
An Integer Programming Approach to the Multi-Level
Bin Packing Problem with Partial Orders

Can Sağtürk
Supervisors: Matthias Horn, Neil Yorke-Smith

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract

The multi-level bin packing problem (MLBP) and its variant problem with partial
orders (MLBPPO) are NP-Hard problems that can be applied in a logistical setting to
improve efficiency in packing. However, despite their possible use cases, there is little
to no literature on how to solve these problems in a reasonable amount of time. In
this work, we propose two Integer Programming (IP) models for each problem, one
of which is an adaptation from an already existing bin packing implementation, and
another with network flow constraints for stronger LP relaxations. The comprehensive
experimentation conducted on varying sizes of problem instances suggests that the
presented models for the MLBP are highly effective at solving instances with up to 50
items and 5 levels, while neither of the models outperforms the other decisively. For
the MLBPPO, the model based on the BP implementation is potent at solving up to
20 items and 5 levels depending on the number of partial orders, while the network
flow model cannot compete.

1 Introduction

1.1 Background Information
Every product brought to a consumer’s doorstep or the local supermarket has to be packaged,
put into larger boxes at the back of trucks, or possibly containers inside cargo ships. With
the continued growth of online shopping [1], the logistical complexity of packing items into
larger forms of storage grows, as well as the value of efficiency when it comes to packaging.
All types of storage media, that we will refer to as bins, have a cost and capacity associated
with them. Unnecessarily used bins and unused space inside bins incur additional unwanted
costs and avoiding them requires thorough planning. These conditions are what the bin
packing problem (BP) and its variations help us with.

The bin packing problem models such logistical problems, where its variants impose
different attributes of the problem at hand. The standard bin packing problem deals with
packing a number of items of varying sizes to boxes with the same capacity. The aim is to
reduce the number of boxes used while not leaving out any items. This work concerns two
variants of this problem, namely the multi-level bin packing problem (MLBP) and MLBP
with partial orders (MLBPPO).

In MLBP, bins are partitioned into multiple levels. Items are packed into lower-level
bins, which are packed into bins one level higher than them. This goes on until the top
level, at which point all items and all used bins need to be packed into a higher-level bin.
Unlike the standard bin packing problem, all bins have a cost associated with them, and
the aim is to minimize the sum of the used bin’s costs. Due to this reason, MLBP is an
optimization problem, where we are trying to optimize our choice of bins while satisfying
the constraints of the problem. With one extra constraint, MLBPPO is derived from this
problem.

The MLBPPO extends MLBP by adding precedence constraints between items. If item
A has precedence over item B, then the index of A’s top-level bin needs to be higher than
or equal to B’s bin. Hence, we assume bins are ordered according to some index. As an
example use case, Amazon provides priority delivery to its Prime1 customers. MLBPPO
could be used during product packaging by enforcing precedence constraints between items
bought by Prime customers and other items bought by non-Prime customers.

1https://www.amazon.com/amazonprime

1



The MLBP can be multidimensional, meaning the size of an item might not be the
only variable that is considered while trying to have an item fit into a bin. For example,
A two-dimensional MLBP might want to consider the width and height of an item and a
bin, adapting its capacity constraints accordingly. There exist one-dimensional [2], two-
dimensional [3], and three-dimensional [4] variants of the bin packing problem. The MLBP
that will be considered in this work is one-dimensional.

In real-life applications, optimizing packing solutions will usually have a direct effect
on efficiency, for example, on the savings of a postal service or logistics company. Huawei’s
Noah’s Ark Lab has applied the two-dimensional version of MLBP to its own packing pipeline
[5]. The paper reported a 30% decrease in the workload of packing workers, which provides
motivation for solving the MLBP problem that we are concerned with.

1.2 The Integer Programming Approach
Unfortunately, MLBP and MLBPPO are NP-Hard problems. Hence, using a brute-force
algorithm on a reasonably-sized problem instance could take more seconds to solve the
problem than the number of atoms in the universe. That means we have to solve these
problems in a smarter way, by excluding large parts of the search space in a systematic
way that still ensures that a proven optimal solution can be found. This brings the Integer
Programming (IP) method into consideration.

Integer Programming is a way to mathematically model economics and computer sci-
ence problems, commonly used on optimization problems [6]. They describe optimization
problems that consist of a set of decision variables, restricted to integers, a set of linear
(in)equalities, and a linear objective function. The linear (in)equalities, commonly referred
to as “constraints”, are what differentiates feasible and infeasible solutions [7]. Although the
properties of IP can be quadratic as well, ours are always linear as they are much easier
to solve. The aim is to find a solution that satisfies the constraints and, depending on the
problem, maximizes or minimizes the linear objective function. Though the linear objec-
tive function always tries to minimize the sum of the used bin’s cost in MLBP’s case, how
the decision variables and constraints represent MLBP depends on the model itself. These
models are presented in Section 4 for MLBP and Section 5 for MLBPPO.

Even though we are referring to IP as a way to model MLBP throughout this paper,
IP is just another kind of problem. So, to speak terminologically correct, we are actually
mathematically reducing MLBP into IP. Technically, our “models” are different approaches
for this reduction. It is important to note that even the fact that MLBP is reducible to IP
proves that IP is NP-Hard, so we are not reducing the complexity of our problem. However,
because of effective branch-and-bound methods, which are usually based on relaxing the
integrality constraint, IP solvers may perform in many cases better than a naive complete
enumeration of the search space. So the “Integer Programming Approach” means that we
will be utilizing these solvers for MLBP by reducing MLBP to IP.

1.3 Research Questions and Contributions
This paper poses the following question: Which IP models can solve the MLBP and MLBPPO
problems with an optimal result in reasonable time on small to medium problem instances?
Emphasis on “optimal”, we are looking specifically for a proven optimal solution. By reason-
able time, we consider a computation time of 15 minutes. For normal queries or problems,
the expectation would be a few seconds, but that is not the case for an NP-Hard problem.

2



It is frequent for a realistic NP-Hard problem instance to take a couple of hours to solve
when approached in an inefficient manner. Small to medium problem instances, on which
the IP models will be tested, contain 5 to 50 items. However, we have also exercised our
models on larger instances to observe how well they scale with input.

In this paper, we are proposing two IP models each for MLBP and MLBPPO. For both
of the problems, the first of these models is based on a BP model that is adapted for MLBP.
The second model takes a network flow structure as its basis, though it is still formulated
as an IP problem.

To answer our questions, we first explore the relatively limited literature related to our
problem in Section 2. We explain our methodology in Section 3, and present our models in
Sections 4 and 5. We then share our experimental setup in Section 6, the results of which
are shown in Section 7. These results and their interpretations are discussed in Section 8,
while their reproducibility and validity are deliberated in Section 9. We conclude our report
and suggest a further research topic in Section 10.

