
Improving Code Quality in Agile
Software Development

Version of October 20, 2018

Lars Krombeen





Improving Code Quality in Agile
Software Development

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Lars Krombeen
born in Delft, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Capgemini
Reykjavikplein 1, 3543KA

Utrecht, the Netherlands
https://www.capgemini.com/

www.ewi.tudelft.nl
https://www.capgemini.com/


c© 2018 Lars Krombeen.



“Every block of stone has a statue inside it and it
is the task of the sculptor to discover it.“

- Michelangelo





Improving Code Quality in Agile
Software Development

Author : Lars Krombeen
Student id : 4280709
Email : l.krombeen@student.tudelft.nl

Abstract

Agile software development is a popular approach for developing software. Another
important topic of research in software engineering is code quality. Unfortunately, a mini-
mal amount of extensive research has been done on how these two influence each other. The
goal of this study is therefore to explore the connection between these two using a qualita-
tive approach. To understand this connection we will use Grounded Theory as a qualitative
methodology to interview 20 participants across two organisations. In doing so we present
a detailed description of Grounded Theory implementation and the results we obtain from
it. The results are used to explore the relation between code quality and agile software de-
velopment. The results show that team empowerment is the core relation between them.
The results are structured in a theory which establishes four core values for achieving team
empowerment, conditions that apply to these values and which practices can be applied to
stimulate the conditions. The outcomes of the study are further verified using an online
questionnaire across multiple countries. The theory will be expanded further to establish
theoretical links between Agile best practices and code quality metrics to give teams con-
crete solutions to improve their code quality scores.

Keywords: Empirical research, Software engineering, Grounded Theory, Code quality,
Agile software development, Team empowerment

Thesis Committee:

Chair : Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor : Dr. Ir. F.F.J. Hermans, Faculty EEMCS, TU Delft
Company supervisor : D. Fraser, Capgemini
Committee Member : Dr. W.P. Brinkman, Faculty EEMCS, TU Delft

l.krombeen@student.tudelft.nl




Preface

Before you lies the resulting report of a project that lasted from March 2018 to October 2018 for
obtaining the degree of Master of Science in Computer Science. Even though this work might
not be that typical for a Computer Science student, it made me learn a lot about conducting
rigorous and structured research. Moreover, I was able to improve social skills such as taking
interviews, which is less focused on at the university’s department of Computer Science. There
are a couple of people I would like to thank for making this research possible.

First of all, I want to thank Felienne Hermans for her constant supervision and 24/7 avail-
ability. Finding a topic for my thesis was difficult and being able to brainstorm with you greatly
helped. Furthermore, I would like to thank you for your counselling and supervision during
the project. It aided my capabilities as a researcher and provided insights I would have possi-
bly overlooked. Secondly, I want to thank Arie van Deursen because, in the meetings we had,
you gave me insights into directions the research could go. Next, I would like to thank Sohon
Roy. As an inexperienced researcher who never conducted interviews you helped me in getting
started. The tips about interviewing and the feedback you gave on my initial questions helped in
improving the quality of the interviews.

None of this project would have been possible if Frank Singendonk would not have reached
out to me, so I would like to thank him for this great opportunity. Furthermore, I want to thank
Desiree for giving me supervision during the internship. With the full freedom you offered me
and the great opportunities you gave me, this research could be executed smoothly.

I want to thank everyone that participated in the interviews. Without you, the research would
not have been possible. In addition, I would like to thank the respondents of the questionnaires
and those who helped in refining the draft. Without your responses, the research would lack
some serious grounds.

Last but not least, I want to thank my family and friends for their support. Being able to
explain my problems and difficulties I faced during my thesis solved most of them. Thank you
for listening to my endless dialogues about my study. But know that you have done so in the
name of science.

Enjoy reading!

iii



PREFACE

Lars Krombeen
Delft, the Netherlands

October 20, 2018

iv



Contents

Preface iii

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Relation Between Code Quality and Agile Software Development 5
2.1 Agile Software Development and the Scrum Framework . . . . . . . . . . . . 5
2.2 Code Quality Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Code Quality Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Code Quality in Agile Software Development . . . . . . . . . . . . . . . . . . 13

3 Grounded Theory 15
3.1 Fundamentals of Grounded Theory . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Straussian GT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Experimental Design 19
4.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Qualitative Phase: Grounded Theory . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Quantitative Phase: Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Qualitative Results 27
5.1 Coding Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Emerged Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Verifying the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



CONTENTS

6 Quantitative Results 39

7 Agile Software Development Best Practices for Improving Code Quality 43
7.1 Agile Software Development Best Practices . . . . . . . . . . . . . . . . . . . 43
7.2 Relating Best Practices to Measurable ISO/IEC 25010:2011 Characteristics . . 45

8 Revisiting the Research Questions 49

9 Discussion 51
9.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.2 Limitations of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10 Conclusion and Future Work 53
10.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 55

A Consent to Participate Form 61

B Example of Axial Coding Components 65

C Concept and Category Definitions 67

D Interview Questions 71

E Key Quotations 83

F Questionnaire 95

G Agile Software Development Best Practices Poster 103

vi



List of Figures

2.1 Characteristics and the related subcharacteristics of product quality properties as
defined by ISO/IEC 25010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Overview of our implementation of the Straussian Grounded Theory Method. . . . 20
4.2 Example of components and their linkages. . . . . . . . . . . . . . . . . . . . . . 22

5.1 Resulting concepts and categories from the Open and Axial Coding. See Appendix C
for the full definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Values of achieving Team Empowerment, the conditions behind the values and prac-
tices mentioned on how to implement these conditions. . . . . . . . . . . . . . . . 30

6.1 Whisker plots of Likert scales for each question, where 1 = strongly disagree and 5
= strongly agree (dotted line = mean, blue line = 3.5 threshold). . . . . . . . . . . . 40

B.1 Example of our Axial Codes and Components after the first two interviews. . . . . 66

vii



List of Tables

2.1 Static analysis tools/organisations and the characteristics they measure. . . . . . . 12
2.2 Agile software development best practices and the source which discusses their use-

fulness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Participants and Experience (P# = Participant Number, BA = Business Analyst, Dev
= Developer, AC = Agile software development Coach, PO = Product Owner, SM =
Scrum Master, ASD = Agile software Development) . . . . . . . . . . . . . . . . 23

6.1 Link between the questions numbers (Appendix F) and the component numbers in
the theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1 Best practices and how they can increase ISO/IEC 25010:2011 metric measurements. 46

C.1 Grounded Theory Concepts and Categories, and their definitions. . . . . . . . . . . 67

D.1 Key Questions asked by the interviewer . . . . . . . . . . . . . . . . . . . . . . . 71

E.1 Key Quotations of P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
E.2 Key Quotations of P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
E.3 Key Quotations of P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
E.4 Key Quotations of P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
E.5 Key Quotations of P5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
E.6 Key Quotations of P6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
E.7 Key Quotations of P7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
E.8 Key Quotations of P8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
E.9 Key Quotations of P9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
E.10 Key Quotations of P10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
E.11 Key Quotations of P11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
E.12 Key Quotations of P13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
E.13 Key Quotations of P14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
E.14 Key Quotations of P15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

viii



List of Tables

E.15 Key Quotations of P16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
E.16 Key Quotations of P17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
E.17 Key Quotations of P18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
E.18 Key Quotations of P19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
E.19 Key Quotations of P20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ix





Chapter 1

Introduction

When developing software, customers usually want products of high quality. Characteristics
such as security and maintainability play a main factor in determining if the developers have
produced high-quality software [36]. Different tools aid developers in producing this by calcu-
lating a statistical analysis of the code and indicate critical errors and how to solve them.

Code quality has been a topic that has been researched frequently. Studies report on factors
that cause software to be of high or low quality and the way in which this affects the business
value, or what risks these factors can cause [9]. Other studies take a more technical view and
discuss what good quality means [11, 52]. Nagappan et al. [44] researched the effects of the
organisational structure on code quality.

In a world where Agile software development and Scrum become more and more popular,
processes are being changed which could affect code quality. Unfortunately, studies on the im-
pact of code quality in relation to Agile software development are scarce. The work of Nagappan
et al. [44] is one of the few studies that is related to this thesis, but it has not included the soft-
ware methodology factor such as Agile software development in the organisational structure.
Multiple Agile software development frameworks/methodologies exist that allow developers to
work in an Agile way. In these, the creators state how their methodology can cause the product
quality to improve. An example is the Definition of Done which is a property of the Scrum
framework [55]. The Definition of Done ensures that the product has the quality the team agreed
upon.

In this paper, we aim to understand the relation between code quality and agile software
development by using a qualitative research on the relation between them. These relations are
studied using Grounded Theory, which is a research methodology. Using this we can explore
and define new theories about the relations in a qualitative phase using interviews. Although
Grounded Theory was originally designed for researching social sciences, successful imple-
mentations have been made in the field of computer science [3, 34] and discussed by Stol et al.
[59]. The Grounded Theory is further verified using a quantitative phase which makes use of
a questionnaire. We will take this one step further and design a practical solution to improve
code quality in Agile software development that provides insights for developers on how they
can adjust their processes to improve their code quality metrics.

1



1. INTRODUCTION

The contributions of this thesis are as follows:

• A theoretical model that explains the relations between code quality and Agile software
development.

• A quantitative survey that further verifies the qualitative results from the Grounded The-
ory.

• A practical solution for developers to build code with a higher quality in Agile software
development or to improve their code quality metrics.

1.1 Research Questions

The first step in developing a practical means to increase the code quality of Agile software
developers requires us to research how code quality and Agile software development are related.
Since there is limited relevant literature on this topic we perform a qualitative exploratory study
to establish this relation followed by a quantitative phase to verify the general applicability of
the theory.

RQ1: What is the main phenomenon and its relations that explain the relation be-
tween code quality and Agile software development and how does this explain it?

The results of the theory are only applicable to the sample set of the interviews. Moreover,
although the theory will be correct, it will most likely not be complete. The next step is to use the
results and compare it to a larger sample set. This will increase the applicability of the results.
However, it will not expand the theory. Thus, our second research question is focused around
verification of RQ1 and is as follows:

RQ2: How does the theory about code quality in Agile software development com-
pare to global experience?

The results from the first two research questions are based on interviews and interpretations.
Based on the results a theory will be defined, indicating what is important to do in Agile software
development which provides basic insights developers can use to increase their code quality. The
theory consists of different layers where the bottom layer contains practices. These practices
are analysed in which way they impact code quality and which implementations enhance code
quality. Moreover, the analysed data from the interviews are complemented with practices we
find in literature that fit into the model. Our third research question is therefore:

RQ3: Which Agile software development practices impact code quality and how
should they be implemented to enhance code quality?

2



1.2. Chapter Overview

Having established best practices that impact code quality containing a description of how
they are best implemented to enhance code quality has not given us a practical solution to the
problem. Therefore, we take a pragmatic approach to bring the results back into practice. We
will do this by linking the best practices to subcharacteristics of the ISO/IEC 25010:2011 stan-
dard. This gives developers an idea of what processes they can change to improve their scores.

RQ4: What are best practices in Agile software development methodologies, how
are they linked to (sub)characteristics of code quality and how can they be used to
increase quality scores through enhancing Agile processes?

1.2 Chapter Overview

The remainder of this paper is structured as follows. Chapter 2 contains a short literature survey
that describes basic aspects about Agile software development, code quality and the relation
between them. We will describe Grounded Theory in Chapter 3. Chapter 4 will further explain
the goal of our research and provides an overview of our experimental design to answer our
research questions. The results of the Grounded Theory and the resulting theory are established
in Chapter 5 and provide a theory that answer RQ1. Chapter 6 continues on the Grounded
Theory and conducts our quantitative phase to further verify the theory and answer RQ2. The
results are given a pragmatic approach to bring the theory and reality together in Chapter 7 to
develop a practical use of the model. Best practices that answer RQ3 are given and linked to
metrics from the literature survey to answer RQ4. We revisit our research questions in Chapter 8
which will be followed by a discussion in Chapter 9.

3





Chapter 2

Relation Between Code Quality and
Agile Software Development

We start this thesis with a short literature survey. The goal of this survey is to get a basic under-
standing of the rules of Scrum and to give a definition of Code Quality. Once the concepts of our
study have been defined we reviewed literature that discusses how Agile software development
impacts Code Quality. Part of this literature review was conducted before the Grounded Theory
and a part was done after. We combined all literature reviews and put it first in the report to give
the reader all the information that is required.

Although multiple perspectives on code quality exist we focus on the developers’ perspec-
tives. For example, an end-user might define code quality as the absence of bugs, but developers
might see code quality as the ease with which the code is to be read or extended.

2.1 Agile Software Development and the Scrum Framework

Agile software development is an umbrella term for the development of software that follows
the values of the Manifesto for Agile Software Development [8]. The main characteristic of
Agile software development is that the team is able to respond to rapidly changing or uncertain
requirements in complex projects.

Although there are multiple methodologies and frameworks for Agile software development,
we only focused on Scrum because this framework is mostly used in companies around the
globe [24].

All information originates directly from the Scrum guide, last modified November
2017 [56], which is the official Scrum body of knowledge.

5



2. RELATION BETWEEN CODE QUALITY AND AGILE SOFTWARE DEVELOPMENT

2.1.1 The Rules of Scrum

Scrum provides a lightweight framework that is simple to understand but difficult to master and
has been used since the 1990s although officially documented in 2001 [54]. The framework is
defined as follows:

“Scrum (n): A framework within which people can address complex adaptive prob-
lems, while productively and creatively delivering products of the highest possible
value.“ [56]

Scrum is not limited to software development and can be used for any kind of business.
Scrum deals with complex problems that rapidly change. It focuses on small self-organising
teams that are highly flexible and adaptive by employing an iterative approach rather than the
traditional Waterfall approach.

Three pillars and five values uphold and are embodied by the Scrum Team. The first pillar
is Transparency. It states that important aspects of the process must be made visible for the
responsible people. A common standard should be agreed upon so that everyone has a com-
mon understanding of what is seen. The second pillar defines Inspection. All artefacts must
frequently be inspected by the Scrum Users. It should not be too frequent that the inspections
disturb the work but sufficient to detect undesirable variances at an early stage. The final pillar,
Adaptation, states that when an artifact is observed to have undesirable variances and will result
in a product that is unacceptable, the artifact must be adjusted as soon as possible. The five
values are Commitment, Courage, Focus, Openness and Respect.

2.1.2 Roles and Responsibilities

A Scrum team has three roles i.e. Product Owner, Scrum Master and the Development Team.
The teams are self-organising and cross-functional. Practices mentioned are discussed in sec-
tion 2.1.3 (Sprint (Planning/Review/Retrospective/Backlog), Daily Scrum, Product Backlog,
Definition of Done).

Product Owner

The Product Owner has the responsibility to maximise the value of the product that is being
developed by the Development Team, and for managing the Product Backlog. The set of re-
quirements as defined in the Product backlog are the solely requirements the Development Team
works with. The Product Owner turns the issues of the Product Backlog into features to be
developed.

Scrum Master

The Scrum Master is responsible seeing that the Development Team and Product Owner un-
derstand and correctly apply Scrum, and that the project is progressing as planned. The Scrum
Master also helps in the interaction between external parties and the Scrum Team and decides
which interactions are helpful and which are not. The interactions are guided and changed if
required by the Scrum Master to maximise the value created by the Scrum Team.

6



2.1. Agile Software Development and the Scrum Framework

Development Team

The Development Team consists of multiple individuals that develop the product. At the end of
each Sprint, the team delivers a potentially releasable increment of the product. The team works
on the assigned tasks from the Product Backlog during the Sprint.

The size of the Development Team is between 3 to 9 members. Fewer members put con-
straints on the amount of work that can be done in a Sprint and more than 9 members require
too much coordination. The Product Owner and Scrum Master are not included in the Develop-
ment Team unless they work on items of the Sprint Backlog. Scrum has been proven to work
in large organisations with over 800 employees, but the organisation structure has to be split up
into multiple Scrum teams [40, 53].

2.1.3 Scrum Practices

Scrum defines artifacts as documents which represent work or value and provides Transparency
and opportunities for Inspections and Adaptations.

Sprint

A Sprint is an increment of the system. It has a fixed duration of one month or less during which
all tasks for the next potentially releasable product are developed. The project is split up into
multiple Sprints which all have the same duration and take place at the same location.

Once a Sprint has begun there can be no changes that endanger completing the Sprint Goal,
the quality of the product is only increased. While more is learned about the project, the Product
Owner is notified after which the decision can be made to modify the Product Backlog.

If the Sprint Goal becomes obsolete the Product Owner is allowed to cancel a Sprint. If
a Sprint is cancelled all the tasks that are done are reviewed and added to the product if it
is releasable. The remaining Backlog items are returned to the Product Backlog. However,
Sprint cancellations rarely happen due to the short duration of Sprints and the additional time
replanning takes.

Sprint Planning

The tasks that have to be done during a Sprint are defined in the Sprint Planning. At the begin-
ning of the Sprint, the Sprint Planning is created by the Scrum Team, and is a time-boxed event
of 8 hours for monthly Sprints and shorter for shorter Sprints (e.g. 4 hours for 2-week Sprints).
Tasks contained in the Sprint Planning have a maximum effort of eight hours. If a task takes
longer it should be split up into smaller tasks.

The Sprint Planning is meant to determine what can be delivered in the coming increment
and what work needs to be done to deliver this. The Product Owner defines the objective of the
Sprint and which items of the Product Backlog need to be finished to achieve the goal. When
deciding how much work can be done, the team takes input from the Product Backlog, the
previous Iteration, the projected capacity of the Development Team, and the past performance
of the Development Team. The Development Team is responsible for selecting the number of

7



2. RELATION BETWEEN CODE QUALITY AND AGILE SOFTWARE DEVELOPMENT

items selected from the Product Backlog. During the Sprint Planning, the Sprint Goal is defined.
This is the objective that will be met in the coming Sprint.

When the items of the Product Backlog have been selected, the Development Team decides
how this functionality can be put into a Done product increment. The plan to deliver this and the
selected items from the Product Backlog are called the Sprint Backlog. The Development Team
is able to explain to the Product Owner and the Scrum Master how they will accomplish their
Sprint Goal.

Daily Scrum

Every day the Development Team holds a Daily Scrum meeting which is a 15-minute time-
boxed event and is held at the same place and time each day. In the meeting, the Development
Team plans the work that will be done in the next 24 hours.

The Daily Scrum is used to inspect the made progress towards the goal and inspect the
progress towards the work that will be done next. After each Daily Scrum, the Development
Team understands how to self-organise to accomplish the Sprint Goal and finish the expected
increment.

The Daily Scrum has a maximum duration of 15 minutes, which is enforced by the Scrum
Master. If more discussion is required the team can meet immediately after the Daily Scrum.
The Scrum Master also makes sure that the Development Team is not interrupted during the
meeting.

Sprint Review

A Sprint Review is held at the end of each Sprint. The increment is inspected and the Product
Backlog is changed if needed. During the Sprint Review, the Scrum Team and stakeholders
involved look back at what was done in the Sprint and what can be improved to optimise value.

The Sprint Review takes four hours at most for Sprints that have a duration of a month and
shorter for shorter Sprints. The Scrum Master is responsible for the fact that it does not take
longer than required and that all attendees understand the purpose of the meeting.

Sprint Retrospective

After the Sprint Review, the Scrum Team holds a Sprint Retrospective. While the Sprint Review
was focused on the product, the Sprint Retrospective focuses on the Sprint Team itself.

The Sprint Retrospective takes three hours at most for a Sprint that takes a month, and shorter
if the Sprint is shorter. The Scrum Master has the responsibility that it does not take longer than
required and that all attendees understand the purpose of the meeting.

The Sprint Retrospective has three purposes. The first is to inspect the quality of the last
Sprint with regards to people, relationships, processes and tools. Secondly, to find items that
went well and how to improve it even further. Finally, a plan is created for implementing the im-
provements to enhance the Scrum team’s way of working. At the end of the meeting, the Scrum
Team has identified possible improvements and defined a plan that makes sure it is implemented
in the next Sprint.

8



2.1. Agile Software Development and the Scrum Framework

Product Backlog

The Product Backlog is one of the artifacts of Scrum. It is a prioritised list of everything that is
required to be present in the final product and prioritised by the importance of the items. The
Product Owner is solely responsible for keeping the Product Backlog. However, the Product
Owner can delegate tasks to the Scrum Team if needed. The list of the Product Backlog defines
the requirements that are currently known. Therefore, the Product Backlog cannot be finished
while work has to be completed.

Items in the Product Backlog can be features, functions, requirements, enhancements, and
fixes. An item can have multiple attributes e.g. description, order, estimate and value. Items can
also include an attribute to define when it is done.

There is one Product Backlog. If there are multiple teams working on the same project they
work on the same Product Backlog but on different items. An attribute can be added to the items
in the Product Backlog to allow the items to be grouped for a better overview.

At the end of each Sprint, the Product Owner can monitor the progress towards the goals
by tracking how much work is left after the Sprint compared to the amount of work before the
Sprint.

