological regimes, the agro-

climatic zones, and the sub-catchments of the VRB.  

Table 2. Applications for real gaps reconstruction (App: application, WV: White Volta, BV: Black 

Volta, LV: Lower Volta, 𝑄 position: predictor station position relative to the target) 

 

 

The fourth and the sixth applications are duplicates of the third and the fifth respectively, with 

the exception that the predictor station became the target and vice versa. This inversion is done 

App Target (Z ) Predictor (Q ) Q  position
Z 

length 
(years)

missing 
in Z 
(%)

catchment r(Z,Q) r s  (Z,Q)

1 Daboya Nawuni upstream 26 18 WV 0.85 0.86

2 Saboba Mango upstream 39 21 Oti 0.95 0.94

3 Dapola Lawra upstream 60 15

4 Lawra Dapola downstream 60 22

5 Kpong Akossombo upstream 31 4

6 Akosombo Kpong downstream 31 0.05

BV 0.93 0.93

LV 0.89 0.89
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to assess the influence of the upstream-downstream position of the predictor station on the 

performance of the simulation. Five hundred realizations are produced per application. 

 

4 Results and discussion 

4.1 Gap-filling scenarios evaluation  

In Table 3, the minimum and maximum values of the Pearson (𝑟(𝑍, 𝑄)) and the Spearman 

(𝑟௦(𝑍, 𝑄)) correlation coefficients among the ten realizations highlight the possibility of 

obtaining a similar target variable with the same strength and degree of association with the 

predictor variable as before the simulation and before creating the artificial gaps. 

 

Table 3. Pearson (𝑟(𝑍, 𝑄)) and the Spearman (𝑟௦(𝑍, 𝑄)) correlation coefficients between the target 

(𝑍) and the predictor (𝑄) variables (SC: same catchment; indicates where the target and the 

predictor stations are located. WV: White Volta, BV: Black Volta, LV: Lower Volta). Before gaps, 

𝑍 and 𝑄 are fully informed. After gaps, 𝑍 (Daboya station) contains 50% of gaps for all scenarios, 

while 𝑄 contains 30% of gaps for only even-numbered scenarios.  
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The correlation values 𝑟(𝑍, 𝑄) and 𝑟௦(𝑍, 𝑄) before the simulation usually lie in the same range as 

after the simulation, with an average error of 2%. Therefore, DS is able to preserve the 

correlation between the target and the predictor stations. However, this statistical relation is 

preserved more or less faithfully depending on the performance in reproducing the missing 

portions. The capability of the DS to reproduce the missing portions of the target variable is 

highlighted in Figure 5. DS usually performs better when the predictor station is fully informed. 

For that reason and due to the recurrence of gaps in the collected data in the VRB, attention is 

paid to the even-numbered scenarios from 2 to 10 (Table 3), which represent the scenarios with 

gaps in the predictor variable.  
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Figure 5. Boxplots of six statistical indicators (Y-axis) of the realizations for the ten gap-filling 

scenarios (X-axis). The statistical indicators (𝑟, 𝑟௦, 𝑁𝑆𝐸, 𝐵𝑖𝑎𝑠, 𝑀𝐸, and 𝑅𝑀𝑆𝐸) are computed 

only between the simulated missing portions of the newly simulated target variable (𝑍௦) and 

their corresponding values in the reference target variable (𝑍). 

In this regard, scenario 4 outperforms the other scenarios for all statistical indicators. It is 

followed by scenarios 10, 2, and 8 in increasing order. Scenario 6 gives the weakest scores. This 

performance in scenario 6 can be linked to the negative and weak correlation between the target 

and predictor station (Table 3). Notwithstanding that scenario 6 gives the lowest performance, it 

still has good scores in terms of prediction. Such results might have been possible due to the 

parameters optimization step preceding the simulation. Therefore, a relevant set of parameters is 

obtained for a good prediction. The overall performance of the DS is good and for all scenarios 

considered according to the statistical indicators calculated only between the simulated portions 
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and the corresponding reference values (Figure 5). The parameters used for the simulation are 

given in Table 4 for each scenario.  

 

Table 4. DS parameters for the gap-filling scenarios. (see section 3.2 for parameters and variables 

description). 

 

 

4.2 Time series reconstruction for different scenarios 

Figure 6 shows the time series of the reconstructed target variable and the corresponding 

predictor station. The average scores of the statistical indicators are given alongside the plots. 

Flow duration curves for the scenarios are provided in supplementary material (SM Figure 2). 

