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Abstract

In this thesis a Volumetric Method of Moments (V-MoM) is developed to analyse accurately, and ease the
design of small size lens antennas, and to estimate the power emitted by warm bodies constituted by realistic
materials, and having arbitrary geometries.

Thanks to the application of the volume equivalence theorem and the use of a structured mesh, this
method can be used in a design loop efficiently, since different geometries can be simulated with the same
evaluation of the projections, and the specific material arrangements are added at a negligible cost. There-
fore, at every design iteration, differently from other integral equation methods, only the linear system has
to be solved. Moreover, thanks to the use of a uniform sampling, a convolutional structure is obtained, im-
plying that only a reduced number of projections are sufficient to characterize the entire matrix, reducing
significantly the memory requirements, and allowing the solution of large scale systems. The linear system
is then solved with an iterative solver, that, thanks to the convolutional properties, can be accelerated by fast
matrix-vector products by using Fast Fourier Transform (FFT). The method is validated by studying the field
scattered by a homogeneous and multilayer dielectric sphere, proving an accuracy within the discretization
tolerance, and the capability of handling inhomogeneous structures.

A Graphical User Interface (GUI) based on the presented method has been developed, with the aim of
easing and assisting the user experience on the electromagnetic analysis. The GUI allows to simulate complex
geometries combining elementary shapes, characterized by arbitrary materials, and excited by either plane
waves or discrete ports. The solution can be post-processed in terms near-fields, far-fields, and network
quantities.

A representation in terms of impressed currents and incident voltage has been formulated to represent the
incoherent radiometric sources in the V-MoM, used to analyse the power emitted by lossy semiconductors,
characterized by a Drude’s dispersion for the conductivity. An experimental setup to verify the numerical and
analytical model is then designed.
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1
Introduction

1.1. Motivation
This work deals with the development of a full wave simulation tool that solves high frequency problems
regarding to dielectric structures within several wavelengths. The reason for this is that high frequency ap-
plications (especially in terahertz band) have drawn more and more attention from the antenna community
over the past few years, for applications such as wireless communication systems [1] [2], astronomical in-
strumentation [3], and security imaging [4].Therefore, the accurate modelling of the input impedance, the
patterns and the mutual coupling is crucial for these applications. However, commercial solvers such as CST
usually suffer from computation overhead and slow simulation for these specific problems. As a result, there
is a demand for developing efficient tools to model those structures. The Physical Optics was introduced to
study lens antennas in the milestone work of Rebeiz [5]. Since then high frequency techniques have been
highly employed in lens antenna analysis [6] [7]. Several methods have been adopted by the Terahertz Sens-
ing Group 1 to model these high frequency systems fast and accurately. In the more recent work of [8], a
GO/FO tool is used to analyse the pattern, efficiency and directivity of quasi-optical systems. In [9], a GO/PO
tool is developed to evaluate the mutual coupling between lenses using ray-tracing. However, the GO/PO
technique is inaccurate when simulating small-size lenses. For instance, in [1] where a 2λ0 lens is used as the
array element, as shown in Fig. 1.1a, and in [2] a 2λ0 lens is used as the core in the core-shell lens structure,
Fig. 1.1b. Due to the relevance of small-size lenses, and due to the inaccuracy of the current analysis tools, a
fast full-wave solver is needed to simulate such systems.

(a) (b)

Figure 1.1: Applications using small lenses in (a) Phased array using 2λ0 lens as elements [1] and (b) Core-shell lens design for fly eyes
applications [2]

1Terahertz Sensing Group, Department of Microelectronics, EEMCS, TUDelft. https://terahertz.tudelft.nl/
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2 1. Introduction

Both from a fundamental and an applicative point of view, there is the interest to characterise the emitted
power generated by warm bodies. To this regard, the most relevant contribution is [10], that many authors
have used to study the brightness of conductive bodies resorting to reciprocity, which allows replacing the
emissivity of a body with its absorptivity under plane wave incidence. The direct emission of a thermally ex-
cited body has been only lightly discussed in the literature. For instance, [11] and [12] address the generation
of electromagnetic energy from thermally excited bodies but fail to provide results from numerical simula-
tions in the near fields. In view of this background, it is a matter of interest to characterize the radiation from
conducting and semiconducting bodies, characterized by the Drude’s model conductivity [13]. However, the
literature lacks of full wave solvers allowing to simulate the thermal radiation from arbitrary geometries.

1.2. Proposed Method
The most popular three methods for numerical solvers are the Finite Difference Time Domain Method (FDTD),
the Finite Element Method (FEM) and the Method of Moments (MoM). Although the FDTD is easy to imple-
ment, time domain solvers are not suitable to simulate problems with dimensions in the order of the wave-
length (i.e., small lenses), and problems involving dispersive media (i.e., the dispersive conductivity used
in radiometry). In turn FEM operates in the frequency domain [14], can handle material inhomogeneities,
and operates with sparse matrices, which are fast to compute and easy to store and operate with. However
the FEM requires additional boundary condition, i.e., the absorbing boundary conditions, to solve radia-
tion problems. While the Volumetric Method of Moments (V-MoM) proposed in this thesis allows to solve
problems at resonant sizes, exterior problems, to treat also inhomogeneous and dispersive media. The other
advantage is that its fully occupied and large matrix is computed only once for a given problem, and can be
handled in a fast solver such as the Conjugate Gradient-Fast Fourier Transform (CG-FFT) [15], that reduces
the memory requirements and the computational complexity.

This thesis proposes a full-wave simulator, using the approach of equivalence theorem [16] and Volu-
metric Method of Moments (V-MoM) [17] to analyse high frequency structures, integrated in a GUI for user
experience, where both scattering and transmission problems can be analysed. In the tool, the volume con-
taining all the possible meshed bodies is defined, and discretized with a structured mesh. Then the reaction
integrals are calculated over the mesh and used for all the bodies combined in the discretized volume. After
that, the specific geometry is defined in the volume by using a combination of elementary shapes (sphere,
cuboid, ellipsoid and cylinder) with an associated relative permittivity εr and conductivity σ. Then excita-
tions such as plane wave sources, voltage gap generators or radiometry sources can be selected to excite the
cuboids. The equivalent currents on the structure can be obtained by solving the linear system with an itera-
tive method named CG-FFT to speed up the calculation. Then the equivalent currents are later used to derive
results such as the scattered field, the directivity, the gain, the losses, the input impedances and the scattering
parameters. One advantage of the approach is that due to the cuboid basis function, the calculation is high
symmetrical and it is also possible to reuse the calculation of mutual impedances in homogenous space for
the same discretization, thus making the tool efficient to use.

1.3. Thesis Outline
The thesis is structured as follows:

In Chapter 2 the volumetric equivalence theorem is applied to obtain the Electric Field Integral Equation
(EFIE), on which the numerical method is based. The integral equation is then discretized, to allow a numer-
ical solution with a linear system. At the end of the chapter the workflow of the tool is explained together with
its advantages.

In Chapter 3, the self- and mutual-reaction integrals are derived for the chosen voxel discretization. Chap-
ter 4 explains the parametrization of all the fundamental shapes is explained, together with the discrete port
and plane wave excitation.

In Chapter 5, the solution of the linear system by means of the CG-FFT is explained.
In Chapter 6, the method is validated by comparison with the Mie series solution for the field scattered by

a dielectric homogeneous and multilayer sphere. In the validation also a dipole-fed lens antenna is consid-
ered.

In Chapter 7 The thermal emission from a warm body is studied by first modelling the incoherent radio-
metric sources. After the validation, the tool is used to characterize the emission from lossy semiconductors.

Chapter 8 concludes the thesis and discusses the future work of this tool, including the pre-conditioner,
periodic boundary conditions, the superconducting materials. Moreover, a manual of the GUI is attached in
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Appendix F for users to learn about the tool efficiently.





2
Formulation

In this Chapter the Electric Field Integral Equation (EFIE) is obtained from the volumetric equivalence theo-
rem and is later solved by the V-MoM.

In Sec. 2.1, the Electric Field Integral Equation is constructed using volume equivalence theorem. In
Sec. 2.2, the MoM is applied to find the equivalent currents from the integral equation with a cuboid dis-
cretization. In Sec. 2.3, the overall structure of the tool is explained, including the advantages of the tool.

2.1. Construction of the Integral Equation
This section explains how to formulate the Electric Field Integral Equation by the application of the volume
equivalence theorem [16], which sates the total electromagnetic field is unperturbed if a scatterer is substi-
tuted by equivalent electric and magnetic currents radiating in an homogenous space.

Let the electric and magnetic sources
(

J⃗ i , M⃗ i
)
, immersed in a homogenous medium of relative permittiv-

ity εbg
r , generate the fields

(
E⃗ i (⃗r ) , H⃗ i (⃗r )

)
, that illuminate a body of volume V , constituted by a material with

a relative permittivity εr (⃗r ), and a conductivity σ (⃗r ) as shown in Fig. 2.1. The scattered field
(
E⃗ s (⃗r ) , H⃗ s (⃗r )

)
is

generated by the interaction between the incident field and the scatterer. The total fields are the superposi-
tion of the incident and the scattered field as

E⃗ (⃗r ) = E⃗ i (⃗r )+ E⃗ s (⃗r ) (2.1a)

H⃗ (⃗r ) = H⃗ i (⃗r )+ H⃗ s (⃗r ) . (2.1b)

Since the incident and the total field satisfy Maxwell’s equations, one can write as follows

∇⃗× H⃗ i (⃗r ) = jωε0ε
bg
r E⃗ i (⃗r ) (2.2a)

∇⃗× E⃗ i (⃗r ) =− jωµ0H⃗ i (⃗r ) (2.2b)

∇⃗× H⃗ (⃗r ) =σ (⃗r ) E⃗ (⃗r )+ jωε0εr (⃗r ) E⃗ (⃗r ) (2.3a)

∇⃗× E⃗ (⃗r ) =− jωµ0µr (⃗r ) H⃗ (⃗r ) . (2.3b)

By defining the complex relative permittivity as

εeff (⃗r ) = εr (⃗r )− jσ (⃗r )

ωε0
(2.4)

(2.3a) can be written as follows

∇⃗× H⃗ (⃗r ) = jωε0εeff (⃗r ) E⃗ (⃗r ) . (2.5)

Subtracting (2.2a) from (2.5) and (2.2b) from (2.3b) respectively, combined with (2.1a) and (2.1b), one can get

5



6 2. Formulation

Ԧ𝑱𝒊

𝑴𝒊

𝜀𝑟
bg
, 𝜇0

𝜀𝑟 , 𝜇𝑟

𝑬 = 𝑬𝒊 + 𝑬𝒔

𝑯 = 𝑯𝒊 +𝑯𝒔

Ԧ𝑱𝒆𝒒, 𝑴𝒆𝒒
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𝑯 = 𝑯𝒊 +𝑯𝒔

Ԧ𝑱𝒊

𝑴𝒊

𝜀𝑟
bg
, 𝜇0

Figure 2.1: Graphical representation of the equivalence theorem

∇⃗× H⃗ s (⃗r ) = jωε0(εeff (⃗r )−εbg
eff)E⃗ (⃗r )+ jωε0εr E⃗ s (⃗r )

∇⃗× E⃗ s (⃗r ) =− jωµ0(µr (⃗r )−µbg
r )H⃗ (⃗r )− jωµ0H⃗ s (⃗r ) .

(2.6)

This implies that the scattered field
(
E⃗ s (⃗r ) , H⃗ s (⃗r )

)
can be replaced by the fields radiated by some equivalent

currents J⃗eq (⃗r ) defined on the body. If µr = 1, only the equivalent electric currents J⃗eq can be introduced and
defined as follows

J⃗eq (⃗r ) = jωε0

(
εeff (⃗r )−εbg

eff

)
E⃗ (⃗r ) (2.7)

Since the scattered field is the field produced by the equivalent current in the background medium, one can
write as follows

E⃗ s (⃗r ) =
Ñ
V

¯̄Ghs (⃗
r , r⃗ ′) · J⃗eq

(⃗
r ′)dr⃗ ′ (2.8)

where ¯̄Ghs
(⃗
r , r⃗ ′) is the dyadic Green’s function of the homogeneous background medium defined in a coor-

dinate free form as written in Appendix A. Substituting (2.7) and (2.8) into (2.1a), the latter can be written as
follows

E⃗ i (⃗r ) = J⃗eq (⃗r )

jωε0

(
εeff (⃗r )−εbg

eff

) −Ñ
V

¯̄Ghs (⃗
r , r⃗ ′) · J⃗eq

(⃗
r ′)dr⃗ ′. (2.9)

By defining a effective conductivity σeff (⃗r ) ≡ jωε0

(
εeff (⃗r )−εbg

eff

)
, one can simplify the equation to

E⃗ i (⃗r ) = J⃗eq (⃗r )

σeff (⃗r )
−

Ñ
V

¯̄Ghs (⃗
r , r⃗ ′) · J⃗eq

(⃗
r ′)dr⃗ ′. (2.10)

The analytical solution of (2.10) is not always available. Therefore, finding a numerical technique to solve
the equation is essential to the problem. In the next section, a Method of Moment (MoM) is used as the
numerical tool to estimate the solution of the equivalent current.

