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A B S T R A C T

Coastal science has entered a new era of data-driven research, facilitated by satellite data and cloud computing.
Despite its potential, the coastal community has yet to fully capitalize on these advancements due to a lack of
tailored data, tools, and models. This paper demonstrates how cloud technology can advance coastal analytics
at scale. We introduce GCTS, a novel foundational dataset comprising over 11 million coastal transects at 100-m
resolution. Our experiments highlight the importance of cloud-optimized data formats, geospatial sorting, and
metadata-driven data retrieval. By leveraging cloud technology, we achieve up to 700 times faster performance
for tasks like coastal waterline mapping. A case study reveals that 33% of the world’s first kilometer of coast
is below 5 m, with the entire analysis completed in a few hours. Our findings make a compelling case for the
coastal community to start producing data, tools, and models suitable for scalable coastal analytics.
1. Introduction

Coastal science has entered a new era of data-driven research
(Vitousek et al., 2023a), facilitated by the opening up of historical
satellite data catalogs (Wulder et al., 2022) and advances in data
processing (Dean and Ghemawat, 2008), which have been integrated
into cloud-based geospatial data analysis platforms (e.g., Gorelick et al.,
2017). In coastal science, the potential of Earth-observing satellite
data was showed by global analyses to coastal change (e.g., Luijendijk
et al., 2018; Murray et al., 2018) and since then the coast is studied
at increasing detail using satellite-derived data products (e.g., Warrick
et al., 2023).

Currently we can distinguish between two distinct analysis strate-
gies: one aims for global coverage, typically compromising accuracy
for spatial extent (‘‘everywhere’’), while the other prioritizes accuracy
(‘‘anywhere’’). Although not all coastal analyses have to be run at broad
spatial scales (e.g., Mikkelsen et al., 2024), there are several reasons for
why we need coastal analyses at extensive spatial scales. Particularly
since the advent of Geospatial Information System (GIS) in coastal
science, it has been acknowledged that analyses at scale facilitate
integrated and systematic approaches to coastal classification (Finkl,
2004). It also supports development of diverse coastal management
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strategies at varying spatial scales (Cooper and McLaughlin, 1998).
Moreover, while details and planning of coastal management often
happen at local or regional levels, they are supported by legislation at
national or international levels (Wong et al., 2014). Finally, analyses
at scale facilitate intercomparisons between different regions, enabling
peer-to-peer learning, where local coastal management practices that
have been adopted successfully can be shared.

The two distinct analysis strategies (‘‘everywhere’’ vs ‘‘anywhere’’)
can be illustrated by contrasting some coastal monitoring tools in more
detail. On one hand, analyses at scale (‘‘everywhere’’) typically use a
cloud platform to process petabyte-scale satellite data catalogs by con-
densing stacks of individual imagery into composites (e.g., Luijendijk
et al., 2018; Mao et al., 2021) or cloud-free mosaics (e.g., Hulskamp
et al., 2023). These approaches rely on methods that are available
on the cloud platform, so that they can be incorporated in server-
side compute. While such strategies manage large volumes of data by
efficiently processing data in close proximity of where it is stored,
it inherently limits the temporal depth and/or restricts the analysis
methods to those available on the cloud platform. On the other hand,
approaches that process each image in the historical catalog using more
sophisticated processing routines or algorithms (e.g., Buscombe and
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Ritchie, 2018; Vos et al., 2019; Al Najar et al., 2023; Muir et al.,
2024), have traditionally been confined to local studies or demanded
ubstantial effort (e.g., Vos et al., 2023a; Vitousek et al., 2023b; Castelle
t al., 2024). Such approaches typically involve downloading all data

from the server to a machine with all required software to run the
analysis installed. In summary, analyses focusing on larger geographic
areas often sacrifice either temporal depth, algorithmic flexibility, or
both, whereas those prioritizing more detailed analyses would face
problems to scale up to larger areas if that is desired.

Historically, the importance of data-proximate, scalable compute on
asters (Baumann, 1993) and the ability to query data onto a uniform

grid for comparison (Cornillon et al., 2003) have been well acknowl-
edged. These principles are now typically integrated into geospatial
data processing platforms (e.g., Medvedev et al., 2016; Raoult et al.,
2017). Later, Gorelick et al. (2017) have arguably revolutionized Earth
cience by building a geospatial data analytics platform on the public
loud, where users can write and execute code to efficiently per-
orm more complex analyses on vast datasets by co-locating data and
ompute infrastructure as well as providing a high-level scripting en-
ironment. Despite its success, Google Earth Engine (GEE) remains a
latform with limited flexibility and modularity (Abernathey et al.,

2021) and nowadays there are also more open, flexible, community-
driven efforts that aim to facilitate big environmental data analysis.

oth Open Data Cube (ODC) (Killough, 2018) and Pangeo (Abernathey
et al., 2017) emphasize open-source development and collaboration,

ith active communities across all continents. ODC focuses on provid-
ng a structured framework for managing and analyzing satellite data,
hile the aim of Pangeo is broader, with its community contributing to
 coherent software ecosystem that aims to enable big data geoscience.
DC has particularly been successful in Australia, where Digital Earth
ustralia (DEA) (Gavin et al., 2018) have also enabled applications in
oastal monitoring at scale (Bishop-Taylor et al., 2021). Although ODC
s open, flexible and capable of handling large computations, it has
rimarily been implemented on high-performance clusters at a national
evel (Killough, 2018). Both ODC and Pangeo leverage similar open-

source software, but Pangeo, with its larger ecosystem, also supports
cloud-based platforms,1 where one can conduct highly specialized an-
lytics. These platforms are built on open, scalable software and can
ntegrate diverse data sources like satellite imagery, climate data and
ther geospatial features, marking a shift towards more open, flexible
nd scalable geospatial data analytics.

We contend that if the coastal community wants to gain new
nsights into urgent coastal challenges at extensive scale, without com-
romising accuracy or spatio-temporal resolution, it will probably have

to start producing tools, models, and data that are suitable for scalable
analytics. In this paper, we share our experience in using cloud tech-
nology to advance coastal science at scale, effectively bridging the gap
rom ‘‘everywhere’’ towards ‘‘anywhere’’.

This paper is divided into three parts. The first part discusses data-
roximate computing through the implementation of coastal waterline
apping in the cloud. It highlights the advantages of data-proximate

omputing and explores how a flexible software stack (Pangeo) facili-
ates scalable coastal analytics. The second part compares different data

storage strategies for our novel GCTS, a foundational dataset, consisting
f cross-shore coastal transect system at 100-m alongshore resolution,
hat is now made publicly available. The experiments demonstrate
ow cloud-optimized data formats are significantly more efficient than
raditional file formats, making them critical for coastal analytics at
cale. In this part we also highlight the importance of standardized

metadata specifications. Finally, the third part demonstrates how flex-
ible, scalable compute (part 1), combined with cloud-optimized data
exposed through standardized metadata specifications (part 2), enable
high-resolution coastal analytics (100-m alongshore) at planetary scale.