2 Related Work
There is very little research concerning the MLBP, and none we could find for the MLBPPO.
To the best of our knowledge, we are the first ones to propose IP models to the MLBP and
the MLBPPO. Chen et. al. [5] developed a dynamic programming solution for the two-
dimensional version of MLBP, and that is the paper closest to our topic that we could find.
Their formulations cannot provide insight into our approach since they are using another
method, though their results confirm the usefulness of solving the MLBP as a representation
of an actual logistics problem.

IP, on the other hand, has been used on other variants of the BP problem and problems
akin to BP while performing reasonably well. Some examples would be the two-dimensional
cutting stock problem [8], BP with time windows [9], and three-dimensional BP [10], and
there are many more works readily available that utilize IP. These problems are optimization
problems with their main objective being cutting or packing. Hence, they are similar enough
to the MLBP to warrant experimentation with IP models on this problem.

3 Method
We first formulated two different IP models for the MLBP which were extended in a second
step to account for partial orders for the MLBPPO. The two models for the MLBP in
Section 4 and for MLBPPO in Section 5 are compared in terms of computation time and
number of branch-and-bound nodes required. To solve the considered IP models we used
the optimization tool called IBM ILOG CPLEX, often referred to as just CPLEX.

CPLEX2 is an optimization suite that implements an Linear Programming (LP) solver
for IP problems. CPLEX supports a C++ API and its own set of interfaces that are
collectively called Concert Technology, both of which allow us to implement our IP models.

To solve IP instances, CPLEX implements a Linear Program (LP)-based branch-and-
bound approach. The core idea is to use a strong dual bound to prune large parts of the
search space by relaxing the integrality constraints of the IP model [11]. The resulting
continuous model is called LP relaxation. Strong LP relaxations can significantly speed the
procedure up since CPLEX can get rid of candidate solutions without having to evaluate

2https://www.ibm.com/docs/en/icos/20.1.0?topic=mc-what-is-cplex

3



each of them one by one. CPLEX, among other algorithms, uses the Simplex algorithm to
achieve these relaxations. [6].

The usage of LP relaxations entails that strong and valid inequalities should be added
to obtain stronger formulations. However, more constraints in a model slow down the LP
relaxation since all constraints need to be checked while solving any relaxation. This slow-
down effect makes sense on paper, but we have also empirically observed this case while
implementing our models. Thus the addition of constraints other than those needed for
designating feasible solutions is a trade-off between larger cuts to the problem space and
the time it takes to solve an LP relaxation. All of these necessitate a smart approach while
modeling problem constraints. Also, extra constraints should be experimentally checked to
see whether they increase or decrease performance.

Once we were done putting theoretical models into code, we were able to run the models
on our problem instances in CPLEX. By measuring the time spent solving these instances
that have a definite amount of items, bins, and levels, we were able to determine how
performant the models were. These results are used directly to answer the research question.
The experimental setup concerning the instances and CPLEX will be described in detail in
its respective section.

4 Solving MLBP with IP
In this section, we will introduce our contributions in the form of mathematical models. The
results achieved when the models were run on problem instances will be presented in Section
7. The discussion of the results and comparison of the models will be made in Section 8.

We will present the mathematical formulations of the two models we have developed
for MLBP in this section. We will introduce the models by first showing the mathematical
notation of a property, and then verbally describing its meaning. From a high-level perspec-
tive, the first model is a classic LP problem, while the second model builds on top of the
first by adding network flow properties.

To be able to model MLBP, we introduce the sets that represent the properties of our
problem instances. Variable m ∈ N>0 refers to the amount of levels. The number of bins
is denoted by ni at each level i, 1 ≤ i ≤ m, and n0 is for the amount of items. Variable
Bi is the set of indexes of bins at each level i, 1 ≤ i ≤ m, and B0 is the set of indexes for
items. If j ∈ Bi, then j = {1 . . . ni}. Variable sij refers to the size of the item\bin at level i,
0 ≤ i ≤ m, with index j, 1 ≤ j ≤ ni. Variable wi

j is the capacity of the bin at level i with
index j, and variable cij is the cost of the bin at level i with index j, where 1 ≤ i ≤ m and
1 ≤ j ≤ ni.

4.1 MLBP Model 1
The first mathematical model is an adaptation of the BP implementation that was provided
to us at the start of the project. The objective function was changed, bins were introduced
as variables with size, capacity, and cost, and the constraint regarding packing bins into
higher-level bins was established. This model will be considered to be the baseline model,
as all other models add new properties to this model rather than changing it.

To start, we have two fundamental solution variables, both of which are binary decision
variables. First is variable xi

j,k ∈ {0, 1}, where xi
j,k = 1 if item\bin at level i with index j

is packed inside a bin at level i + 1 with index k, xi
j,k = 0 otherwise. Variable x decides

4



which item\bin is packed into which bin. Second, variable yij ∈ {0, 1}, where yij = 1 if the
item\bin at level i with index j is used, yij = 0 otherwise. Hence, variable y decides which
bins are being used. With these established, below are the objective function constraints of
this model.

min

m∑
i=1

ni∑
j=1

yij c
i
j (1)

n1∑
k=1

x0
j,k = 1 j ∈ B0 (2)

ni+1∑
k=1

xi
j,k ⇐⇒ yij i ∈ {1 . . .m− 1}, j ∈ Bi (3)

ni−1∑
j=1

si−1
j xi−1

j,k ≤ yik wi
k i ∈ {1 . . .m}, k ∈ Bi (4)

For the objective function (1), we want to minimize the sum of the used bins’ cost.
Constraint (2) ensures every item is packed into exactly one bin. Constraint (3) expresses
that a bin must be packed into another bin if and only if it is being used. Note that CPLEX
transforms constraint (3) into a linear constraint. Constraint (4) enforces the capacity
constraint by making sure the sum of the item\bin sizes inside a bin doesn’t exceed its
capacity.

4.2 MLBP Model 2
The idea of the second IP model is to consider flow-based constraints to properly obtain
stronger LP relaxations. To develop this different approach, we investigated a very famous
and well research problem that has been solved with network flow, the Traveling Salesman
Problem (TSP).

There are many different ways to solve TSP [12], including different integer programming
solutions [13]. However, we will be focusing on the TSP versions of Single Commodity Flow
Formulation (SCFF) [14], and Multi Commodity Flow Formulation (MCFF) [15]. Both of
these formulations take the network flow approach to solving TSP with enough success to
be utilized until today. We have attempted to adapt their methodology to MLBP.

