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ABSTRACT

The University of Twente performed experimental uniaxial compression tests of
Poly(ether-ether-ketone) (PEEK) and the TU Delft made a comparison with a nu-
merical model; the viscoplastic Eindhoven Glassy Polymer (EGP) model. A higher
strain-rate dependency and a higher yield stress at lower temperatures are observed
in the experimental results. It is of importance to correctly model the stress-strain
behaviour of PEEK for future research in long term behaviour of fibre reinforced
PEEK by adapting the EGP model to account for these differences. The viscos-
ity of the EGP model is based on the Ree-Eyring equation [Ree and Eyring, 1955]
in which the three Ree-Eyring parameters (activation volume, activation energy
and initial viscosities) are constants within the EGP model. It is observed that all
three Ree-Eyring parameters are not constant over the strain when the original Ree-
Eyring equation is fitted to the experimental data. Thus, non-constant Ree-Eyring
parameters should be included in the EGP model. Evolving all three Ree-Eyring
parameters leads to accurate stress-strain results, except for the pre-yield regime.
The EGP model does not behave as stiff as the experiment in this region. Thus, a
higher stiffness is included by evolving the shear moduli over the pre-yield regime.
The evolution of the Ree-Eyring parameters is expressed by a tanh() function and
quadratic function, while the evolution of the shear moduli is only expressed by
a tanh() function. The evolution based on the tanh() function mostly influences
the behaviour at small strains and the evolution based on the quadratic function
mostly influences the behaviour at large strains. The evolution of the Ree-Eyring
parameters at large strains leads to the insertion of viscous strain hardening in the
EGP model. The viscous strain hardening qualitatively describes the Bauschinger
effect for a cyclic loading case. The Bauschinger effect can be explained as the
change of material behaviour when stresses are present. What occurs when the
loading direction reverses within a cyclic loading case. An invariant function that is
proportional to the strain determines the strain dependency of the evolution of the
Ree-Eyring parameters and shear moduli. This invariant function is prevented from
reducing for the evolution based on the tanh() function when the loading direction
is reversed but does reduce for the evolution based on the quadratic function to cor-
rectly model cyclic loading. Furthermore, the linearization of the stiffness tensor is
updated for the changes to the EGP model and a part of the stiffness tensor which
was omitted in the original implementation is added.

Including the evolution of the Ree-Eyring parameters and shear moduli with
the mentioned characteristics in the EGP model makes the EGP model correspond
very well with the experimental results for all investigated temperatures and strain-
rates.
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CHAPTER 1
INTRODUCTION

This thesis sets out to solve a problem with a viscoplastic model that is used for
modelling polymers, this model is the Eindhoven Glassy Polymer (EGP) model.
The problem arises when modelling the polymer Poly(ether-ether-ketone) (PEEK).

problem definition The project ‘SafeRIDE’ aims to determine the long-term
performance of fibre-reinforced thermoplastic composites. The investigated fibre
reinforced thermoplastic is made up of PEEK and carbon fibres. The University
of Twente performed experimental uniaxial compression tests of Poly(ether-ether-
ketone) (PEEK), and the TU Delft made numerical calculations with the EGP model.
Two discrepancies were found between the experimental tests and the numerical
model: A lower yield stress at lower temperatures and a lower strain-rate dependency at
the low and moderate strain range is observed in the numerical model in comparison with
the uniaxial compression tests.

goal The goal of this thesis is to obtain a better fit of the EGP model to the
experimental observations of PEEK by updating the EGP model and/or its charac-
terization.

research question The problem definition and goal lead to the research ques-
tion, which is as follows:

How can the Eindhoven Glassy Polymer model be adapted to correspond
better to the higher experimentally observed strain-rate dependency and
higher experimentally observed yield stress at lower temperatures for uniax-
ial compression tests of Poly(ether-ether-ketone)?

scope The following limits are set to limit the scope of this thesis:

• Only the EGP model is used for modelling the polymer behaviour;

• Only the behaviour of the polymer PEEK is investigated;

• The research is conducted in 3D, but with uniaxial loading;

• The uniaxial compression loading case is investigated quantitatively and cyclic
loading cases is investigated qualitatively;

• A strain-rate range of 10−5 s−1 to 10−1 s−1 is investigated quantitatively and
a larger range of 10−7 s−1 to 101 s−1 is investigated qualitatively;

• A range of temperatures up to the glass transition temperature of PEEK (143
◦C)

is considered.
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2 introduction

1.1 experimental results
Uniaxial compression tests of PEEK are conducted by Sundararajan and Govaert
[2021]. This has been done for a range of strain-rates from 10−5 s−1 to 10−1 s−1

and temperatures of 20
◦C, 60

◦C and 100
◦C. The stress-strain results of these ex-

perimental tests can be seen in Figure 1.1. These experimental results will be con-
sidered accurate and representative for this thesis. The target for the EGP model
is to reproduce these measurements as accurately as possible with two remarks.
Firstly, adiabatic heating has influenced the stress-strain behaviour of the experi-
mental tests with a high strain-rate of 10−1 s−1, thus these experimental results
are not used within this thesis and are dashed in Figure 1.1. Secondly, stresses at
strains higher than 0.5 are not fully reliable since the lubrication of the samples and
in-homogeneous deformation play a role in the stress-strain behaviour.

1.2 thesis outline
The overall structure of this thesis takes the form of seven chapters. An important
split exists between the original EGP model and the updated EGP model. The
original EGP model is as described in the literature, while the updated EGP model
is changed according to the work within this thesis.

Two important subjects for this thesis are the deformation behaviour of polymers
and the setup of the original EGP model. These subjects are explored in chapter 2.
The original EGP model is then characterized in chapter 3 for two important reasons.
Firstly, to confirm the claim of discrepancies between the experimental tests and the
EGP model as noted in the problem definition above. Secondly, to create the basis
for a benchmark. This benchmark is used to test results and check if these are
improvements. Both reasons are also expanded upon in chapter 3. Chapter 4 draws
together the key findings for the uniaxial compression case. Since the problem
statement mentions long term performance testing in which cyclic loading cases for
fatigue are of importance, a cyclic loading case is also investigated qualitatively in
chapter 5. Chapters 4 and 5 lead together to the fully updated EGP model in section
5.3, which then leads to a updated linearization of the stiffness tensor that is given
in chapter 6. The findings of this thesis are concluded and extensively discussed in
chapter 7, which lastly yields several recommendations.
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(a)

(b)

(c)

Figure 1.1: The stress-strain curves of experimental uniaxial compression tests of PEEK con-
ducted by the University of Twente at (a) 20

◦C, (b) 60
◦C and (c) 100

◦C.





CHAPTER 2
LITERATURE REVIEW

This chapter reviews the literature of two important subjects for this thesis. The
first subject is the behaviour of polymers (section 2.1), which is important since
this thesis is focused on the polymer PEEK. The second subject is the setup of the
original EGP model (section 2.2), which is important since the EGP model will be
used to model PEEK.

2.1 deformation behaviour of polymers
temperature dependency The temperature has a large influence on the molec-
ular structure of polymers, whereas the behaviour of polymers is very dependent
on its molecular structure. The molecular structure of a polymer can be in three
different states, based on a range of temperatures called the glass transition Tg zone
[Roylance, 2001]:

• Glassy (T < Tg): There is a stiff and brittle response.

• Leathery (T ≈ Tg): There is a leathery response (largely viscoelastic behaviour).

• Rubbery (T > Tg): There is a large rubbery and fully reversible strain re-
sponse.

crystallinity A polymer is made up of long chains of molecules and can be
categorised as amorphous, crystalline or semi-crystalline. In amorphous polymers,
these chains are scattered randomly like cooked spaghetti. In crystalline polymers,
the chains are structured as lamellae which are orderly and tightly packed and
folded into a mostly planar zigzag and helical configuration. Semi-crystalline poly-
mers have both amorphous and crystalline segments in which the degree of crys-
talline segments relative to amorphous segments is defined as the crystallinity. The
crystallinity of semi-crystalline polymers differs between types of polymers and
increases with temperature [Bower, 2003].

stress-strain behaviour The stress-strain curve of semi-crystalline polymers
has the characteristics as seen in Figure 2.1. At the start of loading, this material be-
haves linear viscoelastic and develops to behave nonlinear viscoelastic [Clarijs, 2017]
due to the elongation of the amorphous segments [Barba et al., 2020]. At a certain
point, irreversible plastic flow leads to the yield point. The plastic flow occurs due
to tilling of lamellar chains and the separation of crystalline segments. This leads to
strain softening after the yield point since the previously locked amorphous chains
are released. This effect is more pronounced in polymers with a higher crystallinity
(for example, due to a lower temperature) and leads to higher yield stresses [Bower,
2003]. At higher strains, the amorphous molecular chains and crystalline segments
are oriented parallel to the load which leads to strain hardening [Barba et al., 2020].

5
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Figure 2.1: Schematic and annotated stress-strain behaviour of a polymer.

The strain hardening process already starts at the onset of loading but overtakes the
other molecular processes at larger strains [Senden, 2009].

Polymers are strongly dependent on the strain-rate and temperature. When an
experiment with a higher strain-rate is performed, a higher yield stress is obtained,
while higher temperatures lead to lower yield stresses [Clarijs, 2017].

Some polymers are thermorheologically simple, but most are thermorheologically
complex [Klompen and Govaert, 1999]. Thermorheologically simple polymers are
influenced by only one relaxation process, while thermorheologically complex poly-
mers are influenced by multiple relaxation processes [Senden, 2009]. Relaxation is
defined as a time-dependent decrease of stress under a constant strain. A second
(or higher) relaxation process influences the stress-strain behaviour, temperature
dependency and strain-rate dependency of polymers. This happens below certain
temperatures and above certain strain-rates. A change in the slope of the stress at a
certain strain plotted against the strain-rate in a semilog plot (as seen in Figure 2.2a)
indicates the presence of multiple relaxation processes. The slope of the curves in
Figure 2.2a is from here on called the strain-rate dependency. An important obser-
vation is that the strain-rate dependency of different relaxation processes is additive
[Klompen and Govaert, 1999].

polymer ageing The ageing of a polymer influences its behaviour. This age
represents the time, stress and temperature history of a polymer object. Polymers
will have a higher yield stress and a stronger strain softening effect at a higher age
[Clarijs, 2017]. Figure 2.2b demonstrates that the yield behaviour changes when
samples have been annealed at different temperatures.

the bauschinger effect The Bauschinger effect is another substantial effect
that influences the stress-strain behaviour of polymers and is related to the stress
history of a material. A standard example of the Bauschinger effect is that the elas-
tic limit is higher for subsequent loading in the same direction after uniaxial plastic
straining when compared to loading in the reverse direction [Bauschinger, 1881].
Another example is the very different yield behaviour of polymers when the molec-
ular chains are pre-oriented in any direction [Senden, 2009]. This means that the
behaviour of material changes due to a (previous) stress state within the material.
This is relevant for the cyclic loading cases that are qualitatively investigated within
this thesis.
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(a) (b)

Figure 2.2: Schematic influence of (a) different relaxation processes on the strain-rate depen-
dency and (b) ageing at different temperatures on stress-strain results.

poly(ether-ether-ketone) PEEK is a high-grade semi-crystalline polymer. It’s
full scientific name is poly(oxy-1,4-phenylene-oxy-1,4-phenylenecarbonyl-1,
4-phenylene). PEEK has a high glass transition zone Tg around approximately
143
◦C, is largely crystalline and can be easily processed by melting [Rae et al.,

2007]. The material is thermorheologically complex with multiple relaxation pro-
cesses governing the deformation kinetics. Most literature sources attribute two
relaxation processes to PEEK [El-Qoubaa and Othman, 2015; Klompen and Govaert,
1999], but three relaxation processes for very high strain-rates is also argued [El-
Qoubaa and Othman, 2015; Safari et al., 2013]. The first process is associated with
the relaxation of the amorphous segment of the material. The second process is
associated with the chain mobility (glass transition) of the amorphous segment of
the material [Senden, 2009].

2.2 general overview of the egp model
The Eindhoven glassy polymer (EGP) model is a constitutive model based on the
work of Haward and Thackray [1968]. They proposed that the post-yield behaviour
of glassy polymers consists of a rate-dependent plastic flow process and a rate-
independent contribution of the entanglement network. This work is one-dimensional
and has been expanded to 3D by Boyce et al. [1989] as the ’BPA-model’. The devel-
opment of the EGP model started around the mid-nineties by Tervoort et al. [1996]
and is still expanding. This thesis will expand on the most recent (2021) implemen-
tation of the EGP model by the computational mechanics group at TU Delft, which
is also described by Clarijs [2017].

The model can be schematized as seen in Figure 2.3. The total Cauchy stress
tensor σ is decomposed into the hydrostatic stress σh and deviatoric stress σd. The
deviatoric stress is then decomposed into an elasto-viscoplastic driving stress σs
and an elastic hardening stress σr (Equation 2.1). This stress decomposition is one
of the key characteristics of the model:

σ = σh + σs + σr (2.1)
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Figure 2.3: Schematisation of the EGP model stress decomposition.

2.2.1 Kinematics

A few kinematic relations, based on the theory of continuum mechanics, are defined
to get a better overview of the EGP model.

Another key characteristic of the EGP model is the multiplicative decomposition
of the deformation gradient in the elastic and plastic part:

F = Fe · F p (2.2)

The plastic part indicates deformation of the relaxed stress free configuration. This
state would instantly be recovered when the stress would be removed [Govaert
et al., 2000]. The multiplicative decomposition of the deformation gradient has two
implications. First, the following holds for the velocity gradient tensor L:

L = Ḟ · F−1

= Ḟe · F−1
e + Fe · Ḟ p · F−1

p · F−1
e

= Le + Lp

(2.3)

The velocity gradient tensor L can be written as an additive split in an elastic part
Le and a plastic part Lp.

Secondly, the multiplicative decomposition of the deformation gradient is not
unique because no plastic rotation is specified. To solve this problem, it is assumed
that the plastic deformation is spin free [Boyce et al., 1989]:

Lp = Dp + Ωp = Dp (2.4)

Dp denotes the plastic rate of deformation and Ωp denotes the plastic rate of ro-
tation. Another assumption is that the plastic deformation is incompressible (iso-
choric), thus all volumetric changes due to loading are elastic. The volume change
ratio J can then be written as:

J = det(Fe) (2.5)

Volumetric deformations are described using the isochoric deformation gradient F̃:

F̃ = J−
1
3 F (2.6)

The same can be done for the elastic isochoric deformation F̃e. The time derivative
of the elastic isochoric Cauchy-Green deformation tensor (B̃e = F̃e · F̃T

e ) is used to
compute elastic strain changes:

˙̃Be = (L̃d − Dp) · B̃e + B̃e · (L̃d − Dp)
T (2.7)

Equation 2.7 shows that ˙̃Be is reduced by the plastic rate of the deformation tensor
Dp. Dp can be computed with a constitutive description based on the viscosity
function which is described in subsection 2.2.3 [Clarijs, 2017].
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2.2.2 Hydrostatic stress

The hydrostatic stress is computed quite straightforward and is based on the con-
stant bulk modulus κ, the volume change ratio J and the second order unit tensor
I [Tervoort et al., 1994]:

σh = κ(J − 1)I (2.8)

The hydrostatic stress is shown as a separate component in Figure 2.3 since it is
directly dependent on the (elastic) deformation gradient instead of being dependent
on the left Cauchy-Green deformation tensor, which defines the other two stress
components. Therefore in the mechanical analogue, the hydrostatic stress is not
placed in parallel with the driving and hardening stress component.

2.2.3 Driving stress

Thermorheologically complex polymers are characterized by multiple relaxation
processes. PEEK is a thermorheologically complex polymer of which two relaxation
processes are modelled, denoted as α and β. Within the EGP model, both these
relaxation processes consist of a spectrum of relaxation times to correctly model
the yield behaviour. This can be schematized as several parallel (Thus, additive)
spring-dashpot systems (Leonov modes). These are called modes from here on and
denoted by subscripts j and k for the α- and β-process, respectively. In Figure 2.3, the
α- and β-process schematically consist of summations of j and k number of modes.
The main difference between modes and processes is that the relaxation kinetics
are the same for all modes within a process but differ between processes [Clarijs,
2017]. The spring of each mode is characterized by a shear modulus Gα,j/Gβ,k and
the relaxation time is included in the deviatoric part of the isochoric, elastic left
Cauchy-Green deformation tensor B̃d

eα,j
/B̃d

eβ,k
related to the dashpot of a mode:

σs =
n

∑
j=1

σα,j +
n

∑
k=1

σβ,k

=
n

∑
j=1

Gα,jB̃
d
eα,j

+
n

∑
k=1

Gβ,kB̃d
eβ,k

(2.9)

The deviatoric part of the modal isochoric, elastic left Cauchy-Green deformation
tensor is computed by:

B̃d
ex,j

=
(

F̃ex,i · F̃
T
ex,i

)d

= J−
2
3

(
Fex,i · F

T
ex,i

)d
(2.10)

Where x = α or β and i = j or k. This shows that Equation 2.7 is used in its modal
form and is computed for each mode separately.

the viscosity function The plastic rate of deformation Dp is used to reduce
the accumulation of isochoric elastic strain, as seen in Equation 2.7. The follow-
ing Non-Newtonian flow rule is used to describe the plastic rate of deformation
gradient with the driving stress:

Dpx,i =
σx,i

2ηx,i
(2.11)

Where ηx,i is the scalar viscosity function and is based on Ree-Eyring flow theory.
This theory uses a semi-empirical relation for viscosity based on the relaxation pro-
cess of viscous flow. This can be visualized as "the sudden shifting of some small
patch on one side of a shear surface with respect to the neighboring material on
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the other side of the shear surface" [Ree and Eyring, 1955]. These shear surfaces
are, in the case of semi-crystalline polymers, the different (amorphous/crystalline)
segments [Tervoort et al., 1996].

The viscosity function in the original EGP model is dependent on temperature,
strain-rate and pressure. The strain-rate dependency is based on an equivalent
stress proportional to the Von Mises stress [Tervoort et al., 1997]. The viscosity
function is also based on the rejuvenated state (a state where no ageing has occurred
[Van Breemen et al., 2011]). The viscosity function as used in the original EGP model
is as follows:

ηx,i = η0x,i

τx/τ0x

sinh(τx/τ0x )
exp

(
∆Hx

RT

)
︸ ︷︷ ︸

Part 1

exp
(

µx p
τ0x

)
exp(Sx)︸ ︷︷ ︸

Part 2

(2.12)

In which part 1 originates from the original Ree-Eyring formulation and part 2

originates from EGP development. The following parameters are used within the
viscosity function for process x = α or β and for mode i = j or k:

• τ0x is the characteristic shear stress, defined as:

τ0x =
kbT
Vx

(2.13)

• T is the temperature;

• Vx is the activation volume;

• ∆Hx is the activation energy;

• η0x,i is the initial viscosity;

• µx is the pressure dependency;

• Sx is the state parameter;

• τx is the total equivalent stress, defined as:

τx =

√
1
2

σx : σx (2.14)

• p is the pressure, defined as:

p = −κ(J − 1) (2.15)

• κ is the bulk modulus (= 5475 N/mm2 for PEEK);

• kb is the Boltzmann’s constant (= 1.38064852 · 10−23 m2 kg s−2 K−1);

• R is the gas constant (= 8.3145 J mol−1 K−1).

the state parameter The thermomechanical history of the material is taken
into account with the scalar state parameter Sx. This defines the current thermome-
chanical state and the inherent strain-softening behaviour. The state parameter is a
function of the equivalent plastic strain γp:

Sx = Sx(γp) = Sax Rγx (γp) (2.16)

The ageing parameter Sax determines and the height of the yield drop and the
intrinsic strain softening function Rγx describes the shape of the yield drop.

By proposal of Senden et al. [2012a], Sax is split in a part related to material
changes SSx and a part related to ageing of the activation energy SHx :

Sax =
SHx

RT
+ SSx (2.17)
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Figure 2.4: Schematic influence of the elastic strain hardening parameters on the hardening
stress contribution.

A function for the activation energy is added to the EGP model to account for the
ageing of this parameter:

∆Hx = ∆H0x + SHx Rγx (γp) (2.18)

The equivalent plastic strain mentioned in Equation 2.16 is calculated with its rate
and based on the mode with the highest viscosity. This mode indicates the onset of
macroscopic yielding [Van Breemen et al., 2011]. It is assumed that the mode with
the highest viscosity is the first α-mode:

γ̇p =
τα,1

ηα,1
(2.19)

τα,1 and ηα,1 can be determined with Equations 2.14 and 2.12, respectively.
The softening function Rγx is described by a modified Carreau-Yasuda function

[Yasuda, 1979] as proposed by Klompen et al. [2005]:

Rγx (γp) =

[
1 + (r0x exp(γp))

r1x

1 + rr1x
0x

] r2x−1
r1x

(2.20)

In which r0x , r1x and r2x are fitting parameters. It is assumed that these fitting
parameters are the same for each mode within a process.