1 Notable examples include Microsoft Planetary Computer (MSPC), Coiled
nd Earthmover.
2 
As a use case, we compute the percentage of land within the first
ilometer of the coastal zone that is below 5 m above mean sea
evel. With this work, we aim to show that coastal analytics can be
erformed at global scale, without compromising accuracy or spatio-
emporal resolution, in very reasonable compute times. Can we make
 compelling argument for the coastal community to start producing
ools, models, and data that are suitable for scalable coastal analytics?

2. Methodology

In this section, we present our framework for conducting high-
resolution, planetary-scale coastal analytics. We focus on two exper-
ments: data-proximate coastal waterline mapping and strategies for

cloud-native data release. Insights gained from these experiments in-
form a subsequent case study, which extracts elevation data over
more than 11 million coastal transects, illustrating how scalable tools,
models, and data can advance coastal science. Overall, insights from ex-
periment 1 and experiment 2 enable the case study on coastal elevation
mapping. In this section, the methods are described by topic, with some
methods used in multiple experiments as well as in the case study. Fig. 1
provides an overview of the described architecture, encompassing all
methods detailed in this section.

2.1. Global coastal transect system

Cross-shore coastal transects are essential to coastal monitoring,
offering a consistent reference line to measure coastal change, while
providing a robust foundation to map coastal characteristics and derive
coastal statistics thereof. In this work, we introduce the GCTS, a novel
foundational dataset compromising more than 11 million cross-shore
oastal transects uniformly spaced at 100-m intervals along the shore.

In comparison to previous efforts (Luijendijk et al., 2018; Bishop-Taylor
et al., 2021; Vos et al., 2023a), this system has several advantages.
The dataset has global coverage at 100-m alongshore resolution, for
all OpenStreetMap (OSM) coastlines (80◦ S - 84◦ N) that are longer
than 5 kilometers. We decided to define transects at 100-m alongshore
resolution because this has shown to be effective for studying coastal
dynamics at broad spatial scales (Bishop-Taylor et al., 2021; Vos et al.,
2023a); it aligns well with the typical resolution of public satellite
imagery (∼10–30 m); and, this resolution is also used in numerical
modeling studies (Roelvink et al., 2020). The transect system is de-
rived from a recent (2023-01-23) generalized OSM coastline,2 that was
specifically prepared,3 with an optimal balance between smoothing
and simplification (Hormann, 2014) for a coastal cross-shore transect
system at this 100-m alongshore resolution. Expert evaluations and vi-
sual comparisons with existing systems, such as the manually digitized

oastSat transects for the Pacific Basin (Vos et al., 2023a), confirm
that zoom level 9 of the generalized OSM coastline provides the most
ccurate transects at this scale. Furthermore, using the most recent
oastline data allows us to incorporate the latest crowd-sourced data
rom the OSM project. Finally, the transects are derived in their (Uni-
ersal Transverse Mercator (UTM)) projection, a conformal projection
hat preserves angles locally, maintaining a uniform length of 2000 m
nd a spacing of 100 m apart alongshore, effectively correcting the
onal (latitude) distortions present in earlier global transect systems.
CTS is licensed under CC BY 4.0 licence, which means that you are

ree to share and adapt the dataset, as long as you give appropriate
redit (i.e. cite this paper).

In this first release, we also add administrative boundaries4 and a
north bearing—the angle measured in degrees in a clockwise direction

2 OSM data is available under the Open Database License (ODbL) at https:
//openstreetmap.org.

3 The generalized coastline was produced by Imagico, DE.
4 Administrative boundaries are extracted from Overture Maps.

https://openstreetmap.org
https://openstreetmap.org
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from the north pole. The data is released following best practices,
s derived in experiment 2 (See Section 3.2) to facilitate convenient,
fficient data retrieval, while ensuring that each chunk comfortably fits
n the memory of a regular personal computer. The transects are stored
n cloud-optimized GeoParquet format within a public cloud container5

and are available as part of the Coastal Climate Core services (CoCliCo)
Spatio-Temporal Asset Catalog (STAC) catalog6 under the collection
ID ‘‘gcts’’. For those less familiar with cloud services, the data is also
available on Zenodo, at https://zenodo.org/records/14056925.

2.2. Software stack

The methods we use to conduct coastal analytics at extensive spa-
tial scales are deeply integrated with core-packages of the Pangeo
stack for big environmental data analysis. The data processing routines
employed typically utilize the data models Pandas (McKinney, 2010)
nd Xarray (Hoyer and Hamman, 2017), which, when integrated with
eospatial extensions like GeoPandas and Rioxarray, enable advanced
eospatial analysis of both raster and vector data, respectively. In
oastal analytics, many of the data processing steps, such as computing
pectral indices, can be run in parallel. To leverage the efficiency
f parallel processing, we utilize Dask, an open-source library for
arallel and distributed computing (Rocklin, 2015). Dask distributes

computational tasks across multiple workers, which can also operate
n different nodes. This distribution is centrally managed using com-

putational graphs, which provide a structured representation of the
tasks. Unlike traditional for loops, which execute sequentially, Dask’s
graph system allows tasks to be executed concurrently, optimizing per-
formance and reducing computation time. We also use DuckDB, an em-
beddable analytical relational database management system (Raasveldt
and Mühleisen, 2019) to efficiently filter and retrieve tabular geospatial
data from cloud object storage. To enhance the efficiency of distributed
computing in coastal monitoring, we have refactored some routines
from earlier coastal monitoring efforts (Luijendijk et al., 2018; Vos
t al., 2019; Bishop-Taylor et al., 2021) into vectorized functions —

operations applied simultaneously across entire arrays of data. This
enables integration into the Dask data processing chain for more ef-
ficient parallel processing. Furthermore, by executing computations on
a server nearby data storage and leveraging on-demand cloud compute
infrastructure with tools like Dask Gateway or Dask Jobqueue, we can
further reduce processing times by efficiently distributing tasks across a
larger network of nodes. For example, when using a cloud compute in-
frastructure like MSPC, we are able to distribute tasks across more than
100 ‘workers’ who collectively have access to approximately 800 GB
of memory. In such distributed network, secondary data movement,
uch as coastal transects in the third experiment (See Section 3.3) is
inimized by strategically scattering it over the network, allowing it to

e referenced through pointers (addresses to the data location) rather
han sending the actual data.

