
Delft Center for Systems and Control

Reducing wireless control com-
munication for a water irrigation
system

Bas Boot

M
as

te
ro

fS
cie

nc
e

Th
es

is

Reducing wireless control
communication for a water irrigation

system

Master of Science Thesis

For the degree of Master of Science in Embedded Systems at Delft
University of Technology

Bas Boot

August !", #$#!

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis is supported by the European Research Council through the SENTIENT
project (ERC-2017-STG #755953)

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

For this thesis we have compared communication times of different control schemes on a wire-
less control network for a water irrigation system. Therefore a control application which can
run different protocols was created. We have shown that a significant reduction of communica-
tion time can be achieved by using event-triggered control (ETC), and by using self-triggering
techniques we could reduce this even further. Wireless control networks (WCN) are networks
of one or multiple controllers, sensors and actuators which share a digital communication
network. Sensors send their measurements to the controller, and the controller sends a con-
trol signal to the actuators. Because the nodes are digital devices, periodic control is the
standard approach. Communication therefore is not needed all the time, and nodes can sleep
in between updates to save energy. Event-triggered control is a technique to further reduce
communication of resource constrained nodes in the network by only updating control when
an event, typically a significant change since the last control update, occurs. Water irrigation
systems (WIS) are networks of channels transporting water from main rivers, to smaller rivers
which need to be controlled to avoid losses. At TU Delft a model of a water irrigation system
with three pools has been connected to a WCN to simulate this. To create an application for
this testbed, supporting different control schemes, a low power embedded OS capable of doing
multitasking with a replaceable network stack is needed. The Contiki Operation System is
capable to do this and has been used by the D3S Research Group of the University of Trento
to build wireless control bus (WCB), and has also been used for the WIS control applica-
tion. WCB uses network floods from a protocol called Glossy and a schedule to synchronise
communication with low power, and supports both periodic and event-triggered control. Ex-
periments with WCB show periodic control is possible with only 7% communication time
for this setup, and event-triggered control with only 2% without much loss of performance.
Because the testbed unit has some technical problems, a hardware-in-the-loop simulation was
created to connect to the WCN to do the experiments. A further reduction in communication
has been achieved by combining a predictive control method called PSTC with ETC, which
we call ETC+. Advantages over normal ETC are not large in our experiments, and there are
still practical problems, but they show this is a promising research area.

Master of Science Thesis Bas Boot

ii

Bas Boot Master of Science Thesis

Table of Contents

Preface and acknowledgements xiii

1 Introduction 1
1-1 Wireless water irrigation system . 2
1-2 Project outline . 2
1-3 Notation and definitions . 3

2 Preliminaries 5
2-1 Water irrigation control . 6

2-1-1 Downstream control model . 6
2-1-2 Controller design . 8
2-1-3 Local compensator . 9
2-1-4 Global controller . 9
2-1-5 Centralised control and simulation . 10

2-2 Event-based control . 11
2-2-1 ETC . 11
2-2-2 STC . 12
2-2-3 PSTC . 12

2-3 Wireless control protocols . 14
2-3-1 Glossy . 14
2-3-2 Crystal . 14
2-3-3 Wireless control bus . 15
2-3-4 WCB-P . 16
2-3-5 WCB-E . 17

Master of Science Thesis Bas Boot

iv Table of Contents

3 The Water Testbed Unit 19
3-1 Testbed overview . 19
3-2 Sensors . 20
3-3 Gates . 21
3-4 Driver optimization . 21

3-4-1 Sensors . 21
3-4-2 Actuators . 22

3-5 System Identification . 22
3-5-1 Model selection . 22
3-5-2 Identification . 23
3-5-3 Validation . 23
3-5-4 Parameters . 24

3-6 Smart gates . 24
3-7 Problems and improvements . 26

4 Control design 29
4-1 Local controllers . 29
4-2 Global controller . 30
4-3 Controller with increased bandwidth . 30
4-4 Discretising the controllers . 31
4-5 Event-triggering . 31

5 Wireless control implementation 33
5-1 WCB-P+ . 33
5-2 WCB-E+ . 34
5-3 WCB implementation . 35
5-4 Contiki . 37
5-5 Application architecture . 38
5-6 Node types . 39

5-6-1 Controller node . 39
5-6-2 Sensor/actuator node . 39
5-6-3 Relay node . 40

5-7 Scheduling . 40
5-8 Serial communication . 41

5-8-1 Data logging . 41
5-8-2 Development logging . 41

5-9 Visual feedback . 42
5-10 Simulation . 42
5-11 Hardware-in-the-loop . 42

5-11-1 Communication . 43
5-11-2 Gates . 43

Bas Boot Master of Science Thesis

Table of Contents v

6 Experiments 45
6-1 Scenario . 45
6-2 The water testbed unit . 45
6-3 Hardware-in-the-loop . 47

6-3-1 Periodic control . 47
6-3-2 ETC . 48

6-4 ETC+ . 50
6-4-1 Setup changes . 50
6-4-2 Initialisation problem . 50
6-4-3 Results . 51

7 Discussion and conclusions 53
7-1 Conclusion . 53
7-2 Future work . 53

7-2-1 Simulation . 53
7-2-2 Control the real water testbed . 54
7-2-3 Control application . 54
7-2-4 Protocol . 54
7-2-5 ETC+ . 55

A Codebase 57
A-1 Control application . 57
A-2 Identification and simulation . 58
A-3 Logging and simulation . 58

B WCB setup in Trento 59
B-1 Testbed in Trento . 59
B-2 Lifecycle and hook functions . 59

C Water testbed images 63
C-1 Images . 63

D Plots 69
D-1 Filtering . 69
D-2 Simulated experiments . 70
D-3 HIL ETC experiments . 72
D-4 HIL ETC+ experiments . 81

E Simulink models 83
E-1 Full simulation . 84
E-2 Hardware-in-the-loop . 90

Bibliography 93

Glossary 97

Master of Science Thesis Bas Boot

vi Table of Contents

Bas Boot Master of Science Thesis

List of Figures

1-1 Idle listening comparison for different control schemes, during four periods of peri-
odic control for a a case where only at the first and fourth period an event occurs
which requires control. 2

2-1 Stretch of open-water channel with over-shot gates from [10]. 6
2-2 Stretch of the water testbed unit with undershot gates. 7
2-3 Irrigation channel modelled as a string of N pools from [10]. 8
2-4 Localised portion of a controlled channel from [23]. 8
2-5 Generalised distributed structure for synthesis from [23] 9
2-6 Event-triggered control schematic. 11
2-7 Flooding reliability for various N (NTX) from [14]. 14
2-8 Communication slots within a round from [13]. 15
2-9 The capture effect ensures (only) one of the packages will be received during

concurrent transmission. 15
2-10 The WCB-P protocol from [30]. 16
2-11 The WCB-E protocol from [30]. 17

3-1 Schematic layout of the locations and connections of components of the testbed
at TU Delft. 20

3-2 Time evaluation of the water levels for an identification experiment where the gate
of pool 3 is fully opened. 23

3-3 Bode plot of the three pools, showing the dominant wave frequencies. 24
3-4 Estimated γi from measurements for different gate settings. 25
3-5 Flow over a gate for different gate openings and water levels with γi = 6.5 × 10−5. 26

4-1 Bode plots to compare the open loop response of the shaped and unshaped system
for each pool. 30

Master of Science Thesis Bas Boot

viii List of Figures

4-2 Bode plots to compare the open loop response of the shaped and unshaped system
for each pool after increasing the bandwidth. 31

5-1 Lifecycle and hook functions of the WCB implementations. 36
5-2 Architecture of the control application, showing all components and both internal

and external connections. 38

6-1 Time evolution of water levels and control signals after a step disturbance on the
testbed using periodic wireless control with controller from Section 4-1 and 4-2.
The controller fails to stabilise the references and the water levels slowly drift
away. Notice there is a drop in the control signal because of a reset of the local
compensator which cannot create the desired flow. 46

6-2 Time evolution of water levels and control signals after a step disturbance on
the testbed using periodic wireless control with controller from Section 4-3. This
controller is beginning to stabilise the references for pool 2 and 3, but pool 3 is
still drifting away. 47

6-3 Time evolution of water levels and control signals after a step disturbance in a HIL
simulation using periodic wireless control with controller from Section 4-3. The
HIL simulation is less smooth than the full simulation (Figure D-6) because the
gates are also simulated. 48

6-4 Time evolution of a failed experiment for ETC+. When the experiment starts
initialisation is needed, and again when the disturbance changes after 20 seconds,
after that no re-initialisation should be needed. After a communication problem
at 234 seconds however, re-initialisation happens at every event. 51

B-1 Lifecycle and hook functions of the WCB implementations in Trento. 60

C-1 The testbed is located in the basement of TU Delft and placed inside a bin to
prevent flooding. 63

C-2 Firebox. In the lab there are 8 Fireboxes containing the Fireflies. 64
C-3 Gate. The gates are operated by the servos which pull them up and down with

gears connected directly to them. 64
C-4 Main valve. The main valve leads to pool0 and has to be controlled by hand. . . 64
C-5 In- and off-takes to simulate disturbances. The in- and off-takes for pool1 to pool3

are controlled by hand. 65
C-6 Gate 3 and 4. Undershot gates are used for gate1 to gate3. The last gate gate4

is an overshot gate. 65
C-7 Power supply for the testbed. There are no switches for the pumps, so they are

operated by plugging them in. The plug on the left is used to connect the testbed
to the ground. 66

C-8 Water pump. The pumps are located inside water basin under the testbed. . . . 66
C-9 Pressure sensor. The sensors are located under the pools. 66
C-10 Powered usb-hubs. The Fireflies are connected to powered usb-hubs in the follow-

ing order (left to right): FF4, FF3, FF6, FF8, FF5, FF7, FF2, FF1. 67

D-1 Comparison of the filtered and unfiltered sensor data for an experiment where the
pump is turned on in the middle. 69

D-2 Single-Sided Amplitude Spectrum of the unfiltered sensor data from Figure D-1a. 70

Bas Boot Master of Science Thesis

List of Figures ix

D-3 Time evolution of water levels and control signals after a step disturbance on
the unrestricted simulation using periodic wireless control with controller from
Section 4-1 and 4-2. The controller takes 5 hours the reject the disturbance the
water reaches negative levels and streams up from pool 2 to pool 3. 70

D-4 Time evolution of water levels and control signals after a step disturbance on
the flow restricted simulation using periodic wireless control with controller from
Section 4-1 and 4-2. Results are similar to Figure D-3, but water does not flow up
anymore. 71

D-5 Time evolution of water levels and control signals after a step disturbance on
the unrestricted simulation using periodic wireless control with controller from
Section 4-3. In simulation it can reject the disturbance in half an hour without
exceeding the minimum water levels. 71

D-6 Time evolution of water levels and control signals after a step disturbance on
the flow restricted simulation using periodic wireless control with controller from
Section 4-3. The result is the same as Figure D-5 because the controller does not
ask for impossible flows. 72

D-7 Time evolution of water levels and radio on time after a step disturbance on the
HIL simulation using periodic wireless control with controller from Section 4-3. . 72

D-8 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(never triggering). 73

D-9 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(forcing a trigger every period). 73

D-10 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0, # = 0). 74

D-11 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.1, # = 1). 74

D-12 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.05, # = 1). 75

D-13 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.025, # = 1). 75

D-14 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.05, # = 2). 76

D-15 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.025, # = 2). 76

D-16 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.1, # = 2). 77

D-17 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.2, # = 2). 77

D-18 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.4, # = 2). 78

Master of Science Thesis Bas Boot

x List of Figures

D-19 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.4, # = 4). 78

D-20 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.4, # = 8). 79

D-21 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.4, # = 16). 79

D-22 Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3
(σ = 0.2, # = 16). 80

D-23 Time evolution of water levels, radio on time, calculated sleeping periods and
initialisation state after a step disturbance on the HIL simulation using ETC+ with
controller from Section 4-3 (σ = 0.1, # = 1). 81

D-24 Time evolution of water levels, radio on time, calculated sleeping periods and
initialisation state after a step disturbance on the HIL simulation using ETC+ with
controller from Section 4-3 (σ = 0.2, # = 2). 82

E-1 Simulink model for the simulation of the water testbed unit. 84
E-2 Simulink model for the global controller. 85
E-3 Simulink model for the local controller. 86
E-4 Simulink model for the pools. 87
E-5 Simulink model for the undershot gates. 88
E-6 Simulink model of the local controller implementation on the Fireflies. 89
E-7 Simulink model for the hardware-in-the-loop simulation of the water testbed unit. 90
E-8 Simulink model to convert water levels to pressure values. 91
E-9 Simulink model to do the serial communication with a Firefly. 92

Bas Boot Master of Science Thesis

List of Tables

3-1 Parameters to calculate the water levels from ADS115 values for each sensor at an
air pressure of 1012 mBar. 21

3-2 Fitting percentage of the obtained model for all three experiments used to identify
the pools, and fitting percentage of the the validation data. 24

3-3 Physical and identified model parameters for each pool. 24

4-1 Parameters for the local compensator of each pool, with a bandwidth below the
dominant wave characteristics. 30

4-2 Parameters for the local compensator of each pool, with a bandwidth above the
dominant wave characteristics. 31

5-1 Overview of the possible intentions of the controller and sensor nodes during the
EV-slot of each phase in WCB-E+, to verify there cannot be any conflicts. . . . 35

5-2 Node configuration for each Firefly of the network at the water testbed. 39
5-3 Overview of the data logging modes over the serial connection for the control

application. 41
5-4 Overview of the development logging levels over the serial connection for the control

application. 41
5-5 Visual feedback on the Fireflies. 42
5-6 HIL serial communication byte order. 43

6-1 Overview of the results for the experiment from Section 6-1 on WCB-P and bound-
ary cases for WCB-E. 48

6-2 Overview of the results for the experiment from Section 6-1 on WCB-E with dif-
ferent parameters. 49

6-3 Overview of the results for the experiment from Section 6-1 on WCB-E+ with
different parameters. 51

Master of Science Thesis Bas Boot

xii List of Tables

Bas Boot Master of Science Thesis

Preface and acknowledgements

The past year I have been working on building a control application for the wireless control
network of the water testbed unit at TU Delft. This was not easy, because to do the measure-
ments to create the application and determine the requirements an application to do these
measurements was also needed. I have been pragmatic and have first built the application to
do the measurements, and built the control application on top of it. Because there were a lot
of problems with the testbed unit I decided to switch to a hardware-in-the-loop simulation,
which took me some extra time at first but also gave me the opportunity to speed up by fully
working from home during the Covid-measures.

Of course I would like to thank dr. ir. Manuel Mazo Jr. for giving me the opportunity to do
my master thesis at his research group, and supporting me during the weekly group meetings
via Teams... which I was always allowed to start first thanks to alphabetical ordering of
attendants in video calls.

I also want to thank my daily supervisor ir. Gabriel de Albuquerque Gleizer for his help and
advice. Especially during the ‘final push’!

Besides my supervisors I had help from Jacob Lont to start with the testbed unit and Wim
Wien who helped me with all kinds of problems on the testbed. Also Iimofei Istomin and
Matteo Trobinger from the University of Trento helped me by sharing the wireless control
bus code with me. Thank you.

Another person I would like to mention is John, a friend and colleague, who seemed to enjoy
my study the past few years just as much, or sometimes even more than me, and kept me
motivated.

But most of all I would like to thank my kids, Gijs en Jet, for cheering me up, and my wife
Mirja for supporting me along the way of my master studies.

Thanks!

Delft, University of Technology Bas Boot
August $%, &'&$

Master of Science Thesis Bas Boot

xiv Preface and acknowledgements

Bas Boot Master of Science Thesis

Chapter 1

Introduction

In control networks, idle listening is often the most energy consuming task of the network
adapter. Networked control systems [18] are sensors, actuators and controllers which share a
band limited digital communication network. Data from the sensor nodes is used by the con-
troller(s) to create the control signals for the actuator nodes. Control can be done centralised
on a dedicated controller to control the entire network, but also distributed to control local
portions. Because the nodes are digital devices, control is inherently discrete and communi-
cation is periodic. In a wireless control system the nodes have radios to communicate. When
using normal computers communicating over traditional wifi [6], radios are always on, making
idle listening the most energy consuming task of a node as shown in Figure 1-1a. For resource
constrained devices it would be better to optimise this to reduce energy consumption.

A more efficient approach therefore is to turn off the radio in between communications as
shown in Figure 1-1b. Traditional periodic control is conservative in the sense that the period
is chosen based on the worst case scenario. When using event-triggered control, where the
system state is checked first to see if control is really necessary for this period, this radio
scheme can be changed to further reduce radio on time. A periodic wake-up will still be
necessary to check for events, but when there is no event, communication can be reduced for
that period, as shown in Figure 1-1c. It will however have a little overhead because of the
extra communication of the events.

Event-triggered control [17] (ETC) will be explained in Section 2-2, and the protocol used to
reduce idle listening is Wireless Control Bus (WCB) developed by the D3S Research Group
of the University of Trento [30], which will be explained in Section 2-3.

In self-triggered control, as described in Section 2-2-2, the controller dictates the sleeping
times based on a prediction when an event will occur. The benefit is that this reduces radio
on time, as shown in 1-1d. The downside is that it cannot react, like ETC, to unpredictable
events during sleep which results in worse disturbance attenuation.