Except for scenario 1, only scenarios where the predictor variable contains artificial gaps are 

presented because they represent the most challenging cases and are the most likely situation in 

data scarce regions. A comparison between scenarios 1 and 2 highlights an increase in the width 

of the simulation ensemble, meaning a higher uncertainty in the prediction, and a deviation of the 

H Q Z H Q Z H Q Z

1 200 200 200 10 7 3 0.1 0.02 0.02
3 200 200 200 10 7 3 0.1 0.002 0.005
5 200 200 200 10 3 7 0.1 0.02 0.005
7 200 200 200 10 7 3 0.1 0.02 0.002
9 200 200 200 10 7 3 0.1 0.01 0.005
2 200 200 200 10 3 3 0.1 0.07 0.005
4 200 200 200 10 3 3 0.1 0.002 0.002
6 200 200 200 10 7 3 0.1 0.07 0.02
8 200 200 200 10 3 7 0.1 0.05 0.02
10 200 200 200 10 7 3 0.1 0.05 0.02
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mean of the realizations from the reference time series (𝑍(𝑦)), when the predictor variable 

(𝑄(𝑦)) is not fully informed (scenario 2). A visual check of the scenarios shows that the 

realizations ensemble usually contains the target variable. Mismatches often depend on the 

predictor station used.  
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Figure 6. Selected gap-filling scenarios. The six statistical indicators compare the reference to the 

simulated values only, and represent the average for ten realizations produced per scenario. 𝑄(𝑦) 

is shifted on the y-axis (y-shift) for display purpose. 

In scenario 2, the target and predictor stations are located in the same sub-catchment but they are 

weakly correlated (𝑟(𝑍, 𝑄)=0.69). The realizations mostly cover the reference time series but 

miss some local flow peaks, predict some false high flows, and show lags in the prediction. This 

is due to the inability to sample a similar data pattern in the predictor variable, therefore 

suboptimal patterns are chosen. In scenario 4, the reconstructions are of high quality because the 

target and predictor stations are in the same sub-catchment and strongly associated 

(𝑟(𝑍, 𝑄)=0.99). The overall prediction is excellent in scenario 4. The average magnitude of the 

simulation error (𝑅𝑀𝑆𝐸=61.44 m3 s-1) is due to the unmet peak flows but this is balanced by the 

alternation of under- and overestimated high flows, which finally results in a small 𝑀𝐸=-2.3 m3 

s-1. 

In scenarios 6, 8 and 10, the target and the predictor stations are located in different catchments. 

In scenario 6, a negative and low correlation is observed between the variables (𝑟(𝑍, 𝑄)=-0.43). 

The predictor station measures the discharge of the Akosombo dam located downstream of the 

Lower Volta sub-catchment (Figure 1). This scenario is the most challenging and is not 

recommended even if the results show acceptable prediction performance (𝑁𝑆𝐸= 0.76). The 

𝑅𝑀𝑆𝐸 is higher as observed during the second year of the simulation period. The under- and 

overestimated flow portions balance and result in a small average error with 𝑀𝐸=-2.36 m3 s-1. 

However, this might not be the case for a shorter or longer period of simulation. Consequently, 

simulating the target variable with a poorly informative predictor station is not advisable. In 
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scenario 8 (𝑟(𝑍, 𝑄)=0.91), the predictor station is located in the Black Volta sub-catchment, 

where the main river is perennial and characterized by low flows. Conversely, the river gauged 

by the target station is mainly not perennial in its upstream part and is characterized by a long 

low flow period followed by a short high flow period with a long recession time. The mean of 

the realizations matches well the reference time series, except for some extreme flows as in the 

third, fourth and fifth years. Despite a narrow ensemble range, the evaluation scores are lower 

than those of scenario 4. In scenario 10 (𝑟(𝑍, 𝑄)=0.95), the predictor station is located 

downstream of the Oti sub-catchment where the river drains the steepest region of the VRB, and 

is characterized by a long low flow period followed by a short high flow period with a short 

recession time. The prediction shows good average evaluation scores, with some mismatches of 

local flow peaks and time lags in the second, third, and fifth years. The scores in scenario 10 are 

slightly better than those in scenario 8. This can be due to the higher proximity of the predictor 

station to the target station in scenario 10, which presents similar hydrological regimes and 

climate conditions. 

The alternating under- and overestimation of flow extremes, when they occur, are balanced over 

time and result in a low average error. This brings to attention a possible improvement or 

conservation of the statistical content of the predicted time series at a lower temporal resolution. 