2.3. Data retrieval

Data is searched for per area of interest, data range or other at-
tributes using STAC, a geospatial data specification that enables effi-
cient localization of spatio-temporal data collections through its stan-
dardized Application Programming Interface (API). Data is retrieved
from various STAC catalogs, including the MSPC and CoCliCo catalogs.
The STAC collections are browsed, and relevant storage locations are
parsed by the respective data models (See Section 2.2). For vector
ata, such as coastal transects, spatial joins or predicate pushdowns—
 technique that filters data at the database level to improve query
fficiency—on the bounding box attribute are used to optimize data

5 az://coclico.blob.core.windows.net/gcts/release/<date>/*.parquet
6 https://coclico.blob.core.windows.net/stac/v1/catalog.json
3 
retrieval. Raster data, such as satellite imagery, are lazily loaded, mean-
ing that data is only loaded into memory when it is actually needed
for computation. The data are read into Xarray using ODC-STAC, a
Python library that is part of DEA software ecosystem. To minimize re-
dundant Earth Observation (EO) data processing, imagery transmitted
to multiple downlink stations or covering overlapping areas (Bauer-

arschallinger and Falkner, 2023) on the same orbital ground track
is grouped by solar day, selecting only the first occurrence of each
day. Precise pixel alignment is achieved by centering pixels on the
coordinate grid, ensuring all coordinate axes are anchored at pixel
centers.

2.4. Data processing

To avoid memory issues and create a scalable, dynamic, parallel
data processing strategy, larger areas are divided into a hierarchical
grid using so-called quadtiles,7 a geo-data storage and indexing strat-
egy. This strategy operates at specific zoom levels. For example, for
processing Sentinel-2 (S2) tiles, we subdivide them into quadtiles at
oom level 10, which corresponds to an area of approximately 0.35
egrees longitude around the equator. Data processing is performed
n a per-quadtile basis, with computational graphs constructed and
xecuted in a single compute call per quadtile. This approach prevents
edundant recalculations of intermediate results and ensures a scalable
ata processing workflow. The chosen zoom level for the quadtiles
zoom level 10) ensures that arrays fit within memory limits, which
s essential for complex processing workflows like coastal waterline
apping (See Section 2.8.1). We typically also include coastline buffers

into the processing pipeline to limit processing solely within our des-
ignated coastal region of interest. These buffers, are derived from
the OSM coastline as of 2023-01-23, with a radius of 10 km, that is
derived per UTM region. While processing, secondary data, such as
these coastline buffers, are broadcast across the cluster so that this data
is referenced through pointers (addresses to the data location) rather
than transferring the actual data, further optimizing the processing
efficiency.

2.5. Data partitioning

When storing data it is partitioned into manageable chunks, rang-
ing from 100 to 200 MB for raster data and 500 MB for vector
data, to enhance data interoperability for downstream coastal ana-
lytics. We spatially partition static coastal data using a strategy that
compensates for coastline complexity, maintaining uniform partition
sizes despite geographical variances in coastal geomorphology. The
partitioning strategy begins by estimating the memory usage per ge-
ometry and its attributes. It then adds a quadkey (also known as a
geohash), a geospatial index that encodes the location of an attribute
in a standardized string, suitable for hierarchical binning at a given
zoom level (e.g., level 12). Next, the data is sorted by quadkey. Finally,
the data is recursively partitioned into chunks that do not exceed a
set memory usage threshold. This approach ensures that local data
density stays below a predefined partition size threshold. This method
is exemplified in Appendix B, where the GCTS is partitioned, for
demonstration purposes, into chunks that do not exceed 100MB. It is
vident that areas with higher data density, such as Chile, result in
enser partitions. Finally, we typically assign a bounding box attribute
ith the minx, miny, maxx, and maxy coordinates of the geometry. This
ttribute is added as a structured datatype to enable query optimization
echniques, such as predicate pushdowns, which filter data at the
atabase level to improve query efficiency.

2.6. Data release

All data are stored in cloud-optimized formats, to ensure efficient
etrieval (Durbin et al., 2020) from cloud object storage services that

7 https://wiki.openstreetmap.org/wiki/QuadTiles

https://zenodo.org/records/14056925
https://coclico.blob.core.windows.net/stac/v1/catalog.json
https://wiki.openstreetmap.org/wiki/QuadTiles
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Fig. 1. The workflow architecture for coastal analytics at scale. Data are stored in cloud object storage and exposed through standardized metadata specifications for efficient
retrieval. Compute infrastructure is set up in close-proximity of the data, facilitating scalable data processing via hierarchical quadtiles. The results are stored in geospatial partitions
in the cloud and also described following a standardized metadata specification to enable the next iteration of downstream coastal analytics. This study includes two primary
experiments: geospatial data retrieval and data-proximate coastal waterline mapping. Insights from these experiments inform a case study demonstrating coastal analytics at a
planetary scale by combining coastal transects (GCTS) with elevation data (DeltaDTM).
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can serve large volumes of data. Geospatial vector data, such as coastal
waterlines and cross-shore transects, are saved as compressed Apache
GeoParquet files, a widely-used columnar storage format. Time series
data, obtained per station, such as SDS series, are also stored in the
GeoParquet format, with additional attributes that enable efficient
geospatial data retrieval (See Section 2.3). Raster data, such as binary

ater-occurrence maps without a temporal component, are stored as
Cloud-Optimized GeoTIFF (COG), whereas n-dimensional array’s (such
s climate data cubes or raster data with temporal component) are
tored in Zarr. The data sets are described in STAC collections, that
re added to the CoCliCo STAC catalog.8 Here, each data partition
r chunk is referenced as a STAC item. The catalog and its collec-

tions are maintained with open-source glsstac-utils9 software, which
utilizes specific extensions like ‘proj’, ‘eo’, ‘datacube’ and ‘stac-table’ to
alidate metadata against community standards. To further optimize
ccessibility, a GeoParquet snapshot of all STAC items is included as a
ollection asset, eliminating the need for users to index each JSON file
ndividually from the collection.

2.7. Usage

All methods and workflows are bundled in CoastPy, a domain-
pecific Python package that contains tools for scalable, cloud-based

8 See https://coclico.blob.core.windows.net/stac/v1/catalog.json.
9 See https://github.com/stac-utils.
4 
coastal analytics, that, especially when combined with cloud comput-
ng, can efficiently process large amounts of data. CoastPy is available
n the PyPI repository and is actively maintained at https://github.

com/TUDelft-CITG/coastpy. It supports Python ≥ 3.11 and is compati-
ble with macOS, Windows, and Linux. Detailed installation instructions
and usage guidelines are provided in the README file and docu-
mentation. The repository includes tutorial notebooks that introduce
traightforward applications of coastal analytics at scale. Released un-
er the MIT License, CoastPy promotes open-source collaboration and
evelopment. We plan to expand the repository with tools for coastal
achine Learning (ML) and other advancements, and we welcome

ontributions from the community to this cloud-based coastal analytics
nitiative.

