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Summary 

Since the introduction of the Marchenko method in geophysics, many variants have been developed. 
Using a compact unified notation, we review redatuming by multidimensional deconvolution and 
by double focusing, virtual seismology, double dereverberation and transmission-compensated 
Marchenko multiple elimination, and discuss the underlying assumptions, merits and limitations of 
these methods. 
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 Introduction. Since the introduction of the Marchenko method in geophysics (Broggini et al., 2011;
Wapenaar et al., 2011), many variants have been developed, ranging from data-driven redatuming by
multidimensional deconvolution to model-independent Marchenko multiple elimination. We give a brief
overview of methods developed in Delft, their underlying assumptions and their merits and limitations.

The focusing function. The central concept in the Marchenko method is the focusing function (Wape-
naar et al., 2013; Slob et al., 2014), which is illustrated in Figure 1(a). The downgoing part of the
focusing function f+1 (indicated by yellow rays), when emitted from the surface into a truncated version
of the actual medium, focuses at a predefined location xF , without artefacts due to multiple scattering.
The upgoing response (indicated by blue rays) is called f−1 . The focusing functions can be retrieved
from the reflection response R at the surface and an estimate of the direct focusing function f+1d (the
latter is equivalent to the standard focusing function for primaries). In the compact notation of Van der
Neut et al. (2015), the algorithm reads

f+1 =
∞

∑
k=0

(ΘR�ΘR)k f+1d , f−1 = ΘR f+1 . (1)

R f stands for a multidimensional convolution of the reflection data with a function f , the star denotes
time-reversal and Θ stands for a symmetric time window Θtd−ε

−td+ε that removes all events after the direct
wave at td (including the direct wave itself; ε is a small value to account for the finite duration of the
seismic wavelet). The scheme requires a macro model to define the initial focusing function f+1d .
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Figure 1 (a) Focusing function. (b) Redatuming by double focusing. The ‘rays’ represent primaries and multiples.

Redatuming by multidimensional deconvolution (MDD). Once the focusing functions are found, the
downgoing and upgoing Green’s functions at the focal depth level zF follow from (Wapenaar et al., 2014)

G+ = f+�
1d −ΨR f−�

1 , G− = ΨR f+1 . (2)

Here Ψ is the complement of time window Θtd−ε
−td+ε , hence, it passes the direct wave and all events after

it. The Green’s functions are mutually related via G− = RredG+, where Rred is the redatumed reflection
response at zF of the medium below zF . Hence, Rred follows from MDD, as follows

Rred = G−(G+)−1. (3)

Rred is free of multiples related to the overburden and can be used for imaging the medium below the
focal depth level. The method relies on a macro model to estimate f+1d . Possible amplitude errors in f+1d
are transferred to f±1 and G±, but they are largely annihilated in the MDD step. A complication of the
method is that the MDD process requires a careful stabilised matrix inversion.

Redatuming by double focusing. An alternative method to obtain Rred is redatuming by double focus-
ing (Figure 1(b)), formulated as

Rred = f+T
1 ΨR f+1 , (4)

where superscript T denotes transposition. Equation (4) is stable and can easily be applied in an adaptive
way (Staring et al., 2018). The retrieved response Rred contains some interactions with the overburden
and amplitude errors in f+1 are not annihilated.
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 Virtual seismology. The full Green’s function between any two points in the subsurface can be obtained
by the following variant of double focusing

G = Ψ f T
2 ΨR f2, (5)

where f2 = f+1 − f−�
1 . This method can be used to forecast the response of induced earthquakes or to

measure the response of earthquakes with virtual receivers in the subsurface (Brackenhoff et al., 2019).

Double dereverberation. To reduce the sensitivity for a macro model, Van der Neut and Wapenaar
(2016) proposed to project the focusing functions to the surface, according to v+ = f+1 Td , where v+ is
the projected focusing function and Td is the direct arrival of the transmission response. Since the direct
focusing function is the inverse of Td , according to f+1dTd = δ (where δ is a space-time delta function),
we obtain from equation (1)

v+ = f+1 Td =
∞

∑
k=0

(ΘR�ΘR)kδ , v− = ΘRv+, (6)

where Θ stands now for an asymmetric time window Θtd2−ε
ε that removes all events at and after the two-

way traveltime td2 of a fictitious reflector at the focal depth zF . Since this equation does not require an
estimate of f+1d (unlike equation (1)) it is significantly less sensitive to the macro model (only Θ depends

on it). Applying T T
d and Td to the left and right of the double focusing equation (4), we obtain

Rtar = T T
d RredTd = v+T ΨRv+, (7)

where Ψ is now the complement of Θtd2−ε
ε . The response Rtar is the redatumed response projected to

the surface. It can be seen as the reflection response at the surface of the target below zF without the
internal multiples related to the overburden. Therefore the right-hand side of equation (7) is a double
dereverberation method (Staring et al., 2020). Like double focusing, it can be applied in an adaptive
way, but it is significantly less sensitive to the macro model.

Transmission-compensated Marchenko multiple elimination (T-MME). By replacing the asymmet-
ric window Θtd2−ε

ε in equation (6) by Θtd2+ε
ε , the event in v− at the two-way traveltime td2 is retained. It

can be shown that the last event of v− can be written as

v−last = T T
d r(T−1

d )�. (8)

Here r is the reflectivity of the deepest reflector above the focal depth zF . The right-hand side can be
interpreted as the primary reflection response of that reflector, observed at the surface and compensated
for transmission losses. To obtain the complete primary reflection response, Zhang et al. (2019) propose
the following procedure: apply equation (6) with the modified window for all possible two-way travel-
times td2 (instead of focal depths zF ), select the sample v−(t = td2) and store this to Rt(td2). The resulting
response Rt(t) for all t is the transmission-compensated primary reflection response at the surface. This
method uses no subsurface information at all.
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