In SCFF [14], Gavish and Graves extend the integer programming formulation for TSP
by Miller et al. [16] by adding additional network flow constraints to eliminate sub-tours.
They propose having the starting city supply n-1 flow to the graph, where n is the number
of places the merchant has to visit. All other nodes (cities) can only consume one unit of
flow, which represents the merchant visiting them. All nodes are connected to each other
with edges that incur a cost to put any amount of flow through. The objective function is
minimizing the sum of the costs of the edges.

MCFF [15] is similar to SCFF with a twist on how the flow is provided. Instead of
supplying n-1 flow, the first node delivers 1 flow of n-1 different types of commodities, hence
the name Multi Commodity. A commodity of type t can only be consumed by the node
with that type, where all nodes consume only one unit. This method requires different edges
per type of commodity per node to accommodate multiple commodities, thus the amount
of variables grows with a scale of n3. It can be seen that the number of variables would

5



skyrocket even in a medium-sized problem, though the idea is to compensate for that fact
with stronger LP relaxations with the extra constraints added by having different types of
flow.

We have used SCFF instead of MCFF due to the scaling factor of MCFF’s variables. In
the MLBP, all items are on the same level of the problem and one bin can have multiple
items in it. This situation limits the usefulness of having multiple commodities. Thus the
increase in the amount of solutions LP relaxations can eliminate by implementing MCFF
does not warrant the increased time cost caused by having additional variables.

Model 2 builds directly on top of model 1 by extending it with one extra type of decision
variable and three additional types of constraints. The empirical results achieved via exper-
imentation of models 1 and 2 will determine whether these new constraints have contributed
to the overall solving performance.

This model considers flow variables in addition to the decision variables from model (1)-
(4). Flow variables are there to strengthen the LP relaxations. The new flow variables are
f i
j,k ∈ {0 . . . n0}, for the flow from item\bin j at level i to a bin k at level i+ 1. The lowest

possible value is f = 0, which represents no flow. The maximum value is the number of
items, f = n0, since it is equal to the flow present in the entire graph. Below are the added
constraints:

n1∑
k=1

f0
j,k = 1 j ∈ B0 (5)

(

ni−1∑
k=1

f i−1
k,j )− (

ni+1∑
k=1

f i
j,k) = 0 i ∈ {1 . . .m− 1}, j ∈ Bi (6)

nm∑
k=1

nm−1∑
j=1

fm−1
j,k = n0 (7)

Constraint (5) has each item provide exactly one unit of flow to one level above and
constraint (7) ensures that the flow consumed by top-level bins is equal to the number of
items. Constraint (6) prevents non-top-level bins from consuming any flow.

Note that, unlike in Gavish and Graves’ SCFF [14], in our model the items provide the
flow and top-level bins consume it. This change is made for ease of implementation but has
no impact other than a few sign switches in notation.

5 Solving MLBPPO with IP
This section presents two models for the MLBPPO and their properties by showing the
mathematical notation and then explaining the meaning of these properties verbally. Both
models extend the first model (1)-(4) for MLBP from Section 4, also using the decision
variables x and y. As per our methodology, the first model is an IP problem representing
MLBPPO, while the second model adds flow variables to be able to leverage constraints
that would come from a network flow model. However, unlike in MLBP where we have
used network flow only to facilitate LP relaxations, this second model enforces feasibility
constraints with flow variables.

To properly formulate these models, we need to add the precedence constraint property
of the problem instances to our list of variables. Hereby, O refers to the set of partial orders

6



among items. Given that o ∈ O, ofirst refers to the item that has to come first at the top
level, and osecond refers to that which comes after.

Due to the problem definition of MLBPPO, we need to enforce precedence constraints
among items at the top-level. However, with the current implementation of the MLBP, we
lose track of the items once we pack them to the bins at the first level. Both models for
MLBPPO introduce a new type of decision variable to trace the items back to the top-level
bins. Once we know which top-level bins the items are packed into, it is a matter of a single
constraint to ensure the precedence constraints are met.

5.1 MLBPPO Model 1
The first MLBPPO model builds directly on top of model 1 for MLBP by adding a new
decision variable. We introduce phi,j ∈ {0, 1}, for each item h and each bin j at level i + 1,
0 ≤ i < m. These decision variables track which item is in which bin at each level. For
example, phi,j = 1 if item h or the bin that contains it is put into bin j at level i+ 1.

The four new constraints are divided into two. The first three of the four constraints
are concerned with mirroring the decision information in variable x to variable p from the
perspective of where each item is going. The MLBP part of the MLBPPO is still fully
decided by x and y variables, so p repurposes their information to trace the items. The last
constraint uses the knowledge of which top-level bin each item is in to enforce the precedence
relationships.

Do note that MLBPPO model 1 is an extension of MLBP model 1 with the new properties
which are described in this section. Below are the new constraints.

ni+1∑
k=1

phi,j = 1 i ∈ {0 . . .m− 1}, h ∈ B0 (8)

pj0,k = x0
j,k j ∈ B0, k ∈ B1 (9)

(phi−1,j & xi
j,k) =⇒ phi,k h ∈ B0, i = {1 . . .m− 1}, j ∈ Bi−1, k ∈ Bi (10)

nd∑
k=1

p
ofirst

m−1,k ≥
nd∑
k=1

posecond

m−1,k d ∈ {0 . . .m}, o ∈ O (11)

Constraint (8) ensures that item h is traced to a single bin. Constraint (9) tracks the
first bins the items are put into. Constraint (10) tracks where the bin item h is in goes to.
Note that constraint (10) is transformed into a linear constraint by CPLEX. Constraint (11)
enforces the precedence constraints among pairs of items.

5.2 MLBPPO Model 2
For the network flow variation of the MLBPPO, we are using the Multi Commodity Flow
Formulation (MCFF). While we were choosing SCFF for the second model of the MLBP, we
had found no use for having multiple different commodities representing each item. Now,
however, we need to be able to identify all items at the top level. MCFF allows us to do
that by providing a different edge for each item.

Variable f is also making a return from MLBP model 2 to replace variable p from the
previous model. f i

j,k,h ∈ {0, 1}, where f = 1 if item\bin j at level i sends flow of commodity
h to bin k at level i + 1, where h ∈ B0, 0 ≤ i ≤ m. This time, f is also a binary decision

7



variable instead of being an integer denoting the amount of flow. We can do this now
because there is a single flow commodity coming from each item. The flow variables are
now four-dimensional to account for each edge that is added between bins for each type of
commodity.

This time we have also added a sink node connected to the top-level bins. fm
j,1,h denotes

flow of commodity type h from top-level bin j to the sink note, represented with index
1. This node is introduced to simplify summation at the top-level bins, which is used for
enforcing precedence constraints. It is formulated at constraint 17 below.