2.2.4 Hardening stress

The strain hardening is a combined elastic-viscous occurrence as indicated by multi-
ple studies [Kramer, 2005; Hoy and Robbins, 2008; Senden et al., 2010; Nayak et al.,
2011]. Both nonlinear elastic strain hardening and viscous strain hardening are in-
cluded in the EGP model. The nonlinear elastic strain hardening is shown as a
spring in the schematisation of the EGP model in Figure 2.3 and the viscous strain
hardening is incorporated in the viscosity function (Equation 2.12).

elastic strain hardening The elastic hardening stress can be schematised as
a nonlinear spring characterized by the Edwards-Vilgis slip link model [Edwards
and Vilgis, 1986]. This model is used due to its high accuracy and is defined as
follows:

σr =
Gr

J
(

B̃ · Z
)d (2.21)
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Tensor Z is defined as:

Z =
α2

r (1 + ξr)(1− α2
r )

(1− α2
r · tr(B̃))2 tr

(
B̃ ·
(

I + ξrB̃
)−1
)

I

+
(1 + ξr)(1− α2

r )

1− α2
r · tr(B̃)

((
I + ξrB̃

)−1 − ξr
(

I + ξrB̃
)−1 ·

(
I + ξrB̃

)−1 · B̃
)

+ ξr
(

I + ξrB̃
)−1 − α2

r
1− α2

r · tr(B̃)
I

(2.22)

In which:

• Gr is the strain hardening modulus that is actually comprised of Gr = NekBT.
This function is temperature-dependent, but Gr is assumed constant in the
EGP model. With:

– Ne is the number of density entanglements;

– kb is the Boltzmann constant (= 1.38064852 · 10−23 m2 kg s−2 K−1);

– T is temperature;

• ξr is the mobility of the entanglements of the molecular chains in polymers.
Since the entanglement network stays intact during plastic deformation, this
parameter is kept at 0;

• αr is the (limited) extensibility of the network of molecular chains in polymers.

Figure 2.4 shows the influence of Gr and αr on the elastic strain hardening stress
contribution. Gr determines the slope of the linear curve of the elastic hardening
behaviour and αr leads to nonlinear behaviour of this curve.

Taking ξr = αr = 0 reduces the expression to a Neo-Hookean strain hardening
relation. This strain hardening relation was incorporated in earlier versions of the
EGP model [Clarijs, 2017].

viscous hardening stress Strain hardening has a viscous component by mak-
ing the driving stress deformation dependent. This effect is in the EGP model in-
corporated in the viscosity function (Equation 2.12). Due to this, loading-unloading
situations are described realistically because the Bauschinger effect (see section 2.1)
is captured [Senden et al., 2010]. The deformation dependence of the model is de-
scribed with the invariant function Ir(B̃), which is approximately proportional to
the strain:

Ir(B̃) ∝
∼

ε (2.23)

Ir(B̃) =

√
1
2

B̃d : B̃d
=

√
1
3

I2
1 − I2 (2.24)

Where:

I1 = tr(B̃) (2.25)

I2 =
1
2
(tr2(B̃)− tr(B̃ · B̃)) (2.26)

Senden et al. [2012a] determined that the initial viscosity and activation energy
should be deformation-dependent to model the Bauschinger effect in polycarbonate.
These parameters are quadratically dependent on the invariant function for the α-
process and linearly dependent on the invariant function for the β-process. The
initial viscosities are now determined as follows:

η0α,i (Ir(B̃)) = η0α,i exp(C2,α(Ir(B̃))2) (2.27)
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η0β,i (Ir(B̃)) = η0β,i exp(C2,β Ir(B̃)) (2.28)

The relation for the activation energy in Equation 2.18 is updated for the deforma-
tion dependency, such that:

∆Hα(Ir(B̃)) = ∆H0α + C1,α(Ir(B̃))2 + SHα Rγα(γp) (2.29)

∆Hβ(Ir(B̃)) = ∆H0β
+ C1,β Ir(B̃) + SHβ

Rγβ
(γp) (2.30)





CHAPTER 3
BENCHMARK

In this chapter, the original EGP model is firstly characterized in section 3.1 for
PEEK based on experimental data from the University of Twente [Sundararajan and
Govaert, 2021]. This experimental data was introduced and described in section 1.1.
The characterization is performed for two important reasons. Firstly, to create a
benchmark in sections 3.2 and 3.3 that can be used to compare results from the
updated EGP model and check if these are improvements. The benchmark consists
of stress-strain curves, difference plots and strain-rate dependency plots. Secondly,
to confirm in section 3.4 the claim of discrepancies between the experimental tests
and the EGP model as noted in the problem definition in chapter 1.

3.1 characterization of the original egp model
Appendix A lists the included parameters, their names, their influence on the model
and in what equation(s) within the literature review (chapter 2) they can be found.
All parameters need to be characterized by taking the following steps:

1. Determine the activation volume by assuming other needed parameters and
fitting the strain-rate dependency of the EGP model and the experimental
results;

2. Determine the pressure dependency with the procedure outlined by Govaert
et al. [2001];

3. Determine the elastic strain hardening and viscous strain hardening parame-
ters;

4. Determine the modal parameters of the α-process:

a) Determine the shear moduli and initial viscosities with the procedure
outlined by Van Breemen et al. [2011];

b) Determine the state factor and softening shape by fitting the softening
response of the experimental results;

5. Determine the activation energy of the α-process by fitting experimental re-
sults at different temperatures. This is only necessary if more than one tem-
perature is modelled;

6. Determine the modal parameters and the activation energy of the β-process
in the same way as for the α-process. This is only necessary if the β-process is
present.

The steps correspond with the following paragraphs.

15
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step 1; determination activation volume The activation volume changes
the strain-rate dependency of the EGP model. The strain-rate dependency can be
observed as the slope of the curve in a semi-log plot of the stress against the strain-
rate (Figure 2.2a). A constant value for the activation volume has been found by
firstly taking representative parameters based on another characterization of the
EGP model [Sundararajan and Govaert, 2021] and secondly fitting the strain-rate
dependency with the activation volume at a strain of 0.3. The following constant
values for the activation volume have been obtained for the α- and β-process: Vα =
9.20 nm3 and Vβ = 5.00 nm3.

step 2; determination pressure dependency The pressure dependency µx
can be determined with the procedure outlined by Govaert et al. [2001]. However,
this method did not yield constant values as later discussed in section 4.1. For
the sake of the characterization, a constant value of 0.06 has been chosen for the
pressure dependency. This value is based on an earlier characterization of another
PEEK sample performed by the University of Twente [Sundararajan and Govaert,
2021] and leads to realistic stress-strain curves.

step 3a; determination elastic strain hardening parameters The elas-
tic strain hardening modulus Gr, the limited extensibility of the molecular network
αr and the mobility of the entanglements of the molecular network ξr are deter-
mined in this step. The large strain response of the EGP model is manually fitted
to the experimental results by varying the elastic strain hardening parameters. An
EGP analysis with only one α-process mode and an assumed shear modulus and ini-
tial viscosity is used for this analysis. Gr determines the slope of the linear curve of
the elastic hardening behaviour and αr leads to nonlinear behaviour of this curve as
seen in Figure 2.4. ξr is assumed 0 as described in subsection 2.2.4. Since the slope
of the stress-strain curves increases at higher strains, it is assumed that a nonlinear
hardening effect is present and αr is non-zero.

The described analysis led to a strain-hardening modulus Gr of 5.0 MPa and a αr
of 0.22.

step 3b; determination viscous strain hardening parameters The Vis-
cous strain hardening parameters C1,α, C2,α, C1,β and C1,β lead to an evolution of the
activation energy and initial viscosities. By correctly characterizing these parame-
ters evolution, the viscous strain hardening can be modelled leading to correctly
capturing the Bauschinger effect [Senden et al., 2012a] when performing cyclic load-
ing. All four parameters are kept at 0 because this chapter focuses on a uniaxial
compression loading case.

step 4a; determination shear moduli and initial viscosities α-process
The procedure outlined in Van Breemen et al. [2011] is used to determine the shear
moduli and initial viscosities for the Leonov modes that are used to represent the
α-relaxation process. The parameters needed to determine the shear moduli and
initial viscosities have been determined in the previous sections. There should be
no influence of the β-process on the parameters for the α-process. Thus, A stress-
strain result should be used where only the α-process is present. Figure 3.1 shows
the strain-rate dependency of the experiments, which can be observed as the slope
of the curves in this semi-log plot of the stress against the strain-rate. The slope
is less steep when only the α-process is present instead of when both the α- and
β-process are present. There can then be seen in the figure that only the α-process is
present at 100

◦C and a strain-rate of 10−3 s−1. Thus, the experimental stress-strain
result for this temperature and strain-rate has been used.
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Figure 3.1: The strain-rate dependency of the experimental results (see section 1.1) at a strain
of 0.4 shown as markers for different temperatures. The grey line is indicative for
the slope.

Table 3.1: The Carreau-Yassuda function fitting parameters.
α-process β-process

Carreau-Yassuda fitting parameter 0 r0 0.965 0.965

Carreau-Yassuda fitting parameter 1 r1 -5.0 -5.0
Carreau-Yassuda fitting parameter 2 r2 -5.0 -5.0

Following, the determined initial viscosities are shifted to correct for the current
thermodynamic state:

η0x,i = η0x,i,calc exp(−Sx) exp
(
−∆Hx

RTx,base

)
(3.1)

Tx,base is the temperature that is used to characterize the modal parameters of a
certain process. A Tα,base of 100

◦C has been used within this step.
The resulting shear moduli and initial viscosities are listed in Table B.2 within

appendix B. A high number of modes is used since the goal of this thesis is to
obtain results that are as accurate as possible and more modes lead to more accurate
results.

step 4b; determination state factor and softening shape α-process
The experimental results show a slight softening behaviour. This indicates that the
state factor Sx should be low, but non-zero. After testing multiple state factors for
shifting the initial viscosities (Equation 3.1), a state factor of 2.0 leads to the correct
softening behaviour. Sax determines the height of the stress drop after the yield
point and should be set equal to 2.0 as well. Sax is additively split in the ageing of
the activation volume SHx and the ageing of the material SSx as seen in Equation
2.17. (Partly) contributing the softening behaviour to the ageing of the activation
energy would lead to higher activation energy around the yield point, as can be
seen in Equation 2.18. However, a higher activation volume around the yield point
leads to less accurate results. Thus, the softening behaviour is fully contributed to
the ageing of the material. This means that SHα = 0.0 and SSα

= 2.0.
The softening shape has been determined by assuming a higher state factor and

then creating the correct shape with the modified Carreau-Yassuda function fitting
parameters. The fitting parameters are shown in Table 3.1. It should be noted that
the fitting parameters are not very exact due to the small softening shape of the
experimental results. Thus, the fitting parameters should be used with care for
experimental results of PEEK with a high state factor.
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Figure 3.2: The simple 8-noded hexahedral finite element.

step 5; determination activation energy α-process The activation energy
of the α-process describes the temperature dependency of the α-process. Therefore
it should be fitted on stress-strain behaviour from two different temperatures where
only the α-process is present. It can be seen in Figure 3.1 that this is the case for a
strain-rate of 10−4 at 60

◦C and 100
◦C according to the explanation in step 4a.

A value of 685 · 103 J mol−1 leads to the best fit.

step 6; determination parameters β-process The fact that the curves in
Figure 3.1 are bi-linear instead of linear shows that a β-process is present and should
be characterized as well. The same steps as for the α-process have been taken to
determine the equivalent β parameters. However, the following changes are made:

• Modal parameters: Stress-strain curves from the α-process at 20
◦C and a strain-

rate of 10−3 s−1 are obtained with the EGP model and subtracted from the
experimental stress-strain curves at the same temperature and strain-rate to
find a curve that is used for the procedure. The obtained shear moduli and
initial viscosities can be found in Table B.3 within appendix B. No softening
is observed for the β-process, thus SHα = SSα

= 0.0.

• Activation energy: The stress-strain curves of a strain-rate of 10−2 s−1 at 20
◦C

and 60
◦C have been used to obtain the activation energy for the β-process. A

value of 90 · 103 J ·mol−1 leads to the best fit.

characterization of the benchmark All parameters that are needed for the
original EGP model (Appendix A) have been determined in this section. The char-
acterization of the benchmark is shown in appendix B.

3.2 egp model settings/fem settings
The EGP model is implemented by the computational mechanics group from TU
Delft in a FEM program written in C++ using the programming tool kit Jive from
Dynaflow [Dynaflow Research Group, 2020].

A simple 8-noded hexahedral finite element with a 2x2x2 Gauss integration scheme
has been used for all analyses in this thesis.

Figure 3.2 shows the constraints on the cube for a uniaxial compression test. All
four nodes on the red face are restrained in the x-direction and the two nodes
on the bottom of the red face are additionally restrained in the y-direction. The
cube is loaded in the positive x-direction on the four nodes of the blue face until a
prescribed strain of 0.8 is reached in the cube.

Load increments are applied by the arc-length control method with adaptive step-
ping and the modified Newton-Raphson iteration scheme. The arc-length control
method uses a precision of 10−6. The starting, minimal and maximal values of time
increments for the arc-length control method have been defined for the adaptive
stepping method and are listed in Table 3.2 for the different strain-rates.
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Table 3.2: The time increments of the arc-length control method for different strain-rates.
10−1 10−2 10−3 10−4 10−5

Starting increment 0.01 0.1 1.0 10 100
Minimal increment 0.001 0.01 0.1 1.0 10
Maximal increment 0.02 0.2 2.0 20 200

3.3 results of the benchmark
differences The results of the benchmark consist of the differences between
the original EGP model results and the experimental results and is shown in several
figures, namely:

• Figures 3.3a, 3.3c and 3.3e with the difference between the original EGP model
stress-strain results and the experimental stress-strain results;

• Figures 3.3b, 3.3d and 3.3f with the stress-strain curves of both the original
EGP model and the experiments zoomed in to the after-yield stress levels;

• Figure 3.4 with the strain-rate dependency at different temperatures;

• Figure 3.5 comparing the qualitative stress-strain behaviour of the pre-yield
regime of the original EGP model and the experiments.

The four types of figures visualizing the differences are described and analyzed in
the four following paragraphs.

difference plots The difference between the experimental stress-strain results
and the original EGP model stress-strain results is plotted for all strain-rates at mul-
tiple fixed temperatures. These plots are the main method of checking the difference
between the EGP model and the experiments. They are for the benchmark shown
in Figures 3.3a, 3.3c and 3.3e at 20

◦C, 60
◦C and 100

◦C respectively. These figures
can also be created for the updated EGP model and be compared to these figures
to check if the updated EGP model is an improvement upon the benchmark. The
curves should be as close to the red 0-line as possible, as this means that there is no
difference between an EGP model result and an experimental result.

stress-strain curves Stress-strain curves have been determined with the orig-
inal EGP model at a combination of the temperatures 20

◦C, 60
◦C and 100

◦C and
the strain-rates of 10−1 s−1, 10−2 s−1, 10−3 s−1, 10−4 s−1 and 10−5 s−1. Stress-strain
curves plotted against the experimental results that are zoomed in to the after-yield
stress levels can be seen in Figures 3.3b, 3.3d and 3.3f for the specified temperatures.
The full curves can be found in appendix C.

strain-rate dependency The semi-log plot of the stress against the strain-rate
shows the strain-rate dependency at a specific strain. The strain-rate dependency
is defined as the slope of the curves in these plots. The strain-rate dependency of
the experimental results and the original EGP model at a strain of 0.1 at 20

◦C, 60
◦C

and 100
◦C are shown in 3.4.

It can be seen that the slope of the curves is different for the experimental and
original EGP model results. This means that there is a different strain-rate depen-
dency at this strain level. The same is seen at almost all other strain levels.

pre-yield behaviour Figure 3.5 shows that the stress-strain behaviour of the
experiments in the pre-yield regime is not captured by the original EGP model.
The results of the original EGP model are independent of the strain-rate, while the
experimental results are not.



20 benchmark

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: (a, c, e) The difference between the experimental results and the original EGP
model benchmark results. (b, d, f) The experimental stress-strain results plotted
with markers and the original EGP results plotted in solid lines. Both for a
number of different strain-rates and at (a, b) 20

◦C, (c, d) 60
◦C and (e, f) 100

◦C.
The grey lines in the plots with the difference are the exact difference including
the noise from the experiments while the black lines are without the noise, which
are obtained by filtering the grey lines with a Butterworth filter.
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(a) (b)

(c)

Figure 3.4: The strain-rate dependency of the original EGP model results and experimental
results for a temperature of (a) 20

◦C, (b) 60
◦C and (c) 100

◦C taken at a strain of
0.1.

(a) (b)

Figure 3.5: The pre-yield stress-strain behaviour at 100
◦C of (a) the experimental results and

(b) original EGP model results.
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3.4 confirmation of the problem statement
The claim of discrepancies between the experimental tests and the original EGP
model as noted in the the problem definition is as follows:

A lower yield stress at lower temperatures and a lower strain-rate dependency at the low and
moderate strain range is observed in the numerical model in comparison with the uniaxial
compression tests.

Two separate problems are listed and both checked based on the benchmark in
section 3.3:

• "lower yield stress at lower temperatures": the stress of the original EGP model
at 20

◦C is always below the yield stress of the experimental results in Figure
3.3b. However, this is not observed in the results at 100

◦C (Figure 3.3f). Thus,
the effect is indeed present and only at lower temperatures.

• "lower strain-rate dependency at the low and moderate strain range": Figure 3.4
does show a lower strain-rate dependency of the original EGP model results
compared to the experimental results for a strain of 0.10. The discrepancy
in the strain-rate dependency can also be observed in Figure 3.3, where the
discrepancy in strain-rate dependency is larger when the curves within the
difference plots for the different strain-rates are farther apart from each other.

It is concluded that the discrepancies specified in the stated claim are indeed
present.

additional discrepancies Additionally, the lower strain-rate dependency is
observed at higher strains, but not at the moderate strain range. This makes sense
since the activation volume that determines the strain-rate dependency is fitted in
the moderate strain range at 0.3. Another new observation is that the stress-strain
behaviour in the pre-yield regime is strain-rate independent for the original EGP
model results but it is strain-rate dependent for the experimental results, as shown
in figure 3.5.

all identified differences The following identified differences of original
EGP model results compared to the experimental results are to be solved in the
chapter 4:

• A lower yield stress at lower temperatures;

• A lower strain-rate dependency at the small and large strains, but not at mod-
erate strains;

• The original EGP model behaves strain-rate independent in the pre-yield regime.



CHAPTER 4
STRAIN-DEPENDENT PARAMETERS

The differences that are found between the experimental results and the EGP model
results in section 3.4 are related to the strain-rate dependency and the temperature
dependency. The characterization in section 3.1 shows that the strain-rate depen-
dency and temperature dependency are respectively related to the Ree-Eyring pa-
rameters activation volume Vx and activation energy ∆H0x . Thus, a solution related
to these parameters is investigated in this chapter to reach an updated EGP model.

Section 4.1 will first show what indicates that a solution related to the Ree-Eyring
parameters should be looked into. Section 4.2 discusses how to model strain depen-
dency. Where-after, the found solution technique is first investigated for small to
moderate strains in section 4.3, then for the pre-yield regime in section 4.4 and lastly
for large strains in section 4.5. This leads to an updated EGP model in section 4.7.
The solution introduces new parameters in the updated EGP model, section 4.6 de-
scribes how to characterize these new parameters. Lastly, an investigation outside
of the temperature range and strain-rate range of the experiments is performed in
section 4.8.

Chapter 5 expands on the found solution for a cyclic loading case instead of the
uniaxial compression case that is discussed in this chapter. This leads to the fully
updated EGP model in section 5.3. The stiffness tensor of the EGP model is lastly
in chapter 6 updated for this fully updated EGP model.

4.1 ree-eyring parameters and pressure depen-
dency

The original Ree-Eyring equation and an equation outlined by Govaert et al. [2001]
have been used during the characterization of the original EGP model (Section 3.1)
to determine multiple parameters. This yielded that these parameters are not con-
stant over the strain while they are assumed constant within the EGP model. The
equations have not been used within the characterization due to this reason, but
they are expanded on in this section since they will lead to the solution of the
problems stated in section 3.4. Please note that optimal constant values are not
investigated, but only the true values of the parameters that evolve over the strain.

original ree-eyring equation The viscosity of the EGP model (Equation 2.12)
is based on the Ree-Eyring flow theory, which is dependent on temperature and
strain-rate and is characterized by the three original Ree-Eyring parameters: the
activation volume V∗x , the activation energy ∆H0x and the rate constant ε̇0, where x
denotes the α- or β-process:

σ(ε̇, T) = ∑
x=α,β

kBT
V∗x

sinh−1
(

ε̇

ε̇0,x
exp

(
∆Hx

RT

))
(4.1)
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This function can be used to obtain an indication of the three Ree-Eyring parameters
included in the EGP model. The rate constant is related to the initial viscosity and
the activation volume from the original Ree-Eyring equation V∗x is related to the
activation volume used in the EGP model Vx. These parameters of the original Ree-
Eyring equation are different due to changes made to the viscosity function during
the development of the EGP model. This is the reason why only an indication of
these parameters can be obtained with the original Ree-Eyring equation.

pressure dependency The pressure dependency µx is used within the viscos-
ity function (Equation 2.12). The following relation to determine the pressure de-
pendency is outlined in Govaert et al. [2001]:

τeq =
τ0

1− µα
ln
(

2γ̇eq

γ̇0

)
(4.2)

In which τ0 = V
kbT with V the activation volume, kb the Boltzmann’s constant and

T the temperature. τeq, γ̇eq and α are parameters that are dependent on the loading
conditions. These values are 1

3

√
3σ1,
√

3ε̇1 and 1
3

√
3, respectively, for the uniaxial

compression case which is investigated. The unknown parameters are µ and γ̇0,
respectively the pressure dependency and a pre-exponential factor.

method Equations 4.1 and 4.2 are fitted to the experimental results given in sec-
tion 1.1 for several different strains to determine the three original Ree-Eyring pa-
rameters and the pressure dependency, respectively. The least squares method im-
plemented in the scipy package in Python [Scipy org, 2021] is used to obtain a good
fit.