2.2. Solving the Integral Equation with MoM
As described in the MoM [17], the solution of the equivalent currents can be approximated by expanding the
solution into a summation of basis functions
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𝐿𝑥
∆

𝐿𝑦

𝐿𝑧

𝑱𝒙

𝑱𝒚𝑱𝒛

Figure 2.2: Graphical representation of the basis functions with three polarizations along x,y and z respectively

J⃗eq (⃗r ) =
Nt∑

n=1
in b⃗n (⃗r ) . (2.11)

Substituting (2.11) into (2.10) one can get

E⃗ i (⃗r ) =
Nt∑

n=1
in

 b⃗n (⃗r )

σeff (⃗r )
−

Ñ
Vn

¯̄Ghs (⃗
r , r⃗ ′) · b⃗n

(⃗
r ′)dr⃗ ′

 . (2.12)

Since the basis functions are known, the integral equations becomes a linear equation with Nt unknowns in .
Therefore, a set of Nt linear equations are needed to find the solution of their weights. To obtain that number
of linear equations, a linear operation called inner product defined as follows

〈 f⃗ (⃗r ) , g⃗ (⃗r )〉 =
Ñ
V

f⃗ (⃗r ) · g⃗∗ (⃗r )dr⃗ (2.13)

is used to project both sides of (2.12) into the test functions t⃗m , and obtaining as follows

〈E⃗ i (⃗r ) , t⃗m (⃗r )〉 = 〈
Nt∑

n=1
in

 b⃗n (⃗r )

σeff (⃗r )
−

Ñ
V

¯̄Ghs (⃗
r , r⃗ ′) · b⃗n

(⃗
r ′)dr⃗ ′

 , t⃗m (⃗r )〉 (2.14)

where m = 1, . . . , Nt . Since the unknowns are the equivalent currents J⃗eq, which are not subject to any conti-
nuity condition [18], for the sake of simplicity piecewise constant basis functions are being employed. There-
fore, with this choice, the box of sides Lx , Ly , and Lz shown in Fig. 2.2 is discretized into Ns cuboids of edge
∆, where the current is considered to be constant. In each voxel the current is assumed to have an x−, a y−,
and a z−component. The basis functions b⃗n have a unit of

[
1/m2

]
by the size of the basis functions∆, so that

combined with their weights in , the equivalent currents J⃗eq have a dimension of
[
A/m2

]
.

With respect to this choice, the basis functions can be written as follows

b⃗n (⃗r ) = 1

∆2 rect

∣∣∣∣ r⃗ − r⃗n

∆

∣∣∣∣ p̂n (2.15)

where p̂n ∈ {
x̂, ŷ , ẑ

}
, with n = 1, . . . , Nt = 3Ns . Since the Galerkin’s method is used, the test functions are

chosen as follows
t⃗m (⃗r ) = b⃗m (⃗r ) . (2.16)
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Substituting (2.16) into the m-th equation of (2.13), one obtains as follows

〈E⃗ i (⃗r ) , b⃗m (⃗r )〉 = 〈
Nt∑

n=1
in

 b⃗n (⃗r )

σeff (⃗r )
−

Ñ
Vn

¯̄Ghs (⃗
r , r⃗ ′) · b⃗n

(⃗
r ′)dr⃗ ′

 , b⃗m (⃗r )〉. (2.17)

where Vn is the volume cotains the n-th basis function. Being the inner product a linear operator, (2.17)
becomes as follows

〈E⃗ i (⃗r ) , b⃗m (⃗r )〉︸ ︷︷ ︸
1⃝

=
Nt∑

n=1
in(

〈⃗bn (⃗r ) , b⃗m (⃗r )〉
σeff (⃗r )︸ ︷︷ ︸
2⃝

−〈
Ñ
Vn

¯̄Ghs (⃗
r , r⃗ ′) · b⃗n

(⃗
r ′)dr⃗ ′), b⃗m (⃗r )〉

︸ ︷︷ ︸
3⃝

. (2.18)

Part 1⃝ of (2.18) can be expressed as follows

〈E⃗ i (⃗r ) , b⃗m (⃗r )〉 =
Ñ
Vm

E⃗ i (⃗r ) · 1

∆2 rect

∣∣∣∣ r⃗ − r⃗m

∆

∣∣∣∣ p̂mdr⃗ = E⃗ i (⃗r ) · p̂m ·∆= vm (2.19)

where vm is the voltage impressed on the m-th basis function.
Part 2⃝ of (2.18) is

〈⃗bn (⃗r ) , b⃗m (⃗r )〉
σeff (⃗r )

=
Ñ
Vm

1

∆2 rect

∣∣∣∣ r⃗ − r⃗n

∆

∣∣∣∣ p̂ndr⃗ · 1

∆2 rect

∣∣∣∣ r⃗ − r⃗m

∆

∣∣∣∣ p̂mdr⃗ = δnm

σn∆
(2.20)

whereδnm is the Kronecker delta, andσn is the effective conductivity of the n-th cell. Therefore the projection
of (2.20) forms the diagonal matrix Zmat, defined as follows

Zmat = diag

(
1

σ1∆
,

1

σ2∆
, . . . ,

1

σNt∆

)
(2.21)

Part 3⃝ of (2.18) is a double volume integration that describes the mutual coupling between the basis func-
tions in homogenous space, which forms a radiation matrix Zrad with entries defined as follows

Zmn = 〈
Ñ
Vn

¯̄Ghs (⃗
r , r⃗ ′) · b⃗n

(⃗
r ′)dr⃗ ′, b⃗m (⃗r )〉 =−

Ñ
Vm

Ñ
Vn

¯̄Ghs (⃗
r , r⃗ ′) · b⃗n

(⃗
r ′) · b⃗m (⃗r )dr⃗ ′dr⃗ (2.22)

Then the (2.14) can be written is matrix product form

v =
(
Zmat +Zrad

)
i. (2.23)

2.3. Structure of the Tool
From the previous sections, it can be concluded that the V-MoM works in several steps. As illustrated in
Fig. 2.3, in the first pre-computation stage, the space is divided into cubic sub-domains at the same size.
Then the integrals are evaluated and used to fill in the radiation matrix. The material of the blocks and their
excitation can be defined afterwards in the design stage. Then from (2.23) the weights of the basis function are
obtained which are used to approximate the equivalent current. In the result stage, the scattered field is the
same as the field radiated by the equivalent currents in homogenous space. The far field is calculated using
homogenous space’s Green’s function and the near field is obtained according to the equivalence theorem
(2.7).

Several advantages can be drawn from the V-MoM. First, the calculation of the radiation matrix is the most
computational demanding part due to the 6-D integral. However, due to the symmetry of cuboid sampling
of the grid and the fact that green’s function only depends on the relative distance between the elements, one
does not need to compute all the 9N 2

t 6-D reaction integrals but only a small part of it (about 2Nt ). Second,
the symmetries also contributes to the solution of the linear system. To find the solutions, one can avoid
inverting a large matrix by using an iterative method (CG-FFT) to speed up the calculation for large problems,
which will be discussed in Ch. 5. Third, since the reaction integrals is calculated in homogenous space, the
radiation matrix can be reused for the same grid by changing only the excitation and material matrix. This
feature allows the increase of efficiency when designing different shapes within the same grid.
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Figure 2.3: Structure of V-MoM.





3
Pre-Computation

This Chapter will describe how to generate the radiation matrix defined in (2.22). Sec. 3.1 contains the general
requirements to calculate the grid such as the sampling and background material. Sec. 3.2 and 3.3 introduces
how to compute the self and mutual reaction integrals respectively.

3.1. Definition of the Grid

The present V-MoM creates a structured mesh over the biggest volume of dimensions Lx , Ly , and Lz , along
x, y , and z respectively, that contains all the bodies to simulate as shown in Fig. 3.1a. The volume is then
discretized with cubes of edge ∆, as shown in Fig. 3.1b, in such a way that Nx , Ny , and Nz elements are
present along the x, y , and z direction, with Ns elements per polarization and Nt total elements. The step
size∆ is chosen according to the smallest simulated wavelength in the body, that depends both on the densest
dielectric, and on the highest frequency under investigation, and it has to be suitable to reproduce the field
variation inside all the possible meshed bodies. Generally it is chosen to be ∆<λd /10 at least, and should be
smaller for more complex problems.

The grid will be located in the origin of the reference system and be sampled along three dimensions from
the minimum by xs , ys and zs with

𝐿𝑦
𝐿𝑥

𝐿𝑧

𝐿𝑦
𝐿𝑥

𝐿𝑧

(a)

𝐿𝑦

𝐿𝑥

𝐿𝑧

𝐿𝑦

𝐿𝑥

𝐿𝑧

∆ ∆

(b)

Figure 3.1: (a) Cubic volume of size Lx , Ly and Lz containing the body. (b) Discretization of the volume with cubes of size ∆.

11
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𝒓𝟏 𝒓𝟐

𝒓𝟑 𝒓𝟒

𝒓𝟓 𝒓𝟔

𝒓𝟕 𝒓𝟖

𝐿𝑦

𝐿𝑥

𝐿𝑧

∆

𝑥

𝑦
𝑧

Figure 3.2: An example of a 2×2×2 grid with sampling positions r⃗n

xs (nx ) =−Lx

2
− ∆

2
+nx∆, nx = 1, 2, . . . , Nx

ys
(
ny

)=−Ly

2
− ∆

2
+ny∆, ny = 1, 2, . . . , Ny

zs (nz ) =−Lz

2
− ∆

2
+nz∆, nz = 1, 2, . . . , Nz .

(3.1)

Fig. 3.2 shows an example of a 2×2×2 grid with its sampling positions and ordering of r⃗ from 1-8. Once the
grid is defined, the reaction integrals can be calculated for all the sampled points, regardless the material that
a specific cell contains, even if a specific mesh cell does not contain any dielectric. In this case the solution
for that cell is discarded by using the masking procedure explained in Sec. 5.1.

The structured mesh has several advantages. First, the structured grid is body independent and requires
only once the calculation of the reaction integrals. Therefore, different bodies can be simulated in the same
grid avoiding the re-computation of the integrals. Second, the position vectors can be represented by nodes
in the fixed grid so that one does not need to store the vectors in the memory but only works with the indexes
of the nodes. Third, the symmetries and uniform sampling of the grid leads to a Toeplitz property of the
reaction integrals, which can be stored in a matrix-free form with low memory requirement and can be used
to accelerate the calculation of the solution later discussed in Ch. 5.

However, the disadvantage of the fixed grid appears when the body does not conform to the cubic sam-
plings. For example, Fig. 3.3 shows that for tilted bodies, curved bodies and bodies with a resolution smaller
than the mesh are not well represented in the grid. This problem can be solved by tapering the εeff of the unit
cell according to the ratio between the volume that the body occupies in the cell and the total volume of the
cell. Another drawback of this is that the fixed grid can not model fine detailed structures and large bodies at
the same time, as it requires different levels of discretization for detailed and large bodies.

3.2. Self Reaction Integrals
Once the grid properties are defined, the entries of the radiation matrix Zrad are calculated. The reaction inte-
grals can be divided into two categories: the self reaction integrals (m = n) and the mutual reaction integrals
(m ̸= n). This sub-section will discuss how to calculate the first case.