Sprint Backlog

The Sprint Backlog is the second artifact and contains items that are selected from the Product
Backlog, and a plan to deliver the Increment which realises the Sprint Goal. The Sprint Backlog
makes time predictions about the functionalities that can be delivered in the next Increment and
the amount of work that is needed to deliver it. It also includes at least one of the identified
improvements from the Sprint Retrospective.

The Development Team constantly updates the Sprint Backlog with the estimated remaining
work or removes items from the backlog that are no longer required. The Development Team
is the only party that is allowed to modify the Sprint Backlog. The Sprint Backlog is highly
visible and allows a real-time indication of the amount of work that is remaining. A burn-down
or burn-up chart shows if the team is progressing as expected and can be used to further improve
the transparency of the remaining work.

The increment that is to be delivered is the sum of all Product Backlog items that will be
completed during the next Sprint and of all the previous Sprints. Each increment must be in a
Done state and therefore be in a usable condition, ready to be released.

Definition of Done

The term Done has been used multiple times. What Done means varies per Scrum Team but
it is important that all Scrum Team members share the same meaning of what it means for
something to be Done. Only when something is Done it is considered to be completed and ready
for production. The common understanding of Done is stated in the Definition of Done, which
is a living document.

9



2. RELATION BETWEEN CODE QUALITY AND AGILE SOFTWARE DEVELOPMENT

2.2 Code Quality Standards

At the beginning of a project, a Development Team can create a list of coding rules which they
should follow to ensure the quality of the product. In the Scrum framework, a Definition of
Done is a living product which ensures that the integrated features are of high quality. Ensuring
high-quality software is an important value for clients [57].

Using these rules the developers can ensure consistency and quality of their product. Knowl-
edge and experience play an important role in improving this further. Developers can also par-
ticipate in discussions or do code reviews to empower each other. However, the meaning of
high-quality software is different for developers [49, 57]. What one developer values in terms of
code quality may be different than what his peers value.

We have used the word quality six times in this section without the need of giving a defi-
nition. Everybody has a basic understanding of what quality means but it is difficult to give a
proper definition. The Cambridge dictionary defines quality as:

“of a high standard.“1

When we look at the definition of code quality we see different ones in the literature, or lit-
erature which only uses the term code quality without giving a definition [13, 33, 23]. However,
if there is no agreement on a single definition for code quality it cannot be measured properly.
As a result, if we cannot measure it, we do not have enough knowledge on the topic. To quote
William Thompson:

“I often say that when you can measure what you are speaking about, and express
it in numbers, you know something about it; but when you cannot measure it, when
you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory
kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science, whatever the matter may be.“ (William Thompson,
1883)

Although this quote is about physical science it illustrates one of the challenges when dis-
cussing code quality. Many existing definitions of code quality exist and discuss how software
is being built best.

The Scrum framework provides a Definition of Done which ensures the quality of the prod-
uct. However, this is a definition made by the Development Team and does not have to contain
any rules related to Software Quality. This makes it difficult to define and measure the code
quality of the product delivered, or what code quality means in this context.

To give a meaning to code quality we looked at companies that measure it. Since they are
able to measure it, they know what they are talking about, according to William Thompson. This
allows us to give meaning to the term code quality and provides knowledge on how to determine
it in software projects.

1https://dictionary.cambridge.org/dictionary/english/quality

10

https://dictionary.cambridge.org/dictionary/english/quality


2.2. Code Quality Standards

Figure 2.1: Characteristics and the related subcharacteristics of product quality properties as
defined by ISO/IEC 25010.

ISO standards exist which define code quality. This standard is commonly used in literature
and provides common ground we can use (e.g. [36, 45, 50]). Moreover, there are companies
(e.g. CISQ2 and Software Improvement Group3) that offer services to measure code quality
evaluations. They use measures that directly follow from these standards. The Consortium for
IT Software Quality (CISQ) is one of the prominent parties in defining how to automatically
measure code quality.

2.2.1 ISO/IEC 25010:2011

ISO standards define requirements, specifications, guidelines or characteristics that can be used
to ensure that materials, products, processes and services are fit for their purpose4.

ISO/IEC 9126 was the ISO standard for the evaluation of code quality and was replaced
by ISO/IEC 25000 in 2005, which was followed by ISO/IEC 25010 in 2011, and is part of the
SQuaRE series of International Standards5.

The standard defines a model which categorises the Product Quality based on eight dif-
ferent characteristics (i.e. functional suitability, reliability, performance efficiency, usability,
security, compatibility, maintainability and portability). Each characteristic is composed of a
set of related subcharacteristics which is displayed in Figure 2.1. The full descriptions of the
(sub)characteristics are defined in one sentence and can be found in footnote 5.

2http://it-cisq.org/
3https://www.sig.eu/
4https://www.iso.org/standards.html
5http://iso25000.com/index.php/en/iso-25000-standards/ISO/IEC25010:2011

11

http://it-cisq.org/
https://www.sig.eu/
https://www.iso.org/standards.html
http://iso25000.com/index.php/en/iso-25000-standards/ISO/IEC 25010:2011


2. RELATION BETWEEN CODE QUALITY AND AGILE SOFTWARE DEVELOPMENT

2.3 Code Quality Measurements

The (sub)characteristics of ISO/IEC 25010:2011 do not provide a description of how to accu-
rately measure them. Moreover, not all characteristics can be measured automatically/statically
e.g. Functional Suitability. In this Section, we explored which characteristics can be measured.
We linked them to Agile software development best practices to give an indication of which pro-
cess to improve and how to get a higher score for a measurement for one of these characteristics
in Chapter 7.

We studied multiple code quality analysis tools and which characteristics they measure.
Many tools are available and there is no best tool. Therefore, we researched tools that were
commonly mentioned on developer fora, blog posts or used in GitHub open source projects.
We made sure that we covered enough tools to have a clear understanding in which character-
istics of the ISO/IEC 25010:2011 standard can be measured automatically. An overview of the
researched tools is given in Table 2.1.

Table 2.1: Static analysis tools/organisations and the characteristics they measure.

Tool/Organisation Measurements
CAST Robustness, Efficiency, Security, Changeability, Transferability,

Technical Debt, Size
CISQ Reliability, Performance Efficiency, Security, Maintainability
Codebeat Complexity, Duplications, Security
Coverity Scan Security
Klocwork Robustness, Security, Maintainability
SIG Maintainability
SonarQube Reliability, Security, Maintainability, Coverage, Duplications,

Size, Complexity
Veracode Static Analysis Security

Although tools give different names to their measurements, we can identify four measurable
ISO/IEC 25010:2011 characteristics from their documentations: Reliability, Performance Effi-
ciency, Security and Maintainability. Additionally, Static Application Security Testing (SAST)
is a functionality commonly implemented in tools. Furthermore, issues in these characteris-
tics require work to be done to fix them. The amount of work that is needed is referred to as
Technical Debt, which is also measured by multiple tools.

12



2.4. Code Quality in Agile Software Development

The measurements of the tools are based on predefined rules. These rules can be adjusted
to suit the needs of the team. This complements the findings that everyone has a different
perspective on code quality and teams can modify the tools to enforce their definition of code
quality.

2.4 Code Quality in Agile Software Development

Literature shows that Agile software development has quality assurance in its processes [6, 28,
4, 10]. However, we found a minimal amount of studies that discuss how Agile software devel-
opment influences code quality [35]. Therefore, we included unpublished literature that could
be relevant. As a requirement, this literature had to be based on data from trusted sources, and
be posted by an expert on sites related to the topic discussed.

Huo et al. [35] researched software quality assurance in the Waterfall method and discussed
how this is done in Agile software development methods. Although it was concluded that Agile
software development and Waterfall cannot be compared when looking at software quality, links
to code quality and Agile software development processes are discussed. Unfortunately, the
quality assurance processes of the Waterfall model were taken and with that perspective it was
discussed how Agile software development processes are related to those processes. This can
possibly have resulted in lacking practices due to a missing perspective from the Agile software
development approach only.

Some Agile software development processes are given that can be used for software qual-
ity assurance. These are as follows: system metaphor, architectural spike, (on-site) customer
feedback, refactoring, pair programming, stand-up meetings, cyclic redundancy check, simplify
problems, pass 100% unit test, continuous integration, acceptance testing, code inspections, col-
lective code ownership and using static code analysis tools.

One of the goals of this thesis is to establish Agile software development best practices to
increase code quality metrics. This does not limit us to practices that are solely used in Agile
software development. Therefore, the discussion about commonly used best practices described
in a blog post by Dolan [26] can be useful later in the study. Five core categories are given in
which practices can be applied for code quality assurance. These are Code, Team, Automation,
Process and Testing. Useful Concrete practices that are given are: using static analysis tools,
document code functionality, do reviews, pair programming, collective code ownership, collab-
orative meetings, automated testing of committed changes, automatic verification of committed
changes, regression testing, minimal technical documentation, TDD, unit testing, integration
testing, use coverage tools, automated GUI testing.

Dolan [26] and a forum on Stack Exchange6 mention the balance between quality and ve-
locity in Agile software development. It is discussed that Agile software development does not
necessarily impact code quality, but that it has some built-in quality assurance.

6https://sqa.stackexchange.com/questions/25897/will-implementing-Agile-generally-impro
ve-code-quality

13

https://sqa.stackexchange.com/questions/25897/will-implementing-Agile-generally-improve-code-quality
https://sqa.stackexchange.com/questions/25897/will-implementing-Agile-generally-improve-code-quality


2. RELATION BETWEEN CODE QUALITY AND AGILE SOFTWARE DEVELOPMENT

The limited amount of related literature makes any claims about the relation between code
quality and Agile software development disputable. There is a limited amount of organisations
that work completely Agile and even then the code quality depends on the implemented Agile
processes and how they are followed [53]. Since Agile software development is mostly in a state
that is not fully mature, organisation use different practices that work best with the current
state of their Agile software development implementation. Although different solutions are
given, we observed that Agile software development processes do impact code quality, but the
reasons behind it are not properly researched or unpublished. However, we have discussed useful
literature which can be used to complement our results.

We conclude this section with an overview of discussed Agile software development best
practices that impact the software in Table 2.2. The overview can be used later in the research to
establish which Agile software development practices impact code quality and how they should
be implemented to increase the code quality.

Table 2.2: Agile software development best practices and the source which discusses their use-
fulness.

Best Practice Reference
Acceptance Testing [26], [35]
Code Reviews [26], [35], [37]
Collective Code Ownership [26], [35]
Continuous Integration [25], [26], [35]
Customer Feedback [4], [6], [35], [47], [68]
Cyclic Redundancy Check [26], [35], [37]
Frequent Feedback [37], [41],[47], [68]
Peer Programming [4], [6], [26], [35], [47]
Reduced Documentation [4], [26]
Refactoring [4], [6], [35], [37], [47]
Regression Testing [25], [26]
Stand up meetings [25], [35]
Test Driven Development (TDD) [4], [6], [26], [37]
Unit Testing [25], [26], [35], [37], [47]
Use Static Code Analysis Tools [26], [35], [37]

14



Chapter 3

Grounded Theory

Grounded Theory (GT) is a methodology to do qualitative research where researchers systemat-
ically generate theory from data [30]. The idea was first coined by Glaser in 1967 and provides
a means to generate theory rather than validate existing theory. In the book of Bryant and Char-
maz [14], Grounded Theory is described as a contested concept. From this dispute, three main
streams are acknowledged [3]: Classic or Glaserian GT, Straussian GT, and Constructivist GT.

Grounded Theory focuses on any kinds of data (e.g. interviews, transcript, documents) from
which the researcher observes what is going on. Theories that are created can be tested by
observing new and old data. This way the researcher inductively verifies new thoughts until a
theory is defined that is grounded.

The constant collection and analysis of data is a core feature in doing Grounded Theory re-
search. However, the first version of Grounded Theory defined many ambiguous procedures how
to properly do Grounded Theory, which caused disagreements. As a result, multiple researchers
diverged in the precise definition of Grounded Theory leading to three different versions as dis-
cussed by Strauss [62] and Adolph et al. [3].

We discussed that Agile software development impacts code quality but that it is not ex-
plained why. Grounded Theory gives us a means to find this theory.

3.1 Fundamentals of Grounded Theory

Despite the split in Grounded Theory methodologies, fundamental concepts exist which are
shared between the different versions. Stol et al. [59] performed an extensive empirical study
on studies that claim to use Grounded Theory. In their definition they describe core features of
Grounded Theory. We provide an overview of their findings because they give an overview of
what should be rigorously done when performing any Grounded Theory research:

• Limit Exposure to Literature. Instead of doing a comprehensive literature survey at the
beginning of the study, researchers should limit the exposure to it to keep an open-minded
look on the subject [31, 61]. If the researcher is exposed too much, a bias can develop
from which theories and ideas emerge, which contradicts the goal of Grounded Theory.

• Treat Everything as Data. Everything is data and can be used in research [31, 59, 32].

15



3. GROUNDED THEORY

• Immediate and Continuous Data Analysis. The researcher begins analysing data when
obtained. The analysis acts as the basis for the next data that will be obtained [30, 16].

• Theoretical Sampling. Theoretical Sampling is performed after the analysis of data to
fill gaps in the theory or to further explore concepts [30, 16, 61].

• Theoretical Sensitivity. Theoretical Sensitivity is the ability of the researcher to make
concepts and connections between them. Creativity is an important role in this pro-
cess [32, 61].

• Coding. During the Coding process the researcher constructs analytical codes and infers
theoretical categories from data [30].

• Memoing. The researcher writes Memos to write down thoughts. These Memos help the
researcher to structure data and to construct categories and their relations. If the stage of
Memoing is skipped, the researcher is not following Grounded Theory [32].

• Constant Comparison. From the beginning of the study the researcher constantly com-
pares data, memos, codes and categories with each other and with new data [30, 60, 16].

• Memo Sorting. During the study the researcher must continuously go through all memos
and theories to find a core category. Similar to Memoing, Memo Sorting is critical in the
procedures of following Grounded Theory [61, 32].

• Theoretical Saturation. Theoretical Saturation is the point where new data no longer trig-
ger revisions or modifications of the theory [30]. When Theoretical Saturation is reached
the researcher can stop collecting and analysing data and a resulting theory has been de-
fined that is grounded.

3.2 Straussian GT

We decided to follow the Straussian GT. The well-defined procedures and rules make it easier
to apply for new researchers in the field of qualitative research [20, 60, 19]. It also allows, but
does not require, a definition of Research Questions before the start of the study. Moreover, a
short Literature Study is allowed at the beginning of the study. Following the Straussian GT we
can propose a general research question which we can use as basic guidance for the study, and
perform a basic literature survey to get familiar with the basics of the Scrum methodology and
code quality which has already been discussed.

3.2.1 Procedures

We used the published guidance of Strauss and Corbin [61] for our research. The publication
defines 11 procedures one should follow to rigorously do Straussian GT. We provide a short
summary of each procedure.

16



3.2. Straussian GT

Data Collection and Analysis are Interrelated Processes. This procedure is similar to the
core feature Immediate and Continuous Data Analysis. Strauss and Corbin [61] define a stricter
policy where the researcher collects data, analyses those pieces of data and repeats that process.
Hence, the researcher must complete the analysis before collecting new data.

Concepts are the Basic Units of Analysis. The researcher works with concepts of data. The
concepts serve as the basic units for theory, rather than raw data. As the analysis continues the
concepts become numerous and more abstract.

Categories Must be Developed and Related. Concepts that relate to similar phenomena can
be grouped to form categories. Categories are more abstract than the concepts they represent and
should be compared to highlight similarities and dissimilarities which in turn is used to produce
lower level concepts.

Sampling in Grounded Theory Proceeds on Theoretical Grounds. The researcher draws
samples in terms of concepts, their properties, dimensions, and variations. As such, the re-
searcher samples incidents rather than specific individuals. The goal of theoretical sampling
is that representativeness and consistency are achieved by building theoretical explanations of
phenomena of the study.

Analysis Makes use of Constant Comparisons. This procedure is identical to the fundamen-
tal Constant Comparison of Grounded Theory.

Patterns and Variations Must be Accounted for. If a variation of the pattern emerges the
researcher should account for it to give data an orderly basis.

Process Must be Build Into the Theory. Strauss and Corbin [60] give two meanings to pro-
cess:

”Process analysis can mean breaking a phenomenon down into stages, phases, or
steps. Process may also denote purposeful action/interaction that is not necessarily
progressive but changes in response to prevailing conditions.”

8. Writing Theoretical Memos is an Integral Part of Doing Grounded Theory. This pro-
cedure is the combination of the core features: Memoing and Memo Sorting.

9. Hypotheses About Relationships among Categories Should Be Developed and Verified
as Much as Possible During the Research Process. Hypotheses about relations among cat-
egories should be verified and adjusted as needed. As soon as a new hypothesis emerges the
researcher takes it into the field and finds data related to it.

17



3. GROUNDED THEORY

10. A Grounded Theorist Need Not Work Alone. Concepts are subject to interpretation.
Discussing concepts and their relationships with colleagues can lead to new insights and in-
creased Theoretical Sensitivity of the researcher, and enables collaborative analysis.

11. Broader Structural Conditions Must Be Analysed, However Microscopic the Research.
The researcher must not be restricted by concepts that are immediately related to the phe-
nomenon but should also consider broader conditions (e.g. cultural, political, social).

3.2.2 Coding

Coding is one of the fundamentals of Grounded Theory during which the researcher attaches
labels to data that are being processed. Strauss and Corbin [61] define three basic types of
coding that all have to be done: Open, Axial and Selective.

Open Coding. Open Coding is the process where data are broken down into codes and cate-
gories. Incidents are labelled with concepts which are compared and grouped together to form
categories and subcategories. Once the categories are identified they become the basis for theo-
retical sampling. Open Coding can be done line by line, sentence by sentence or relating to the
entire document.

Axial Coding. Axial Coding is used to relate categories to their subcategories and relation-
ships are tested against data. All hypothetical relationships are repeatedly tested against new data
until verified or contradicted. Once a hypothesis is compared to data repeatedly, it is properly
tested to the issue of variation and conditions [61]. This phase has similarities to the Theoretical
Coding phase described by Glaser [30].

Selective Coding. Selective Coding is the process where all categories are unified around one
core category. This process is commonly executed at the end of the study. The core category
is the central phenomenon of the research and answers questions such as: What is the main
analytic idea presented in this research [61]? If a single core category cannot be committed to
the research, the researcher should pick the one that captures the essence of the study.

18



Chapter 4

Experimental Design

In this Chapter we describe our research goal and the methodology used to achieve the goal.
We used the work of Creswell’s Exploratory Sequential-Qualitative first Mixed Methods ap-
proach [21]. We conduct an exploratory qualitative phase and further validate it using a quan-
titative phase. Following Straussian GT as defined by Strauss and Corbin [61], we perform
an exploratory qualitative study to provide theories about the relation between Agile software
development and code quality. During this phase semi-structured interviews are conducted to
collect data. The Research Question are modified and new ones emerged during this phase. The
results are tested in a quantitative phase using a questionnaire to cover the lack of validation of
GT [31].

4.1 Goal

The goal of this thesis is to explore the relation between Agile software development and code
quality and provide concrete solutions for developers on how they can improve their code qual-
ity. The literature survey showed that they are related but that it is not clear how or why. We
aim to qualitatively define a theory about the relation. Following Straussian GT we have not
defined initial Research Questions; they emerged as our theory grew. The final theory does not
give a practical solution. Rather it provides insights which can then be used to continue with
establishing a practical solution.

4.2 Qualitative Phase: Grounded Theory

From the procedures and guidelines of Straussian GT, we define a structured approach for con-
ducting a Grounded Theory. Figure 4.1 gives an overview of the steps of our implementation
which we will discuss in this Section.

Data was collected in the form of semi-structured interviews. We prepare 5-10 open ques-
tions and ask additional questions during the interview. These are questions about what, when,
where, how, with what consequences, and under what conditions phenomena occur. The possi-
bility exists that we cannot ask all our prepared questions because answers given are too elab-

19



4. EXPERIMENTAL DESIGN

orate. In that scenario we simply stop instead of rushing the interview or interrupting the inter-
viewee.

The Data Collection via interviews is immediately followed by the Data Analysis. The
analysis consists of Open Coding and Axial Coding. During the Open Coding we explored new
concepts and their properties to define new categories. Axial Coding is used to relate categories
to their sub-categories and explore their relations. Coding is done using the ATLAS.ti 8 tool for
qualitative coding1.

The Open Coding stage takes transcript of the interview and analyses it sentence by sentence.
An interpretation of what the interviewee is saying is given from which conceptual codes are
generated. We compared the concepts to the concepts of previous interviews to group incidents
under categories. During the Open Coding stage we constantly wrote Memos to capture ideas
from which we generate new questions to ask in upcoming interviews. The Categories and
Subcategories deduced from the Open Coding are the main input for the Axial Coding.

Figure 4.1: Overview of our implementation of
the Straussian Grounded Theory Method.

Axial Coding takes the same transcript of
the interview that were used in the Open Cod-
ing and defines categories and their subcat-
egories that were explored while conducting
the Open Coding. During this analysis we
think about the conditions that might lead to
our categories. Hypothetical relationships are
proposed deductively and repeatedly verified
against new interviews. This gives us con-
ceptual linkages. As the research progresses,
we no longer gain new information from the
data. At this point, we have reached Theo-
retical Saturation and proceed to the Selective
Coding phase.