2.8. Experiments

To study the potential of cloud-native workflows for coastal ana-
lytics, we conducted several experiments focusing on data-proximate
computing and data storage strategies. Experiment 1 is about coastal
waterline mapping near the physical storage of EO data and experiment
2 benchmarks various cloud-optimized data access strategies using a
standard geospatial data retrieval pattern. Additionally, in a subsequent
case study, we demonstrate the potential of cloud-native workflows
for coastal analytics at planetary scale by studying the distribution of
elevation in the coastal zone. All experiments were performed using a
standard Pangeo container, that a was run on MSPC, which provided
access to a Dask Gateway cluster with adaptive scaling. The cluster
was configured to provide 8 GB of RAM per Dask worker, with the

https://coclico.blob.core.windows.net/stac/v1/catalog.json
https://github.com/stac-utils
https://github.com/TUDelft-CITG/coastpy
https://github.com/TUDelft-CITG/coastpy
https://github.com/TUDelft-CITG/coastpy
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number of workers dynamically adjusting between 2 and 100 based
on processing workload and available compute. Dask acts as a higher-
evel tool that efficiently manages and distributes Python workflows
cross available compute resources. We emphasize that this a mod-

ular approach, where compute is separated from storage, that is not
pertained to MSPC, but can be orchestrated at any cloud provider,
(SLURM-based) High Performance Computing (HPC) cluster or even an
ordinary personal computer.

2.8.1. Experiment 1: Coastal waterline mapping
The purpose of this experiment on coastal waterline mapping is

to assess the efficiency of data-proximate cloud-computing for coastal
monitoring by orchestrating coastal waterline mapping routines next to

here the satellite data is stored. Given that shoreline monitoring has
e-facto become standard practice in coastal science (Vos et al., 2023b),

we expect that this experiment serves as a relatable example for most
oastal practitioners.

In this experiment, the S2 archive of publicly available imagery
level-1 A surface reflectance) is efficiently retrieved (See Section 2.3)
rom the MSPC STAC catalog. To minimize redundant EO data pro-
essing, imagery transmitted to multiple downlink stations or covering
verlapping areas (Bauer-Marschallinger and Falkner, 2023) on the
ame orbital ground track is grouped by solar day, selecting only the
irst occurrence of each day. The blue, green, red, NIR, SWIR16, and
CL classification bands from the S2 catalog are retrieved, while precise
ixel alignment is achieved by centering pixels on the coordinate grid.
ollowing Vos et al. (2023b), the SWIR16 band is aligned with other

spectral bands using bilinear resampling, since this strategy better
captures linear features such as waterlines. The S2 SCL layer, a 10-
class land cover classification, is used to mask pixels categorized as
‘‘No Data’’, ‘‘Dark Area Pixels’’, ‘‘Clouds high probability’’, or ‘‘Cirrus’’.
However, the category ‘‘Snow and Ice’’ often represents whitewater in
coastal zones, and is therefore deliberately not masked.

In line with well-established approaches (Vos et al., 2023b), coastal
waterlines are mapped by applying Otsu-thresholding to mNDWI opti-
al satellite imagery and extracted at sub-pixel resolution using
arching-squares. The Otsu-threshold value is computed after applying

a pixel classification, to consider exclusively sandy and water pixels
in the thresholding process. Additionally, we add a simple quality
ontrol filter to exclude imagery with over 95% water pixels in the

S2 SCL or CoastSat classification, as such high water content does
not yield effective results when using the Otsu’ algorithm. Finally,
by intelligently designing the computational graph, we simultaneously
compute two results: a raster map with the coastal water occurrence
probability, as the mean presence of water pixels over time; and a
vector layer with waterlines from each image. We emphasize that this
experiment does not aim to introduce yet another method for shoreline
monitoring, but rather serves as relatable benchmark to the efficiency
of data-proximate cloud computing for coastal monitoring.

2.8.2. Experiment 2: Geospatial data retrieval
This experiment benchmarks the efficiency of geospatial data re-

trieval using eight different data dissemination strategies by retrieving
coastal transects for the Basque Country, Spain, from the GCTS. We
valuate the efficiency gains of cloud-optimized data, geospatial sort-
ng, and metadata filtering with STAC across different data models

(GeoPandas, Dask GeoPandas, and DuckDB) and retrieval methods
spatial join and predicate pushdown). Geospatial sorting, which in-
olves sorting data based on quadkey (a geohash facilitating efficient

spatial indexing, also see 2.5), is examined. Metadata filtering, per-
formed on the attributes provided in the STAC collection, allows for
elective retrieval of relevant data partitions. We also compare retrieval
ethods, including spatial join operations, which merge datasets based

n their spatial relationship, and predicate pushdown, a query opti-
ization technique that applies filters early in the data retrieval process

o enhance performance by reducing the amount of data transferred and
rocessed.
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2.8.3. Case study: Coastal elevation mapping
This case study demonstrates the potential of cloud-native work-

flows for coastal science by combining data-proximate computing
Expt. 1; Section 2.8.1) with cloud-optimized data accessed via a stan-
ardized metadata specification (Expt. 2; Section 2.3). Specifically, we

integrate the GCTS with DeltaDTM, a novel digital terrain model (Pronk
et al., 2024), to determine the percentage of the world’s first kilometer
f coast that is lower than 5 m. The GCTS consists of more than
1 million coastal transects, while DeltaDTM includes 7105 tiles of
𝑥 1 degree each at a spatial resolution of one arc second (30 m).

We migrated DeltaDTM to cloud object storage and described it in
a STAC catalog for convenient analysis. Thus, for this analysis both
datasets are stored in cloud-optimized formats and accessible using
STAC into a cloud-based computational cluster located close to data
storage. DeltaDTM tiles are grouped by quadkey at zoom level 4, and
relevant transects from the GCTS are retrieved using Dask GeoPandas,
with STAC effectively filtering the necessary partitions. The transect
data is then broadcast across the client, allowing it to be referenced
by pointers without transmitting the data over the network, ensuring
efficient processing. This setup establishes an efficient, scalable data
processing routine capable of high-resolution extraction on a global
scale.