Note that MLBPPO model 1 extends MLBP model 1 (1)-(4) with the new properties
that are described in this section. Below are the new constraints.

n1∑
k=1

f0
j,k,j = 1 j ∈ B0 (12)

(

ni−1∑
k=1

f i−1
k,j,h)− (

ni+1∑
k=0

f i
j,k,h) = 0 i = {1 . . .m− 1}, j ∈ Bi, h ∈ B0 (13)

(

nm−1∑
k=1

fm−1
k,j,h )− fm

j,1,h = 0 j ∈ Bm, h ∈ B0 (14)

nm∑
j=1

fm
j,1,h = n0 h ∈ B0 (15)

xi
j,k ≥ f i

j,k,h i = {0 . . .m− 1}, j ∈ Bi, k ∈ Bi+1, h ∈ B0 (16)
nd∑
j=1

fm
j,1,ofirst

≥
nd∑
j=1

fm
j,1,osecond

d ∈ {0 . . .m}, o ∈ O (17)

Constraint (12) has each item provide exactly one unit of the flow of its own type to one
level above. Constraints (13) and (14) prevent bins from consuming any flow. Constraint
(15) ensures that the sum of flow consumed by the sink node is equal to the number of
items. Constraint (16) prevents unused edges from sending flow. Constraint (17) enforces
the precedence constraints among pairs of items.

6 Experimental Setup
This section presents the experimental setup used while solving both MLBP and MLBPPO.
Here we will mention our solver, CPLEX, and our problem instances. Finally, specifications
of our running environment in TU Delft’s High Performance Computing Center, DelftBlue
[17], will be shared. All the models running on problem instances will be working on a
single thread and they will timeout if they can’t find the optimal solution in 15 minutes.
To strengthen the soundness of the statistics we have collected, for each problem instance
group we have run 100 different instances and averaged the results. All the code for models
and the problem instances can be found in our repository3.

3https://github.com/CanSagturk/mlbp-with-ip

8



6.1 CPLEX
We have used CPLEX’s C++ API, which uses Concert Technology for object orientation, to
program our models into CPLEX. The code of the models that can be found in the shared
repository is thus in C++. We have used G++ version 10.2.0 to compile our code.

It should be noted that all problems are declared and treated as IP models, both by us and
CPLEX. This goes even for the network flow aspects of the second model, which are modeled
as linear constraints. CPLEX does offer a network flow optimizer which could improve
performance in the case that the second model is implemented as an Integer Programming-
Network Flow hybrid, but that is outside of the scope of this paper.

6.2 Problem Instances
All problem instances were provided to us at the start of the project. There are no infeasible
instances in the problem set. Since it is possible to achieve the optimal objective value with
different solutions, it is not a problem for two models to find two distinct solutions if they
share the same objective value.

For the MLBP, we classify a problem instance with the number of items and levels it
has. All instances will have an item amount between 10 and 100 with a step size of 10, so
10, 20...100. The levels are from 1 to 5, inclusive. For each item and level combination,
there are 100 different problem instances.

For the MLBPPO, we classify a problem instance with the number of items, levels, and
the ratio of partial order pairs to items as a percentage. For example, the pair ratio of an
instance with 5 items and 10 pairs would be 200%. The level interval for the MLBPPO
instances is the same as the setting for the MLBP. The item amount of the instances is
between 10 to 50, inclusive, with a step size of 10. The pair percentages are 50%, 100%,
150%, and 200%. For each item, level, and pair combination, there are 100 different problem
instances.

6.3 DelftBlue
We used the supercomputer DelftBlue to execute our experiments. We employed DelftBlue’s
Intel Xeon 2648R x86 compute nodes with a base CPU frequency of 3.0GHz. Even though
the nodes have 48 cores each and we have run instances in parallel, this will not affect
performance metrics since problem instances are atomic and are forced to run on a single
thread.

7 Results
In this section, we present the results of the experiment detailed in the previous section, first
for the MLBP at Table 1, and second for the MLBPPO at Table 2. The problem instances
are grouped level first, item number second, and, for the MLBPPO, pair percentage third.
For values of each grouping, 100 distinct problem instances were solved and their values
were averaged. For all groupings, we present the performance of both models side-by-side.

As for values on the table, we have used symbols and abbreviations. Columns m and n
represent the number of bin levels and the number of items, respectively. For the MLBPPO
only, they are followed by column o, which is the number of precedence pairs present as
a percentage of items in the problem. The rest of the values occur once for each model.

9



Column t represents the number of seconds it took to either solve the problem to optimality
or to timeout. Since we had set the timeout as 15 minutes, the maximum value for column t
is 900 seconds. Column B&B is the total number of Branch-and-Bound nodes used, including
the instances that timed out. Column t\o is the percentage of instances that timed out.
Column opt is the percentage optimality gap for timed-out instances. The optimality gap
represents the difference between the cost of the best solution that the CPLEX could find
and the optimal solution, as a percentage of the optimal value.

For the MLBPPO only, there is also the fail column. This is the percentage of problem
instances for which CPLEX was not able to find a single feasible solution before timing
out They don’t contribute to the values of t and B&B columns. Even though they have
technically timed out, they are not factored in for the optimality gap either since there was
no solution found. Fails have never occurred for the MLBP.

Note that the results present in the MLBPPO table are slightly truncated. 40 and 50
item instances, which had too many failures to be reliable results, as well as the instances
with 150 pair percentages were removed. The full table can be found in Appendix A at
Table 3.

8 Discussion
In this section, we will interpret and reflect on the results we have achieved with the setup
detailed in Section 6. Some important values in the table are colored for comparison with
other values in a single row, which corresponds to an instance group. Green and blue
represent the best time and B%B count, respectively, among the two models for that group.
If t and B%B values for both models are red, that means both models have a timeout
percentage of above 95%. If the value(s) of a single model is colored red, then the model
that actually has the better value has more than 95% timed out instances. Purple is used
when both models achieve the same or extremely close values, namely within an interval of
0.05 seconds for column t and 0.1 for B%B.

For the MLBP, the results are quite satisfactory. For small to medium instances, which
are 10 to 50 items large, the timeouts are only noticeable for 3 to 5 level instances with
50 items, with a maximum of 24%. As the table shows, for most of the instance groups,
the time required does not even come close to the time out of 900 seconds. These results
demonstrate that both models that we propose in this work can successfully solve small to
medium instances of the MLBP problem in a reasonable time.