The goal of the iterative process of Data
Collection and Open/Axial Coding is to dis-
cover the Core Category of our study. The
Core Category is the Category around which
all other categories are grouped. The other
categories will always have a relation to the
core category as conditions, actions or inter-
actional strategies, or as consequences. The
first phase of Selective Coding is to determine
the Core Category. Next, we look back at
old data to identify new relations and cate-
gories that revolve around them. The Core
Category represents the central phenomenon
of the study and provides structure for the
Grounded Theory.

1http://atlasti.com/

20

http://atlasti.com/


4.2. Qualitative Phase: Grounded Theory

We finish the process with memo sorting.
During this phase we look back at all memos and group memos that are related. Sorting the
memos provides the theoretical outline of the theory. Memo sorting is used to structure fractured
data.

4.2.1 Extending the GT Model

Grounded Theory generates a significant number of data which has to be constantly compared
to new data. It can be troublesome for new researchers to find meaningful concepts or determine
incidents that have to be explored further in the upcoming interview. To deal with the large
amount of data we added an additional type of coding which we applied before any other type
of coding. We define this coding as Molecular Coding. We gradually decreased the amount of
molecular coding as we grew in processing data, and as the data became more and more linked,
at which point the memoing phase was sufficient to generate hypotheses and ideas where to
conduct the next interview.

During Molecular Coding, we took small pieces of texts or even single words from quo-
tations, which we call components. We can link the components to each other based on the
quotations of the participants. Sorting the components in a hierarchical order gives us two major
advantages. Firstly, it shows areas where the number of components is dense or sparse. Both
can indicate interesting topics to be considered in the next interviews. Secondly, it shows which
components are responsible for the majority of the rest of the components. These can provide
linked concepts that have a potential to be directly linked to the emerging core category.

For example, a participant was discussing what would be an ideal team culture to receive
and process feedback from. From this we obtained the following quotation and components:

Quotation 1.
Interview Quotation: “I think that it is important to feel safe in a team. That you
do not have the feeling that when you make a mistake your throat will be cut but
that you are dedicated to collaborate to find your mistakes and those of others.“ -
P5, Agile Coach / Lead Developer / Scrum Master

Components: Feeling safe in the team, Be allowed to make mistakes, Collaborate,
Feedback, Team Culture.

Figure 4.2 shows how we arranged the components in a sorted graph and how the participant
linked them. In larger sorted graphs we would have more significant components on the right.
We provide the network of components and categories of our first two interviews in Appendix B.
It is important to understand that we sorted this graph top-down instead of left-right to obtain a
better overview. Thus, our most significant component can be found at the top of the network.
Although the components are small, one can see that Team Growth is at the top. Consequently,
Team Growth was included in the third interview.

The second addition to the Grounded Theory we made is a verification phase. Grounded
Theory relies on the interpretation of the researcher. When the theory was defined we returned
to our participants with the results, to verify if they agreed. If multiple participants disagree or

21



4. EXPERIMENTAL DESIGN

Figure 4.2: Example of components and their linkages.

provide similar new insights we can adjust the theory where necessary, reducing the chances of
misinterpretations in the theory. This step is used to verify interpretations.

The final additional we introduced is the quantitative phase. Grounded Theory lacks a proper
verification phase, making it difficult to generalise its findings. The questionnaire in the quanti-
tative phase was used to add a second verification step to the developed theory. This step is used
to verify the theory’s generalisability.

4.2.2 Participants

During the qualitative phase we conducted semi-structured interviews of approximately 40 min-
utes to one hour, either face to face or via Skype, and recorded the audio. The participants came
from two companies, one of which is a multi-national organisation. Its employees work to-
gether (outsourced) with the customers on the product. Additionally, they maintain applications.
During the implementation they adapt to the customer’s way of working. This gives us the pos-
sibility to get multiple perspectives on the way of working with Scrum. Not all participants are
full-time software developers, but they all work with source code or the Agile way of working
in software development.

Before we conducted the interviews we obtained approval by the University’s Human Ethics
Committee to collect and process data. We ensured all data are anonymously and safely stored.
Participants had to sign a consent form before they were able to participate. Participants are
referred to as Pi. The consent form is added to Appendix A. The participants were asked to join
in our research using personal emails or by being approached directly. A total of 20 participants
were interviewed. 19 were done face-to-face and one via Skype. All interviews were carried out
in Dutch. Therefore, the quotations that are given are loose translations.

Table 4.1 shows an overview of our participants, their positions, how long they have worked
in an Agile software development setting, and the method used for their current project. In
addition to the Scrum and Waterfall method, we added the Scrum / Agile software development
method. The participants using this method indicated they used some form of Scrum but made
significant changes to the framework to suit their needs.

22



4.3. Quantitative Phase: Questionnaire

The data collection via theoretical sampling is a continuous process which helps to decide
what data to collect from the next interviews based on the emerging theory. We wanted to have
as much perspective on the topic as possible. Thus we interviewed participants in different roles
with varying experiences. Participants with a preferred role were approached when the emerging
theory required their perspectives. It is worth noting that all participants either work in a Scrum,
Scrum / Agile software development, or Waterfall method. We were unable to interview other
Agile software development methodologies like Extreme Programming.

Table 4.1: Participants and Experience (P# = Participant Number, BA = Business Analyst, Dev
= Developer, AC = Agile software development Coach, PO = Product Owner, SM = Scrum
Master, ASD = Agile software Development)

P# Position(s) Experience
(in years) Method

P1 Coach / Dev 4-6 Scrum
P2 Architect >10 N/A
P3 BA / Dev 1-3 Waterfall
P4 Dev 4-6 Scrum
P5 AC / Lead Dev / SM >10 Scrum / ASD
P6 Dev 4-6 Scrum / ASD
P7 Architect >10 N/A
P8 Architect / Dev 7-10 Scrum
P9 BA / Dev 4-6 Scrum / ASD
P10 Architect / Management 1-3 N/A
P11 Dev 1-3 Scrum
P12 Dev <1 Scrum
P13 Coach / Dev 4-6 Scrum / ASD
P14 Dev <1 Scrum
P15 Dev 1-3 Scrum
P16 AC / BA / PO 1-3 Scrum / ASD
P17 Dev None Waterfall
P18 AC / SM 7-10 Scrum
P19 SM 4-6 Scrum
P20 Tester 4-6 Scrum / ASD

4.3 Quantitative Phase: Questionnaire

The questionnaire is used to obtain quantitative data to verify theories and relations between code
quality and Agile software development. Therefore, the questionnaire contains closed questions
with a Likert scale. The questionnaire was made available online through a Google Form which,
similarly to any online platform, allowed us to target a large group of respondents.

Bradburn et al. [12] describes 18 steps in preparing a questionnaire. We used this as a
general outline in developing our questionnaire. The first steps are dedicated to deciding what

23



4. EXPERIMENTAL DESIGN

is needed. As mentioned we want to further verify the generalisability of the results from the
qualitative phase. From this phase we established four values needed to achieve Team Empow-
erment. Each value had a conclusion containing the relation between code quality and Agile
software development. Thus, we take these conclusions and transform them into a set of ques-
tions. Our hypothesis were that the answers would not diverge significantly from the theory.
Four core questions are given around which the questionnaire has been built:

1. Does pressure reduce code quality and what Agile software development principles en-
hance or decrease the amount of being under pressure?

2. What is the role of function-awareness in the process of writing high-quality code and
how does Agile software development fit in as a non-functional or aid in the process of
creating awareness?

3. What are the main factors of Agile software development in enhancing the code quality?

4. Does the structure of Agile software development enhance/decrease the possibility to
write high-quality code and should/must you change the structure if needed?

These are the core questions of the questionnaire. With these in mind we defined questions
around each theme. Additionally, relevant literature that used a questionnaire were studied to
reformulate and add questions [63, 38, 58, 66]. The consecutive steps require the questions to
be placed in correct order and format to create a draft questionnaire. We used the four values
(Chapter 5) and principles as themes and divided the questions into multiple pages. Respondents
would see approximately six questions per section which involve a single theme. At the end
of these steps we had six sections and 36 questions. For the first five sections, respondents
have five multiple choice options: strongly disagree, disagree, neutral, agree and strongly agree.
Each option is assigned a value from 1-5 (Strongly Disagree = 1 and Strongly Agree = 5) for
the analysis. These sections were concluded with an open question where participants could
elaborate on some answers. The final section contains three open questions to obtain additional
insights into advantages and disadvantages of Agile software development.

Once the draft questionnaire has a form that can be distributed it is tested against the re-
searcher himself, friends or coworkers. The feedback allows the questionnaire to be revised by
changing, adding or removing questions. This step is repeated as long as significant revisions are
made. We used our university peers and direct connections to test the draft. With their feedback
we created the final questionnaire, which is included in Appendix F. The questions were added
to a Google Forms and the link was shared.

In the final steps the researcher analyses the results and reflects on the process to improve
in making future questionnaires. We used spreadsheets for the analysis and to generate statis-
tics. Additionally, Google Forms provides an overview of replies. The information how long a
respondent worked with Agile software development and the methodologies are used to study
possible correlations and to increase the variety of our researched focus group. We included
three questions to the questionnaire which we used to group respondents in the analysis: what
their experience in Agile software development is, the methodology a respondent used and if
the respondent prefers Agile software development over the Waterfall model. The latter can be

24



4.3. Quantitative Phase: Questionnaire

used to compare results against the attitude towards Agile software development. However, the
purpose of the questionnaire is to further verify the theory and is therefore quantitative and not
qualitative. The statistics help in the verification process or can uncover additional topics for
further research.

4.3.1 Data Analysis

Collected data was analysed in two ways. Firstly, we created a boxplot of the Likert scales
to analyse the distributions. The goal of the analyses is to verify the generalisability of the
results. Therefore, we decided that at least the majority of the respondents had to agree to
a statement before it can be considered to be generalisable. The values of the Likert scale
were mapped to a scale from 1 to 5 where strongly disagree maps to 1 and strongly agree to
5. Following the work of Allen and Seaman [5] we took the median to evaluate if the majority
of the respondents agreed. A distribution with a median 3.5 indicates that at least half of the
sample group agrees with a statement. Although the median was the core parameter in deciding
if respondents agreed, we also used the mean since a median would not be affected if half of the
respondents strongly disagreed and the other half agreed. Thus, the threshold of a median of 3.5
or above was complemented with a threshold of an average of 3.50 or above.

Secondly, replies that contained open answers were analysed individually to verify if the
reasons why respondents (dis)agreed could be related to the model. Moreover, we used this
analysis to investigate why respondents agreed or disagreed with each other on similar state-
ments. Answers on open ended questions also allowed us to find reasons why parts of the theory
could not be generalised and how the theory could be modified to agree with both the interview
and questionnaire data.

4.3.2 Participants

To corroborate our interviews and add a verification step in the Grounded Theory process to
answer RQ2, we built a survey to be filled out by a global sample of developers who work in
an agile way. The goal of the survey was to determine the generalisability of the Grounded
Theory, using a Likert scale to calculate how much a respondent agrees. The survey was built
using the work of Bradburn et al. [12]. The created 36 questions were split up into demographics,
questions related to the four main values of the theory and a reflective session of the respondent’s
opinion about agile software development. A total of 24 questions used a Likert scale. The
survey was sent via Twitter and we approached organisations directly. Respondents had four
weeks to fill in the survey.

74 respondents, originating from 11 countries, filled out the survey and had an average of 5.7
years in agile software development. Respondent indicated to have worked mainly with Scrum
(94.5%), Extreme Programming (XP) (35.6%) and Kanban (28.8%).

25





Chapter 5

Qualitative Results

In this section we will discuss the results of the Grounded Theory study in a similar sequence of
the methodology.

5.1 Coding Results

The first step of the data analysis was the Open and Axial Coding and they were applied after
each interview. Additionally, Open and Axial Coding were preceded by our Molecular Coding
during the first interviews. Components and codes established concepts, categories and subcat-
egories which are used to structure the emerging theory.

Concepts and categories are theoretical explanations of phenomena of the study. Our memos
were helpful in determining concepts. We give a quotation and components we extracted from
it as an example in Quotation 2.

Quotation 2.
“It all comes down to culture, the culture of the people of the team and the change
in culture. I will wait until something is put on my desk before I look at it. Instead,
we are responsible as a team for the assignment that is given. And we will work
on it as a team. And if the tester happens to be sick and there is a lot of testing
work that has to be done, we will do that testing work for the tester. We do not wait
until the project manager sends a new tester. Team responsibility, that is linked to
culture, culture of the people but also of the environment.“ - P16, Product Owner

Components: Commit to be responsible, Culture, Self-organising teams.

Quotation 2 shows relations between the coded three components: Commit to be responsi-
ble, Culture, Self-organising teams. At the point where we had reached theoretical saturation
and established a core category, we had a total of 30 concepts. A network of the concepts and
their links is given in Figure 5.1. Additionally, Appendix C gives an overview of the concepts
and their definitions.

The network shows two major branches, A and B. Branch A relates to incidents about code
quality. During the analyses we found that all incidents that were related to code quality had

27



5. QUALITATIVE RESULTS

Figure 5.1: Resulting concepts and categories from the Open and Axial Coding. See Appendix C
for the full definitions.

to do with reducing the development time. Branch B is built from concepts that relate to Ag-
ile software development. Similarly to code quality we found a single concept to explain the
incidents; Agile software development is not about following a framework or methodology, it
is more important to understand why you should do Agile software development. These two
incidents gave rise to the core category Team Empowerment.

Core Category: Team Empowerment

We found that Team Empowerment was a suitable candidate to be the core category of our
research. It accounted for all the observed incidents and occurred frequently in the data during
the selective coding. Team Empowerment means that the team is responsible for the delivery of
the product and possesses everything needed to achieve that goal. From this definition and our
data a theory emerged, explaining the link from code quality to Agile software development via
team empowerment.

28



5.2. Emerged Theory

Thus, the main theme in our research about the relation between code quality and Agile
software development, is Team Empowerment. More specifically, if you want to achieve a high
code quality in an Agile software development project, team empowerment is the value you
should focus on in your Agile software development processes.

5.2 Emerged Theory

The final step of Grounded Theory is to sort the memos and write up the emerged theory. To
connect the data we linked the memos to our categories and their links. From these we shuffled
memos around until we formed an outline of the theory which was organised. An additional
diagram was sketched and linked as we moved the memos around which provided the foundation
for our theory.

The final theory contains three abstraction layers and is built from elements that provide a
link between code quality and Agile software development. It can be seen as a pyramid where
the lower elements support higher ones.

Team Empowerment is the roof of the pyramid and is supported by four values. All val-
ues are required and are the main characteristics and values a team should possess to become
empowered. The lower abstraction level conditions support their respective value. The low-
est abstraction layer, practices, are concrete rules or ideas one can apply in their business to
stimulate the conditions. The practices are determined by repetitive incidents from the inter-
views. Figure 5.2 shows the full overview of values, conditions and practices. Each component
is followed by a number in superscript. This will be used to directly link survey questions to
components.

In this section we will describe Team Empowerment, followed by the values and their lower
abstraction layer and briefly explain how they relate to code quality and Agile software develop-
ment. Additionally, we research related literature on some of the elements to add support to our
claims and possibly fill in the gaps in the interviews. We will wrap up every subsection with a
paragraph on how the value, its conditions and its practices form a relation between code quality
and Agile software development.

5.2.1 Team Empowerment

Team Empowerment requires teams to be self-sufficient, have a corporate authority and take
responsibility to enact their own decisions. Team Empowerment requires four values. Firstly,
if a team is pressurised too much it cannot be empowered. This does not mean that a team
should not have any pressure at all. It should be sufficient to motivate the team without the team
members being overwhelmed, at which point they have to abandon their beliefs to deliver their
work. Developers will rush their work and as a result, code will be less maintainable, contain
less documentation and contain more bugs. Thus the team should work in a Sustainable Pace.

Secondly, Awareness is required for a team to be empowered. With awareness we do not
imply that the team is aware of what individuals are doing. Management needs to acknowledge
the team’s responsibility and allow them to work as they think is best. Awareness involves that
the team informs required parties about relevant processes and what they think is needed. But

29



5. QUALITATIVE RESULTS

Figure 5.2: Values of achieving Team Empowerment, the conditions behind the values and prac-
tices mentioned on how to implement these conditions.

more important is the why-question behind processes. For example, having high-quality code
takes time but is important because it will save time in the long term. It must be made clear that
these non-functionals are part of the product and should be treated as such.

Thirdly, Team Culture determines how the team members interact and think. For a team to be
empowered, the team should have a mindset where they take responsibility for their work. They
take action themselves instead of waiting for tasks. Additionally, they want to keep learning and
improving themselves and deliver the product as best as they can.

Team Process is the final value of Team Empowerment. There is no set of processes that
works for everyone, but they help the team in understanding what is expected of them and what
to expect of others. Clearly defined processes give guidance to the team on how to tackle tasks
which improves their empowerment.

5.2.2 Sustainable Pace

The incident that has been mentioned most is that quality suffers under time pressure. Studies
have similarly shown that pressure on developers decreases the quality of the code [7, 42, 28].
Moreover, Carmel and Agarwal [15] found that a methodology helps in decreasing the pressure,
which also agrees with our Team Processes value. The Team Culture value impacts the ability to
maintain a Sustainable Pace because an empowering culture is required for processes to work.

30



5.2. Emerged Theory

Maintaining a Sustainable Pace is built on top of 2 conditions. The first one is Team Open-
ness. The team members are open to each other and the stakeholders. If they think they cannot
meet the expectations they should inform the right parties. If there is an impediment they should
let the right people know. Being open builds trust between parties. If you can be open you
minimise pressure because you can indicate problems in time. To quote one of our participants:

Quotation 3.
“I have seen some projects where the pressure became too high and you get the
feeling that you cannot say everything anymore. [...] When you make a mistake
you get penalised for having made the mistake instead of having worked together to
prevent it or solve it.“ - P5, Agile software development coach / Lead Developer /
Scrum Master

Moe et al. [43] found that not being open in communication reduces the product quality.
Participants mentioned that one of the easiest measures one can take to create an open environ-
ment is to enable Direct Communication. An example is a single table where the entire team
works. This enables easy communication when an individual requires help, reduces the time
to respond and minimises interpretation errors, but a Skype session can also be a form of Di-
rect Communication. If communication is not direct it can take longer to solve problems and
misinterpretations make it even last longer to resolve it (Quotation 4).

Quotation 4.
“It is important that everyone is sitting together. Often you have a small question
which you cannot post online and wait for an answer.“ - P3, Business Analyst /
Developer

The second condition, Team Autonomy, states that the team is able to make decisions by
itself and solve problems without informing senior staff; it is about being independent. This
also requires some backup from higher management. If higher management keeps interfering,
you cannot achieve team autonomy. Autonomous teams take responsibility, are committed to
deliver, and contain everything needed to achieve this. Participants claimed that all you need to
achieve this is having all the right people on your team who are able to achieve all tasks. Bhasin
[10] found that a high team autonomy combined with corporate responsibility is an important
characteristic for Extreme Programming teams to be successful. However, no direct link with
code quality was researched in this study.

To wrap up, pressure greatly reduces code quality. In order to maintain a Sustainable Pace
one should aim for autonomous teams which have open communication, both internally and
externally. Agile software development promotes open communication. To quote the Manifesto
for Agile Software Development: ”Customer collaboration over contract negotiation” [8]. The
relation with open communication has also been verified by Pikkarainen et al. [46]. Additionally,
Scrum, a framework implementing the Manifesto for Agile Software Development enhances
Direct Communication and team autonomy by enforcing co-located teams and self-organising
teams [55] which is a direct implementation of one of the twelve principles of the Manifesto for
Agile Software Development: The most efficient and effective method of conveying information

31



5. QUALITATIVE RESULTS

to and within a development team is face-to-face conversation. [8]. Moreover, Agile software
development fully promotes a sustainable working pace: ”Agile processes promote sustainable
development. The sponsors, developers, and users should be able to maintain a constant pace
indefinitely.” [8]. Thus the pressure on the team should be minimised to a pace where they can
work in a Sustainable Pace.

5.2.3 Awareness

Awareness defines that every party is aware of relevant processes and why they have been im-
plemented. When a customer wants a product he will be more interested in features and less
in how it is built. The latter includes the code quality and the software development method.
Moreover, developers might not be aware of the method their team is using and why, for ex-
ample, they are using the Scrum framework. The team has to be aware of the value these tasks
add, which was also found by Dybå and Dingsøyr [28], and Vidgen and Wang [65]. Awareness
requires two conditions.

Firstly, Development Roles. Part of the awareness is that all involved parties are aware of
the roles that exist, why they exist and what their responsibilities are. But also that parties are
given the authority to be able to execute their role. This condition finds some if its roots in Team
Culture and Team Autonomy. If you cannot guarantee that employees can execute their jobs
as the processes demand, your processes will not work. Either your culture or structure has to
change which will be discussed in the Team Processes value. Being able to give mandate helps
(Quotations 5 and 6).