The original Ree-Eyring equation (Equation 4.1) has been fitted to all experimen-
tal temperatures (20

◦C, 60
◦C and 100

◦C) and a strain-rate range of 10−5 s−1 to 10−2

s−1. The equation to determine the pressure dependency (Equation 4.2) has been
fitted to the experimental results at 100

◦C because only the α-process is present for
this temperature at the investigated strain-rate range of 10−5 s−1 to 10−2 s−1. This
means that the activation volume for the α-process given in Appendix B can be used.
The experimental results for a strain-rate of 10−1 s−1 have been omitted for fitting
both equations since they are influenced by adiabatic heating and would lead to
incorrect fits.

results The method leads to a good fit to the experimental results of both equa-
tions as can be seen by plotting the strain-rate dependency for the strains of 0.075

and 0.3 in Figure 4.1. The lines of equations 4.1 and 4.2 line well up with the
markers from the experiments.

important observation An important observation which is made after good
fits have been obtained is that the values found for the three original Ree-Eyring
parameters (the activation volume V∗x , activation energy ∆Hx and the rate constant
ε̇0,x) and the pressure dependency are not constant when plotted against the strain.
This can be seen well in Figure 4.2.

Already, two literature sources include an evolution of the Ree-Eyring parameters
for modelling polymers. Senden et al. [2010] uses the EGP model as well and
applies an evolving activation energy and initial viscosities (Equations 2.27-2.30) for
PC. Wendlandt et al. [2005] uses another model that is similar to the EGP model and
applies an evolving activation volume for PMMA, PPO, PC and PS. However, these
works are different from this thesis because their goal is to describe the Bauschinger
effect by including viscous hardening. They also focus on the large strain range,
other polymers and investigate a cyclic loading case. The fit of the original Ree-
Eyring equations in section 4.1 hints that all three Ree-Eyring parameters should
evolve over the full strain range, but these papers only evolve one or two Ree-Eyring
parameters.
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(a) (b)

(c) (d)

Figure 4.1: The fitted original Ree-Eyring equation (solid lines) to the experimental results
(markers) for a strain of (a) 0.075 and (b) 0.3 and the fitted equation to determine
the pressure dependency (solid lines) to the experimental results (markers) at
100
◦C for a strain of (c) 0.075 and (d) 0.3 in strain-rate dependency plots.

(a) (b)

(c) (d)

Figure 4.2: The evolution of the (a) activation volume, (b) activation energy, (c) rate con-
stant and (d) pressure dependency, as characterized from the original Ree-Eyring
equation (Equation 4.1) and the equation to determine the pressure dependency
(Equation 4.2).
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This chapter will further investigate making any or all of the three Ree-Eyring pa-
rameters strain-dependent to accurately model the stress over the entire strain range.
Making the pressure dependency strain-dependent is not further investigated. This
is because a strain-dependent pressure dependency leads to large changes in the
stresses obtained from the EGP model, which did not correspond with the experi-
mental stress-strain results.

4.2 strain dependency

Senden et al. [2012a] introduced the invariant function Ir(B̃) (Equation 2.24) which
is approximately proportional to the total strain. This is valid for both positive
strains and negative strains. The invariant function also stays approximately pro-
portional to the strain when the loading direction is reversed. This function is good
to model the strain dependency of the Ree-Eyring parameters.

Another option is to relate the Ree-Eyring parameters to the equivalent plastic
strain (Equation 2.19). It would make sense to make the Ree-Eyring parameters
dependent on the plastic strain since they are physically coupled. However, Fig-
ure 3.5 shows a discrepancy in the strain-rate dependency in the pre-yield regime.
There should be the possibility to evolve the Ree-Eyring parameters from the onset
of loading to change anything in this pre-yield regime. But the plastic strain starts
to accumulate after the pre-yield regime. If the Ree-Eyring parameters are coupled
to the plastic strain, they can only change after the pre-yield regime. Another dis-
advantage is that the plastic strain is directly coupled to the viscosity and thus the
Ree-Eyring parameters, making characterization very hard. The last disadvantage is
that the equivalent plastic strain does not decrease again when the loading direction
is reversed, leading to less freedom in modelling the behaviour of the Ree-Eyring
parameters in that loading case.

It is chosen to relate the Ree-Eyring parameters evolution to the invariant function
Ir(B̃) due to the disadvantages of relating the Ree-Eyring parameters evolution to
the equivalent plastic strain.

4.3 small to moderate strain range
Firstly, the small to moderate strain range (ε < 0.4) is investigated. The goal is to
create an evolution of the Ree-Eyring parameters that stays constant after a certain
strain. Only the small to moderate strain range is influenced in this way. The
tanh() function has this property, thus it has been chosen for the evolution of the
Ree-Eyring parameters. This evolution looks in the most basic form as follows:

f (Ir(B̃)) = A + B · tanh(C · (Ir − D)) (4.3)

needed ree-eyring evolution It is investigated which of the three Ree-Eyring
parameters should be strain-dependent. The Ree-Eyring parameters related to the
β-process can be assumed constant at small to moderate strains based on Figure 4.2,
only the Ree-Eyring parameters related to the α-process have to be strain-dependent
in this case.

An evolution of activation volume based on Equation 4.3 has been implemented
in the EGP model while the activation energy and initial viscosities are kept con-
stant. This leads to too high stresses around the yield point for a fixed temperature.

Next, an evolution based on Equation 4.3 for all initial viscosities is also imple-
mented in the EGP model. The strain-rate dependency and shape of the stress-strain
curve are very well approximated at the fixed temperature.
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Figure 4.3: Visualisation of the behaviour of the constants for the Ree-Eyring parameters
evolution in which k = V, ∆H or η.

If the previously fixed temperature is changed, then the stresses are again in-
correct around the yield point. An evolution of the activation energy is needed
to correctly model other temperatures. If the characterization has only been per-
formed at one temperature and no other temperature will be used in any analysis,
the evolution of the activation energy can be omitted. This can also mathematically
be seen in Equation 4.8 where the term with the activation energy will always be
equal to one if an analysis with the same temperature as the characterization base
temperature is run.

It is concluded that all three Ree-Eyring parameters should be strain-dependent
to quantitatively model the stress-strain behaviour in the small to moderate strain
range.

ree-eyring parameters evolution functions The following functions for
the evolution of the Ree-Eyring parameters are created:

Vα = (Vconst,α − CV,1,α) + CV,1,α · tanh (CV,2,α · (Ir − CV,3,α)) (4.4)

∆H0α = (∆Hconst,α − C∆H,1,α) + C∆H,1,α · tanh (C∆H,2,α · (Ir − C∆H,3,α))

+ SHα Rγα (4.5)

η0α,i = ηconst,α,i · 10−Cη,1,α+Cη,1,α ·tanh(Cη,2,α ·(Ir−Cη,3,α)) (4.6)

The influence of each constant is visualized in Figure 4.3. It can be seen that the
kconst,α constants for k = V, ∆H and η are the same value as the previous constant
values. The Ree-Eyring parameters will stay constant after an ’influence length of
the evolution’ that is determined with the Ck,2,α constants. The Ck,1,α constants de-
termine how large the decrease of a Ree-Eyring parameter is at the onset of loading.
The Ck,1,α constants cannot be larger than the constant values kconst,α since negative
values for the Ree-Eyring parameters are incorrect. The Ck,3,α constants are used
to shift the function. This can be useful to get a better fit. However, Ck,3,α should
be used with care because it can lead to negative Ree-Eyring parameters that are
incorrect.

An advantage of these formulations is that by taking all three Ck,1,α constants
equal to zero, The functions reduce to the old formulation where the kconst,α con-
stants are the constant Ree-Eyring parameters Vα, ∆Hα and ηα from the original
EGP model.

ageing dependence of the activation energy Equation 4.5 includes the
term SHα Rγα introduced by Senden et al. [2012a] to fit the temperature dependency
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(a) (b)

(c) (d)

Figure 4.4: The difference between the EGP model results and the experimental results for
(a, c) the benchmark and (b, d) the updated EGP model. This is shown at 20

◦C
(a+b) and (c, d) 100

◦C.

of the yield point. However, it is unknown how large the influence of these parame-
ters should be if the evolution of the Ree-Eyring parameters for the small-moderate
range is included in the model. The Evolution of the Ree-Eyring parameters is
already used to fit the temperature dependency of the yield point. This cannot
be investigated with the experimental data from Sundararajan and Govaert [2021]
because practically no ageing of the material is involved. However, Senden et al.
[2012b] determined that the activation energy is influenced by the ageing of poly-
mers.

It has been chosen to still include the term SHα Rγα since it cannot be determined
that the term SHα Rγα can be removed with the new evolution of the Ree-Eyring
parameters and Senden et al. [2012b] indicates that this could be relevant with an
aged sample.

implementation in the code Equation 3.1 shows that the initial viscosities are
shifted based on the state factor and the activation energy. The shift that is based on
the activation energy should become strain-dependent since the activation energy
is now strain-dependent. This shift is performed in the updated EGP model itself
instead of an operation on the inputted initial viscosities. Thus, Equation 3.1 is
changed to:

η0x,i = η0x,i,calc exp(−Sx) (4.7)

and the viscosity Equation 2.12 is changed to:

ηx,i = η0x,i

τx/τ0x

sinh(τx/τ0x )
exp

(
∆Hx

R

(
1
T
− 1

Tx,base

))
exp

(
µx p
τ0x

)
exp(Sx) (4.8)
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Table 4.1: Used values for the evolution of the Ree-Eyring parameters in section 4.3.
kconst,α Ck,1,α Ck,2,α Ck,3,α

Activation volume; k= V 9.2 · 10−18 9.2 · 10−18 5.0 0.0
Activation energy; k = ∆H 640 · 106 640 · 106 6.85 0.0
Initial viscosities; k = η see appendix B 22.6 5.2 0.06

Tx,base is the temperature that is used to characterize the modal parameters of a
certain process. The following is correct for the characterization of the EGP model
in this thesis: Tx,base is 100

◦C and 20
◦C for the α- and β-process, respectively. This

can be seen in section 3.1.

comparison with the benchmark Equations 4.4, 4.5 and 4.6 are implemented
in the EGP model. The parameters listed in Table 4.1 have been used to produce
updated stress-strain curves. Section 4.6 describes how these values are obtained.
The parameters related to the β-process are dependent on the α-process because
the stresses of the α-process are subtracted from the experimental stresses to char-
acterize the modal parameters for the β-process. Due to the different results for the
α-process, the modal parameters related to the β-process have been re-characterized.

The difference plots for the benchmark and the updated EGP model are shown
next to each other in Figure 4.4. The stresses of the updated EGP model confirm well
with the experimental results at moderate strain levels (ε ≈ 0.05 till 0.25), which is
an improvement upon the benchmark. The strain-rate dependency of the updated
EGP model also corresponds well with the experimental results since the different
curves in the difference plot are close to each other. However, the results are worse
than before for the large strain range and the pre-yield regime (ε < 0.05).

reduction of parameters A disadvantage of the Ree-Eyring parameters evo-
lution shown in Equations 4.4-4.6 is that multiple new parameters are added to the
EGP model. A general goal is to use as few parameters as possible for models
such as the EGP model. Thus, several methods have been used to try to reduce the
number of parameters:

• Find similarities between the evolution of the three Ree-Eyring parameters.
The goal is to couple constants needed for the evolution of the Ree-Eyring
parameters => No similarities are found that lead to the possibility of coupling
any of the constants for the evolution of the Ree-Eyring parameters;

• Find similarities between the evolution of the three Ree-Eyring parameters in
literature => None are found;

• Approximate the evolution of the three Ree-Eyring parameters with a single
function that is added to the viscosity function => This leads to inaccurate
results due to the complex dependencies on other parameters;

• Including a non-constant activation volume in the determination of the initial
viscosities and shear moduli to account for the evolution of the activation
volume with the modes => Correct stress-strain behaviour is not obtained.
Furthermore, this leads to unstable FEM analyses due to a very high number
of resulting modes (±60), which is computationally very expensive;

• Find other functions than the tanh() function with the same characteristics =>
None are found that have fewer parameters.

None of the approaches leads to a reduction of the number of parameters. There-
fore, it is concluded that the approach with the tanh() function and multiple new
parameters is the best approach to follow.
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Table 4.2: Used values for the evolution of the Ree-Eyring parameters and shear moduli in
section 4.4.

kconst,α Ck,1,α Ck,2,α Ck,3,α

Activation volume; k = V 9.2 · 10−18 9.2 · 10−18 5.0 0.0
Activation energy; k = ∆H 640 · 106 640 · 106 6.85 0.0
Initial viscosities; k = η see appendix B 22.6 5.2 0.06

Shear moduli; k = G see appendix B 0.50 20 0.0

4.4 pre-yield regime

Two separate problems are discussed in this section. Firstly, the new problem that
occurs when applying the evolution of the Ree-Eyring parameters, which is shown
in Figure 4.4. This figure shows that a large stress difference is present between the
updated EGP model and the experimental results for the pre-yield regime (ε < 0.05).
Secondly, the problem regarding the absence of strain-rate dependency in the pre-
yield regime as discussed in section 3.4 and shown in Figure 3.5.

first problem; stress deviations pre-yield regime Changing the evolu-
tion of the Ree-Eyring parameters (Equations 4.4, 4.5 and 4.6) does not in any way
lead to stress-strain results for the pre-yield regime that correspond better with the
experimental results. This is because the Ree-Eyring parameters change the vis-
cosity of the model, which is linked to the plastic deformation while the pre-yield
behaviour is largely elastic.

There may be an unidentified effect at play that leads to higher experimental
results for the pre-yield regime. The taken approach is to increase the shear moduli
for the pre-yield regime, which would shift the stress with the same value for all
strain-rates and temperatures. Almost the same deviation is visible at all strain-rates
and temperatures in the pre-yield regime. Thus, this approach is justified.

The evolution of the shear moduli is also based on a tanh() function related
to the invariant function. The reason for this is that the tanh() function reduces
to 1. The evolution can be set such that only the pre-yield regime is influenced.
Furthermore, the evolution works in the same way as the evolution of the Ree-
Eyring parameters. A function leading to more optimal results is a tanh2() function,
but this is not applied since it is harder to characterize. The function for the shear
moduli evolution is given by:

G0α,i = Gconst,α,i ·
[
1 + CG,1,α − CG,1,α · tanh

(
CG,2,α · (Ir(B̃)− CG,3,α)

)]
(4.9)

comparison with the benchmark Equation 4.9 is implemented in the updated
EGP model from section 4.3. The parameters listed in Table 4.2 are used for the
results in Figure 4.5. The influence length of the shear moduli evolution has been
made very small by using a value of 20 for the CG,2,α parameter. This limits the
influence to the pre-yield regime.

Figure 4.5 shows that the curves in the pre-yield regime are shifted downwards
from the state in Figures 4.4b and 4.4d. This shift leads to better results in the pre-
yield regime. However, the strain-rate dependency for the results at 20

◦C is still not
optimal. As mentioned before, since the strain-rate dependency/activation volume
is coupled to the plastic strain, it cannot be solved by modifying the activation
volume for the (elastic) pre-yield regime.

second problem; pre-yield behaviour and plastic strain Figure 3.5 shows
that the pre-yield behaviour of the original EGP model is qualitatively different from
the experimental results. The original EGP model does not show any strain-rate de-
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(a) (b)

Figure 4.5: The difference between the EGP model results and the experimental results for
the EGP model with the Ree-Eyring parameters and shear moduli evolution. This
is shown at (a) 20

◦C and (b) 100
◦C.

pendency in the pre-yield regime, while strain-rate dependency is present in the
experiments.

Figure 4.6a shows that quantitatively better behaviour is obtained with the up-
dated EGP model. Thus, this problem is already solved by introducing the evolu-
tion of the Ree-Eyring parameters from section 4.3.

Figure 4.6b shows the equivalent plastic strain as defined in Equation 2.19 for
the original and updated EGP model. This equivalent plastic strain is directly de-
pendent on the viscosity function. The figure shows no plastic flow in the pre-yield
regime of the original EGP model. The strain-rate independence of the original EGP
model can be explained by this absence of the plastic flow. The plastic flow starts
at the onset of loading by introducing the evolution of the Ree-Eyring parameters,
which is supported by the fact that the plastic deformation in polymers develops
upon loading [Govaert et al., 2001].

4.5 large strain range
Figure 4.5 clearly show that there are still deviations at large strains. These devia-
tions are observed at all strain-rates and temperatures in Figure 3.3. The evolution
of the Ree-Eyring parameters introduced in section 4.3 only influences the small
to moderate strains, while Figure 4.2 clearly shows that the Ree-Eyring parameters
should decrease in the large strain range (ε > 0.4). These deviations are solved
when a quadratic evolution of the Ree-Eyring parameters for the α-process as well
as for the β-process in the following form is implemented for k = ∆H, V or η and
x = α or β:

f (Ir(B̃)) = k− Ck,4,x · I2
r (4.10)

The stresses from the EGP model are incorrect when the activation energy or acti-
vation volume is near zero when or the initial viscosities become very small. The
term Ck,4,x · I2

r leads to monotonically decreasing Ree-Eyring parameters. Thus, this
incorrect stress behaviour will happen if strains become large enough. The Ck,4,x
constant should be lowered if these large strains are expected. Consequently, the
Ree Eyring parameters decrease more gradually, possibly preventing the incorrect
stresses but leading to less accurate results. It is also possible to limit all three
Ree-Eyring parameters when one given lower limit has been reached. However, the
values for these lower limits are unknown since there is no experimental data for
such large strains. This can be a subject for future research.
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(a) (b)

Figure 4.6: (a) The stress-strain curves created with the updated EGP model for the pre-
yield regime plotted in black solid lines and the experimental stress-strain curves
plotted with markers. (b) The equivalent plastic strain for the pre-yield regime.
Both at 100

◦C.

Figure 4.7: The characterization of the activation volume, which is based on fitting the origi-
nal Ree-Eyring equation to experimental results.
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4.6 characterization of the updated egp model
The Ree-Eyring parameters evolution (Equations 4.4-4.6) and shear moduli evolu-
tion (Equation 4.9) need to be characterized by taking the following steps after all
other parameters have been determined:

1. Determine the evolution of the Ree-Eyring parameters by fitting Equation 4.1
to the experimental results;

2. Determine the strain-rate dependency and corresponding activation volume
at a fixed strain with the EGP model;

3. Scale the evolution of the activation volume from step 1 to the needed activa-
tion volume at the fixed strain from step 2 as seen in Figure 4.7;

4. Fit the activation volume for the α-process within the EGP model (Equation
4.11) to the scaled activation volume evolution from step 3 with the fitting
parameters Vconst,α, CV,1,α, CV,2,α, CV,3,α and CV,4,α as seen in Figure 4.7;

5. Run the EGP model at the temperature where the modal parameters of the α-
process are determined (Tα,base) to fit the stress-strain curve from the updated
EGP model to the experimental stress-strain curve with the evolution of the
initial viscosities for the α-process;

6. Run the EGP model with a different temperature on a strain-rate where only
the α-process is present to fit the evolution of the activation energy for the
α-process;

7. Recharacterize the modal parameters for the β-process because different re-
sults for the α-process lead to a different characterization of the β-process;

8. repeat steps 4-6 for the β-process;

9. Apply an evolution of the shear moduli with an ’influence length’ equal to
the pre-yield regime to correctly shift the response of the pre-yield regime
upwards or downwards.

It can be easier to first fit the small to moderate strain range with Xconst,α, Xconst,β,
Cx,1,α, Cx,2,α and Cx,3,α then repeat all steps to fit the large strain range with Cx,4,α
and Cx,4,β.

The number of needed stress-strain curves to characterize the updated EGP model
stays the same, which is a significant feature of the new evolution of the Ree-Eyring
parameters.

The listed steps are taken to create an updated characterization. This characteri-
zation is from here on used for the updated EGP model. Table 4.3 shows the values
that have been obtained to create a good fit. The values for the initial viscosities in
Table 4.3b are very different than for the benchmark due to using Equation 4.8 in-
stead of 3.1 for shifting the initial viscosities. The stress-strain figures and difference
figures corresponding to the characterization are discussed in the next section.
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Table 4.3: The characterized parameters for the updated EGP model.

(a) General parameters.

Parameter Value Unit Parameter Value Unit

T Variable ◦C CG,1,α 0.50 -
R 8.31 J ·mol−1 · K−1 CG,2,α 20.0 -
kb 1.38 · 10−20 N ·mm · K−1 CG,3,α 0.0 -
Gr 5.0 MPa Cη,1,α 52 -
αr 0.22 - Cη,2,α 5.2 -
ξr 0 - Cη,3,α 0.06 -
µα 0.06 - Cη,4,α −27.6 -
µβ 0.06 - Cη,4,β 0 -
SSα

2.0 - ∆Hconst,α 640 · 103 J ·mol−1

SSβ
0 - C∆H,1,α 640 · 103 J ·mol−1

SHα 0 - C∆H,2,α 6.85 -
SHβ

0 - C∆H,3,α 0 -
r0α 0.965 - C∆H,4,α −100 · 103 J ·mol−1

r1α −5.0 - ∆Hconst,β 100 · 103 J ·mol−1

r2α −5.0 - C∆H,4,β −55 · 103 J ·mol−1

r0β
0.965 - Vconst,α 9.2 · 10−18 mm3

r1β
−5.0 - CV,1,α 9.2 · 10−18 mm3

r2β
−5.0 - CV,2,α 5.0 -

κ 5475 N/mm2 CV,3,α 0 -
CV,4,α −3.0 · 10−18 mm3

Vconst,β 5.0 · 10−18 mm3

CV,4,β −3.0 · 10−18 mm3

(b) Modal parameters.