To overcome this a hybrid approach of event-triggered control and a predictive method can
be considered for a practical implementation. In this approach the network sleeps a number
of periods where no event should occur based on a prediction, but this prediction does take a

Master of Science Thesis Bas Boot

2 Introduction

(bounded) disturbance into account. Because this prediction is conservative the event might
not happen directly after waking up, so the control network can wait for it just like in ETC.
We will call this hybrid approach ETC+, and the conservative estimations will be made using
preventive self-triggered control [11], which will be discussed in Section 2-2-3.

cRmm idle liVWeQiQg cRmm idle liVWeQiQg cRmm idle liVWeQiQg cRmm idle liVWeQiQg

(a) Always listening, periodic communication.

comm Uadio off comm Uadio off comm Uadio off comm Uadio off

(b) Periodic listening, periodic control communication.

comm Uadio off i Uadio off i Uadio off comm Uadio off

(c) Periodic listening, event-triggered control communication.

comm Uadio off Uadio off Uadio off comm Uadio off

(d) Self-triggered listening and control communication only when an event occurs.

Figure 1-1: Idle listening comparison for different control schemes, during four periods of periodic
control for a a case where only at the first and fourth period an event occurs which requires control.

1-1 Wireless water irrigation system

As a case to implement and compare different communication schemes a testbed of a water
irrigation system (WIS) will be used. A WIS is a network of channels transporting water
from main rivers, to smaller rivers. From these smaller rivers farmers take water to irrigate
their land, causing disturbance in the WIS. Because water resources are becoming scarce in
many areas [26] and losses can be large [32] in these networks, it is important that they are
controlled. Because WISs are typically large, a network of communicating controllers can be
effective to control such a system [23] [10]. At TU Delft a model of a water irrigation system
with three pools [28] has been connected to wireless microcontrollers, called Fireflies [34], to
simulate such a setup.

1-2 Project outline

In this thesis we use the results from Jacob Lont’s master thesis [24] to implement a wireless
control network on the water testbed unit at TU Delft using the protocols developed by the
D3S Research Group of the University of Trento [30]. The goal is to compare energy usage
and performance of periodic and event-triggered control over these protocols by comparing
radio on times for different event-triggering configurations. Our last goal is to further improve
energy savings by making the protocols aperiodic by adding extra sleeping time.

We start by presenting the preliminaries of this thesis in Chapter 2. In Section 2-1 we will look
at the procedure followed [24] to control water irrigation systems. In Section 2-2 event-based

Bas Boot Master of Science Thesis

1-3 Notation and definitions 3

control is described and in Section 2-3 we look at the protocols to implement control on the
wireless sensor network.

After that, in Chapter 3 the testbed at TU Delft will be described and identified so in Chapter 4
we can design for it using the preliminaries. Control implementations on the sensor network
will be described in Chapter 5 and the results of experiments of the different implementations
will be presented in Chapter 6. We end this thesis with our conclusions and recommendations
for future work in Chapter 7.

The contributions of this thesis are:

1. Improvement of the hardware and software of the water testbed (Section 3-4, 3-7).

2. Identification of the pools of the testbed (Section 3-5).

3. Adaption of the model, to use undershot gates which are smart (Section 2-1-1, 3-6).

4. Controller design for the testbed (Chapter 4).

5. Adaptation of WCB-E and WCB-P to support aperiodic communication schemes (Sec-
tion 5-1, 5-2).

6. Documentation of the WCB protocol implementation (Section 5-3, B-2).

7. Control implementation on the Fireflies (Section 5-4 to 5-9).

8. A hardware-in-the-loop simulation (Section 5-11)

9. Experimental results of the different control strategies (Chapter 6).

1-3 Notation and definitions

We denote by R the set of real numbers, and by R+ := {x ∈ R : x ≥ 0}. For a vector x ∈ Rn

we denote 2-norm by %x% :=
√

x⊤x. For a matrix A ∈ Rn×m we denote by AT its transpose,
by rank(A) its rank and by λ(A) its eigenvalues. A matrix A is said to be Hurwitz when
all its eigenvalues have strictly negative real parts. We denote by I the identity matrix. A
symmetric square matrix P ∈ Rn×n is written as P ≻ 0(P ≽ 0) if P is positive (semi) definite.
%H%∞ := maxω σ̄(H(jω)) is used to denote the infinity norm of H, where σ̄(·) denotes the
maximum singular value of the matrix argument. The magnitude of a transfer function T (jω)
at a certain frequency ω is denoted as |T (jω)|.

Symbols in formulas will be explained near their usage. They are used like they were used in
the literature they came from, unless this leads to confusion because the symbols are already
used with another meaning. If different literature about the same subject is referenced near
each other but they do not use the same notation this is adapted for clarity.

Master of Science Thesis Bas Boot

4 Introduction

Bas Boot Master of Science Thesis

Chapter 2

Preliminaries

Master of Science Thesis Bas Boot

6 Preliminaries

2-1 Water irrigation control

The water testbed unit at the TU Delft has three pools for which we want to control the water
levels, by actuating undershot gates via a wireless control network. To design a control system
a model of the plant and control setup is necessary. In Section 2-1-1 therefore we model the
pools and the gates of the plant, and the design of the controller will be explained in Section 2-
1-2, 2-1-4 and 2-1-3. For simulation the plant and controller can combined (Section 2-1-5).

2-1-1 Downstream control model

To be able to use the downstream control model from [10] we need to convert the model from
overshot gates to undershot gates for our testbed.

Figure 2-1: Stretch of open-water channel with over-shot gates from [10].

An irrigation network can be seen as a string of pools for which reference takes place at the
end of each pools because that is where off-takes typically take place. In [10] a model for the
water level yi at time t of a single pool with overshot gates is considered in the form of

πi

!
d

dt

"
yi(t) = γih

3/2
i (t − τi) − γi+1h

3/2
i+1(t) − di(t).

In this model πi(.) is a polynomial describing the dynamics of the pool, τi is the delay caused
by the water having to flow from the beginning to the end of pooli (Figure 2-1), and di is the
disturbance at the end of the pool.

γih
3/2
i and γi+ih

3/2
i+i are the inflow and outflow of the overshot gates of the pool. In which γi is

a constant for gatei and hi is the so called ‘head over the gate’ which is the difference between
the water level (hi) and the top of the gate (pi). The dynamics of the pool can be modelled
accurately using a third-order model [23] but if the controller is designed with a bandwidth
below the dominant wave dynamics the model can be simplified to

αi
d

dt
yi(t) = γih

3/2
i (t − τi) − γi+1h

3/2
i+1(t) − di(t),

where αi is the surface area of the pool.

Bas Boot Master of Science Thesis

2-1 Water irrigation control 7

By defining the inflow ui = γih
3/2
i and outflow vi = ui+1 = γi+1h

3/2
i+1 and applying the Laplace

transform a more general frequency domain model for pooli becomes

Pi : yi(s) = 1
sαi

(exp (−sτi) ui(s) − vi(s) − di(s)) .

FORZ

UQdeUVhRW GaWe UQdeUVhRW GaWe

Figure 2-2: Stretch of the water testbed unit with undershot gates.

This general model with flows instead of gate-properties can also be applied to the testbed
unit with undershot gates (Figure 2-2) if we redefine ui and vi to model the flow over an
undershot gate.

The model derived in [24] for the flow over an undershot gate does take flows in both directions
into account, but under the assumption that the downstream level is always lower, and there
is no sill under the gates so they can be lowered to the bottom of the pool, it can be simplified
to

ui = bi · Ce,i · √
qi · yjet,i ·

#
2 · g,

in which Ce,i and bi are the flow efficiency and width of gate i, g is the gravitational acceler-
ation,

qi = h1,i − max
$
h2,i, min

!
h1,i · 2

3 , µi · gi

"%
,

and
yjet,i = min

$
µi · gi, max

!
h2,i, h1,i · 2

3

"%
,

in which µi denotes the flow-depth constant. When we make the assumption that the gates
are always fully submerged, and the water level differences are normally small around the
reference point, and take from [24] that µi = 1, we can make an extra simplification of the
model:

ui = giγi

&
h1,i − h2,i, (2-1)

because
qi = h1,i − h2,i, yjet,i = gi, γi := bi · Ce,i ·

#
2 · g.

The outflow then becomes
vi = gi+1γi+1

&
h1,i+1 − h2,i+1.

In these formulas γi now is a constant for the undershot gate, gi is the gate opening and h1,i

and h2,i are the water levels on both sides of the gate as illustrated in Figure 2-2.

Master of Science Thesis Bas Boot

8 Preliminaries

The full irrigation system can be seen as a string of pools, Figure 2-3, with vi(s) = ui+1(s)
and boundary condition vN ≡ 0 so there is no flow over the last gate, and the outflow of pooli,
is the inflow for pooli+1.

Figure 2-3: Irrigation channel modelled as a string of N pools from [10].

2-1-2 Controller design

Design of the controller can be split in a local part to control a single pool, and a global part
that takes the full system into account.

When designing water irrigation control, [24] followed the distributed approach from [23] in
which a localised portion (single pool) of a channel is considered.

CONTROLLER DESIGN

−

Ki

ei

yK
i

vK
i

K̂i

uK
i

Wi

zi,2

ui

qi

wi

vi−1

vi di

Pi

yi

ri

Gi

zi,1

wK
i

vK
i−1

Figure 2-4: Localised portion of a controlled channel from [23].

In this approach the controller Ki is split in a part K̂i and a part Wi. This way a local
controller for the plant Pi can be created using classic loop-shaping techniques only aimed at
local characteristics of the pool, and the resulting loop-shaping weight can be used as an input
for H∞ loop-shaping of the distributed controller which aims at global performance. This
way the local controllers treat outflow (vi) like normal disturbance (di), while K̂i can exploit
this knowledge. Other disturbances are the input disturbance qi and output disturbance ri.

The full system can then be seen as a series of distributed controllers (K̂i) which control the
generalised pools (Gi) formed by combining the local controller and the plant, as shown in
Figure 2-5.

Bas Boot Master of Science Thesis

2-1 Water irrigation control 9

G1 G2 GN

K̂1 K̂2 K̂N

u1 e1

n1

v1

vK
1

z1

u2 e2

n2

v2 = w3

vK
2 = wK

3

w2

wK
2

z2

uN eN

nN

vN ≡0

vK
N ≡0

wN

wK
N

zN

Figure 2-5: Generalised distributed structure for synthesis from [23]

Because we want to implement global control on a single node in the network, the distributed
controllers will be combined later.

2-1-3 Local compensator

The local controller only has to take one pool into account, and can be realised with just a
PI-compensator. To design a compensator for local control of a pool the first order model
of Section 2-1-1 can be used. The compensator will have to shape the loop-gain Li(s) =
Wi(s)/sαi. Because Li(s) does not reflect the wave dynamics which can disturb the flow over
the gate, and also does not reflect the delay τi of the system it is necessary to make sure
the bandwidth of the loopgain |Li(jω)| lies below the dominant local wave dynamics and
1/τi rad/min. The off-takes of the irrigation channel are step disturbances to the system,
so from the final value theorem it follows that the local compensator Wi(s) should have at
least one pole at s = 0 to achieve zero steady-state error. Both criteria and large loop-gain
at low frequencies for set-point regulation and disturbance rejection can be achieved with a
compensator of the form:

Wi(s) = κi (1 + sφi)
s (1 + sρi)

.

In this compensator κi is used to set the loop-gain bandwidth, φi for phase lead in the
cross-over section and ρi to add additional roll-off beyond the loop-gain bandwidth.

2-1-4 Global controller

The global controller takes global knowledge of the system into account. For this robust
control techniques will be used. To design a global controller using H∞ synthesis the loop-
shaping weights (Section 2-1-3) need to be combined in a finite-dimensional state-space model
that approximates Gi (Section 2-1-2) and delays of the pools. To represent the delay a Padé
approximation is used.

Master of Science Thesis Bas Boot

10 Preliminaries

'

((()

ẋi

wi

zi

yK
i

*

+++, =

'

((()

Att
i Ats

i Btn
i Btu

i

Ast
i Ass

i Bsn
i Bsu

i

Ctz
i Csz

i Dzn
i Dzu

i

Cyy
i Csy

i Dyn
i Dyu

i

*

+++,

'

((()

xi

vi

ni

uK
i

*

+++,

:=

'

(((((((((((((()

0 1
αi

−1
αi

0 −1
αi

0 −1
αi

0 0
0 −2

τi

4
τi

0 0 0 0 0 0
0 0 0 1 0 0 0 κiφi

ρi

κiφi
ρi

0 0 0 −1
ρi

0 0 0 κi(ρi−φi)
ρ2

i

κi(ρi−φi)
ρ2

i

0 0 1 0 0 0 0 0 0
−1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

−1 0 0 0 0 1 0 0 0

*

++++++++++++++,

'

((()

xi

vi

ni

uK
i

*

+++,

(2-2)

The local state is xi = (yi, ∆i, ui, Ωi)T , in which the sub-state Ωi corresponds to the loop-
shaping pole at s = −1

ρi
and ∆i to the Padé approximation of the delay, wi = ui, zi = (ei, uK

i)T .
The disturbances our grouped in the signal ni := (ri, di, qi)T .

The full formulation of the H∞ problem to stabilise the interconnection G = (G1, ..., GN)
of the weighted generalised pool models (Equation 2-2), where vi = wi+1 and vN = 0 and
achieves %H(G, K)% < γ, where H(G, K) denotes the closed-loop transfer function from the
vector of signals (nT

1 , ..., nT
N)T to (zT

1 , ..., zT
N)T shown in Figure 2-3, can be found in [23]. The

scripts to perform this robust control optimisation [24] will be used in Chapter 4 to create the
controller.

2-1-5 Centralised control and simulation

For simulation and implementation, the distributed controllers (K̂i) can be combined into a
single centralised controller. Also the generalised pool descriptions (Gi) can be combined to
create a model of the water irrigation system which is fully explained in [24] for simulation.

Bas Boot Master of Science Thesis

2-2 Event-based control 11

2-2 Event-based control

To reduce control communication in wireless control networks, periodic control can be replaced
by aperiodic control. Event-triggered control is a reactive approach to do aperiodic control
and is described in Section 2-2-1. Self-triggered control is a proactive approach (Section 2-2-2)
which can be extended to preventive self-triggered control to take bounded disturbances into
account (Section 2-2-3).

2-2-1 ETC

Nowadays almost all control is implemented using digital platforms and is therefore inher-
ently discrete. Periodic control theory is well-developed and the standard approach when
implementing discrete controllers [27], but for low power sensor/actuator networks with com-
munication constraints it is increasingly popular to look at aperiodic controllers to reduce
power consumption by reducing communication [17]. In cases where a system operates as
needed, without disturbances acting on it recalculating control and sending actuation com-
mands over the network is a waste of resources [16] because both bandwidth and computation
power could be reduced without effect on the system. In such a case it is possible to use a
sample-and-hold implementation where the input (u) is kept the same based on a previous
version of the state (x̂) and only update control when an event-triggering condition is met,
typically a bound on the difference between the real state x and x̂, to reduce the number of
control task executions, as illustrated in Figure 2-6.

PlanW

ConWroller

EYenW Wriggered?

no, \es,

Figure 2-6: Event-triggered control schematic.

In a continuous control ETC approach (CETC) the triggering condition needs to be con-
stantly monitored. With this approach it is necessary to avoid infinitely many triggers (Zeno
behaviour [17]) by adding a threshold on the output triggering [12] to ensure a minimum
inter-sampling time. When a periodic approach (PETC) is used however a minimum inter-
sampling time will be implicitly set by the sampling period of the discrete controller. For a
linear time-invariant (LTI) system, using the approach from [16] the plant can be described
by:

ẋ = Apx + Bpû + Bww, for x ∈ Rnx , û ∈ Rnu , w ∈ Rnw ,

where x and û are the state and input of the plant, and w is an unknown disturbance. For
traditional periodic, or time-triggered, control a feedback controller would have the form of

û(t) = Kx (tk) , for t ∈ (tk, tk+1] , tk, k ∈ N,

Master of Science Thesis Bas Boot

12 Preliminaries

in which the inter-sampling times for periodic control are always equal, so for a specific h > 0,
chosen such that the system is stable and has desired performance, the control is updated
based on the state x at time tk = kh. For PETC this needs to be modified to only update
control based on the actual state when a triggering-event occurs, which results in

û(t) = Kx̂(t), for t ∈ R+,

in which x̂ is updated to the actual state after a trigger, and kept the same otherwise.

x̂(t) =
-

x (tk) , when C (x (tk) , x̂ (tk)) > 0
x̂ (tk) , when C (x (tk) , x̂ (tk)) ! 0

Note that an initial state x̂(0) needs to be set, which will will typically be x̂(0) = x(0).

A triggering condition is typically defined to update control when the state, plant or controller,
has deviated so much that new control action is needed. An event-triggering conditions based
on the state error [16] for example

%x̂ (tk) − x (tk)% > σ %x (tk)%

triggers when the 2-norm of the difference between the kept and actual state is larger than
a fraction (σ) of the 2-norm of the actual state. When σ is large there will be less triggers,
than when it is small. If we assume the set point is at the origin, deviations will also trigger
faster when we are near the origin than when we are not. Note that with σ = 0 every change
will trigger, and σ = 1 no change will trigger anymore.

2-2-2 STC

Given the reactive nature of ETC, every sampling period the triggering conditions must be
checked to see if control must be updated. Instead of checking the triggering conditions it is
also possible to schedule the next control based on a prediction when an event will occur [31]
called self-triggered control (STC). Because STC is proactive it is not necessary to monitor the
plant every sampling period, and can therefore be used to reduce the transmission instances
in a sensor/actuator network [7]. The prediction of the inter-sampling times must not only
be calculated based on the plant model and the last measurement but also on a performance
specification, because these inter-sampling times define both stability and performance of the
controller. Longer inter-sampling times will result in a larger reduction, but also in smaller
performance if external disturbances occur, or the model used for prediction is not perfect.