Quotation 5.
“Maybe this belongs to culture, but a little acceptance of the role of the Product
Owner, who is the boss of the Agile team. He has to be accepted and supported by
higher management. [...] By giving a mandate, especially to the Product Owner.“ -
P16, Agile software development coach / Business Analyst / Product Owner

Quotation 6.
You have a product owner that has mandate to make decisions. If the company does
not, for example, have a culture to delegate, so that it cannot give mandate to that
product owner. Then a part of your Agile software development process will not
work because that product owner cannot make any decisions on the spot but always
has to put decisions at his higher management of the organisation. - P18, Agile
software development coach / Scrum Master

The second condition of Awareness is Expectation Management. In Scrum the team rapidly
delivers a minimal viable product. This is also a promise from the Manifesto for Agile Software
Development, ”Working software over comprehensive documentation” [8]. However, the fast
delivery of features can give false expectations to the customer of the velocity the team is able
to achieve. Not everything related to the final product is included in the first iterations of the
product and including them will slow the visible velocity down (e.g. security). The client
should be made aware of these tasks, the value and what this means for the delivery of the

32



5.2. Emerged Theory

system. Another aspect of Expectation Management is that the customer is made aware of what
is expected of him and why. If the team follows the Scrum framework the customer must attend
some of the events. The team should make the customer aware of why they are doing Scrum,
how it benefits the process and why the client must attend the events. We took Scrum as an
example scenario, but the same holds for other requirements that are not directly seen in the
final product.

Two practices help in improving Expectation Management. The first practice is to Involve
All Parties in Development. Stakeholders are not aware of the challenges in software devel-
opment. Involving the stakeholders helps in creating awareness of the processes and provides
opportunities at which the stakeholders can be made aware why some features take longer than
others (e.g. caused by technologies) or other non-functionals. Moreover, something will in-
evitably go wrong during the project which can change the expectations and budget. Thus, the
people responsible for the budget should be involved immediately to manage external expecta-
tions (Quotation 7). Another practice is to Begin Small. If a new methodology requires major
changes in the organisation or culture of the business, do no try to implement it fully. Start
small. For example, implement the change in a single team to experience it which allows the
new change to be adjusted to suit the organisation better or vice versa. Small beginnings make
the transition easier and help in creating understanding and awareness. For example, if you want
to use Agile software development, do a proof of concept with one project first (Quotation 8).

Quotation 7.
“It is also about psychology. When you have thought about something you have a
positive attitude towards it. Thus, at the moment that you involve your stakeholders
in the development process, regardless of the influence they possess, at the moment
you include them in the process they are more likely to accept it and use it.“ - P6,
Developer.

Quotation 8.
“The moment an organisation wants to do all their software development in an Ag-
ile way, do not implement it organisation-wide, but start slowly. A customer has
to grow in the Agile software development process and do not expect from the cus-
tomer that he does it perfectly from the first day.“ - P18, Agile software development
coach / Scrum Master

To wrap up, Awareness is important because, without it, your process is likely to fail which
hurts the quality of the product and of the software. As we already mentioned, Agile software
development can give false expectations by delivering rapidly. Therefore, the team should raise
awareness that non-functionals are part of the product. The Scrum framework helps in raising
awareness in two ways. Firstly, it offers clear responsibilities and descriptions of the roles in
the development process. Secondly, the Sprint Review requires the stakeholders to be present
which automatically involves them in the development process [55]. The Manifesto for Agile
Software Development also contains a principle that stakeholders must be involved: ”Business
people and developers must work together daily throughout the project.” [8]. The final link we

33



5. QUALITATIVE RESULTS

can establish between code quality and Agile software development is about the fact that Ag-
ile software development prioritises working software over documentation: “Working software
over comprehensive documentation“ [8]. From our interviews we learned that being able to
understand the code is one of the two values of code quality. Documentation greatly helps in
understanding the code. Therefore, the Agile way of working can hurt quality in the long term
due to a lack of documentation (Quotation 9).

Quotation 9.
“Yes, my previous client had that problem. They had been working for 3 years on
a system and during those years they replaced all their developers. They either
walked away or were sent away. If all your knowledge is part of the code then you
have a serious operational problem.“ - P19, Scrum Master

5.2.4 Team Culture

Team Culture determines how team members think and interact with each other. It is how they
approach tasks and how they interact with obstacles. Processes support the team culture and vice
versa [2]. Everything a team does and their reasons behind it is part of the culture. This does not
necessarily have to be on a team level; it can also be on an individual level. However, we will
focus on the team culture because, based on the interviews, we found that working as a team is
better for the code quality than as a set of individuals. An empowered team takes initiative and
decides what is best to do instead of waiting until the boss tells them what to do. Moreover, they
always want to keep learning and improving themselves.

An empowering Team Culture is supported by two conditions: Commit to Common Goal
and Keep Learning and Improving. The common goal gives guidance to the team on values they
will follow and supports to embrace the culture or to gradually change the culture / processes
(Quotation 10).

Quotation 10.
“I think culture, the way of working cooperatively, in the sense of how do we work
together? How do we do it together? It is extremely important to give a team a
goal. And not a goal like build a project but to give a common goal like at the
end of the project this is what we want to achieve, together.“ - P18, Agile software
development coach / Scrum Master

Having a common goal helps the team in thinking in the same way. Additionally, having a
long-term goal helps in keeping the overview of the software. Instead of only working on tickets
that have to be done, you look at how the functionality that you build fits in the bigger picture
which in turn improves the code quality. A practice related to Commit to Common Goal is to
introduce a Definition of Done / Ready for tasks. Because most of our interviewees were using
Scrum this is most likely the reason why this was repeatedly mentioned. So there could be a
alternative means to achieve a common goal.

34



5.2. Emerged Theory

Additionally, for an empowering team culture, the team should not fall behind on quality or
make sure that if they do, they catch up. Moreover, developers should continuously work on
improving themselves (Quotation 11). An example is the retrospective event from Scrum [55]
during which the team inspects itself and creates a plan for improvement (Quotation 11).

Quotation 11.
“So for example, that every week you sit down together to show a piece of code that
was made during the previous week. Discuss what you have done, the problems that
were encountered and how they were solved. That you review together to see, to
check if it can be improved, what went well. Not to criticise people, it is important
not to do that. But particularly to be constructive, and that you grow and learn
together.“ - P6, Developer

Two practices were repeatedly mentioned. One of which is Feedback. The Scrum retrospec-
tive is an example of feedback. Feedback is a method developers can use to learn from other
developers and to improve each other when they see something that is not built as was agreed
upon or that can be improved. However, feedback can be painful. Therefore, the culture of the
team should enable honest feedback (Quotation 12). Examples of feedback are code reviews,
pull-based development. Work-floor discussions also provide opportunities to give feedback.

Quotation 12.
“When I am writing code, I do not know exactly if it does what it should do. There-
fore, it is always useful that another person looks at it because he looks at it from a
different perspective. Additionally, he does not know exactly what has been written
which allows him to spot mistakes more easily. As an author you are frequently
blind to your own mistakes.“ - P1, Coach / Developer

The second practice that was often mentioned was to implement some kind of Technical
Debt Management which we translated to Eliminate Technical Debt. Although Technical Debt
does not exist in an ideal world, it is likely that it occurs in a project. When a decision is made
that introduces Technical Debt (e.g. caused by a deadline) the team must document it and time
should be reserved to work on it (Quotation 13). Thus, a simple “to do“ will not suffice, it must
be estimated how long it takes to fix the Technical Debt and reserve time to work on it. Because
time is reserved for it the Technical Debt is eliminated since it is accounted for.

Quotation 13.
“You should always do Technical Debt. That is what makes the difference between
quality that is good and bad. There are always situations where you have to compro-
mise due to planning or an upcoming demo. At the moment that you say something
like, it is working, but we should do this and this because it will be better. Then
you should register that as Technical Debt. Keep some kind of backlog for it and
make sure that the product owner, scrum master and the person responsible for the
budget agree with it and that time is reserved to fix it.“ - P4, Developer

35



5. QUALITATIVE RESULTS

The Agile way of working requires a shift in cultural values [17] in which you take respon-
sibility as a team [28]. Agile software development supports Keep Learning and Improving: ”At
regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly.” [8]. Additionally, the Scrum framework provides feedback opportunities,
enforces a Definition of Done, and defines a common sprint goal [55].

5.2.5 Team Processes

Team Processes define the way of working of the team. It guides the team in working together
and empowering itself. Team Processes affect the quality and having them well defined helps in
aligning them with the team its values [44].

In order to get Team Processes that enable the right behaviour for Team Empowerment, the
processes should allow the team to be motivated and align the processes with the culture of the
team. Following defined processes is important when building software. However, one should
not hold onto processes that do not work (Quotations 14 and 15). Moreover, the processes and
the culture must align for them to work [17, 29]. Both the culture and the processes can be
changed to achieve alignment.

Quotation 14.
“Often you stick to a structure because you have to keep the structure without some-
one checking what works in the team. Maybe that is why Agile possibly breaks more
than it should. But on the other hand, you must have some kind of process to build
software.“ - P9, Business Analyst / Developer

Quotation 15.
“You use what you need and remove unnecessary things. It is in line with the orig-
inal tooling. You keep tools that you need and everything that you do not need you
remove.“ - P20, Tester

Establishing Team Agreements on the processes and how they work is a practice one can use
to help to align the culture and processes. However, if parts of the processes do not work the
team should be able to remove them. An important aspect about Team Agreements is how the
requirements are established. This was a topic where interviewees had conflicting opinions. How
you establish the primary requirements is partly determined by the organisation culture. Some
cultures require more certainty than others. There is not a best way to establish requirements, but
it is important that the team agrees on requirements and that they agree with the team’s structure
and culture (Quotations 16 and 17). Team Agreements also define the coding guidelines or what
happens when someone is too late for a meeting. It covers everything that the team agreed upon,
either verbally or in written text.

Quotation 16.
“Scrum provides a nice setup. Here are 20 pages, if you follow that you should do
fine, and it will. However, there comes a moment that you must say, we are doing it
this way. You use the techniques but use what works for you.“ - P14, Developer

36



5.3. Verifying the Results

Quotation 17.
“They want to determine most of the requirements in advance. That can very well
match with the company, with the contract you have. So yes, I think all customers
attempt to implement Agile in their own way of working.“ - P18, Agile software
development coach / Scrum Master

The second condition related to Team Processes, Team Motivation, is the hardest condition
to implement. Every team is unique and has different team members. How they remain mo-
tivated depends on the individuals, but having good management helps [37]. However, people
should be given the time to work on something they enjoy (Quotation 18). You should be given
enough time to remain motivated (Quotation 19). Thus, it is important to balance the work you
want to do and the work that has to be done [42]. Additionally Jones [37] describes best prac-
tices for motivation and morale of technical staff. For example, offer training and educational
opportunities or give awards for outstanding work.

Quotation 18.
“Simply look around to see if everybody is comfortable. Does everybody have
enough work to do? Work that suits him? A good indicator is if he still likes it.
If someone does not like it anymore then something is wrong.“ - P5, Agile software
development coach / Lead Developer / Scrum Master

Quotation 19.
“Maybe allow people to work on tasks they want. Because then you will get a better
motivation.“ - P3, Business Analyst / Developer

Agile software development does not define Team Processes. However, one of the Agile
software development principles states that ”Build projects around motivated individuals. Give
them the environment and support they need, and trust them to get the job done.” [8]. We can
see this in the Scrum framework which provides an environment with events, artifacts and roles
to give rules and structure to the team [55]. Furthermore, Bhasin [10] concluded that built-in
processes like the daily standups are a tool for code quality assurance. If the culture of the
organisation does not align with the Agile software development framework, it is better to use a
structure that lies closer to the culture of the team. It can gradually make a transition where you
have a culture that could adapt to an Agile way of working. Therefore, it is more important that
you understand why you should use a methodology than simply following the rules. Because if
there are major conflicts with the culture of the organisation, the processes will not work.

5.3 Verifying the Results

The questionnaire is used as a quantitative phase to further verify the results. However, the
created theory was build using our interpretation of the quotations. To counter the threat that
interpretations were incorrect or incomplete we returned to the participants. We selected six
participants who were developers to discuss the created model. They were selected based on

37



5. QUALITATIVE RESULTS

different aspects. Firstly, these participants were all able to explain their ideas well. Since our
model was built on quotations only, we wanted to discuss the model with different perspectives.
Therefore, we selected participants who had major differences on some of the concepts of the
theory.

We invited the six participants for another interview of an hour. These were structured
interviews were we asked four questions. Firstly we handed Figure 5.2 to the participant and
asked if the participant could explain the model to us. This step was done to improve unclear
concepts. Secondly, we explained the model and asked if everything was clear, if something
was incorrect or if something was missing. Thirdly, we asked if they could mention factors of a
project where the code quality could have been better and how this relates to the model. Finally,
a similar question was asked for projects with good code quality.

The goal of this verification step was to tweak the model. We wanted to make the concepts
more clear and correct. For example, we had the concept of Team Structure which defines the
processes of the team on a daily basis e.g. Scrum events. After discussing we decided that it
was better to change this term to Team Processes. The second question was used to reduce the
chance that we misinterpreted our participants. Using the four questions we tweaked the model
to the form it was presented in this thesis. Moreover, the final two questions were used as ideas
to make the model concrete and practical, which is one of the next steps in this thesis.

38



Chapter 6

Quantitative Results

The results from the Likert scales were used to verify the generalisability. These were combined
with the results from the open questions to verify if the answers conform with the theory. The
median and average were used in determining if the majority of the participants agreed or dis-
agreed. Figure 6.1 gives an overview of whisker plots of the 24 questions that used Likert scales.
The blue line indicated the 3.5 threshold. Additionally, Table 6.1 provides a link between ques-
tions and the superscript numbers of the components in the theory. Not all components of the
Practices layer were directly linked to questions Moreover, question 24 asked if the respondent
prefers agile over Waterfall and is therefore not directly linked to the theory.

Table 6.1: Link between the questions numbers (Appendix F) and the component numbers in
the theory.

Question number 6 7 8 9 10 11 13 14 15 16 17 19 20 21 22 23 24 26 27 28 29 30 31 32
Theory component 1 2 1 1 5 4 10 9 7 7 6 12 17 15 12 15 13 18 22 21 21 18 19 -

The results indicate that participants have not agreed significantly to question 30 (median:
3.5, mean: 3.41): “I feel that agile software development increases my development speed“. The
explanation that can be extracted from the open question was that agile software development
does not increase individual developer speed, but it increases the speed at which the development
team delivers what is required. For example:

Quotation 20.
“It increases overall productivity, but not necessarily my own.“ - Respondent 8

After the data from the interviews were revisited, component 18 (Team Processes) of the theory
was modified to include that agile software development, if properly executed, should improve
the speed of the Development team instead of the speed of individual developers.

Firstly, survey data were analysed individually to find further disagreements between the
theory and the answers from the open questions. Respondents that agreed to a question may also
have different opinions on why they agree than the ones described in the theory. 60 respondents
added an explanation to their answers. Explanations why respondents disagreed were searched
during the analysis of the individual responses. Most questions respondents disagreed with are
covered by the theory. For example:

39



6. QUANTITATIVE RESULTS

Figure 6.1: Whisker plots of Likert scales for each question, where 1 = strongly disagree and 5
= strongly agree (dotted line = mean, blue line = 3.5 threshold).

Quotation 21.
“Disagree because PO always over plans the sprint, preventing us from completing
it almost always.“- Respondent 2

This quotation is covered in Sustainable Pace and Right People for Right Roles. Moreover,
28.3% of the respondents explicitly stated how influence from external parties caused them to
disagree with a question (e.g.“Often the really important decisions are made at the management
level outside the teams“ - Respondent 29). External influence conflicts with Team Empower-
ment since they do not have real corporate authority.

Following our threshold, respondents agreed to the other 22 questions related to the theory.
Thus we can conclude that the theory can be generalised outside of the field in which the inter-
views were conducted. However, the combination of data from the interviews and survey can be
combined to make additions to the theory. The data showed how external influence can break
components of the theory which was covered in the qualitative results. However, two other as-
pects which have not been occurred in the interview data emerged. Firstly, 6.7% indicated that
team size plays a role in building code of high quality. Secondly, 10% stressed how the Product
Owner can break components of the theory.

For completeness we also review questions that have a median of 4.0 and a mean below 3.75
(i.e. 7, 8, 9, 15, 17, 22 and 26) and discuss answers of respondents that disagreed. We will
explain why respondents disagreed and how this fits in the theory.

Q7. I feel Agile software development allows the development team to operate more indepen-
dently. Two kinds of answers were given why respondents disagreed with this question. Firstly,
the Product Owner can decrease the Independence of a team because he may enforce wrong de-
cisions (Quotation 22). Secondly, external parties can limit the amount of Independence a team

40



has (Quotation 23). The theory accounts for both phenomena. The role of the Product Owner
is described in component Development Roles. If the Product Owner ignores the developers,
the role of the Product Owner is not applied correctly. The Team Autonomy component states
that teams should be able to work independently. However, we were aware that this could be
difficult to achieve. Therefore, answers like Quotation 23 can be categorised under Align Team
Processes & Culture.

Quotation 22.
“As a member of an agile team, you still have to be able to push back if e.g. the
product owner wants features in the wrong order or if he/she wants to pressure you
into finishing a feature earlier than you’d like.“ - Respondent 59

Quotation 23.
“Governance departments within an organization may impose constraints on the
Independence of the development teams.“ - Respondent 13

Q8. Being part of an independent development team reduces unnecessary pressure. Re-
spondents that disagreed to Question 8 gave one motive. Respondents argued that pressure is
not necessarily caused by team structure, but caused by culture, or communication with external
parties (Quotation 24). We agree with this since it was already stated in the theory that com-
ponents are not only directly related to linked components. A Sustainable Pace is indirectly
influenced by Team Culture and Awareness, for example.

Quotation 24.
“Being part of an independent development team can reduce pressure, but is not
always the case. Stakeholders, project managers and even the Product Owner can
stress the team by putting too much pressure on the team. This is especially true
with teams that do (yet) not perform well.“ - Respondent 14

Q9. I feel Agile software development allows me to work in a sustainable pace. Quotation 21
is an example of the main motive respondents gave when disagreeing to Question 9. This stresses
the implication of the Product Owner on the Sustainable Pace component. The quotation is
another example of how components from different trees influence each other since, in this
motive, Development Roles influences Sustainable Pace.

Q15. I feel (technical) decisions made by our team are respected and accepted by people
outside of the development team. One motive was given by respondents that disagreed to ques-
tion 15. The Product Owner or management enforces its own decision (Quotation 25). This
motive again shows how important it is that you have a good Product Owner.

Quotation 25.
“Product owner: we need this feature. Team: That brings a lot of issues, doesn’t fit
our architecture. We can do it in another way. Product owner: customer needs this
next week, do it anyways. Managers tend to side with the PO or customer. Software
undergoes degrading because of these kinds of issues.“ - Respondent 60

41



6. QUANTITATIVE RESULTS

Q17. Agile software development increases the efficiency of our development team. Respon-
dents that disagreed to Question 17 all gave a similar answer: it can be less efficient in the long
term (Quotation 26). The component Commit to Common Goal states that you should have a
common goal and keep an overview of the product as a whole instead of focusing on small parts
that are done during a sprint.

Quotation 26.
“Agile processes make it easy to only look at the short term, so if you only focus
on that, you will become less efficient. It’s important to keep your eyes on the long-
term goals and designs. It’s possible with Agile, but doesn’t really feel built-in.“ -
Respondent 57

Q22. I feel everyone is included in the decision-making processes of my development team.
The answers to Question 22 indicated two main reasons why respondents disagreed. Firstly, not
all team members should be included in all parts of the decision-making process because that
part might not be their expertise (Quotation 27). Secondly, not all team members engage in the
decision-making processes because they are not experienced or articulate (Quotation 28). The
data from the interviews agree with the first motive. Time is spent unnecessarily when everyone
is involved in specific decisions. However, non-specific decisions should be discussed with the
entire team. We changed this in the theory. From the interviews we also heard that not everyone
is participating equally in the decision-making processes similar to the reasons respondents gave.
However, it is important that these individuals Keep Learning and Improving so that they can
participate more and stimulate them to actively join in the meetings.

Quotation 27.
“Not everyone in the team should be involved in all decisions, i.e. a functional
tester without software/architecture background shouldn’t necessarily be involved
in architecture.“ - Respondent 64

Quotation 28.
“As a Scrum Master in my current team I feel that not everyone is included in
the decision making process. Often the junior developers do not engage in the
discussion. But as a Scrum Master and coach, I think that they do need to be
included. It also depends on the person itself.“ - Respondent 12

Q26. I think agile software development makes work more organised Two respondents that
disagreed to question 26 explained their reasons which were different. Therefore, no valid con-
clusions can be made from these two answers.

42



Chapter 7

Agile Software Development Best
Practices for Improving Code Quality

This Chapter is dedicated to making the results from the Grounded Theory more practical. Al-
though the model provides insights for piloting or modifying an existing project to increase code
quality in Agile software development, the model is not complete and does not provide concrete
solutions to improve code quality as measured by a code quality tool. Therefore, we go one step
further and build on top of our theoretical model to provide insights for development teams on
how they can increase their code quality through Team Empowerment.