For large problem instances, the required time and the number of timeouts increase
significantly. However, even though it is not the focus of this paper, it is important to note
that the optimality gap is very low for even the largest instances, with an average of 2.32%
for 3 to 5 level instances with 60 to 100 items. This shows that our MLBP models yield a
solution that is very close cost-wise to the optimum even if they time out.

The question of which of the two models is better cannot be answered from these results.
The superior values for columns t and B%B are scattered between the two models and
they are inconsistent among the instance groups. Their scaling with the size of the input
compared to each other also does not show a pattern. The added SCFF constraints do not
seem to have had a definitive improvement.

As expected of a more complex problem, the results for the MLBP are less promising.
Comparing the results of similar size instances from the MLBP table and judging by the
number of failures, the MLBPPO was even harder to solve than we had initially anticipated.
The models significantly struggle with the time with 30 item instances, and failures surpass

10



Table 1: Results of the Two MLBP Models Averaged Over 100 Instances
Model 1: IP Model 2: IP + SCFF

m n t[s] B&B t\o[%] opt[%] t[s] B&B t\o[%] opt[%]

1 10 0.01 32.34 0 0.00 0.01 32.34 0 0.00
1 20 0.24 875.73 0 0.00 0.25 875.73 0 0.00
1 30 0.68 1060.25 0 0.00 0.67 1051.48 0 0.00
1 40 1.41 1329.62 0 0.00 1.42 1350.13 0 0.00
1 50 2.91 2159.61 0 0.00 2.88 2125.47 0 0.00
1 60 7.54 5699.61 0 0.00 7.49 5707.66 0 0.00
1 70 10.05 5676.65 0 0.00 10.12 5676.65 0 0.00
1 80 13.13 6396.12 0 0.00 12.29 5906.19 0 0.00
1 90 52.16 24829.10 3 0.48 51.69 24579.70 1 0.09
1 100 54.58 22063.65 0 0.00 41.15 16446.22 1 0.02

2 10 0.03 106.44 0 0.00 0.04 106.44 0 0.00
2 20 1.24 1823.16 0 0.00 1.25 1839.87 0 0.00
2 30 22.89 12172.97 2 0.91 14.34 8905.62 1 1.00
2 40 37.52 17210.97 0 0.00 39.5 18863.20 0 0.00
2 50 124.25 37630.08 1 0.10 126.5 52509.07 5 0.18
2 60 310.26 82609.12 14 0.46 253.62 68015.88 8 0.29
2 70 571.65 138667.04 44 0.57 552.77 134906.08 42 0.57
2 80 736.08 157549.56 64 0.76 695.42 170005.10 60 0.73
2 90 828.80 181810.22 83 0.99 829.32 190847.08 82 0.96
2 100 859.32 196607.27 92 1.15 871.79 203122.09 93 1.13

3 10 0.05 159.80 0 0.00 0.05 159.80 0 0.00
3 20 1.66 2159.72 0 0.00 1.70 2179.50 0 0.00
3 30 27.97 14441.65 0 0.00 28.47 16457.72 1 0.50
3 40 101.15 27393.73 1 1.24 105.33 28040.39 1 0.99
3 50 331.42 64004.61 10 0.58 288.05 60710.48 5 0.57
3 60 604.88 94503.15 47 0.93 599.18 97414.20 43 0.84
3 70 836.72 114157.31 85 1.33 811.29 105560.52 81 1.24
3 80 885.68 120771.49 96 1.68 889.38 121012.30 98 1.72
3 90 892.28 132314.36 99 2.07 897.25 128347.89 100 1.96
3 100 897.19 138546.80 100 2.38 897.20 143240.30 100 2.31

4 10 0.06 165.49 0 0.00 0.06 165.49 0 0.00
4 20 2.01 2173.49 0 0.00 2.02 2218.84 0 0.00
4 30 21.61 8578.83 0 0.00 23.11 10131.92 0 0.00
4 40 176.53 39505.21 4 0.76 145.38 30380.91 2 1.48
4 50 490.84 70144.43 24 0.97 446.81 63762.74 21 0.83
4 60 762.62 83995.49 67 1.21 704.83 78526.84 59 1.28
4 70 868.66 77030.34 92 1.91 881.35 81521.75 93 1.90
4 80 896.00 67603.30 99 2.54 897.31 69261.85 100 2.35
4 90 897.41 63755.79 100 2.80 897.37 59380.67 100 2.77
4 100 897.28 60255.04 100 3.26 897.30 62896.80 100 3.27

5 10 0.07 145.92 0 0.00 0.07 145.92 0 0.00
5 20 2.39 2454.38 0 0.00 2.34 2409.05 0 0.00
5 30 21.23 8237.09 0 0.00 19.95 8042.67 0 0.00
5 40 168.56 29524.94 5 1.41 161.64 27884.49 6 0.54
5 50 402.76 53136.89 15 1.83 424.27 55636.01 22 1.36
5 60 745.95 68187.82 66 1.52 743.65 70285.36 64 1.65
5 70 875.69 62712.13 94 2.45 868.83 62987.49 93 2.44
5 80 892.44 46862.45 97 3.21 893.23 51818.57 97 2.99
5 90 897.15 38884.77 100 3.61 897.26 41031.51 100 3.49
5 100 897.18 35430.03 100 4.16 897.28 35899.81 100 4.21

11



Table 2: Results of the Two MLBPPO Models Averaged Over 100 Instances
Model 1: IP Model 2: IP + MCFF

m n o[%] t[s] B&B t\o[%] opt[%] fail[%] t[s] B&B t\o[%] opt[%] fail[%]

1 10 50 0.02 17.78 0 0.00 0 0.03 24.26 0 0.00 0
1 10 100 0.02 6.94 0 0.00 0 0.03 5.64 0 0.00 0
1 10 200 0.01 0.39 0 0.00 0 0.03 0.51 0 0.00 0

1 20 50 0.68 930.18 0 0.00 0 0.93 1026.61 0 0.00 0
1 20 100 0.76 1041.06 0 0.00 0 1.00 924.59 0 0.00 0
1 20 200 0.19 172.97 0 0.00 0 0.51 174.73 0 0.00 0

1 30 50 2.74 1698.51 0 0.00 0 3.43 1587.53 0 0.00 0
1 30 100 14.11 4308.66 0 0.00 0 15.11 4338.50 0 0.00 0
1 30 200 3.43 1749.69 0 0.00 0 5.04 1555.67 0 0.00 0

2 10 50 0.24 264.46 0 0.00 0 0.62 219.76 0 0.00 0
2 10 100 0.49 418.03 0 0.00 0 1.09 245.08 0 0.00 0
2 10 200 1.95 1032.33 0 0.00 0 3.31 476.85 0 0.00 0