α-process modes β-process modes

Mode
shear modulus
Gconst,i [MPa]

initial viscosity
ηconst,i [MPa · s]

shear modulus
Gconst,i [MPa]

initial viscosity
ηconst,i [MPa · s ]

1 97.663 1.402 · 1039 24.519 260.259
2 96.330 1.975 · 1038 39.148 278.018
3 43.014 1.260 · 1037 39.761 56.583
4 50.714 2.122 · 1036

5 51.848 3.099 · 1035

6 64.795 5.532 · 1034

7 84.610 1.032 · 1034

8 109.077 1.900 · 1033

9 99.498 2.476 · 1032

10 75.487 2.683 · 1031

11 34.353 1.744 · 1030

12 36.707 2.663 · 1029

13 24.847 2.574 · 1028

14 24.904 3.686 · 1027

15 17.940 3.793 · 1026

16 21.714 6.558 · 1025

17 15.974 6.891 · 1024

18 14.928 9.199 · 1023

19 15.567 1.370 · 1023

20 8.351 1.050 · 1022

21 6.457 1.160 · 1021

22 1.166 2.992 · 1019

23 35.205 0.961
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4.7 evolution over the full strain range
The evolution of the Ree-Eyring parameters for the small to moderate strain range
is determined in section 4.3 and is shown in Equations 4.4-4.6. These equations
for the α-process are updated with the evolution for large strains determined in
section 4.5 as shown in Equation 4.10. The evolution of the Ree-Eyring parameters
for the β-process are fully derived from Equation 4.10. Equations 4.11-4.16 show the
evolution of the Ree-Eyring parameters for both processes and over the full strain
range:

Vα = (Vconst,α − CV,1,α) + CV,1,α · tanh
(
CV,2,α · (Ir(B̃)− CV,3,α)

)
+

CV,4,α I2
r (B̃) (4.11)

∆H0α = (∆Hconst,α − C∆H,1,α) + C∆H,1,α · tanh
(
C∆H,2,α · (Ir(B̃)− C∆H,3,α)

)
+

C∆H,4,α I2
r (B̃) + SHα Rγα(γp) (4.12)

η0α,i = ηconst,α,i · exp(−Cη,1,α + Cη,1,α · tanh
(
Cη,2,α · (Ir(B̃)− Cη,3,α)

)
)·

exp(Cη,4,α I2
r (B̃)) (4.13)

Vβ = Vconst,β + CV,4,β I2
r (B̃) (4.14)

∆H0β
= ∆Hconst,β + C∆H,4,β I2

r (B̃) + SHβ
Rγβ

(γp) (4.15)

η0β,i = ηconst,β,i · exp(Cη,4,β I2
r (B̃)) (4.16)

Section 4.4 shows that the shear moduli should also evolve within the pre-yield
regime according to Equation 4.9.

implementation in the code Appendix E shows the updated C++ code. The
updated viscosity function from Equation 4.8 and the new functions related to the
evolution of the Ree-Eyring parameters and shear moduli as seen in Equations 4.11-
4.16 and 4.9 are implemented in the code. The parameter htBnon is also already
included. This parameter is related to cyclic loading of the material and will be
introduced in chapter 5.

stress-strain results updated egp model Figure 4.8 shows the difference
between the updated EGP model results and the experimental results with the char-
acterization shown in Table 4.3. Stress-strain graphs zoomed in to after-yield stress
levels for each temperature can also be seen in Figure 4.8 and the full curves can be
found in appendix D. Notice that these results from the updated EGP model are a
large improvement upon the results from the benchmark shown in Figure 3.3 and
appendix C.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: (a, c, e) The difference between the experimental results and the updated EGP
model benchmark results. (b, d, f) The experimental stress-strain results plotted
with markers and the updated EGP results plotted in solid lines. Both for a
number of different strain-rates and at (a, b) 20

◦C, (c, d) 60
◦C and (e, f) 100

◦C.
The grey lines in the plots with the difference are the exact difference including
the noise from the experiments while the black lines are without the noise, which
are obtained by filtering the grey lines with a Butterworth filter.
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4.8 larger temperature and strain-rate range
The updated characterization, Ree-Eyring parameters evolution and shear moduli
evolution are based on the available experimental data for a strain-rate range of
10−1 s−1 to 10−5 s−1 and a temperature range of 20

◦C to 100
◦C. The model should

still perform well outside of these ranges. Thus these ranges have been expanded by
adding the strain-rates of 101 s−1, 100 s−1, 10−6 s−1, 10−7 s−1 and the temperatures
of -20

◦C and 140
◦C. A side note on the temperature of 140

◦C is that this temperature
is within the glass transition zone of PEEK, while the model is not fully valid within
the glass transition zone. The results of this widened scope are compared with the
theory of polymers introduced in chapter 2 and the original EGP model.

The model should yield results that lead to bi-linear curves for all temperatures
and strain-rates in the strain-rate dependency plot as shown in 2.2a. It can be seen
in Figure 4.9 that this is indeed the case for the strain-rate dependency plot at a
strain of 0.4. This is the case as well for all strains after yielding.

Figure 4.9: The strain-rate dependency of the updated EGP model results for the larger tem-
perature and strain-rate range.

Appendix F shows all stress-strain curves at a strain of 0.4 for the larger strain-
rate and temperature range. The strain softening effect becomes stronger at the
temperature of -20

◦C and for higher strain-rates (Figure F.1). This is in accordance
with the theory of polymers [Bower, 2003].

The stress-strain results at 140
◦C (Figure F.5) show high yield stresses with a dip

in stress afterwards for higher strain-rates. Barba et al. [2020] shows that this is
the expected behaviour for PEEK within the glass transition zone. The original
EGP model does not show this behaviour. This hints that the updated EGP model
performs better than the original EGP model at 140

◦C.
The lowest strain-rates show a decrease in stress at high strains in the updated

EGP model, while this is once again not observed in the original EGP model. There
is no evidence that this should be the case. This effect perhaps comes from the fact
that the EGP model is not fully suited to model the stresses in and beyond the glass
transition zone.





CHAPTER 5
CYCLIC LOADING

Since the problem statement mentions long term performance testing in which
cyclic loading cases for fatigue are of importance, a cyclic loading case is investi-
gated qualitatively in this chapter in section 5.1. No experimental data is available
for a cyclic loading case, thus the results are compared with available literature in
section 5.2. Lastly, the results from this chapter lead together with the results from
chapter 3 to the final updated EGP model in section 5.3.

The updated EGP model should perform well for all types of load cases. Tension
loading is implicitly tested by running the cyclic loading cases. Furthermore, shear
loading cases work with the updated EGP model but are not further discussed in
this thesis.

5.1 the invariant function
reducing invariant function Ir A cyclic loading test is run in which a face
of the 1x1x1 cube, as described in chapter 3, is loaded in compression until a dis-
placement of 0.6 is reached, then loaded in tension until a displacement of −0.6
is reached and lastly loaded in compression until the displacement is back at the
original state. The updated EGP as described in section 4.7 is used for this analysis.
The stress-strain curve obtained by this test is shown in Figure 5.1. Large stress
spikes occur around zero strain, which is not the expected behaviour. The stiffness
of the material should remain the same around zero strain [Li et al., 2019]. The
stress spikes are fully contributed to the strain-dependent Ree-Eyring parameters.
The value of the invariant function Ir decreases when the strain decreases after the
reversal of the loading direction, leading to a very low activation volume, activation
energy and initial viscosities around zero strain.

non-reducing invariant function Ir Figure 5.1 shows that the invariant
function Ir leads to incorrect behaviour when it is always proportional to the strain
and the loading direction is reversed. Two solutions proposed for this problem are:

1. Ir is prevented from reducing: The invariant function Ir is fully prevented from
reducing. This would lead to cyclic behaviour that is dependent on the strain
at which the loading direction is reversed;

2. Ir in the tanh() term is prevented from reducing: Just the invariant function Ir that
is used within the part related to the evolution at the low to moderate strain
range cannot be reduced. This is the tanh(Ir) term in Equations 4.11-4.13.

The difference between the two proposals is shown in Figure 5.2a for the activation
volume but is also valid for the evolution of the activation energy and initial vis-
cosities. The figure shows for the first proposal that the activation volume keeps
the value it has at the strain at which the loading direction is reversed. The figure

39
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Figure 5.1: The stress-strain graph of a cyclic loading case with the updated EGP model as
described in section 4.7 with a strain-rate of 10−3 s−1 and at 100

◦C.

(a)

(b) (c)

Figure 5.2: (a) The activation volume and cyclic stress-strain curves at (b) 20
◦C and (c) 100

◦C
for 2 different proposals: Ir is prevented from reducing (Non-reducing Ir) and Ir
in tanh() term is prevented from reducing (Non-reducing tanh(Ir) term).
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(a)

Figure 5.3: "Constant strain-rate saw-tooth fully-reversed cyclic loading of PEEK in shear"
with a strain-rate of 10−3 s−1 and at 20

◦C, taken from Li et al. [2019].

shows for the second proposal that only the quadratic part of these equations can
recover when the loading direction is reversed.

Figures 5.2b and 5.2c show the cyclic stress-strain behaviour at respectively 20
◦C

and 100
◦C for both proposals. Hardening behaviour in tension is only seen in

Figure 5.2b for the proposal in which the invariant function in the tanh() term is
prevented from reducing. This is because the viscous hardening stress decreases
again with a reversal of loading direction. Hardening behaviour is expected to
occur again in tension, thus the proposal where the invariant function is always
prevented from reducing seems to lead to incorrect results. The behaviour at 100

◦C
is almost the same for both proposals. No conclusion can be drawn on which
proposal behaves better without experimental data on the same cyclic loading case
at 100

◦C.
In this thesis, the choice is made to apply the proposal where the invariant func-

tion in the tanh() term is prevented from reducing in the EGP model due to the
expected non-constant viscous hardening behaviour after reversal of the loading
direction [Senden et al., 2010]. However, the proposal should be verified with ex-
perimental data. Equations 4.11-4.13 and 4.9 are updated as shown for the activation
volume below:

Vα = (Vconst,α − CV,1,α) + CV,1,α · tanh (CV,2,α · (Ir,non − CV,3,α)) + CV,4,α I2
r (5.1)

Where:

Ir,non(tn) ≥ Ir,non(tn−1) (5.2)

5.2 comparison with literature
stiffness reduction Li et al. [2019] shows experimental data on cyclic loading
of PEEK at 20

◦C and a strain-rate of 10−3 s−1. This experimental data shows a
strong decrease of stiffness after the first reversal of loading, as seen in Figure 5.3a
taken from Li et al. [2019]. This decrease in stiffness is dependent on the strain level
where the reversal of loading takes place. The updated EGP model does not show
this decrease in stiffness (see Figure 5.4b with Ree-Eyring parameters evolution).
Thus it is concluded that this effect is not correctly implemented in the EGP model.



42 cyclic loading

(a) (b)

Figure 5.4: (a) The schematic influence of the viscous hardening stress, taken from Senden
et al. [2010]. (b) The stress-strain graph of a cyclic loading case with the original
and updated EGP model at 20

◦C and a strain-rate of 10−3 s−1. The Ir in the tanh()
term of the evolution of the Ree-Eyring parameters is prevented from reducing.
The elastic strain hardening parameters are increased to Gr = 7 and α = 0.32
for the original EGP model to create a useful visual representation of the elastic
strain hardening behaviour.

the bauschinger effect The Bauschinger effect is the change of material be-
haviour/parameters when stresses are present in the material or when they have
been before. This is the case for cyclic loading where the loading direction is
changed when stresses are present in the material. Experimentally it is seen that
the tensile part of the curve is not parallel to the compressive part of the curve for
cyclic loading of PEEK [Senden et al., 2010]. This indicates that the hardening is not
fully elastic, which is the influence of the Bauschinger effect.

Senden et al. [2010] argues that viscous strain hardening should be included in
the EGP model to correctly model the Bauschinger effect. The contribution of vis-
cous strain hardening is shown with the red curve in Figure 5.4a. This viscous
strain hardening contribution is added to the elastic contribution (green line) to get
the total hardening stress (black line). Senden et al. [2012a] expanded on the idea of
including viscous strain hardening and made the activation energy and initial vis-
cosities for the α-process quadratic dependent on the invariant function (Equation
2.24) and the β-process linearly dependent on the invariant function. Wendlandt
et al. [2005] included viscous strain hardening by including a strain-dependent acti-
vation volume that is linearly dependent on the actual state of deformation.

This thesis concludes that all three Ree-Eyring parameters should be dependent
on the strain in a quadratic way for large strains for both the α- and β-process. The
updated EGP model is run with and without the evolving Ree-Eyring parameters
to investigate if viscous strain hardening is present. Figure 5.4b shows that there
is only elastic strain hardening by using constant Ree-Eyring parameters. This can
be concluded from the parallel response of the compressive and tensile parts of
the curve. Including the evolution of the Ree-Eyring parameters shows that the
Bauschinger effect is captured very well.
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5.3 the fully updated egp model
The results from this chapter lead together with the results from chapter 4 to the
fully updated EGP model. The following changes are made to the original EGP
model to obtain the fully updated EGP model:

• The viscosity function is updated to Equation 4.8;

• The activation volume, activation energy, initial viscosities and shear moduli
are made strain-dependent with functions 4.11-4.16 and 4.9 in which the in-
variant function Ir in the tanh() term is prevented from reducing as defined
in Equations 5.1 and 5.2.

The implementation of these changes in the stress calculation is shown in Appendix
E.





CHAPTER 6
LINEARIZATION

Chapters 4 and 5 lead to the updated EGP model. The differences with the original
EGP model are listed in section 5.3.

Besides this, there is an original linearization and a updated linearization of the
stiffness tensor. This stiffness tensor consists of four parts, while only three parts
are included in the original linearization. The updated linearization is derived in
sections 6.1 and 6.2. It will include both this fourth part and all needed changes to
account for the updated EGP model.

It should be clearly noted that running the updated EGP model is not analogous
to using the updated linearization. For example, the updated EGP model can also
be run with the original linearization.

Lastly, the convergence rate is shown for the original and the updated EGP model
combined with both the original and updated linearization in section 6.3.

Please note the following notation for the subscripts in this chapter: the process
is denoted by x = α or β, the number of α-modes is denoted by j, the number of
β-modes is denoted by k and the total number of modes is denoted by i (= j + k).

stiffness tensor decomposition The total stiffness tensor of the EGP model
is calculated as follows:

4Ktot = −4 IT · σ +4 S : FT (6.1)

The fourth order identity tensor 4 I, the stress tensor σ and the deformation gradient
F are already known. The stiffness tensor 4S is unknown and can be additively split
in 4 parts

4S =4 Sh +
4 Sr +

4 Sd +
4 Sx (6.2)

related to the hydrostatic stress, hardening stress, deviatoric stress and the state
variables, respectively. The state variable stiffness tensor is not included in the
original linearization but is included in the updated linearization.

The viscosity function is updated in the updated EGP model and new functions
are implemented for the Ree-Eyring parameters and the shear moduli. The evolu-
tion of the Ree-Eyring parameters is included in the state variable stiffness tensor
4Sx. The evolution of the shear moduli is included in both the state variable stiffness
tensor 4Sx and the deviatoric stiffness tensor 4Sd. The deviatoric stiffness tensor 4Sd
and the state variable stiffness tensor 4Sx are derived in the following two sections,
respectively.

45
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6.1 deviatoric stiffness tensor 4 Sd

The deviatoric stiffness tensor 4Sd is computed by taking the derivative of the driv-
ing stress σs (Equation 2.9) with respect to the deformation gradient F:

∂σs

∂F
=

n

∑
j=1

Gα,j
∂B̃d

eα,j

∂F
+ B̃d

eα,j

∂Gα,j

∂F

+
m

∑
k=1

Gβ,k

∂B̃d
eβ,k

∂F
+ B̃d

eβ,k

∂Gβ,k

∂F

 (6.3)

The first term is already derived in Clarijs [2017] and will not be expanded upon.
The second term is new because the shear moduli Gx,i (Equation 4.9) are dependent
on the deformation gradient F in the updated EGP model:

∂Gx,j

∂F
= −Gconst,x,iEG,x

∂Ir,non

∂F
(6.4)

Where EG,α and EG,β are introduced:

EG,α = CG,1,αCG,2,α · sech2 (CG,2,α · (Ir,non − CG,3,α)) (6.5)

EG,β = 0 (6.6)

This form will be used for all parameters that evolve over the strain within the
updated EGP model.

The derivative of the invariant function Ir =
√

1
3 I2

1 − I2 (Equation 2.24) with
respect to the deformation gradient F is elaborated as:

∂Ir

∂F
=

1
2Ir

(
2
3

I1
∂I1

∂F
− ∂I2

∂F

)
(6.7)

In which:

∂I1

∂F
= I :

∂B̃
∂F

(6.8)

∂I2

∂F
= tr(B̃) · I :

∂B̃
∂F
− 1

2

(
4 IT :

∂B̃
∂F

: B̃ + B̃T :
∂B̃
∂F

)
(6.9)

The non-reducing invariant function Ir,non is defined the same as the invariant func-
tion Ir but has the requirement that Ir,non(tn) ≥ Ir,non(tn−1). This means the follow-
ing for the derivative of Ir,non:

∂Ir,non
∂F = 1

2Ir,non

(
2
3 I1

∂I1
∂F −

∂I2
∂F

)
, if Ir,non(tn) > Ir,non(tn−1)

∂Ir,non
∂F = 0, otherwise

(6.10)

The isochoric Cauchy-Green deformation tensor B̃ can be derived in the same way
as the elastic variant in Equation 2.7 and is expanded with Equation 2.6:

B̃ = F̃ · F̃T
= J−

2
3 F · FT (6.11)

Next, its derivative with respect to the deformation gradient is derived:

dB̃
dF

=
∂B̃
∂J

∂J
∂F

+
∂B̃
∂F

= −2
3

J−
5
3 BJF−T + J−

2
3

(
4 I · FT + F ·4 IT

)
= J−

2
3

(
4 I · FT + F ·4 IT − 2

3
BF−T

) (6.12)
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The derivative of the volume change ratio J with respect to the deformation gradient
F has been calculated to derive the Equation 6.12:

J = det(Fe) = det(F) (6.13)

∂J
∂F

= JF−T (6.14)

It should be noted that this derivative was incorrectly derived and implemented in
the hydrostatic stiffness tensor 4Sh. This has been fixed for both the original and
updated linearization. The influence of this mistake is very minor.

In the end, the following equation is found for the deviatoric stiffness tensor 4Sd:

4Sd =
n

∑
j=1

(
Gα,j

(
4 I − 1

3
I I
)

: 4Bα,j : 4F − Gconst,α,jEG,α
∂Ir,non

∂F
B̃d

eα,j

)
+

m

∑
k=1

(
Gβ,k

(
4 I − 1

3
I I
)

: 4Bβ,k : 4F − Gconst,β,kEG,β
∂Ir,non

∂F
B̃d

eβ,k

)
(6.15)

Where the definitions of the tensors 4Bx,i and 4F in the first term of both sums can
be found in Clarijs [2017].

