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Adversarial Reconstruction Based on Tighter
Oriented Localization for Catenary Insulator

Defect Detection in High-Speed Railways
Junping Zhong , Member, IEEE, Zhigang Liu , Senior Member, IEEE, Cheng Yang, Student Member, IEEE,

Hongrui Wang , Member, IEEE, Shibin Gao , and Alfredo Núñez , Senior Member, IEEE

Abstract— The catenary insulator maintains electrical insula-
tion between catenary and ground. Its defects may happen due to
the long-term impact from vehicle and environment. At present,
the research of defect detection for catenary insulator faces
several challenges. 1) Localization accuracy is low, which causes
the localized object to be incomplete or/and merge with unnec-
essary background. 2) Horizontal localization brings inevitable
unnecessary information because horizontal box cannot fit well
with the shape of insulator. 3) Supervised learning models for
defects recognition are unreliable as the available defect samples
are insufficient to train models well. To address these issues,
this article proposes a novel two-stage defect detection method.
In the localization stage, a novel localization network called
TOL-Framework is constructed to reduce the background and
realize tighter oriented localization. Compared with general
basic framework Faster R-CNN, the TOL-Framework cascades a
regression module inside basic framework and adds an external
postprocess network, which is adversarially trained by standard
insulators to refine the localization. These two novel steps greatly
improve the oriented localization accuracy. In the defect detection
stage, an adversarial reconstruction model that is trained only
using normal samples is proposed to evaluate the defect states.
A comparison with other methods is conducted using a dataset
collected from a 60km section of the Changsha-Zhuzhou railway
line in China. The results show the proposed method has the
highest localization accuracy, and is effective for insulator defect
detection.

Index Terms— Catenary insulator, tighter oriented localization,
generative adversarial network, defect detection, deep learning,
high-speed railways.

I. INTRODUCTION

CATENARY plays an important role in transmitting
electric power from the contact line to the train, and the

reliability can directly affect railway transportation. As a key
part of the catenary, the insulator is not only a supporting and
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Fig. 1. Catenary inspection vehicle and defects of insulators. (a) Sketch map
of the catenary of the inspection vehicle and the position of the insulator.
(b) Defective insulators.

connecting component but also maintains electrical insulation
between the catenary and the ground. Due to the long-term
mechanical impact triggered by vehicles and the complex envi-
ronment along the rail line, insulators can become damaged,
which poses a risk to railway operation safety. Therefore, it is
essential to inspect the defective states of insulators.

Over the past few years, railway infra-managers have tried
to replace inefficient on-site manual inspection with computer
vision-based methods for inspecting catenary components [1].
As shown in Fig. 1(a), multiple high-resolution cameras and
illumination compensation devices are mounted on the roof
of an inspection vehicle. Images are captured at night to
avoid complex illumination and background. The cameras are
mounted symmetrically to ensure that both sides of insulators
can be inspected. The red bounding boxes in Fig. 1(a) show the
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insulator positions in the catenary, and some defective samples
are shown in Fig. 1(b). To accomplish defect detection, two
cascade stages are always needed. The object localization
stage is first applied to the global image, and the position
of the insulator is predicted with a bounding box. Then, in
the defect detection stage, the defective states are recognized
on the localized insulator. However, inaccurate localization
makes the localized insulator incomplete or enclosed with
background, which directly interferes with the defect detection
stage. In addition, defective samples cannot generally be
collected in practice, and the quantity of available defective
samples makes it difficult to construct defect detection models.
Therefore, effective image processing algorithms for compo-
nent localization and defect detection in catenary inspection
systems are urgently needed.

For object localization, traditional methods based on
handcrafted features, such as SIFT (scale-invariant feature
transform) [2], HOG (histogram of oriented gradient) [3] and
LBP (local binary patterns) [4], have been widely used in
railways [5]–[7] and other fields [8], [9]. Zhong et al. [5]
applied template matching on a standard catenary sleeve image
and an original image to search the object position based on
SIFT. Cho and Ko [6] applied a variant of SIFT that is robust
to changes in camera viewpoint to locate pantograph positions.
Han et al. [7] used cascade support vector machines to classify
a series of sliding window images, which are represented
by a HOG to realize the localization of the catenary clevis.
Fan et al. [8] proposed a line LBP encoding method to
represent a target object, which could be used to localize
fasteners on the rail track when the illumination is complex.
In [9], [10], HOG-based deformable part models (DPMs) were
adopted to localize pedestrian and human faces. However,
most traditional methods are not robust to changes in size,
shape, illumination, position, background of the object, etc.
In the case of catenary, when traditional methods craft certain
features to detect the insulators, they can perform well on
one type of images in which attributes are relatively fixed.
When those attributes change, the performance of traditional
methods declines [5], [23], [24]. With deep learning, we have
more parameters to be tuned than with traditional methods,
giving more flexibility to capture various real-life catenary and
measurement conditions.