2-2-3 PSTC

STC does a one step prediction when an event will occur, but is mostly used in noiseless
systems, or noise is disregarded like in [25]. Disturbance attenuation therefore is worse than
with ETC which takes disturbances into account naturally. Because on the water testbed unit
(Chapter 3) there are multiple disturbances present, we cannot ignore them and use this type
of STC to predict events, to reduce radio on time by putting the network to sleep in between
events. To still reduce radio on time, another method called preventive self-triggered control
(PSTC) [11] is considered to do the predictions. PSTC does take unknown but bounded

Bas Boot Master of Science Thesis

2-2 Event-based control 13

disturbances into account, and makes a conservative prediction when an event might occur
based on it. Note that because this is a conservative prediction of the earliest time an event
can occur the actual control can be postponed until the event really occurs. The algorithm
from [11] uses and observer to keep track of all possible states the plant and controller are
in, for which it uses ellipsoids to describe the sets. To calculate the first possible instant an
event might occur, the reachable sets for each observer state are calculated for a number of
timesteps ahead, until a point in the reachable sets violates the triggering condition. This
number of timesteps is then used as the prediction.

Master of Science Thesis Bas Boot

14 Preliminaries

2-3 Wireless control protocols

To control the water testbed using the Firefly-nodes a wireless communication protocol sup-
porting the intended control methods is needed. Wireless control bus (WCB) as implemented
by the D3S Research Group of the University of Trento supports different control schemes.
WCB was built on top of Glossy and Crystal which will be described first in Section 2-3-1
and 2-3-2. How periodic and event-triggered control are supported by WCB is described in
Section 2-3-3, 2-3-4 and 2-3-5.

2-3-1 Glossy

The Glossy protocol provides a flooding architecture for wireless sensor networks. Where
other architectures suffer from package loss due to interference [33], Glossy uses it to create
constructive interference [14]. Reliability is created by synchronisation of the nodes to send
a single flood, so all nodes send the same signal. Even when two nodes interfere, the capture
effect [22] ensures that the strongest will be received. When a flood starts all nodes turn on
their radios and relay received packages, which will trigger neighbouring nodes to do the same.
This results in a single source being able to reach all other nodes in the network allowing a
one-to-many communication scheme. Time synchronisation is implicit because there is only
one source (initiator) in the network triggering a flood. To increase reliability event further
the number of retransmission (NTX) of a node during a single flood can be increased.

Figure 14: cdf of Glossy performance on Twist with three different transmit powers, for .

1 2 3 4 5 6 7 8 9 10

99.99999

 99.9999

 99.999

 99.99

 99.9

 99

 90

Maximum number of transmissions N

F
lo

o
d

in
g

 r
e

lia
b

ili
ty

 R
 [

%
]

Figure 2-7: Flooding reliability for various N (NTX) from [14].

Experiments [14] show with NTX=1 Glossy’s reliability is stable and nodes receive a package
with a probability always above 98% and even 99.6% on average, and by increasing NTX
flooding reliability increases almost logarithmically as shown in Figure 2-7.

Another benefit of Glossy is that its layout does not have to be configured. The range of the
network can easily be increased by adding extra nodes for relay in between other nodes.

2-3-2 Crystal

Glossy allows only one-to-many communication. To allow other communication patterns
(many-to-one and many-to-many) Low power wireless bus [13] (LWB) was created on top
of Glossy. It uses a schedule so all nodes can be the initiator of one or multiple floods in
turn during a round, and due to the way Glossy works all other nodes will receive the floods

Bas Boot Master of Science Thesis

2-3 Wireless control protocols 15

and can pick the messages intended for them just like a bus in computer architecture. As
illustrated in Figure 2-8 the network host controls the network and sends the schedule during
the first flood (Ts) of a round. After that, all nodes send their data when it is their turn (Td

data) and at the end of the round they can send a package if they have different needs for the
next round (Td contention). The nodes can then turn off their radios until the next round
which starts with a new schedule. Note that only one of the node’s packages can be received
per round by the host due to the capture effect [22].

Td Td TsTs Td

contentiondata
host computes t

data

Tl

new schedule

schedule
newschedule

Figure 2. Communication slots within a round.
Figure 2-8: Communication slots within a round from [13].

The same idea as in LWB to create a wireless bus by using periodic schedules was used to
create Crystal [19] which has also been built on top of Glossy. Crystal is a protocol to reliably
send sensor data from multiple sensors to a single sink over a low power wireless network.
There is no fixed schedule for each node, instead it has a flexible schedule which allows only
nodes that need to send updated sensor data to send this data during a period (epoch). The
sink (which is also the network controller) sends a Glossy package to synchronise (S) all nodes.
Then each node that needs to sends data sends its data (T). Of all transmissions only one
will reach the sink, but will be received with high probability due to the capture effects [22]
exploited in Glossy as illustrated in Figure 2-9. The sink then sends an acknowledgement of
the received data (A) after which the acknowledged node can go to sleep. The TA process
repeats until no nodes send any data and the network controller can also go to sleep until the
next epoch.

1

2

Uela\ cRnWURlleU

T (1)

T (2)
T (1)

A (1UeceiYed, 2 nRW UeceiYed)

Rnl\ VWURngeVW
Vignal iV UeceiYed

and Uela\ed

Figure 2-9: The capture effect ensures (only) one of the packages will be received during
concurrent transmission.

2-3-3 Wireless control bus

Crystal was further developed to design a protocol to not only receive sensor data at a central
node, but also sending actuator data from this node back into the network. This way a control
protocol for low power wireless networks has been created using flooding technology which
is therefore called Wireless Control Bus [30] (WCB). There are two versions. WCB-P for
periodic control, and WCB-E for periodic event-triggered control (PETC). It uses network

Master of Science Thesis Bas Boot

16 Preliminaries

flooding through Glossy, the ideas from LWB to use synchronised protocol stages for multi
directional communication and resending of data from Crystal to increase network reliability.

2-3-4 WCB-P

…
t

Epoch

S

Collection Recovery DisseminationSync

t
T … T A T A … T A CTRL CTRL…

1 per sensor

(b) Supporting periodic control:WCB�P.
Figure 2-10: The WCB-P protocol from [30].

The WCB-P protocol has multiple stages which repeat each epoch as shown in Figure 2-10.

Sync

During the synchronisation phase the network controller sends a glossy package to mark the
start of an epoch. Nodes that are not in sync yet listen for this to connect to the network,
nodes that are in sync also listen and can fine tune their synchronisation.

Collection

In the collection phase there are multiple T-slots. One dedicated for each sensor node. The
sensor nodes transmit their data in turn to the controller. When all T-slots are transmitted,
the network controller sends an acknowledgement (A) with a bitvector indicating which nodes
were received.

Recovery

During recovery the protocol works like Crystal with alternating TA-slots until all sensors
have been received by the network controller. If no recovery is needed because all T-slots
have been correctly received by the controller, this phase will be skipped.

Dissemination

After collection all sensor data, the network controller sends all plant control signals in a single
slot (CTRL). From this data each actuator can pick the data intended for them. Because
there is no acknowledgement the protocol allows to schedule multiple CTRL-slots to increase
reliability of reception of the control signal by all nodes.

Bas Boot Master of Science Thesis

2-3 Wireless control protocols 17

2-3-5 WCB-E

…
t

Epoch

EVS …
Event Collection Recovery DisseminationSync

t
EV T … T A T A … T A CTRL CTRL…

t
EVS …
EventSync

EV

1 per sensor

(a) Supporting event-triggered control:WCB�E.
Figure 2-11: The WCB-E protocol from [30].

The WCB-E protocol is very similar to WCB-P and differs only by one extra stage, the event-
stage, and the possibility to terminate an epoch early after it, as shown in Figure 2-11. The
way WCB-P has been designed all control signals will be recalculated when an event triggers,
not only the control signal for the part of the system where the event occured.

Event

In PETC a new control signal is only sent when it is triggered by an event. If no event occurs
the previous calculated control signal is held, Section 2-2-1, (at least) until the next period.
Therefore after the synchronisation phase the protocol does not go straight to Collection,
but enters the Event phase first. The event phase only has an EV-slot in which every node
that detects a triggering event can let this know to the network. It does not matter if one
or multiple nodes trigger, because of the capture effect all nodes will receive one of the EV-
packages with high probability [22]. When a node receives an event it knows the protocol
will continue with the collection phase. If it does not receive an event the protocol terminates
early and all nodes can sleep and turn off their radios until the next epoch. Note that WCB-E
does not use a centralised triggering strategy like [16] which needs all states, but decentralises
triggering which only requires local information.

To increase reliability of all nodes receiving an EV-package when there is in event, the EV
slot can be repeated, just like the CTRL-slot.

Master of Science Thesis Bas Boot

18 Preliminaries

Bas Boot Master of Science Thesis

Chapter 3

The Water Testbed Unit

To simulate a water irrigation system a water testbed unit at TU Delft has been revised last
year, and connected to wireless nodes. Its layout and specifications are explained in Section 3-
1, and its capabilities in Section 3-2 and 3-3. To be able to do wireless control, the software
for the sensors and actuators needed to be improved (Section 3-4) and the system needed to
be identified (Section 3-5). The model from Section 2-1-1 uses flows instead of gate openings.
Therefore the gates have been made smart enough to control the opening themselves, based
on a desired flow, which is explained in Section 3-6. Although being revised last year there is
still room for improvement, therefore this chapter ends with an overview of the encountered
problems and possible solutions in Section 3-7.

To not overcrowd this chapter with images, pictures of the actual testbed unit are shown in
Appendix C.

3-1 Testbed overview

To simulate a wireless water irrigation system TU Delft has a testbed. The testbed to simulate
water irrigation was built approximately twenty years ago [28], and has been checked and
revised last year for [24]. It can simulate a channel of three pools (pool 1, 2, and 3) which get
their water from a main stream, which will also be referred to as pool 0. Disturbances can be
added by operating manual valves of intakes above the pool to simulate rain or rivers flowing
into a pool, and off-takes in the pool to simulate farmers using water or rivers flowing out of
this pool. The water from the main stream is also controlled by a manual valve. The testbed
unit is a closed system, with a water tank below the pools with two electric pumps: one for the
main stream and one for the intakes. Water from the off-takes, and the overflow of pool 3 runs
back into this tank. The main stream, and pool 1, 2 and 3 are connected through undershot
gates, and pool 3 also has an overshot gate at the end that can operate as an overflow. The
gates are operated by Hitec servo motors [3]. The testbed also has Keller pressure sensors [20]
at the begin and end of each pool, and one in pool 0 to measure the water level. For wireless
control the sensors and servos have last year been connected to Firefly microcontrollers[34].

Master of Science Thesis Bas Boot

20 The Water Testbed Unit

The sensor before and after a gate have been physically connected to the same Firefly as the
servo operating that gate. The benefit of this is that it is possible to control the flow over
a single gate using only local knowledge. Basic functionalities have all been tested last year,
and technical details about the interconnections have been documented [24]. The layout and
connections of the testbed in the lab have been visualised in Figure 3-1.

S1S2S3S4

S5 S6
S7

FF3 FF2

FF8

FF4

FF6

FF5

FF1

FF3

A3

A2 A1

A4

PC

A4

S7
FF1-FF8

A3

S5, S6

A1

S1, S2

A2

S3, S4

ÁRZ

Figure 3-1: Schematic layout of the locations and connections of components of the testbed at
TU Delft.

3-2 Sensors

To control the water levels it first is necessary to have knowledge about them. To measure
the water levels Keller pressure sensors [20] have been placed under the pools (Figure C-
9). Although the sensors can be read digitally, it was decided [24] to use an external AD-
converter (ADSS15 [29]) on a custom made PCB called Fireboard, to allow for faster readings
as suggested in [28]. The digitised values need to be converted to water levels for each sensor.
Because the sensors are below the pool and not all at the same level, they need to be calibrated
separately. Another reason for separate calibration is the fact that, although they are all of
the same make and model according to their labelings, the sensors that were replaced last
year have a higher accuracy. The sensors have linear characteristics so calibration can be done
with only two measurements, for which the extrema of 5 cm and 31 cm were used for the
most accurate result. The water level yi in cm for a sensor value (valuesi) can be calculated
with the linear formula

yi = aivaluesi + bi,

from which the parameters ai and bi as calculated on 21-02-2021 can be found in Table 3-1.

Bas Boot Master of Science Thesis

3-3 Gates 21

i 1 2 3 4 5 6 7
ai 0.0188 0.0054 0.0181 0.0184 0.0187 0.0054 0.0054
bi -188.0213 -65.1942 -181.4417 -182.8977 -184.0834 -59.3130 -59.6097

Table 3-1: Parameters to calculate the water levels from ADS115 values for each sensor at an
air pressure of 1012 mBar.

Note that because pressure sensors are used to measure the water levels, the outside air
pressure influences the readings. When looking at the air pressures in the Netherlands of the
last 50 years they are in the range of 995 to 1050 mBar [4], which can result in an offset
of 55 cm when measuring water levels. This on the other hand is only important if we are
interested in the actual water levels. If we are only interested in relative differences between
pools, which is for example the case when estimating flow over a gate, this will not be a
problem because all pools are affected by the same offset.

3-3 Gates

When we have knowledge about the water levels we need actuators to control them, which
in this testbed are three undershot gates. The gates of the testbed are controlled by servos.
Servos are motors for which the position can be controlled by changing the duty cycle (the
ratio between on and off) of a block pulse signal. The pulse cycle is fixed at 20ms and the
duty cycle has to vary between 0.9 ms and 2.1 ms. The maximum rotation of regular servos
is 180 degrees, but the Hitec HS-725BB [3] used in the lab setup has a range of 1260 degrees.
A gear is connected directly to the servo which shifts a pole connected to the gate up and
down (Figure C-3). Note that the pole of the overshot gate (gate4) is shorter, so its range has
to be limited to prevent damaging the servo.

3-4 Driver optimization

Although basic tests were performed before [24], the drivers for the sensors and actuators
needed to be adapted to be used on the nodes in a control network.

3-4-1 Sensors

The sensors were not fast enough, so the driver needed to be optimised. The ADS115 drivers
to convert the current though the sensors to digital values did work correctly but were slow,
because of a hard coded delay to wait for the conversion result, which resulted in a maximum
reliable rate of the control network of 1-2Hz. Although this speed might be enough for control,
a higher speed is preferred for measurements to be able to filter out the noise. Therefore the
drivers were rewritten to poll the ADS115 over I2C for the conversion ready bit. This results
in the driver being able to operate at higher rates, depending on the SPS (samples per second)
setting of the ADS115. Note that the driver is still busy waiting which can be approved on,
but a modification of the Fireboard’s PCB will be needed. When the ALERT/RDY pin of the
ADS115 is connected to one of the GPIOs of the Firefly an interrupt can be used to handle
the result, instead of a polling mechanism.

Master of Science Thesis Bas Boot

22 The Water Testbed Unit

3-4-2 Actuators

The servos did not work when controlled over wireless control bus, so this had to be fixed. The
servo drivers for the actuators of the gate were not compatible with Contiki setup (Section 5-
4) used. The reason for this was found in the hard coded values for the length of the duty
cycle of the PWM signal for the servos in clock ticks. Because in our setup the Fireflies
run at their maximum clock rate of 32 Mhz, which is double the default, these values had to
be doubled. To avoid future problems when changing the speed of the devices, these values
are now shifted by the SYS_CTRL_CONF_SYS_DIV constant, which has been defined in Contiki
especially for this purpose.

3-5 System Identification

To design controllers for a system it is necessary to have a model of it. System identification
is the technique to create a model of a dynamical system from measured data. To create a
model of the testbed unit each pool needed to be identified. To analyse the time domain data
the MATLAB R©’s System Identification Toolbox [5] was used, and the three stage process
from [21] was followed for each of the pools:

1. Select the class of models.

2. Identify the unknown parameters.

3. Validate the result, to assess the quality of the model.

The scripts and data used for identification can be found via Appendix A-2.

3-5-1 Model selection

For simulation and design of the global controller (Section 2-1-4) the first order model will be
used for which statistical identification techniques are not needed because it can be derived
from the physical characteristics of the pools (αi is the area of the pool), and the delays are
neglected.

Pi(s) = 1
αis

.

To justify this choice the local controller for a pool must have a bandwidth below the dominant
wave characteristics (φwavei) and delay (τi) of the pool (Section 2-1-3). To find these properties
a third order model [10] combined with a time delay has been used for identification. This
model is a combination of the first order model of the pool and a second order model to
capture the wave dynamics. This results in the transfer function for pool i

Pi(s) = e−sτi
ω2

n,i

s2 + 2ζiωn,is + ω2
n,i

1
αis

,

in which τi and ωn,i are the delay and the natural frequency we need for the controller design,
and ζi is the damping ratio.

Bas Boot Master of Science Thesis

3-5 System Identification 23

3-5-2 Identification

0 5 10 15 20 25 30
time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

le
ve

l (
m

)

s1
s2
s3
s4
s5
s6
s7

Figure 3-2: Time evaluation of the water levels for an identification experiment where the gate
of pool 3 is fully opened.

To identify pooli only the gate to that pool and the pools after it (≥ i) were closed, and the
pool itself was emptied to the minimum level. The pools before (< i) it were then filled to
a level just below the top of the closed gate (i). Identification data has been collected after
opening the gate (i) until the water levels were equal. On the testbed unit it is not possible
to create a step response which is often used for identification, but this way we created a
mix between a step and a (reverse) ramp which also contains all frequencies. To create a
general model the experiment was repeated for each pool with three different gate settings
for identification: fully open, about half open, and just a little open. An example of such an
experiment is shown in Figure 3-2. The delay (τi) has been estimated using visual inspection
of the delay in time plots, between opening the gate and the response of the pressure sensor
at the other side of the pool. Because we have no actual knowledge of the flow over a gate,
the flow had to be estimated. To estimate the flow, the water level change in the pools before
the identified pool were used, because they are less disturbed by opening the gate than the
pool which is identified itself. The area of the pool and the average water level change gives a
volume change which can be converted to a flow. Because flow is essentially estimated based
on a derivative this flow data is expected to be noisy, but because identification uses statistical
methods and this noise is zero mean accurate results are still expected. From the sampling
theorem of Nyquist and Shannon [15] we know it is impossible to capture frequencies above
half the sampling rate, therefore the speed of the sensor drivers has been increased (Section 3-
4). The data for identification has been collected at 128 Hz for more accurate identification
of the dynamics.