This assumption is investigated in the next section. In addition, DS performs generally well 

compared to the linear regression. Those results are not shown here but are provided as 

supplementary materials (SM Figure 1).  
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4.3 Probability distributions at different temporal scales for various scenarios 

For some applications (e.g. water balance), it is important that the simulated time series 

reproduce the statistical content at larger temporal scales. Consequently, the probability 

distribution of the reference and simulated time series at different temporal resolutions are 

analyzed. In Figure 7, the QQ-plots depict the probability distribution of the simulated missing 

values against the reference values for each scenario at daily scale, while the entire reconstructed 

time series is considered for monthly and yearly scales. 

 

Figure 7. Comparison of the empirical probability distribution of the reconstructed artificial gaps 

(Y-axis) against the corresponding reference data (X-axis) for each scenario, using daily (a-b), 

monthly (c-d), and yearly (e-f) QQ-plots. The dots represent the median of the realizations and the 
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dashed lines indicate the 5th and 95th percentiles. The predictor variable is partially informed in 

even-numbered scenarios (b-d-f) and fully informed in odd-numbered scenarios (a-c-e). All units 

are in m3 s-1. 

 

Daily, monthly and yearly scales are considered to assess the temporal scale effect on the DS 

simulations. The comparison between the daily probability distribution of the scenarios in which 

the predictor variable is fully informed (odd-numbered scenarios, Figure 7.a) and those with the 

predictor variables partially informed (even-numbered scenarios, Figure 7.b), shows higher 

deviations from the first bisector when the predictor variable is partially informed. Moreover, the 

uncertainty of the prediction, indicated by the range between the 5th and 95th, increases in those 

scenarios. At daily scale (Figure 7.a, b), the simulations considerably overestimate (scenarios 2, 

3, 7, 9 and 10) or underestimate (scenarios 1, 4, 5, 6 and 8) streamflow in the range 700-1200 m3 

s-1, which is seemingly the flow peak during the second year (Figure 4). With a short time series, 

finding a similar pattern to infill this gap at the peak of the hydrograph has been challenging. 

This was even more acute for scenarios 1, 2, 5 and 6, in which the predictor is not strongly 

correlated with the target variable (Table 3). Moreover, the comparison between scenario 3 vs. 7, 

9 and scenario 4 vs. 8, 10 reveals that the simulation is better when the predictor and the target 

are located in the same catchment. This might be due to common factors influencing flow 

generation at both the predictor and target stations locations.  

In general, the probability distribution is better preserved at the monthly scale (Figure 7c, d) and 

yearly scale (Figure 7e, f). These results suggest that the daily simulation is not significantly 

biased and that it preserves the large-scale variability by generating realistic daily patterns. 
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However, the yearly QQ-plots unveil greater uncertainties of simulation compared to the 

monthly scale. This can be explained by the interannual variability of the streamflow. 

 

4.4 Plausibility of the parameters set for real gaps simulation 

Table 5 presents the DS parameters obtained from the calibration step.  

Table 5. DS parameters for the reconstruction of real gaps. (see section 3.2 for parameters and 

variables description). 

 

The results of the calibration carried out before the reconstruction of real gaps are evaluated with 

QQ-plots shown in  

H Q Z H Q Z H Q Z

1 Daboya Nawuni 200 200 200 10 5 5 0.1 0.01 0.002

2 Saboba Mango 200 200 200 10 5 5 0.1 0.01 0.002

3 Dapola Lawra 200 200 200 10 5 5 0.1 0.01 0.01

4 Lawra Dapola 200 200 200 10 5 5 0.1 0.01 0.002

5 Kpong Akosombo 200 200 200 10 5 10 0.1 0.002 0.002

6 Akosombo Kpong 200 200 200 10 10 5 0.1 0.002 0.0021
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Figure 8.  
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Figure 8. Probability distribution obtained for the calibration step, for the predicted values in six 

gap-filling applications with daily, monthly and yearly QQ-plots. The dots represent the median 

of the realizations and the dashed lines indicate the 5th and 95th percentiles. All units are in m3 s-1. 

 

For all the considered application cases, the proposed setup gives fairly sharp predictions with 

average 𝑁𝑆𝐸 scores between 0.77 and 0.90, and average 𝐵𝑖𝑎𝑠 scores between 0.89 and 1.01. The 

probability distribution of the predicted values matches very well that of the reference at daily 

scale and is further improved at monthly and yearly scales. However, some noteworthy 

deviations occur at daily scale for cases 4 and 6. In those cases, as the predictor station is located 

downstream of the target station, its streamflow records exceed those of the target station, with 

some flow extremes that might not be identified in the target variable. These differences can 
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result in false high flow signals, and ultimately result in large deviations in the prediction. At 

yearly scale, the underestimated simulations in cases 2, 3 and 4 can be attributed to the 

interannual variability of the streamflow. This underestimation was predictable mainly for case 4 

where the simulation is not able to predict values above 700 m3 s-1 at daily scale. For cases 1, 2 

and 3, the bias in the yearly QQ-plots can be explained by the bias for extreme values in the daily 

QQ-plots. The good conservation of the probability distribution at yearly scale for case 5 and 6 is 

due to the high fluctuation of the flow at both the target and predictor stations that measure the 

discharge of the Akosombo and Kpong dams. Therefore, similar patterns to the gap portions can 

be easily identified in the remaining time series to match the peak flows. While for other cases, 

the peak flows usually occur once a year due to the annual seasonality (Figure 9). 