In recent years, CNN-based deep learning techniques have
shown great power in object localization, and they follow
two kinds of basic frameworks: R-CNN (region-based con-
volutional neural network) [11] and YOLO (You Only Look
Once) [12]. Most recently proposed localizers are based on
R-CNNs. Ren et al. [13] proposed Faster R-CNN, which
can accelerate the proposal generation and realize end-to-end
training. He et al. [14] proposed a residual network (ResNet)
to train deeper backbone networks and extract more discrim-
inative features than other networks. Dai et al. [15] proposed
the R-FCN (region-based fully convolution networks), which
adopts a fully convolutional network as a feature extractor
to accelerate the deep ResNet. Lin et al. [16] constructed
an FPN (feature pyramid network) by exploiting the inherent
multiscale and pyramidal hierarchy of deep convolutional
networks. In [17], a multistage extension of R-CNN called

Fig. 2. Insulators localized by current methods. (a) Incomplete localiza-
tion. (b) Incomplete localization and unnecessary background information.
(c) Unnecessary background information.

cascade R-CNN was proposed to improve the localization
quality. Some localizers are also proposed based on YOLO.
Liu et al. [18] presented a single-shot multibox detector
(SSD) that regresses a set of default bounding boxes on
multiple layers to realize real-time localization. Redmon and
Farhadi [19] introduced the faster and stronger architecture
YOLO9000, which can achieve a trade-off between speed
and accuracy. However, all these methods generally localize
the object with a horizontal bounding box, and only a few
works [20]–[22] have investigated arbitrarily oriented localiza-
tion based on an R-CNN. Both types of deep learning methods
based on horizontal bounding boxes have been proposed for
the localization of catenary components [23]–[26]. However,
these methods face difficulties when fitting the shape and
the position of insulators, making the localized insulator
incomplete or enclosed with unnecessary background.

For defect detection, Karakose et al. [27] used a Hough
transform and edge extraction to detect the surface defects of a
pantograph effectively. Supervised classification methods were
applied in [23], [28], [30], [31] to classify different states of
railway fasteners or pantographs directly. However, supervised
learning is not suitable for the detection of defective insula-
tors because usually large number of defective samples are
unavailable. This makes it difficult, for instance, to effectively
train neural networks. Few unsupervised learning methods,
such as autoencoders [32] and GAN (generative adversarial
network) [33], have been used for surface defect detection of
catenary insulators [25], [34] and other abnormality detection
tasks [35], [36]. The existing catenary insulator detection
methods [25], [34] are based on horizontal localization, which
is not effective for defect detection.

Overall, various problems from currently available methods
need to be solved for defect detection of catenary insulators.
Some of those problems as listed below.

1) The localization accuracy is not high, which causes the
insulators to not all be localized. Those localized insulators can
be incomplete or include unnecessary background information,
as shown in Figs. 2(a) and 2(b).

2) Horizontal bounding box localization yields inevitable
unnecessary background information even if horizontal bound-
ing boxes are perfectly predicted, as shown in Fig. 2(c).

3) There is a lack of defective samples. In practice, it is
hard to collect large numbers of different defective samples to
construct a defect detection model.

To address these problems, the proposed method in this
article considers three neural networks, namely BLN, GAN-1
and GAN-2. First, we use BLN to localize insulators with
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Fig. 3. Overview of the proposed insulator defect detection method.

oriented boxes rather than using traditional horizontal boxes.
Then, the GAN-1 is applied to further adjust the localized
box to enclose insulator tightly. Finally, the GAN-2 is utilized
to detect defects on the localized insulators. The GAN-2 is
introduced because it is trained only using normal samples,
which solves the issue that the available defect samples are
insufficient to construct defect detection models.

We summarize the contributions of this article as follows.
1) A novel TOL-Framework (BLN with GAN-1) is proposed

to realize arbitrarily oriented localization and greatly improve
the accuracy compared with several competitive methods. The
novelties of the TOL-Framework are listed below.

• The angle information of the insulator is used for
bounding box regression, which can realize oriented
localization.

• A cascade regression module inside the generic Faster
R-CNN framework is proposed to refine the oriented
bounding box preliminarily.

• To further improve the localization accuracy, we included
a GAN (called GAN-1) behind the basic localization
network. The GAN-1 selects the bounding box image
which has the largest similarity with the insulator as the
final localized bounding box, which makes the obtained
box enclose the insulator better. It is a new application
of GAN for improving localization accuracy.

2) A new defect detection method based on a GAN (called
GAN-2) is proposed for catenary insulators, whose advantages
are as follows:

• The training of GAN-2 only needs normal samples. This
solves the issue that the available defect samples are
insufficient to construct defect detection models.