The goal of this Chapter is to establish best practices that can be applied to Agile software
development project. These practices must correspond with the results from the Grounded The-
ory since we are trying to improve code quality in Agile software development projects and not
in different settings. Descriptions are given how these best practices should be implemented to
enhance code quality. The data from the interviews are complemented with literature about best
practices to link them to measurable code quality subcharacteristics: Reliability, Performance
Efficiency, Security and Maintainability.

Developers who use a code quality analysis tool will get ratings on these characteristics or
different ratings that are related to them. If one of these metrics is not as high as it should be
or is getting worse over time, developers can use our results to find best practices to increase
this metric. Although we do not recommend that the best practices should be blindly followed
as described by us, they can be used for developers to find out which measures can be taken to
increase code quality metrics. If a practice will not work in the team or organisation it should
not be followed, or be changed properly before implementing.

7.1 Agile Software Development Best Practices

The best practices of the theory are based on 20 interviews. To increase the legitimacy and
extend the list of best practices, we reviewed literature about Agile software development best
practices and verified if they were applicable to our theory. Moreover, the results from the
Grounded Theory allowed us to search literature more accurately, allowing us to find additional
literature to obtain more best practices that are applicable to the model. To complement the best

43



7. AGILE SOFTWARE DEVELOPMENT BEST PRACTICES FOR IMPROVING CODE QUALITY

practices we combined results from the literature survey and two sources that discuss software
best practices of successful projects [37, 47]. If a best practice is given that fits in our theory we
researched it further to verify if it is beneficial and which metrics are influenced by the practice.

The best practices are meant for developers or development teams to adjust their processes,
allowing them to write better code. Although there are other best practices that can be applied
outside the team, we have not included them since the resulting scope of the Grounded Theory
was about team empowerment.

The combination of literature reviews and revisiting the interview data shows 3 additional
best practices that apply to the model. Firstly, Continuous Integration which is a form of au-
tomated feedback to keep on learning and improving. Secondly, Refactoring the code, which
is also part of the keep learning and improving component. Thirdly, Version Control Systems,
which allow the team to implement features like design traceability and get automatic feedback.
The Agile software development best practices from the literature survey are directly or indi-
rectly included e.g. use static code analysis tools is combined with the Continuous Integration
practice. We also considered including team size because it is often mentioned as a factor re-
lating to code quality [48]. However, the team size depends on too many factors to convert it
to a best practice and is best determined using experience [48]. Additionally, we also have not
included the begin small, right people for right roles and balance wants and needs components
of the theory in the best practices since the implementation is too different for each team. How-
ever, they are important when modifying the team processes to increase code quality and thus
our theory should be understood before applying any of the best practices that are advised in this
Chapter.

We determined the existence of nine best practices that can be used in Agile software devel-
opment processes to enhance code quality:

1. Continuous Integration. Introduce Continuous Integration in your development pipeline
to automatically run tests, check on your coding guidelines and practices and to verify if
your code builds.

2. Definition of Done. Define rules when code is considered to be Done and ready to be
merged to production. Include quality rules in the Definition of Done.

3. Direct Communication. Communication between team members is direct. Most com-
munication should go via a face-to-face discussion or Skype/phone-calls. Communication
where you have to wait for an answer should be minimal. This decreases the time devel-
opers are stuck and reduces misinterpretations.

4. Eliminate Technical Debt. All Technical Debt that is created should be accounted for.
For example, if you have to take a shortcut to save some time, add the task that has to be
done to properly implement that shortcut as Technical Debt and estimate how long it will
take, instead of adding a simple TODO in comments. Take measures to be able to work
on Technical Debt.

5. Feedback. Feedback can be between developers or on an individual level e.g. analysis
tools. Enable developers to give feedback on each other’s way of working and written

44



7.2. Relating Best Practices to Measurable ISO/IEC 25010:2011 Characteristics

code. Introduce tools that help developers in following standards or to find possible flaws
in the code.

6. Involve All Parties in Development. Parties that have an interest in the product should
be involved in the development. Developers are not the end-users of the system and might
not have all the information to perfectly make the product. Allowing parties involved to
provide feedback gives developers a better picture of what has to be done, has gone wrong
or could be done. It enables discussions between technical and non-technical staff which
makes it easier to explain technical decisions.

7. Refactoring. If the code is not as good as it should be, take time to refactor some parts of
the code that is frequently worked on. Not only will this save time in the future because
developers can add features more easily, it also stimulates developers to write high-quality
code in these parts.

8. Team Agreements. You can make agreements with coding standards or practices your
team will use to enhance code quality. Implement measures to check that code satisfies
the agreements.

9. Version Control System. A Version Control System gives another means of documen-
tation. Design choices can more easily be tracked. It also provides a way to work faster
together through branching, for example.

You should decide what and how to change because we do not know where you are or where
you are going. We do not know what you should do because we do not know what happens
next. You should find out where you are, what you need and how you should adjust. The
results of this Chapter should only be used to gain insights into how you can change.

7.2 Relating Best Practices to Measurable ISO/IEC 25010:2011
Characteristics

Table 7.1 shows the established best practices and which ISO/IEC 25010:2011 metrics they can
improve. Each best practice gives a general idea of how the processes of the team can be altered
to improve quality scores. We do not impose any of the best practices. Teams should decide
what can work for them and create a modification that is based on the idea provided. Entries are
followed by references that have influenced the claim or support it.

The links between the best practices and ISO/IEC 25010:2011 metrics have been based on
the interviews and existing literature. There are other useful best practices that might improve
metrics than stated in the Table 7.1. For example, the Definition of Done can also contain rules
about security metrics. However, from the data, these are uncommon scenarios and therefore
not included in the table. Thus, the best practices can be used for other metrics if the team
can apply them in that way. It is even encouraged because, thinking about why you do things
is more important than following a predefined structure, which was covered in the Grounded
Theory. Additionally, a poster was made to present the results to a business which can be found
in Appendix G.

45



7.
A

G
IL

E
S

O
F

T
W

A
R

E
D

E
V

E
L

O
P

M
E

N
T

B
E

S
T

P
R

A
C

T
IC

E
S

F
O

R
IM

P
R

O
V

IN
G

C
O

D
E

Q
U

A
L

IT
Y

Table 7.1: Best practices and how they can increase ISO/IEC
25010:2011 metric measurements.

Best Practice Maintainability Security Reliability Performance Efficiency

Continuous
Integration

Use a static analysis tool
that can measure
maintainability and runs
automated tests
regularly [27, 40, 67].

Use a static analysis tool
that can measure security
of the code which runs
regularly [27, 47].

Use a static analysis tool
that can measure
reliability of the code
which runs
regularly [27, 47].

Use a static analysis tool
that can measure
efficiency (e.g.
cyclomatic complexity) of
the code which runs
regularly [27].

Definition of
Done

Introduce code quality
rules in the definition of
done e.g. standards that
must be followed, the
requirement of two code
reviews or minimal test
coverage [22, 39].

- - Define rules for
complexity of methods,
queries or the architecture
of the database [22, 39].

Direct Commu-
nication

Use direct communication
to allow questions to be
answered rapidly and
accurately or to work
together on a piece of
code [37, 44, 47].

- Corner cases in which the
software does not work
are identified more easily
when discussing
them [44].

-

46



7.2.
R

elating
B

estPractices
to

M
easurable

ISO
/IE

C
25010:2011

C
haracteristics

Best Practice Maintainability Security Reliability Performance Efficiency

Eliminate
Technical Debt

If TD is caused because
something else was
prioritised over
maintainable code,
include it in the TD
backlog give developers
time to work on
it [39, 47].

Temporary fixes that
allow software to be
usable but potentially
introduce flaws, are put in
the TD backlog and time
is given to work on
it [39, 47].

- A sub-optimal solution
can be considered as a
TD. Add the task that the
algorithm has to be
redesigned or add tricks
from the platform have to
be used to make it faster
and be given time to work
on it [37].

Feedback Automated/Developer
feedback helps developers
in coding better in the
future. Code feedback
helps in improving the
maintainability of old
code or code that is
waiting to be merged, and
indicate which parts of
the code are not
clear [1, 18, 47].

Feedback on the code can
identify vulnerabilities in
the code that could have
been easily overlooked by
the person that wrote the
code [1, 18].

By having multiple
developers review the
code, problems that cause
crashes can be identified
earlier [18, 47].

Feedback aids the
problem-solving process,
creating efficient
solutions [1, 18].

Involve All
Parties in
Development

Involving all parties can
help in creating awareness
why maintainability is
important and increases
the chances that the team
will be given time to
spend time on it [47].

- Gaining insights into the
way in which the software
is actually used helps
developers in identifying
problematic
scenarios [64].

-

47



7.
A

G
IL

E
S

O
F

T
W

A
R

E
D

E
V

E
L

O
P

M
E

N
T

B
E

S
T

P
R

A
C

T
IC

E
S

F
O

R
IM

P
R

O
V

IN
G

C
O

D
E

Q
U

A
L

IT
Y

Best Practice Maintainability Security Reliability Performance Efficiency

Refactoring Take time to refactor code
to be more maintainable
because future code will
also be more
maintainable.
High-quality code
stimulates the
development of high
quality code [37, 40].

- - -

Team
Agreements

Similar to the Definition
of Done, maintainability
rules can be included in
the team agreements.
These can also be checked
using an automated static
analysis tool or using
code reviews [22, 51].

- - -

Version
Control System

Version Control Systems
provide effective change
management control,
allowing design choices
to be tracked more easily
or to revert to a more
stable version [47, 67].

- - -

48



Chapter 8

Revisiting the Research Questions

The goal of this thesis is to explore the relations between code quality and Agile software devel-
opment and establish concrete solutions to increase code quality in Agile software development.
A qualitative phase was used as an explorative part, followed by a quantitative phase to verify
the qualitative phase, which was extended in order to be able to be applied in a practical context.
In this Chapter we will systematically revisit each research question and answer them based on
the results.

RQ1: What is the main phenomenon that explains the relation between code quality and Agile
software development and how does this explain it?

The qualitative phase uncovered team empowerment as a core relation between code quality
and Agile software development. Team Empowerment means that the team is responsible for
the delivery of the product and possesses everything needed to achieve that goal. Team em-
powerment is supported by 4 values, 8 conditions and 10 practices (Figure 5.2). These consist
of conditions for achieving team empowerment in Agile projects and how these conditions can
manifest in code quality and processes. By further exploring literature we have established di-
rect links between the Manifesto for Agile Software Development and our theory for 2 out of 4
values and 5 out of 12 principles. Using a post hoc literature survey we have verified some of
the established relations of the exploratory study.

Team Empowerment requires teams to be self-sufficient, have a corporate authority and take
responsibility to enact their own decisions. Agile software development enhances the ability of
a team to empower itself in multiple ways. It helps in maintaining a sustainable pace, enabling
a team culture to empower itself. It creates awareness of non-functionals and allows the team to
structure itself to maximise velocity. In turn, because developers of an empowered team have
not been put under pressure unnecessarily, they are able to write software without rushing code.
Moreover, empowered teams keep improving their skills and code which improves code quality.
Furthermore, code quality adds value the user does not see. Raising awareness why you should
have it helps in showing the importance of code quality and increases the chance that the op-
portunity is given to work on it. Finally, clear processes help the team in understanding what is
expected of them and what they can expect. These agreements also apply to the code structure
which increases the uniformity and comprehension of the code.

49



8. REVISITING THE RESEARCH QUESTIONS

RQ2: How does the theory about code quality in Agile software development compare to global
experience?

The answer to RQ2 is that we can generalise the results outside of the scope of the organisa-
tions we interviewed on a global scope. However, the results can only be generalised for Agile
teams with a similar setup to the ones we studies. This means that the results hold for co-located
teams that can change some of their processes themselves.

Using a survey we have corroborated or results from the Grounded Theory and made adjust-
ments to make the theory applicable in a global setting. The respondents agreed to the questions
with a total average median of 4.17. 4 questions had a median of 5.0, 1 a median of 4.5, 18 a
median of 4.0 and 1 a median of 3.5. Data of the interviews and the survey were combined to
increase the generalisability of the theory.

Responses were individually analysed to find answers that contradicted or indicated a lack
in the theory. Contradictions that were given multiple times were compared against the data find
out what caused these contradictions. One contradiction was found that caused a change in the
theory. Moreover, answers that indicated a lack in the theory were compared with the interview
data to verify if we missed phenomena or if the phenomena did not occur repeatedly in the in-
terviews which made us discard it at the time of the coding.

RQ3: Which Agile software development practices impact code quality and how should they be
implemented to enhance code quality?

We transformed the practices from the theory to best practices. Additional literature was re-
viewed to establish more best practices that fit in the theory. We determined the existence of
nine best practices that can be used in Agile software development processes to enhance code
quality which are as follows: Continuous Integration, Definition of Done, Direct Communi-
cation, Eliminate Technical Debt, Feedback, Involve All Parties in Development, Refactoring,
Team Agreements, Version Control System. Section 7.1 complemented these nine best practices
with a description how they can be implemented to enhance code quality.

RQ4: What are best practices in Agile software development methodologies, how are they
linked to (sub)characteristics of code quality and how can they be used to increase quality scores
through enhancing Agile processes?

Table 7.1 gives an answer to this RQ4. We combined each best practice with ISO/IEC 25010:2011
metrics in a table. The rows of the table consist of the nine best practices we concluded at RQ3.
The columns of the table are the code quality characteristics of the ISO/IEC 25010:2011 stan-
dard which can be automatically measured i.e. Maintainability, Performance Efficiency, Security
and Reliability. If a team has a low score for one of these four metrics, it can query the table
which best practices it can use, or obtain insights into possible modifications for its the Agile
software development processes.

50



Chapter 9

Discussion

In order to discuss our approach and the results, we describe external and internal threats. Exter-
nal validity defines which population the results can be generalised to. For example, our results
hold for software development but not for building a house. Internal validity defines to what
degree we were able to overcome challenges within the study itself. For example, a bias of the
researcher. Limitations of the study will be discussed. Finally, we discuss how the research can
be expanded in future work.

9.1 Threats to Validity

Selection of participant’s background might influence results. A threat to external validity
is the fact that we interviewed employees from only two companies. Participants of those compa-
nies could share a similar bias caused by the company culture. To counter this we took great care
in selecting the participants of the companies. As already mentioned, one of the two organisa-
tions outsources some of their employees. We tried to approach employees that were outsourced
to different clients to gain insights into that client’s company culture. This was possible because
outsourced employees join in the client’s way of working which provides its perspective. We
also made sure that all of our questions were unbiased. Moreover, the questionnaire ensured that
the final theory was based on a group that is more varied.

Not all people are equally articulate and perceptive. The second threat to external validity
is the fact that not all interviewees are equally articulate and perceptive. We tried minimising
this by asking open-ended questions and giving the participants freedom in answering. If a
question was not clear we rephrased it until the participant understood it. Furthermore, since
not all participants were equally, articulate we tried interviewing multiple participants that had a
similar role and similar experience.

Researcher background influences results. A threat to internal validity is the fact that the
background of the researcher can generate a bias which might influence the results of the
Grounded Theory. This was one of the reasons why we have not done an extensive literature
survey and instead read only definitions i.e. Scrum guide and the ISO/IEC 25010:2011 standard.

51



9. DISCUSSION

Additionally, concepts were shared and discussed with multiple researchers at regular intervals
to minimise bias and to reduce erroneous interpretations.

Business interests influences results. The second internal threat is the fact that this study was
part of a Master’s thesis and was written during an internship at an organisation. Because of the
interest the organisation could take in the study, it may influence the results or the researcher.
For Grounded Theory to succeed the researchers should not be influenced by anything other than
the results. Interests of the organisation can conflict with that. Fortunately, the supervisor of the
organisation gave us full freedom to perform our study. Moreover, any parties that could have
influenced the results were neither contacted nor informed before our final presentation.

Research lacks a structured literature review process. The third internal threat is the fact
that this thesis lacks a structured literature review process. Structured literature reviews are used
to provide an exhaustive summary of current evidence relevant to the research questions. The
fact that our initial research questions were used as a general guideline, a structured literature
review could have been used to find all the available data. However, following the Grounded
Theory we wanted to be unbiased before the research. Therefore, no structured literature review
had to be done since a less exhaustive literature review was sufficient for this thesis.

9.2 Limitations of the Study

Limitation of model applicability. A limitation of Grounded Theory is that the resulting the-
ory can only be applied to the specific context, as was explored in the study of Hoda et al. [34].
Because our field of study contained a high number of variables and a lack of examples of failure
we could not define factors for failure in a project. However, we repeatedly observed that team
empowerment was key in building code quality in Agile software development processes.

Incompleteness of model In the methodology we mentioned that GT lacks validation of the-
ory. We enhanced the methodology by adding a verification phase. However, this provided
validation for the interpretation and not for the results on which the theory was built. Moreover,
this study is one of the first to explore the relation between code quality and Agile software de-
velopment. Therefore, we cannot guarantee the completeness of our theory. Although we have
discussed the validity of our interpretations of the data, the model is not complete. It is likely
that other researchers that perform similar studies will have similarities and dissimilarities in
their model compared to ours.

Lack of testing the practical results. We have defined best practices to increase code quality.
However, we were not able to verify them in the long term. Ideally, we test each practice in
existing projects and test if the metrics change as expected.

52



Chapter 10

Conclusion and Future Work

The goal of this study is to explore relationships between code quality and Agile software devel-
opment and provide a solution to increase code quality in Agile software development. In this
thesis, we have described our exploratory qualitative phase followed by a practical phase. In the
qualitative phase, we used Grounded Theory in combination with 20 interviews. We concluded
that Team Empowerment is the core relation between code quality and Agile software develop-
ment. A post hoc analysis was done to verify the theory. The purpose of the practical phase was
to describe best practices that can be used to enhance specific code quality characteristics of a
project. We then revisited our four research questions and answered them in Chapter 8.

We presented samples of our data to demonstrate the outcomes of the Grounded Theory re-
search. We described that the core category, team empowerment, contains 4 values; Sustainable
Pace, Awareness, Team Culture and Team Structure. These are the main values an empowered
team should possess. We further analysed these values and established conditions and practical
implementations for achieving these values.

The theory has been converted to a questionnaire to verify if it is applicable outside the
scope of the organisations that were interviewed. The results of the questionnaire show that the
participants agree with the statements which were directly linked to parts of the theory and gave
useful insights where the theory could be improved.

A final, practical phase combined all data and new literature to establish best practices.
Developers can use these to modify their processes to enhance code quality through team em-
powerment. Similarly to the Scrum framework, teams can decide which practice works for them
and implement it or get insights why their current processes are causing code quality related
problems and which direction can be taken to fix them.

We are confident that the results of the Grounded Theory provide a solid foundation for
other studies in the field of code quality in Agile software development. Although we cannot
guarantee the completeness of our results it will both provide insights into concrete values and
conditions that can be further studied, and offer a basis on which further research can be built.

53



10. CONCLUSION AND FUTURE WORK

10.1 Future Work

Similar Grounded Theory research to complement results. This thesis performed a Grounded
Theory study. However, Glaser [31] states that the focus of GT is the generalisation of theory and
that validation may be undertaken by different researchers using other methods. Although we
provided additional validation via the quantitative phase, we are aware of the limitations of our
study in the sense that the model is incomplete. Future work can be done by other researchers
who conduct their own Grounded Theory study after which the results can be combined with
those of this thesis. Additionally, the size of the development team and the role of the Product
Owner are phenomena related to code quality that can be researched in future studies.

Code quality in Globally Distributed Agile Software Engineering. The conducted study
focused on teams who were either co-located or working close to each other, allowing them to
have regular face-to-face meetings. Since a significant factor in our results is the communica-
tion, similar research can be done for teams that are separated by large distances e.g. different
continents.

Similar Grounded Theory in other Agile software development methodologies/frameworks.
This research was a response to the lack of literature about the impact on code quality when
within the Agile software development process. Consequently, the results of our study provide a
global overview of this. Further research is required in the values to further explore their condi-
tions and define best practices in the Agile way of working to enhance the code quality. Another
perspective that can be added to future work is that of different Agile software development
methodologies since our interviewees mainly worked with the Scrum framework.

Test results in existing projects. We discussed that a limitation of our study is the lack of
practical testing of the best practices. Future work can implement one or more of these practices
and follow how the metrics of a project change over time. If the links are correct we should see
improvements. Moreover, future research can also study how best practices influence each other
or what other effects of best practices are since it is likely that not only the code quality will
change but also the velocity of the team for example.

54



Bibliography

[1] Mark Aberdour. Achieving quality in open-source software. IEEE software, 24(1), 2007.

[2] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Agile software de-
velopment methods: Review and analysis. arXiv preprint arXiv:1709.08439, 2017.

[3] Steve Adolph, Wendy Hall, and Philippe Kruchten. Using grounded theory to study the
experience of software development. Empirical Software Engineering, 16(4):487–513,
2011.

[4] A Ahmed, S Ahmad, N Ehsan, E Mirza, and SZ Sarwar. Agile software development:
Impact on productivity and quality. In Management of innovation and technology (ICMIT),
2010 IEEE international conference on, pages 287–291. IEEE, 2010.

[5] I Elaine Allen and Christopher A Seaman. Likert scales and data analyses. Quality
progress, 40(7):64–65, 2007.