According to eq. (2.37), when m = n, the integral becomes as follows

Znn =−〈
Ñ
Vn

¯̄Ghs (⃗
r , r⃗ ′) · b⃗n

(⃗
r ′)dr⃗ ′, b⃗n (⃗r )〉 (3.2)

which is the electric field inside the source region projected on the basis function in that region. According to
Appendix B, the field inside the source region can be written in three contributions and (3.2) is expressed as
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∆

(a)

∆

(b)

∆

(c)

∆

(d)

Figure 3.3: (a) A body that conforms to the sampling, and (b) a tilted cuboid, (c) a sphere and (d) two slabs a finer resolution that does
not conform to the sampling

follows

Znn =−〈
Ñ

Vn−Vδ

¯̄Ghs (⃗
r , r⃗ ′) · b⃗n

(⃗
r ′)dr⃗ ′, b⃗n (⃗r )〉− 1

jωε0

(
2

3
e− j ka (

1+ j ka
)−1

)
〈⃗bn (⃗r ) , b⃗n (⃗r )〉

−〈
Ñ
Vδ

¯̄Ghs (⃗
r , r⃗ ′) · (⃗bn

(⃗
r ′)− b⃗n (⃗r )

)
dr⃗ ′, b⃗n (⃗r )〉

(3.3)

where a is radius of the sphere region enclosing the source region and Vδ is the volume of the spherical region.
Due to the definition of the basis functions in (2.15), the third term of (3.3) vanishes, and by calculating the
second projection, it becomes as follows

Znn =−〈
Ñ

Vn−Vδ

¯̄Ghs (⃗
r , r⃗ ′) · b⃗n

(⃗
r ′)dr⃗ ′, b⃗n (⃗r )〉− 1

jωε0∆

(
2

3
e− j ka (

1+ j ka
)−1

)
(3.4)

The projection in (3.4) can be calculated numerically, by discretizing the mesh cell into smaller cubic subdo-
mains of edge ℓ, leading to the following expression

Znn =− ℓ
6

∆4

∑
l ,p,q

∑
l ′,p ′,q ′

̸=
l ,p,q

¯̄Ghs (⃗
rl ,p,q , r⃗l ′,p ′,q ′

)− 1

jωε0∆

(
2

3
e− j k

( 3
4π

) 1
3 ℓ

(
1+ j k

(
3

4π

) 1
3

ℓ

)
−1

)
(3.5)

where a is chosen to be a = ℓ (4π/3)−1/3 to obtain the same volume as the sub-discretized cells.

3.3. Mutual Reaction Integrals
For m ̸= n case, the mutual coupling between m-th basis and n-th basis function can be illustrated in Fig. 3.4,
where Vn is considered as the source region and Vm represents the observation region in the figure.
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𝐿𝑦

𝐿𝑥

𝐿𝑧

∆

𝒓𝒏 𝒓𝒎

𝑥

𝑦
𝑧

Figure 3.4: Graphical representation of mutual reaction integrals between m-th and n-th basis function

When the basis functions are close, the integrals are evaluated near the singularity. Therefore, to increase
the accuracy of the computation of the mutual reaction integrals while avoiding waste of computation power,
the calculations of Zmn are split into two different categories as shown in Fig. 3.5. Fig. 3.5a shows the first case
for basis functions are close. Here both the source and observation regions are sampled with sub-meshes
since they are near the singularity. Another reason to calculate the close mutual reaction integrals accurately
is that they have the largest value among the mutual integrals and thus, having a large impact on the radi-
ation matrix. In Fig. 3.5b, where the source and observation regions are far away, the integrals are replaced
by a point-to-point interactions between Vm and Vn times the volume, since the field is small and can be
approximated as constant in the far regions.

∆

∆

⋯

𝛿2

𝒓𝒎 𝒓𝒏

(a)

∆

∆

⋯

∆

𝒓𝒎 𝒓𝒏

(b)

Figure 3.5: Mutual reaction integral calculations for (a) nearby elements and (b) far elements

For the nearby elements, the integrals are calculated numerically in (3.6) by discretizing the source and
observation regions into l0 ×p0 ×q0 sub-meshes with a size of ℓ.

Zmn =− ℓ
6

∆4

l0,p0,q0∑
l ,p,q

l0,p0,q0∑
l ′,p ′,q ′

¯̄Ghs (⃗
rm

(
l , p, q

)
, r⃗n

(
l ′, p ′, q ′)) · p̂m · p̂n . (3.6)

For the far elements the mutual reaction integrals Zmn can be simplified as

Zmn =−∆2 ¯̄Ghs (⃗rm , r⃗n) · p̂m · p̂n . (3.7)

Note that one does not need to calculate all the mutual reactions due to the symmetries of cuboid sampling
of the basis functions. The symmetries will be explored more in Ch. 5 with the CG-FFT method.



4
User’s Design

After the grid is defined and the radiation matrix is computed, users will be able to design their desired struc-
tures by filling the material matrix Zmat and excitation term v. This chapter explains how the user can interact
with the tool in terms of structure modelling and excitation. Sec 4.1 introduces the parametrization of four
commonly used shapes. In Sec 4.2 and 4.3, plane wave and discrete port excitation are discussed for scatter-
ing and transmission problems. Sec. 4.4 will briefly introduce how to include radiometric sources in the tool.
Sec. 4.5 discusses the possibility to customize the simulation with user defined files.

4.1. Modelling Structures
Four commonly used shapes are modelled in this tool, namely the cuboid, the ellipsoid, the sphere and the
cylinder. These shapes are composed by cuboid basis function with position vector r⃗ that satisfy the para-
metric equations as shown in Fig. 4.1

4.1.1. Parametrization of Shapes
Sphere. As discussed in Ch. 3, the position vectors of the samples are written in Cartesian form as

r⃗ =
xs

ys

zs

 (4.1)

The points located inside a sphere of radius a, and located at the origin as shown in Fig. 4.2a, are the ones
which satisfy the following relation

x2
s

a2 + y2
s

a2 + z2
s

a2 ≤ 1. (4.2)

Moreover, a truncation angle θ ∈ (0,π) is defined to truncate the sphere in horizontal planes. A sphere is
truncated to a hemisphere, for example , when θ =π/2. This additional bound is

zs ≥ a cosθ. (4.3)

Cuboid. The points inside a cuboid of size L, W and H along x-, y-, and z-axis respectively, and centred at
the origin, as shown in Fig. 4.2b, are given by 

|xs | ≤ L
2∣∣ys

∣∣≤ W
2

|zs | ≤ H
2

. (4.4)

15
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(a) (b)

(c) (d)

Figure 4.1: An example of the sampling of (a) a sphere with 1mm radius, (b) a 1mm×1mm×1mm Cuboid, (c) a cylinder with 0.5mm
radius and 1.5mm height and (d) an ellipsoid with 0.7 eccentricity, 1mm diameter and 63◦ truncation angle

Cylinder. The points located inside a cylinder of radius a, height h with its axis parallel to the z-axis and its
centre located at the origin, as shown in Fig. 4.2c, are given by

x2
s

a2 + y2
s

a2 ≤ 1

|zs | ≤ h
2

. (4.5)

Ellipsoid. In this tool, elliptical lenses are defined by their diameter D , their relative permittivity εr and
their truncation angle θ ∈ (0,π) as shown in Fig. 4.2d. And the eccentricity is given by e = 1/

p
εr . Then the

semi axes can be derived from these three parameters by

rmin = D

2sinθtr
(4.6)

where rmin is the minimum distance from the lower focus to the surface of the lens.

rmin = a
1−e2

1−e cosθtr
. (4.7)

Then the semi-major axis can be calculated by

a = rmin
1−e cosθtr

1−e2 . (4.8)

The foci and semi-minor axis then is expressed as

c = a ·e (4.9)
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Figure 4.2: Graphical representation of the parametrization of a (a) sphere, (b) cube, (c) cylinder and (d) ellipsoid

b =
√

a2 − c2. (4.10)

The lower limit for the lens will be h, where

h = D

2tanθtr
− c. (4.11)

Therefore, the points inside a truncated elliptical lens located at the origin are given by
x2

s
b2 + y2

s
b2 + z2

s
a2 ≤ 1

zs ≥ h

. (4.12)

4.1.2. Displacement and Rotation
Normally one finds the positions of th structures from the parametric equations and then performs displace-
ment or rotation on them. However, since the grid is fixed in he tool, mapping the positions after rotation to
the samples also takes computation power. Hence this tool displaces and rotates the grid samples instead.
Suppose one wants to displace the centre of a structure by a vector r⃗d ,

r⃗d =
xd

yd

zd

 . (4.13)

Then the grid samples will first be shifted to r⃗ ′

r⃗ ′ = r⃗ − r⃗d . (4.14)
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(a) (b) (c)

(d)

Figure 4.3: Definition of rotation angle (a) α along x-axis, (b) β along y-axis and (c) γ along z-axis and (d) an example of a cylinder is
rotated along x-axis for 60deg

To rotate the structure along x,y and z axis by α, β and γ respectively, one needs to rotate the coordinate
system by −α, −β and −γ, whereα, β and γ are defined as the counterclockwise rotation along axis according
to the built-in functions in MatLab [19] in Fig. 4.3a, 4.3b and 4.3c. The rotated grid can be expressed as

r⃗ ′′ = Rx
(−γ)

Ry
(−β)

Rz (−α) r⃗ ′ (4.15)

where Rx (−α), Ry
(−β)

and Rz
(−γ)

are rotation matrices defined as

Rx (α) =
1 0 0

0 cosα −sinα
0 sinα cosα



Ry
(
β
)=

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ



Rz
(
γ
)=

cosγ −sinγ 0
sinγ cosγ 0

0 0 1



. (4.16)

Fig. 4.3d is an example of a cylinder with 0.5mm radius and 1mm height rotated 60deg along x-axis and
shifted 0.2mm along +ẑ.
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4.1.3. Material
After a structure is modelled with the indexes of the samples r⃗n , the material of the structure (εr ,σ) is defined
on the corresponding basis functions, generating the material matrix Zmat. The undefined basis functions are
filled with zeros, which will be masked at later stages.

4.2. Plane Wave Excitation
For plane wave scattering problem, the excitation v is provided by the incident field of the plane wave. As-
suming a plane wave travelling from

(
θ,φ

)
, as shown in Fig. 4.4, the propagation direction of the plane wave

can be written as

k̂PW =−(
sinθcosφx̂ + sinθ sinφŷ +cosθẑ

)
. (4.17)

By assuming the normal n̂s =+ẑ, for TE-polarized plane wave, the electric field is polarized as follows

ÊTE = k̂PW × ẑ∣∣k̂PW × ẑ
∣∣ = −sinθ sinφx̂ + sinθcosφŷ +0ẑ

|sinθ| = −sinφx̂ +cosφŷ +0ẑ. (4.18)

if θ ̸= 0. Since ÊTE is perpendicular to the direction of propagation, the unit vector of TM polarization is just
the product between ÊTE and k̂PW, where the TM-component can be expressed as

ÊTM = ÊTE × k̂PW = k̂PW × ẑ × k̂PW =−cosθcosφx̂ −cosθ sinφŷ + sinθẑ. (4.19)

For the broadside incidence case (θ = 0), the definition for TE and TM polarization is not unique so the user
can control the polarizations usingφ and the amplitudes of each polarization. For example, ifφ=φin, the tool
will recognize TM polarization has a direction of x̂ and TE as ŷ with a rotation of φin. The overall expression
of the electric field is written as

E⃗ in (r̂ ) = (|ETM| ÊTM +|ETE| ÊTE
)

e− j k̂PW·r̂ . (4.20)

Once the incident field is known, the excitation of the linear system can be derived as

v =


∆E⃗ in (⃗r1) · p̂1

∆E⃗ in (⃗r2) · p̂2
...

∆E⃗ in
(⃗
rNt

) · p̂N

 (4.21)

where p̂n is the polarization of the n-th basis functions.

4.3. Discrete Port
For active problems, the tool supports the use of discrete ports with source impedance Zs to represent the
impressed field in a certain cuboid region. Assume that one wants to excite a volume Vin with a voltage Vin

oriented along the direction p̂ex over a length d . The corresponding incident electric field can be written as
follows

E⃗ in (⃗r ) = Vin

d
p̂ex, for r⃗ ∈ Vin. (4.22)

According to the definition of the incident voltage given in (2.23), and according to the choice of the used basis
function, the projection of the incident field E⃗ in into the n-th basis function b⃗n can be written as follows

vn = 〈E⃗ in (⃗r ) , b⃗n (⃗r )〉 =
Ñ
Vn

Vin

d

1

∆2 rect

∣∣∣∣ r⃗ − r⃗n

∆

∣∣∣∣ p̂ex · p̂ndr⃗ =
{

Vin∆
d p̂ex · p̂n , if Vn ∈ Vin

0 otherwise.
(4.23)

For Zs ̸= 0, the system is excited the same way with a correction of the results in the post processing
stage. Figure shows a simple example of exciting a dipole oriented along x-axis with a voltage Vin. The gap
is one basis function long i.e. d = ∆ at r⃗8 so only one sample is excited along x̂ direction without ŷ and ẑ
components. The excitation term will be v (8) =Vin with the rest elements equal to zero.
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Figure 4.4: Graphical representation of a plane wave incidence from θ and φ

Figure 4.5: A simple example of exciting a dipole with a gap ∆

4.4. Radiometric Sources
A feature which has not been added into the GUI but already implemented in MATLAB script is radiometry
properties for semi conductors. In Drude model [13], the conductivity of a material is considered as frequency
dependent, which follows the relation

σ (ω) = σqs

1+ jωτ
(4.24)

where σqs is called the quasi static part of conductivity and τ is the scattering time of the material.
The structure then can be defined in the whole grid with a Drude model material (εr ,σ (ω)). The excitation

is filled by radiometric sources for all polarizations at everywhere with an arbitrary phase:

vx,y,z (⃗rn) =
√
ℜ

{
4kB T

∆σeff

}
e jφn (4.25)
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where r⃗n ∈ V andσeff = jωε0

(
εr −εbg

r

)
+σ (ω). Then the power radiated by such structure at a certain temper-

ature T can be derived by evaluating the scattered power from the equivalent sources with the superposition
of multiple simulations. More details regarding to radiometry problems are explained in Ch. 7.
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Figure 4.6: An example of simulating radiometry problems with the tool

4.5. Customization
For simplicity, the tool only parametrize four basic shapes that are commonly used in antennas. However,
there are more complex structures that can be achieved. First, the tool supports overlaps between the struc-
tures, where later added shapes will overwrite the ones that are added previously with new material informa-
tion if they overlap. Users may use this feature to create combination of shapes or subtraction of shapes by
overwriting using a shape with background material. An example of this is the matching layer for lens anten-
nas. Moreover, customized shapes are also possible by simply importing pre-defined indexes of the samples
from files with recognizable format.