3-5-3 Validation

To validate the models for each pool, the identification experiment has been repeated for
the maximum gate setting. This setting was chosen because it has the most turbulence, and
therefore the most wave dynamics.

Master of Science Thesis Bas Boot

24 The Water Testbed Unit

Not only the fitting percentages of the experiments are very high, also validation is larger
that 85 percent so we are confident that we can use the model parameters we obtained with
the identification. An overview of the percentages can be found in Table 3-2.

experiment 1 experiment 2 experiment 3 validation
pool 1 91.89 86.20 84.49 85.54
pool 2 96.66 97.81 91.41 90.67
pool 3 94.89 91.02 97.23 91.32

Table 3-2: Fitting percentage of the obtained model for all three experiments used to identify
the pools, and fitting percentage of the the validation data.

3-5-4 Parameters

In Table 3-3 the physical parameters, the measured delays and the parameters from identifica-
tion for each pool are shown. In a body plot, Figure 3-3, the spikes clearly show the dominant
waves which are needed for the controller design.

αi(m2) τi(s) ζi ωn,i φwavei(rad/s)
pool 1 0.1853 1.3 0.0255 0.2469 0.2468
pool 2 0.1187 0.7 1.9 × 10−11 0.7760 0.7760
pool 3 0.2279 1.5 8.8 × 10−11 0.1485 0.1485

Table 3-3: Physical and identified model parameters for each pool.

-100

0

100

200

M
ag

ni
tu

de
 (d

B)

From: flow To: water level

10-2 10-1 100 101
-1260
-1080
-900
-720
-540
-360
-180

0

Ph
as

e
(d

eg
) pool1

pool2
pool3

Bode Diagram

Figure 3-3: Bode plot of the three pools, showing the dominant wave frequencies.

3-6 Smart gates

The controller output will be a desired flow, but we can only actuate the opening of a gate.
Therefore the gates have to be made smart enough to convert a flow to gate opening. The
gates are controlled by servos, which can be rotated via the drivers with a single byte value

Bas Boot Master of Science Thesis

3-6 Smart gates 25

where 0 corresponds to closed and 255 is fully open. The flow over a gate depends on both
the gate opening and the difference in water height on both sides of the gate, according to
the model in Section 2-1-1. The gate opening is the servo setting, and because the pressure
sensors on both sides of the gates are connected to the same Firefly, the water levels are also
known. The only information missing from Equation 2-1 is a constant γi for the gate. To
find this model from the noisy data from identification (Section 3-5-2) we optimise the sum
of squared error between the model and the measurements, for which the script and data can
be found via Appendix A-2). Unfortunately different gates, and different settings result in
different ‘constants’ as shown in Figure 3-4.

0 50 100 150 200 250 300
servo setting

2.5

3

3.5

4

4.5

5

5.5

6

6.5

i

10-5

gate1
gate2
gate3

Figure 3-4: Estimated γi from measurements for different gate settings.

Because of inaccuracy of the gate settings and leakage, as described in Section 3-7, we do
not believe it is possible to fully capture the dynamics of the gates. We will still use the
model, but have to be aware of an extra input disturbance to the dynamics of the testbed.
In Simulink we have added a model of the gates to the simulation, which shows the system
is better in rejecting an overestimation of γi than an underestimation. Therefore we choose
the largest γi = 6.5 × 10−5 for all gates.

Because we can only control the flow indirectly not all flows are always possible. For example
it is not possible to make water flow if there is no difference in water level. To get an indication
of the (maximum) flows in the system, the flows for different gate openings and water level
differences are shown in Figure 3-5.

Master of Science Thesis Bas Boot

26 The Water Testbed Unit

0 0.05 0.1 0.15 0.2 0.25 0.3
h1-h2 (m)

0

0.5

1

1.5

2

flo
w

 m
3 /s

10-4

1
5
10
25
50
100
255

Figure 3-5: Flow over a gate for different gate openings and water levels with γi = 6.5 × 10−5.

3-7 Problems and improvements

During development on, and experiments with the testbed unit several problems were en-
countered. These will be summarised here for future development. Also (possible) solutions
will be suggested.

Gates

The gates are controlled by a gear attached to the servo’s axis (Figure C-3). This gear pulls a
pole up and down. This pole is attached to the gate which slides through a slot of plexiglass
(Figure C-6). This sliding has a lot of resistance which causes the gate to often move less
than intended and being further open or closed than intended, depending if you are opening
or closing the gate. This could be improved by redesigning the mechanism but also by adding
sensors to get feedback on the actual height of the gate. Because of the resistance the gears
also often came loose from the axis. This has been improved by DCSC-lab technician Wim
Wien by using longer screws to fixate the gears to the servo. He also planned an upgrade to
connect the gears via a tapped servo horn for even better fixation.

An important thing to notice is that although the pools in the testbed are 60 cm in height,
this height cannot be used, because the gates are only 35 cm. To avoid spillage over the gates
it is best not to use reference levels higher than 35 cm.

The most important problem of the gates is that they cannot close fully, so there is always a
disturbance on the flow. It should be investigated if they can be made water tight. I would
suggest to replace the rubber parts at the bottom of the gates with a more flexible version, so
it is possible to apply some extra pressure to push them tight. A more drastic change from
under- to overshot gates could be considered if the setup will be revised. This would make
controlling the flow easier because for overshot gates the flow only depends on the head over
gate (Section 2-1-1) which can be actively controlled, while for undershot gates the flow not
only depends on the controlled gate opening, but also the difference in water level before and

Bas Boot Master of Science Thesis

3-7 Problems and improvements 27

after it. When the difference is large, even a very small gate opening will result in a large
flow.

Static electricity

To avoid flooding the university the testbed has been placed in the basement, inside a plastic
bin. Because of this, static electricity builds up inside you while walking around the testbed
to operate it, depending on the weather and the clothes you wear. The testbed itself, and
your computer are grounded, so if you touch one of these you risk a static shock. This is not
only unpleasant, but also causes the serial ports of the Fireflies to disconnect. This could be
solved by placing and anti-static mat (ESD) inside it.

Serial communication

Originally a Rasberry Pi was used to connect to the serial ports of the Fireflies [24]. This
was both good looking and convenient, but unfortunately not reliable. The serial connections
were often lost, and could only be revived by rebooting. We were not able to pinpoint exactly
what the problem was, but the kernel logs seemed to indicate compatibility issues between
the hardware of the Rasberry Pi and usb to UART used in the Fireflies. The Raspberry Pi
has therefore been replaced by a regular PC running Ubuntu 18.04.5 and the problem has
not occurred anymore.

Pressure sensors

Although being all of the same model according to their labels, the Keller pressure sensors
[20] are not exactly the same because they are not from the same production year. The newer
sensors installed have a higher accuracy, making it necessary to convert them to doubles, to get
them on the same scale with enough accuracy. When all sensors are replaced by new higher
precision sensors, this will not be necessary anymore and a faster integer implementation
would be possible. The newer sensors also had problems starting up, probably caused by a
small power drop of the power unit. This has been solved by DCSC-lab technician Will van
Geest by replacing the power unit to one with an increased voltage. This power unit generates
15V which is the maximum supported by the voltage regulators inside the Fireboard. Because
pressure sensors were used to measure the water level, the readings are influenced by the
outside air pressure (Section 3-2). An improvement to compensate this would be to add an
air pressure sensor, or connect to the internet to get weather data. Note that if a fixed offset
is acceptable this will not be necessary, because the sensors are linear and only the water level
difference is needed to calculate the flows.

Firebox

The Fireflies are connected to the ADS115 with the custom PCB called Firebox. When this
PCB is revised it would be good to connect ALERT/RDY from the ADS115 to one of the
GPIOs of the Firefly, as already suggested in Section 3-4-1, to make it possible to respond to
an interrupt on conversion ready.

Master of Science Thesis Bas Boot

28 The Water Testbed Unit

In- and off-takes

All in- and off-takes have to be controlled by hand. This can be hard if you need to set
multiple valves at the same time. Because of this it is also impossible to do unmanned or
remote experiments, which is a wish from the research group, and would also make it easier to
do long running experiments. It would therefore be desirable to have electronically controlled
valves on the in- and off-takes and electronic switches on the pumps so they can be controlled
from the PC.

Pool 0

The level of the main stream (pool 0) is hard to keep stable because the pool is very small,
and the inflow has to be operated by hand. This makes longer experiments infeasible. In [28]
it was already suggested that a larger pool 0 would make it less sensitive to water demand
of pool 1. Another solution could be to add an overflow to pool 0 to keep the water level
stable at a fixed level when the inflow is fully opened. Pool 0 now already has an overflow
at 60 cm, but this is too high because the water level then will be higher than the top of the
gate, causing spillage over the gate. This could be resolved by adding an overflow at a lower
level of 35 cm, which would not cause this extra disturbance.

Pump

Because the pumps are inside the water testbed unit, vibrations disturb the measurements
of the pressure sensors. For the application in this thesis, this has been solved by adding a
digital filter to remove these vibrations from the signal (Section 5-6-2).

Flow sensors

To improve control of the gates, and to acquire richer data from experiments, it would be
beneficial to add flow sensors to the gates, and to the intakes and off-takes.

Bas Boot Master of Science Thesis

Chapter 4

Control design

To control the water testbed the first thing we need is a controller. To design a controller for
the water testbed unit, [24] and [23] were used, as described in the Preliminaries (Section 2-
1). In Section 4-1 the local controllers for the pools are shaped, and in Section 4-2 global
control for the system is described, but because this design was not fast enough a redesign
is described in Section 4-3. Because these techniques result in a continuous controller, dis-
cretisation is explained in Section 4-4. We conclude this chapter with a description of the
triggering condition, which will be used for event-triggered control in Section 4-5.

4-1 Local controllers

To use robust control to create the global controller, first we need to design the local com-
pensators, that will be used as the weights as described in Section 2-1-4. As explained in
Section 2-1-3 these controllers are of the form

Wi(s) = κi (1 + sφi)
s (1 + sρi)

,

and have to be shaped to have large loop-gain at low frequencies, and a bandwidth below
both the dominant wave dynamics and time delay of the pool they control. The open-loop
bode plots in Figure 4-1 show that our design meets these constraints. When comparing to
the unshaped loop gains, they are higher at low frequencies for reference tracking and lower
at high frequencies for disturbance rejection. Also the bandwidths of the shaped loop-gains
are below 1/τi and the dominant wave frequency.

Master of Science Thesis Bas Boot

30 Control design

-100

0

100

M
ag

ni
tu

de
 (d

B)

10-2 100 102
-180

-135

-90

Ph
as

e
(d

eg
)

L1
1/s*alpha
1/

wave

Bode Diagram

(a) Pool 1

-100

0

100

M
ag

ni
tu

de
 (d

B)

10-2 100 102
-180

-135

-90

Ph
as

e
(d

eg
)

L2
1/s*alpha
1/

wave

Bode Diagram

(b) Pool 2

-40
-20

0
20
40
60
80

M
ag

ni
tu

de
 (d

B)

10-3 10-2 10-1 100
-180

-135

-90

Ph
as

e
(d

eg
)

L3
1/s*alpha
1/

wave

Bode Diagram

(c) Pool 3

Figure 4-1: Bode plots to compare the open loop response of the shaped and unshaped system
for each pool.

The parameters for the compensators can be found in Table 4-1.

κi φi ρi

W1 0.010 64 1
W2 0.03 60 0.5
W3 0.01 35 0.01

Table 4-1: Parameters for the local compensator of each pool, with a bandwidth below the
dominant wave characteristics.

4-2 Global controller

With the local controllers as weights it is possible the design the global controller using robust
control techniques. The scripts to perform the optimisation and create the global controller
[24] were originally written for five pools, so they had the be adapted for three. For future
developments however we chose to make them more flexible to support a variable number of
pools (≥ 2). These scripts can be found in Appendix A-2.

Simulation of this system shows the state of the global controller is close to zero. This is
caused by the fact that the B-matrix is very small, and 12 orders of magnitude smaller than
the D-matrix of the controller. Because the state of the global controller has no significant
effect it has been chosen to remove it completely, and reduce it to a P-controller, which will
both make implementation easier and execution faster on the cyber physical system.

4-3 Controller with increased bandwidth

Although the resulting system works correctly in simulation, it is very slow. Therefore we need
to design a faster controller. Using the controller designed in Section 4-1 and 4-2, rejecting
a disturbance like in our intended scenario for experiments (Section 6-1) takes 5 hours in
simulation, which makes it not suitable to be used on a testbed with an intake that has to be
controlled by hand. Therefore it was decided to increase bandwidth of the local controllers
to go above the dominant wave dynamics which will make the systems respond faster. We

Bas Boot Master of Science Thesis

4-4 Discretising the controllers 31

justify this by the fact that the main reason for this design constraint in [10], was the type
of gates they used. The undershot gates in our testbed however, are less sensitive to height
fluctuations than overshot gates, because the flow only depends on the square root of the
height difference between two pools, while overshot gates depend on γ

3
2 of the head over gate

(Section 2-1-1).

-100

0

100

M
ag

ni
tu

de
 (d

B)

100
-180

-135

-90

Ph
as

e
(d

eg
)

L1
1/s*alpha
1/

wave

Bode Diagram

(a) Pool 1

-100

0

100

M
ag

ni
tu

de
 (d

B)

100
-180

-135

-90

Ph
as

e
(d

eg
)

L2
1/s*alpha
1/

wave

Bode Diagram

(b) Pool 2

-100

0

100

M
ag

ni
tu

de
 (d

B)

100
-180

-135

-90

Ph
as

e
(d

eg
)

L3
1/s*alpha
1/

wave

Bode Diagram

(c) Pool 3

Figure 4-2: Bode plots to compare the open loop response of the shaped and unshaped system
for each pool after increasing the bandwidth.

κi φi ρi

W1 0.3 10 0.1
W2 0.5 10 0.1
W3 0.3 10 0.1

Table 4-2: Parameters for the local compensator of each pool, with a bandwidth above the
dominant wave characteristics.

4-4 Discretising the controllers

In digital control, performance and stability not only depends on the controller parameters,
but also on the sampling period and discretisation method, so these also needed to be chosen.
When this project started we ran the control network at 1 Hz because this was the fastest
the control network could run reliably, therefore this frequency was used to discretise the
controllers. To further reduce network communication it could be investigated to lower this
frequency, although this might degrade performance. A Tustin approximation was used to
discretise the controllers, because it suffers less from phase lag than ZOH [27].

4-5 Event-triggering

For implementation of ETC, we need a triggering condition. In our setup we do not have
access to the full state, therefore we cannot use the state-based triggering condition from
Section 2-2-1. Instead we use the output of the plant to trigger. Because each node has the
possibility to trigger (Section 2-3-5), triggering does not happen based on central knowledge,
so we have to decentralise the triggering condition. Also we want to use a quadratic triggering

Master of Science Thesis Bas Boot

32 Control design

condition, so it will be easier to connect to the PSTC algorithm [11] later. The triggering
condition for pooli at time tk then becomes

%yi (tk) − ŷi (tk)%2 − σ2 %yi (tk)%2 > 0,

in which yj(tk) is the actual water height, ŷj(tk) is the value kept from the previous trigger,
and σ is the triggering parameter. Note that for the triggering condition we always perform
a change of coordinates to put the reference set-point at the origin because ETC and STC
literature make this assumption. As suggested in [24] and [9] and also used in [11] we will use
a ‘mixed triggering’ condition by adding a dead band (#) to avoid triggers caused by minor
fluctuations, resulting in the triggering condition

%yi (tk) − ŷi (tk)%2 − σ2 %yi (tk)%2 > #.

Different values for σ and # will be used in Chapter 6 to compare the resulting performance
and communication reduction.

Bas Boot Master of Science Thesis

Chapter 5

Wireless control implementation

We start this chapter by describing two extensions to wireless control bus from Section 2-3,
which add the capability to do aperiodic communication to WCB (Section 5-1 and 5-2). After
that we will give an overview of the implementation of WCB (Section 5-3) and the Contiki
operating system it runs on (Section 5-4). The architecture of the control application, how it
works, and how it can be configured, can be found in Section 5-5 to 5-9. To try out controller
designs for the application faster than real time, a full simulation has been created (Section 5-
10). And to do experiments using the application on the real hardware, but without the
real testbed, a hardware-in-the-loop simulation has also been added, which is described in
Section 5-11.

References to the source code for the application, and scripts for communicating with it can
be found in Appendix A.

5-1 WCB-P+

To be able to also do aperiodic communication to reduce radio on time over wireless control
bus, we want to extend the protocol. WCB-P is intended for periodic control, and therefore
both communication and control over it, have a fixed interval. If we make this sleeping
interval variable, it will also be possible to use it for aperiodic control schemes, where the
controller decides the sleeping periods. This would make it possible to use self-triggered
control techniques, because in STC the controller defines the intervals, by predicting when
the next event will occur based on the system state (Section 2-2-2). To distinguish this
extension from normal WCB-P we will call it WCB-P+.