• The reconstruction error is computed in local insulator
patches, which have a relatively fixed texture and size.
Thus, even small defects can be detected effectively.

The rest of this article is organized as follows. Section II
provides an overview of the insulator defect detection
method. Section III introduces the structure of the proposed
TOL-Framework and describes how to realize tighter oriented
localization. Section IV presents the details of the defect
detection process. Section V gives the experiments to evaluate
the performance of our method. Finally, conclusions are drawn
in Section VI.

II. OVERVIEW OF OUR METHOD

The overview of our method is shown in Fig. 3, which
mainly consists of two successive stages, namely, tighter

oriented localization and defect detection. The image size is 6,
600×4, 400 pixels, which ensures that defects in the insulator
can be clearly observed even though the defective regions are
very small.

A. Tighter Oriented Localization

To solve the inevitable problems caused by the
horizontal-box localization presented in Fig. 2 and to
further improve the localization accuracy, a TOL-Framework
(tighter oriented localization framework) is proposed in this
article. The workflow of the TOL-Framework is described
as follows. Original catenary images are input into a basic
localization network, which includes the CNN backbone,
ORPN and a cascaded oriented box regression, to predict
a preliminary oriented box for each target insulator. Then,
for each preliminary bounding box, a candidate set can be
produced according to the extreme IoU, which ensures that
nearly all insulators are localized. The candidate sets are input
into a GAN-1 module, which is trained by only using normal
standard insulator images to compute the reconstruction error.
Finally, the candidate that has the minimum error is regarded
as the localized bounding box for this insulator.

Compared with the structure of the current basic localization
model [13], [20], [21], the TOL-Framework cascades a bound-
ing box regression module inside the model and adds an exter-
nal postprocessing module to refine the positions of bounding
boxes predicted by the basic model. In addition, a rotational
RPN is applied, and a pyramid feature with ResNet-101 as
the CNN backbone is selected to realize oriented localization.
Details of the TOL-Framework are described in Section III.

B. Defect Detection

The accurate oriented localization stage has provided insula-
tor images that are tightly enclosed nearly without unnecessary
background information, and all insulators can be rotated to
the horizontal and have similar textures, which is helpful
for defect detection. As the available defective samples are
insufficient for deep model training, we propose a GAN-based
method that only uses normal samples for training. The
workflow of defect detection is as follows. An HT&PE (Hough
transform & path estimation) algorithm is applied on the local-
ized insulator to extract insulator patches through the body
of the insulator. Then, all the patches are input into GAN-2,
which is trained by only using normal insulator patches to
compute the reconstruction error. Finally, defects and their
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Fig. 4. Structure of the TOL-Framework.

positions are evaluated by a defect score (Defect_score), which
is defined according to the reconstruction error. Details of
defect detection are presented in Section IV.

III. TIGHTER ORIENTED LOCALIZATION

In this section, we describe the structure of the proposed
TOL-Framework and explain how it realizes tighter oriented
localization. The TOL-Framework includes two parts, namely,
a basic localization network (BLN) and a post-refinement
network (PRN), as shown in Fig. 4.

In general, the existing catenary localization method
follows the following architecture: CNN backbone->RPN-
>horizontal-box regression. In this article, a new architec-
ture is proposed, namely, CNN backbone->ORPN->cascaded
oriented bounding box regression, and it is used as a
basic localization network in the TOL-Framework to pre-
dict preliminary bounding boxes of insulators. To further
improve the oriented localization accuracy and obtain tighter
boxes, a post-refinement network behind the basic localization
network is added. The details of the TOL-Framework are
elaborated as follows.

A. Basic Localization Network

The BLN follows the widely used R-CNN architecture [13],
[20], [21], and it consists of three subnetworks, namely,
the CNN backbone, oriented region proposal network (ORPN)
and cascaded oriented bounding box regression. The CNN
backbone extracts semantic features from the input catenary
image first. Then, the ORPN generates oriented proposals
for the insulator targets based on the extracted feature maps.
Finally, two regression modules are successively applied to
produce the preliminary oriented box for the insulator.

1) CNN Backbone (ResNet-101+FPN):: The CNN
backbone processes the input image and generates conv
feature maps at multiple levels. Unlike the commonly used
methods [11]–[15], [17], [20]–[24] that only use the top-level
feature map, we build a feature pyramid network (FPN) [16]
and use pyramid features as the extracted features. The FPN
is effective as each pyramid level is fused with higher-level
semantic features of the backbone. For the backbone, a widely
used ResNet model [14] with 101 conv layers is chosen.