[6] Scott Ambler. Quality in an agile world. Software Quality Professional, 7(4):34, 2005.

[7] Robert D Austin. The effects of time pressure on quality in software development: An
agency model. Information systems research, 12(2):195–207, 2001.

[8] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, et al. Mani-
festo for agile software development. [online] Agilemanifesto.org, 2001.

[9] Andrew Begel and Nachiappan Nagappan. Usage and perceptions of agile software devel-
opment in an industrial context: An exploratory study. In Empirical Software Engineering
and Measurement, 2007. ESEM 2007. First International Symposium on, pages 255–264.
IEEE, 2007.

[10] Sonali Bhasin. Quality assurance in agile: a study towards achieving excellence. In AGILE
India (AGILE INDIA), 2012, pages 64–67. IEEE, 2012.

55



BIBLIOGRAPHY

[11] Barry W Boehm, John R Brown, and Mlity Lipow. Quantitative evaluation of software
quality. In Proceedings of the 2nd international conference on Software engineering, pages
592–605. IEEE Computer Society Press, 1976.

[12] Norman M Bradburn, Seymour Sudman, and Brian Wansink. Asking questions: the defini-
tive guide to questionnaire design–for market research, political polls, and social and
health questionnaires. John Wiley & Sons, 2004.

[13] Lionel C Briand, Jürgen Wüst, John W Daly, and D Victor Porter. Exploring the relation-
ships between design measures and software quality in object-oriented systems. Journal
of systems and software, 51(3):245–273, 2000.

[14] Antony Bryant and Kathy Charmaz. The Sage handbook of grounded theory. Sage, 2007.

[15] Erran Carmel and Ritu Agarwal. Tactical approaches for alleviating distance in global
software development. IEEE software, 18(2):22–29, 2001.

[16] Kathy Charmaz. Constructing grounded theory. Sage, 2014.

[17] Alistair Cockburn. Agile software development: the cooperative game. Pearson Education,
2006.

[18] Jason Cohen, Eric Brown, Brandon DuRette, and Steven Teleki. Best kept secrets of peer
code review. Smart Bear Somerville, 2006.

[19] Juliet Corbin, Anselm Strauss, and Anselm L Strauss. Basics of qualitative research. Sage,
2014.

[20] Juliet M Corbin and Anselm Strauss. Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative sociology, 13(1):3–21, 1990.

[21] John W Creswell and J David Creswell. Research design: Qualitative, quantitative, and
mixed methods approaches. Sage publications, 2017.

[22] Noopur Davis. Driving quality improvement and reducing technical debt with the definition
of done. In Agile Conference (AGILE), 2013, pages 164–168. IEEE, 2013.

[23] William Edwards Deming and Deming W Edwards. Quality, productivity, and compet-
itive position, volume 183. Massachusetts Institute of Technology, Center for advanced
engineering study Cambridge, MA, 1982.

[24] Steve Denning. Agile: The world’s most popular innovation engine. Forbes, 2015.

[25] Karthik Dinakar. Agile development: overcoming a short-term focus in implementing best
practices. In Proceedings of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications, pages 579–588. ACM, 2009.

[26] Oliver Dolan. How do agile teams ensure code quality? https://www.quora.com/Ho
w-do-agile-teams-ensure-code-quality, 2017.

56

https://www.quora.com/How-do-agile-teams-ensure-code-quality
https://www.quora.com/How-do-agile-teams-ensure-code-quality


Bibliography

[27] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

[28] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development: A
systematic review. Information and software technology, 50(9-10):833–859, 2008.

[29] Patrick M Erwin. Corporate codes of conduct: The effects of code content and quality on
ethical performance. Journal of Business Ethics, 99(4):535–548, 2010.

[30] Barney Glaser. Discovery of grounded theory: Strategies for qualitative research. Rout-
ledge, 2017.

[31] Barney G Glaser. Basics of grounded theory analysis: Emergence vs forcing. Sociology
press, 1992.

[32] Barney G Glaser. Doing grounded theory: Issues and discussions. Sociology Press, 1998.

[33] James Herbsleb, David Zubrow, Dennis Goldenson, Will Hayes, and Mark Paulk. Software
quality and the capability maturity model. Communications of the ACM, 40(6):30–40,
1997.

[34] Rashina Hoda, James Noble, and Stuart Marshall. Developing a grounded theory to explain
the practices of self-organizing agile teams. Empirical Software Engineering, 17(6):609–
639, 2012.

[35] Ming Huo, June Verner, Liming Zhu, and Muhammad Ali Babar. Software quality and
agile methods. In Computer Software and Applications Conference, 2004. COMPSAC
2004. Proceedings of the 28th Annual International, pages 520–525. IEEE, 2004.

[36] Azham Hussain and Emmanuel OC Mkpojiogu. An application of iso/iec 25010 standard
in the quality-in-use assessment of an online health awareness system. Jurnal Teknologi,
77(5):9–13, 2015.

[37] Capers Jones. Software engineering best practices. McGraw-Hill, Inc., 2009.

[38] Maarit Laanti, Outi Salo, and Pekka Abrahamsson. Agile methods rapidly replacing tra-
ditional methods at nokia: A survey of opinions on agile transformation. Information and
Software Technology, 53(3):276–290, 2011.

[39] Jean-Louis Letouzey. The sqale method for evaluating technical debt. In Managing Tech-
nical Debt (MTD), 2012 Third International Workshop on, pages 31–36. IEEE, 2012.

[40] Mikael Lindvall, Dirk Muthig, Aldo Dagnino, Christina Wallin, Michael Stupperich, David
Kiefer, John May, and Tuomo Kahkonen. Agile software development in large organiza-
tions. Computer, 37(12):26–34, 2004.

[41] Peter Meso and Radhika Jain. Agile software development: adaptive systems principles
and best practices. Information systems management, 23(3):19–30, 2006.

57



BIBLIOGRAPHY

[42] Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case studies of open source
software development: Apache and mozilla. ACM Transactions on Software Engineering
and Methodology (TOSEM), 11(3):309–346, 2002.

[43] Nils Brede Moe, Torgeir Dingsøyr, and Tore Dybå. Understanding self-organizing teams in
agile software development. In Software Engineering, 2008. ASWEC 2008. 19th Australian
Conference on, pages 76–85. IEEE, 2008.

[44] Nachiappan Nagappan, Brendan Murphy, and Victor Basili. The influence of organiza-
tional structure on software quality. In Software Engineering, 2008. ICSE’08. ACM/IEEE
30th International Conference on, pages 521–530. IEEE, 2008.

[45] Sofia Ouhbi, Ali Idri, José Luis Fernández Alemán, Ambrosio Toval, and Halima Benjel-
loun. Applying iso/iec 25010 on mobile personal health records. In HEALTHINF, pages
405–412, 2015.

[46] Minna Pikkarainen, Jukka Haikara, Outi Salo, Pekka Abrahamsson, and Jari Still. The
impact of agile practices on communication in software development. Empirical Software
Engineering, 13(3):303–337, 2008.

[47] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave Macmillan,
2005.

[48] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A large scale
study of programming languages and code quality in github. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
155–165. ACM, 2014.

[49] Patrick J Roache. Verification and validation in computational science and engineering,
volume 895. Hermosa Albuquerque, NM, 1998.

[50] Álvaro Rocha. Framework for a global quality evaluation of a website. Online Information
Review, 36(3):374–382, 2012.

[51] Ioannis Samoladas, Ioannis Stamelos, Lefteris Angelis, and Apostolos Oikonomou. Open
source software development should strive for even greater code maintainability. Commu-
nications of the ACM, 47(10):83–87, 2004.

[52] Norman F. Schneidewind. Methodology for validating software metrics. IEEE Transac-
tions on software engineering, 18(5):410–422, 1992.

[53] Ken Schwaber. Agile project management with Scrum. Microsoft press, 2004.

[54] Ken Schwaber and Mike Beedle. Agile software development with Scrum, volume 1. Pren-
tice Hall Upper Saddle River, 2002.

[55] Ken Schwaber and Jeff Sutherland. The scrum guide. Scrum Alliance, 21, 2011.

58



Bibliography

[56] Ken Schwaber and Jeff Sutherland. The scrum guide. Scrum Guides, 2017.

[57] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L Bleris. Code
quality analysis in open source software development. Information Systems Journal, 12
(1):43–60, 2002.

[58] Christoph J Stettina and Werner Heijstek. Five agile factors: Helping self-management
to self-reflect. In European Conference on Software Process Improvement, pages 84–96.
Springer, 2011.

[59] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in software engineer-
ing research: a critical review and guidelines. In Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on, pages 120–131. IEEE, 2016.

[60] Anselm Strauss and Juliet Corbin. Grounded theory methodology. Handbook of qualitative
research, 17:273–285, 1994.

[61] Anselm Strauss and Juliet M Corbin. Basics of qualitative research: Grounded theory
procedures and techniques. Sage Publications, Inc, 1990.

[62] Anselm L Strauss. Qualitative analysis for social scientists. Cambridge University Press,
1987.

[63] Diane E Strode, Sid L Huff, and Alexei Tretiakov. The impact of organizational culture
on agile method use. In System Sciences, 2009. HICSS’09. 42nd Hawaii International
Conference on, pages 1–9. IEEE, 2009.

[64] Arie Van Deursen and Tobias Kuipers. Source-based software risk assessment. In null,
page 385. IEEE, 2003.

[65] Richard Vidgen and Xiaofeng Wang. Coevolving systems and the organization of agile
software development. Information Systems Research, 20(3):355–376, 2009.

[66] Xinyu Wang, Liping Zhao, Ye Wang, and Jie Sun. The role of requirements engineering
practices in agile development: an empirical study. In Requirements Engineering, pages
195–209. Springer, 2014.

[67] Greg Wilson, Dhavide A Aruliah, C Titus Brown, Neil P Chue Hong, Matt Davis,
Richard T Guy, Steven HD Haddock, Kathryn D Huff, Ian M Mitchell, Mark D Plumbley,
et al. Best practices for scientific computing. PLoS biology, 12(1):e1001745, 2014.

[68] Yahaya Y Yusuf, Mansoor Sarhadi, and Angappa Gunasekaran. Agile manufacturing:: The
drivers, concepts and attributes. International Journal of production economics, 62(1-2):
33–43, 1999.

59





Appendix A

Consent to Participate Form

61



 

 1 

 
Consent to Participate in a Research Study 

Delft University of Technology ● Delft, NL 
 

Title of Study: 
Exploring the Relation Between Agile Software 
Development and Code Quality 

Researcher: 

Name: Lars Krombeen Dept: SE Phone:                        
 

Introduction 

• You are being asked to be in a research study of code quality in agile software development.  

• We ask that you read this form and ask any questions that you may have before agreeing to 

be in the study.  

 

Purpose of Study   

• The purpose of the study is to define a theory about Code Quality in Software Development. 

Using constant comparison, theories will emerge which are tested against new data obtained by 

interviewing people. 

• Ultimately, this research is presented as a paper and is part of a MSc graduation thesis. 

 

Description of the Study Procedures 

• If you agree to be in this study, you will be asked to participate in an interview lasting 

approximately 60 minutes in which factors for code quality are discussed. 

  

Risks/Discomforts of Being in this Study 

• There are no risks/discomforts of being is this study. 

 

Benefits of Being in the Study 

• By participating to this study, you help giving practical insights in understanding the impact 

of software development factors on code quality, and help an MSc student in doing his thesis 

project. 

 

Confidentiality 

• The records of this study will be made anonymous and kept strictly confidential. Audio and 

possibly video will be recorded during the interview and immediately modified after to only 

contain audio. Video and other identifiable data is removed. Research records will be kept 

encrypted and secured using a password protected file. Your audio record will be used for 

educational purposed only and is accessible by the undersigned. We will not include any 

information in any stored data or reports we may publish that would make it possible to 

A. Consent to Participate Form

62



 

 2 

identify you. Your audio recordings are not kept for longer than 6 months and are destroyed 

before then. 

 

Right to Refuse or Withdraw 

• The decision to participate in this study is entirely up to you.  You may refuse to take part in 

the study at any time. You have the right not to answer any single question, as well as to 

withdraw completely from the interview at any point during the process; additionally, you 

have the right to request that the interviewer not use/delete any of your interview material at 

any time. 

 

Right to Ask Questions and Report Concerns 

• You have the right to ask questions about this research study and to have those questions 

answered by me before, during or after the research.  If you have any further questions about 

the study, at any time feel free to contact me, Lars Krombeen at l.krombeen@student.tudelft.nl 

or by telephone at                        .   

 

Consent 

• Your signature below indicates that you have decided to volunteer as a research participant    

for this study, and that you have read and understood the information provided above. You 

will be given a signed and dated copy of this form to keep. 

 

Subject's Name (print):    

Subject's Signature:  Date:  

 

Investigator’s Signature:  Date:  

 

A. Consent to Participate Form

63





Appendix B

Example of Axial Coding Components

65



B. EXAMPLE OF AXIAL CODING COMPONENTS

Figure
B

.1:E
xam

ple
ofourA

xialC
odes

and
C

om
ponents

afterthe
firsttw

o
interview

s.

66



Appendix C

Concept and Category Definitions

Table C.1: Grounded Theory Concepts and Categories, and their
definitions.

ID Concept / Category Definition

1 Agile awareness Agile is an iterative way of working where the customer
gets what he needs which is caused by interactive
development. Involved parties should be made aware of
how this way of working is executed and why. This starts
at the sales department and ends with the operation and
maintenance cycle.

2 Balance between
focus &
communication

Open communication in the team helps in solving
problems but potentially reduces the focus of developers.
There is a balance where helpful communication is
becoming too interrupting.

3 Balance between
priorities and
necessities

There is a balance between working on features that have
to be built and working on what the product actually needs.

4 Challenge yourself Keep pushing your limits to keep the work interesting and
new, but know your limits.

5 Code quality saves
time

Code with a high quality saves time and budget in the long
term.

6 Commit to be
responsible

Take responsibility for your work and for the product. As a
team you commit to the goal to deliver as promised.

67



C. CONCEPT AND CATEGORY DEFINITIONS

7 Continuous feedback The interaction between the development team and the
stakeholders allows the team to respond to changing user
needs as they emerge to build what the customer needs.

8 Culture Team culture determines how people think and interact
with each other in a team.

9 Feeling comfortable in
the team

Developers should feel safe in the team and with the tasks
they are working on.

11 Flexibility A structure does not violate flexibility. As the team grows
the events can take be shortened or mutate altogether.

12 Involving all parties in
development

All parties that are involved in the process of the
development of the applications should be aware why agile
is being done, what this means for them and how they will
benefit from it when applied correctly. They are involved in
the development of the product.

13 Iteration pressure Iterations can give pressure because, at the end of the week
developers want to finish the goal they are committed to.

14 Keep learning and
improving code

Do not fall behind on quality or make sure that if you do,
you catch up. Additionally, keep improving yourself as a
developer.

15 Maintainability Using the data, maintainability means that code is easy to
extend or modify without breaking the program or taking
too much time to understand what is happening.

16 Minimise pressure Deadlines are the enemies of code quality. Deadlines cause
code to be rushed/hacked. These temporary fixes are often
forgotten, reducing the overall quality of the code.

17 Non-functional
awareness

All parties should be aware of what it means to have quality
(not only code quality). This starts at the beginning of the
project and ends with the delivery. The customer knows
that the requirements will change, that not everything can
be known beforehand and the customer should adapt to
change just like the development team does.

18 Open communication Individuals are open and honest with each other and with
the stakeholders to avoid unnecessary surprises.

68



19 Peer Feedback Peer feedback is a method developers can use to learn from
each other and to improve each other when they see
something that is not built as they agreed upon or could
have been built better.

20 Programmer efficiency Efficiency is the velocity at which programmers can work
on the code. An efficient programmer takes less time to
implement a ticket with the same quality as a developer
that is not efficient.

21 Self-organising teams Teams can organise themselves and have the authority to
take decisions to work towards the common goal.

22 Splitting complex
tasks from sprint

Not all the work can be done in iterations. Complex
documents like the architecture should not be done as tasks
in a sprint. The sprints can be used as a way to add
feedback to these documents but they are not tasks in the
sprint.

23 TD Management Technical debt management is an ordered document. The
team should be given time to work on technical debt.
Ideally no technical debt is created. However, a release
date might force a developer to rush/hack some code. At
this point the developer makes a new entry describing the
design choice and the reason behind it in the TD document.

24 Team agreements Team agreements are agreements such as which coding
guidelines / best practices are followed, what
framework/methodology they follow, how/what to
document (e.g. design choices, architecture, etc.) and how
to conduct the requirements analysis and how to work with
or adjust it.

25 Team empowerment As a team you are responsible for the product. It has the
authority to make decisions and consists of the required
people to finish their goals.

26 Team openness The team is open to each other and to the stakeholders. If
they think they cannot meet expectations they tell it
honestly. If there is an impediment they let the right people
know. Being open builds trust between parties.

27 Team predictability You know what your team is doing and what you can
expect from them and vice versa. Knowing what to expect
increases team efficiency.

69



C. CONCEPT AND CATEGORY DEFINITIONS

28 Team structure Agile enhances the communication in the development
team. Having iterations allows teams to have repetitive
events at which they can discuss everything they need to
maximise their efficiency. There are agile frameworks that
give a structure to a team and project to achieve that. The
agreements that were made in the agile way of 2 working
have to be kept.

29 Understanding the
code

When scrolling through the code a developer that has not
previously worked on that part should understand what is
happening without spending too much time on it.

30 Why agile > doing
agile

It is more important to understand why you are doing agile
than strictly following the rules.

31 Work floor discussions Discussions are face to face and team members can easily
ask each other for help. Work floor discussions increase the
speed at which answers are given and reduce
misinterpretations.

70



Appendix D

Interview Questions

This appendix will quote most questions the researcher asked during the interviews. Questions
that were used as introduction e.g. how long have you been employee at company X, are not
given because they are non-relevant. All questions were originally in Dutch and were translated
to English.

Table D.1: Key Questions asked by the interviewer

ID Participant Question Quotation
Q1 P1 “What is your definition of code quality? “

Q2 P1 “The points that you mentioned, why would you do that? What
does the team gain with it? “

Q3 P1 “Have you ever seen it go wrong? “

Q4 P1 “Did you work in a team or with just the two of you? “

Q5 P1 “In the case you mentioned, would it have gone differently
when you would have worked in a Waterfall approach instead
of an Agile one? “

Q6 P1 “Would it be a problem for the software? “

Q7 P1 “What do you think about that? “

Q8 P1 “To what degree do you think that maintainability is
important? “

Q9 P1 “Do you think that there are other factors in Scrum that impact
your code quality? Maybe you can give some examples.“

Q10 P1 “So mainly the environment and how much you are pushed? “

Q11 P1 “If you do not have those factors, how would you organise
your process to obtain a high code quality? “

Q12 P1 “Can you think of any other factors? “

Q13 P1 “What do you mean with reviewing? “

Q14 P1 “Is there a gradation to what degree you can review? “

71



D. INTERVIEW QUESTIONS

Q15 P1 “What should you consider when wanting to analyse and
understand everything? “

Q16 P1 “Do you feel that Scrum changes how the team collaborates? “

Q17 P1 “Do you think Scrum helps with that? “

Q18 P1 “Could you give an example of that? “

Q19 P1 “How would you arrange the team agreements and how can
Scrum help with that? “

Q20 P1 “How can you enforce the agreements? “

Q21 P1 “Did you work on a project without reviewing and on a project
with reviewing? Did you see a difference in code quality? “

Q22 P1 “So when you are not doing reviews you also have to spend
more time on, for example merge conflicts, or double work? “

Q23 P1 “Did that group use the Scrum framework? “

Q24 P1 “Give this graph with time versus groundedness of reviewing,
could you draw a line? “

Q25 P1 “What would you recommend, no reviews or grounded
reviews? “

Q26 P1 “Can you draw another graph for efficiency versus
maintainability of the code? “

Q27 P1 “Do you think that Scrum can help in improving the
maintainability? “

Q28 P1 “And what if you use Scrum? “

Q29 P2 “What is your definition of code quality? “

Q30 P2 “Why would you deliver quality? “

Q31 P2 “Could you tell me more about that? “

Q32 P2 “Do you think that there are differences in quality for the
customer and the internal teams? “

Q33 P2 “How do you make sure quality is implemented in the entire
pipeline? “

Q34 P2 “How do you feel about working with it? “

Q35 P2 “What do you like or dislike about your work environment? “

Q36 P2 “How important is the documentation for the final product? “

Q37 P2 “Do you think that the culture of a country impacts the
quality? “

Q38 P2 “How do you feel about Agile? “

Q39 P2 “Do you like working with Agile? “

72



Q40 P2 “Do you think that there are Agile factors that impact quality?
“

Q41 P3 “What is your definition of code quality? “

Q42 P3 “Let us continue on that. Understanding the code and efficient
code. Do you think those values can collide? “

Q43 P3 “Do you think that they are related? “

Q44 P3 “How do you experience quality in your work? “

Q45 P3 “You said that quality in [] is not that good. How do you see
that? “

Q46 P3 “Given an unlimited amount of time and budget, how would
you arrange your processes to achieve a high code quality? “