In this extension the controller node can send the number of periods the network has to
go to sleep (default = 1) along with the CTRL command. By adding this to the control
slot (CTRL) the chance of a node missing it can be reduced because the protocol already
supports sending CTRL multiple times. The nodes will use the received CTRL to multiply
the sleeping period. If a node misses the CTRL signal it will only sleep one period, so it will
try to resynchronise each period until the network controller wakes up.

Master of Science Thesis Bas Boot

34 Wireless control implementation

Note that for this to work the controller must have some sort of lookup table, so it can do
immediate predictions. If the controller on the other hand needs more time for calculations,
a protocol scheme similar to the one suggested in Section 5-2 could be used.

5-2 WCB-E+

Unfortunately this type of STC could not be used on our system, because it does not take
disturbances into account. Therefore we have decided to create an aperiodic control scheme,
based on a combination of a self-triggered prediction and event-triggered control over wireless
control bus. For the prediction, preventive self-triggered control (Section 2-2-3) will be used.
PSTC does take disturbances into account and chooses a conservative sleeping time, so the
network wakes up at the first possible instant a trigger, caused by the maximum disturbance,
could occur. After that a switch to ETC will be made, so the controller waits for the real
event before applying control and putting the network to sleep again. Because this hybrid
form of control, is basically an extension on ETC, we will call it ETC+. To implement this
behaviour we extend WCB-E, which although it supports aperiodic control, does not support
aperiodic communication yet. We will refer to it as WCB-E+.

Calculating the conservative sleeping times is computationally intractable on the Fireflies,
therefore a PC capable of running the software for the prediction, needs to be connected to
the network. The controller therefore cannot put the network to sleep in the same epoch
that it updates the control signal, because communicating with this PC takes time. The
controller sends a calculation request and the system information (water levels, flows and
control signals) after an epoch, when the radio is off (epoch_end), and receives the result
before the next epoch. To distribute the sleeping time over the network the event phase (EV)
was given a payload with the number of additional sleeping periods. This way the controller
can send the conservative sleeping periods at the beginning of an epoch so the network can
sleep early. After this extra sleeping WCB acts like normal WCB-E where nodes will trigger
an event (payload = 0). Because the controller can also send a zero payload it can force the
network to wake up, which is used at startup during initialisation of the observer in PSTC.
Because the estimates of PSTC are conservative it should not be possible to have conflicts
between the controller and sensors triggering, as shown in Table 5-1. Note that a conservative
estimation of ‘one’ is trivial, and will never be sent.

Bas Boot Master of Science Thesis

5-3 WCB implementation 35

Controller Sensor
Initial
epochs

forces event no event Initial epoch runs and actuators are updated.

forces event event Initial epoch runs and actuators are updated.
Normal
epochs

waits for event no event No events, so sleep early and wait for next
epoch. Actuators not updated.

waits for event event Event detected, so run full epoch. Actuators
updated.

Extra
sleeping

asks for sleep no event Sleep early, wait multiple epochs. Actuators
not updated.

asks for sleep event Will lead to unexpected behaviour, but should
not be possible!

Table 5-1: Overview of the possible intentions of the controller and sensor nodes during the
EV-slot of each phase in WCB-E+, to verify there cannot be any conflicts.

5-3 WCB implementation

To build a control application on top of WCB it is necessary to know how the protocol has
been implemented in [30]. For future reference, and to explain the extensions made to the
protocol, a schematic overview will be presented in this section. The WCB protocol provides
so called callback or hook functions. The moments when, and order in which they are called
are shown in the lifecycle of the protocol in Figure 5-1. Note that because WCB was built as
an extension of Crystal this is sometimes still reflected in the function names.

Master of Science Thesis Bas Boot

36 Wireless control implementation

S\nchUoni]aWion (S)

SWaUWXp

aSS_cU\VWaO_VWaUW_dRQe()

aSS_SUe_eSRcK()

aSS_SUe_S()

aSS_SRVW_S()

EYenW phaVe (EV)

aSS_SUe_EV()

aSS_SRVW_EV() CoillecWion phaVe (T)

aSS_SUe_Tded()

aSS_SRVW_T()

AcknoZledge (A)

aSS_SUe_T()

RecoYeU\ phaVe (R)

aSS_SRVW_A()

DiVVeminaWion phaVe
(CTRL)

aSS_SUe_CTRL()

aSS_SRVW_CTRL()

aSS_eSRcK_eQd()

if noW all VenVoUV aUe acknoZledged

if no
eYenWV

aUe
VenW

aSS_SRVW_T()

UepeaWed
foU all

VenVoU
nodeV

WCB-E(+) onl\

UepeaWed
foU

UeliabiliW\

UepeaWed
foU

UeliabiliW\

aSS_cRPSOeWe_UeceSWLRQ() aSS_cRPSOeWe_UeceSWLRQ()

aSS_cRQWURO_IXQcWLRQV()

aSS_acTXLUe_VOeeSLQJ_SeULRdV()

aSS_acTXLUe_PeaVXUePeQW()

WCB-P+ and E+ onl\

SeQVRU QRde RQO\

CRQWUROOeU QRde RQO\

Figure 5-1: Lifecycle and hook functions of the WCB implementations. For clarity all function
parameters have been omitted. The full signatures can be found inside the header file of the
protocol1. Functions specific to the implementation on the testbed in Trento have also been
omitted, but can be found in Appendix B.

1/net/crystal/crystal.h

Bas Boot Master of Science Thesis

5-4 Contiki 37

app_crystal_start_done() Initialisation of the system after starting (controller) or
synchronising (other nodes) WCB.

app_pre_epoch() Initialisation of the epoch.
app_pre_S Called before sync (unused).
app_post_S() Called after Sync. Used for analysis of synchronisation
app_acquire_measurement() Get sensor readings.
app_pre_EV() Prepare event-triggering payload (sensor nodes; con-

troller node only in WCB-E+).
app_post_EV() Process event-triggering payload to check if the network

sleeps early (or set extra sleeping periods, WCB-E+
only).

app_pre_Tded() Prepare sensor data payload (only used on sensor
nodes).

app_post_T() Update reception bitmap (only used on controller).
app_complete_reception() Process sensor data (only used on controller).
app_pre_T() Prepare sensor data payload (only used on sensor

nodes).
app_post_A() Check if controller received the data (only used on sensor

nodes).
app_control_functions() Calculate control signal.
app_pre_CTRL() Prepare control data payload (including sleeping peri-

ods, WCB-P+ only).
app_post_CTRL() Process control data (only used on sensor nodes).
app_acquire_sleeping_periods() Return the number of sleeping periods.
app_epoch_end() Called after the epoch when the network sleeps Sync.

Used for analysis of the epoch.

5-4 Contiki

To run the application, a low power embedded OS capable of doing multitasking with a
replaceable network stack is needed. The Contiki Operation System (Contiki) [2] meets these
requirements. This older version of Contiki was used instead of the latest version Contiki-
NG, because the newer version is not compatible with the WCB implementation. Contiki is
an operating system, designed specific for resource-constrained, low memory and low-power
microcontrollers and is open source. It does provide a wireless communication stack but this
stack can be replaced by a custom stack, which has been done in this configuration with
WCB. Contiki is event based, which means that processes are activated by events from the
hardware, like serial messages, or software, like timers. It uses non-preemptive cooperative
scheduling for processes [1]. So processes normally have to wait until other processes yield
control back to the operating system, before they can run. Interrupts however can (and will)
interrupt execution of a process. To support real-time tasks it is possible to run a process
in interrupt context. When the rtimer library is used pre-emption of normal execution is
possible to make sure the real-time task meets its timing constraints.

Master of Science Thesis Bas Boot

38 Wireless control implementation

5-5 Application architecture

To understand how the control application was built on top of the WCB framework (Section 5-
3), the general architecture will be explained here, and a graphical overview of the components
and connections is shown in Figure 5-2.

WiUeleVV MoWe (FiUefl\)

WiUed CommXnicaWion

SeQd lRggiQg

DecRde cRPPaQdV
(cRQWURlleU RQl\)

WiUeleVV CommXnicaWion

GlRVV\

WiUeleVV ConWUol BXV

ETC

PeUiRdic

OSeUaWion Mode

ConWUolleU

Global ConWUol

MaQXal

RefeUeQce
WUackiQg

LRggiQg
(RSWiRQal) NeWZRUk CRQWURl

SenVoU / AcWXaWoU

GaWe

LRggiQg
(RSWiRQal) WaWeU HeighW(V)

Local ConWUol

MaQXal

RefeUeQce
WUackiQg

Rela\

ADS1115 PUeVVXUe SenVoU

SeUYo
P:M

(2QG RSWLRQDO)

IEEE 802.15.4

oWheU moWeV

8AR7

WiUed CommXnicaWion (e[WeUnal)

ReceiYe lRggiQg

SeQd cRPPaQdV
(cRQWURlleU RQl\)

SimXlink

HIL ViPXlaWiRQ

8AR7

NRWe: SZiWch ETC/PeUiRdic, aQd HIL/Ueal RQl\ SRVVible dXUiQg cRPSilaWiRQ.

Figure 5-2: Architecture of the control application, showing all components and both internal
and external connections.

Although there are three types of nodes, there is only one application (firmware). In this
application the IEEE MAC-addresses and the roles of the Firefly nodes have been hardcoded.
On startup the firmware selects the operation mode based on this configuration. The appli-
cation can be compiled to use WCB-P(+) or WCB-E(+) with different levels of logging. It
is also possible to compile the firmware for a hardware-in-the-loop simulation, instead of the
real water testbed. Switching between manual control, in which the plant can be controlled
over the serial connection via the controller node, and reference tracking can be done on
runtime. To do this commands have to be sent over the serial connection to the controller
node, which distributes the mode switch via WCB. The outer loop of the application used
for global control and the epoch of WCB is hard real-time, to ensure synchronisation of the
communication. The inner loop, which is only used on the sensor/actuators for local control
and sensor measurements, therefore is soft real-time.

Bas Boot Master of Science Thesis

5-6 Node types 39

5-6 Node types

Each node has its role in the network. These roles will be explained in detail in this section.
The role for each node is configured in the firmware and selected based on the IEEE MAC-
address during boot. Relay mode is default and selected when the address is not configured
in the firmware. This makes it easy to add extra relay nodes to extend the network. The
roles for the Fireflies connected to the testbed can be found in Table 5-2.

Name Id IEEE MAC-address Role
FF1 201 0x00, 0x12, 0x4B, 0x00, 0x19, 0x4A, 0x51, 0x04 Sensor/Actuator
FF2 202 0x00, 0x12, 0x4B, 0x00, 0x19, 0x4A, 0x51, 0x6c Sensor/Actuator
FF3 203 0x00, 0x12, 0x4B, 0x00, 0x19, 0x32, 0xe6, 0x91 Sensor/Actuator
FF4 204 0x00, 0x12, 0x4B, 0x00, 0x19, 0x4A, 0x52, 0x05 Sensor/Actuator
FF5 205 0x00, 0x12, 0x4B, 0x00, 0x19, 0x4A, 0x51, 0xa8 Controller
FF6 206 0x00, 0x12, 0x4B, 0x00, 0x19, 0x4A, 0x51, 0xd7 Relay
FF7 207 0x00, 0x12, 0x4B, 0x00, 0x19, 0x4A, 0x51, 0xcd Relay
FF8 208 0x00, 0x12, 0x4B, 0x00, 0x19, 0x4A, 0x51, 0xb5 Relay

Table 5-2: Node configuration for each Firefly of the network at the water testbed.

5-6-1 Controller node

The controller node receives commands over serial port, does global control and synchronises
the WCB network. So it is both a controller of the network protocol and a controller for the
water irrigation system. When not clear from context which role is referred to, the controller
will be called global controller when referring to plant control, and network controller for
WCB synchronisation. When it starts the default mode is ‘manual control’. In manual
control both global and local controllers are disabled. The network controller just sends the
desired actuator values to the sensor/actuator nodes. The desired value can be set by sending
a (human readable) string with the id of the sensor/actuator and the servo value over the
serial port to the network controller. The command ’203 255’ for example will fully open the
gate connected to FF3. In automatic control mode for reference tracking the global and local
controllers will try to reach a target level for pool 1, 2 and 3. These target levels are currently
hardcoded in the firmware at 0.25, 0.20 and 0.15m. To switch between modes the commands
’205 0’ and ’205 1’ put the application in manual or automatic control mode. The scripts to
calculate the parameters for the global controller, and write the C code for it, to include in
the application can be found in Appendix A-2.

5-6-2 Sensor/actuator node

The sensor/actuator nodes read the sensors, handle global control and do local control to
actuate the gates. Because the electric water pump is inside the water tank connected to
the system, the pressure sensors are disturbed by it (Figure D-1a). When we perform a Fast
Fourier transform in Matlab on the sensor data (Figure D-1) it shows frequency spikes at 22
and 50 Hz when the pump is operating which can be filtered out (Figure D-1b). The controller
network operates at 1 Hz so it cannot respond to faster changes, therefore it will not affect the

Master of Science Thesis Bas Boot

40 Wireless control implementation

controller’s performance to add a lowpass filter at 1 Hz to the sensor signal. For a first order
Butterworth filter (Equation 5-1) and a sampling rate of 128 Hz this results in a = [1.0000,
-0.9521], b = [0.0240, 0.0240].

Y (z) = b(1) + b(2)z−1

1 + a(2)z−1 X(z) (5-1)

Because filtering happens in the fast inner loop of the application, the implementation must
be as fast as possible. The Fireflies do not have floating point hardware [34] therefore a
fixed point integer implementation has been chosen, in which only basic operations are used.
With just minimal error the filter values can be relaxed to a = [1, (2−5 − 2−7)] and b =
[(1 − 2−5 − 2−6), (1 − 2−5 − 2−6)] which makes it possible to replace the floating point
multiplications with basic additions and bit shifts. The pressure values are of type uint16, so
on the 32-bit architecture of the Firefly 16-bit extra precision can be added for calculations
and storing intermediate results without loss of performance.

When operating in automatic control mode the sensor/actuator nodes also perform local
control which runs in sync with the epoch. Therefore the controllers (Section 4-1) do not
need to be optimised like the sensor filter, and can be implemented using variables of type
double. This not only makes implementation easier, but also development of the controller,
because values from Matlab can directly be used. The sensor/actuator node also converts
the desired flow to a servo setting for the gate as described in Section 3-6. This also happens
in sync with the epoch to prevent flooding the servos with control signals. The scripts to
calculate the parameters for the local controllers, and write the C code to include in the
application can be found in Appendix A-2.

5-6-3 Relay node

The relay nodes do not implement any functionality, besides connecting to the WCB network.
While connected they will automatically relay communication and can be used to increase
reliability or extend the range of the network.

5-7 Scheduling

The Fireflies have to perform multiple tasks which are time critical. Therefore it is important
that their task schedule can meet the constraints. The most important task on the Fireflies
is communication, because the protocol has to stay in sync. To make sure this process meets
its timing constraints, it has been implemented as a hard real-time process. Measuring the
sensors, which only happens on the sensor/actuator nodes, is the most time consuming task,
but has been implemented soft real-time, because a small delay would not hurt the overall
performance, because the system is not able to respond to changes faster than 1 second, while
measurements are being taken at 128 samples per second. A full time-analysis has not been
done, but when increasing the number of measurements no deadlines where missed, until we
got over 200 samples per second, so 128 which will be used in the application, is a safe choice.

Bas Boot Master of Science Thesis

5-8 Serial communication 41

5-8 Serial communication

The only way the Fireflies can communicate, besides WCB, is over a serial connection. There-
fore this connection is used for debugging, remote controlling and remote communication. The
different communication modes will be explained in this section. The Fireflies can communi-
cate over UART which has been configured at the maximum speed of 460800 baud to minimise
communication delays. The software can be compiled for two types of communication: data
logging to perform experiments on the testbed, and development logging to view information
about operation of the app for development. Both can be configured via the logging header2.

5-8-1 Data logging

When data logging is enabled, development logging will be disabled automatic to prevent
interference.
Different modes:

Mode Description
NONE No logging.
BEP Log sensor and actuator values every epoch as csv on controller (only

for use in dashboard of bachelor end project).
RAW Log unfiltered sensor values on sensor node at full speed of the inner

loop.
NORMAL Log sensor data as used by the application in mm (controller and

sensor node).
HIL Send actuator data and receive sensor data in binary format for HIL

simulation.

Table 5-3: Overview of the data logging modes over the serial connection for the control appli-
cation.

5-8-2 Development logging

When data logging is disabled, development logging can be enabled by setting a log level.
This log level can be any combination of:

Level Description
NONE No logging.
INFORMATION General information about the application (eg. initialisation and flow).
DEBUG Used to output debug messages. These should be removed after de-

bugging or set to a more appropriate logging level.
COMMUNICATION Information about communication over the WCB protocol.
ERROR Information about errors.
ALL Enables all logging levels.

Table 5-4: Overview of the development logging levels over the serial connection for the control
application.

2/app/wcb-lab/logging.h

Master of Science Thesis Bas Boot

42 Wireless control implementation

5-9 Visual feedback

As explained in Section 5-8 the only way to communicate with the Fireflies, is over the serial
connection, but data communication conflicts with development logging. Therefore some
visual feedback has been added using the RGB LEDs on the Fireflies to help debugging.
Before an epoch start the LED switches off, therefore the pulse of the blinking LED shows
the epoch and control period. The colour of the LEDs on the Fireflies give additional feedback,
as shown in Table 5-5.