6.2 state variable stiffness tensor 4 Sx

The state variables are the modal plasticity parameters λx,i and the equivalent plas-
tic strain γ̄p. They are used within the iterative stress calculation which is included
in the EGP model. The stiffness tensor is dependent on these state variables since
they are dependent on the deformation gradient F and determine the driving stress.
This is shown in the following equation where x = [λα,1, ..., λα,j, λβ,1, ..., λβ,k, γ̄p]:

4Sx =
∂σs

∂x
∂x
∂F

(6.16)

The following system of equations is solved for the iterative stress calculation:

Φ =

{
fx,i = λx,i(tn+1) · (∆tΓx,i(tn+1) + 1) = 1

g = γ̄p(tn+1)− ∆t ˙̄γp(tn+1) = γ̄p(tn)
(6.17)

Where Γx,i =
Gx,i
ηx,i

, ∆t is the time-step from a Backward Euler scheme used within
the stress calculation and ˙̄γp is defined in Equation 2.19. The stiffness tensor is
calculated when the iterative stress calculation is converged. This means that the
following holds:

dΦ

dF
=

∂Φ

∂F
+

∂Φ

∂x
∂x
∂F

0 =
∂Φ

∂F
+

∂Φ

∂x
∂x
∂F

∂x
∂F

= −
(

∂Φ

∂x

)−1 ∂Φ

∂F

(6.18)

This solution is substituted in Equation 6.16:

4Sx = −∂σs

∂x

(
∂Φ

∂x

)−1 ∂Φ

∂F
(6.19)
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The derivative ∂Φ
∂x is already known since it is used within the stress calculation

[Clarijs, 2017]. The derivatives ∂σs
∂x and ∂Φ

∂F are unknown and derived in this section.
Both derivatives are split up as shown below:

∂σs
∂x →

∂σs
∂γ̄p

∂σs
∂λx,i

∂Φ
∂F →

∂ fx,i
∂F

∂g
∂F

The four derivatives on the right are derived in the four paragraphs in this section.

derivative driving stress with respect to the equivalent plastic strain
The driving stress is not dependent on the equivalent plastic strain γ̄p, thus the
derivative of the driving stress with respect to the equivalent plastic strain is:

∂σs

∂γ̄p
= 0 (6.20)

derivative driving stress with respect to the plasticity parameters
The driving stress is dependent on the plasticity parameters λx,i as seen in the
following equation:

∂σs

∂λx,i
=

n

∑
j=1

Gα,j
∂B̃d

eα,j

∂λx,i

+
m

∑
k=1

Gβ,k

∂B̃d
eβ,k

∂λx,i


=

n

∑
j=1

(
Gα,j

(
4 I − 1

3
I I
)

∂B̃eα,j

∂λx,i

)
+

m

∑
k=1

(
Gβ,k

(
4 I − 1

3
I I
)

∂B̃eβ,k

∂λx,i

) (6.21)

The plastic part of the right Cauchy-Green deformation tensor Cp is defined below:

Cp = FT
p · F p

= F̃T · B̃−1
e · F̃

(6.22)

The plastic right Cauchy Green deformation tensor Cp is in the stress calculation
updated using the plasticity parameters λx,i:

Cp(tn+1) = (1− λx,i) · C̃(tn+1) + λx,i · Cp(tn) (6.23)

Equations 6.22 and 6.23 are used to calculate the derivative of the isochoric, elastic

left Cauchy-Green deformation tensor with respect to the plasticity parameters
∂B̃eα,j
∂λx,i

(for the alpha process):

∂B̃eα,j

∂λx,i
= F̃ ·

∂C−1
pα,j

∂λx,i
· F̃T

= −F̃ · C−1
pα,j
·

∂Cpα,j

∂λx,i
· C−1

pα,j
· F̃T

(6.24)

∂Cpα,j

∂λx,i
= δji · Cpα,j(tn)− C̃(tn+1)

∂Cpα,j

∂λx,j
= Cpα,j(tn)− C̃(tn+1)

(6.25)
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All derived derivatives can be substituted in Equation 6.21 where the following
tensor is introduced M = F̃ · C−T

px,i
= F̃ · C−1

px,i
:

∂σs

∂λx,i
=

n

∑
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(
4 I − 1

3
I I
)
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3
I I
)
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3
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:
[

4 Ã(2)
x,i :

(
Cpx,i (tn)− C̃(tn+1)

)T
]

(6.26)

4 Ã(2)
x,i is a tensor that is also used for computing the deviatoric stiffness tensor 4Sd.

derivative fx,i with respect to the deformation gradient fx,i is firstly
differentiated with respect to the deformation gradient:

fx,i = λx,i · (Γx,i∆t + 1) = λx,i · (
Gx,i

ηx,i
∆t + 1) (6.27)

∂ fx,i

∂F
= −λx,i∆t

ηx,i

(
Gconst,x,iEG,x

∂Ir,non

∂F
+ Γx,i

∂ηx,i

∂F

)
(6.28)

The derivative of the invariant function ∂Ir,non
∂F is shown in Equation 6.10 and the

derivative of the viscosity function with respect to the deformation gradient is as
follows:

∂ηx,i

∂F
= ηx,i

 µx

τ0x

∂p
∂F

+

 1
τx
−

coth
(

τx
τ0x

)
τ0x

 ∂τx

∂F
+ Mx,low

∂Ir,non

∂F
+ Mx,high

∂Ir

∂F


(6.29)

Where for d = low or high, x = α or β and k = η, ∆H or V:

Mx,d = Eη,x,d +
E∆H,x,d

R

(
1
T
− 1

Tx,base

)
+

µx pEV,x,d

kBT
−

EV,x,dτ0x

kBT

τx coth
(

τx
τ0x

)
τ0x

− 1

 (6.30)

Ek,α,low = Ck,1,αCk,2,α · sech2 (Ck,2,α · (Ir,non − Ck,3,α)) (6.31)

Ek,α,high = Ck,4,α2Ir (6.32)
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Ek,β,low = 0 (6.33)

Ek,β,high = Ck,4,β2Ir (6.34)

The derivation of Equations 6.29 to 6.34 is shown in Appendix G.
The derivative of the total equivalent stress (Equation 2.14 with respect to the

deformation gradient ∂τx
∂F and the derivative of the pressure (Equation 2.15) with

respect to the deformation gradient ∂p
∂F in Equation 6.29 are still unknown. The

former is computed first:

∂τx

∂F
=

1
4τx

(
σsx :

∂σsx

∂F
+

∂σsx

∂F
: σsx

)
(6.35)

∂σsx
∂F is here either the sum over the α or β part in Equation 6.15.

The last partial derivative in Equation 6.29 is computed from the definition of the
pressure (Equation 2.15) and Equation 6.14:

∂p
∂F

= −κ
∂J
∂F

= −κ JF−T (6.36)

derivative g with respect to the deformation gradient g is differentiated
with respect to the deformation gradient:

g = γ̄p − ˙̄γp∆t = γ̄p −
τα,1

ηα,1
∆t (6.37)

∂g
∂F

= −∆t

(
1

ηα,1

∂τα,1

∂F
− τα,1

η2
α,1

∂ηα,1

∂F

)
(6.38)

∂ηα,1
∂F is shown in Equation 6.29 and ∂τα,1

∂F is very similar to Equation 6.35:

∂τα,1

∂F
=

1
4τα,1

(
σsα,1 :

∂σsα,1

∂F
+

∂σsα,1

∂F
: σsα,1

)
(6.39)

Lastly,
∂σsα,1

∂F is computed in the same way as Equation 6.15:

∂σsα,1

∂F
= Gα,1

(
4 I − 1

3
I I
)

: 4Bα,1 : 4F − Gconst,α,1EG,α
∂Ir,non

∂F
B̃d

eα,1
(6.40)

6.3 convergence rate
The ultimate goal of creating the updated linearization is having a higher conver-
gence rate and increased calculation speed. The influence of the updated lineariza-
tion on the original EGP model is also investigated since the state variable stiffness
tensor 4Sx was not included in the implementation of the original EGP model and
the model should still perform well when there is no evolution of parameters used.

implementation The implementation of the calculation of the stiffness tensor
in the C++ code is shown in appendix H. A second order tensor representation of
fourth order tensors is used in the largest part of this implementation [TUE, 2010],
while the calculation of Equation 6.19 is performed using the tensor notation from
Jive because third order tensors are used for this computation [Dynaflow Research
Group, 2020].
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convergence rate investigation Determining the run-time of an analysis
and comparing it to an another analysis is very hard since the run-time is influenced
by other processes running on that computer. It is possible to purely investigate the
number of iterations, but this can also lead to incorrect conclusions. This is because
of the iterative stress calculation that is included in the EGP model. A large step-
size will lead to few iterations but can take a lot of time due to this iterative stress
calculation. This is why a combination of run-time and number of iterations is used
to reach the best conclusion. An average of at least five analyses is always taken for
the run-time.

stiffness calculation run-time Calculating the updated linearization natu-
rally takes longer than the original linearization since the state variable stiffness
tensor part is included. Running the calculation of the stiffness tensor 1000 times
takes 0.026 seconds on average for the original linearization and 0.047 seconds on
average for the updated linearization. This shows that the calculation of the up-
dated stiffness tensor takes on average 81% longer. This does not mean that the
total run-time is longer since this longer stiffness calculation can be counteracted
with a faster convergence due to the more accurate stiffness tensor.

influencing factors Multiple factors influence the total run-time and number
of iterations of an analysis with the EGP model and have been varied to investigate
their influence. The resulting total run-time and number of iterations for these
variations can be seen in Tables 6.1 to 6.4. The same analysis as described in section
3.2 is run to obtain these values. The factors that are varied and their influence are
as follows:

• Temperature: Changing the temperature does not lead to any large differences
in the run-time or number of iterations. This is the expected behaviour;

• Strain-rate: Changing the strain-rate does generally not lead to any large dif-
ference in the run-time or number of iterations as can be seen in Tables 6.1 to
6.4. This is the expected behaviour;

• MNR/FNR: Using either the Modified Newton-Raphson (MNR) or the Full
Newton-Raphson (FNR) iteration scheme does not lead to differences while
making an analysis with the original linearization and the original EGP model.
But fewer iterations are needed if an analysis with either or both the updated
linearization or the updated EGP model is run using the FNR iteration scheme.
The state variables and invariant function are updated each iteration, thus
the FNR iteration scheme leads to a more accurate stiffness tensor between
iterations. The state variables and the invariant function are not included in
the original linearization and original EGP model. Thus, almost no difference
is seen here;

• Original/Updated EGP model: The number of iterations and run-time are almost
the same for the original and updated EGP model as can be seen if Tables 6.1
and 6.2 are compared to Tables 6.3 and 6.4;

• Original/Updated linearization: A large difference in the run-time and the num-
ber of iterations is observed between making an analysis with the updated
linearization compared to the original linearization. This difference is highly
influenced by using either a fixed step-size or adaptive stepping as discussed
in the following paragraph;

• Step-size (range): Calculations can be run with a fixed step-size or with an
adaptive step-size range. This is of great influence for the number of iterations
as can be seen if Tables 6.1 and 6.2 or Tables 6.3 and 6.4 are compared to each
other.
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original linearization versus updated linearization The updated lin-
earization should yield fewer iterations and need a lower run-time compared to the
original linearization because including the state variable stiffness tensor should
lead to a more accurate stiffness tensor.

Table 6.1 shows the number of iterations and run-time of the original EGP model
with a fixed step size. Table 6.1a shows that the number of iterations increases with
the updated linearization while Table 6.1b shows that the total run-time stays ap-
proximately the same. The reason that the run-time is the same even if the number
of iterations is different could be due to faster convergence of the iterative stress
calculation. This could also be the reason that the MNR and FNR iteration schemes
take approximately the same amount of time.

Table 6.2 also shows the number of iterations and run-time for the original EGP
model, but now with an adaptive step size. A large improvement is seen if adaptive
stepping is used with the updated linearization. Table 6.2a shows a decrease in the
total number of iterations of 26% on average for the MNR iteration scheme and 39%
on average for the FNR iteration scheme. Table 6.2b shows a decrease in the total
run-time of 20% on average for the MNR iteration scheme and 23% on average for
the FNR iteration scheme.

The updated linearization has a faster convergence rate for the small strain range
in all cases (ε < 0.1). The reason that more iterations are needed for the case shown
in table 6.1a is that the convergence rate is worse in the large strain range for the
updated linearization compared to the original linearization. This becomes very
visible when a fixed step-size is used. In the case of adaptive stepping, the step-size
can increase fast in the small strain range with the faster convergence rate and the
worse convergence rate at larger strains has almost no influence on the number of
iterations because of the large step-size. This leads to the fewer number of iterations
that are shown in Table 6.2a.

The influence of the updated linearization is better in the case of the updated
EGP model with a fixed step size, as seen in Table 6.3a. But further, the same
observations as for the original EGP model are made for the updated EGP model
in Tables 6.3 and 6.4.

The conclusion is that the updated linearization always leads to the same or better
results if the run-time is investigated. However, worse results are in some cases
observed when the number of iterations is investigated. This hints that the updated
linearization is not fully correctly derived and/or implemented. Since the results
are generally better for both the number of iterations and run-time, it is advised to
always use the updated linearization within the EGP model.

adaptive stepping for the updated egp model Very small first steps are
needed for convergence when the updated EGP model is run. This does not lead to
a large number of extra steps. These small initial steps are probably needed because
the fast-changing Ree-Eyring parameters lead to divergence when the first steps are
too large. The small initial steps can also be seen in Tables 6.3 and 6.4.
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Table 6.1: (a) The number of iterations and (b) run-time needed to reach a strain of 0.8 at
60
◦C for the original EGP model. The results are shown for a fixed step-size

using either the original or updated linearization and using either the Modified
Newton-Raphson (MNR) of Full Newton-Raphson (FNR) iteration scheme.

(a) The number of iterations.

Original EGP model Original
linearization

Updated
linearization

Strain-rate step-size MNR FNR MNR FNR

10−1 s−1 0.01 2114 2115 2376 2509
10−2 s−1 0.1 2134 2133 2546 2398
10−3 s−1 1 2149 2147 2552 2399
10−4 s−1 10 2110 2109 2497 2379
10−5 s−1 100 2072 2068 2466 2377

Average: 2116 2114 2487 2388
(b) The average run-time over five runs.

Original EGP model Original
linearization

Updated
linearization

Strain-rate step-size MNR FNR MNR FNR

10−1 s−1 0.01 5.65 s 5.63 s 5.65 s 5.64 s
10−2 s−1 0.1 5.69 s 5.66 s 5.66 s 5.66 s
10−3 s−1 1 5.66 s 5.65 s 5.67 s 5.68 s
10−4 s−1 10 5.66 s 5.65 s 5.70 s 5.66 s
10−5 s−1 100 5.66 s 5.64 s 5.65 s 5.66 s

Average: 5.66 s 5.65 s 5.67 s 5.66 s

Table 6.2: (a) The number of iterations and (b) run-time needed to reach a strain of 0.8 at
60
◦C for the original EGP model. The results are shown for a variable step-size

using either the original or updated linearization and using either the Modified
Newton-Raphson (MNR) of Full Newton-Raphson (FNR) iteration scheme.

(a) The number of iterations.

Original EGP model Original
linearization

Updated
linearization

Strain-rate step-size MNR FNR MNR FNR

10−1 s−1 0.01-0.03 1195 1237 962 905
10−2 s−1 0.1-0.4 1195 1241 824 783
10−3 s−1 1-4 1235 1221 817 657
10−4 s−1 10-40 1089 1133 720 628
10−5 s−1 100-400 1122 1036 978 633

Average: 1168 1174 860 721
(b) The average run-time over five runs.

Original EGP model Original
linearization

Updated
linearization

Strain-rate step-size MNR FNR MNR FNR

10−1 s−1 0.01-0.03 1.30 s 1.37 s 1.04 s 1.30 s
10−2 s−1 0.1-0.4 1.25 s 1.55 s 0.94 s 1.19 s
10−3 s−1 1-4 1.24 s 1.49 s 0.94 s 1.02 s
10−4 s−1 10-40 1.10 s 1.42 s 0.82 s 0.99 s
10−5 s−1 100-400 1.13 s 1.31 s 1.06 s 0.99 s

Average: 1.20 s 1.43 s 0.96 s 1.10 s
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Table 6.3: (a) The number of iterations and (b) run-time needed to reach a strain of 0.8 at 60
◦C

for the updated EGP model. The results are shown for a small variable step-size
using either the original or updated linearization and using either the Modified
Newton-Raphson (MNR) of Full Newton-Raphson (FNR) iteration scheme.

(a) The number of iterations.

Updated EGP model Original
linearization

Updated
linearization

Strain-rate step-size MNR FNR MNR FNR

10−1 s−1 0.001-0.01 2119 1906 2138 2318
10−2 s−1 0.001-0.1 2443 2227 2376 2278
10−3 s−1 0.001-1 2361 2193 2372 2164
10−4 s−1 0.0001-10 2874 2262 2495 2399
10−5 s−1 0.001-100 2793 2230 2475 2410

Average: 2518 2164 2371 2314
(b) The average run-time over five runs.

Updated EGP model Original
linearization

Updated
linearization

Strain-rate step-size MNR FNR MNR FNR

10−1 s−1 0.001-0.01 5.41 s 5.05 s 5.07 s 5.07 s
10−2 s−1 0.001-0.1 6.10 s 5.74 s 5.39 s 5.44 s
10−3 s−1 0.001-1 5.81 s 5.51 s 5.16 s 5.21 s
10−4 s−1 0.0001-10 7.13 s 6.04 s 5.83 s 5.81 s
10−5 s−1 0.001-100 7.08 s 6.07 s 5.85 s 5.79 s

Average: 6.31 s 5.68 s 5.46 s 5.46 s

Table 6.4: (a) The number of iterations and (b) run-time needed to reach a strain of 0.8 at 60
◦C

for the updated EGP model. The results are shown for a large variable step-size
using either the original or updated linearization and using either the Modified
Newton-Raphson (MNR) of Full Newton-Raphson (FNR) iteration scheme.

(a) The number of iterations.

Updated EGP model Original
linearization

Updated
linearization

Strain-rate step-size MNR FNR MNR FNR

10−1 s−1 0.001-0.05 1154 1174 1217 666
10−2 s−1 0.001-0.5 1230 1182 954 689
10−3 s−1 0.001-5 1195 1179 1086 689
10−4 s−1 0.0001-50 1144 1045 1061 578
10−5 s−1 0.001-500 1060 980 805 593

Average: 1157 1112 1025 620
(b) The average run-time over five runs.

Updated EGP model Original
linearization

Updated
linearization

Strain-rate step-size MNR FNR MNR FNR

10−1 s−1 0.001-0.05 1.26 s 1.25 s 1.29 s 0.98 s
10−2 s−1 0.001-0.5 1.18 s 1.44 s 1.06 s 1.04 s
10−3 s−1 0.001-5 1.18 s 1.40 s 1.22 s 0.90 s
10−4 s−1 0.0001-50 1.18 s 1.37 s 1.13 s 0.92 s
10−5 s−1 0.001-500 1.18 s 1.35 s 1.08 s 0.91 s

Average: 1.20 s 1.36 s 1.16 s 0.95 s



CHAPTER 7
CONCLUSION AND DISCUSSION

The research question stated in the introduction of this thesis is as follows:

How can the Eindhoven Glassy Polymer model be adapted to correspond
better to the higher experimentally observed strain-rate dependency and
higher experimentally observed yield stress at lower temperatures for uniax-
ial compression tests of Poly(ether-ether-ketone)?

The work in this thesis leads to the answer to this question; the Eindhoven Glassy
Polymer model will correspond better to the experimentally observed strain-rate
dependency and yield behaviour of Poly(ether-ether-ketone) in uniaxial compres-
sion tests when the viscosity function is strain-dependent. The obtained results
from the EGP model are very accurate if compared to the experimental results. The
viscosity function is based on the Ree-Eyring equation where all three Ree-Eyring
parameters (activation volume, activation energy and initial viscosities) must be
strain-dependent for both the α- and β-process. The evolution of the Ree-Eyring
parameters is expressed by a tanh() function for small strains of the α-process and
a quadratic function for large strains of both the α- and β-process. The evolution of
the Ree-Eyring parameters is characterized in a few steps where the basis is fitting
the original Ree-Eyring equation to the experimental data over the full strain range.
The shear moduli are also made strain-dependent to correctly model stresses in
the pre-yield regime. The strain dependency is modelled with an invariant function
that is approximately proportional to the strain. This invariant function is prevented
from reducing for the evolution based on the tanh() function when the loading di-
rection is reversed but does reduce for the evolution based on the quadratic function
to correctly model cyclic loading.

general results A benchmark for comparing results is set up with the original
EGP model. This benchmark showed large stress deviations of maximal 14 MPa on
a stress of 140 MPa. Furthermore, both the strain-rate dependency and temperature
dependency are incorrect at small and large strains. These problems were solved
by changing the three Ree-Eyring parameters and the shear moduli to be strain-
dependent instead of constant (Equations 4.11 to 4.16 and 4.9) in which the invariant
function Ir in the tanh() term is prevented from reducing as defined in Equations
5.1 and 5.2. Together with an update to the viscosity function, this has led to the
updated EGP model. The large deviations that occurred in analyses performed with
the original EGP model have disappeared. The largest deviations after the yield
point are 2.5 MPa on a stress of 90 MPa. This is only a maximum relative deviation
of 2.8% instead of the 10.0% for the benchmark. This deviation of the updated EGP
model is deemed very small and accurate for stress-strain curves. The problems
with the incorrect strain-rate dependency and temperature dependency are solved
by making the three Ree-Eyring parameters strain-dependent, which means that
the main goal of this thesis has been successfully reached and the results can be
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used within future research. Furthermore, the updated EGP model also performs
well for strain-rates and temperatures outside the ranges where the model has been
characterized on. The strain-rate dependency and the characteristics of the yield
point for higher temperatures are as described in literature [Bower, 2003; Barba
et al., 2020] while this was not observed in the original EGP model. However, no
evidence was found for the decreasing stress at large strains for high temperatures,
but this could be because these high temperatures lie within the glass transition
zone and cannot accurately be captured with the EGP model.

pre-yield regime and shear moduli It should be noted that the stresses in
the pre-yield regime (ε < 0.05) show larger deviations than after the yield point.
These deviations are in any way still smaller than the deviations found for the
benchmark and thus an improvement. The strain-rate dependency in the pre-yield
regime (Figure 4.8) is also not as accurately captured as after the yield point. The
viscosity is used to implement the strain-rate dependency and is related to the
plastic flow. There should be plastic flow to capture the strain-rate dependency. It
is a fact that plastic flow starts at the onset of loading for polymers, which is the
case for the updated EGP model in contrast to the original EGP model where the
plastic flow starts at the yield point. But the low amount of this plastic flow makes it
impossible to capture the strain-rate dependency. This could be seen as a limitation
of a visco-plastic model such as the EGP model.

There is almost the same deviation visible at all strain-rates and temperatures
in the pre-yield regime when only the evolution of the Ree-Eyring parameters is
included in the EGP model. This was solved by increasing the shear moduli for
the pre-yield regime with a tanh() function related to the invariant function. This
approach is not very elegant. Because one specific stress-strain curve could be cap-
tured by having the shear moduli change over the entire strain range instead of
changes in the viscosity, this would then not account for effects like temperature
dependency and strain-rate dependency when running other analyses. The shear
moduli are determined with a method outlined by [Van Breemen et al., 2011], but
this method takes a constant activation volume into account while the activation
volume evolves over the strain in the updated EGP model. Simply including the
evolving activation volume in the method to determine the shear moduli does not
lead to useful results. The method could perhaps in the future be changed entirely
to correctly include the evolution of the activation volume, which could lead to bet-
ter shear moduli that capture the pre-yield regime correctly. The simple evolution
of the shear moduli for the pre-yield regime works fine until that time.

pressure dependency It was concluded in the analysis to determine the pres-
sure dependency (section 4.1) that this parameter is not constant over the strain.
This was seen as well for the Ree-Eyring parameters, but the choice was made
to not make the pressure dependency strain-dependent. This is because a strain-
dependent pressure dependency led to large changes in the stress from the EGP
model that did not correspond with the experimental results. It might be possible
that the approach from Govaert et al. [2001] that was followed in section 4.1 is not
valid for PEEK.