2 20 50 52.77 3109.07 0 0.00 0 242.86 2537.33 4 0.06 0
2 20 100 341.73 12917.64 18 0.43 0 592.76 4087.99 38 1.20 0
2 20 200 817.59 22005.69 86 4.83 0 851.92 4727.64 92 7.17 0

2 30 50 667.35 8469.83 56 1.28 0 876.43 4675.61 92 4.09 0
2 30 100 830.77 8881.60 87 4.91 0 890.21 2253.99 98 7.87 0
2 30 200 897.70 7740.81 100 12.97 1 896.69 543.67 100 16.87 6

3 10 50 0.51 348.19 0 0.00 0 1.28 280.32 0 0.00 0
3 10 100 1.53 747.98 0 0.00 0 6.05 600.54 0 0.00 0
3 10 200 8.70 3436.14 0 0.00 0 28.29 1846.62 1 0.02 0

3 20 50 130.03 4669.24 0 0.00 0 568.53 2917.19 35 0.8 0
3 20 100 490.72 12885.95 33 1.17 0 779.83 2452.06 76 4.59 0
3 20 200 816.25 15514.85 81 8.05 0 891.48 1182.92 97 14.87 0

3 30 50 870.96 8164.87 93 7.53 0 896.82 1307.35 99 9.57 0
3 30 100 897.67 6621.25 100 14.40 1 897.13 379.13 100 15.61 7
3 30 200 898.02 4675.56 100 25.27 27 896.89 183.29 100 28.23 76

4 10 50 1.09 484.45 0 0.00 0 4.50 462.34 0 0.0 0
4 10 100 3.08 1134.55 0 0.00 0 17.11 814.74 0 0.00 0
4 10 200 3.16 881.48 0 0.00 0 18.46 609.57 0 0.00 0

4 20 50 171.27 6010.31 4 0.08 0 654.35 2469.88 47 1.85 0
4 20 100 460.63 10469.44 30 1.40 0 839.80 1708.54 81 7.6 0
4 20 200 728.34 13852.23 71 8.15 3 886.89 694.04 98 18.04 1

4 30 50 884.18 6185.51 96 12.20 2 890.66 528.35 99 14.3 6
4 30 100 897.95 4639.17 100 21.75 17 897.17 282.47 100 25.12 53
4 30 200 875.92 3464.78 98 30.81 59 897.06 338.29 100 21.36 93

5 10 50 1.21 442.15 0 0.0 0 6.60 459.17 0 0.0 0
5 10 100 2.78 652.64 0 0.0 0 29.69 617.03 0 0.0 0
5 10 200 13.47 3423.48 1 0.01 0 69.81 991.37 1 0.01 0

5 20 50 231.31 5996.59 6 0.23 0 758.11 1649.30 66 4.19 0
5 20 100 338.47 8510.74 12 0.59 0 842.47 1197.18 85 9.02 0
5 20 200 547.40 8691.26 35 3.66 0 890.79 452.34 98 11.84 10

5 30 50 895.20 5592.21 99 16.92 5 897.20 415.29 100 21.09 27
5 30 100 896.48 4145.59 99 22.8 18 896.91 297.61 100 22.23 72
5 30 200 893.37 3561.28 99 26.87 40 897.36 1.00 100 23.39 99

12



50% for most 40 and 50 item 3 to 5 level instances. Pair percentage is also a significant
contributor to time values, which can increase solve times by a factor of 1.5 for most medium-
size instances.

Unlike the MLBP models, there is a compelling difference between the time and B%B
values of the two MLBPPO models. Model 1 is always faster, while Model 2 made fewer
cuts for all cases except a few small instances. Hence, we have been successful at developing
stronger constraints that lead to a significant reduction in the number of Branch-and-Bound
nodes. This also proves our earlier hypothesis that a model which has stronger constraints
could take longer to execute but would still make larger cuts to the search space.

Regardless of B%B values, these results establish that, in their current state, Model 1 is
better than Model 2 for all possible cases. The table also shows that Model 2 scales much
worse when the item amount or the number of bin levels is increased. This means that at no
point will Model 2 outperform Model 1 if we continue to increase the sizes of the problem
instances.

9 Responsible Research
The reproducibility of experiments is essential to guarantee the authenticity of the results.
To this end, we have shared our entire framework and models, all 15000 of our problem
instances, and the output files of each individual instance that we have aggregated in this
work4. We have also explained our experimental setup in detail in Section 6, as well as
clarifying what each metric is in our results in Section 7. Though it could be fiscally
difficult to procure a hardware setup that can performance-wise match DelftBlue, this is
made somewhat easier by limiting the execution of each problem instance to a single thread.

For every single problem group, we have solved 100 different instances. The results are
the averages of the outputs of each instance, which reduces the bias a model could have
towards arbitrary elements of an instance. This leads us to believe in the validity of our
results.

10 Conclusions and Future Work
In this work, we have developed four Integer Programming models, two for the MLBP and
two for the MLBPPO, to solve small to medium instances in under 15 minutes. The results
suggest both models for MLBP were successful, without one model being decisively better
than the other. Our MLBPPO models struggled with medium size problems with a higher
number of levels, though they were able to solve up to 20 item instances with acceptable
results. Among the MLBPPO models, the first one was convincingly better time-wise than
the second one. However, the second MLBPPO model was able to make much larger cuts
in the search space and reduce the amount of Branch-and-Bound nodes it had to use.

Both the second model of the MLBP and the second model of the MLBPPO have net-
work flow properties but are implemented and solved as an IP problem. This situation
warrants further research into a hybrid implementation, where network flow elements of the
formulations are actually implemented as a network flow model and ideally solved with an
appropriate optimizer. This looks promising especially due to the Branch-and-Bound results
of the strong constraints introduced by our second model for the MLBPPO.

4https://github.com/CanSagturk/mlbp-with-ip

13



References
[1] M. Young, J. Soza-Parra, and G. Circella, “The increase in online shopping during

covid-19: Who is responsible, will it last, and what does it mean for cities?”, Regional
Science Policy & Practice, 2022, Online version of the article before inclusion in a
journal issue. doi: https://doi.org/10.1111/rsp3.12514. eprint: https://
rsaiconnect.onlinelibrary.wiley.com/doi/pdf/10.1111/rsp3.12514. [Online].
Available: https://rsaiconnect.onlinelibrary.wiley.com/doi/abs/10.1111/
rsp3.12514 (visited on 06/18/2022).

[2] J. A. George and D. F. Robinson, “A heuristic for packing boxes into a container”,
Computers & Operations Research, vol. 7, pp. 147–156, 3 1980.