Node type Colour Description
Controller GREEN Epoch start.
Controller RED No event received, early sleep (WCB-E only).
Relay YELLOW In sync with controller.
Relay BLUE Missed synchronisation.
Relay BLUE Extra sleeping (WCB-E+ only, not blinking)
Relay OFF Early sleep (WCB-E only).
Sensor/Actuator RED In sync with controller, servo at 0 (closed).
Sensor/Actuator YELLOW In sync with controller, servo at 1-254.
Sensor/Actuator GREEN In sync with controller, servo at 255 (fully opened).
Sensor/Actuator BLUE Missed synchronisation.
Sensor/Actuator BLUE Extra sleeping (WCB-E+ only, not blinking)
Sensor/Actuator OFF Early sleep (WCB-E only).
Sensor/Actuator MAGENTA Simulation measurement corrupted (HIL only).

Table 5-5: Visual feedback on the Fireflies.

5-10 Simulation

To prepare experiments and test controller designs, it is convenient to have a full simulation,
similar to the real testbed setup. The combined simulation [24], Section 2-1-5) was used as a
starting point and reference, but to have a simulation more close to the real water testbed and
controller implementation, a new simulation was created in Simulink (Appendix E-1). This
simulation still uses the combined global controller because this will also be implemented on
the hardware. The pools however were split into the local compensator (Wi) and a first order
model of the plant (Pi), to mimic the the local compensator implementation on the hardware
and the response of the pools of the testbed. The delay (τi) in the pools is simulated using a
digital delay, and the inflow (ui) a pool is negated from the previous pool Pi−1 without delay.
The code for the simulation can be found in the repository provided in Appendix A-2.

5-11 Hardware-in-the-loop

Controlling the testbed did not work as desired, as shown in Section 6-2 due to unmodelled
disturbances. To be able to perform the experiments for this thesis on the real hardware,
without the uncertainties of the real plant, a hardware-in-the-loop (HIL) simulation was
created. The purpose of HIL is to create a simulation in such a way that the hardware cannot

Bas Boot Master of Science Thesis

5-11 Hardware-in-the-loop 43

distinguish between controlling the real or the simulated system [8]. Therefore adaptations
to the application should be as minimal as possible. In the control application, the only
difference between normal operation and HIL operation is the communication with the sensors
and actuators, which has been replaced by serial communication. Note that logging over
the serial port has to be disabled not to interfere. The simulation of the system has been
implemented in Simulink, based on the full simulation to test the controller (Section 5-10),
but adapted to be able to connect it to the Fireflies. The Simulink model can be found in
Appendix E-2, and the code in the repository described in Appendix A-2. The flows over the
gates are normally simulated, based on the water levels and servo setting (Section 5-11-2),
but it is possible to bypass this, and use the desired flows calculated by the sensor/actuator
nodes directly, which of course is less realistic, but more close to the full simulation which is
helpful for comparison.

5-11-1 Communication

Simulink needs to send two simulated sensor values to each sensor node, which are 16 bit
unsigned integers. The nodes only need to send an unsigned byte for the servo command to
the simulation. Because the datatypes in serial communication with Simulink needs to be
symmetric, 24 bytes can be used to send more information to Simulink, without increasing
communication demand. These are used to send the radio on time in milliseconds as an
unsigned byte which is typically in the range of 20-120ms, and the desired flow as a 16 bit
unsigned integer. Because the flow is implemented as a double it has to be scaled from -
0.01/0.05 to 0/65535. All communication happens in big-endian order because of the Firefly’s
architecture [34], as shown in Table 5-6.

header 0 1 2 3
To Simulink n/a flow (msb) flow (lsb) radio servo
From Simulink ’#’ sensor1 (msb) sensor1 (lsb) sensor2 (msb) sensor2 (lsb)

Table 5-6: HIL serial communication byte order.

5-11-2 Gates

The flow over the gates has been simulated using the simulated water level on both sides, the
servo setting and the model from Section 2-1-1. Also to make the simulation more realistic
opening and closing the gates could be rate limited, using timings of the real gates of the water
testbed, but we have removed this feature to reduce the disturbances in our experiments.

Master of Science Thesis Bas Boot

44 Wireless control implementation

Bas Boot Master of Science Thesis

Chapter 6

Experiments

To test the control application and compare periodic and event-triggered control, a scenario
(Section 6-1) for rejecting disturbance was run with different settings. First the scenario
was tested on the real testbed (Section 6-2) but because this did not work as desired, a
switch to hardware-in-the loop (Section 6-3) was made which showed ETC can greatly reduce
communication without much performance loss. As a last contribution a setup was designed
to do experiments with ETC+ (Section 6-4), which shows this hybrid approach can reduce
communication times even further.

6-1 Scenario

For comparison of the results it is necessary to have a scenario for the experiments. In a
water irrigation system, water levels are typically around the reference set point, until a
farmer disturbs the system by using water to irrigate his crops. The scenario chosen for the
experiments on the water testbed unit, is therefore to start with all pools at their reference
levels of 0.25, 0.20 and 0.15 m. After that a step disturbance will be created in pool 3 by
opening an out-take for 30 minutes (1800 seconds). The input disturbance created by the
flow should then be rejected by the controller. Afterwards we can analyse performance of
the system based on the reference error, and the performance of the wireless control network
based on the radio on time.

6-2 The water testbed unit

One of the goals of this thesis was to implement a wireless control network on the testbed
unit at TU Delft following up on the work of [24]. Therefore the first experiments were done
using a controller, designed as described in Chapter 4.

Master of Science Thesis Bas Boot

46 Experiments

0 500 1000 1500
time (s)

0.05

0.1

0.15

0.2

0.25

0.3

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels.

0 500 1000 1500
time (s)

-20

0

20

40

60

80

100

120

si
gn

al
 (x

 1
0-4

)

global1
local1
global2
local2
global3
local3

(b) Control signals.

Figure 6-1: Time evolution of water levels and control signals after a step disturbance on the
testbed using periodic wireless control with controller from Section 4-1 and 4-2. The controller
fails to stabilise the references and the water levels slowly drift away. Notice there is a drop in the
control signal because of a reset of the local compensator which cannot create the desired flow.

Unfortunately the first controller, described in Section 4-1 and 4-2, was not able to reject
the disturbance, as demonstrated in Figure 6-1. To further investigate this problem a full
simulation was run which showed that even without any restrictions (eg. water can flow up,
and water levels can be negative) it took the controller 5 hours to reject the disturbance
(Figure D-3). From this, the assumption was taken that the controller was too slow, and
bandwidth needed to be increased.

This faster controller, designed in Section 4-3, did a much better job in simulation (Figure D-
5) where it rejected the disturbance in 30 minutes. On the real testbed however, it was not
able to do this, due to disturbances added by imperfections of the model especially caused by
problems with the gates (Section 3-7) which cannot be positioned very accurate and always
have some leakage. From the plots we can see that pool 2 and 3 are going in the right
direction, but pool 1 is not. It might be possible that a longer experiment will also correct
pool 1, but longer experiments are not feasible at the moment, because the water level in
pool 0 representing the main stream has to be controlled by hand to keep it above 25 cm and
below 35 cm to avoid overflow (Section 3-7).

Bas Boot Master of Science Thesis

6-3 Hardware-in-the-loop 47

0 200 400 600 800 1000 1200 1400
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels.

0 200 400 600 800 1000 1200 1400
time (s)

0

50

100

150

200

250

300

si
gn

al
 (x

 1
0-4

)

global1
local1
global2
local2
global3
local3

(b) Control signals.

Figure 6-2: Time evolution of water levels and control signals after a step disturbance on
the testbed using periodic wireless control with controller from Section 4-3. This controller is
beginning to stabilise the references for pool 2 and 3, but pool 3 is still drifting away.

6-3 Hardware-in-the-loop

Because experiments longer than half an hour are infeasible, it was decided to switch to a
hardware-in-the-loop simulation Section 5-11). This would give the benefit of a plant with
a model closer to the model used for controller design, while still being able to use the
real hardware for the control network. Because the real hardware will be used, a realistic
comparison between radio on times for periodic and event-triggered control can be done.
Because the controller designed in Section 4-3 performed best in rejecting the disturbance
on both the real testbed and the full simulation, this controller will also be used for HIL
simulation.

6-3-1 Periodic control

To be able to compare event-triggered control we need to have a baseline. Because periodic
control is a proven technique, and expected to have the longest radio on time we choose this to
be our baseline. The periodic controller runs over the WCB-P network, both running at 1 Hz.
The result is shown in Figure 6-3. Although the response looks similar to the full simulation
with flow restrictions (Figure D-6) it is less smooth because in the full simulation desired flows
are used to control the system, while in the HIL simulation the gates are simulated based on
the servo actuation commands. The flows therefore cannot be realised as precise as in the
full simulation, because the servos have limited precision causing this less smooth behaviour.

Master of Science Thesis Bas Boot

48 Experiments

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels.

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio on.

Figure 6-3: Time evolution of water levels and control signals after a step disturbance in a HIL
simulation using periodic wireless control with controller from Section 4-3. The HIL simulation is
less smooth than the full simulation (Figure D-6) because the gates are also simulated.

The mean squared error for the water level in meters is 865 mm2. The radio turns on every
second during the 30 minutes experiment, resulting in a total on time of 118 s. In this WCB-P
configuration the radio is on for less than 7% of the time which is a great reduction compared
to always on, but now we want to know how much can be improved upon this, without too
much performance loss using ETC.

6-3-2 ETC

To investigate communication reduction and performance we redo the same experiment mul-
tiple times over WCB-E with different triggering settings. In Table 6-1 the results for periodic
control are shown, next to the ETC boundary cases, to never or always trigger an event, for
comparison. The metrics used for comparison of the performance are the mean squared error
used to compare overall performance, and the mean time squared error, which punishes errors
at the end more to compare the steady-state error. They are defined as:

mse =
. T

0 e2 dt

T
and mtse =

. T
0 e2t dt

T
,

where e is the error in mm, t the time in seconds and T the total time of the experiment.

description radio on (s) trigger ratio mse (mm2) mtse (mm2s)
Periodic control 118.0 1801 865 872
ETC (never trigger) 27.4 0 n/a n/a
ETC (always trigger) 128.9 1801 867 874

Table 6-1: Overview of the results for the experiment from Section 6-1 on WCB-P and boundary
cases for WCB-E.

Note that ETC always triggering, needs more communication than periodic control because
there is some overhead in the protocol as described in Section 2-3-5. The minimal communica-

Bas Boot Master of Science Thesis

6-3 Hardware-in-the-loop 49

tion time is 27.4 s when there are no triggers at all. Looking at the errors for this experiment
are not useful, because there is no control at all. The results for the regular experiments to
show the influence of varying σ and # are shown in Table 6-2. The time evaluations of the
experiments can be found in Appendix D-3.

σ # (mm2) radio on (s) triggers mse (mm2) mtse (mm2s)
0 0 103.8 1347 866 872
0.1 1 36.2 157 844 848
0.05 1 37.6 181 865 873
0.025 1 37.2 177 866 870
0.05 2 37.3 175 866 881
0.025 2 36.6 164 828 833
0.1 2 35.2 140 859 863
0.2 2 34.1 123 833 844
0.4 2 35.4 142 877 887
0.4 4 34.2 121 550 558
0.4 8 32.6 93 928 944
0.4 16 34.4 127 852 888
0.2 16 34.6 128 896 965

Table 6-2: Overview of the results for the experiment from Section 6-1 on WCB-E with different
parameters.

Because the experiments take 30 minutes to run it was not feasible to repeat them multiple
times with slightly changed starting conditions to have statistically solid results. Therefore
we must be cautious taking conclusions from them.

We can however conclude that if σ and # are kept small communication time can be reduced
to about 35 seconds, which only a third compared to periodic control over WCB-P, with
almost the same error, although the time evaluations (Section D-3) show more oscillations as
σ and # increase. It is good to notice that the mse and mtse do not differ very much for
the experiments with small values, which means that they do reject the disturbance without
much steady-state error.

When σ and # get larger (σ ≥ 0.4, # ≥ 8) the errors increase and also the oscillations get so
large that we might destabilise the system, while not even gaining that much communication
reduction. That can be explained by the fact that we are already very close to the theoretical
minimum of 27.4 seconds when there are no events at all.

A noticeable result is the case with σ = 0 and # = 0. At first glance one might expect this to
be the same as the always trigger case, because with our triggering condition (Section 4-5) a
trigger can only be absent when the difference between the current water level y and the kept
value for it ŷ is zero. The precision of sensors in the HIL simulation however is the same as
on the real testbed, which makes it impossible to detect changes in pool 1, 2, and 3 smaller
than 0.02 cm, 0.02 cm and 0.005 cm.

Another remarkable phenomenon is that one case has a significant smaller error than periodic
control, with σ = 0.4 and # = 4. From the plot of this experiment (Figure D-19) this looks
like a lucky coincidence, were events are timed such that pool 2 asks so much water that the

Master of Science Thesis Bas Boot

50 Experiments

integrator of pool 1 has time to wind up, which then gives it a boost to correct faster than
normal, when pool 2 does not ask for water.

6-4 ETC+

ETC+ did not work as desired on the HIL simulation, created for the experiments with
periodic control and ETC. Therefore a new simulation was created, and the control application
was adapted for it. Despite problems with ETC+ caused by communication problems of
the control network, the experiments that succeeded show ETC+ has potential to reduce
communication time compared to ETC.

6-4-1 Setup changes

Mismatches between the state of the control system and the prediction lead to non trivial
predictions of a single sleeping period, therefore the setup was re-created to keep them as
close as possible. Although the PSTC algorithm [11] we are using to calculate conservative
sleeping times, takes bounded disturbances into account, we need to know these bounds for
al states. Small extra disturbances caused by delays or modelling differences, resulted in too
conservative predictions of ‘one’ sleeping period. Therefore a new HIL simulation was created
in Python, Appendix A-3 which is computationally less intensive than the Simulink version, so
it is less likely to cause delays on our PC. Also the model used to simulate the pools has been
changed to use the Padé approximation, so we could use the same model in the simulation as
in the PSTC algorithm. To make sure the simulation runs in sync with WCB, a version of the
control application was created which communicates directly with the simulation from the
different WCB phases for synchronisation. Because the PSTC algorithm assumes a heartbeat
(a maximum number of periods between two events) to do its offline calculations, this has
been added to the control application. PSTC assumes the control action is not updated in
between events, so this has also been changed in the control application. For more reliability
of receiving events, the number of transmissions (NTX) for the EV-slot has been increased
from 2 to 3. Note that this new version of the software is only intended to be used for these
experiments, and not for future development, because it can not be connected to the real
hardware anymore.

6-4-2 Initialisation problem

Unfortunately after the changes made in Section 6-4-1 there were still problems, with the
initialisation state of the PSTC algorithm. Although we tried to make disturbances for this
setup as predictable as possible, we still encountered problems. Because the PSTC algorithm
is observer based it needs to initialise, for which the network controller enforces two events.
After that it should only re-initialise when the disturbance changes. This happens, and works
correctly in the ETC+ setup. Unfortunately when there are problems with communication in
the WCB network the states of the control network and the PSTC algorithm get out of sync,
causing it the have to re-initialise at every event. Our assumption is that the problem is a
mismatch between the controller states, but we have not been able to verify this. A problems
always start when there is a spike in the radio on time, as shown in Figure 6-4 at 234 seconds,

Bas Boot Master of Science Thesis

6-4 ETC+ 51

but not every spike causes a problem. The loggings show all Fireflies have their radio on
for over hundred milliseconds, except FF2 which is only on 21 ms. This indicates that FF2
did not enter the collection phase, and the network controller tries to recover because it does
not get the T-slots from it. This could mean that it did not receive both EV-slots, although
this seems unlikely given the high reliability of Glossy (Section 2-3-1) and the frequency this
happens. It could also mean that there is a bug in the control application, but we have not
been able to find it yet.

0 50 100 150 200 250 300
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

(a) Radio

0 50 100 150 200 250 300
time (s)

0

0.2

0.4

0.6

0.8

1

in
iti

al
is

at
io

n
st

at
e

(b) Initialisation state

Figure 6-4: Time evolution of a failed experiment for ETC+. When the experiment starts
initialisation is needed, and again when the disturbance changes after 20 seconds, after that
no re-initialisation should be needed. After a communication problem at 234 seconds however,
re-initialisation happens at every event.

6-4-3 Results

Despite the communication problems, we were able to show ETC+ can reduce communication
time for a few experiments. Because of the large difference between this setup and the one
used for ETC in Section 6-3-2, we cannot compare the results. Therefore we will also redo ETC
experiments on this new setup. The new ETC experiments and the ETC+ experiments to
compare them to can be found in Table 6-2. The time evaluations for the ETC+ experiments
can be found in Appendix D-4.

σ # (mm2) radio on (s) triggers mse (mm2) mtse (mm2s)
ETC no trigger 42.0 69 n/a n/a
ETC 0.1 1 48.9 182 808 818
ETC+ 0.1 1 46.6 197 812 822
ETC 0.2 2 48.8 189 826 838
ETC+ 0.2 2 42.2 195 862 873

Table 6-3: Overview of the results for the experiment from Section 6-1 on WCB-E+ with different
parameters.

Master of Science Thesis Bas Boot

52 Experiments

The ETC+ experiment with σ = 0.1 and # = 1 unfortunately had a communication problem
after 1748 seconds of the 1800 second experiment, but despite this its radio on time is 1.7
seconds shorter than normal ETC. The ETC+ experiment with σ = 0.2 and # = 2 did not
have communication problems. It does have a few extra triggers, compared to ETC, caused
by initialisations of the algorithm in the beginning, but its radio on time is almost six seconds
shorter with 42.2 ms. This is almost the same radio on time for the case where the only
triggers are caused by the heartbeat of the system, which shows the potential of the hybrid
approach. The performance with this setting however is worse than normal event-triggered
control, caused by oscillations at the beginning during extra sleeping (Figure D-24a). Sleeping
periods are large in this area (Figure D-24c), so this could be solved by making the predictions
more conservative, at the cost of more communication time, if desired.