Q47 P3 “Could you think of something else? “

Q48 P3 “So you say that team building is important? “

Q49 P3 “How do you stimulate such an environment? “

Q50 P3 “To what extend does education impact code quality? “

Q51 P3 “How does that lead to the code quality you want to achieve? “

Q52 P3 “So that is also the aspect that you do not look far ahead
enough? “

Q53 P3 “How would you stimulate that? “

Q54 P3 “What do you mean with growth? “

Q55 P3 “Given an unlimited amount of time and budget, how would
you educate your team to achieve a high code quality? “

Q56 P3 “How do you feel about the Waterfall model? “

Q57 P3 “Could you mention some best practices? “

Q58 P3 “What do you achieve with it? “

Q59 P3 “So quality costs time but also saves time? “

Q60 P4 “How would you define code quality? “

Q61 P4 “What is readability? “

Q62 P4 “Do you think that code quality is important? “

Q63 P4 “Can you give some of those effects? “

Q64 P4 “Do you think that performance impacts code quality? So
when you have to make a piece of code run faster.“

Q65 P4 “How do you see code quality in your code? How do you make
sure your code is of high quality? “

Q66 P4 “Can you think of other external factors that impact the quality
of the code? “

73



D. INTERVIEW QUESTIONS

Q67 P4 “Are there positive factors on your code quality? “

Q68 P4 “Are there factors that you recommend, or want to change
when possible? “

Q69 P4 “Can you think of other things to improve your code quality? “

Q70 P4 “How much time do you spend on reviewing? “

Q71 P4 “Are peer reviews useful for anything other than enhancing
code quality? “

Q72 P4 “How do you feel about that? “

Q73 P4 “Could you give some of the disadvantages when you skip
reviews? Or why you should not bother with them? “

Q74 P4 “What are considerations you can take for reviewing? “

Q75 P4 “Do you think you should do code reviews in teams with 5
members? “

Q76 P4 “How much time would it save on the project duration when
you do reviews versus when you skip them? “

Q77 P4 “Do you think that it costs an equal amount of time? So no
reviews or basic reviews? “

Q78 P4 “Do you think that Agile is one of the factors that impact code
quality? “

Q79 P4 “How does that influence your code quality? “

Q80 P4 “What are considerations you take when you decide on doing a
project with the Waterfall model or Agile? “

Q81 P4 “What are important forms of documentations to warrant code
quality? “

Q82 P4 “How do you communicate team agreements? “

Q83 P5 “What is your definition of code quality? “

Q84 P5 “Could you give examples of that context? “

Q85 P5 “What does quality add for different parties? “

Q86 P5 “Where do you think that comes from? “

Q87 P5 “Where does that difference come from? “

Q88 P5 “What do you mean with that culture? “

Q89 P5 “Given an unlimited amount of time and budget, how would
you stimulate the culture to enhance openness? “

Q90 P5 “What are advantages of the precautions you take? “

Q91 P5 “How would you manage that? “

Q92 P5 “Is it easy to include new members in the culture of the team?
“

74



Q93 P5 “So it is not really something individual? “

Q94 P5 “So new members are not intimidated by the team? “

Q95 P5 “Do you think that there is a difference between juniors and
seniors? “

Q96 P5 “Did it ever you wrong? “

Q97 P5 “How can you tell? “

Q98 P5 “Given the scenario that you can lead a new team. How would
you arrange your processes to get the team where you want it
do be? What are the steps you would take? “

Q99 P5 “Can you think of a methodology that helps in doing that? “

Q100 P5 “Do you think that working from minimal requirements limits
the ability to look ahead? “

Q101 P5 “Do you think that knowledge sharing influences the code
quality the team delivers? “

Q102 P6 “What does code quality mean to you? “

Q103 P6 “Are there other factors that influence the efficiency of
developers? “

Q104 P6 “Why is code quality important when looking at developer
efficiency? “

Q105 P6 “Readability of the code, how can you see that in your code? “

Q106 P6 “Why does code have to be rewritten? “

Q107 P6 “Do you think that Scrum influences the fact that code has to
be rewritten? “

Q108 P6 “Could you give examples of those external factors? “

Q109 P6 “Do you like that you have minimal contact with external
parties and only collaborate with the product owner? “

Q110 P6 “Would you like to include the end-users in the development? “

Q111 P6 “Do you have other examples of that? “

Q112 P6 “What is your opinion about coding practices and guidelines?
“

Q113 P6 “Which guidelines should you or should you not follow? “

Q114 P6 “Can you tell me something more about coding practices? “

Q115 P6 “How do you enforce those agreements? “

Q116 P6 “How do you make sure that bad code does not reach
production? “

Q117 P6 “What is bad quality? “

75



D. INTERVIEW QUESTIONS

Q118 P6 “Are there other things that can happen by accident, or sneak
in slowly? “

Q119 P6 “Are there other factors that cause bugs or unreadable code? “

Q120 P6 “How do you get to that level of communication? “

Q121 P6 “Those cubicles and managing space, is that an external or
internal factor? “

Q122 P6 “Can you describe how pressure influences the communication
of a team? “

Q123 P7 “What is your definition of code quality? “

Q124 P7 “Could you give examples of factors that increase or decrease
the code quality? “

Q125 P7 “What do you mean with those procedures? “

Q126 P7 “How would you decide if a project is done using the Waterfall
model or Agile? “

Q127 P7 “How do you get proper communication in teams that are not
co-located? “

Q128 P7 “Are there other things you see that go wrong in
communicating? “

Q129 P7 “Do you think that quality saves time in the long term? “

Q130 P7 “What are the most important factors in achieving that
attitude? “

Q131 P8 “Can you give a brief summary of Agile and what it means for
you? “

Q132 P8 “Do you like working with it? “

Q133 P8 “Why do you like the iterative approach? “

Q134 P8 “Can you think of other advantages of Agile? “

Q135 P8 “Can you think of other risks? “

Q136 P8 “How would you arrange processes to reduce that pressure? “

Q137 P8 “Is that good or bad? “

Q138 P8 “If you were responsible for the Agile processes of a new team,
how would you arrange it? “

Q139 P8 “How would you deal with situations where you have to delay
something? “

Q140 P8 “Did you ever see it go wrong, even with that margin? “

Q141 P8 “Do you think that there are Agile factors that impact the
efficiency of developers? “

Q142 P8 “What would your ideal workspace be? “

76



Q143 P8 “All by yourself? “

Q144 P8 “And what causes that? “

Q145 P8 “Does that also work for trivial pieces of code? “

Q146 P8 “Would you make any exceptions? “

Q147 P9 “What is your definition of code quality? “

Q148 P9 “Why would you implement code quality? “

Q149 P9 “What happens when you do not do it? “

Q150 P9 “What are reasons that cause a developer to rush code? “

Q151 P9 “So technical debt? “

Q152 P9 “What can you do to make sure that technical debt is solved? “

Q153 P9 “Can you think of other factors that cause developers to write
bad code? “

Q154 P9 “What would be a good mentality to reduce external pressure?
“

Q155 P9 “How do you feel about Agile? “

Q156 P9 “So you dislike Agile because it enforces a way of working? “

Q157 P9 “Do you like that you are able to respond quickly to change? “

Q158 P10 “Can you give a brief summary of Agile and what it means for
you? “

Q159 P10 “Do you like working with it? Why? “

Q160 P10 “Can you think of other advantages, or maybe disadvantages?
“

Q161 P10 “If you were able to change it, how would you do it instead? “

Q162 P10 “Are the Agile factors that have a positive or negative effect on
the efficiency of developers? “

Q163 P10 “Are there processes of the Scrum framework that can be
included in these factors? “

Q164 P10 “How would you document the code to make sure that it still
can be understood after 2 years? “

Q165 P10 “Do you also coach in the Agile processes? “

Q166 P10 “Are there things that frequently go wrong? “

Q167 P11 “What would be an ideal state of an application you receive to
maintain? “

Q168 P11 “With documentation, do you mean a guide that explains how
everything works? “

Q169 P11 “What do you mean with clear? “

77



D. INTERVIEW QUESTIONS

Q170 P11 “Can you give a brief summary of Agile and what it means for
you? “

Q171 P11 “How do you feel about that? “

Q172 P11 “You mentioned more efficient, what causes that? “

Q173 P11 “Are there other events in the Scrum framework? “

Q174 P11 “Do these events influence your efficiency? “

Q175 P11 “Can you give an example where you changed some of the
Agile processes because you are working in the same team for
a long time? “

Q176 P11 “Can you think of advantages or disadvantages of Agile? “

Q177 P11 “How can you convince a client to join in the Scrum way of
working? “

Q178 P11 “How would you implement Scrum if you had to design the
Agile processes? “

Q179 P11 “You mentioned that you have to be more strict towards your
client, how would you tackle that? “

Q180 P13 “Can you give a brief summary of Agile and what it means for
you? “

Q181 P13 “Do you like working with Scrum? “

Q182 P13 “If you are flexible, do you still adhere to some kind of
structure? “

Q183 P13 “Could you think of other advantages of Scrum? “

Q184 P13 “Can you think of disadvantages? “

Q185 P13 “When you are coaching in Scrum, are there aspects you focus
on more than others? “

Q186 P13 “Do you like that the team is responsible? “

Q187 P13 “How do you feel about the self-organising principle? “

Q188 P13 “Do you think that is is better than when someone is managing
it from upper management? “

Q189 P13 “Can you think of other advantages? “

Q190 P13 “Can you think of disadvantages? “

Q191 P13 “What is more important when coaching Agile, making sure
that the team understands Scrum or understands and follows
the processes? “

Q192 P13 “What would happen is someone understands what Scrum is
but does now know why you are using it? “

78



Q193 P14 “Could you give examples of Agile factors that improve your
ability to write good code? “

Q194 P14 “Are there factors that you do not like? “

Q195 P14 “Would you like to change anything to further improve your
efficiency? “

Q196 P14 “Why do you think that? “

Q197 P14 “What do you mean with deadline? Can you be more specific?
“

Q198 P14 “What is your knowledge of Scrum? “

Q199 P14 “How do you feel about Scrum? “

Q200 P14 “Can you give an example when it went wrong? “

Q201 P14 “How would you have prevented it? “

Q202 P14 “Can you think of other Scrum processes that improve your
code quality? “

Q203 P14 “Can you think of disadvantages? “

Q204 P14 “You mentioned that you like the freedom that you have to
solve problems. Do you see something of that in the Scrum way
of working? “

Q205 P14 “Do you think that there are factors in Scrum that increase
your efficiency? “

Q206 P14 “What would you change in Scrum to keep your efficiency as
high as possible? “

Q207 P14 “So Waterfall is rushing? “

Q208 P14 “Do you think that it is caused by deadlines? “

Q209 P15 “Can you give a brief summary of Agile and what it means for
you? “

Q210 P15 “You mentioned that Scrum increases the efficiency. Can you
elaborate? “

Q211 P15 “How would you change Scrum to increase your efficiency? “

Q212 P15 “Did you ever see things go wrong in a Scrum team? “

Q213 P15 “Do you think that Scrum impacts to quality of the work you
do, or how fast you can build? “

Q214 P15 “Can you think of disadvantages? “

Q215 P15 “What do you think of the responsibility principles of Scrum? “

Q216 P15 “Can you see that in your code quality? “

Q217 P15 “With functionality, you mean what the customer wants? “

79



D. INTERVIEW QUESTIONS

Q218 P15 “What would happen if you do not get the time to work in that?
“

Q219 P15 “Does that make the customer happy? “

Q220 P15 “Why is it a pity when you are not given the time to work on it?
“

Q221 P15 “Which role does the development team have to raise that
awareness? “

Q222 P15 “When something goes wrong in the team, do you have the
ability to solve it internally? “

Q223 P15 “Would you like to have contact with higher management when
you look at it from a perspective of code quality? “

Q224 P15 “It costs a lot of time, but why do you say that is increases the
efficiency in the end? “

Q225 P15 “It is more important to follow structure, or be flexible with it
and adapt to the team needs? “

Q226 P15 “Why do people need training in how to use Agile before it
impacts the efficiency? “

Q227 P16 “Can you give a brief summary of Agile and what it means for
you? “

Q228 P16 “Why is it not cheaper? “

Q229 P16 “What were reasons that you wanted to shift to an Agile way of
working? “

Q230 P16 “Would you have made that decision if it was not required from
upper management? “

Q231 P16 “What are some of the major challenges when implementing
an Agile way of working? “

Q232 P16 “Imagine that you get a new developer in the team. What do
you want to teach him to allow him to integrate in the team as
soon as possible? “

Q233 P16 “Do you think that the Scrum events help in doing that? “

Q234 P16 “When implementing an Agile way of working, are there
aspects you focus more on than others because they are more
important? “

Q235 P16 “So about the question about being cheaper, did you already
came up with something? “

Q236 P17 “What is code quality and how do you make sure that it is
applied in the code? “

Q237 P17 “If you would compare those three factors, which do you think
is most important? “

80



Q238 P17 “What does maintainability mean for you? “

Q239 P17 “Are the other factors that can influence your code quality? “

Q240 P17 “Are there external factors like management that can influence
that? “

Q241 P17 “Looking at team dynamics, how does that develop over time
in a project? “

Q242 P17 “Are you working co-located? “

Q243 P17 “Do you prefer working in solitude or together? “

Q244 P17 “How long have you been working together? “

Q245 P17 “Why were your attempts in implementing Scrum
unsuccessful? “

Q246 P17 “Did you ever feel that you had to do repetitive work for a long
amount of time? “

Q247 P17 “Does repetitive work influence your code quality? “

Q248 P17 “Would you like to add anything to any questions I asked? “

Q249 P18 “Can you give a brief summary of Agile and what it means for
you? “

Q250 P18 “So Agile is not always the answer. What are disadvantages? “

Q251 P18 “What are advantages Agile offers? “

Q252 P18 “So they get the product faster, is it also cheaper? “

Q253 P18 “How do you create that Agile awareness? “

Q254 P18 “Are there Agile aspects that are more important than others
when you are coaching? “

Q255 P19 “What is the Agile way of working and what does it mean for
you? “

Q256 P19 “Can you think of disadvantages of the Agile way of working?
“

Q257 P19 “Imagine that you overcome all those disadvantages, what are
advantages Agile offers? “

Q258 P19 “What causes that efficiency? “

Q259 P19 “What setting do you mean which you cannot improve? “

Q260 P19 “What are the effects deadlines cause in teams? “

Q261 P19 “Does Agile produce pressure for developers? “

Q262 P19 “As a Scrum master, do you focus on anything particular when
coaching? “

Q263 P19 “Did you ever experience that a customer had wished the
system was documented better afterward? “

81



D. INTERVIEW QUESTIONS

Q264 P19 “How could you have prevented that? “

Q265 P20 “What is your definition of code quality? “

Q266 P20 “Why is it important? “

Q267 P20 “What causes bugs in the system? “

Q268 P20 “How would you solve those problems, or even prevent them?
“

Q269 P20 “Does it happen that a tester is not included in the process? “

Q270 P20 “How can you raise awareness that the customer learns the
value of Agile? “

Q271 P20 “When working Agile, what is important in the team? “

Q272 P20 “Do you think that a change in processes is inevitable in
development teams? “

Q273 P20 “How do the processes change over time? “

82



Appendix E

Key Quotations

In this appendix we give some of the most important quotations of participants. Each quotation
is given together with the selection of codes we used to tag them and which ID these have in
Appendix C. The transcript were originally in Dutch so all quotations have been translated.

Table E.1: Key Quotations of P1

15, 29 Maintainability,
Understanding the
Code

“My definition of code quality is that it is easy to follow
by developers. [...] An other aspect is how easy it is to
make modifications.“

14 Keep Learning and
Improving Code

“I always tell myself that I write bad code. Then you
remain sharp and then you pick up new stuff.“

13, 16 Iteration Pressure,
Minimise Pressure

“It depends on the Scrum environment. If it is pushy
because work has to be completed, code is written more
messy under that time pressure.“

21 Team Agreements “It is important that, together with your team and other
teams if necessary, that you work together with them to
agree on a code structure.“

19 Peer Feedback “It is useful when someone else looks at your work
because he looks at it from a different perspective.
Additionally, he has not read what it does yet which
makes it easier to spot mistakes.“

31 Work Floor
Discussions

“Then it is easier to to stand together, grab a
whiteboard and sketch it out.“

83



E. KEY QUOTATIONS

Table E.2: Key Quotations of P2

5, 17 Code Quality Saves
Time, Non-functional
Awareness

“I have a strong conviction that good quality is cheaper
than bad quality. And sometimes you have to explain
why, especially in software development. Our sales
department should start with making that clear to the
customer.“

18 Open
Communication

“That requires much more than only diplomacy and
sensitivity to deal with it. To recognise it, to
acknowledge it and to deal with it, that is difficult for
teams.“

17 Non-Functional
Awareness

“I think that is begins with awareness. So everyone has
to be aware that the things you do affect the quality of
the final product. [...] So awareness that everyone,
including the customer and everyone in the process,
understands that quality is important. “

Table E.3: Key Quotations of P3

29 Understanding the
Code

“The code should be easy to read and explore.“

14 Keep Learning and
Improving the Code

“It works well, but you have to improve it, make it better,
smarter, in the next iterations.“

24 Team Agreements “In the beginning you establish some rules, best
practices, coding guidelines. And discuss what is useful
and what is not.“

19, 31 Peer Feedback, Work
Floor Discussions

“It is important that everyone is sitting together. Often
you have a small question which you cannot post online
and wait for an answer.“

16 Minimise Pressure “Deadlines are the nemesis of quality, and personal
growth.“

Table E.4: Key Quotations of P4

15, 29 Maintainability,
Understanding the
Code

“The most important aspects of code quality is that it is
easy to read and that it is easy to maintain.“

7, 19 Continuous
Feedback, Peer
Feedback

“I think that a review process is important. That
multiple people always review your code.“

84



18, 23,
25

Open
Communication, TD
Management, Team
Openness

“You should always do technical debt. That is what
makes the difference between quality that is good and
bad. [...] And keep some sort of Technical Debt backlog.
And make sure that in an Agile team that your Product
Owner, Scrum Master and the person responsible for the
budget agree with it and that you are given time to work
on it.“

14 Keep Learning and
Improving the Code

“You look at code incidents, look what went wrong and
try to learn something from it for the future.“

17, 22 Non-Functional
Awareness, Splitting
Complex Tasks from
Sprint

“A disadvantage of Agile can be when you have short
iterations, and you have not thought about the total
product like the architecture, you will get increments
with a scope on which you keep building. Eventually you
will get a crooked building.“

Table E.5: Key Quotations of P5

9 Feeling Comfortable
in the Team

“It is about giving everyone a safe feeling that it is good
to get feedback and to do something with it.“

16, 18 Minimise Pressure,
Open
Communication

“I have seen some projects where the pressure became
too high and you get the feeling that you cannot say
everything anymore. Then it becomes more of a blaming
game than trying to find solutions together. And that
consumes time without improving anything.“

24 Team Openness “If someone gets the feeling that something is impossible
to do he should be able to indicate it and discuss it.“

Table E.6: Key Quotations of P6

20, 29 Programmer
Efficiency,
Understanding the
Code

“I think that code quality is making sure that
programmers can continue rapidly on the existing code.
Readability is an important aspect.“

7, 12,
19

Continuous
Feedback, Involving
All Parties in
Development, Peer
Feedback

“Direct Communication between the developers and the
end users is beneficial because you forget less and
reduce miscommunications.“

17 Non-Functional
Awareness

“If you include end users in the development, regardless
of the actual influence they have, they will accept the
choices more easily.“

85



E. KEY QUOTATIONS

25 Team Empowerment “We also had a PO who took the right decisions which
allowed us to create a product that was enthusiastically
received.“

18 Open
Communication

“Good communication is important to prevent bugs.“

Table E.7: Key Quotations of P7

5, 16 Code Quality Saves
Time, Minimise
Pressure

“Often projects are built around deadlines. Code that is
written is not thoroughly tested. What I have seen is that
you have to do that in the development phase because it
is more expensive to modify it in later phase.“

29 Understanding the
Code

“Code documentation is necessary. And also references.
If the software does not allow that, write down the
requirement that is linked to the code.“

26 Team Openness “And you have to step up to say that you do not know
something.“

Table E.8: Key Quotations of P8

7 Continuous Feedback “And that the user feedback is immediately taken into
the next iterations.“

12 Involving All Parties
in Development

“Because during the demos of the Scrum process the
customer is actively involved. As a result the customer
sees you more often where he can shift more of the
business to you.“

1, 17 Agile Awareness,
Non-Functional
Awareness

“So it is important that you do some expectation
management with you customer. Similar to a house, a lot
has to be done that you do not see but it will make sure it
will still stand in a couple of years.“

13 Iteration Pressure “And what you see is that developers continuously
estimate a little too much, promise a little too much.
Which makes them stressed. “

18 Open
Communication

“I prefer being able to explain to the customer, we did
not expect this, we have to delay it.“

2 Balance Between
Focus and
Communication

“Agile might make the process a little slower caused by
all the communication. Every day I lose my focus
because I have to tell what I am going to do. Then I
need a long time before I reach the same level of focus
again.“

86



Table E.9: Key Quotations of P9

11 Flexibility “We do not really do Scrum. We do the daily standups
and stuff, but at small projects you lose too much time if
you spend 1 or 2 days per sprint.“

15 Maintainability “Thus maintainability is a major aspect, maybe even the
most important one.“

14 Keep Learning and
Improving the Code

“At the moment that you write code but do not maintain
it, and something has to changed you have a serious
problem.“

13, 23 Iteration Pressure,
TD Management

‘At the end of a sprint you suddenly get a new ticket and
then you have to do a quick and dirty fix to implement it.
Then, the dirty fix is forgotten.“

11, 28 Flexibility, Team
Structure

“It is a structure that you have to keep without looking
at what is working and not in the team. In that sense,
Agile might break more than it solves.“

22 Splitting Complex
Tasks from Sprint

“Scrum does not account for requirement analysis,
business analysis, architecture and stuff like that. [...] If
you only take Scrum as software development it might
work.“

Table E.10: Key Quotations of P10

7, 12 Continuous
Feedback, Involving
All Parties in
Development

“For me Agile is keeping a close connection with the
business and end users. [...] Regularly checking, every
day, where you can, adjust solutions based on where the
project is moving.“

5, 17 Code Quality Saved
Time,
Non-Functional
Awareness

“It is extremely focused on functionality. If the system
performs badly, is not secure or not maintainable, we let
it pass because in the end we have delivered the required
functionality which makes the Product Owner satisfied.
The rest they only see when the system breaks down, and
then it is too late.“

11, 24 Flexibility, Team
Structure

“A think that a framework definitely adds value, but the
art is to use it at the proper moments. “

1 Agile Awareness “I mostly try to raise awareness and train and coach
people in that.“

87



E. KEY QUOTATIONS

Table E.11: Key Quotations of P11

29 Understanding the
Code

“First of all documentation. That is extremely
important. There are plenty application that are built
from a model in your head. But that you understand it
does not mean I understand it.“

1 Agile Awareness “Explain the value of Scrum. That it is important for us
and that we achieve better results using it.“

22 Splitting Complex
Tasks from Sprint

“What I have learnt is that you should map your
requirements way in advance and that you must map
what is in scope and what is out of scope.“

P12
Due to an audio-technical issue we were unable to record this interview. We used our notes to
write memos.