Including the activation volume evolution into the calculation of the pressure de-
pendency did not lead to very different results. However, it is possible that the
behaviour of the pressure dependency evolution that is shown in Figure 4.2d is
qualitatively correct and should be fitted such that the pre-yield regime is correctly
captured by a pressure dependency evolution instead of a shear moduli evolution.
However, it is not possible to point out which option is more correct with the avail-
able data.
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generalisation of the evolution of the ree-eyring parameters The
evolution of the Ree-Eyring parameters consists of a part related to the small strain
range and a part related to the large strain range.

The part of the evolution related to the small strain range is dependent on a
tanh() function, which is trough the the invariant function related to the strain. This
function has the useful characteristic to become constant at larger strains, making
it a very safe function to use. The function follows the shape of the evolution of
the Ree-Eyring parameters very well and can be easily characterized with some
intuitive parameters that still give a large range of freedom. All this makes the
evolution through the tanh() function a great addition to the EGP model.

The part of the evolution related to the large strain range is dependent on a
quadratic function, which is through the invariant function related to the strain.
This function also follows the evolution of the Ree-Eyring parameters very well
and can be easily characterized. The stresses from the EGP model become incorrect
when the activation energy or activation volume is near zero or the initial viscosities
become very small. A (decreasing) quadratic function will lead to this for large
strains. No lower and/or upper limit for these Ree-Eyering parameters is included
since this would lead to even more new parameters in the EGP model and it is
unknown what the limit should be with the available experimental data. However,
it is expected that the part of the evolution related to the large strain range is used
with care. It should be checked if the Ree-Eyring parameters are not deviating
too much due to very large strains. A possibility is to reduce the influence of
the quadratic function if very large strains are expected. This would lead to less
accurate results at larger strains, but not to incorrect stress results or divergence of
the FEM analysis.

The constants within the evolution of the Ree-Eyring parameters have been cho-
sen such that the updated EGP model can reduce to the original EGP model with
the constant Ree-Eyring parameters. This is done such that the EGP model stays
very general to model other polymers where the constant Ree-Eyring parameters
are a better (and perhaps easier) assumption.

An important question is how general the evolution of the Ree-Eyring parameters
is. The available data led to the combination of the tanh() and quadratic evolution.
The current evolution of the Ree-Eyring parameters can handle a lot of different
cases since the evolution at small strains and large strains are separated. But it can-
not be said with 100% certainty that this evolution of the Ree-Eyring parameters is
the best fit for different types of PEEK or other polymers. Wendlandt et al. [2005]
shows evolving activation volume for several polymers. It seems that the shape of
the activation volume evolution of the polymers PMMA, PPO, PC and PS can be
approximated well with the combination of the tanh() and quadratic functions, ex-
cept for the evolution at very large strains in which the activation volume evolution
shows a decrease in slope.

physical behaviour The EGP model is created at a macro-mechanical level
as opposed to a micromechanical level including the microstructural composition
[Senden, 2009]. This thesis also solves a problem from a macro-mechanical view
without checking material related physics at a micro-level. The possible material re-
lated changes that lead to the evolution of the Ree-Eyring parameters are discussed
based on the available literature.

The crystallinity of a polymer is dependent on the temperature. The temperature
dependency (activation energy) can then be linked to the rate of crystallinity. This
rate of crystallinity is, from a material physics point of view, the mechanism that
changes the mechanical behaviour [Doumeng et al., 2019]. The crystallinity of PEEK
decreases at larger strains of ≈ 0.6 for the strain rates used in this thesis (< 103

s−1) [Rae et al., 2007]. The yielding of polymers can be seen as stress-induced
rubbery behaviour [Van Melick et al., 2003], which could lead to strain-induced
crystallization at larger strains [Chien and Weiss, 1988]. Any of these changes in
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crystallinity could also lead to a different rate of crystallinity and thus a different
temperature dependency for larger strains.

The activation volume can be linked to the activation energy in that it determines
the decrease of activation energy for segmental motion in the direction of the ap-
plied stress [Wendlandt et al., 2005]. As such, activation volume could also be linked
to the crystallinity or rate of crystallinity of a polymer.

Plastic flow leads to the separation of crystalline segments at lower strains, which
could be the reason for the quickly changing activation volume, activation energy
and initial viscosities at lower strains. As described before, the plastic flow does
already start at the onset of loading, just like the Ree-Eyring parameters evolution.

benchmark accuracy The benchmark introduced in chapter 3 is one of many
possible characterizations of the original EGP model due to the large number of pa-
rameters within the model. It should be empathised that no characterization leads
to the same results as for the experiments. This is because the strain-rate depen-
dency and temperature dependency change over the strain, which is not included
in the original EGP model. Each characterization would lead to the same confirma-
tion of the problem statement in section 3.4. There are characterizations possible
that would lead to, for example, better results in the low strain range. But these
characterizations would also lead to worse results for moderate and large strains.
The characterization of the benchmark is chosen as it is for two reasons. Firstly,
it shows all the issues with the original EGP model to make a good comparison
with results obtained from the updated EGP model. Secondly, it is as close to the
experimental results as possible over the entire strain range.

The benchmark uses 23 α-modes and 4 β-modes, which is a high number of
modes. A higher number of modes is more accurate but is also more computation-
ally expensive. This thesis focuses on accuracy, which is the reason for the high
number of modes. It is also possible to obtain good results with a smaller number
of modes. It is advisable to lower the number of modes when using this characteri-
zation in large models.

Another comment on the benchmark is that the experimental results for strains
above 0.5 are considered less accurate due to the failing lubrication of the sample
and inhomogeneous deformation that play a role in the stress-strain behaviour. It is
assumed that this effect will lead to the same stress deviation for all strain-rates and
temperatures, meaning that the effect could be countered by changing the elastic
hardening contribution. This will then not change anything for the results of this
thesis. It is unknown how extensive the effect is, so no correction is made.

cyclic loading Cyclic loading is relevant to the ’SafeRIDE’ project (See chapter
1) since it will investigate the long term behaviour of fibre reinforced PEEK in terms
of fatigue. Thus, cyclic loading cases are investigated. This thesis only takes a
first step in the right direction by making sure that the qualitative behaviour of
the cyclic loading with the strain-dependent viscosity is good. Due to the lack of
data, no conclusions on the cyclic loading behaviour are made. Thus, it is of great
importance to, in the future, gather good data on cyclic loading cases for PEEK.

Another important aspect of polymers for cyclic loading cases is viscous strain
hardening. This has been a subject of research before and has been added to con-
stitutive models by making one or two Ree-Eyring parameters strain-dependent
[Senden et al., 2012a; Wendlandt et al., 2005]. This thesis has the goal of correctly
modelling stress-strain behaviour instead of including viscous strain hardening. It
has been shown that by including the evolution of all three Ree-Eyring parameters,
the viscous strain hardening is still included in the model. It can very well be that
including the exact evolution of the Ree-Eyring parameters is the most accurate way
of modelling the stress behaviour for all loading cases. It might even be said that
keeping true to the original work of Ree and Eyring [1955] is the key to correctly
model PEEK.
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7.1 recommendations
Seven recommendations are drawn up based on the work within this thesis and the
discussion in this chapter:

• Larger strains: Experimental uniaxial compression tests at strains larger than
0.7 can give an insight into the evolution of the Ree-Eyring parameters at
these larger strains or/and possible lower bounds of the Ree-Eyring parame-
ters. Effects like inhomogeneous deformation and insufficient lubrication of
the sample have to be accounted for if tests at these very large strains are
performed. For example, Rae et al. [2007] performs incremental compression
loading with re-lubrication between the steps, but these test results could be
influenced by cold crystallisation;

• Cyclic loading: Stress-strain curves for a cyclic loading test of PEEK have to
be experimentally obtained to correctly model the response of the EGP model
for cyclic loading cases. It is relatively easy to test compression/compression
cyclic loading cases and investigate the results. Tension/tension cyclic loading
cases are also possible, but extra care is needed due to non-linear effects such
as necking.

Another possibility is to use fully-reversed compression/tension cyclic load-
ing cases. The experimental procedure outlined in Senden et al. [2010] can be
used to obtain experimental stress-strain results. This paper uses dog-bone
shaped samples, which are loaded in tension until a prescribed strain. Where-
after, the samples are unloaded to zero force. lastly, cylindrical specimens
machined from the pretensioned samples are loaded in compression to obtain
the compression behaviour. Li et al. [2019] shows that a reduction in stiffness
is expected in the case of fully-reversed cyclic loading, which is currently not
included in the EGP model. The correct evolution of the Ree-Eyring parame-
ters after the reversal of loading can be investigated as well.

• Updating the characterization of the modal parameters: The evolution of the acti-
vation volume can be included in the characterization of the initial viscosities
and shear moduli as outlined by Van Breemen et al. [2011] and lead to more
accurate results. It is possible that the shear moduli evolution in the pre-yield
regime is not necessary anymore if this characterization step is updated;

• Pressure dependency: Section 4.1 shows that the pressure dependency changes
over the strain. It is possible that the behaviour of the pressure dependency
evolution is qualitatively correct and should be fitted such that the pre-yield
regime is correctly captured by a pressure dependency evolution instead of a
shear moduli evolution. Stress-strain results for different loading cases (which
implicitly means that there is a different pressure dependency) are needed to
make correct conclusions about the pressure dependency (evolution);

• Rate of crystallisation: An evolving rate of crystallisation could be the micro-
mechanical explanation of the evolution of the Ree-Eyring parameters but
cannot be concluded based on the currently available literature. The crys-
tallisation of PEEK can be investigated at multiple temperatures and strain
rates over a large strain range. Kong and Hay [2002] shows how differential
scanning calorimetry (DSC) can be used to determine the crystallinity of a
polymer.

• Generalisation: Experimental tests on other grades of PEEK and/or other poly-
mers could point out which generalisation of the evolution of the Ree-Eyring
parameters is the best for a general model such as the EGP model.

• Linearization: Section 6.3 hints that the updated linearization is not fully cor-
rectly derived and/or implemented. The updated linearization can be checked.
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APPENDIX A
ORIGINAL EGP MODEL PARAMETERS

Table A.1: All parameters of the original EGP model. For each parameter; it’s name, equa-
tions it was used in, and influence on the model is given.

T

Name: Temperature
Equation(s): 2.12 and underlying functions

Influence: The temperature has a very big influence on the model.

R
Name: Universal gas constant

Equation(s): 2.12 and 2.17

Influence: constant value of 8.3144598 · 103.

kb

Name: Boltzmann’s constant
Equation(s): 2.13

Influence: constant value of 1.38064852 · 10−20.

∆H0α

Name: activation enthalpy/energy; alpha process
Equation(s): 2.29

Influence: Influence on the temperature dependency of the alpha pro-
cess. A higher value will lead to lower stresses at higher
temperatures.

∆H0β

Name: activation enthalpy/energy; beta process
Equation(s): 2.30

Influence: Influence on the temperature dependency of the beta pro-
cess. A higher value will lead to lower stresses at higher
temperatures.

C1,α

Name: Viscous hardening stress constant for activation energy
evolution; alpha process

Equation(s): 2.29

Influence: Leads in a quadratic relationship to strain to lower/higher
activation energy at higher strains for the alpha process.
this leads to different stresses at higher strains for other
temperatures than the one characterized on. Parameter is
mainly needed for loading/unloading situations.

C2,α

Name: Viscous hardening stress constant for initial viscosity evo-
lution; alpha process

Equation(s): 2.27

Influence: Leads in a quadratic relationship to strain to lower/higher
initial viscosities at higher strains for the alpha process.
this leads to different stresses at higher strains. Parameter
is mainly needed for loading/unloading situations.

(Continued on the next page)
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C1,β

Name: Viscous hardening stress constant for activation energy
evolution; beta process

Equation(s): 2.30

Influence: Leads in a linear relationship to strain to lower/higher
activation energy at higher strains for the beta process.
this leads to different stresses at higher strains for other
temperatures than the one characterized on. Parameter is
mainly needed for loading/unloading situations.

C2,β

Name: Viscous hardening stress constant for initial viscosity evo-
lution; beta process

Equation(s): 2.28

Influence: Leads in a linear relationship to strain to lower/higher ini-
tial viscosities at higher strains for the beta process. this
leads to different stresses at higher strains. Parameter is
mainly needed for loading/unloading situations.

Gr

Name: Elastic strain hardening modulus
Equation(s): 2.21

Influence: Determines the linear slope of elastic strain hardening be-
haviour.

αr

Name: Limited extensibility of the molecular network
Equation(s): 2.22

Influence: Determines the non-lineair response of the elastic strain
hardening. A higher value leads to larger slopes of the
strain hardening stress at higher strains.

ξr

Name: Mobility of entanglements of the molecular network
Equation(s): 2.22

Influence: Determines the non-lineair response of the elastic strain
hardening. Should be kept at 0 for polymers.

Vα

Name: Shear equivalent activation volume; alpha process
Equation(s): 2.13

Influence: Determines the strain-rate dependency of the alpha pro-
cess. A higher value leads to a lower strain rate depen-
dency. the activation volume is also needed to determine
the initial viscosities.

Vβ

Name: Shear equivalent activation volume; beta process
Equation(s): 2.13

Influence: Determines the strain-rate dependency of the beta process.
A higher value leads to a lower strain rate dependency. the
activation volume is also needed to determine the initial
viscosities.

µα

Name: Pressure dependency; alpha process
Equation(s): 2.12

Influence: Changes the height of the yield stress for the alpha process
based on the pressure on the model. Works together with
temperature and the activation volume.

µβ

Name: Pressure dependency; beta process
Equation(s): 2.12

Influence: Changes the height of the yield stress for the beta process
based on the pressure on the model. Works together with
temperature and the activation volume.

(Continued on the next page)
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SSα

Name: Ageing-induced changes in entropy; alpha process
Equation(s): 2.17

Influence: A higher value leads to a higher yield stress and a stronger
softening behaviour in the alpha process. The parameter
is based on the age of the polymer

SSβ

Name: Ageing-induced changes in entropy; beta process
Equation(s): 2.17

Influence: A higher value leads to a higher yield stress and a stronger
softening behaviour in the beta process. The parameter is
based on the age of the polymer

SHα

Name: Ageing of the activation enthalpy; alpha process
Equation(s): 2.17 and 2.29

Influence: A higher value leads to a stronger yield stress and a
stronger softening behaviour in the alpha process, but is
influenced by the temperature. The parameter also influ-
ences the activation energy based on the softening func-
tion.

SHβ

Name: Ageing of the activation enthalpy; beta process
Equation(s): 2.17 and 2.30

Influence: A higher value leads to a stronger yield stress and a
stronger softening behaviour in the beta process, but is
influenced by the temperature. The parameter also influ-
ences the activation energy based on the softening func-
tion.

r0α , Name: fitting parameters of the modified Carreau-Yassuda func-
tion; alpha process

r1α , Equation(s): 2.20

r2α Influence: The parameters determine the shape of the softening be-
haviour for the alpha process. Mainly, the slopes and
length of the slopes can be determined.

r0β
, Name: fitting parameters of the modified Carreau-Yassuda func-

tion; beta process
r1β

, Equation(s): 2.20

r2β
Influence: The parameters determine the shape of the softening be-

haviour for the beta process. Mainly, the slopes and length
of the slopes can be determined.

κ
Name: Bulk modulus

Equation(s): 2.8
Influence: constant value of 5475 for PEEK.

Gi

Name: Shear moduli
Equation(s): 2.9

Influence: Determines the shape of the yield behaviour. One shear
modulus is needed for each mode included in the model.

η0i

Name: Initial viscosities
Equation(s): 2.27 and 2.28

Influence: Determines the shape of the yield behaviour. One initial
viscosity is needed per mode.





APPENDIX B
CHARACTERIZATION OF THE

BENCHMARK

The Tables B.1, B.2 and B.3 show the values determined for each parameter of the
original EGP model.

Table B.1: The general parameters of the original EGP model.

Parameter Value Unit

T Variable ◦C
R 8.31 J ·mol−1 · K−1

kb 1.38 · 10−20 N ·mm · K−1

∆H0α 685 · 103 J ·mol−1

∆H0β
90 · 103 J ·mol−1

C1,α 0 -
C2,α 0 -
C1,β 0 -
C2,β 0 -
Gr 5.0 MPa
αr 0.22 -
ξr 0 -
Vα 9.2 · 10−18 mm3

Vβ 5.0 · 10−18 mm3

µα 0.06 -
µβ 0.06 -
SSα

2.0 -
SSβ

0 -
SHα 0 -
SHβ

0 -
r0α 0.965 -
r1α −5.0 -
r2α −5.0 -
r0β

0.965 -
r1β

−5.0 -
r2β

−5.0 -
κ 5475 N/mm2

69



70 characterization of the benchmark

Table B.2: The modal parameters for the α-process of the original EGP model.

shear modulus initial viscosity
Mode Gj [MPa] ηj [MPa·s]

1 97.663 1.646 · 10−57

2 96.330 2.319 · 10−58

3 43.014 1.479 · 10−59

4 50.714 2.491 · 10−60

5 51.848 3.638 · 10−61

6 64.795 6.494 · 10−62

7 84.610 1.211 · 10−62

8 109.077 2.231 · 10−63

9 99.498 2.907 · 10−64

10 75.487 3.150 · 10−65

11 34.353 2.048 · 10−66

12 36.707 3.126 · 10−67

13 24.847 3.022 · 10−68

14 24.904 4.327 · 10−69

15 17.940 4.453 · 10−70

16 21.714 7.699 · 10−71

17 15.974 8.090 · 10−72

18 14.928 1.080 · 10−72

19 15.567 1.609 · 10−73

20 8.351 1.233 · 10−74

21 6.457 1.362 · 10−75

22 1.166 3.513 · 10−77

23 35.205 1.128 · 10−97

Table B.3: The modal parameters for the β-process of the original EGP model.

shear modulus initial viscosity
Mode Gk [MPa] ηk [MPa·s]

1 19.909 1.939 · 10−13

2 114.628 4.310 · 10−13

3 43.595 2.443 · 10−14

4 28.914 6.256 · 10−15
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STRESS-STRAIN CURVES FROM THE

BENCHMARK

(a) (b)

(c) (d)

Figure C.1: The original EGP model results and experimental results at 20
◦C and a strain

rate of (a) 10−2, (b) 10−3, (c) 10−4 and (d) 10−5.
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(a) (b)

(c) (d)

(e)

Figure C.2: The original EGP model results and experimental results at 60
◦C and a strain

rate of (a) 10−1, (b) 10−2, (c) 10−3, (d) 10−4 and (e) 10−5.
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(a) (b)

(c) (d)

(e)

Figure C.3: The original EGP model results and experimental results at 100
◦C and a strain

rate of (a) 10−1, (b) 10−2, (c) 10−3, (d) 10−4 and (e) 10−5.





APPENDIX D
STRESS-STRAIN CURVES FROM THE

UPDATED EGP MODEL

(a) (b)

(c) (d)

Figure D.1: The updated EGP model results and experimental results at 20
◦C and a strain

rate of (a) 10−2, (b) 10−3, (c) 10−4 and (d) 10−5.
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76 stress-strain curves from the updated egp model

(a) (b)

(c) (d)

(e)

Figure D.2: The updated EGP model results and experimental results at 60
◦C and a strain

rate of (a) 10−1, (b) 10−2, (c) 10−3, (d) 10−4 and (e) 10−5.
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(a) (b)

(c) (d)

(e)

Figure D.3: The updated EGP model results and experimental results at 100
◦C and a strain

rate of (a) 10−1, (b) 10−2, (c) 10−3, (d) 10−4 and (e) 10−5.