Specifically, as shown in Fig. 4, the captured 6, 600 × 4.400
pixels catenary image is resized to 900 × 600 pixels, which
goes through bottom-up conv-residual blocks of ResNet and
produces activation maps at five scales with a scaling step
of 2 by feedforward computing. The generated features of
the backbone are defined as {C1, C2, C3, C4, C5}, which
are the last output features of each conv-residual block.
These features (except for C1 due to its large memory
consumption) are further enhanced from the top-down
pathway via lateral connections. Each lateral connection
upsamples the upper pyramid feature by a factor of 2 and
merges with the corresponding bottom-up map, which adds a
1 × 1 convolutional layer to reduce the channel dimensions.
The enhanced pyramid features {P2, P3, P4, P5, P6} are the
final extracted features of the CNN backbone.

2) Oriented Region Proposal Network: An RPN [13] is a
sliding window class agnostic object detector. A traditional
RPN applies an anchor strategy, which has scale and aspect
ratio parameters, to the top-level feature map to produce initial
horizontal bounding boxes, which are called anchors. These
anchors are classified and regressed as proposals. Compared
with a traditional RPN, two adjustments are made to design the
ORPN. First, an orientation parameter is added to the anchor
strategy to produce rotated proposals for insulators. Second,
proposals are produced not only on the top-level feature map
but also on the pyramid features. Specifically, the workflow
of the ORPN can be described as follows. At each point
of the feature map, Pi (i = 2, 3, 4, 5, 6), 49 (7 × 7 × 1,
orientations × aspect rations × scale) oriented anchors are
produced with 7 orientations{0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦},
7 aspect ratios {1/5, 1/3.5, 1/2, 1, 2, 3.5, 5} and one
scale [32×(i−1)]2. Then, the oriented anchors are sent to
the object/background classification module and regression is
coordinated to generate proposals. Finally, the proposals are
mapped to the corresponding regions in the feature map Pi,
as shown by the red bounding box in Pi in Fig. 4, and passed
to the cascaded oriented bounding box regression subnetwork.

3) Cascaded Oriented Bounding Box Regression: Gener-
ally, only a single bounding box regression module trained
with IoU = 0.5 is applied. As the top box regression shows
in Fig. 4, the feature of the proposal is downsampled to 14×14
pixels by ROI pooling and is sent to several fully connected
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Fig. 5. Candidate bounding box generation. (a) Ground-truth bounding
box and the bounding box predicted by the BLN. (b) Overlap and angle
differences. (c) Seed region and candidate bounding boxes.

layers for classification and regression. Inspired by a cascade
R-CNN [17], a cascaded oriented bounding box regression
module, which is trained with IoUs of 0.5 and 0.5, is applied
to improve the localization accuracy. Three or more regression
modules are not cascaded because there is little accuracy
improvement when more regression modules are applied. The
reason for setting the second IoU to 0.5 rather than a higher
IoU is that many boxes output by the first regression will
be filtered due to their low IoUs, and training samples will
not be enough for the added regression module. As shown
in Fig. 4, the yellow bounding boxes predicted by the cascaded
regression modules are much closer to the true positions of
the insulators when compared with the red bounding boxes
predicted by single regression.

B. Post-Refinement Network

Even though the localization accuracy of the BLN is obvi-
ously improved, it still cannot satisfy the requirement of defect
detection. In this article, we propose a post-refinement network
based on a defined reconstruction error to make the localized
boxes tighter to their true positions, which is computed by
a trained GAN (generative adversarial network). We show
the overall process in Algorithm 1. The details of the two
subprocesses are also presented below.

Algorithm 1 Post-Refinement
1: Input: m Boxes localized by the BLN {B1, B2, …, Bm}
2: Output:m Post-refined boxes {B ′

1, B ′
2, …, B ′

m}
3: for each box Bi (i <= m) do
4: Apply candidate bounding box generation and obtain a
candidate bounding box set {Bi1, Bi2, …, Bin}
5: for j <= n do
6: send Bij into the trained GAN-1 to compute

reconstruction error ei j

7: end for
8: select the candidate bounding box which has the minimum
loss min{ei1, ei2,…, ein} as the post-refined bounding box B ′

i
9:end for

1) Candidate Bounding Box Generation: In Section V.B,
we will prove that all the boxes produced by BLN have
IoUs > 0.8 & |�ϕ| < 10◦(overlaps with their true positions
are more than 0.8, and angle differences with their true angles
are less than 10◦) in the testing experiment. The definitions
of IoU [21] and |�ϕ| are shown in formula (1) and Fig. 5(b).

Fig. 6. Generative adversarial network.

Therefore, for each bounding box Bi predicted by the BLN,
a minimum region that contains the central points of potential
ground-truth bounding boxes can be formed. In this article, we
extend the minimum region and define a seed region that has
the same central point as Bi and has a size of [w/5, h/5].
The seed region is divided into 12× seeds, as shown
in Fig. 5(c). In each seed, 50 candidate boxes (with 5 scales
of 0.9, 0.95, 1, 1.05, 1.1 based on [w, h], and with 10 angles
by an angle stride of 2◦ in [−10◦ ∼10◦], thus 5 × 10 = 50)
will be generated. Finally, the seed region can generate 3,600
(12 × 6 × 50) candidate boxes, which form the candidate set
{Bi1, Bi2, …, Bin} in Algorithm 1. Note that each candidate
set includes the ground-truth bounding box or a bounding box
that is very close to the ground-truth bounding box.