3. Results

3.1. Where should we run our algorithms?

We analyzed the efficiency and scalability of data-proximate, cloud-
based coastal waterline mapping. The results demonstrate that mapping
shorelines in close proximity to where the satellite data is stored is
0 times faster for small areas, such as at Narrabeen Beach, Australia
Appendix A.2). This is a significant improvement that highlights the

efficiency gains of data-proximate computing, which are specifically
elevant for coastal monitoring because this practice requires frequent
ata processing to track dynamic shoreline changes as satellite im-
gery comes available. Moreover, a comparison (Appendix A.1) shows

that this cloud-native CoastPy approach produces results that are in
good agreement with CoastSat, making it an important step towards
instantaneous shoreline mapping at extensive spatial scales. Finally,
data-proximate coastal monitoring is more sustainable as it eliminates
the need to duplicate or move large datasets and efficiently utilizes
on-demand compute resources.

Another key result relates to scalability. We assessed the scalability
f our cloud-native approach to coastal waterline mapping by expand-
ng the study area to regional and state levels, first examining the
an Francisco Peninsula and then the entire state of California. While

scaling up to larger areas (e.g., Ocean Beach) the computation becomes
relatively more efficient (Appendix A.3), with CPU usage almost fully
saturated at 100% while operating at scale. While processing areas as
large as Sentinel-2 tiles (110 𝑥 110 km) exceeded the memory capacity
of our Dask workers (8 GB RAM per worker), the workflow remained
efficient at the California state level when tiles were subdivided into
zoom-level 10 quadtiles (38 𝑥 38 km) (See Section 2.5). The results,
as shown in Fig. 2, indicate that coastal areas spanning quadtiles at
zoom level 10 can be processed in approximately five minutes on
average; that equivalents to coastal waterline mapping at 50 km per
seconds, which is several orders of magnitude faster than conventional
approaches, such as CoastSat (0.1 km/s; Appendix A.2). Although
we find that occasionally data is spilled to disk during the opera-
tion, reporting double wall-clock times (10 min), the cluster recovers
to a healthy state, demonstrating the robustness of this approach.
This improved efficiency at larger scales is because proportionally less
time spent configuring the workers and constructing the computational
graph (Appendix A.3). Overall, these findings highlight that specialized
coastal monitoring routines can be much more efficiently orchestrated
in the cloud, close to where the data is physically stored, with increased
efficiency as the study area scales from local to regional levels.
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Table 1
Average execution time (s) for various strategies of data retrieval. The crosses (X) indicate whether a certain strategy was applied.

Experiment Data model Query method Cloud-optimized Spatial sort STAC filter mean (s) std (s)
Expt. 1 GeoPandas Spatial join 1071.3 5.0
Expt. 2 Dask GeoPandas Spatial join X X 41.3 1.1
Expt. 3 Dask GeoPandas Spatial join X 40.5 1.0
Expt. 4 DuckDB Spatial join X X 25.2 1.1
Expt. 5 DuckDB Spatial join X 24.0 0.8
Expt. 6 Dask GeoPandas Spatial join X X X 10.9 0.3
Expt. 7 DuckDB Predicate pushdown X X 7.4 0.6
Expt. 8 DuckDB Predicate pushdown X X X 6.7 0.7
Fig. 2. Execution time (min) per quadtile for cloud-native coastal waterline mapping
across California state, USA. By orchestrating shoreline-monitoring routines in close
proximity of the satellite data, coastal waterlines are mapped at approximately 50
km/s.

3.2. How should we store our data?

We benchmarked eight different geospatial data retrieval strategies.
Table 1 summarizes the characteristics and performance of each strat-
egy, including mean and standard deviation of execution times over
20 iterations. Detailed distributions of retrieval times are presented in
Appendix C.

In the initial experiment, as presented in Table 1, coastal tran-
sects were retrieved from the GCTS, that is stored as a traditional
geopackage, which is approximately 5 GB in that format. Unlike in
other experiments, this retrieval operation had to be conducted on a
personal computer due to memory limitations on a standard MSPC
Pangeo instance. This setup resulted in data retrieval that is up to 160
times slower (Expt. 1 vs. Expt. 8) compared to those achieved with
cloud-optimized data formats. Thus, the occurrence of memory errors
and the prolonged execution time for data retrieval in this experiment
show the convenience and advantages of cloud-optimized data formats.

Subsequent experiments involve fetching transects from the GCTS
stored across several GeoParquet partitions, that are altogether ap-
proximately 1 GB in this cloud-optimized format. The experiments
use various techniques such as spatial joins or predicate pushdown
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(See Section 2.8.2), facilitated by a STAC catalog to identify relevant
partitions and spatial sorting by quadkey. Surprisingly, the results
(Table 1) indicate that spatial sorting slightly increases data retrieval
times. However, the use of STAC metadata to effectively filter the
relevant STAC items enhances Dask GeoPandas so that it is capable of
retrieving transects four times faster (Expt. 4 vs. Expt 6), likely due
to the reduced need to index data objects using HTTP protocol. This
efficiency gain demonstrates the advantage of standardized metadata
in optimizing data retrieval, while also underscoring the importance
of geospatial sorting, as the effectiveness of the STAC metadata filter
depends on it.

The results (Table 1) demonstrate that the DuckDB query engine
is more efficient for geospatial data retrieval than Dask-GeoPandas
(e.g., Expt 4 vs 2) in this setup, being almost twice as fast. More
importantly, the data show that employing predicate pushdown on
a bounding box attribute is a three times more efficient strategy for
data retrieval than a spatial join operation (Expt 7 vs. Expt 5). For
geospatial predicate pushdown to function effectively, the data must
be geospatially sorted and include a bounding box column that pro-
vides the extent of the geometry. This underscores the importance of
adding a bounding box column to geometries and organizing the data
geospatially to significantly enhance query performance. Additionally,
the data retrieval is slightly faster (10%) when using STAC metadata to
selectively filter relevant STAC items (e.g., Expt. 8 vs. Expt. 7), although
the efficiency gains from this approach do not match those achieved
with Dask GeoPandas (twice as fast). While the differences in execution
times among strategies that access cloud-optimized data formats are
of a different order than the 160 times improvement reported against
conventional data formats, the differences are relevant for analysis at
scale. Implementing simple geospatial sorting methods combined with
standardized metadata specifications results in approximately 4 times
faster performance. This is particularly important when these access
patterns are repeated for a large number of similar tasks, demonstrat-
ing the effectiveness of these strategies in optimizing geospatial data
retrieval at scale.