Other parts users can design, as shown in Fig. 2.3, are the excitation term and the material matrix. It is
possible to introduce other material models, such as the Drude’s model in the script. Field sources can be
imported to fill the excitation terms also from a file with specific format. Overall, the tool is flexible and easy
to implement updates.





5
Solution of Equivalent Currents

Solving a large-scale system such as v = (
Zmat +Zrad

)
i is not trivial. Fortunately, it is possible to exploit a

fast solver, thanks to the properties introduced by the uniform sampling of the grid. Sec 5.1 introduces an
iterative technique called Conjugate Gradient Fast Fourier Transform (CG-FFT) that allows to solve the linear
system more efficiently in terms of computation time and memory requirements. Sec. 5.2 explains how the
results (i.e., near fields, radiated and lost power, circuit parameters, and far field patterns) are derived from
the equivalent currents is explained.

5.1. CG-FFT
5.1.1. Strategies to Solve Linear Systems
Several different techniques are suitable to solve (2.23).

Inversion. The most immediate one is the direct inversion which is discouraged due to the complexity of
O

(
N 3

t

)
, and to the low accuracy, therefore it is rarely used in numerical codes. It also requires the full storage

of the matrix, i.e., N 2
t entries to be saved.

LU Factorization. A more practical method is the LU factorization, where the matrix that defines the linear
system is factorized into an upper-triangular (U ) and a lower-triangular matrix (L). After the matrix has been
factorized, the system can be solved through the solution of a triangular-like linear system. The matrix is
factorized with a complexity of O

(
2N 3

t /3
)
, and the triangular system can be solved with the complexity of

O
(
N 2

t

)
. This approach is particularly convenient if a larger number of linear systems with the same matrix

but different forcing terms have to be solved. The matrix can be factorized only once, and all the different
systems can be solved with N 2

t operations. However, it requires storing N 2
t entries of the factor matrices.

Iterative Methods. Iterative methods such as the Conjugate Gradient (CG) and its derivations such as the
Conjugate Gradient Squared (CGS), the BiConjugate Gradient Squared (BiCG), and the Biconjugate Gradient
Stabilized (BiCG-Stab) can be used to solve linear systems. These iterative methods converge to the solution
through successive approximations. In exact arithmetic, Nt steps are required to converge to the exact so-
lution. For the full treatise, we suggest reading the dedicated section of [15]. The principle behind the CG
approach is not to solve the linear system directly but to define a functional whose minimum is the same
as the solution of the system itself. The minimum is searched through an iterative approach, illustrated in
Fig. 5.1, starting from the initial guess i(1) of step 1. At the (k +1)-th step the solution i(k+1) is be expressed as:

i(k+1) = i(k) +α(k)p(k) (5.1)

where ik is the solution of step k, pk is the search direction, and αk is a parameter that describes the move-
ment along pk . The computations of pk and αk depend on the specific implemented algorithm, [15]. More-
over at each step matrix-vector multiplications are performed to compute the residual vector rk defined as:

r(k) = v−Zmat · i(k)︸ ︷︷ ︸
1⃝

−Zrad · i(k)︸ ︷︷ ︸
2⃝

. (5.2)

23
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Figure 5.1: Flow chart diagram of CG algorithm for solving the linear system

The residual represents the error, component by component, for which the i(k) solution of the linear sys-
tem approximates the exact solution i. Being the CG an iterative method, a new solution is searched until
||r(k)||/∥v∥ < ϵ, where ∥·∥ is the norm defined in the space vector and ϵ is the the tolerance required for the
solution. In electromagnetic, the typical values for the tolerances are 10−3 for scattering problems and 10−4

for the input impedance calculation. The CG converges to the solution with ns steps, where usually ns is or-
ders of magnitude smaller than the number of unknowns Nt . The CG calculates the residual (5.2) ns times,
and this aspect is the main computational effort of the method. Since the product 1⃝ of (5.2) is the product
between a diagonal matrix and a vector, only Nt operations are required (i.e. element-wise multiplication).
Product 2⃝ instead is the product between the full matrix Zrad and the vector i(k), and it requires N 2

t opera-
tions if performed in the “traditional" manner. Therefore the complexity of each CG step is O

(
N 2

t

)
, and since

ns are required for the convergence, the overall complexity of the method is O
(
ns N 2

t

)
. From this computa-

tional complexity analysis, it can be easily inferred that the computation of 2⃝ is the bottleneck for the CG.
Moreover, it has to be stated that along with the complexity, the required memory is still N 2

t , which is pro-
hibitive for any large-scale problem. The results described in this document aim first at making the memory
requirements proportional to the number of unknowns Nt (instead of N 2

t ) by storing only a part of Zrad and
then at reducing the complexity at which the product 2⃝ is computed.

It can be demonstrated that in the case of a uniform sampling, the matrix Zrad is a Toeplitz matrix, which
benefits from properties that allow us to reduce the memory requirements and the computational complexity
significantly.

5.1.2. Toeplitz Matrix - Vector Product with Fast Fourier Transform

In this sub-section, the general properties of Toeplitz matrices are explained from a mathematical point of
view and the aspects concerning the electromagnetic modelling are emphasized.

In the first place, these aspects are analysed for linear geometries and then extended to planar and volu-
metric structures
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Figure 5.2: Geometry of Nx equispaced sources distributed along x-axis, and geometry of Nt equispaced sources distributed along
x-axis and their cyclical extension (in grey).

One Dimensional Case
Let us assume a linear geometry of Nx equispaced basis functions as shown in Fig. 5.2. The associated
impedance matrix Zrad can be written as:

Zrad =


z11 z12 z13 . . . z1Nx

z21 z22 z23 . . . z2Nx

z31 z32 z33 . . . z3Nx

...
...

...
. . .

...
zNx 1 zNx 2 zNx 3 . . . zNx Nx

 , (5.3)

where the generic zi j entry represents the reaction of the field generated with the j -th basis function (i.e., the
source) into the i -th test function (i.e., the observation). However, since a space uniform sampling has been
used, the space invariance of the Green’s function yields to:

zi j = z j−i ∀i , j (5.4)

meaning that every reaction depends only on the mutual distance between the source and the observation
point, but not on their exact positions. Therefore, the impedance matrix Zrad can be written as:

Zrad =



z0 z−1 z−2 . . . z2−Nx z1−Nx

z1 z0 z−1 . . . z3−Nx z2−Nx

z2 z1 z0 . . . z4−Nx z3−Nx

...
...

...
. . .

...
...

zNx−2 zNx−3 zNx−4 . . . z0 z−1

zNx−1 zNx−2 zNx−3 . . . z1 z0


. (5.5)

In the form expressed by (5.5), Zrad is a Toeplitz matrix, i.e., a matrix where each descending diagonal from left
to right is constant. Due to its symmetries, it can be sufficiently characterized by using only its first row and
its first column. Therefore, instead of N 2

x , only 2Nx −1 elements have to be stored. The vector żrad sufficient
to characterize the matrix can be written as:

żrad = [
zNx−1 zNx−2 . . . z1 z0 z−1 . . . z1−Nx

]T
(5.6)

The impedance matrix associated with a linear and equispaced geometry can be completely characterized
by the 2Nx −1 interactions stored in the vector żrad. Let us now analyse the meaning of the of the entries of
żrad, and how these can be calculated. The entries z−ℓ, with ℓ > 0 represent the interactions between an
element with a source located ℓ bins on its right. Therefore these can be calculated by fixing the observation
point on the first element and by changing the source point from 2 to Nx .

On the contrary, the entries zℓ, with ℓ > 0 represent the interactions between an element with a source
located ℓ bins on its left. To this purpose, it is convenient to cyclically extend the geometry, as shown in
Fig. 5.3b, by adding Nx "virtual" elements mirrored with respect to the original ones. So, the observation
point can still be considered fixed on the first element, while the source point changes from −Nx +2 to 0.
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Figure 5.3: The mutual reaction between element 1 and element ℓ for (a) ℓ> 0 and (b) ℓ< 0

The entire żrad vector can then be calculated in the cyclically extended geometry by fixing the observation
point on the element 1 and by changing the source point from −Nx +2 to Nx .

Assume now we want to calculate the matrix-vector product between Zrad and the vector p. The tradi-
tional matrix-vector product is expressed as:

b = Zrad ·p =


z0 z−1 . . . z1−Nx

z1 z0 . . . z2−Nx

...
...

. . .
...

zNx−1 zNx−1 . . . z0

 ·


p1

p2
...

pNx

=


z0 ·p1 + z−1 ·p2 +·· ·+ z1−Nx ·pNx

z1 ·p1 + z0 ·p2 +·· ·+ z2−Nx ·pNx

...
zNx−1 ·p1 + zNx−2 ·p2 +·· ·+ z0 ·pNx

 . (5.7)

However, the evaluation of (5.7) requires the storage of N 2
x coefficients. By resorting to the properties of

Toeplitz matrices, it is possible to calculate Zrad ·p by encompassing the storage of the entire matrix.
The first row of b in (5.7), is the sum of the element-by-element products between all the elements of p

and the Nx -th to last elements of żrad. The calculation of this row can be represented as follows:

zNx−1 zNx−2 . . . z1 z0 z−1 . . . z1−Nx

p1 p2 . . . pNx

Analogously, the second row can be calculated as follows:

zNx−1 zNx−2 . . . z1 z0 z−1 . . . z2−Nx z1−Nx

p1 p2 p3 . . . pNx

Therefore, as it can be seen from the previous steps, the product can be implemented by using a backward-
sliding window that selects the desired Nx elements of żrad, multiplies them element-by-element by the el-
ements of p, and then sums the products. The complexity is N 2

x (i.e., the same as the traditional approach),
but the memory requirement is 2Nx−1, instead of N 2

x . This procedure is equivalent to computing the circular
convolution1, indicated as ‘∗’, between żradand the vector flip

(
p
)
, i.e., the vector taken in the reversed order.

1The circular convolution between two sequences is the convolution between two sequences periodically extended with period T . As
one of the two sequences shifts on the other, the samples exceeding the fundamental period T re-enter in the convolution from the side
opposite to the exit.
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(a) (b)

Figure 5.4: (a) Toeplitz matrix-vector product elapsed time of the “traditionally" calculated product and the FFT calculated one, and (b)
Memory requirements for the two approaches.

Therefore, b can be expressed as follows:

b =
[

żrad ∗flip
(
p
)]

1:Nx
, (5.8)

where the subscript 1 : Nx indicates the first Nx components extracted from the convolution. The circular
convolution used to calculate the Toeplitz matrix-vector product can be equivalently calculated with the aim
of the Discrete Fourier Transform (DFT), which can be written as

b = DFT−1
{

DFT
{

żrad
}
◦DFT

{
p
}}

(5.9)

where ◦ denotes the Hadamard product. If the DFT and the IDFT are calculated with the FFT (Fast Fourier
Transform) and the IFFT (Inverse Fast Fourier Transform)2, (5.9) becomes:

b = FFT−1
{

FFT
{

żrad
}
◦FFT

{
p
}}

. (5.10)

In (5.10) two FFTs and an IFFT all are with complexity O
(
Nx log2 Nx

)
and the Hadamard product is with

complexity O (Nx ), therefore the overall complexity of the product computed with the FFT is O
(
Nx log2 Nx

)
versus the O

(
N 2

x

)
complexity of the traditionally calculated product. Moreover, only 2Nx −1 coefficients need

to be stored.
Fig. 5.4a shows the elapsed time necessary to calculate a Toeplitz matrix-vector product versus the num-

ber of elements N . The fluctuations present in the plot are due to the other processes running in the back-
ground during the computation, and to the specific memory management of the system. As it can be seen
for small values of N , the “traditional" product is more efficient due to the overhead operations necessary to
calculate the FFT. However, the elapsed times of the two approaches grow in significantly different manners,
the product calculated with the FFT . While curve associated with the “traditional" product grows fast before
stopping for N = 213 due to the limited memory resources. Fig. 5.4b shows the memory requirements neces-
sary to calculate the Toeplitz matrix-vector product calculated with the two algorithms. The data is stored in
double-precision.