IoU = S(P) ∩ S(G)

S(P) ∪ S(G)
(1)

2) Generative Adversarial Network Refinement: Horizontal
standard catenary insulators have similar appearances. In each
candidate set {Bi1, Bi2, …, Bin}, we can select the bounding
box that has the largest similarity with the standard insulator
as the final localized bounding box. Thus, we utilize a GAN-1
model to evaluate the similarity. The GAN-1 model was adver-
sarially trained by only using a large amount of standard nor-
mal insulators, and it only fits well with a standard insulator.
The overview of the GAN-1 model is shown in Fig. 6, which
includes a generator (encoder-decoder) and a discriminator
(encoder followed by a softmax classifier f (•)). The structures
of the encoder and decoder follow the DCGAN in [37].
During training, the contextual loss, adversarial loss and latent
loss are computed, which are expressed in formulas (2)-(4),
respectively. The main training objective is to minimize a
weighted sum of these losses, as shown in formula (5).
Minimizing the contextual loss indicates that the generator
makes the texture of the generated image x̂ similar to the
texture of the input x . Moreover, minimizing the adversarial
loss and latent loss makes the discriminator unable to classify
x (the real image) and x̂(the generated fake image) correctly.
Contextual loss:

Lcon = Ex∼px

∣∣x − x̂
∣∣
1 (2)

Adversarial loss:

Ladv = Ex∼px [log D(x)] + Ex∼px [log(1 − D(x̂))] (3)
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Fig. 7. GAN-based post-refinement. (a) The box with the minimum
reconstruction error is selected. (b) Comparison between different candidates
and their fake images.

Latent loss:

Llat = Ex∼px

∣∣ f (x) − f (x̂)
∣∣
2 (4)

Total loss

Ltrain = Ladv + 30 ∗ Lcon + Llat (5)

Note that the GAN-1 model is trained by only using
standard insulators, and the trained parameters of the GAN-1
model cannot fit well with nonstandard insulators. When a
nonstandard insulator and a standard insulator are tested in the
GAN-1 model, the standard insulator has a smaller contextual
error and latent error than the nonstandard insulator. Thus,
we define the reconstruction error e, defined in formula (6),
to evaluate the difference between the test image and the stan-
dard insulator image. For a bounding box Bi predicted by the
BLN, when its candidate bounding boxes {Bi1, Bi2, …, Bin}
are input into the trained GAN-1 model and their reconstruc-
tion errors are computed, the candidate box with minimum
error is regarded as the post-refined bounding box. Fig. 7(a)
shows an example of the reconstruction errors computed on
a candidate set. The 444th candidate bounding box with the
minimum error of 0.299 was selected as the post-refined
bounding box. Fig. 7(b) shows some candidate bounding boxes
and their fake images produced by the generator. It shows
that the fake image of the candidate bounding box, which
is similar to the standard insulator, changes minimally when
compared with the candidate, and the reconstruction error is
also minimal.

e = 2 ∗ Lcon + Llat (6)

IV. DEFECT DETECTION BASED ON A GENERATIVE

ADVERSARIAL NETWORK

To address the issue of insufficient defective samples for
defect detection, we utilize a GAN-2 model, which was trained
on normal insulator patches to obtain the reconstruction errors
of the test patches; defects can be detected according to the
obtained errors. The structure of the GAN-2 model in this part
is similar to that of the model GAN-1 used in localization
in section. III.B, but we apply the GAN-2 model on insulator
patches rather than global insulators because the difference in
the reconstruction errors between normal global insulators and
defective global insulators is not obvious, which makes small
defects undetectable. In addition, the defect position cannot
be confirmed when the GAN is applied on a global insulator.
In this part, HT&PE (Hough transform and path estimation)
is first used to extract insulator patches throughout the body
of the insulator, and then the extracted patches are input into
the GAN to distinguish states.

A. Local Insulator Patch Extraction by HT&PE

Suitable insulator patches should have similar textures to
help the GAN-2 model detect defects and cover the whole
body of the insulator to ensure that each part of the insulator
is detected. To obtain this kind of insulator patch, we apply
an HT (Hough transform) to obtain the top and bottom points
of the insulator and estimate suitable sliding paths. Then,
a window with a fixed scale slides along the paths and crops
the local insulator images as extracted patches. The details of
the HT&PE are described as follows.