In summary, these experiments affirm the importance of cloud-
optimized data formats for broad-scale coastal analytics, where data
interoperability is crucial (Section 1). Cloud-optimized data formats,
when combined with geospatial sorting and query optimization tech-
niques like predicate pushdown, facilitate efficient filtering methods for
retrieving data pertinent to specific regions of interest. Additionally,
this experiment highlights the value of metadata-driven data access
strategies in enhancing the efficiency of data retrieval, which is pre-
sumably increasingly important as the number of partitions grows
and indexing remote data objects over HTTP protocol becomes a bot-
tleneck. Therefore, adopting cloud-optimized data formats, geospatial
sorting, and enabling metadata-driven access methods is essential for
facilitating efficient geospatial data retrieval.

3.3. How much of the first km of coastal land is below 5 m?

By using cloud technology as described in earlier experiments (See
Sections 3.1 and 3.2) we developed a scalable, high-resolution mapping
at global scale. Fig. 3 illustrates the fine spatial resolution at which
elevation data is extracted along the landward side of the transects
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Fig. 3. Extracting DeltaDTM elevation data over the landward side (1 km) of our
coastal transects, around Barra de la Cruz, Mexico.

around Barra de la Cruz, Mexico. In total we extract approximately
300 million elevation observations at equally-spaced 100 m along-
shore resolution. Compared to the conventional download-and-analyze
approach, this method significantly enhances our ability to analyze
coastal datasets at global scale. We have developed a scalable method
to locate and process DeltaDTM tiles. Similarly, coastal transects for a
given tile can be retrieved downloading and processing an extensive
5 GB GeoPackage. A traditional workflow, involving a spatial join for
each of the 7105 tiles, would take approximately 88 days to process
just to retrieve the transects. In contrast, using cloud technology, we
completed the entire analysis in a few hours, making it 700 times faster.

On average, we find that 33% of the first km in the coastal zone is
lower than 5 meter. Fig. 4 shows the average percentage of very low-
lying coastal land (< 5 m) in the first km coastal zone, with the 5%
(n=25) largest clusters (Anselin, 1995) indicated as red dots. The map
shows that particularly the gulf of Mexico, the East Coast of the United
States and the European Wadden Sea much of the first km of coastal
land is lower than 5 m above mean sea level. In this 1-km coastal zone,
the distribution (Fig. 4) of areas that are on average lower/higher than
5 m is highly bi-modal; which shows that either the 1-km coastal land
is mostly below 5 m or, land rises fast and elevation is mostly above
5 m.

4. Discussion

Cloud technology and the opening up of EO data have started a
digital transformation in coastal science. In the introduction, we dis-
tinguished between two distinct analysis strategies: one aims for global
coverage, often compromising accuracy for spatial extent (‘‘every-
where’’), while the other prioritizes accuracy (‘‘anywhere’’). This paper
demonstrates how leveraging an open, flexible, and scalable geospatial
software stack (Pangeo) in combination with cloud-optimized data
formats bridges the gap between these approaches, enabling coastal an-
alytics at broad scales without compromising the high spatio-temporal
resolution and accuracy that are typically used in more local analyses.

An essential step this approach is decoupling data storage from
compute, a strategy that contrasts with the integrated frameworks of
existing platforms like GEE. This separation provides more control over
both processes, enabling independent management of each.

Compute, is managed on an open, flexible and scalable framework
(Pangeo), that, depending on the needs of the analysis, can be de-
ployed on personal computers, HPC, or cloud infrastructure. As shown
in the first experiment, this software ecosystem provides a flexible
7 
environment that can be scaled up to broader areas while retaining the
spatio-temporal resolution used in some specialized coastal monitoring
practices.

Storage, in turn, is handled using cloud-optimized data formats,
while adhering to standardized metadata specifications. As shown in
the second experiment, this structured approach enables rapid query-
ing, and ensures that data is optimized for coastal analytics at scale.

Implementing and maintaining such a cloud solution presents some
technical challenges. Besides writing scalable software, producing
cloud-based data repositories requires expertise in cloud-optimized
data formats, data specifications and data partitioning. While such
skills may not be commonly expected from coastal scientists, our case
study demonstrates that the substantial improvements in efficiency,
flexibility, and hence analytical capabilities justify these efforts.

The modularity of cloud-based coastal analytics eases the migration
between different computational environments while removing depen-
dency on proprietary platforms (e.g., GEE). Also, by decoupling storage
and compute, this system can continuously integrate the latest innova-
tions in both data management and algorithms. Other advantages of
cloud-based solutions is that it provides universal access points to data,
that are much more accessible than traditional storage solutions, while
they typically also reduce the need for data downloading with in effect
less data duplication.

Cloud computing has a significant environmental impact (Monserrate
2022), and data-intensive applications — particularly those utilizing
Artificial Intelligence (AI) — are a major source of its energy con-
sumption (Katal et al., 2023). Coastal research labs that leverage
this powerful infrastructure should be mindful of their environmen-
tal footprint, especially as their funding is often tied to initiatives
promoting sustainability and/or addressing climate change. However,
despite its notable carbon footprint, cloud computing can offer more
sustainable solutions (Jones, 2018). By optimizing resource allocation,
reducing idle time, and consolidating large-scale operations, cloud
systems can minimize overall energy consumption. Additionally, cloud
infrastructure’s universal access points reduce the need for data du-
plication and unnecessary transfers, while cloud-optimized data for-
mats, through efficient compression, further minimize storage and
transmission requirements, enhancing overall sustainability.

Although there are technical barriers and environmental impacts
that require careful attention, the importance of cloud technology for
large-scale coastal analytics is clear, as also shown in the experimental
findings, that are discussed in the next section.

4.1. Experimental findings

In this section we discuss several key results from our experiments,
beginning with the novel global coastal transect system (GCTS). The
transect system benefits from recent OSM data uptake, corrects zonal
bias, includes polar latitudes, and offers a finer alongshore resolution
(100 m) than existing transect systems. We believe this transect system
can serve as a robust foundation for various coastal studies, provid-
ing a reliable basis for deriving SDS series, coastal characterizations,
classifications, and related statistics.