Table E.12: Key Quotations of P13

28 Team Structure “Because you impose some discipline at given times,
you impose retros, reflections. A fixed planning imposes
predictability in the system, which is nice for a new
developer without much experience, or experienced
developers who are new in the team.“

11 Flexibility “We do not apply Scrum 100%. We more or less use the
stuff we can use, and do not use things that limit us. “

7, 28 Commit to be
Responsible, Team
structure

“You have responsibility during your review. In that way
you give developers more responsibility, possibilities to
grow and more structure to work in. As a result, you can
deliver software with some expectations and release
schedules.“

18, 25 Open
Communication,
Team Openness

“He will most likely get a reprimand. That is a direct
result from the fact that the Scrum Master did not keep a
close eye on the team to spot something went wrong in
the team.“

1, 8 Agile Awareness,
Culture

“It is one of the things that is always difficult. To have
non-technical people take control over technical things.
Unfortunately, sales and product managers often
promise things that cannot be done in the budget or
time. So there should always be technical person in
those processes.“

13, 26 Iteration Pressure,
Team Openness

“And then there comes a time that you are swamped by
tasks with the note that you only have to do it. Then you
should step up and say that you cannot do this.“

88



Table E.13: Key Quotations of P14

11 Flexibility “It can go wrong with Scrum if you do not use it
properly or take all the rules too seriously.“

26 Team Openness “And that you have discussions in the team that
everyone knows what the team is doing which makes it
easier to distribute tasks.“

1 Agile Awareness “And I think that people people should not follow the
Scrum guide completely but use what best suits the
business.“

24 Team Agreements “I think that if you properly implement Scrum it has a
positive effect because if you maintain the definition of
done then everything will have a high quality.“

Table E.14: Key Quotations of P15

27 Team Predictability “It increases the efficiency because you have the tasks,
the short meetings, and you know exactly what you must
do so you can prepare for them.“

11, 21 Flexibility,
Self-Organising
Teams

“If the team has some knowledge of Scrum then it
works. It depends on the team. If something does not
work than you must change that to make it work.“

1 Agile Awareness “It is not the responsibility of the team to remove that
impediment. But if the team is not aware of that it can
go wrong. I think that is a disadvantage. You must give
courses to the team to use it properly.“

2 Balance Between
Focus and
Communication

“I have had a meeting that took way to long. That
should not happen in Scrum. You should time your
meetings and keep them as short as possible and make
sure people know what they should know before joining
the meeting.“

11 Flexibility “I think that it is useful to adapt a little to the needs. I
think that Scrum agrees with that, that you can be
adaptive.“

89



E. KEY QUOTATIONS

Table E.15: Key Quotations of P16

12 Involving All Parties
in Development

“What Agile should add for me is that it is more about
the interaction“

7 Continuous Feedback “I now have experience with the intermediate demos of
small pieces. And I think that it is very valuable. That
the customer orders something and that we are able to
build a first draft and show it as working software.“

11 Flexibility “At which point we do not try to cling to all the do’s and
don’ts of Scrum Agile. So we try to give it our own
twist“

8 Culture “The Agile Scrum way of working also deals with
culture. That is an important aspect and not everyone
does this naturally. What you often see is, especially old
school developers, is that they want a piece of paper
with a functional design with what you want. And they
will build it for you. [...] As far as I’m concerned, Agile
means working together. Preferably co located.“

6, 21 Commit to be
Responsible,
Self-Organising
Teams

“Instead, we are responsible as a team. And we will do
this as a team. So if the tester is sick and there is some
testing that has to be done, we will do that for the tester.
So we do not wait until the project manager gives us a
new tester. Team responsibility, that really has to do with
culture of the people, but also with the environment.“

1 Agile Awareness “Maybe this belongs to culture, but a little acceptance of
the role of the Product Owner, who is the boss of the
Agile team. It has to be accepted and supported by
higher management. [...] By giving a mandate,
especially to the Product Owner. And get the right
people in your teams.“

26 Team Openness “You must have the guts to say what goes wrong in a
team. And that can be about people. But you cannot let
that fester in a team.“

9 Feeling Comfortable
in the Team

“Do an intake. The team has to work together with him,
so let the team decide if it is a match.“

90



Table E.16: Key Quotations of P17

15, 29 Maintainability,
Understanding the
Code

“My opinion about quality is that it is clearly structured
and easy to maintain.“

26 Team Openness “And we have one person that always wants to please
the users. Then I am the person that slows us down or
else we have to work overtime.“

14 Keep Learning and
Improving the Code

“We have someone in our team who does not write
maintainable code. And we know that. So when he
builds something we make it better and more
maintainable.“

Table E.17: Key Quotations of P18

1, 8 Agile Awareness,
Culture

“If a business does not have a culture to delegate for
example, so not able to give some mandate to the
product owner. Then part of your Agile processes will
not work because the Product Owner cannot make his
own decisions.“

11 Flexibility “So for each project the client implements its own Agile
processes.“

12 Involving all Parties
in Development

“It provides a way where you achieve a partnership with
the client. This way you can collaborate very efficiently.
Consequently, the we-they culture that you often see in
fixed price projects and specification contracts,
diminishes.“

7 Continuous Feedback “I think, because you constantly validate if you are
heading in the right direction, the client gives his
insights on the product much easier. This allows you to
make modifications way faster which you would have
otherwise encountered at the final delivery of the
product.“

26 Team Openness “It is better to have a Product Owner who knows what
he does. And if that is not the case, then you must help
him in that and start operating as a team. That is a
project.“

1, 21,
28

Agile Awareness,
Self-Organising
Teams, Team
Structure

“I would start with the leadership. So the management
that stands above it. Because they have to give trust to
those self-organising teams, hence the culture of Agile
and openness and constantly wanting to learn.“

91



E. KEY QUOTATIONS

16 Minimise Pressure “The responsibility of tasks that lie outside the team
should not be dropped in the team for them to solve.“

8, 9 Culture, Feeling
Comfortable in the
Team

“I think culture, way of working cooperatively, in the
sense of how do we work together? How do we do it
together? It is extremely important to give a team a
goal. And not a goal like build a project but to give a
common goal like at the end of the project this is what
we want to achieve, together.“

1 Why Agile > Doing
Agile

“At the moment an organisation wants to do all their
software development in an Agile way, do not implement
it organisation-wide, but start slowly. A customer has to
grow in the Agile process and do not expect from the
customer that he does it perfectly from the first day. I
think that complying with the Agile values starts at the
customer. Few customers are transparent and open in
trust. So you have to guide them in that and the best way
to do that is to follow them yourself.“

Table E.18: Key Quotations of P19

21 Self-Organising
Teams

“For me, Agile means listening to your developers
because they possess all the knowledge. In the end, they
build what the customer wants. And the adaptive policy,
which is constantly adapting, and focus on that, that is
Agile.“

30 Why Agile > Doing
Agile

“And those are all potential disadvantages caused by a
bad execution of Agile.“

9 Involving All Parties
in Development

“The advantage is that the client gets what he actually
wants. You get less problems between developers and
the Product Owner. And that is basically caused by the
intensive communication. It happens almost
automatically.“

20 Programmer
Efficiency

“And then you wait if it is better and if it is not you
change again. That causes that your efficiency
increases. If you work with the right team. And in a
different setup there is no incentive to improve or to be
more efficient, you simply miss it.“

92



6, 16 Commit to be
Responsible,
Minimise Pressure

“The harder you push developers to make a deadline,
they will reach it. However, you must not ask with what
kind of code, or with a lack of tests. Things are pushed
to reach the deadlines and you see that a lot. And Agile
removes it by basically allowing to start over each
sprint. With Agile you commit as a team to those 2
weeks and I think that is powerful. That deadlines are
not imposed, but that you accept it, or create it.“

4, 8, 13 Challenge Yourself,
Culture, Iteration
Pressure

“Perhaps inside the sprint, if you committed as a team
to reach the sprint goal. Then you have the pride as a
team to deliver that. While the Agile culture states that
when you face problems you must discuss them with
your Product Owner and Scrum Master, but that is a
risk. You have to keep challenging the sprint deadline.“

17 Non-Functional
Awareness

“I think customers or Product Owners often
underestimate that. As a user I want to have this and
this because I work more easily then. They think that it
is clear enough and we have to understand it.“

19 Peer Feedback “Placing the responsibility with the team. And stimulate
the team to give feedback.“

1, 17 Agile Awareness,
Non-Functional
Awareness

“By thinking earlier how you add that part to your
definition of done. You have the definition of ready
which you should have with your requirements, and
especially the definition of done. But I think, the
expectation management, how much time it takes to have
your system properly documented, that is an aspect for
customers. Although is is an investment for the future.
When you work on a piece of functionality everyone
knows that you are building. however, this knowledge
decreases sprint after sprint. “

93



E. KEY QUOTATIONS

Table E.19: Key Quotations of P20

7, 19 Continuous
Feedback, Peer
Feedback

“If bugs emerge it costs more time to fix them then, for
example, when you developed it in an Agile way where
you get feedback from the tester if something is working
or not during every sprint feedback.“

1 Agile Awareness “So if you can translate the advantages of Agile
development to fewer costs, lower costs in software
development, or lower costs because they have to pay
less compensation if something goes wrong. [...] If you
want to convince an organisation to go Agile I would
make a cost calculation or you must run a trial project
where you show what you can deliver in a short amount
of time.“

18, 19,
31

Open
Communication, Peer
Feedback, Work
Floor Discussions

“I think that direct communication is very important.
That you sit together, interact, and that you can have
discussions with each other.“

94



Appendix F

Questionnaire

95



8/17/2018 Code Quality in Agile Software Development

https://docs.google.com/forms/d/1q-0vyK3Otisv58D_rT9t4-y8GnyYGNcWigqbbP-Bpfo/edit 1/7

Code Quality in Agile Software Development
This questionnaire contains 29 closed and 7 open questions questions, divided in 6 sections. It will take 
approximately 15 minutes to complete.

Thank you for your interest in our research on Code Quality in Agile Software Development. In this 
questionnaire we are interested in the influence of Agile on your ability to write high-quality code in your 
daily routine. You will be given statements for which you can indicate how strongly you disagree or 
agree. If you have a neutral opinion, please select the center option (value 3). 

We will ask questions about your development team. This includes the Product Owner and Scrum 
Master if you use Scrum.

We are interested in the opinions of developers or people who used to develop.

First, we will need some information to get started.

*Required

1. 1. Which country do you live in? *
Mark only one oval.

 Select Country ...

2. 2. Please specify your gender
Mark only one oval.

 Male

 Female

 Other: 

3. 3. What describes your role best? *
Mark only one oval.

 Full-time developer

 Part-time developer

 Student

 Used to be a developer

 Other: 

F. Questionnaire

96



8/17/2018 Code Quality in Agile Software Development

https://docs.google.com/forms/d/1q-0vyK3Otisv58D_rT9t4-y8GnyYGNcWigqbbP-Bpfo/edit 2/7

4. 4. Please select which Agile implementations you have worked with
Tick all that apply.

 Crystal

 Dynamic Systems Development Method (DSDM)

 Extreme Programming (XP)

 Feature-Driven Development (FDD)

 Kanban

 Lean

 Scrum

 Other: 

5. 5. Please select how many years you have worked with Agile *
Mark only one oval.

 No experience

 < 1 year

 1-2 years

 3-5 years

 6-10 years

 > 10 years

Development Pressure
The following statements are related to pressure in the development environment. 
 
Please indicate how strongly you (dis)agree with the following statements.

6. 6. I write better code when I am not facing too much pressure *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

7. 7. I feel Agile software development allows the development team to operate more
independently *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

8. 8. Being part of an independent development team reduces unnecessary pressure *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

F. Questionnaire

97



8/17/2018 Code Quality in Agile Software Development

https://docs.google.com/forms/d/1q-0vyK3Otisv58D_rT9t4-y8GnyYGNcWigqbbP-Bpfo/edit 3/7

9. 9. I feel Agile software development allows me to work in a sustainable pace *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

10. 10. Agile software development improves the communication of our development team *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

11. 11. I feel being open and honest in the development team can improve / improves our problem
solving process *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

12. 12. For one or more of the above statements, please specify the question number and why
you feel that way. *
 

 

 

 

 

Awareness
The following statements are about awareness of the development process e.g. software methodology, 
expectation management, code quality, maintainability, documentation, security etc. 
 
Please indicate how strongly you (dis)agree with the following statements.

13. 13. I think that the members of my development team should be enabled to fulfill their
responsibilities *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

F. Questionnaire

98



8/17/2018 Code Quality in Agile Software Development

https://docs.google.com/forms/d/1q-0vyK3Otisv58D_rT9t4-y8GnyYGNcWigqbbP-Bpfo/edit 4/7

14. 14. I feel people outside our development team have influence over important decisions in the
project *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

15. 15. I feel (technical) decisions made by our team are respected and accepted by people
outside of the development team *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

16. 16. Agile software development increases the transparency of our development (team) *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

17. 17. Agile software development increases the efficiency of our development team *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

18. 18. For one of the above statements, please specify the question number and why you feel
that way. *
 

 

 

 

 

Team Culture
In the following section we query statements about how team members think and interact with each other. 
 
Please indicate how strongly you (dis)agree with the following statements.

19. 19. People of our development team help each other when they get stuck *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

F. Questionnaire

99



8/17/2018 Code Quality in Agile Software Development

https://docs.google.com/forms/d/1q-0vyK3Otisv58D_rT9t4-y8GnyYGNcWigqbbP-Bpfo/edit 5/7

20. 20. My development team gives feedback on all aspects of each others work *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

21. 21. When software development problems are identified, my development team improves the
processes if needed *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

22. 22. I feel everyone is included in the decision-making processes of my development team *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

23. 23. Feedback from the development team improves my development skills and the quality of
my code *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

24. 24. I think the development team should have a common goal *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

25. 25. For one of the above statements, please specify the question number and why you feel
that way. *
 

 

 

 

 

Team Processes
The following statements are related to the processes your team follows and the agreements they made. 
 
Please indicate how strongly you (dis)agree with the following statements.

F. Questionnaire

100



8/17/2018 Code Quality in Agile Software Development

https://docs.google.com/forms/d/1q-0vyK3Otisv58D_rT9t4-y8GnyYGNcWigqbbP-Bpfo/edit 6/7

26. 26. I think agile software development makes work more organised *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

27. 27. I feel creating clear (flexible) agreements help in following the processes of the team
structure
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

28. 28. I think culture plays an important role in establishing the processes *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

29. 29. I feel the team keeps development processes that work well *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

30. 30. Agile software development increases my development speed *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

31. 31. I think Agile software development makes my work more fun *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

32. 32. I prefer an Agile approach over the Waterfall model *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

F. Questionnaire

101



8/17/2018 Code Quality in Agile Software Development

https://docs.google.com/forms/d/1q-0vyK3Otisv58D_rT9t4-y8GnyYGNcWigqbbP-Bpfo/edit 7/7

Powered by

33. 33. For one of the above statements, please specify the question number and why you feel
that way. *
 

 

 

 

 

Open Questions (optional)
The following questions are optional. This is the last section. The form will be submitted after this page.

34. 34. What do you consider as the main benefit(s) of the agile implementation in your
organisation?
 

 

 

 

 

35. 35. What do you consider as the main challenge(s) of the agile implementation in your
organisation?
 

 

 

 

 

36. 36. If you could change one thing, what would you change about the agile process you
use(d)?
 

 

 

 

 

F. Questionnaire

102



Appendix G

Agile Software Development Best
Practices Poster

103



Security
Main

tai
nab

ilit
y

Reliability

Performance 
Efficiency

Direct
Communication

Eliminate  
Technical Debt

Feedback

Involve All Parties  
in Development

Continuous
Integration

Team Agreements

Refactoring

Version Control
Systems

Definition of Done

Refactoring
If the code is not as good as it
should be, take time to refactor
some parts of the code that is

frequently worked on. Not only will
this save time in the future because
developers can add features more
easily, it also stimulates developers
to write high-quality code in these

parts. 

Improving Code Quality in Agile Software Development

Insights into how you can improve your team's code quality metrics through enhancing your Agile processes 

Version Control
Systems

A Version Control System gives
another means of documentation.
Design choices can more easily be
tracked. It also provides a way to

work faster together through
branching, for example. 

Definition of
Done

Define rules when code is
considered to be Done and ready

to be merged to production. Include
quality rules in the Definition of

Done. 

Eliminate
Technical Debt
All Technical Debt that is created

should be accounted for. For
example, if you have to take a

shortcut to save some time, add
the task that has to be done to

properly implement that shortcut as
Technical Debt and estimate how

long it will take, instead of adding a
simple TODO in comments. Take
measures to be able to work on

Technical Debt. 

Feedback
Feedback can be between

developers or on an individual level
e.g. analysis tools. Enable

developers to give feedback on
each other's way of working and
written code. Introduce tools that

help developers in following
standards or to find possible flaws

in the code. 

Continuous
Integration

Introduce Continuous Integration in
your development pipeline to

automatically run tests, check on
your coding guidelines and

practices and to verify if your code
builds. 

Involve All
Parties in

Development
Parties that have an interest in the
product should be involved in the
development. Developers are not
the end-users of the system and
might not have all the information

to perfectly make the product.
Allowing parties involved to provide
feedback gives developers a better
picture of what has to be done, has

gone wrong or could be done. It
enables discussions between

technical and non-technical staff
which makes it easier to explain

technical decisions. 

Direct
Communication

Communication between team
members is direct. Most

communication should go via a
face-to-face discussion or

Skype/phone-calls. Communication
where you have to wait for an

answer should be minimal. This
decreases the time developers are

stuck and reduces
misinterpretations. 

Team
Agreements

You can make agreements with
coding standards or practices your

team will use to enhance code
quality. Implement measures to

check that code satisfies the
agreements. 

DISCLAIMER 
You should decide what and how to change because we do not know where you are or where you are going. We do not know what you should do because we do not know what happens next.  

You should find out where you are, what you need and how you should adjust. This poster should only be used to gain insights into how you can change.

G. Agile Software Development Best Practices Poster

104


	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Chapter Overview

	Relation Between Code Quality and Agile Software Development
	Agile Software Development and the Scrum Framework
	Code Quality Standards
	Code Quality Measurements
	Code Quality in Agile Software Development

	Grounded Theory
	Fundamentals of Grounded Theory
	Straussian GT

	Experimental Design
	Goal
	Qualitative Phase: Grounded Theory
	Quantitative Phase: Questionnaire

	Qualitative Results
	Coding Results
	Emerged Theory
	Verifying the Results

	Quantitative Results
	Agile Software Development Best Practices for Improving Code Quality
	Agile Software Development Best Practices
	Relating Best Practices to Measurable ISO/IEC 25010:2011 Characteristics

	Revisiting the Research Questions
	Discussion
	Threats to Validity
	Limitations of the Study

	Conclusion and Future Work
	Future Work

	Bibliography
	Consent to Participate Form
	Example of Axial Coding Components
	Concept and Category Definitions
	Interview Questions
	Key Quotations
	Questionnaire
	Agile Software Development Best Practices Poster