Bas Boot Master of Science Thesis

Chapter 7

Discussion and conclusions

7-1 Conclusion

As intended we implemented a wireless control network on the water testbed unit at TU Delft
using the protocols WCB-P and WCB-E. There were several mostly mechanical problems
with the testbed which prevented to run the experiments we had in mind to compare the
performance of the different control methods. The Contiki-application on the Firefly network
however worked well. therefore a switch to a hardware-in-the-loop simulation was made.
Using the HIL simulation it was possible to show all parts of the application worked, and
compare the protocols. WCB-P can do control with only 7% radio on time, but WCB-E only
needs 2% with almost the same performance to reject a disturbance.
With an extension on WCB we were able to implement an aperiodic hybrid approach of ETC
and predictive self-triggered control, which call ETC+. Although this approach does not
work well when there are communication errors, the succeeded experiments show that ETC+
can reduce communication, compared to normal ETC. Although it needs some extra triggers
for initialisation, the extra sleeping periods reduce communication enough to compensate for
this.

7-2 Future work

7-2-1 Simulation

Because one of the goals was to implement an application to control the water testbed unit,
this is where we started instead of a simulation. A hardware-in-the-loop simulation on the
other hand gives much more control, and could even be used to do normal STC because you
can control everything in simulation. For this thesis the HIL simulation was created to run
in Simulink, which made it possible to do more from home during the Covid-measures, but
my advice would be for future development to run the simulation on Speedgoats, which can
run much faster and are therefore more accurate.

Master of Science Thesis Bas Boot

54 Discussion and conclusions

7-2-2 Control the real water testbed

Because we were not able to stabilise the real water testbed, this should be looked at. Many
improvements to the setup are explained in Section 3-7, but most important to fix is the
leakage of the gates. My advice would then be not to try to control all 3 pools but start with
one or two and use pool 1 as extra water reservoir to make it easier to regulate the inflow of
the system.

There is also an option to slow down the system by placing barriers with holes in the pools.
This will make it easier to control the system and more similar to a real water irrigation sys-
tem. Unfortunately we did find out about this option late in the project. A small experiment
with the barriers showed that the holes should be made smaller to create a significant slow
down.

I would also recommend to design a fully centralised controller, which can take advantage
of knowledge of the full system, so known flows from one pool to the other do not have to
be treated like disturbances. This will make the overall system more stable because errors
will not propagate through the system. This centralised controller could even be run on the
external PC, in a setup similar to the setup used for ETC+, when an extra period delay is
modelled into the plant, which will make designing the controller much easier.

7-2-3 Control application

The reference values and controller parameters are now hardcoded in the firmware of the
application. To make control design easier it would be good to make them configurable. The
mechanism to switch from manual to automatic mode could be used to distribute these from
the network controller to the other nodes. These are the reference values and the controller
parameters. Development of WCB-P and WCB-E, which were used for this thesis, has been
done in two separate development branches which are not in sync anymore. Merging them
again seems very difficult, but might be worth looking at to speed up future development. An-
other thing to look at is integrator windup, if we can get a better estimation or a measurement
of the flows over a gate.

7-2-4 Protocol

Because we were mainly interested in a comparison between the protocols we have not tuned
them, we only made sure that WCB-P and WCB-E use the same settings for a fair comparison.
Especially because we ran into communication problems during the ETC+ experiments, it
might be a good idea to investigate the reliability of WCB in a practical setup, and find the
optimal balance between speed reliability, for both single and multi-hop networks.

Also we used 1 Hz for periodic control because this was the maximum speed the first version
of our application could run. Evaluating this control period, and reducing the frequency is
an easy way to reduce communication. Of course this reduction might degrade performance.

Bas Boot Master of Science Thesis

7-2 Future work 55

7-2-5 ETC+

Because the experiments show ETC+ can reduce communications, it is promising to look
further into. The main problem we encountered when using PSTC to do the conservative
predictions, is that it cannot re-initialise after a communication problem. This happens when
one or more Fireflies do not enter the collection phase. It should be looked into why this
happens. It could be a wireless communication problem, but it could also be a bug in the
code.

Another thing to look at, and which might be a cause of the re-initialisation problem, is
the update of the controller state. The algorithm now updates the state itself, based on the
feedback. Because of this ‘open loop’ update, it cannot recover when something goes wrong.
When the setup would be changed to send the controller state from the control network to
the algorithm, this could make it more robust.

It can be very challenging to find all bounds on the disturbances, which need to be known for
the PSTC algorithm to work. When a bound is violated the algorithm now just re-initialises,
but it might be interesting to investigate if it is possible to detect what disturbance caused
this violation and automatically adapt the bounds for it.

The sleeping times predicted by PSTC decrease when the reference error gets smaller. A
small improvement might therefore be to switch between ETC and ETC+ based on the
current error.

Master of Science Thesis Bas Boot

56 Discussion and conclusions

Bas Boot Master of Science Thesis

Appendix A

Codebase

All code for this thesis has been developed under version control, and shared via Gitlab and
Github. The control application has been written in C (A-1). Experiments and simulations
have been performed in Matlab (A-2), which was also used to do PSTC predictions. Python
was mainly used to create helper scripts to collect data from the Fireflies (A-3), but also does
an alternative HIL simulation for the ETC+ experiments.

A-1 Control application

The control application has been written in C for the Contiki operating system. Because it it
has been written on top of the Wireless Control Bus protocols, which were developed at the
University of Trento [30], the code cannot be made public, yet. The repository is maintained
by Gabriel Gleizer of the SENTIENT (Scheduling of Event-Triggered Control Tasks) research
group at the TU Delft. It contains five branches:

• periodic

• etc

• dev-periodic

• dev-etc

• dev-etcp

Periodic and etc are the branches with the original code for WCB-P and WCB-E. Dev-periodic
and dev-etc contain the extensions and application created for this thesis. Dev-etcp is a copy
of dev-etc, and is only intended to do some ETC+ comparisions, not for future development.

https://gitlab.tudelft.nl/ggleizer/wireless-control-bus

Master of Science Thesis Bas Boot

58 Codebase

The code is not public yet because it contains code from the D3S Research Group of the
University of Trento who will make their code public after [30] has been approved. When it
has been approved their code will be made public, and my application built on it can also be
made public.

A-2 Identification and simulation

The scripts to identify the water testbed, create the controllers, do the simulations and create
the plots are written for Matlab and Simulink (R2019b Update 8) and CVX (Version 2.2,
Build 1148) with SDPT3 (4.0). Also the hardware-in-the-loop simulation in Simulink, and
the scripts to do the PSTC predictions to be used by WCB-E+ can be found here.

https://github.com/basboot/WIS-sim

A-3 Logging and simulation

The control application can send logging data over the serial connection. To make it easier to
save data from multiple Fireflies and combine them into a single csv-file Pyhon scripts have
been written for this task. Also a less realistic HIL simulation to do ETC+ experiments can
be found here. The version of Python used is 3.8, with additional packages Numpy (1.21.1),
PySerial (3.4) and Scipy (1.7.1).

https://github.com/basboot/WIS-com

Bas Boot Master of Science Thesis

Appendix B

WCB setup in Trento

Wireless Control Bus (WCB) was originally developed by the D3S Research Group for use
on the testbed at the University of Trento. In this appendix their setup will be explained
(Appendix B-1) and the lifecycle functions of the protocol omitted in Section 5-3 because they
were not needed in our setup, will be documented (Appendix B-2).

B-1 Testbed in Trento

The testbed at the University of Trento is a network-in-the-loop setup to test performance of
the WCB protocols [30]. It has a network of Fireflies which are not connected to a real water
irrigation setup, but are connected to a Simulink simulation like in our hardware-in-the-loop
simulation (Section 5-11). The difference with our HIL simulation is that the controllers also
run in Simulink and not on the Fireflies. Therefore it is not needed to send actual control
data over WCB. Instead it is only checked if measurements and control messages are received
in the correct epoch, while the actual data comes from Simulink.

B-2 Lifecycle and hook functions

To check network reliability and do communication with Simulink some extra hook functions
were added to the protocol which are specific for this setup in Trento, and are not part of the
protocol itself. A full overview of the implementation used, including these extra functions
and without the functions added for this thesis, is shown in Figure B-1.

Master of Science Thesis Bas Boot

60 WCB setup in Trento

app_have_neZ_readings()

S\nchUoni]aWion (S)

SWaUWXp

app_cr\stal_start_done()

app_pre_epoch()

app_pre_S()

app_post_S()

EYenW phaVe (EV)

app_pre_EV()

app_post_EV() CoillecWion phaVe (T)

app_pre_Tded()

app_post_T()

AcknoZledge (A)

app_pre_T()

RecoYeU\ phaVe (R)

app_post_A()

DiVVeminaWion phaVe
(CTRL)

app_pre_CTRL()

app_post_CTRL()

app_epoch_end()

if noW all VenVoUV aUe acknoZledged

if no
eYenWV

aUe
VenW

app_post_T()

UepeaWed
foU all

VenVoU
nodeV

WCB-E onl\

UepeaWed
foU

UeliabiliW\

UepeaWed
foU

UeliabiliW\

app_complete_reception() app_complete_reception()

app_control_functions()

cr\stal_print_epoch_logs()

app_store_collection_bitmap()

app_have_neZ_ctrlcommands()

app_acquire_measurement()

Sensor node onl\

Controller node onl\

FoU VeWXp in TUenWo, noW paUW of pUoWocol

Figure B-1: Lifecycle and hook functions of the WCB implementation, as used for the testbed
at the university of Trento . For clarity all function parameters have been omitted. The full
signatures can be found inside the header file of the protocol.1

A full explanation of the protocol and lifecycle can be found in Chapter 2-3. The extra
functions for the setup (in yellow) are described below.

Bas Boot Master of Science Thesis

B-2 Lifecycle and hook functions 61

app_have_new_readings() Checks if Simulink sensor readings have been received
in the correct epoch.

app_store_collection_bitmap() For analysis purpose. Stores the bitmap at the end of
the Collection Phase.

app_have_new_ctrlcommands() Checks if Simulink control commands have been received
in the correct epoch.

crystal_print_epoch_logs() For analysis purpose. Logs statistics for this epoch.

1/net/crystal/crystal.h

Master of Science Thesis Bas Boot

62 WCB setup in Trento

Bas Boot Master of Science Thesis

Appendix C

Water testbed images

In this appendix, images of all parts of the water testbed unit at TU Delft, as described in
Chapter 3, are shown.

C-1 Images

Figure C-1: The testbed is located in the basement of TU Delft and placed inside a bin to
prevent flooding.

Master of Science Thesis Bas Boot

64 Water testbed images

Figure C-2: Firebox. In the lab there are 8 Fireboxes containing the Fireflies.

(a) Gate mechanism. (b) Servo.

Figure C-3: Gate. The gates are operated by the servos which pull them up and down with gears
connected directly to them.

Figure C-4: Main valve. The main valve leads to pool0 and has to be controlled by hand.

Bas Boot Master of Science Thesis

C-1 Images 65

(a) In-take. (b) Off-take.

Figure C-5: In- and off-takes to simulate disturbances. The in- and off-takes for pool1 to pool3
are controlled by hand.

(a) Undershot gate. (b) Overshot gate.

Figure C-6: Gate 3 and 4. Undershot gates are used for gate1 to gate3. The last gate gate4 is
an overshot gate.

Master of Science Thesis Bas Boot

66 Water testbed images

Figure C-7: Power supply for the testbed. There are no switches for the pumps, so they are
operated by plugging them in. The plug on the left is used to connect the testbed to the ground.

Figure C-8: Water pump. The pumps are located inside water basin under the testbed.

Figure C-9: Pressure sensor. The sensors are located under the pools.

Bas Boot Master of Science Thesis

C-1 Images 67

Figure C-10: Powered usb-hubs. The Fireflies are connected to powered usb-hubs in the following
order (left to right): FF4, FF3, FF6, FF8, FF5, FF7, FF2, FF1.

Master of Science Thesis Bas Boot

68 Water testbed images

Bas Boot Master of Science Thesis

Appendix D

Plots

In this appendix, extra plots are shown which did not fit into the main text, and were not
absolutely necessary for the story. In Appendix D-1 the disturbance of the pumps and effect of
the digital filter can be found, in Appendix D-2 the full simulations referred to in Section 6-1
are shown and in Appendix D-3 the time evaluations of the hardware-in-the-loop simulations
for periodic and event-triggered experiments summarised in Table 6-2 are shown. The time
evaluations along with the predicted sleeping times for ETC+ are shown in Appendix D-4.

D-1 Filtering

0 50 100 150
time (s)

0

0.05

0.1

0.15

0.2

0.25

le
ve

l (
m

)

(a) Unfiltered

0 50 100 150
time (s)

0

0.05

0.1

0.15

0.2

0.25

le
ve

l (
m

)

(b) Filtered

Figure D-1: Comparison of the filtered and unfiltered sensor data for an experiment where the
pump is turned on in the middle.

Master of Science Thesis Bas Boot

70 Plots

0 10 20 30 40 50 60 70
f (Hz)

0

2

4

6

8

10

12

|P
1(

f)|

Figure D-2: Single-Sided Amplitude Spectrum of the unfiltered sensor data from Figure D-1a.

D-2 Simulated experiments

0 0.5 1 1.5 2
time (s) 104

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

le
ve

l (
m

)

reference 1
reference 2
reference 3

pool1
pool2
pool3

(a) Water levels (b) Control signals

Figure D-3: Time evolution of water levels and control signals after a step disturbance on the
unrestricted simulation using periodic wireless control with controller from Section 4-1 and 4-2.
The controller takes 5 hours the reject the disturbance the water reaches negative levels and
streams up from pool 2 to pool 3.

Bas Boot Master of Science Thesis

D-2 Simulated experiments 71

0 0.5 1 1.5 2
time (s) 104

-0.6

-0.4

-0.2

0

0.2

0.4

le
ve

l (
m

)

reference 1
reference 2
reference 3

pool1
pool2
pool3

(a) Water levels (b) Control signals

Figure D-4: Time evolution of water levels and control signals after a step disturbance on the
flow restricted simulation using periodic wireless control with controller from Section 4-1 and 4-2.
Results are similar to Figure D-3, but water does not flow up anymore.

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

50

100

150

200

si
gn

al
 (x

 1
0-4

)

global1
local1
global2
local2
global3
local3

(b) Control signals

Figure D-5: Time evolution of water levels and control signals after a step disturbance on
the unrestricted simulation using periodic wireless control with controller from Section 4-3. In
simulation it can reject the disturbance in half an hour without exceeding the minimum water
levels.

Master of Science Thesis Bas Boot

72 Plots

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

50

100

150

200

si
gn

al
 (x

 1
0-4

)

global1
local1
global2
local2
global3
local3

(b) Control signals

Figure D-6: Time evolution of water levels and control signals after a step disturbance on the
flow restricted simulation using periodic wireless control with controller from Section 4-3. The
result is the same as Figure D-5 because the controller does not ask for impossible flows.

D-3 HIL ETC experiments

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80
to

ta
l r

ad
io

 o
n

(s
)

FF1
FF2
FF3

(b) Radio

Figure D-7: Time evolution of water levels and radio on time after a step disturbance on the
HIL simulation using periodic wireless control with controller from Section 4-3.

Bas Boot Master of Science Thesis

D-3 HIL ETC experiments 73

0 500 1000 1500 2000
time (s)

-2

-1.5

-1

-0.5

0

0.5

le
ve

l (
m

)

reference 1reference 2reference 3
pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio

Figure D-8: Time evolution of water levels and radio on time after a step disturbance on
the HIL simulation using event-triggered wireless control with controller from Section 4-3 (never
triggering).

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80
to

ta
l r

ad
io

 o
n

(s
)

FF1
FF2
FF3

(b) Radio

Figure D-9: Time evolution of water levels and radio on time after a step disturbance on the
HIL simulation using event-triggered wireless control with controller from Section 4-3 (forcing a
trigger every period).

Master of Science Thesis Bas Boot

74 Plots

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio

Figure D-10: Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3 (σ = 0, # = 0).

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80
to

ta
l r

ad
io

 o
n

(s
)

FF1
FF2
FF3

(b) Radio

Figure D-11: Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3 (σ = 0.1, # = 1).

Bas Boot Master of Science Thesis

D-3 HIL ETC experiments 75

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio

Figure D-12: Time evolution of water levels and radio on time after a step disturbance on
the HIL simulation using event-triggered wireless control with controller from Section 4-3 (σ =
0.05, # = 1).

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80
to

ta
l r

ad
io

 o
n

(s
)

FF1
FF2
FF3

(b) Radio

Figure D-13: Time evolution of water levels and radio on time after a step disturbance on
the HIL simulation using event-triggered wireless control with controller from Section 4-3 (σ =
0.025, # = 1).

Master of Science Thesis Bas Boot

76 Plots

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio

Figure D-14: Time evolution of water levels and radio on time after a step disturbance on
the HIL simulation using event-triggered wireless control with controller from Section 4-3 (σ =
0.05, # = 2).

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80
to

ta
l r

ad
io

 o
n

(s
)

FF1
FF2
FF3

(b) Radio

Figure D-15: Time evolution of water levels and radio on time after a step disturbance on
the HIL simulation using event-triggered wireless control with controller from Section 4-3 (σ =
0.025, # = 2).

Bas Boot Master of Science Thesis

D-3 HIL ETC experiments 77

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio

Figure D-16: Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3 (σ = 0.1, # = 2).

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80
to

ta
l r

ad
io

 o
n

(s
)

FF1
FF2
FF3

(b) Radio

Figure D-17: Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3 (σ = 0.2, # = 2).

Master of Science Thesis Bas Boot

78 Plots

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio

Figure D-18: Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3 (σ = 0.4, # = 2).