Two Dimensional Case
Let us now consider the planar geometry shown in Fig. 5.5, where Nx and Ny elements are uniformly arranged
along x-axis and y-axis respectively. The element numbering is carried out along x before shifting to the
following y-coordinate row in the chosen geometry. The impedance matrix Z can be expressed as:

Zrad =


Z0 Z−1 Z−2 . . . Z1−Ny

Z1 Z0 Z−1 . . . Z2−Ny

Z2 Z1 Z0 . . . Z3−Ny

...
...

...
. . .

...
ZNy−1 ZNy−2 ZNy−3 . . . Z0

 . (5.11)

2The DFT is the mathematical transform, while the FFT and the IFFT are the specific algorithms use for the computation.
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Figure 5.5: Planar geometry of Nx equispaced elements along x-axis and Ny equispaced elements along y-axis (black). The number
ordering is along x. The cyclically extended geometry is also shown (grey).

The matrix Zrad is a block Toeplitz matrix, i.e., a matrix that can be subdivided into blocks arranged in a
Toeplitz fashion, where each of the blocks is a Toeplitz matrix itself. Each block represents the interactions
within the same y coordinate. Therefore the subscript of each block indicates the difference in y between the
source and the observation point. Any block Zk of (5.11) is expressed as follows:

Zk =


z0,k z−1,k z−2,k . . . z2−Nx ,k z1−Nx ,k

z1,k z0,k z−1,k . . . z3−Nx ,k z2−Nx ,k

z1,k z1,k z0,k . . . z4−Nx ,k z3−Nx ,k
...

...
...

. . .
...

...
zNx−1,k zNx−2,k zNx−3,k . . . z1,k z0,k

 (5.12)

where the entry zi , j of Zrad is the interaction between the source located in
(
iobs + i , jobs + j

)
an the observa-

tion point located in
(
iobs, jobs

)
. The impedance matrix is fully characterized if the first column and the first

row of blocks (i.e., 2Ny −1 blocks) are characterized, and each block is in turn characterized if its first column
and its first row are known, i.e., 2Nx −1 elements per block to determine. As it has been done in the previous
one dimensional case, to ease the computation, it is convenient to extend the geometry cyclically (gray dots)
to form a (2Nx −1)× (

2Ny −1
)

uniform grid, as shown in Fig. 5.5.
Analogously to what has been previously done in the one dimensional case, it is also possible to define

the matrix z containing all the interactions, and defined as follows:

z̈rad =



zNx−1,Ny−1 . . . z0,Ny−1 . . . z1−Nx ,Ny−1

zNx−1,Ny−1 . . . z0,Ny−1 . . . z1−Nx ,Ny−1
...

. . .
...

. . .
...

zNx−1,1 . . . z0,1 . . . z1−Nx ,1

zNx−1,0 . . . z0,0 . . . z1−Nx ,0

zNx−1,−1 . . . z0,−1 . . . z1−Nx ,−1
...

. . .
...

. . .
...

zNx−1,1−Ny 1 . . . z0,1−Ny . . . z1−Nx ,1−Ny


. (5.13)

The matrix is filled in by fixing the observation point on (0,0) and by scanning over the positions
(
i , j

)
with

i =−Nx +1, . . . , Nx −1, and j =−Ny +1, . . . , Ny −1.
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Now one can write the matrix-vector product for the two dimensional case as follows

b = Zrad ·p = Zrad ·


p1

p2
...

pNx ·Ny

 . (5.14)

Similarly to the previous case, the product is equivalent to calculate the first Nx ×Ny elements of the circular
2D convolution between z̈rad and P̃ flipped, which is written as follows

b = reshape
{

z̈rad ∗flip
(
P̃
)}

1:Nx ·Ny
(5.15)

where P̃ is p reshaped into rows and defined as

P̃ =


p1,1 p2,1 . . . pNx ,1

p1,2 p2,2 . . . pNx ,2
...

...
. . .

...
p1,Ny p2,Ny . . . pNx ,Ny

 . (5.16)

with
pi , j = p( j−1)·Nx+i (5.17)

And the flipping operator reverses both the rows and the columns by rotating the matrix by 180◦, which is
defined as

flip
(
P̃
)= flip




p1,1 p2,1 . . . pNx ,1

p1,2 p2,2 . . . pNx ,2
...

...
. . .

...
p1,Ny p2,Ny . . . pNx ,Ny


=


pNx ,Ny pNx−1,Ny . . . p1,Ny

pNx ,Ny−1 pNx−1,Ny−1 . . . p1,Ny−1
...

...
. . .

...
pNx ,1 pNx−1,1 . . . p1,1

 (5.18)

Three Dimensional Case

Extending to the three dimensional case, a 3D tensor
...
z rad is sufficient to characterize the interactions in

the Zrad, where the entries of the tensor
...
z rad

(
i , j ,k

)
stands for the interaction between the source point

at
(
Nx − i , Ny − j , Nz −k

)
and the observation point at (0,0,0) with i = 1, . . . , 2Nx − 1, j = 1, . . . , 2Ny − 1 and

k = 1, . . . , 2Nz −1.
Then the product is calculated by using a circular 3D convolution as

b = Zrad ·p = reshape
{ ...

z rad ∗flip
(
P̃
)}

1:Nx ·Ny ·Nz
(5.19)

where
P̃

(
i , j ,k

)= p(k−1)·Nx ·Ny+( j−1)·Nx+i (5.20)

and
flip

(
P̃
)(

i , j ,k
)= P̃

(
Nx − i , Ny − j , Nz −k

)
(5.21)

CGFFT Formulation
After having illustrated the properties of the Toeplitz matrices, it is possible to apply these properties to reduce
the CG method’s memory requirements and computation time.

The residual vector (5.2) can be expressed as follows:

r(k) = v−zmat ◦ i(k)︸ ︷︷ ︸
1⃝

−Zrad · i(k)︸ ︷︷ ︸
2⃝

, (5.22)

where the product 1⃝ is calculated as the element-wise product between the currents i(k) and zmat, the di-
agonal entries of Zmat, and the product 2⃝ can be calculated by using the FFT. The structure of the entire
impedance matrix Zrad in a configuration including three polarizations can be explicated as follows:

Zrad =
Zxx Zx y Zxz

Zy x Zy y Zy z

Zzx Zz y Zzz

 (5.23)
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Figure 5.6: Diagram of x-polarized sources and y-polarized sources

where each sub-matrix Zℓm is the impedance matrix calculated as in (2.22) between ℓ-polarized and m-
polarized currents, it results in a Toeplitz-like form, and is characterized by the interactions stored in zℓm .
However, if the same number of points are taken in the x, y , and z, due to reciprocity and to the symme-
tries of the structure, the sub-matrices circled in red are sufficient for its characterization. Therefore it is
simply sufficient to calculate the interactions zxx , and zx y . However, the sub-matrices are not identical, in
the elements ordering, to the calculated ones, and an extra operation is necessary to build the entire matrix
correctly. Let us consider, for instance, the geometry sketched below, where the x- and y-polarized currents
are present.

The interactions between the x-polarized currents are numerically equal to the ones between the y-
polarized ones. However, a different element ordering has to be considered. For instance, as shown in Fig. 5.6,
the interaction between the x-polarized currents 1 and 2 is different from the interaction between the y-
polarized currents 1 and 2. Instead, the former is equal to the interaction between the y-polarized currents 1
and 4. Therefore, it is possible to calculate zxx only, but an element rotation is needed to derive zy y or zzz out
of it. Moreover, if the basis functions are cubic, as used in this tool, the magnitudse of the mutual reactions
for the same absolute distance are the same, yielding ∥zi∥ = |z−i∥, with only a sign different depending on
the relative directions along the three axes. This feature simplifies the calculation and storage of the interac-
tions by a factor 8 from (2Nx −1) · (2Ny −1

) · (2Nz −1) to Nx ·Ny ·Nz . Then the matrix-vector product can be
calculated as follows:

Zrad · i(k) =
Zxx Zx y Zxz

Zy x Zy y Zy z

Zzx Zz y Zzz

 ·

i(k)
x

i(k)
y

i(k)
z

=

=

Zxx · i(k)
x +Zx y · i(k)

y +Zxz · i(k)
z

Zy x · i(k)
x +Zy y · i(k)

y +Zy z · i(k)
z

Zzx · i(k)
x +Zz y · i(k)

y +Zzz · i(k)
z

=

=
Zxx

Zy x

Zzx

 · i(k)
x +

Zx y

Zy y

Zz y

 · i(k)
y +

Zxz

Zy z

Zzz

 · i(k)
z ,

(5.24)

where products Zℓm · i(k)
m can be efficiently calculated by using the FFT, as shown in previously. The number

of operations can be reduced by pre-computing the FFT of the blocks zℓm before entering the CG algorithm.
Moreover, inside the residual evaluation, for every CG step, the FFT calculation of each i(k)

x,y,z can be calculated
only once and used for the all the three necessary products, as highlighted in (5.24).

Table 5.1: Linear system solution comparison between CG-FFT, Inversion and LU-factorization

Complexity Memory
Inversion O

(
N 3

)
N 2

t
LU Factorization O

( 2
3 N 3

t

)+O
(
N 2

t

)
N 2

t
CG nsO

(
N 2

t

)+nsO (Nt ) N 2
t

CG-FFT nsO
(
Nt log2 N

)+nsO (Nt ) Nt

In summary, due to the Toeplitz properties and the choice of cubic basis functions, the number of inte-

grals to be evaluated can be reduced from
(
3Nx Ny Nz

)2 to
(
2Nx Ny Nz

)
. The memory storage is drops from N 2

t
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(a) (b)

Figure 5.7: The comparison of performance between the traditional LU factorization method and CG-FFT in terms of (a) elapsed time
and (b) memory storage

to Nt and the calculation of the matrix-vector product has a complexity of O
(
Nt log2 Nt

)
instead of O

(
N 2

t

)
.

The comparison between different method is shown in Table. 5.1.2 and Fig. 5.7. It is seen that the CG-FFT ap-
proach has advantage over the other methods in terms of computation complexity or memory requirement,
where the traditional method fails when the number of basis function exceeds 40×103 due to memory limits
while the CG-FFT method can handle several millions of unknowns with faster solutions.

5.1.3. Masking
Since the grid is chosen to contain all the bodies to simulate, and to represent the field accurately, it is likely
that some mesh cells do not contain any material piece, and are not active during the calculation. Ideally one
only needs to solve a reduced linear system

v̂ =
(
Ẑmat + Ẑrad

)
î (5.25)

where v̂, Ẑmat, Ẑrad and î are the correspondent of v, Zmat, Zrad, and i, but defined only on the scatterer.
However, after the introduction of FFT, the cubic geometry has to be maintained to preserve the Toeplitz
structure and the convolutional property of Ẑrad. A masking procedure is used to discard in the CG-FFT the
contributions from the mesh cells not containing any material piece. Suppose K out of Nt basis functions are
used in one simulation. Let the total grid D containing Nt points be numbered as

D = {1,2,3, . . . , Nt } (5.26)

and the actual grid Ds containing K points be numbered as

D = {k1,k2, . . . ,kK } (5.27)

where ki is the index of the ith basis function in the whole grid. For example, k1 means the index of the first
basis function that contains a material piece. The mask matrix M of size Nt ×K maps D into Ds and vice versa,
by creating a correspondence between the two different numbering sets, the element of which is defined as

mi j =
{

1, if i = k j

0 otherwise.
(5.28)

In such a way, the mapping between the entire basis function set and relevant basis function set can easily
performed by

î = M · i (5.29)

i = MT · î. (5.30)

Fig. 5.8 shows the updated algorithm for the CGFFT approach, the irrelevant basis functions are taken out at
the end of each step and refilled with zeros before the next iteration. In such a way one is still able to compute
the matrix-vector product disregarding the contributions from irrelevant basis functions.
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(𝒁𝑚𝑎𝑡 + 𝒁𝑟𝑎𝑑)𝒊 = 𝒗

𝒁𝑚𝑎𝑡 + 𝒁𝑟𝑎𝑑 𝒊(𝑘) = 𝒗(𝑘)

𝑘 = 0

𝒓(𝑘) = 𝒗 − 𝒗(𝑘)

𝒊(𝑘+1) = 𝒊(𝑘) + 𝜶(𝑘)𝒑(𝑘)

𝒊 = 𝑴(𝑴𝑻𝒊(𝑘))

𝑘 = 𝑘 + 1

𝒓𝑘
𝒗

< 𝜖?
yes

no

𝒊(𝑘) = 𝑴 𝒊(𝑘)

𝒊(𝑘+1) = 𝑴𝑻𝒊(𝑘)

Figure 5.8: Flow chart diagram of CG algorithm for solving the linear system

5.2. Post-Processing
Once the linear system has been solved, scattering and discrete port problems are considered for post-processing.