As the localized insulator is rotated horizontally, the top
and bottom points of the insulator pieces are nearly collinear,
as shown by the red bounding boxes in Fig. 8(b). Therefore,
these two groups of points can be obtained by using an HT
(Hough transform) [38], which detects two straight lines in the
angle ranges (−90◦, 80◦] and [80◦,90◦). Fig. 8(e) shows the
Hough matrix produced by HT. The points in the red boxes
are the two maximum values that correspond to two groups
of points in Fig. 8(b). The definition of angle θ is shown
in Fig. 8(a). Moreover, the midpoints (yellow boxes (x1, y1)
and (x2, y2) in Fig. 8(b)) and the average distance r between
adjacent insulator pieces can be obtained. Therefore, we can
roughly evaluate the window-sliding paths with the following
ellipse formula.{

x = xcent + 0.5 ∗ a ∗ cos(t)

y = ycent + r ∗ sin(t),
t ∈(

π

k
,

2π

k
), k =(1, 2, . . . , 30)

(7)

where (xcent , ycent ) is the midpoint of (x1, y1) and (x2, y2)
and a is the distance between (x1, y1) and (x2, y2), which is
regarded as the long axis of the ellipse. Therefore, a window
with a fixed width of 1.2∗r slides along the evaluated paths
through the body of the insulator to obtain insulator patches,
as shown in Figs. 8(c) and (d). Note that the patches that
exceed the region between two detected lines are removed.
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Fig. 8. Extract local insulators by the HT&PE. (a) Definition of θ in (d).
(b) Detected collinear points and ellipse-sliding path. (c) Window sliding along
a path. (d) Local insulator patches obtained through the insulator. (e) Hough
matrix.

Fig. 9. Reconstruction errors for patches in an insulator image.

B. Defect Detection by a GAN-2 Model

The structure of the GAN-2 model is similar to that of the
GAN-1 model, which is shown in Fig. 6. However, the GAN-2
model is used for distinguishing insulator states, while the
GAN-1 model is used for localization refinement. We utilize
normal insulator patches rather than global insulators to train
the GAN-2 model because small defects on the global insulator
are not obvious and cannot be detected correctly. The states of
the insulator can be distinguished according to the reconstruc-
tion error e, which is expressed in formula (6). Fig. 9 shows
the e of patches in an insulator, and the e of the defective
patch is much larger than the e of a normal patch.

Based on the reconstruction error, we define an adaptive
Defect_score, which is normalized to [0, 1], to quantitatively
assess the defect of the insulator patch.

Defect_score=

⎧⎪⎪⎨
⎪⎪⎩

ei − median(e1, . . . , ei, . . . , eN )

emax − emin
,

if ei ≥ median(e1, . . . , ei, . . . , eN )

0, if ei < median(e1, . . . , ei, . . . , eN )

(8)

Fig. 10. Image data collection. (a) JX-300 inspection vehicle. (b) Collected
catenary images.

where N is the number of insulator patches in an insulator
image and emax and emin are the maximum and minimum
reconstruction errors in an insulator image, respectively.
Considering that the defect region in an insulator image is
always smaller than the normal region, the Defect_score of the
insulator patch is 0 when its e is less than the median error.
When the e of a patch is much larger than the median error,
the Defect_score of this patch is high. In this article, we pre-
defined a threshold Td for defect detection decisions, and an
insulator patch is considered defective when its Defect_score
exceeds the threshold Td

V. EXPERIMENTS AND ANALYSIS

A. Dataset and Platform

The image dataset adopted in this study are 6600 × 4400
pixels images that were collected by the JX-300 inspection
vehicle, as shown in Fig. 10. The used dataset was collected
from a 60km section in the railway line from Changsha to
Zhuzhou in China. It has in total 2,479 catenary images, which
include approximately 7,450 insulators. We use 1,240 catenary
images to train the TOL-Framework and 1,239 images for
testing. For GAN training, 3,000 standard insulator images
are used to train the GAN-1 model, and 100,000 insulator
patches are used to train the GAN-2 model. To build a dataset
that can be directly used for deep learning models for oriented
localization, we apply a special oriented annotation tool,
Collabeler, to annotate each insulator in both the training and
testing sets, the latter of which is just required for evaluation.
In each annotation, the insulator is manually assigned an
oriented rectangular bounding box and a category tag.

The experimental environment of all the implemented deep
learning models is as follows: TensorFlow deep learning
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framework, Linux Ubuntu 14.04, Intel Xeon CPU E3-1230 V2
clocked at 3.3 GHz, 12 GB RAM, and GTX1080Ti GPU with
11 GB memory.