APPENDIX E
UPDATED C++ CODE FOR THE STRESS

CALCULATION

Code E.1: The new C++ code for the invariant function

1 // Update htB and htBnon
2

3 double I_1 , I_2 , trmtB2 , htB ;
4

5 t r a c e ( mtB , I_1 ) ;
6

7 t r a c e ( matmul ( mtB , mtB ) , trmtB2 ) ;
8

9 I_2 = 0 . 5 * ( pow( I_1 , 2 ) − trmtB2 ) ;
10

11 htB = pow( pow( I_1 , 2 ) / 3 − I_2 , 0 . 5 ) ;
12

13 i f ( htB < htBnonB ) { htBnon = htBnonB ; }
14 e l s e { htBnon = htB ; }

Code E.2: The new C++ code for the shear moduli and activation volume evolution

1 double t0a , t0b ;
2

3 i f ( strHardening_ == "NEOHOOKEAN" )
4 {
5 t0a = t0a_ ;
6 t0b = t0b_ ;
7 }
8 e l s e
9 {

10 // S t r a i n dependent a c t i v a t i o n volume
11

12 double Vacta , Vactb ;
13

14 Vacta = ( Vconsta_ − CV1a_ ) + CV1a_ * tanh ( CV2a_ * ( htBnon − CV3a_ ) ) +
15 CV4a_ * pow( htB , 2 ) ;
16

17 Vactb = Vconstb_ + CV4b_ * pow( htB , 2 ) ;
18

19 t0a = kb_ * T_ / Vacta ;
20 t0b = kb_ * T_ / Vactb ;
21

22 // S t r a i n dependent shear moduli
23

24 f o r ( i d x _ t i = 0 ; i < nam_ ; i ++)
25 {G[ i ] = Gconst_ [ i ] * ( ( 1 + CG1a_ ) − CG1a_ *
26 tanh ( CG2a_ * ( htBnon − CG3a_ ) ) ) ; }
27

28 f o r ( i d x _ t i = nam_ ; i < nom_ ; i ++)
29 {G[ i ] = Gconst_ [ i ] ; }
30 }

79



80 updated c++ code for the stress calculation

Code E.3: The updated C++ code for the viscosity function

1 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // update v i s c o s i t y
3 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4

5 void EGPMaterial : : updateViscos i ty_
6

7 ( const Vector& h , const Vector& Rg , const double htB ,
8

9 const double htBnon , const Vector& S , const double& p ,
10

11 const double& t0a , const double& t0b , const Vector& teq ,
12

13 const M33& mtB , Vector& h0 , double& dH0a , double& dH0b)
14

15 {
16 // For the S i m p l i f i e d EGP model v i s c o s i t y
17

18 i f ( strHardening_ == "NEOHOOKEAN" )
19 {
20 i f ( teq [ 0 ] > 1 . 0 e −15)
21 {
22 f o r ( i d x _ t i = 0 ; i < nam_ ; i ++)
23 {
24 h [ i ] = h0 [ i ] * exp ( S [ 0 ] + (ma_ * p ) / t0a ) *
25

26 ( teq [ 0 ] / t0a ) / sinh ( teq [ 0 ] / t0a ) ;
27

28 i f ( h [ i ] < 1 . 0 e −15) { h [ i ] = 1 . 0 e −15 ; }
29 }
30 }
31

32 i f ( mode_ == 2 )
33 {
34 i f ( teq [ 1 ] > 1 . 0 e −15)
35 {
36 f o r ( i d x _ t i = nam_ ; i < nom_ ; i ++)
37 {
38 h [ i ] = h0 [ i ] * exp ( S [ 1 ] + (mb_ * p ) / t0b ) *
39

40 ( teq [ 1 ] / t0b ) / sinh ( teq [ 1 ] / t0b ) ;
41

42 i f ( h [ i ] < 1 . 0 e −15) { h [ i ] = 1 . 0 e −15 ; }
43 }
44 }
45 }
46 }
47

48 // For the f u l l EGP model v i s c o s i t y
49

50 e l s e
51 {
52 i f ( teq [ 0 ] > 1 . 0 e −15)
53 {
54 dH0a = ( dHconsta_ − CdH1a_ ) + CdH1a_ *
55

56 tanh ( CdH2a_ * ( htBnon − CdH3a_ ) ) +
57

58 CdH4a_ * pow( htB , 2 ) + SHa_ * Rg [ 0 ] ;
59

60 f o r ( i d x _ t i = 0 ; i < nam_ ; i ++)
61 {
62 h0 [ i ] = nconst_ [ i ] * exp( −Cn1a_ + Cn1a_ *
63

64 tanh ( Cn2a_ * ( htBnon − Cn3a_ ) ) ) *
65

66 exp ( Cn4a_ * pow( htB , 2 ) ) ;
67

68 h [ i ] = h0 [ i ] * exp (dH0a / R_ * (1 / T_ − 1 / T_base_a_ ) ) *
69
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70 exp ( S [ 0 ] ) * exp (ma_ * p / t0a ) *
71

72 ( teq [ 0 ] / t0a / sinh ( teq [ 0 ] / t0a ) ) ;
73

74 i f ( h [ i ] < 1 . 0 e −15)
75 {
76 h [ i ] = 1 . 0 e −15 ;
77 }
78 }
79 }
80

81 i f ( mode_ == 2 )
82 {
83 i f ( teq [ 1 ] > 1 . 0 e −15)
84 {
85

86 dH0b = dHconstb_ + CdH4b_ * pow( htB , 2 ) + SHb_ * Rg [ 1 ] ;
87

88 f o r ( i d x _ t i = nam_ ; i < nom_ ; i ++)
89 {
90 h0 [ i ] = nconst_ [ i ] * exp ( Cn4b_ * pow( htB , 2 ) ) ;
91

92 h [ i ] = h0 [ i ] * exp (dH0b / R_ * (1 / T_ − 1 / T_base_b_ ) ) *
93

94 exp ( S [ 1 ] ) * exp (mb_ * p / t0b ) *
95

96 ( teq [ 1 ] / t0b / sinh ( teq [ 1 ] / t0b ) ) ;
97

98 i f ( h [ i ] < 1 . 0 e −15)
99 {

100 h [ i ] = 1 . 0 e −15 ;
101 }
102 }
103 }
104 }
105 }
106 }





APPENDIX F
LARGER TEMPERATURE AND STRAIN

RATE RANGE STRESS-STRAIN CURVES

Figure F.1: The updated EGP model results for a large strain-rate range at -20
◦C.

Figure F.2: The updated EGP model results for a large strain-rate range at 20
◦C.
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84 larger temperature and strain rate range stress-strain curves

Figure F.3: The updated EGP model results for a large strain-rate range at 60
◦C.

Figure F.4: The updated EGP model results for a large strain-rate range at 100
◦C.

Figure F.5: The updated EGP model results for a large strain-rate range at 140
◦C.



APPENDIX G
DERIVATIVE OF THE VISCOSITY

The derivative of the viscosity function as given in Equation 4.8 with respect to the
deformation gradient is determined in this appendix. Firstly, the viscosity function
is split in three sub-functions:

ηx,i = η0x,i (Ir)︸ ︷︷ ︸
f1(F)

τx/τ0x

sinh(τx/τ0x )︸ ︷︷ ︸
f2(F)

exp
(

∆Hx(Ir)

R

(
1
T
− 1

Tx,base

)
+

µx p
τ0x

)
︸ ︷︷ ︸

f3(F)

exp(Sx) (G.1)

The following derivative has to be calculated:

∂ηx,i

∂F
= exp(Sx)

[
( f1(F) f ′2(F) + f2(F) f ′1(F)) · f3(F) + f1(F) f2(F) f ′3(F)

]
(G.2)

The following evolution for the Ree-Eyering parameters has been introduced (for
the alpha process):

τ0α =
kBT

(Vconst,α − CV,1,α) + CV,1,α · tanh
(
CV,2,α · (Ir,non(B̃)− CV,3,α)

)
+ CV,4,α I2

r (B̃)
(G.3)

∆H0α = (∆Hconst,α −C∆H,1,α) + C∆H,1,α · tanh
(
C∆H,2,α · (Ir,non(B̃)− C∆H,3,α)

)
+

C∆H,4,α I2
r (B̃) + SHα Rγα(γp) (G.4)

η0α,i = ηconst,α,i · exp(−Cη,1,α +Cη,1,α · tanh
(
Cη,2,α · (Ir,non(B̃)− Cη,3,α)

)
) · exp(Cη,4,α I2

r (B̃))

(G.5)

Since Ir(B̃) is dependent on the deformation gradient, the derivative of Equations
G.3-G.5 with respect to the deformation gradient is determined:

∂τ0x

∂F
= −

τ2
0x

kBT

(
EV,x,low

∂Ir,non

∂F
+ EV,x,high

∂Ir

∂F

)
(G.6)

∂∆H0x

∂F
= E∆H,x,low

∂Ir,non

∂F
+ E∆H,x,high

∂Ir

∂F
(G.7)

∂η0x,i

∂F
= η0x,i

(
Eη,x,low

∂Ir,non

∂F
+ Eη,x,high

∂Ir

∂F

)
(G.8)

where for k = η, ∆H or V and x = α or β:

Ek,α,low = Ck,1,αCk,2,α · sech2 (Ck,2,α · (Ir,non − Ck,3,α)) (G.9)
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Ek,α,high = Ck,4,α2Ir (G.10)

Ek,β,low = 0 (G.11)

Ek,β,high = Ck,4,β2Ir (G.12)

Calculate f ′1(F), f ′2(F) and f ′3(F):

f ′1(F) =
∂η0x,i

∂F
= f1(F)

(
Eη,x,low

∂Ir,non

∂F
+ Eη,x,high

∂Ir

∂F

)
(G.13)

f ′2(F) =
τ0x − τx coth τx

τ0x
csch τx

τ0x

τ2
0x

∂τx

∂F
−

τx

(
τx coth τx

τ0x
− τ0x

)
csch τx

τ0x

τ3
0x

·
τ2

0x

kBT

(
EV,x,low

∂Ir,non

∂F
+ EV,x,high

∂Ir

∂F

)
(G.14)

f ′3(F) =
[(

E∆H,x,low

R

(
1
T
− 1

Tx,base

)
+

µx pEV,x,low

kBT

)
∂Ir,non

∂F
+(E∆H,x,high

R

(
1
T
− 1

Tx,base

)
+

µx pEV,x,high

kBT

)
∂Ir

∂F
+

µx

τ0x

∂p
∂F

]
· f3(F) (G.15)

Substitute all needed functions in equation G.2:

∂ηx,i

∂F
= exp(Sx) f1(F) f2(F) f3(F)·τ0x − τx coth τx

τ0x
csch τx

τ0x

τ2
0x

f2(F)
∂τx

∂F
−

τx

(
τx coth τx

τ0x
− τ0x

)
csch τx

τ0x

τ3
0x

f2(F)
·

τ2
0x

kBT

(
EV,x,low

∂Ir,non

∂F
+ EV,x,high

∂Ir

∂F

)
+

Eη,x,low
∂Ir,non

∂F
+ Eη,x,high

∂Ir

∂F
+(

E∆H,x,low

R

(
1
T
− 1

Tx,base

)
+

µx pEV,x,low

kBT

)
∂Ir,non

∂F
+(E∆H,x,high

R

(
1
T
− 1

Tx,base

)
+

µx pEV,x,high

kBT

)
∂Ir

∂F
+

µx

τ0x

∂p
∂F

]
(G.16)

The following result is obtained:

∂ηx,i

∂F
= ηx,i

 µx

τ0x

∂p
∂F

+

 1
τx
−

coth
(

τx
τ0x

)
τ0x

 ∂τx

∂F
+ Mx,low

∂Ir,non

∂F
+ Mx,high

∂Ir

∂F


(G.17)

For d = low or high and x = α or β:

Mx,d = Eη,x,d +
E∆H,x,d

R

(
1
T
− 1

Tx,base

)
+

µx pEV,x,d

kBT
−

EV,x,dτ0x

kBT

τx coth
(

τx
τ0x

)
τ0x

− 1

 (G.18)



APPENDIX H
UPDATED C++ CODE FOR THE STIFFNESS

CALCULATION

Code H.1: The updated C++ code for the calculation of the stiffness tensor

1 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // update the tangent s t i f f n e s s matrix
3 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4

5 void EGPMaterial : : s t i f f n e s s _
6

7 ( const Matrix& S t i f f , const M33& mF, const M33& mFB, M33& mtB ,
8

9 const Array<M33>& mtBe , const Array<M33>& mtBeB ,
10

11 const Vector& h , const Vector& G, const Vector& mteq ,
12

13 const Vector& lambda , const Vector& teq , double J , double JB ,
14

15 const M33 DF, const M33 mSs , const M33 mSsa , const M33 mSsb ,
16

17 const double& dt , Array<M33>& mbsdi , double& eqps , double htB ,
18

19 double htBnon , Matrix mat )
20

21 {
22 // def ine a l l v a r i a b l e s
23

24 i d x _ t noe = nom_ + 1 ; // number of equat ions
25

26

27 M33 mI , mtF , mtFB , mtC , mFi , mtBeBi , mCp, mCpi , mtBed , mM;
28

29 M33 mB, mC, mdgdF, mbsd1t , mdfdF , mdssdgtmp , mdssdg ;
30

31

32 M91 ccdgdF , ccdta1dF , ccbsd1 t , ccbsd1 , ccdI2dF ;
33

34 M91 ccSs ta , ccSsa , ccSstb , ccSsb , c c F i t , c c t B t ;
35

36 M91 ccdssdg , ccdssdgtmp , ccdssdgtmp2 , ccdhtBdF ;
37

38 M91 ccdfdF , ccdpdF , ccdtadF , ccdtbdF , ccdhtBnondF ;
39

40 M91 ccI , ccF , ccFi , cctB , ccTemp ;
41

42 M91 cctBe , ccB , ccdI1dF , c c I t ;
43

44

45 M99 mmI, mmtF, mmtFt , mmFt, mmSda, mmSdb, mmtFc ;
46

47 M99 mmStiffh , mmStiffd , mmH1c, mmStiff , mmStiffx ;
48

49 M99 mmStiffc , mmStiffr , mmStress , mmtFcr , mmTemp;
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50

51 M99 mmK, mmM, mmMc, mmMcr, mmFtr , mmds1dFc , mmB21c ;
52

53 M99 mmF4, mmKtot , mmSdatmp, mmSdbtmp, mmds1dF ;
54

55 M99 mmStiffdac , mmStiffdbc , mmStiffda , mmStiffdb ;
56

57 M99 mmF, mmFc, mmFcr , mmdtBdF, mmH1, mmSda2tmp ;
58

59 M99 mmtFtc , mmtFtcr , mmC4r, mmF4r , mmdtBdFr ;
60

61 Array <M91> cctBed (nom_) , ccdndF (nom_) ;
62

63

64 Array <M99> mmA1(nom_) , mmA2(nom_) ;
65

66 Array <M99> mmB2(nom_) , mmB1(nom_) , mmC4(nom_) ;
67

68

69 Array <M33> mCpB(nom_) ;
70

71

72 Array<double ,3 > matdsdx ( 3 , 3 , noe ) ;
73

74 Array<double ,3 > matdxdF ( noe , 3 , 3 ) ;
75

76 Array<double ,3 > matst i f fxtmp ( 3 , 3 , noe ) ;
77

78 Array<double ,4 > m a t s t i f f x ( 3 , 3 , 3 , 3 ) ;
79

80

81 Matrix mati ( noe , noe ) ;
82

83

84 double trmtBe , deqpsdt , dSdea , dSdeb ;
85

86 double p , t0a , t0b , Vacta , Vactb , Jn ;
87

88 double Enalpha_low , Enalpha_high , Enbeta ;
89

90 double EdHalpha_low , EdHalpha_high , EdHbeta ;
91

92 double EValpha_low , EValpha_high , EVbeta ;
93

94 double trmtB , Egalpha , Egbeta ;
95

96

97 Vector gamma (nom_) ;
98

99 gamma = G / h ;
100

101 // i n i t i a l i z e second and fourth order uni t t e n s o r s
102 // convert them to corressponding column v e c t o r s
103

104 inimI ( mI ) ;
105 m2cc ( ccI , mI , 9 ) ; // d i f f e r e n t than Voigt r e p r e s e n t a t i o n
106

107 inimmI4 (mmI) ;
108

109 // c a l c u l a t e k i n e t i c v a r i a b l e s
110

111 mtF = mF / pow ( J , 1 . / 3 . ) ;
112

113 mtFB = mFB / pow ( JB , 1 . / 3 . ) ;
114

115 mtC = matmul ( mtF . transpose ( ) , mtF ) ;
116

117 mFi = inverse (mF) ;
118

119 m2cc ( ccF , mF, 9 ) ;
120
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121 m2cc ( ccFi , mFi , 9 ) ;
122

123 m2cc ( c c F i t , mFi . t ranspose ( ) , 9 ) ;
124

125 m2mm (mmtF, mtF , 9 ) ;
126

127 mm2mmc (mmtFc , mmtF, 9 ) ;
128

129 mm2mmr ( mmtFcr , mmtFc , 9 ) ;
130

131 m2mm ( mmtFt , mtF . transpose ( ) , 9 ) ;
132

133 m2mm (mmFt, mF. transpose ( ) , 9 ) ;
134

135 mm2mmr ( mmFtr , mmFt, 9 ) ;
136

137 f o r ( i d x _ t i = 0 ; i < nom_ ; i ++)
138 {
139

140 mtBeBi = inverse ( mtBeB [ i ] ) ;
141

142 mCpB[ i ] = matmul ( mtFB . transpose ( ) , matmul ( mtBeBi , mtFB ) ) ;
143

144 mCp = ( 1 . − lambda [ i ] ) * mtC + lambda [ i ] * mCpB[ i ] ;
145

146 mCpi = inverse (mCp) ;
147

148 t r a c e ( mtBe [ i ] , trmtBe ) ;
149

150 mtBed = mtBe [ i ] − 1 . / 3 . * trmtBe * mI ;
151

152 ccTemp = 0 . 0 ;
153

154 m2cc ( ccTemp , mtBed , 9 ) ;
155

156 cctBed [ i ] = ccTemp ;
157

158 mM = matmul ( mtF , mCpi) ;
159

160 m2mm (mmM, mM, 9 ) ;
161

162 mm2mmc (mmMc, mmM, 9 ) ;
163

164 mm2mmr (mmMcr, mmMc, 9 ) ;
165

166 mmA1[ i ] = mmMcr + mmMc;
167

168 mmA2[ i ] = −1 . * matmul (mmM, mmMcr) ;
169 }
170

171 mmF4 = −1 . / 3 . / pow ( J , 1 . / 3 . ) * matmul ( ccF , c c F i . t ranspose ( ) ) +
172

173 1 . / pow ( J , 1 . / 3 . ) * mmI;
174

175

176 // Determine the Ree−Eyring parameters and r e l a t e d d e r i v a t i v e s
177 // Determine the a c t i v a t i o n volume and tau_0 parameters
178

179 i f ( strHardening_ == "NEOHOOKEAN" )
180 {
181 t0a = t0a_ ;
182

183 t0b = t0b_ ;
184 }
185 e l s e
186 {
187 Vacta = ( Vconsta_ − CV1a_ ) + CV1a_ * tanh ( CV2a_ * ( htBnon − CV3a_ ) ) +
188 CV4a_ * pow( htB , 2 . ) ;
189

190 Vactb = Vconstb_ + CV4b_ * pow( htB , 2 . ) ;
191



90 updated c++ code for the stiffness calculation

192 t0a = kb_ * T_ / Vacta ;
193

194 t0b = kb_ * T_ / Vactb ;
195 }
196

197 // Determine E− f a c t o r s r e l a t e d to Ree−Eyring parameters evolut ion
198

199 Enalpha_low = Cn1a_ * Cn2a_ *
200 pow ( 1 . / ( cosh ( Cn2a_ * ( htBnon − Cn3a_ ) ) ) , 2 . ) ;
201

202 Enalpha_high = Cn4a_ * 2 . * htB ;
203

204 Enbeta = Cn4b_ * 2 . * htB ;
205

206 EdHalpha_low = CdH1a_ * CdH2a_ *
207 pow ( 1 . / ( cosh ( CdH2a_ * ( htBnon − CdH3a_ ) ) ) , 2 . ) ;
208

209 EdHalpha_high = CdH4a_ * 2 . * htB ;
210

211 EdHbeta = CdH4b_ * 2 . * htB ;
212

213 EValpha_low = CV1a_ * CV2a_ *
214 pow ( 1 . / ( cosh ( CV2a_ * ( htBnon − CV3a_ ) ) ) , 2 . ) ;
215

216 EValpha_high = CV4a_ * 2 . * htB ;
217

218 EVbeta = CV4b_ * 2 . * htB ;
219

220 Egalpha = CG1a_ * CG2a_ *
221 pow ( 1 . / ( cosh ( CG2a_ * ( htBnon − CG3a_ ) ) ) , 2 . ) ;
222

223 Egbeta = 0 . ;
224

225 // d e r i v a t i v e of l e f t Cauchy−Green deformation tensor wrt def . grad .
226

227 m2mm(mmF,mF, 9 ) ;
228

229 mm2mmc (mmFc, mmF, 9 ) ;
230

231 mm2mmr (mmFcr , mmFc, 9 ) ;
232

233 mB = matmul (mF, mF. transpose ( ) ) ;
234

235 m2cc ( ccB , mB, 9 ) ;
236

237 mmdtBdF = pow ( J , − 2 . 0 / 3 . 0 ) * ( ( mmFc + mmFcr ) −
238 2 . 0 / 3 . 0 * matmul ( ccB , c c F i t . t ranspose ( ) ) ) ;
239

240 // Der ivat ive f i r s t i n v a r i a n t wrt the deformation gradient
241

242 c c 2 c c t ( c c I t , cc I , 9 ) ;
243

244 ccdI1dF = matmul ( c c I t . t ranspose ( ) , mmdtBdF) . t ranspose ( ) ;
245

246 // Der ivat ive of second i n v a r i a n t wrt the deformation gradient
247

248 t r a c e ( mtB , trmtB ) ; // F i r s t i n v a r i a n t of mtB
249

250 m2cc ( cctB , mtB , 9 ) ;
251

252 c c 2 c c t ( cc tBt , cctB , 9 ) ;
253

254 mm2mmr ( mmdtBdFr , mmdtBdF, 9 ) ;
255

256 ccdI2dF = trmtB * ccdI1dF − 0 . 5 * ( matmul ( mmdtBdFr , c c t B t ) +
257 matmul ( cc tB . t ranspose ( ) , mmdtBdF) . t ranspose ( ) ) ;
258

259 // Der ivat ive i n v a r i a n t funct ion wrt the deformation gradient
260

261 i f ( s td : : isnan ( htB ) ) { htB = 1e − 2 0 ; }
262 i f ( s td : : isnan ( htBnon ) ) { htBnon = 1e − 2 0 ; }
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263 i f ( htB < 1e −20 && −1e −20 < htB ) { htB = 1e − 2 0 ; }
264 i f ( htBnon < 1e −20 && −1e −20 < htBnon ) { htBnon = 1e − 2 0 ; }
265

266 ccdhtBdF = ( 2 . / 3 . * trmtB * ccdI1dF − ccdI2dF ) /
267 ( 2 . * htB ) ; // Der ivat ive of I _ r
268

269 i f ( htBnon == htB )
270 {
271 ccdhtBnondF = ( 2 . / 3 . * trmtB * ccdI1dF − ccdI2dF ) /
272 ( 2 . * htBnon ) ; // Der ivat ive of I_r −non
273 }
274 e l s e
275 {
276 ccdhtBnondF = 0 . ;
277 }
278

279

280 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
281 // hardening s t i f f n e s s
282 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
283

284 i f ( strHardening_ == "NEOHOOKEAN" )
285 {
286 mmTemp = mmtFcr + mmtFc − 2 . / 3 . *
287