Secondly, we show that 33% of the first kilometer of coast is below
5 m. This data, calculated at a 100-m alongshore resolution, is crucial
for several kinds of coastal analyses, such as coastal classification and
characterizations. This finding is particularly relevant in the context of
the Low Elevation Coastal Zone (LECZ), as described by McGranahan
et al. (2007), potentially providing a more detailed understanding of
coasts that are vulnerable to accelerating climate change. However, the
30-m resolution of the Digital Terrain Model (DTM) is likely insufficient
for flood-risk modeling, underscoring the continued relevance of local
studies. The workflows used can be adopted to map other coastal
variables onto, for example, our transect system (GCTS). With more
coastal variables mapped, it will become possible to apply theoretical
classification frameworks (e.g., Cooper and McLaughlin, 1998; Finkl,



F.R. Calkoen et al. Environmental Modelling and Software 183 (2025) 106257 
Fig. 4. The map shows the average percentage of land within the first kilometer of the coastal zone that is lower than 5 m above mean sea level, based on approximately 300
million observations from DeltaDTM (Pronk et al., 2024) across more than 11 million transects (GCTS). On average, 33% of this coastal zone is below 5 m. Red dots indicate the
5% largest clusters of predominantly low-lying coastal land. To the right, a violin plot shows the distribution of the percentage of coastal land below 5 m.
2004) at extensive scales without compromising spatial resolution and
accuracy.

Thirdly, we present open, scalable, flexible methods for efficient
coastal analytics at planetary scale, that are up to 700 times faster
than traditional download-analyze approaches. This tremendous speed-
up is achieved by bringing code to the data rather than moving the
data to the code; and, using cloud-optimized data exposed through
rich, standardized metadata specifications. By adopting this framework
for coastal waterline mapping, we achieved a processing speed of 50
km/s, compared to 0.1 km/s using conventional methods, like CoastSat.
Data-proximate computing, increasingly standard in various scientific
fields (Gentemann et al., 2021), is very relevant for the coastal commu-
nity, which increasingly relies on EO data (Vitousek et al., 2023a), that
is still typically downloaded and analyzed on institutional premises.

The coastal waterlines mapped during the data-proximate shore-
line monitoring experiment are primarily intended to demonstrate the
feasibility of efficiently implementing specialized coastal monitoring
routines in the cloud, rather than serving as a dataset for studying
coastal dynamics. Nevertheless, the methods introduced here have the
potential to form the basis for the first-ever global mapping of instan-
taneous shorelines from the full historical Landsat and/or Sentinel-2
catalog. Crucially, future enhancements must include tidal corrections
and improvements to the classification methods to ensure robust gen-
eralization across diverse coastal environments (Vos et al., 2023b;
Konstantinou et al., 2023), including macro-tidal regions and beaches
with unique sand types, like those on volcanic islands.

Fourthly, we show that for coastal analytics at scale, cloud-
optimized data exposed through standardized metadata specifications
are essential. Our experiments on geospatial data retrieval indicate
that data storage format and accompanied metadata are as important
as the data itself, especially for large-scale analyses. By eliminating
repetitive tasks such as locating data for regions of interest and en-
hancing data interoperability, we developed data retrieval methods
that are up to 160 times faster than traditional download-and-analyze
approaches. Another advantage is that by adopting these principles, the
data de facto becomes Findable, Accessible, Interoperable and Reusable
(FAIR) (Wilkinson et al., 2016).

A crucial step in curating the data is partitioning. In this study, we
explored various partitioning methods, with our released GCTS parti-
tioned by quadkey to enhance the efficiency of regional data access and
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time-series analysis. While partitioning based on administrative bound-
aries has been suggested (Holmes, 2023), it poses challenges in coastal
science. Administrative boundaries can enhance user-friendliness, but
the coast — being a transitional area between ocean and land —
is not always fully encompassed by existing administrative divisions.
Additionally, the complexity and variability of coastal regions can
result in highly unequal partitions, further complicating this approach.

Our geospatial partitioning strategy, while effective, is not defini-
tive, especially for datasets that grow with time, such as with ongoing
satellite missions. Managing spatio-temporal coastal data repositories,
such as SDS, presents significant challenges due to conflicting par-
titioning needs. Spatial partitioning enables efficient regional data
access, that is useful for time-series analysis, but requires frequent data
rewriting, which is computationally intensive and costly, particularly in
cloud-object stores. As a result, repositories may be managed through
temporal partitioning, where data is appended as new satellite data
becomes available. While this is more logical for continuously updating
datasets, it is less efficient for users needing access to time series of
certain coastal variables per region.

Fifthly, the cloud-native coastal waterline mapping experiment
demonstrates that we can now incorporate advanced ML models into
coastal analyses at scale. Although the classification model used in
this study is relatively basic (a simple feed-forward network), it serves
as proof of concept that advanced coastal deep learning models can
be integrated into server-side computing. This capability is critical
for implementing advanced coastal ML models (e.g., Buscombe and
Ritchie, 2018; Al Najar et al., 2023) at extensive spatial scales.

4.2. Outlook

We argue that the coastal community should collectively begin
constructing publicly available, analysis-ready coastal data reposito-
ries, as these will be the critical resources for powering coastal ML
and providing a robust foundation for data-driven coastal decision
making. The digital revolution in coastal science, triggered by the
opening up of historical satellite catalogs and innovations in cloud
technology, has provided an unprecedented global perspective of the
coastal environment. However, the coastal community is not yet fully
capitalizing on recent advances in ML, such as Deep Learning (DL).
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Although the ongoing digital revolution in coastal science is most
likely going to culminate in the widespread adoption of coastal AI, this
advancement requires the availability of high-quality data. Adopting
best practices from computer science (Raymond, 1999) and making
data publicly available (Tenopir et al., 2015) is crucial for achieving
this goal, but not enough. Now that coastal science has an appetite for
data, its management must be recognized as an integral component
of coastal research. Without a focus on data management, we risk
accumulating more data than we can effectively analyze. Future coastal
data releases should aim to minimize manual, repetitive work in down-
stream coastal analytics, by providing analysis-ready data, following
flexible data schemata that we, as a coastal community, still have to
work out ourselves. Yet it is also critical that future coastal analytics
integrate strategies to reduce environmental footprints, particularly for
the data-intensive applications. To ensure the long-term sustainability
and accessibility of the data resources as well as the tools to work with
it, governmental support (e.g., Directorate-General for Research and
Innovation (European Commission), 2022) to develop and maintain
public cloud infrastructure is essential, as reliance solely on commercial
enterprises may compromise the stability and equitable access to poten-
tially critical coastal data. We envision a future where an Earth System
data cube (Mahecha et al., 2020), enriched with coastal characteristics,
will allow customized views of the coast, possibly even through natural
language queries (Zhu et al., 2024) enabled by artificial intelligence.