B. Performance Evaluation of Localization

1) Training Parameters and Evaluation Criteria: For fair
comparisons, all the deep learning models are trained by
using similar parameter settings, which are as follows. The
momentum and weight decay are set to 0.9 and 0.0005,
respectively. The total number of iterations is set to 40,000.
The learning rate is initialized a large number (0.001) and then
decayed at the 20,000th and 30,000th iterations by multiplying
by 0.1. For the evaluation criteria, the widely used precision,
recall and F1-score are adopted, which are expressed in
formulas (9)-(11), respectively, where TP is the number of
correctly classified insulators, FP is the number of objects
that are misclassified as insulators, and FN is the number of
insulators that are misclassified as other objects. In particular,
the AP (average precision) is adopted to evaluate the overall
localization performance, as expressed in formula (12). The
AP is equal to the area under the precision-recall (P-R) curve.

Precision = TP

TP + FP
(9)

Recall = TP

TP + FN
(10)

F1-score = 2 ∗ Precision ∗ Recall

Precision + Recall
(11)

AP =
∫

P(R)d R (12)

2) Verification of the Effectiveness of the Proposed Modules:
To verify the localization improvements produced by the
selected FPN and the proposed modules (the cascade regres-
sion and post-refinement modules), we take the oriented Faster
R-CNN ResNet-101 model as the baseline and progressively
add the proposed modules to the baseline to construct different
models for comparison. All of these models are trained and
tested on our built catenary dataset. Note that, unlike the exist-
ing methods that use a loose IoU threshold (i.e., 0.5 or 0.7)
to evaluate the localization performance, we also apply strict
IoU thresholds. In this article, we set the IoU threshold to 0.5,
0.8 and 0.9 and |�ϕ| < 10◦ (the angle difference between
the ground-truth bounding box and predicted bounding box is
less than 10◦) to give a more comprehensive evaluation. The
obtained localization performances of the compared models
are shown in Tabs. I-III, and the corresponding P-R curves
are displayed in Figs. 11(a)-(c). We compare and analyze these
results as follows.

1) The models with FPN, cascade regression or
post-refinement modules achieve higher precision, recall,
F1-score and AP than the baseline model, especially when
a high IoU threshold is applied. As shown in Tab. III and
Fig. 11(c), the AP of the baseline model drops greatly from
0.914 to 0.159 when the IoU threshold is changed from
0.5 to 0.9, but the AP of the proposed TOL-Framework is
0.804 when the IoU threshold is 0.9. The AP improvement
brought by FPN, cascade regression or post-refinement

TABLE I

LOCALIZATION PERFORMANCES WITH AN IOU THRESHOLD OF 0.5

TABLE II

LOCALIZATION PERFORMANCES WITH AN IOU THRESHOLD OF 0.8

TABLE III

LOCALIZATION PERFORMANCES WITH AN IOU THRESHOLD OF 0.9

can be observed obviously from the areas under the PR
curves in Fig. 11, and the quantitative AP values are shown
in Tabs. I-III. This finding indicates that our proposed modules
are effective in obtaining tighter oriented localization.

2) When the IoU threshold is set to a low value (0.5), all
the compared methods have high APs (over 0.9), as shown
in Tab. I and Fig. 11(a). However, all methods’ APs decrease
with the growth of the IoU threshold value, and their perfor-
mances have obvious differences, which indicates that the low
IoU threshold used in the existing methods [25], [34] is not
suitable for evaluation and the high IoU threshold is effective
for performance evaluation.

3) The recall and precision of the baseline + FPN +
Cascade regression model are near 1 when the IoU threshold
is 0.8, as shown in Fig. 11(b). When the IoU threshold exceeds
0.8, the recall and precision are less than 1. Therefore, 0.8 is
the extreme IoU threshold for the baseline + FPN + Cascade
regression model, which can also be observed in the AP vs
IoU curve of the TOL-Framework (Fig. 12). Thus, we applied
post-refinement to the baseline + FPN + Cascade regression
model when the IoU threshold is 0.8 to ensure candidate
bounding box generation is implemented in a minimum region
and all insulators are correctly classified.
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TABLE IV

COMPARISONS OF THE OVERALL PERFORMANCE

Fig. 11. PR curves of the different localization models. (a) PR curve with
an IoU threshold of 0.5. (b) PR curve with an IoU threshold 0.8. (c) PR curve
with an IoU threshold 0.9.

The above presents a quantitative analysis of the localiza-
tion performance. The following Figs. 12(a)-(c) also display
some localization results produced by different methods for

comparison, which shows that the proposed modules can help
to obtain tighter oriented boxes and achieve high localiza-
tion accuracy than the comparison methods. The size of the
trained TOL-Framework is 1,324 Mb, and the test efficiency
is 0.332 FPS (frame per second). It can be run successfully
on the GTX1080Ti GPU.

3) Comparison of the TOL-Framework With Other
Localization Methods: We compare the proposed
TOL-Framework with other oriented localization methods,
namely, R2CNN [20], RRPN [21], R-DFPN [22] and
the widely used horizontal localization method Faster
R-CNN [13]. To analyze the post-refinement model, the TOL-
Framework without post-refinement is used for comparison.
The localization performances of all compared methods are
shown in Fig. 13, which are the AP vs IoU threshold curves.