5.2.1. Scattering Problems
For scattering problems, by using (2.23), the equivalent current are obtained for desired results.The most
direct result is the radiation in far fields using homogenous space Green’s function

E⃗ s (⃗r ) =
Ñ
V

¯̄Ghs (⃗
r , r⃗ ′) · J⃗eq (⃗r ′)dr⃗ ′. (5.31)

Let us now assume that the observation point r⃗ is located in the far field. Therefore, the dimension of each
cuboid constituting the source can be considered small with respect to the distance from the observation
point. The electric field radiated by the n-th current can written as

E⃗ (⃗r ) =
Ñ
Vn

¯̄Ghs (⃗
r , r⃗ ′) · J⃗eq

(⃗
r ′)dr⃗ ′ = ¯̄Ghs (⃗r , r⃗n) · J⃗eq (⃗rn)∆3. (5.32)

By applying the superposition principle, the total field can be written as

E⃗ far (⃗r ) =∆3
Nt∑

n=0

¯̄Ghs (⃗
r , r⃗ ′) in b⃗n (5.33)

where in is the n-th element of the solution i and b⃗n is the n-th basis function. By using the cubic pulse basis
functions, (5.2.1) becomes as follows

E⃗ far (⃗r ) =∆
Nt∑

n=0

¯̄Ghs (⃗
r , r⃗ ′) · p̂n in (5.34)

where p̂n is the orientation of the n-th basis function.
The total electric field E⃗ inside the structure, according to (2.7), can be written as

E⃗ (⃗rn) = 1

∆2 jωϵ0

(
εeff (⃗rn)−εbg

eff (⃗rn)
) (

in x̂ + in+Nx ŷ + in+2Nx ẑ
)

, with n = 1,2, . . . , Ns . (5.35)



5.2. Post-Processing 33

The power lost in the dielectric can be calculated in matrix form as

PLoss = 1

2
iHℜ{

Zmat} i (5.36)

which simply is equivalent to

PLoss = 1

2

Nt∑
n=0

∣∣i 2
n

∣∣ℜ{
σeff (⃗rn)

}
(5.37)

The radiated power can be calculated from

PRad = 1

2
ℜ

{
iH Zradi

}
(5.38)

which follows the conservation of energy as

PRad =ℜ
{

1

2
iH ·vin −PLoss

}
= 1

2

Nt∑
n=0

ℜ {in vn}−PLoss. (5.39)

5.2.2. Discrete Port Problems
Finding the exact excitation of (2.23) is not straightforward for discrete port problems when there are source
impedance Zs connected to the ports. The excitation could be found by solving a equivalent circuit as shown
in Figure, but the S parameters of the structure is required. Since the circuit parameters do not depend on the
excitation but only the structure itself, one may use a testing case to solve the circuit parameters beforehand.
Here the testing case is chosen to be all source impedances are zeros Zsn = 0. Assume there are K ports
oriented along p̂ex

1 , p̂ex
2 , . . . , p̂ex

K excited individually with a voltage V = [V1,V2, . . . ,VK ]T , now we can solve the
equivalent currents ĩ. The average current flowing across the k-th port can be expressed

Iport,k =
1

dk

Ñ
Vk

J⃗ (⃗rk ) · p̂ex
k dr⃗k (5.40)

where Vk is the volume enclosing the port k, dk is the length of port k along the orientation p̂ex
k and J⃗ (⃗r ) is

the current on the basis function, which can be obtained through:

J⃗ (⃗r ) =σ (⃗r ) E⃗ (⃗r ) = σ (⃗r ) J⃗eq (⃗r )

σeff (⃗r )
. (5.41)

One obtains the Iport,k by

Iport,k =
Nk∑

m=1

σ
(⃗
rk(m)

)
σeff

(⃗
rk(m)

) (
ik(m)x̂ + iN+k(m) ŷ + i2N+k(m) ẑ

) · p̂ex
k

dk /∆
(5.42)

where Nk is the number of basis functions used to describe port k, ∆ is the size of the basis function, in is the
n-th element of the solution ĩ and r⃗k(m) is the position vectors that belong to the set Rk describing the volume
Vk .

r⃗k(m) ∈ Rk = {⃗
r |⃗r ∈ Vk

}
. (5.43)

The input admittance matrix Ya for the antenna can be characterized by

Ya
i , j =

Iport,i

V j
(5.44)

where Ipor t ,i is the current flowing across port i when port j is excited by a voltage V j . The input impedance
matrix of the antenna is simply an inversion of Ya.

Za = [
Ya]−1 . (5.45)

Therefore, the overall impedance matrix Z is obtained by

Z = Za +Zs (5.46)



34 5. Solution of Equivalent Currents

where Zs is a diagonal matrix with source impedances as its elements

Zs =


Zs1 0 · · · 0
0 Zs2 · · · 0
... 0

. . .
...

0 · · · 0 ZsK

 . (5.47)

The current flowing across the ports can be derived as

I = [Z]−1 V. (5.48)

The true excitation falls on the ports is solved using

Vex = ZaI. (5.49)

Figure 5.9: Equivalent circuit diagram of a discrete port problem

Then the true solution of the equivalent currents i are obtained by defining the excitation terms as Eq and
solving the linear system. From Figure one finds the input power Pin as in

Pin = 1

2
IH V. (5.50)

The power distributed on the source impedances Ps is

Ps = 1

2
IH Zs I = 1

2

K∑
k=1

∣∣I 2
k

∣∣ Zsk (5.51)

where Ik is the k-th element in I. The power lost in the dielectric PLoss and the radiated power is expressed
the same as (5.2.1) and (5.38). Similarly, due the conservation of energy, the radiated power is

PRad = Pin −PLoss −Ps. (5.52)

The S-parameters can also be calculated accordingly with a default reference impedance of 50Ω.
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Validation

In this chapter, results from the V-MoM are compared and validated using both analytical tools and commer-
cial software. Sec. 6.1 validates the simulation results of a dielectric sphere from the tool with Mie series [20].
In Sec. 6.2, a small lens with a dipole feed is simulated and the result is compared with CST.

6.1. Validation with the Mie Series - Dielectric Sphere
The Mie series gives an analytical solution for the fields scattered by a sphere by expanding the fields into
spherical waves, and enforcing the boundary conditions on the surfaces. Let us assume a sphere of ra-
dius λ0/2 with an effective permittivity of εr is illuminated by a plane wave impinging from the negative
z-direction, with electric field along x̂. The scattered field along the z-axis of the sphere is obtained from the
V-MoM, the Mie series [21] and CST [22], as shown in Fig. 6.1.

The magnitude of the total field along the z-axis shown in Fig. 6.3 for εr = 4 and εr = 8, where different
solutions are compared. The V-MoM meshes the volume into 81 × 81 × 81 samples with ∆ = λ0/81. The
frequency domain solver is used in CST due to he resonant nature of the problem.

The voxel discretization of the V-MoM cannot represent perfectly the curvature of the sphere and its cor-
rect volume. As shown in Fig. 6.2a, the field in the structure is represented until r −∆/2, and this leaves an
uncertainty for the outer ∆/2 area, which usually can be ignored if the field is constant at the edges. For this
reason, the V-MoM is compared with a dielectric sphere of the correct radius r =λ0/2, and of r −∆/2 to model
uncertainty due to the discretization, as depicted in Fig. 6.2b. As shown in Fig. 6.3, the V-MoM represents the
field with an error comparable with the tolerance given by the discretization, making thus the code validated.

𝑘𝑃𝑊

𝐸 = 1 V/m

𝜀𝑟𝑥

𝑦
𝑧

𝑅 = Τ𝜆0 2

𝑧

Figure 6.1: Graphical representation of a λ0 sphere illuminated by a plane wave with field oriented along x̂.
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(a)

𝑘𝑃𝑊

𝐸 = 1 V/m

𝜀𝑟𝑥

𝑦
𝑧

𝑅

𝑧

𝑅 − ΤΔ 2

(b)

Figure 6.2: (a) Representation of the fields by the basis functions on the edge. (b) Graphical representation of simulation on a smaller
sphere of radius λ0/2−∆/2

(a) (b)

Figure 6.3: The total electric field along ẑ given by the V-MoM, CST and Mie series at the centre of the (a) εr = 4 sphere and (b) εr = 8
sphere

To compare the performances between the two numerical solvers, one defines the relative error as

ϵsolver =
∣∣∣∣∣
∣∣∣∣∣
∣∣E⃗ t

solver

∣∣− ∣∣E⃗ t
Mie

∣∣∣∣E⃗ t
Mie

∣∣
∣∣∣∣∣
∣∣∣∣∣ (6.1)

Table 6.1: Performance comparison between CST and the V-MoM for a εr = 4 sphere

ϵsolver Computation Time
V-MoM 1.8% 109 s1

CST 4.1% 241 s

Table. 6.1 shows the comparison in terms of accuracy and computation time between the V-MoM and
CST . It is seen that for the sphere with εr = 4, the V-MoM is more accurate than the CST by 2%. Meanwhile it
is also faster than CST as it takes only 109 seconds to solve the linear system plus 53 seconds to compute the
recyclable reaction integrals while CST takes 241 seconds to get a slightly less accurate results.

1tsolver = 109 s and the time to fill the reaction integrals is 53 s, which can be reused.
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𝑘𝑃𝑊 𝐸 = 1𝑉/𝑚

0.5λ0

0.25λ0

𝑥

𝑦
𝑧

(a) (b)

Figure 6.4: (a) Graphical representation of a multi-layer sphere with an inner εr = 4 sphere and an outer εr = 8 sphere. (b) Total field
along ẑ inside the multi-layer sphere obtained from the Mie series, V-MoM and CST

𝑥

𝑦
𝑧

Figure 6.5: Graphical representation of a semi-hemispherical lens fed by a dipole antenna

The tool is also validated in the case of multilayered sphere under a plane wave incidence, as shown in
Fig. 6.4a. The agreement Fig. 6.4b between different results demonstrates that the tool’s capability of mod-
elling inhomogeneous structures accurately, which is promising for realistic applications such as lens anten-
nas with matching layers.

6.2. Validation with CST - Lens Antenna
The tool is validated for a practical case scenario consisting of the dipole fed lens antenna shown in Fig. 6.5.
The lens has a dimension of D = 2λ0 = 2mm and it is constituted of a dielectric material having a relative
permittivity εr = 2.34. The fed is a half-wavelength dipole with a square section of λ0/20 and a feeding gap
of λ0/10 long. This structure is discretized with basis functions having edge ∆=λ0/20, for a total of 1.92 ·105

unknowns.
First, the 2λ0 semi-hemispherical lens is constructed by a hemisphere with a diameter of D = 2mm and a

cylinder of height H = 0.195D located below, illuminated by a plane wave from broadside with electric field
oriented along x̂, as shown in Fig. 6.6a. Fig. 6.6b shows the magnitude of the total field inside the Lens along
ẑ direction at 294GHz, which is in good comparison between CST and the V-MoM. In Fig. 6.6c and Fig. 6.6d,
the magnitude of the total electric field distribution are shown on the X -Z plane. It is seen that the V-MoM
models the lens accurately in the near field with respect to CST.

Then the half-wavelength feeding dipole is simulated in free space with a volumetric excitation. Since
this excitation can not be applied in CST, nine discrete ports are placed in parallel over the gap to represent
the uniform excitation over the volumetric δ-gap space. Fig. 6.7a shows the comparison in terms of input
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𝑘𝑃𝑊
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Figure 6.6: (a) A 2mm semi-hemispherical Lens with εr = 2.34 incident by a plane wave from ẑ. (b) The magnitude of the total electric
field on the Lens along ẑ given by CST and V-MoM at 294GHz. And the magnitude of the total field on the X -Z plane inside the lens

given by (c) the V-MoM and (d) CST

impedance of the dipole between the V-MoM and CST. The disagreements are due to the different source
representations between the V-MoM and CST, and are also due to the use of a single basis function on the
dipole’s cross section, which can not represent the current accurately. The sampling of λ0/20 is sufficient for
the dielectric while the metallization of the dipole requires much finer discretization. Nevertheless, the over-
all comparison acceptable over the entire frequency band and in the future we aim to decouple the simulation
of the metallization and the dielectric by considering adding analytical corrections in the post-processing
stage.