[3] N. Ma and Z. Zhou, “Mixed-integer programming model for two-dimensional non-
guillotine bin packing problem with free rotation”, in 2017 4th International Confer-
ence on Information Science and Control Engineering (ICISCE), Institute of Electrical
and Electronics Engineers Inc., 2017, pp. 456–460.

[4] C. Paquay, M. Schyns, and S. Limbourg, “A mixed integer programming formulation
for the three-dimensional bin packing problem deriving from an air cargo application”,
International Transactions in Operational Research, vol. 23, pp. 187–213, 1-2 2016.

[5] L. Chen, X. Tong, M. Yuan, and J. Zeng, “A data-driven approach for multi-level
packing problems in manufacturing industry”, in Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Association for
Computing Machinery, 2019, pp. 1762–1770.

[6] R. E. Bixby, “A brief history of linear and mixed-integer programming computation”,
Documenta Math. Extra Volume: Optimization Stories, vol. ISMP, pp. 107–121, 2012.

[7] G. Nemhauser and L. Wolsey, “Linear programming”, in Integer and Combinatorial
Optimization. John Wiley Sons, Ltd, 1988, ch. I.2, pp. 27–49.

[8] E. Silva, F. Alvelos, and J. M. Valerio de Carvalho, “An integer programming model
for two- and three-stage two-dimensional cutting stock problems”, European Journal
of Operational Research, vol. 205, no. 3, pp. 699–708, 2010.

[9] L. Ongarj and P. Ongkunaruk, “An integer programming for a bin packing problem
with time windows: A case study of a thai seasoning company”, in 2013 10th Inter-
national Conference on Service Systems and Service Management (ICSSSM), X. Cai,
J. Chen, J. Jia, Y. Xiao, and S. Zhou, Eds., 2013, pp. 826–830.

[10] S. Elhedhli, F. Gzara, and Y. F. Yan, “A mip-based slicing heuristic for three-dimensional
bin packing”, Optimization Letters, vol. 11, pp. 1547–1563, 8 2017.

[11] S. Agmon, “The relaxation method for linear inequalities”, Canadian Journal of Math-
ematics, vol. 6, pp. 382–392, 1954.

[12] S. Sangwan, “Literature review on travelling salesman problem”, International Journal
of Research, vol. 5, p. 1152, 2018.

[13] A. J. Orman and H. Williams, “A survey of different integer programming formula-
tions of the travelling salesman problem”, in Optimisation, Econometric and Financial
Analysis, C. K. E. John and Gatu, Eds., ser. AICM, Springer Berlin Heidelberg, 2007,
pp. 91–104.

[14] B. Gavish and S. C. Graves, “The travelling salesman problem and related problems”,
Working paper GR-078-78, 1978.

14



[15] R. T. Wong, “Integer programming formulations of the traveling salesman problem”,
in Proceedings of the IEEE international conference of circuits and computers, IEEE
Press Piscataway NJ, 1980, pp. 149–152.

[16] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming formulation of
traveling salesman problems”, J. ACM, vol. 7, no. 4, pp. 326–329, 1960.

[17] D. H. P. C. C. (DHPC), DelftBlue Supercomputer (Phase 1), https://www.tudelft.
nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

15



A The Non-Truncated MLBPPO Table

Table 3: Results of the Two MLBPPO Models Averaged Over 100 Instances
Model 1: IP Model 2: IP + MCFF

m n o[%] t[s] B&B t\o[%] opt[%] fail[%] t[s] B&B t\o[%] opt[%] fail[%]

1 10 050 0.02 17.78 0 0.0 0 0.03 24.26 0 0.0 0
1 10 100 0.02 6.94 0 0.0 0 0.03 5.64 0 0.0 0
1 10 150 0.01 2.05 0 0.0 0 0.03 3.08 0 0.0 0
1 10 200 0.01 0.39 0 0.0 0 0.03 0.51 0 0.0 0

1 20 050 0.68 930.18 0 0.0 0 0.93 1026.61 0 0.0 0
1 20 100 0.76 1041.06 0 0.0 0 1.0 924.59 0 0.0 0
1 20 150 0.31 417.69 0 0.0 0 0.63 449.31 0 0.0 0
1 20 200 0.19 172.97 0 0.0 0 0.51 174.73 0 0.0 0

1 30 050 2.74 1698.51 0 0.0 0 3.43 1587.53 0 0.0 0
1 30 100 14.11 4308.66 0 0.0 0 15.11 4338.5 0 0.0 0
1 30 150 10.42 4176.24 0 0.0 0 11.23 3917.77 0 0.0 0
1 30 200 3.43 1749.69 0 0.0 0 5.04 1555.67 0 0.0 0

1 40 050 6.79 2898.55 0 0.0 0 7.31 2427.62 0 0.0 0
1 40 100 70.08 10287.8 1 0.0 0 66.98 9275.52 1 0.0 0
1 40 150 164.83 24293.73 4 0.02 0 161.02 23764.43 2 0.02 0
1 40 200 73.01 14736.93 0 0.0 0 85.77 15503.07 0 0.0 0

1 50 050 14.5 5181.19 0 0.0 0 19.86 4857.29 0 0.0 0
1 50 100 140.13 13461.51 5 0.01 0 162.34 13596.94 5 0.03 0
1 50 150 508.93 35035.59 34 0.22 0 489.18 32136.49 34 0.23 0
1 50 200 513.78 42005.85 30 0.29 0 532.69 40501.07 34 0.35 0

2 10 050 0.24 264.46 0 0.0 0 0.62 219.76 0 0.0 0
2 10 100 0.49 418.03 0 0.0 0 1.09 245.08 0 0.0 0
2 10 150 2.3 1248.03 0 0.0 0 2.98 497.55 0 0.0 0
2 10 200 1.95 1032.33 0 0.0 0 3.31 476.85 0 0.0 0

2 20 050 52.77 3109.07 0 0.0 0 242.86 2537.33 4 0.06 0
2 20 100 341.73 12917.64 18 0.43 0 592.76 4087.99 38 1.2 0
2 20 150 740.9 21624.21 73 2.74 0 830.25 4674.48 85 4.93 0
2 20 200 817.59 22005.69 86 4.83 0 851.92 4727.64 92 7.17 0

2 30 050 667.35 8469.83 56 1.28 0 876.43 4675.61 92 4.09 0
2 30 100 830.77 8881.6 87 4.91 0 890.21 2253.99 98 7.87 0
2 30 150 891.0 7726.0 98 9.92 0 896.88 1002.1 100 12.63 1
2 30 200 897.7 7740.81 100 12.97 1 896.69 543.67 100 16.87 6