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80
to

ta
l r

ad
io

 o
n

(s
)

FF1
FF2
FF3

(b) Radio

Figure D-19: Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3 (σ = 0.4, # = 4).

Bas Boot Master of Science Thesis

D-3 HIL ETC experiments 79

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio

Figure D-20: Time evolution of water levels and radio on time after a step disturbance on the HIL
simulation using event-triggered wireless control with controller from Section 4-3 (σ = 0.4, # = 8).

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80
to

ta
l r

ad
io

 o
n

(s
)

FF1
FF2
FF3

(b) Radio

Figure D-21: Time evolution of water levels and radio on time after a step disturbance on
the HIL simulation using event-triggered wireless control with controller from Section 4-3 (σ =
0.4, # = 16).

Master of Science Thesis Bas Boot

80 Plots

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio

Figure D-22: Time evolution of water levels and radio on time after a step disturbance on
the HIL simulation using event-triggered wireless control with controller from Section 4-3 (σ =
0.2, # = 16).

Bas Boot Master of Science Thesis

D-4 HIL ETC+ experiments 81

D-4 HIL ETC+ experiments

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio

0 500 1000 1500 2000
time (s)

0

2

4

6

8

10

12

14

16

co
ns

er
va

tiv
e

sl
ee

pi
ng

 p
er

io
ds

(c) Sleeping periods

0 500 1000 1500 2000
time (s)

0

0.2

0.4

0.6

0.8

1

in
iti

al
is

at
io

n
st

at
e

(d) Initialisation state

Figure D-23: Time evolution of water levels, radio on time, calculated sleeping periods and
initialisation state after a step disturbance on the HIL simulation using ETC+ with controller
from Section 4-3 (σ = 0.1, # = 1).

Master of Science Thesis Bas Boot

82 Plots

0 500 1000 1500 2000
time (s)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

le
ve

l (
m

)

reference 1

reference 2

reference 3

pool1
pool2
pool3

(a) Water levels

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

ra
di

o
on

 (m
s)

0

10

20

30

40

50

60

70

80

to
ta

l r
ad

io
 o

n
(s

)

FF1
FF2
FF3

(b) Radio

0 500 1000 1500 2000
time (s)

0

5

10

15

20

25

30

co
ns

er
va

tiv
e

sl
ee

pi
ng

 p
er

io
ds

(c) Sleeping periods

0 500 1000 1500 2000
time (s)

0

0.2

0.4

0.6

0.8

1
in

iti
al

is
at

io
n

st
at

e

(d) Initialisation state

Figure D-24: Time evolution of water levels, radio on time, calculated sleeping periods and
initialisation state after a step disturbance on the HIL simulation using ETC+ with controller
from Section 4-3 (σ = 0.2, # = 2).

Bas Boot Master of Science Thesis

Appendix E

Simulink models

This appendix contains images of the most important parts of the full simulation (Appendix E-
1) and the hardware-in-the-loop simulation (Appendix E-2). The code for the models can be
found in Appendix A-2.

Master of Science Thesis Bas Boot

84 Simulink models

E-1 Full simulation

��
��
��
�
�
�
��
�
�
�
�	

��
�

��
�
�
�
��
�
�

	
�
���
�	
��
�
�
��
�
�
��
��
�
�
�
��
�
�
�	
��
�
�
��
�
�

�
��
�
�
��
�
�
�
��
�

��
�	
��
�
�
��
�
�

��
��
��
�
�
�

��
�

��
�
�
�
��
�
�

�
��
�

��
�
�
�
��
�
���
��
�

��
�
�

�
��

��
��
�

��
�
�
�
��
�
�

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
�
�
��
�
�
��

�
�
	
��
�
�
��
�
�

��
�
�
�
��
�
�

��
�
�
�
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�

��
�
�
�
��
�
�

��
!
�
�
	
��
�
��
�
�

"
�
�

��
�
�
�
��
�
���
��
#
�
�

��
!
�
�
	
��
�
��
�
�

�
�
�
��
�

�
�
�
��
�

�
�
�
��
�

�
�
�
��

�
��

��
�
�
�

$
�
�
�
�	
�
�
��

��
�	
��
�
�
��
�
�

��
��
��

��
��
��

�
�
�

��
��
��

�
�	
��
��

�
�
�
��
�
�
��
�

��
�
�
��

��
�
�
��
�
%�
%�

&
�
�
��
	
��
�
�
��
�
�
�&
�
��
'�
�
�

��

��
�
�
�
(

�
�
�
��
	
��
��
�

��

��
�
�
(
��
��

�
�
�
�
�
��
)

��
!
�
�
	
��
�
��
�
�

�

��
��
��
�
�
�

&
�
�
��
	
��
�
�
��
�
�
�*
&
�
�+
�'
�&

�
�
�
�
�
��
)
��
�
�
(

�
�

��
�

�

��
�
�
�

,
�
�
�
��
�
�
��
�
�
��
�
���
��
�
��
��
�
�

�
�
�
�
��-
�
�
��
�
�
�	
�*
�
�+

	
�
��
�

��
�

��

�
�
��
�
�

��
�
�
�
��
�
���
�	
��
��
�
�
�
��
�
�
��
�
�
��
�
���
��
�

�
�
�
��

�
�
�
��

�
�
�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure E-1: Simulink model for the simulation of the water testbed unit.

Bas Boot Master of Science Thesis

E-1 Full simulation 85

�����

�

��
���

	

��

�

������

�����

�
���������������������������������������

�

��������

�

�������������

Figure E-2: Simulink model for the global controller.

Master of Science Thesis Bas Boot

86 Simulink models

��������	
�����������������������������

�
��
�������
���
��
�������

��
�������

�����	
����������

�
��
�������
���
��
�������

��
�������

��������������������

�

�
��
�������

�

�������������
�������������

Figure E-3: Simulink model for the local controller.

Bas Boot Master of Science Thesis

E-1 Full simulation 87

���

���

���

���

���	�
������

���

�����

���

���	�
�����

���

�����

���

���	�
�����

���

�����

��	���

�����

���

�����

�

���	��

�

���	��

�

���

�

���	��

�

���	���
���������

�

�����

�

���������

��������

��������

��������

Figure E-4: Simulink model for the pools.

Master of Science Thesis Bas Boot

88 Simulink models

���������	

��

�

������
���
�

���

���
���
�

���

���������	

��

�

������
���
�

���

���
���
�

���

���������	

��

�

������
���
�

���

���
���
�

���

�

�����	
������

������

�

�����

�

������

�

������

�

��
�������

��������

�������

��������

Figure E-5: Simulink model for the undershot gates.

Bas Boot Master of Science Thesis

E-1 Full simulation 89

����

����

����

����

����

�	�

�	�

�	�

�	�

�

�

�
�������

�

�
�����

Figure E-6: Simulink model of the local controller implementation on the Fireflies.

Master of Science Thesis Bas Boot

90 Simulink models

E-2 Hardware-in-the-loop

��
��
�
�
�
�
�	
�

�
�
��

��
�
�
��
�
�
�
�	
�
��
�
��
���
�
	�
�
��
��
�
�
��
�
�
�
	�
�
�

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�

�

�

�

�

�

!

"
��

�
��
�#
�
�

�
�

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
��
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

$
�
�
�%
&
��
�

#
'
�
�

#
"
#

�
��
�
�
�'
�

�
�

�
�

�
�
�
�

�
�'
�

�
�

�
�

�
��
�
�

��

��
�
�
�

�
�
�
�
(

)
��
�
�
'
�

�
��
�
�
�'
�

�
�

�
�

�
�
�
�

�
�'
�

�
�

�
�

�
��
�
�

��

��
�
�
�

�
�
�
�
(

)
��
�
�
'
�

�
��
�
�
�'
�

�
�

�
�

�
�
�
�

�
�'
�

�
�

�
�

�
��
�
�

)
��
�
�
'
�

�
��
�
�
�'
�

�
�

�
�

�
�
�
�

�
�'
�

�
�

�
�

�
��
�
�

��

��
�
�
�

�
�
�
�
(

)
��
�
�
'
�

�
�
	�
�
	�
�*
�
	�
��
��
�
�

��
�	
��

�
�
�

��
�	
��

��
�	
��

�

	�
��
�
�
�
�
��
�
�
��
�

��
�
�
��
�

��
�
�
��
�
+�
+�

"
�
�
��

��
�
��
	�
�
�
�,
"
�
�-
�%
�
�*
�	
�
��

�
��
'

��
.
�
�

	�

��
�
�

�
�
	�
��
��
�
�
�

"
�
�
��

��
�
��
	�
�
�
�,
"
�
�-
�%
�"
�

�
��
�
�
��
/
�
�
��
'

�
�
�
��

��
�
�*
�	
�
�
�
��
'
��
��
�

�
��
�
�
��
/

�
�
�
��

�
�
�
��

�
�
�
��

�
�

�
�

�
�

Figure E-7: Simulink model for the hardware-in-the-loop simulation of the water testbed unit.

Bas Boot Master of Science Thesis

E-2 Hardware-in-the-loop 91

�����������

�

	

�������������

�������

�����������

�

	

�������������

�������

�

��

�

��

�

��

�

��

�����������

�

	

�������������

�������

�����������

�

	

�������������

�������

�

��

�����������

�

	

�������������

�������

�

��

�����������

�

	

�������������

�������

�

��

�����������

�

	

�������������

�������

�

��

�

����

�

����

�

����

�

����

Figure E-8: Simulink model to convert water levels to pressure values.

Master of Science Thesis Bas Boot

92 Simulink models

����������	
����	�
������	������

��	������������������

����

������

��	������������������
��� ��
 !

	!"

��	����������������������#$"

"

�	��

"

%�&'��(��	
��

)

�	�
���(��	
��

�&�*&�	
�+�
�,--

�.&/���&0.�
��0&���
�	
0�.�1�)

���&�

2

	%�.

Figure E-9: Simulink model to do the serial communication with a Firefly.

Bas Boot Master of Science Thesis

Bibliography

[1] Contiki-os/contiki wiki on github. https://github.com/contiki-os/contiki/wiki.
(Accessed on 11/07/2020).

[2] Contiki: The open source operating system for the internet of things. http://www.
contiki-os.org/. (Accessed on 09/01/2020).

[3] Hitec hs-725bb - 3.5 turn sail drum servo. https://servodatabase.com/servo/hitec/
hs-725bb. (Accessed on 04/28/2021).

[4] Knmi - daggegevens van het weer in nederland. https://www.knmi.nl/nederland-nu/
klimatologie/daggegevens. (Accessed on 07/19/2021).

[5] System identification toolbox - matlab. https://www.mathworks.com/products/
sysid.html. (Accessed on 05/04/2021).

[6] Ieee standard for information technology–telecommunications and information exchange
between systems local and metropolitan area network–specific requirements part 11:
Wireless lan medium access control (mac) and physical layer (phy) specifications amend-
ment 5: Preassociation discovery. IEEE Std 802.11aq-2018 (Amendment to IEEE Std
802.11-2016 as amended by IEEE Std 802.11ai-2016, IEEE Std 802.11ah-2016, IEEE
Std 802.11aj-2018, and IEEE Std 802.11ak-2018), pages 1–69, 2018.

[7] José Araújo, Adolfo Anta, Manuel Mazo, João Faria, Aitor Hernandez, Paulo Tabuada,
and Karl H. Johansson. Self-triggered control over wireless sensor and actuator net-
works. In 2011 International Conference on Distributed Computing in Sensor Systems
and Workshops (DCOSS), pages 1–9, 2011.

[8] M. Bacic. On hardware-in-the-loop simulation. In Proceedings of the 44th IEEE Confer-
ence on Decision and Control, pages 3194–3198, 2005.

[9] D. P. Borgers and W. P. M. H. Heemels. Event-separation properties of event-triggered
control systems. IEEE Transactions on Automatic Control, 59(10):2644–2656, 2014.

Master of Science Thesis Bas Boot

94 BIBLIOGRAPHY

[10] Michael Cantoni, Erik Weyer, Yuping Li, Su Ki Ooi, Iven Mareels, and Matthew Ryan.
Control of large-scale irrigation networks. Proceedings of the IEEE, 95(1):75–91, 2007.

[11] Gabriel de Albuquerque Gleizer and Manuel Mazo. Self-triggered output-feedback control
of lti systems subject to disturbances and noise. Automatica, 120:109129, 2020.

[12] M.C.F. Donkers and W.P.M.H. Heemels. Output-based event-triggered control with
guaranteed L∞-gain and improved event-triggering. In 49th IEEE Conference on Deci-
sion and Control (CDC), pages 3246–3251, 2010.

[13] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. Low-power wire-
less bus. In Proceedings of the 10th ACM Conference on Embedded Network Sensor
Systems, SenSys ’12, pages 1–14, New York, NY, USA, 2012. Association for Computing
Machinery.

[14] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Efficient network
flooding and time synchronization with glossy. In Proceedings of the 10th ACM/IEEE
International Conference on Information Processing in Sensor Networks, pages 73–84,
2011.

[15] Gene F. Franklin, J. Da Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic
Systems. Prentice Hall Press, USA, 7th edition, 2014.

[16] W. P. M. H. Heemels, M. C. F. Donkers, and Andrew R. Teel. Periodic event-triggered
control for linear systems. IEEE Transactions on Automatic Control, 58(4):847–861,
2013.

[17] W.P.M.H. Heemels, K.H. Johansson, and P. Tabuada. An introduction to event-triggered
and self-triggered control. In 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC), pages 3270–3285, 2012.

[18] Joo P. Hespanha, Payam Naghshtabrizi, and Yonggang Xu. A survey of recent results
in networked control systems. Proceedings of the IEEE, 95(1):138–162, 2007.

[19] Timofei Istomin, Amy L. Murphy, Gian Pietro Picco, and Usman Raza. Data prediction
+ synchronous transmissions = ultra-low power wireless sensor networks. In Proceedings
of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, SenSys
’16, pages 83–95, New York, NY, USA, 2016. Association for Computing Machinery.

[20] Keller. Highly Precise (0,01%) Pressure Transmitters, 6 2020.

[21] F. Kozin and H.G. Natke. System identification techniques. Structural Safety, 3(3):269–
316, 1986.

[22] K. Leentvaar and J. Flint. The capture effect in fm receivers. IEEE Transactions on
Communications, 24(5):531–539, 1976.

[23] Yuping Li and Michael Cantoni. Distributed controller design for open water channels.
IFAC Proceedings Volumes, 41(2):10033–10038, 2008. 17th IFAC World Congress.

[24] Jacob Jan Lont. Wireless event-triggered control for water irrigation systems, 2020.

Bas Boot Master of Science Thesis

BIBLIOGRAPHY 95

[25] Manuel Mazo, Adolfo Anta, and Paulo Tabuada. An iss self-triggered implementation of
linear controllers. Automatica, 46(8):1310–1314, 2010.

[26] Luis Santos Pereira, Theib Oweis, and Abdelaziz Zairi. Irrigation management under
water scarcity. Agricultural Water Management, 57(3):175–206, 2002.

[27] Karl J. Åström and Björn Wittenmark. Computer-Controlled Systems (3rd Ed.).
Prentice-Hall, Inc., USA, 1997.

[28] J. M. Schram. Handleiding watermodel, 2001.

[29] Texas Instruments. ADS111x Ultra-Small, Low-Power, I2C-Compatible, 860-SPS, 16-Bit
ADCs With Internal Reference, Oscillator, and Programmable Comparator, 1 2018.

[30] Matteo Trobinger, Gabriel de Albuquerque Gleizer, Timofei Istomin, Manuel Mazo Jr.
au2, Amy L. Murphy, and Gian Pietro Picco. The wireless control bus: Enabling efficient
multi-hop event-triggered control with concurrent transmissions, 2021.

[31] Manel Velasco, Josep Fuertes, and Pau Marti. The self triggered task model for real-
time control systems. In Work-in-Progress Session of the 24th IEEE Real-Time Systems
Symposium (RTSS03), volume 384, 2003.

[32] Erik Weyer. System identification of an open water channel. IFAC Proceedings Volumes,
33(15):265–270, 2000. 12th IFAC Symposium on System Identification (SYSID 2000),
Santa Barbara, CA, USA, 21-23 June 2000.

[33] Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance in dense
wireless sensor networks. In Proceedings of the 1st International Conference on Embed-
ded Networked Sensor Systems, SenSys ’03, page 1âĂŞ13, New York, NY, USA, 2003.
Association for Computing Machinery.

[34] Zolertia. Zolertia Firefly Revision A2 Internet of Things hardware development platform,
for 2.4-GHz and 863-950MHz IEEE 802.15.4, 6LoWPAN and ZigBee R©Applications,
2017.

Master of Science Thesis Bas Boot

96 BIBLIOGRAPHY

Bas Boot Master of Science Thesis

Glossary

List of Acronyms

AD analog to digital
CETC continuous event-triggered control
D3S dynamic distributed decentralized systems group
DCSC Delft center for systems and control
ESD electrostatic discharge
ETC event-triggered control
FF firefly
GPIO general purpose input/output
HIL hardware-in-the-loop
I2C inter-integrated circuit
IEEE institute of electrical and electronics engineers
LTI linear time-invariant
LWB low power wireless bus
MAC media access control
MSE mean squared error
MTSE mean timed squared error
NTX number of retransmissions
OS operating system
PCB printed circuit board
PETC periodic event-triggered control
PSTC Preventive self-triggered control
PWM pulse width modulation
SENTIENT scheduling of event-triggered control tasks research group
SPS samples per second

Master of Science Thesis Bas Boot

98 Glossary

STC self-triggered control
UART universal asynchronous receiver-transmitter
USB universal serial bus
WCB wireless control bus
WCN wireless control network
WIS water irrigation system
ZOH zero order hold

Bas Boot Master of Science Thesis