 

4.5 Reconstruction of real gaps in time series 

Figure 9 shows the reconstructed streamflow time series. While the full time series span 

decades, only some portions containing long gaps are shown for visualization. The 

characteristics of the time series are given in Table 2. The shape of the predicted hydrograph is 

well reproduced with a good timing and representation of the annual seasonality. The mean of 

500 realizations has a shape that is consistent with the predictor variable. Such consistency 

reveals a conservation of the high strength of association between the target and the predictor 

variable, which is critical for the choice of the predictor variable and remains the base of the 

simulation. The prediction is more challenging when several consecutive years of data are 

missing (Figure 9. c, d). In this case, the nearest neighbors to the uninformed time step to be 
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simulated can be located in very different years during which other conditions might have 

contributed to streamflow generation. Consequently, higher uncertainty is expected and mostly 

during high flows (Figure 9. a, c, d). However, this effect is minimized when flow peaks periods 

are exhaustively represented in the data, for example during the fifth year in Figure 9.b. Infilling 

gaps in the fifth reconstruction (Figure 9.e), should be easier due to the small proportion of 

missing data. The roughly one year of missing data seems to be well predicted but the strong 

increase in discharge at the end of the second year is suspicious in the absence of trend in the 

predictor variable. However, DS provides prediction with very low uncertainty for short gaps 

(Figure 9.f). Flow duration curves for each of the cases are provided as supplementary materials 

(SM Figure 3). 

 

 

Figure 9. Reconstruction of streamflow records of selected stations in different sub-catchments of 

the VRB. Note that the time series have been shifted on the y-axis (y-shift) for display purpose 

and the number of years is different for each simulation. 

 

5 Conclusion 

This paper proposes a robust framework for gap filling of streamflow data with the Direct 

Sampling (DS) technique, which is a data-driven approach relying on a small set of parameters. 

Here, we present the first application of DS for comprehensive gap filling of streamflow data 

along a complex river network in a large basin. The key elements of the developed gap-filling 
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framework are the performance assessment based on artificial data gaps, the selection of 

predictor stations and the calibration of the small set of parameters.  

The overall performance of the framework is satisfactory after a test for different hydroclimatic 

settings of the Volta River basin (VRB), West Africa. As for all data-driven approaches, the 

main limitation of DS is the need for historical records that are sufficiently informative for the 

simulation of missing data. However, as shown in this study, the proposed gap-filling framework 

is able to yield good predictions for large data gaps in streamflow time series. It shows a 

satisfying predictive performance in terms of sharpness and reliability: the statistical content of 

the target variable is preserved, the probability distribution of the simulation matches accurately 

the reference, and the shape of the hydrograph shows a good timing with a strong preservation of 

the annual seasonality. Even if some local over- or underestimations of flow extremes do occur, 

they are usually balanced over time and result in a small bias. The statistical behavior is 

preserved from daily to monthly scale, giving the possibility to use the output at a temporal scale 

higher than the one of the simulation. The outcomes highlight that better results are obtained in 

the following conditions: 

- the target and the predictor stations are located in the same sub-catchment; 

- the predictor station is well correlated with the target variable;  

- the predictor station is located upstream of the target station; 

- the predictor station is fully informed; 

- the target station contains rather short gaps.  

For the application to time series gap filling, the technique relies on a small set of parameters that 

can be set up by a simple calibration procedure. Moreover, an optimization of the parameters 
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yields better results even in case of moderate correlation between the target and predictor 

stations. The results obtained for the VRB with the proposed framework clearly show that DS is 

a promising approach for time series simulation in environmental sciences. The possibility of 

using the DS without an exogenous auxiliary variable (e.g. rainfall, evaporation) and its ability to 

use a predictor variable that also contains gaps make it a powerful tool that can be easily used in 

data scarce regions and elsewhere. Further development of the current gap-filling framework 

might focus on the simultaneous use of multiple predictor variables to inform the simulation. 
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