Finally, the dipole-lens antenna is simulated. In CST, the dipole is placed under the lens with its centre
located at (0,0,−h −∆/2). However, in the V-MoM, due to the even sampling of the grid and its resolution of
∆ = λ0/20, the cylinder is constructed of height h̃ = 0.2D and the dipole is located at

(
0,∆/2,−h̃ −∆/2

)
. The

input impedance of the dipole-lens antenna is shown in Fig. 6.7b, proving the tool’s capability to reproduce
the field oscillations inside the lens, and showing a good agreement compared with CST. The radiated fields
are shown in Fig. 6.8, when exciting the lens with a 4.5W power. The field evaluated on the X -Z cut inside the
lens is shown in Fig. 6.8a, which results into a good agreement compared with CST in Fig. 6.8b. The far-fields
are shown in Fig. 6.8c, evaluated at distance r = 1mm over ϕ= 0deg and ϕ= 90deg. From these simulations
it is proved that the tool is able to simulate complex problems in transmission with a good accuracy.



6.2. Validation with CST - Lens Antenna 39

(a) (b)

Figure 6.7: Input impedance for (a) the half-wavelength dipole and (b) the 2λ0 Lens antenna

(a) (b)

(c)

Figure 6.8: The total field inside the Lens antenna on the X -Z plane obtained at 294GHz from (a) V-MoM and (b) CST, and (c) the far
field of the simulated antenna obtained from the V-MoM and CST
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Radiometry

7.1. Motivation
Thermal noise contribution plays an important role in signal-to-noise estimation in communication systems,
imaging systems, and earth observation tasks. With more and more devices in sub-terahertz being designed
and used in such systems, the estimation of thermal noise becomes crucial, as it scales with the square of
the frequency. If one integrates the noise spectrum from zero to the highest frequency, the total noise grows
as f 3. For example, the thermal noise power at 1 THz is a billion times higher than the noise power at 1
GHz integrating the spectrum. However, there is a lack of analysis, both theoretical and experimental, on the
thermal radiation from a realistic body, in the sub-THz band. Therefore, in this thesis, the V-MoM is used to
estimate the noise power spectrum of an arbitrary shaped body with a certain conductivity and permittivity.

The thermal radiation from a body is typically characterized experimentally by comparing it with the one
from black body radiation, with an additional correction parameter named emissivity E . In 1860, Kirchhoff
[23] first stated that if the body is in thermodynamic equilibrium, the emissivity of a body is equal to its ab-
sorptivity. Then the radiated power from a black body was estimated by Rayleigh–Jeans with classical physics,
which then was validated incoherent with the experimental results at high frequencies, and thus bringing the
ultraviolet catastrophe. Then in 1906, Planck [24] explained the experiment results well with the famous
Planck’s law, by introducing the quantum theory. However, an ideal black body does not exist, and to approx-
imate the radiation from an actual body, emissivity as a correction parameter was created to calibrate the
experimental results. The emissivity could be a wild function depending on the frequency, the shape and the
material of the body.

In 1928, Johnson [25] analysed the noise caused by the thermal fluctuations of the electrons, after which
his colleague Nyquist [26] presented a more rigorous formula, but also adding a quantum correction based
on Planck’s law without any experimental backing. This law is wildly used in microwave engineering known
as the Johnson-Nyquist noise. The first semi-rigorous treatment of the power emitted by a material body
kept at a certain temperature was proposed by Rytov [10] in 1955. At that time, the means to analyse complex
electromagnetic problems was limited and thus Rytov suggested a simplified technique based on reciprocity
and reflection and transmission from infinite slabs to approximate the absorptivity of the slabs. Since then
heat transfer was studied in many work, [11], [27], and [12], using classical electromagnetic but most of them
were done with ideal materials without experimental validation.

In this work the V-MoM is used to characterize the thermal emission from bodies having an arbitrary
shape, and constituted by homogeneous materials, in the frequency range in which it is legitimate to define
a conductivity. In fact, when the frequency is so high that in a box of tenth of a wavelength and there is only
one electron, it is apparent that the concept of conductivity fails to represent homogenized properties of a
body. Moreover, a waveguide problem is formulated and solved numerically to prepare for a validation with
the experimental results of the radiation from a semiconductor.

7.2. Formulation using the V-MoM
To study the thermal radiation from a arbitrary body with relative permittivity εr and conductivity σ, kept
at a certain temperature T , one discretizes it using Nt voxels of size ∆ and sum the contribution in terms of

41
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radiated power spectrum from each voxels respectively, which can be written as follows

P
(

f
)= Nt∑

n=1

∣∣∣i impr
n

∣∣∣2
Rrad

n (7.1)

where Rrad
n is the radiation impedance of the n-th voxel in the body, and i impr

n is the impressed currents from
Rytov [10] and is defined as

i impr
n ≡

√√√√ 4h f

e
h f

kB T −1
ℜ {σn}∆. (7.2)

Since the Green’s function in the presence of which the impressed currents are radiating is not known, the V-
MoM procedure can be used to evaluated Rrad. The impressed currents are transferred into voltage sources,
based on [25] and [26], and then the the radiated power spectrum of the body can be simulated numerically.

As shown in Fig. 4.6, the structure is discretized into Ns samples and Nt = 3Ns basis function are used to
represent the orthogonal three degrees of freedoms of the field. Then the linear system is obtained as (2.23),
where

vn =
√√√√ 4h f

e
h f

kB T −1
ℜ{

zmat
n

}
e jφn (7.3)

where ℜ{
zmat

n

}
is the real part of diagonal elements in the material matrix Zmat and φn ∈ (0,2π)is the phase

term, which is an random variable uniformly distributed in [0,2π], and an incoherent field excitation is ob-
tained thanks to the statistical independence between all the different forcing terms.Each different set of
phases represents a single realization in a Monte Carlo like simulation. Eventually, the average field and cor-
responding power is associated to an incoherent field excitation. At low frequencies, the denominator of (7.3)
can be linearized, yielding

vn =
√

4kB Tℜ{
zmat

n
}
e jφn . (7.4)

For all the small problems, where it is possible to store the matrix, and to calculate its inverse, (2.23) is directly
solved by defining a MoM matrix YMoM as the inverse of the sum of two matrices as

YMoM =
(
Zmat +Zrad

)−1
. (7.5)

Then (2.23) becomes as
i = YMoMv. (7.6)

Combined with (5.38), the radiated power can be written as

Prad =ℜ
{

vH (
YMoM)H

ZradYMoMv
}

. (7.7)

7.2.1. Trace Computation
For incoherent excitations, the basis functions are excited one by one, and the results are then summed up to
obtain the radiated power, meaning,

Prad =ℜ
{

Nt∑
n=1

vH
n

(
YMoM)H

ZradYMoMvn

}
(7.8)

where vn is the excitation vector for the n-th simulation and is defined as

vn (m) =
{√

4kB Tℜ{
zmat

n
}
, for m = n

0, for m ̸= n
(7.9)

Then (7.8) can be simply written as a summation of the traces of the matrix as

Prad =
Nt∑

n=1
|vn |2ℜ

{
diag

((
YMoM)H

ZradYMoM
)

nn

}
(7.10)

Similar to LU factorization method, the trace method is suitable solve problems with the same body ex-
cited differently. For example, a parameter sweep on the temperature can be easily performed by inverse the
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𝐿
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𝐿
𝜀𝑟 = 12 − 𝑗

(a) (b)

Figure 7.1: (a) A cube of edge L with an effective permittivity of εr = 12− j kept at a certain temperature T emitting power in free space.
(b) Thermal emission of the cube as a function of the size of the cube in terms of wavelength, normalized to black body

matrix only once and solve the radiated power with a complexity of O (Nt ) by changing the excitation term
for each temperature. One downside of this method is that due to the memory and the computation limita-
tions, the trace method can only perform the inversion up to 24 thousands of unknowns and fails when when
dealing with larger problems. Another shortage of the trace method is that it only gives the radiated power
but can not reconstruct the field inside the body.

7.2.2. Monte Carlo Simulation
To simulate larger structures one needs to use the CG-FFT to solve the linear system. Sufficient number of
simulations are needed and the results are averaged to model the incoherent excitation. Suppose M simula-
tions are done with the arbitrary phase excitation vm as described in (7.4), the equivalent currents of the m-th
linear system is solved by

vm =
(
Zmat +Zrad

)
im (7.11)

where im is the solutions of equivalent currents for the m-th similation. The power radiated by the body is
the average of those in each simulation, which is written as follows

Prad = 1

M

M∑
m=1

iH
m Zradim . (7.12)

The field intensity inside the body is derived as

∣∣E⃗ (⃗rn)
∣∣= ∣∣∣∣∣ 1

M
·
∑M

m=1 im (n)

σeff (⃗rn)∆2

∣∣∣∣∣ . (7.13)

7.3. Results and Validation
The tool is validated by comparing the results with those of [27]. As shown in Fig. 7.1a, a cube of edge L
constituted by an ideal material with an effective permittivity of εr = 12− j and kept at a temperature T is
simulated in free space. The power Pr ad emitted by the cube is calculated versus the frequency with the V-
MoM, and normalized to the power PBB that a black body would emit if it had the same geometry of the cube,
and if it was kept at the same temperature T. The emitted power from a black body can be written as

PBB = 4π
6L2

λ2
0

2h f

e
h f

kB T −1
(7.14)

Fig. 7.1b shows the comparison between the V-MoM and the result of [27] using N = 3993 unknowns. It is
seen that the results from V-MoM and [27] are in perfect agreement.
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Figure 7.2: The scattering time τ inside the crystalline silicon as a function of the doping level n

𝐿

𝐿 = 500𝜇𝑚

𝐿
𝜀𝑟 = 12, 𝜎(𝜔, 𝑛)

∆= 20𝜇𝑚

(a) (b)

Figure 7.3: (a) A n doped crystalline silicon cube of edge L = 500µm sample into 25×25×25 voxels of edge ∆= 20µm. (b) Thermal
emission from the cube as a function of frequency for n = 8.8×1021 m−3, n = 8.8×1020 m−3 and black body respectively.

Then a realistic doped crystalline silicon cube is studied using the V-MoM as shown in Fig. 7.3a A doped
silicon cube of edge L = 500µm with a relative permittivity of εr = 12 and a conductivity σ (ω,n) is discretized
into 25×25×25 voxels of edge ∆ = 20µm. The conductivity of the silicon, according to Drude’s Model [13],
depends both on frequency and the doping of the material and can be written as

σ (ω,n) = σqs

1+ jωτ
(7.15)

where τ, the scattering time in the material, depends on the electron density in the silicon [28] as shown in
Fig. 7.2and σqs is the quasi-static limit of the conductivity and can be written as

σqs = ne2τ

meff
(7.16)

where n is the electron density in the silicon, e = 1.6×10−19C is the charge of an electron and meff = 0.29me is
the effective mass of an electron is silicon, with me = 9.1×10−31kg. Fig. 7.3b shows the results of the thermal
radiation from the silicon cube doped by n = 8.8×1021 m−3 and n = 8.8×1020 m−3, and then compared with
the one from a black body.

7.4. Discussion
The results from the V-MoM have the same order of magnitude as the predictions from the black body. It is
seen that the radiated power from the silicon grows less as function of frequency compared with the one from
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Figure 7.4: (a) Characteristic impedance of crystalline silicon with n = 8.8×1021 m−3 doping. (b) Resistivity of the n doped silicon
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Figure 7.5: Depiction of the surface and volumetric radiation in the low frequency, and high frequency regime, and (b) skin depth of
cristalline silicon with n = 8.8×1021 m−3

the black body. This is because the Drude’s model suggests the sources are weaker at higher frequencies, due
to the decrease of the conductivity. Fig. 7.4 shows the characteristic impedance and the resistivity of crys-
talline silicon with n = 8.8×1021 m−3 doping. As shown in Fig. 1.3b, the imaginary part of the resistivity grows
linearly with the frequency, resulting into a decreasing conductivity at high frequency. At high frequency, due
to the faster varying fields, the electrons are less prone to move, since the fast inversion of the field direction
does not allow them to accelerate sufficiently. This implies that, according to the definition of the sources in
(7.4), the body radiates less power..

The reduction of the losses at high frequencies, also implies a reduction of the attenuation constant within
the material, therefore also the inner parts of the body contribute to the emission, not only the ones on the
surface,as depicted in Fig. 7.5a. Fig. 7.5b shows the skin depth of the silicon doped with n = 8.8×1021 m−3.
Despite the strong source intensity at low frequency, the large attenuation allows only the outer part of the
body to radiate, while the contribution originated from the inner parts are strongly attenuated before reach-
ing the surface. Therefore, it is seen in Fig. 7.3b that at low frequency regime the radiation from the doped
silicon behaves similarly to the one from black body. While at high frequencies,the attenuation is less, due
to the decrease of the conductivity. While at high frequency, due to the reduced attenuation, caused by the
decreased conductivity, the inner part of the body also contributes to the radiation, compensating for the
decrease of the sources’ intensity. As a result, the behaviour of the power radiated by the material deviates
from the one radiated by an ideal black body.