288 matmul ( matmul ( ccI , c c I . t ranspose ( ) ) ,mmtFc) ;
289

290 mmStiffr = Gr_ * matmul (mmTemp,mmF4) ;
291 }
292 e l s e
293 {
294 e d v i l S t i f f _ ( mmStiffr , mtB , mB, mF, J ) ;
295 }
296

297 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
298 // h y d r o s t a t i c s t i f f n e s s
299 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
300

301 mmStiffh = k_ * J * matmul ( ccI , c c F i t . t ranspose ( ) ) ;
302

303 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
304 // d e v i a t o r i c s t i f f n e s s
305 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
306

307 mmSdatmp = 0 . 0 ;
308 mmSda2tmp = 0 . 0 ;
309 mmSdbtmp = 0 . 0 ;
310

311 mm2mmc ( mmtFtc , mmtFt , 9 ) ;
312

313 mm2mmr ( mmtFtcr , mmtFtc , 9 ) ;
314

315 mm2mmr(mmF4r , mmF4, 9 ) ;
316

317 mmH1 = mmI − 1 . 0 / 3 . 0 * matmul ( ccI , c c I . t ranspose ( ) ) ;
318

319 mm2mmc(mmH1c, mmH1, 9 ) ;
320

321 // Determine the d e v i a t o r i c s t i f f n e s s tensor
322

323 f o r ( i d x _ t i = 0 ; i < nam_ ; i ++) // For alpha process
324 {
325 mmC4[ i ] = ( 1 . 0 − lambda [ i ] ) * ( mmtFtcr + mmtFtc ) ;
326

327 mm2mmr(mmC4r, mmC4[ i ] , 9 ) ;
328

329 mmB1[ i ] = mmA1[ i ] + matmul (mmA2[ i ] , mmC4r) ;
330

331 mmB2[ i ] = matmul (mmB1[ i ] , mmF4r) ;
332

333 mmSdatmp += mmB2[ i ] * G[ i ] ;
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334

335 mmSda2tmp += −1 . * Gconst_ [ i ] * Egalpha *
336 matmul ( cctBed [ i ] , ccdhtBnondF . transpose ( ) ) ;
337 }
338

339 mmStiffda = matmul (mmH1c, mmSdatmp) + mmSda2tmp ;
340

341 f o r ( i d x _ t i = nam_ ; i < nom_ ; i ++) // For beta process
342 {
343 mmC4[ i ] = ( 1 . 0 − lambda [ i ] ) * ( mmtFtcr + mmtFtc ) ;
344

345 mm2mmr(mmC4r, mmC4[ i ] , 9 ) ;
346

347 mmB1[ i ] = mmA1[ i ] + matmul (mmA2[ i ] , mmC4r) ;
348

349 mmB2[ i ] = matmul (mmB1[ i ] , mmF4r) ;
350

351 mmSdbtmp += mmB2[ i ] * G[ i ] ;
352 }
353

354 mmStiffdb = matmul (mmH1c, mmSdbtmp) ;
355

356 // Add the alpha and beta c o n t r i b u t i o n
357

358 mmStiffd = mmStiffda + mmStiffdb ;
359

360

361 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
362 // S t a t e v a r i a b l e
363 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
364

365 // Der ivat ive dev . s t r e s s wrt the s t a t e v a r i a b l e s
366

367 matdsdx = 0 . 0 ;
368

369 f o r ( i d x _ t k = 0 ; k < nom_ ; k++)
370 {
371 mdssdgtmp = mCpB[ k ] − mtC ;
372

373 m2cc ( ccdssdgtmp , mdssdgtmp , 9 ) ;
374

375 ccdssdgtmp2 = matmul (mmA2[ k ] , ccdssdgtmp ) ;
376

377 ccdssdg = G[ k ] * matmul (mmH1c, ccdssdgtmp2 ) ;
378

379 cc2m ( mdssdg , ccdssdg , 9 ) ;
380

381 f o r ( i d x _ t i = 0 ; i < 3 ; i ++)
382 {
383 f o r ( i d x _ t j = 0 ; j < 3 ; j ++)
384 {
385 matdsdx ( i , j , k ) = mdssdg ( i , j ) ;
386 }
387 }
388 }
389

390 // Der ivat ive t o t a l equiva lent s t r e s s wrt the the deformation gradient
391

392 m2cc ( ccSsa , mSsa , 9 ) ;
393

394 c c 2 c c t ( ccSs ta , ccSsa , 9 ) ;
395

396 m2cc ( ccSsb , mSsb , 9 ) ;
397

398 c c 2 c c t ( ccSstb , ccSsb , 9 ) ;
399

400 mm2mmc( mmStiffdac , mmStiffda , 9 ) ;
401

402 mm2mmc( mmStiffdbc , mmStiffdb , 9 ) ;
403

404 i f ( teq [ 0 ] > 1 . 0 e −15) // For alpha process
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405 {
406 ccdtadF = 1 . / ( 4 . * teq [ 0 ] ) * ( matmul ( mmStiffdac , ccSsa ) +
407 matmul ( c c S s t a . t ranspose ( ) , mmStiffda ) . t ranspose ( ) ) ;
408 }
409 e l s e
410 {
411 ccdtadF = 0 . ;
412 }
413

414 i f ( teq [ 1 ] > 1 . 0 e −15) // For beta process
415 {
416 ccdtbdF = 1 . / ( 4 . * teq [ 1 ] ) * ( matmul ( mmStiffdbc , ccSsb ) +
417 matmul ( c c S s t b . t ranspose ( ) , mmStiffdb ) . t ranspose ( ) ) ;
418 }
419 e l s e
420 {
421 ccdtbdF = 0 . ;
422 }
423

424 // Der ivat ive pressure wrt the deformation gradient
425

426 ccdpdF = −1 . * k_ * J * c c F i t ;
427

428 // Determine pressure
429

430 p = −1 . * k_ * ( J − 1 . ) ;
431

432 // Der ivat ive of v i s c o s i t y wrt the deformation gradient
433

434 i f ( teq [ 0 ] > 1 . 0 e −15)
435 {
436 f o r ( i d x _ t i = 0 ; i < nam_ ; i ++) // For alpha process
437 {
438 ccdndF [ i ] = h [ i ] * ( ( Enalpha_low +
439 EdHalpha_low / R_ * ( 1 . / T_ − 1 . / T_base_a_ )
440 + ma_ * EValpha_low * p / ( kb_ * T_ ) −
441 EValpha_low * t0a / ( kb_ * T_ ) *
442 ( teq [ 0 ] * ( 1 . / tanh ( teq [ 0 ] / t0a ) ) / t0a − 1 . ) ) * ccdhtBnondF +
443 ( Enalpha_high + EdHalpha_high / R_ * ( 1 . / T_ − 1 . / T_base_a_ ) +
444 ma_ * EValpha_high * p / ( kb_ * T_ ) −
445 EValpha_high * t0a / ( kb_ * T_ ) *
446 ( teq [ 0 ] * ( 1 . / tanh ( teq [ 0 ] / t0a ) ) / t0a − 1 . ) ) * ccdhtBdF +
447 ma_ / t0a * ccdpdF +
448 ( 1 . / teq [ 0 ] − ( 1 . / tanh ( teq [ 0 ] / t0a ) ) / t0a ) * ccdtadF ) ;
449 }
450 }
451 e l s e
452 {
453 f o r ( i d x _ t i = 0 ; i < nam_ ; i ++)
454 {
455 ccdndF [ i ] = 0 . ;
456 }
457 }
458

459 i f ( teq [ 1 ] > 1 . 0 e −15)
460 {
461 f o r ( i d x _ t i = nam_ ; i < nom_ ; i ++) // For beta process
462 {
463 ccdndF [ i ] = h [ i ] * ( ( Enbeta +
464 EdHbeta / R_ * (1 / T_ − 1 / T_base_b_ ) +
465 mb_ * EVbeta * p / ( kb_ * T_ ) −
466 EVbeta * t0b / ( kb_ * T_ ) *
467 ( teq [ 1 ] * ( 1 . / tanh ( teq [ 1 ] / t0b ) ) / t0b − 1 . ) ) * ccdhtBdF +
468 mb_ / t0b * ccdpdF +
469 ( 1 . / teq [ 1 ] − ( 1 . / tanh ( teq [ 1 ] / t0b ) ) / t0b ) * ccdtbdF ) ;
470 }
471 }
472 e l s e
473 {
474 f o r ( i d x _ t i = 0 ; i < nam_ ; i ++)
475 {
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476 ccdndF [ i ] = 0 . ;
477 }
478 }
479

480 // Der ivat ive of f wrt the deformation gradient
481

482 matdxdF = 0 . 0 ;
483

484 f o r ( i d x _ t m = 0 ; m < nam_ ; m++) // For alpha process
485 {
486 ccdfdF = lambda [m] * dt * ( − Gconst_ [m] * Egalpha * ccdhtBnondF / h [m] −
487 G[m] / pow( h [m] , 2 . ) * ccdndF [m] ) ;
488

489 cc2m ( mdfdF , ccdfdF , 9 ) ;
490

491 f o r ( i d x _ t q = 0 ; q < 3 ; q++)
492 {
493 f o r ( i d x _ t r = 0 ; r < 3 ; r ++)
494 {
495 matdxdF (m, q , r ) = mdfdF ( q , r ) ;
496 }
497 }
498 }
499

500 f o r ( i d x _ t m = nam_ ; m < nom_ ; m++) // For beta process
501 {
502 ccdfdF = lambda [m] * dt * ( − Gconst_ [m] * Egbeta * ccdhtBnondF / h [m] −
503 G[m] / pow( h [m] , 2 . ) * ccdndF [m] ) ;
504

505 cc2m ( mdfdF , ccdfdF , 9 ) ;
506

507 f o r ( i d x _ t q = 0 ; q < 3 ; q++)
508 {
509 f o r ( i d x _ t r = 0 ; r < 3 ; r ++)
510 {
511 matdxdF (m, q , r ) = mdfdF ( q , r ) ;
512 }
513 }
514 }
515

516 // d e r i v a t i v e of dev . s t r e s s alpha , 1 wrt the deformation gradient
517

518 mm2mmc (mmB21c , mmB2[ 0 ] , 9 ) ;
519

520 mmds1dF = G[ 0 ] * matmul (mmH1c, mmB21c) − Gconst_ [ 0 ] * Egalpha *
521 matmul ( cctBed [ 0 ] , ccdhtBnondF . transpose ( ) ) ;
522

523 // d e r i v a t i v e of t o t a l eq . s t r e s s alpha wrt the deformation gradient
524

525 mbsd1t = mbsdi [ 0 ] . t ranspose ( ) ;
526

527 m2cc ( ccbsd1 , mbsdi [ 0 ] , 9 ) ;
528

529 m2cc ( ccbsd1 t , mbsd1t , 9 ) ;
530

531 mm2mmc(mmds1dFc , mmds1dF, 9 ) ;
532

533 i f ( mteq [ 0 ] > 1 . 0 e −15)
534 {
535 ccdta1dF = 1 . / ( 4 . * mteq [ 0 ] ) * ( matmul (mmds1dFc , ccbsd1 ) +
536 matmul ( ccbsd1 t . t ranspose ( ) , mmds1dF) . t ranspose ( ) ) ;
537 }
538 e l s e
539 {
540 ccdta1dF = 0 ;
541 }
542

543 // d e r i v a t i v e of g wrt the deformation gradient
544

545 ccdgdF = −1 . * dt * ( 1 . / h [ 0 ] * ccdta1dF −
546 mteq [ 0 ] / pow( h [ 0 ] , 2 . ) * ccdndF [ 0 ] ) ;
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547

548 cc2m (mdgdF, ccdgdF , 9 ) ;
549

550 f o r ( i d x _ t q = 0 ; q < 3 ; q++)
551 {
552 f o r ( i d x _ t r = 0 ; r < 3 ; r ++)
553 {
554 matdxdF ( noe − 1 , q , r ) = mdgdF( q , r ) ;
555 }
556 }
557

558 // Determine the s t a t e v a r i a b l e s t i f f n e s s tensor
559 // d e r i v a t i v e of s t a t e parameter wrt equiva lent p l a s t i c s t r a i n
560

561 calcDSDeqps_ ( dSdea , dSdeb , eqps ) ;
562

563 // c a l c u l a t e J a c o b i matrix and i t s inverse
564

565 m a t s t i f f x = 0 . 0 ;
566 mmStiffx = 0 . 0 ;
567

568 deqpsdt = mteq [ 0 ] / h [ 0 ] ;
569

570 // Only c a l c u l a t e the Jacobian i f i t has not been done in
571 // the s t r e s s c a l c u l a t i o n
572

573 Jn = jem : : numeric : : det ( DF ) ;
574

575 i f ( Jn == 1 . 0 )
576 {
577 j acobimat_ ( mat , gamma, lambda , mteq , teq , noe ,
578

579 deqpsdt , dt , dSdea , dSdeb , t0a , t0b ) ;
580 }
581

582 double Jmat = jem : : numeric : : det ( mat ) ; // Check i f Jacobian i s s i n g u l a r
583

584 i f ( Jmat != 0 . 0 && ! std : : isnan ( Jmat ) )
585 {
586 mati = jem : : numeric : : inverse ( mat ) ;
587

588 TensorIndex i , j , k , m, q , r ;
589

590 matst i f fxtmp ( i , j ,m) = −1 . * dot ( matdsdx ( i , j , k ) , mati ( k ,m) , k ) ;
591

592 m a t s t i f f x ( i , j , q , r ) = dot ( matst i f fxtmp ( i , j ,m) , matdxdF (m, q , r ) , m ) ;
593 }
594 e l s e
595 {
596 m a t s t i f f x = 0 . ;
597 }
598

599 mat2mm ( mmStiffx , m a t s t i f f x , 9 ) ;
600

601

602 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
603 // c a l c u l a t e s t r e s s s t i f f n e s s tensor
604 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
605

606 // adding the 4 p ar t s toge ther
607

608 mmStiff = mmStiffh + mmStiffd + mmStiffr + mmStiffx ;
609

610 // s h i f t columns in s t i f f n e s s matrix
611

612 mm2mmc ( mmStiffc , mmStiff , 9 ) ;
613

614 mmKtot = matmul ( mmStiffc , mmFtr ) ;
615

616 i f ( s t a t e S t r i n g _ == "PLANE_STRAIN" )
617 {
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618 S t i f f ( 0 , 0 ) = mmKtot ( 0 , 0 ) ;
619 S t i f f ( 1 , 0 ) = . 5 * ( mmKtot ( 1 , 0 ) + mmKtot ( 0 , 1 ) ) ;
620 S t i f f ( 2 , 0 ) = . 5 * ( mmKtot ( 3 , 0 ) + mmKtot ( 0 , 3 ) ) ;
621 S t i f f ( 0 , 1 ) = S t i f f ( 1 , 0 ) ;
622 S t i f f ( 1 , 1 ) = mmKtot ( 1 , 1 ) ;
623 S t i f f ( 2 , 1 ) = . 5 * ( mmKtot ( 3 , 1 ) + mmKtot ( 1 , 3 ) ) ;
624 S t i f f ( 0 , 2 ) = S t i f f ( 2 , 0 ) ;
625 S t i f f ( 1 , 2 ) = S t i f f ( 2 , 1 ) ;
626 S t i f f ( 2 , 2 ) = mmKtot ( 3 , 3 ) ;
627 }
628

629 e l s e i f ( s t a t e S t r i n g _ == "AXISYMMETRIC" )
630 {
631 S t i f f ( 0 , 0 ) = mmKtot ( 0 , 0 ) ;
632 S t i f f ( 1 , 0 ) = . 5 * ( mmKtot ( 1 , 0 ) + mmKtot ( 0 , 1 ) ) ;
633 S t i f f ( 2 , 0 ) = . 5 * ( mmKtot ( 3 , 0 ) + mmKtot ( 0 , 3 ) ) ;
634 S t i f f ( 3 , 0 ) = . 5 * ( mmKtot ( 2 , 0 ) + mmKtot ( 0 , 2 ) ) ;
635 S t i f f ( 0 , 1 ) = S t i f f ( 1 , 0 ) ;
636 S t i f f ( 1 , 1 ) = mmKtot ( 1 , 1 ) ;
637 S t i f f ( 2 , 1 ) = . 5 * ( mmKtot ( 3 , 1 ) + mmKtot ( 1 , 3 ) ) ;
638 S t i f f ( 3 , 1 ) = . 5 * ( mmKtot ( 2 , 1 ) + mmKtot ( 1 , 2 ) ) ;
639 S t i f f ( 0 , 2 ) = S t i f f ( 2 , 0 ) ;
640 S t i f f ( 1 , 2 ) = S t i f f ( 2 , 1 ) ;
641 S t i f f ( 2 , 2 ) = mmKtot ( 3 , 3 ) ;
642 S t i f f ( 3 , 2 ) = . 5 * ( mmKtot ( 3 , 2 ) + mmKtot ( 2 , 3 ) ) ;
643 S t i f f ( 0 , 3 ) = S t i f f ( 3 , 0 ) ;
644 S t i f f ( 1 , 3 ) = S t i f f ( 3 , 1 ) ;
645 S t i f f ( 2 , 3 ) = S t i f f ( 3 , 2 ) ;
646 S t i f f ( 3 , 3 ) = mmKtot ( 2 , 2 ) ;
647 }
648 e l s e
649 {
650 S t i f f ( 0 , 0 ) = mmKtot ( 0 , 0 ) ;
651 S t i f f ( 0 , 1 ) = . 5 * ( mmKtot ( 0 , 1 ) + mmKtot ( 1 , 0 ) ) ;
652 S t i f f ( 0 , 2 ) = . 5 * ( mmKtot ( 0 , 2 ) + mmKtot ( 2 , 0 ) ) ;
653 S t i f f ( 0 , 3 ) = . 5 * ( mmKtot ( 0 , 3 ) + mmKtot ( 0 , 4 ) ) ;
654 S t i f f ( 0 , 4 ) = . 5 * ( mmKtot ( 0 , 5 ) + mmKtot ( 0 , 6 ) ) ;
655 S t i f f ( 0 , 5 ) = . 5 * ( mmKtot ( 0 , 7 ) + mmKtot ( 0 , 8 ) ) ;
656 S t i f f ( 1 , 0 ) = S t i f f ( 0 , 1 ) ;
657 S t i f f ( 1 , 1 ) = mmKtot ( 1 , 1 ) ;
658 S t i f f ( 1 , 2 ) = . 5 * ( mmKtot ( 1 , 2 ) + mmKtot ( 2 , 1 ) ) ;
659 S t i f f ( 1 , 3 ) = . 5 * ( mmKtot ( 1 , 3 ) + mmKtot ( 1 , 4 ) ) ;
660 S t i f f ( 1 , 4 ) = . 5 * ( mmKtot ( 1 , 5 ) + mmKtot ( 1 , 6 ) ) ;
661 S t i f f ( 1 , 5 ) = . 5 * ( mmKtot ( 1 , 7 ) + mmKtot ( 1 , 8 ) ) ;
662 S t i f f ( 2 , 0 ) = S t i f f ( 0 , 2 ) ;
663 S t i f f ( 2 , 1 ) = S t i f f ( 1 , 2 ) ;
664 S t i f f ( 2 , 2 ) = mmKtot ( 2 , 2 ) ;
665 S t i f f ( 2 , 3 ) = . 5 * ( mmKtot ( 2 , 3 ) + mmKtot ( 2 , 4 ) ) ;
666 S t i f f ( 2 , 4 ) = . 5 * ( mmKtot ( 2 , 5 ) + mmKtot ( 2 , 6 ) ) ;
667 S t i f f ( 2 , 5 ) = . 5 * ( mmKtot ( 2 , 7 ) + mmKtot ( 2 , 8 ) ) ;
668 S t i f f ( 3 , 0 ) = S t i f f ( 0 , 3 ) ;
669 S t i f f ( 3 , 1 ) = S t i f f ( 1 , 3 ) ;
670 S t i f f ( 3 , 2 ) = S t i f f ( 2 , 3 ) ;
671 S t i f f ( 3 , 3 ) = . 5 * ( mmKtot ( 3 , 3 ) + mmKtot ( 3 , 4 ) ) ;
672 S t i f f ( 3 , 4 ) = . 5 * ( mmKtot ( 3 , 5 ) + mmKtot ( 3 , 6 ) ) ;
673 S t i f f ( 3 , 5 ) = . 5 * ( mmKtot ( 3 , 7 ) + mmKtot ( 3 , 8 ) ) ;
674 S t i f f ( 4 , 0 ) = S t i f f ( 0 , 4 ) ;
675 S t i f f ( 4 , 1 ) = S t i f f ( 1 , 4 ) ;
676 S t i f f ( 4 , 2 ) = S t i f f ( 2 , 4 ) ;
677 S t i f f ( 4 , 3 ) = S t i f f ( 3 , 4 ) ;
678 S t i f f ( 4 , 4 ) = . 5 * ( mmKtot ( 5 , 5 ) + mmKtot ( 5 , 6 ) ) ;
679 S t i f f ( 4 , 5 ) = . 5 * ( mmKtot ( 5 , 7 ) + mmKtot ( 5 , 8 ) ) ;
680 S t i f f ( 5 , 0 ) = S t i f f ( 0 , 5 ) ;
681 S t i f f ( 5 , 1 ) = S t i f f ( 1 , 5 ) ;
682 S t i f f ( 5 , 2 ) = S t i f f ( 2 , 5 ) ;
683 S t i f f ( 5 , 3 ) = S t i f f ( 3 , 5 ) ;
684 S t i f f ( 5 , 4 ) = S t i f f ( 4 , 5 ) ;
685 S t i f f ( 5 , 5 ) = . 5 * ( mmKtot ( 8 , 7 ) + mmKtot ( 8 , 8 ) ) ;
686 }
687 }
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