1) When the IoU threshold is less than 0.8, only our
proposed TOL-Framework and the TOL-Framework without
post-refinement have the highest APs, which are close to 1.
According to formulas (6), (7) and (9), both the recall and
precision are equal to 1, which indicates that the proposed
methods can localize all the insulators, but the localized insula-
tors may have low overlaps with their true positions. Moreover,
the APs of the other compared methods are less than those of
our methods, which indicates that some insulators cannot be
localized by these comparison methods even when the IoU
threshold is set to a low value. 2) When the IoU threshold
is larger than 0.8, the APs of our methods decline slower
than those of other methods, which indicates that the insulator
boxes produced by our methods are closer to their true
positions. 3) As the green curve in Fig. 13 shows, we apply
the post-refinement module to baseline + FPN + Cascade
regression when the IoU threshold is set to 0.8 because
some insulators cannot be localized (AP < 1) when the
IoU threshold is larger than 0.8 and inaccurate localization
(AP ≈ 1, but overlaps with true positions are small) will
lead to time cost increases and performance degradation in
the post-refinement module. 4) The TOL-Framework achieves
higher APs than the horizontal localization Faster R-CNN
model for all IoU thresholds. The comparison results show
the proposed TOL-Framework performs better than other
localization methods based on neural networks.

C. Overall Performance Evaluation for Defect Detection

In our experiment, the threshold Td of defect_score for
defect detection is set to 0.65, and the GAN-2 model is trained
for 50 epochs. The learning rate is initialized at 0.0002, and
it is decayed by multiplying it by 0.5 at the 40th epoch. Our
dataset includes 82 defect insulators, all of which can be used
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Fig. 12. Localization cases produced by different methods. (a) Localization of the baseline + FPN model. (b) Localization of the baseline + FPN + Cascade
regression model. (c) Localization of the baseline + FPN + cascade regression + post-refinement (TOL-Framework) model.

Fig. 13. Localization performances of all the compared methods.

for testing because the proposed GAN-based defect detection
method does not need defective samples for training. During
testing, 79 defect insulators are correctly detected, and 3 defect
insulators are not detected by using the TOL-Framework with
GAN-2, which are reported in TPs (true positives) and FNs
(false negatives), respectively, in Tab. IV. In Fig. 14, examples
of defect detection results for different insulators in the China
railway line are presented. The Defect_score maps of defective
patches show higher values in the locations with defects.
In particular, small defects are correctly detected, as shown
in Fig. 14(b) and Fig. 14(d). In addition, the proposed method
can find the position of the defect on the insulator. The
obtained detection results can be directly used as maintenance
decision support for asset managers.

We compare not only the performances of two different
GANs based on the global insulator and insulator patches but
also our method with the current catenary insulator detection
methods [25], [34]. The quantitative results are presented
in Table IV. It shows the proposed method “TOL-Framework
with GAN-2” has the highest accuracy (F1-score) 0.946. The
speed of the proposed method is 0.27 (Frame/s), which is
slower than other methods. As the current catenary detection
system is implemented off-line, accuracy is the most important
feature. The obtained results can be provided to asset managers
as maintenance decision support information.

In this article, the proposed method is evaluated with
an image dataset collected from a section of the rail line
Changsha-Zhuzhou. The method can be directly applied to

Fig. 14. Defect_score maps of different defective insulators produced by the
proposed GAN-2 model.

the rest of this rail line as well. Note that there are also
other railway lines in China with the same configuration and
type of catenary system. This means that the proposed method
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can be applied to these railway lines as well using the same
inspection vehicle for image collection. For other railway lines
with a different type of insulator or a different configuration
of catenary, a new dataset from the new railway line should be
built and the model parameters should be tuned accordingly.

VI. CONCLUSIONS

This article proposed a novel method for catenary defect
detection. A new localization method, the TOL-Framework,
is applied to realize tighter oriented localization, which can
greatly reduce the harmful effects of incomplete localization
and unnecessary background information and provide suitable
insulator images for defect detection. For defect detection,
a GAN-based method is proposed to evaluate the errors
between normal samples and defective samples to realize
defect detection. The GAN-based method can solve the prob-
lem of insufficient available defective simples with supervised
learning. Experiments show that our method is effective for
insulator defect detection.

There are still several aspects that need to be further
considered:

1) Generalization of the method, including analysis of other
railway lines with different catenary systems.

2) The efficiency of the post-refinement network can be
further improved. Developing an adaptive algorithm for
the selection of candidate boxes may help to reduce the
time cost of our method.

3) The camera captures 2D images, which may not include
all sides of the insulator. Thus, 3D inspection techniques
could be attempted in the future.
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