5. Conclusion

This study demonstrates the transformative potential of cloud tech-
nology for coastal analytics at extensive spatial scales. We introduced a
novel global coastal transect system (GCTS), found that 33% of the first
kilometer of coast is below 5 m, and developed methods that are up to
700 times faster than conventional approaches. The GCTS introduced
here can serve as a foundational coastal dataset, offering a robust frame
of reference with a global set of coastal stations that can be used for
deriving shoreline-change series, coastal characterizations, and related
statistics. Our findings highlight that coastal science no longer needs
to be constrained by high latency, storage capacity, available compute
resources, or specific toolboxes provided by cloud platforms. By lever-
aging cloud technology and a flexible, scalable software ecosystem, we
can perform complex computations close to data storage, drastically
reducing analysis time from months to just a few hours. This approach
allows us to use all available data without compromising accuracy or
resolution, hopefully setting a precedent for future broad-scale coastal
studies. We are therefore convinced that if the coastal community aims
to address urgent coastal challenges at broad spatial scale without
compromising accuracy or spatio-temporal resolution — bridging the
gap from ‘‘everywhere’’ towards ‘‘anywhere’’ — it will have to start
producing tools, models, and data suitable for scalable coastal analytics.

Software availability

Software name: CoastPy

Developer: Floris Calkoen

Year first official release: 2024

System requirements: Mac, Linux, Windows

Program language: Python

Program size: <1 MB

Availability: https://github.com/TUDelft-CITG/coastpy

License: MIT

Documentation: README, documentation and tutorial notebooks.

Citation: This paper.
9 
CRediT authorship contribution statement

Floris Reinier Calkoen: Writing – review & editing, Writing –
original draft, Visualization, Validation, Software, Project administra-
tion, Methodology, Investigation, Formal analysis, Data curation, Con-
ceptualization. Arjen Pieter Luijendijk: Writing – review & editing,
Supervision, Resources, Project administration, Methodology, Funding
acquisition, Conceptualization. Kilian Vos: Writing – review & editing,
Validation, Investigation. Etiënne Kras: Writing – review & editing,
Visualization, Software, Data curation. Fedor Baart: Writing – review
& editing, Supervision, Resources, Methodology, Conceptualization.

Acknowledgements

We would like to thank Reviewer 1, Reviewer 2 and Reviewer 3 for
their invaluable comments; particularly because they have helped to
better communicate our key findings while also placing our work in a
broader coastal context.

This research was funded by European Commission SOCIETAL
CHALLENGES - Climate action, Environment, Resource Efficiency and
Raw Materials as part of CoCliCo (Grant agreement ID: 101003598);
and Deltares strategic research programs Moonshot 2 on Flooding and
Enabling Technologies.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Shoreline monitoring

This appendix provides supplementary material supporting the find-
ings of data-proximate coastal waterline mapping, including data per-
formance as well as qualitative comparison.

A.1. Qualitative comparison between CoastSat and CoastPy

Fig. 5 presents time series data for a transect (PF6) at
Narrabeen Beach, Australia, comparing field observations, CoastSat,
and CoastPy. The figure demonstrates that CoastPy achieves compara-
ble accuracy in mapping coastal waterlines to CoastSat. The minor dis-
crepancies between CoastSat and CoastPy can be attributed to the tidal
correction applied in CoastSat but not yet implemented in CoastPy.
These results confirm that the methods used in this cloud-native coastal
monitoring approach are effectively configured.

Fig. 5. Comparison of CoastPy, CoastSat, and field-observation SDS-series for transect
PF6 at Narrabeen Beach, Australia.

https://github.com/TUDelft-CITG/coastpy
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Fig. 6. CPU and memory usage over time for CoastSat while mapping SDS from the
full Sentinel-2 catalog for Narrabeen Beach, Australia.

A.2. Computational performance CoastSat

Fig. 6 shows time-series of memory and CPU usage while mapping
SDS for Narrabeen Beach, Australia, using CoastSat. The mapping of
all shorelines from the Sentinel-2 catalog took 3.75 h. During this
period, memory usage was saturated at approximately 50% on average,
while CPU usage averaged around 15%. In total, 851 Sentinel-2 Top
of Atmosphere (TOA) images were processed, resulting in 450 unique
shorelines after accounting for duplicates due to overlapping tiles.

A.3. Computational performance CoastPy

Fig. 7 presents a performance report with CPU, memory, and band-
width usage of the Dask compute cluster while mapping coastal water-
lines using CoastPy for Ocean Beach, USA. The area of interest covers
two quadtiles (zoom level 10), necessitating two iterations of mapping,
which is evident from the repetitive pattern in the data over time.
Each tile mapping follows a repetitive pattern of scheduling, initial
computation with few workers, adaptive scaling, and computation
with many workers. During the scheduling phase, CPU, memory, and
bandwidth usage are low. As the computation begins with a small
10 
number of workers, CPU usage increases until the cluster adaptively
scales to more workers to handle the larger computational workload.
The adaptive scaling phase shows relatively low CPU usage as workers
are configured with the necessary software and data. The compute-at-
scale phase occupies approximately one-fourth of the total time, similar
to each of the other phases, and is characterized by high bandwidth
usage (intensive write operations), showing that the majority of coastal
waterlines are mapped during this phase. This cloud-native approach
to coastal waterline mapping achieves near-full CPU saturation when
computing results.

Appendix B. Geospatial data partitioning

Fig. 8 presents a global map of the GCTS, spatially partitioned into
parts, each containing a maximum size of 100 MB. The data is sorted
by quadkey, with entries from Alaska at the beginning and entries
from Australia at the end. Bounding boxes representing the different
partitions are overlaid on the map, showing that transect records are
grouped by spatial area. This partitioning approach facilitates efficient
geospatial data retrieval by allowing metadata to discard irrelevant par-
titions. The figure also shows that areas of higher coastal complexity,
such as Indonesia, have relatively high data density.

Appendix C. Data retrieval

Fig. 9 presents the distribution of data retrieval times for various
data release strategies, as detailed in Table 1. The small variance
across all experiments indicates a robust setup, ensuring consistent
performance across different retrieval methods.

Data availability

The authors share their code and instructions to access the data
at https://github.com/TUDelft-CITG/coastpy. The Global Coastal Tran-
sect System is also available for download at https://zenodo.org/
records/14056925.
Fig. 7. Performance report of the Dask compute cluster during coastal waterline mapping using CoastPy for Ocean Beach, USA. The report details CPU, memory, and bandwidth
usage over time, highlighting the repetitive patterns of scheduling, initial computation, adaptive scaling, and compute-at-scale phases for two quadtiles.

https://github.com/TUDelft-CITG/coastpy
https://zenodo.org/records/14056925
https://zenodo.org/records/14056925
https://zenodo.org/records/14056925
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Fig. 8. Global map of the geospatially partitioned GCTS data, sorted by quadkey. The
dataset is divided into partitions with a maximum size of 100 MB, enabling efficient
geospatial data retrieval.

Fig. 9. Distribution of data retrieval times for different data release strategies. The
specific operations applied in each experiment are detailed in Table 1.
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