2 40 050 891.53 8813.14 98 5.03 0 897.02 1290.16 100 6.76 1
2 40 100 897.79 6374.2 100 8.99 0 896.99 482.44 100 12.2 13
2 40 150 897.95 5475.14 100 13.31 7 897.02 408.63 100 17.97 30
2 40 200 898.13 5977.49 100 16.87 20 897.32 290.22 100 20.18 59

2 50 050 897.67 4931.93 100 7.94 0 896.71 493.25 100 8.0 9
2 50 100 897.86 2044.6 100 13.71 4 897.32 257.98 100 16.55 58
2 50 150 898.2 2024.05 100 17.31 35 897.68 166.8 100 23.32 95
2 50 200 898.54 1683.67 100 19.78 61 NaN NaN 100 NaN 100

3 10 050 0.51 348.19 0 0.0 0 1.28 280.32 0 0.0 0
3 10 100 1.53 747.98 0 0.0 0 6.05 600.54 0 0.0 0
3 10 150 4.32 1885.49 0 0.0 0 20.22 1254.31 0 0.0 0
3 10 200 8.7 3436.14 0 0.0 0 28.29 1846.62 1 0.02 0

3 20 050 130.03 4669.24 0 0.0 0 568.53 2917.19 35 0.8 0
3 20 100 490.72 12885.95 33 1.17 0 779.83 2452.06 76 4.59 0
3 20 150 789.32 16089.57 77 5.0 0 878.5 1545.06 95 11.18 0
3 20 200 816.25 15514.85 81 8.05 0 891.48 1182.92 97 14.87 0

16



Model 1: IP Model 2: IP + MCFF

m n o[%] t[s] B&B t\o[%] opt[%] fail[%] t[s] B&B t\o[%] opt[%] fail[%]

3 30 050 870.96 8164.87 93 7.53 0 896.82 1307.35 99 9.57 0
3 30 100 897.67 6621.25 100 14.4 1 897.13 379.13 100 15.61 7
3 30 150 897.85 5748.04 100 21.98 18 897.0 254.11 100 25.94 53
3 30 200 898.02 4675.56 100 25.27 27 896.89 183.29 100 28.23 76

3 40 050 894.35 3512.76 99 15.27 4 897.16 236.74 100 20.48 65
3 40 100 898.04 2432.63 100 21.06 16 897.03 255.5 100 12.43 98
3 40 150 898.19 1683.51 100 23.65 59 NaN NaN 100 NaN 100
3 40 200 898.84 1173.0 100 28.51 80 NaN NaN 100 NaN 100

3 50 050 898.15 1075.13 100 18.11 22 NaN NaN 100 NaN 100
3 50 100 898.54 743.66 100 20.57 56 NaN NaN 100 NaN 100
3 50 150 899.21 718.48 100 23.76 79 NaN NaN 100 NaN 100
3 50 200 900.58 882.33 100 26.76 94 NaN NaN 100 NaN 100

4 10 050 1.09 484.45 0 0.0 0 4.5 462.34 0 0.0 0
4 10 100 3.08 1134.55 0 0.0 0 17.11 814.74 0 0.0 0
4 10 150 2.7 778.92 0 0.0 0 18.69 640.13 0 0.0 0
4 10 200 3.16 881.48 0 0.0 0 18.46 609.57 0 0.0 0

4 20 050 171.27 6010.31 4 0.08 0 654.35 2469.88 47 1.85 0
4 20 100 460.63 10469.44 30 1.4 0 839.8 1708.54 81 7.6 0
4 20 150 642.44 12511.33 56 4.72 1 834.74 1106.36 89 12.74 0
4 20 200 728.34 13852.23 71 8.15 3 886.89 694.04 98 18.04 1

4 30 050 884.18 6185.51 96 12.2 2 890.66 528.35 99 14.3 6
4 30 100 897.95 4639.17 100 21.75 17 897.17 282.47 100 25.12 53
4 30 150 898.06 4624.91 100 27.17 36 896.71 267.88 100 21.41 83
4 30 200 875.92 3464.78 98 30.81 59 897.06 338.29 100 21.36 93

4 40 050 897.84 2700.86 100 19.33 26 897.04 153.67 100 28.86 94
4 40 100 898.21 1251.27 100 26.13 56 NaN NaN 100 NaN 100
4 40 150 899.1 1118.9 100 27.68 71 NaN NaN 100 NaN 100
4 40 200 899.84 776.29 100 32.28 86 NaN NaN 100 NaN 100

4 50 050 898.15 782.25 100 20.06 49 NaN NaN 100 NaN 100
4 50 100 899.25 732.48 100 23.56 69 NaN NaN 100 NaN 100
4 50 150 901.19 764.0 100 28.55 87 NaN NaN 100 NaN 100
4 50 200 902.34 652.0 100 25.88 99 NaN NaN 100 NaN 100

5 10 050 1.21 442.15 0 0.0 0 6.6 459.17 0 0.0 0
5 10 100 2.78 652.64 0 0.0 0 29.69 617.03 0 0.0 0
5 10 150 4.01 800.64 0 0.0 0 49.33 756.65 0 0.0 0
5 10 200 13.47 3423.48 1 0.01 0 69.81 991.37 1 0.01 0

5 20 050 231.31 5996.59 6 0.23 0 758.11 1649.3 66 4.19 0
5 20 100 338.47 8510.74 12 0.59 0 842.47 1197.18 85 9.02 0
5 20 150 528.01 9153.59 29 2.6 0 892.04 570.78 98 13.32 2
5 20 200 547.4 8691.26 35 3.66 0 890.79 452.34 98 11.84 10

5 30 050 895.2 5592.21 99 16.92 5 897.2 415.29 100 21.09 27
5 30 100 896.48 4145.59 99 22.8 18 896.91 297.61 100 22.23 72
5 30 150 898.38 2789.93 100 26.89 29 897.54 129.0 100 27.31 98
5 30 200 893.37 3561.28 99 26.87 40 897.36 1.0 100 23.39 99

5 40 050 897.94 1515.33 100 26.78 37 NaN NaN 100 NaN 100
5 40 100 898.73 1024.86 100 28.84 49 NaN NaN 100 NaN 100
5 40 150 899.88 1086.89 100 31.03 73 NaN NaN 100 NaN 100
5 40 200 900.94 960.88 100 29.89 75 NaN NaN 100 NaN 100

5 50 050 898.35 744.19 100 26.74 68 NaN NaN 100 NaN 100
5 50 100 900.09 886.38 100 30.04 79 NaN NaN 100 NaN 100
5 50 150 902.37 877.6 100 33.22 90 NaN NaN 100 NaN 100
5 50 200 902.95 974.0 100 29.44 98 NaN NaN 100 NaN 100

17