Fig. 7.6 shows the results from a simulation of the same cube using incoherent excitations. The voxels are
excited one by one, according to (7.9), and the radiated power contribution from the voxels on the X-Y plane
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(a) (b)

Figure 7.6: The contribution of the elements on the X-Y plane of the lossy silicon cube to the total radiated power at (a) f = 187 GHz and
(b) f = 917 GHz

of the cube are recorded and compared with a same dynamic range of 5dB. It is seen that at low frequency, as
shown in Fig. 7.6a, the radiation only comes from the surface area. At high frequency, the contributions are
more uniform and volumetric.

7.5. Waveguide Model for Measurement
The predictions of the power radiated by a lossy semiconductor are going to be experimentally verified, by
measuring the power radiated by a silicon slab placed inside a waveguide, to avoid power leakage outside of
the measurements setup. However, the V-MoM is highly ill conditioned for such setup, therefore a plane wave
expansion of the field inside a waveguide is used to calculate the radiated power.

As shown in Fig. 7.7a, the power radiated by an elementary source located at
(
x ′, y ′, z ′) inside a waveguide

is with cross section a ×b is given is given by

P wg = P wg
x +P wg

y +P wg
z

= 1

ab

1

ζ0

∑
mx

∑
my

∥∥∥ ¯̄Gej (kxm ,kym
) · x̂

∥∥∥2
cos2 (

kxm x ′)sin2 (
kym y ′)

+
∥∥∥ ¯̄Gej (kxm ,kym

) · ŷ
∥∥∥2

sin2 (
kxm x ′)cos2 (

kym y ′)
+

∥∥∥ ¯̄Gej (kxm ,k)ym
) · ẑ

∥∥∥2
sin2 (

kxm x ′)sin2 (
kym y ′)

(7.17)

where ¯̄Gej is the spectral Green’s function of the material filling the waveguide, e.g., free space Green’s function
if the waveguide does not contain any material, or the Green’s function of a slab of height h. The origin of the
reference system is located at the centre of the left surface of the slab for convenience. As it can be noticed,
the power results into an expansion of Floquet modes, arising from the application of the image theorem, that
expands the structure periodically. The powersP wg

x , P wg
y , and P wg

z are th powers radiated by currents oriented
along x, y , and z, respectively.The full derivation of the power flowing in a waveguide expressed in a plane
wave expansion is reported in Appendix D and the Green’s function is derived in Appendix E.

The formula (7.17) is validated with CST by simulating a waveguide having cross section a×b = 250µm×
250µm, filled with a lossless silicon slab of size a ×b ×h = 250µm× 250µm× 250µm, where the currents
J⃗ = Jx x̂ = 6x̂ A/m2 are located in a cube of edge ∆ = 5µm, as shown in Fig. 7.7a. To validate the accuracy of
the model, different displacements of the source are considered. As shown in Fig. 7.7b, c and d, the source
is displaced along x-, y- and z-axis respectively and the power calculated by the analytical model is in good
agreement with the CST simulation.

To calculate the total power radiated by the entire lossy silicon slab, (7.17) has to be integrated over the
entire considered volume. Suppose the slab has a volume V and is discretized by voxels of edge ∆, the total
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Figure 7.7: (a) Depiction of a slab of size a ×b ×h placed inside a waveguide with an electric source located at
(
x′, y ′, z′

)
, and the power

radiated by the source displaced at (b) 50µm (c) 100µm, and (d) −40µm along x, y , and z respectively.

power radiated by the slab is summed incoherently, which can be expressed as follows

Prad = |i |2
Ñ
V

P wg (
x ′, y ′, z ′)d x ′d y ′d z ′ = |i |2∆3

N x∑
nx=1

N y∑
ny=1

N z∑
nz=1

P wg
(
xnx ,ny ,nz , ynx ,ny ,nz , znx ,ny ,nz

)
. (7.18)

where for radiometry problems regarding semiconductors, the impressed current is defined as

|i | =
√

4kB Tℜ {σ (ω,n)}. (7.19)





8
Conclusion

8.1. Summary
In this thesis, a fast and efficient full wave simulation tool for high frequency problems is developed using
the volume equivalence theorem, the Method of Moments (MoM) and the Conjugate-Gradient Fast Fourier
Transform (CG-FFT). The tool is validated with various sources and can handle scattering problems, antennas
in transmission and radiometric problems in the terahertz domain.

First the Electric Field Integral Equation (EFIE) is formulated using the volumetric equivalence theorem
and by the use of the MoM and discretization of the grid, the problem is resorted to a linear system, which is
later solved by the iterative method CG-FFT. The mutual and self reaction integrals are evaluated. The body
is designed by a combination of four elementary shapes, namely cuboid, sphere, cylinder, and ellipsoid con-
stituted by materials defined by their relative permittivity and their conductivity, Different excitation terms
can be impressed such as plane wave, discrete port and radiometric sources. Results such as field inside the
body, far field pattern, power lost in the dielectric and scattering parameters are obtained by post processing
the solution of the equivalent currents. Then the tool is validated for multi-layer sphere scattering problems,
lens antennas fed by dipoles, and thermal emission from lossy silicon slabs with Mie series, CST, and open
literatures respectively. Finally a Graphical User Interface (GUI) is developed using MatLab to enhance the
user experience.

This work utilizes the Toeplitz properties of the strcucture grid, combined with the matrix free form CG-
FFT algorithm, reduces the calculation time of the radiation matrix, the time to solve the large linear system
and the memory requirement dramatically. Moreover, the structured grid also allows users to reuse the pre-
computed reaction integrals for problems with same background material but different bodies and excitation
terms that can be defined in the same discretization. The tool is validated to be accurate for all three types of
problems with a computation speed comparable with commercial software. The results from this tool provide
a deeper insight on radiometric problems in the terahertz band using the Drude’s model. However, the tool
has difficulty simulating high dielectric density structures and metal bodies due to the ill conditioning of such
problems. The tool also has an uncertainty when the structure to simulate does not conform with the fixed
cuboid grid.

To summarize, the V-MoM was designed as an efficient and accurate tool to simulate high frequency
structures of size within several wavelengths for multiple purposes. Several millions of unknown can be han-
dled by the tool with fast convergence and low memory requirements.

8.2. Outlook
The V-MoM’s performance reduces when dealing with ill-conditioned probelms introduced by high contrast
on the boundaries and matal materials. One possible solution is to implement a pre-conditioner to acceler-
ate the convergence of the tool. Another extension of the tool could be implementing the periodic boundary
conditions in the V-MoM to model antenna arrays. Finally, the tool also has potential in modelling supercon-
ducting devices such as the MKID for astronomical instrumentation design.
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A
Coordinate Free Green’s Function

The spatial Green’s function used in this thesis is written in the coordinate free form based on [29], resulting
into a more efficient implementation when calculating the reaction integrals and the radiated fields. Given
an homogeneous material, having relative permittivity εr , the Green’s function evaluated at r⃗ due to sources
located ar r⃗ ′, can be expressed as follows

¯̄G
(⃗
r , r⃗ ′)=− j kζ

[(
¯̄I − R̂R̂

)
g

(
R⃗

)+ 1

j k0
p
εr |⃗r |

(
¯̄I −3R̂R̂

)
g (⃗r )− 1

k2
0εr |⃗r |2

(
¯̄I −3R̂R̂

)
g (⃗r )

]
(A.1)

¯̄I is the identity dyad, R⃗ is the relative distance between the source and the observation point defined
as (A.2), R̂ is the unit vector associated with R⃗, and defined as (A.3), and g

(
R⃗

)
is the scalar Green’s function

expressed as
R⃗ = r⃗ − r⃗ ′ (A.2)

R̂ = R⃗∣∣R⃗∣∣ (A.3)

g
(
R⃗

)= e− j k0
p
εr

∣∣R⃗∣∣
4π

∣∣R⃗∣∣ . (A.4)
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B
Electric Field Evaluated at the Source

Domain

The electric field E⃗ s (⃗r ) generated by electric sources located within the volume V can be calculated with the
following expression,

E⃗ s (⃗r ) =
Ñ

V −Vδ

¯̄Ghs (⃗
r , r⃗ ′) · J⃗

(⃗
r ′)dr⃗ ′+ j

LVδ · J⃗ (⃗r )

ωε0
+

Ñ
Vδ

¯̄Ghs (⃗
r , r⃗ ′) · J⃗

(⃗
r ′)dr⃗ ′. (B.1)

where Vδ is a small volume around the observation point and LVδ is an operator depends on the shape of the
volume Vδ. By using the dyadic operator given by [30] and [31], and assuming the volume is spherical [32],
one can write E⃗ s (⃗r ) as

E⃗ s (⃗r ) =
Ñ

V −Vδ

¯̄Ghs (⃗
r , r⃗ ′) · J⃗

(⃗
r ′)dr⃗ ′+ j

J⃗ (⃗r )

3ωε0
+

Ñ
Vδ

¯̄Ghs (⃗
r , r⃗ ′) · J⃗

(⃗
r ′)dr⃗ ′. (B.2)

As shown in Fig. B.1, the first term is the contribution of the currents located in the volume outside Vδ, the
second term is the contribution of the currents located at r⃗ ′, and the third term is the field generated by the

currents located within Vδ. By summing and subtracting ¯̄Ghs
(⃗
r , r⃗ ′) · J⃗ (⃗r ) in the latter one can write as follows

E⃗ s (⃗r ) =
Ñ

V −Vδ

¯̄Ghs (⃗
r , r⃗ ′) · J⃗

(⃗
r ′)dr⃗ ′+ j

J⃗ (⃗r )

3ωε0
+

Ñ
Vδ

¯̄Ghs (⃗
r , r⃗ ′) · J⃗ (⃗r )dr⃗ ′+

Ñ
Vδ

¯̄Ghs (⃗
r , r⃗ ′) · ( J⃗

(⃗
r ′)− J⃗ (⃗r )

)
dr⃗ ′. (B.3)

To solve the contribution of the third contribution as described in Fig. B.1c, by choosing Vδ as a spherical
volume centred at r⃗ , and having a as radius, by resorting to the integration in spherical coordinates one can
write

a∫
0

2π∫
0

π∫
0

¯̄Ghs (
ρ,θ,φ

)
ρ2 sinθdρdθdφ (B.4)

expressing the Green’s function in spherical coordinates as follows

¯̄Ghs (
ρ,θ,φ

)=− j kζ

4π

e− j kρ

ρ

{[
¯̄I − R̂R̂

]
− j

kρ

[
¯̄I −3R̂R̂

]
− 1

k2ρ2

[
¯̄I −3R̂R̂

]}
(B.5)

and by substituting it in (B.4), one obtains as follows

− j kζ

4π

a∫
0

e− j kρρ

2π∫
0

π∫
0

[
¯̄I − R̂R̂

]
sinθdρdθdφ− ζ

4π

a∫
0

e− j kρ

2π∫
0

π∫
0

[
¯̄I −3R̂R̂

]
sinθdρdθdφ

+ jζ

4πk

a∫
0

e− j kρ

ρ

2π∫
0

π∫
0

[
¯̄I −3R̂R̂

]
sinθdρdθdφ.

(B.6)
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𝒱

𝒱𝛿
Ԧ𝑟

Figure B.1: Depiction of the three contributions to the electric field

The formula above (B.6) has a combination of integrals of dyads calculated over the entire solid angle, and
radial integrals. Let as now consider the angular integrals first. By expressing the cartesian components of
the unit vector R̂ in terms of

(
θ,φ

)
as follows

R̂ = sinθcosφx̂ + sinθ sinφŷ +cosθẑ (B.7)

the dyad R̂R̂ can be expressed as

R̂R̂ =
 sin2θcos2φ sin2θcosφsinφ sinθcosθcosφ

sin2θcosφsinφ sin2θ sin2φ sinθcosθ sinφ
sinθcosθcosφ sinθcosθ sinφ cos2θ

 . (B.8)

Therefore, the angular integrals of (B.6) can be closed as follows

2π∫
0

π∫
0

R̂R̂ sinθdθdφ=
 4π

3 0 0
0 4π

3 0
0 0 4π

3

 (B.9)

Therefore the integrals that include the unitary dyad can be written as

2π∫
0

π∫
0

[
¯̄I − R̂R̂

]
sinθdθdφ= 8π

3
¯̄I (B.10)

and
2π∫

0

π∫
0

[
¯̄I −3R̂R̂

]
sinθdθdφ= ¯̄0 (B.11)

where ¯̄0 is the null dyad. By substituting (B.10) and (B.11) into (B.6), one obtains as follows

− j kζ
2

3

a∫
0

e− j kρρdρ =− j kζ
2

3

[
e− j kρ

(
1+ j kρ

)
k2

]a

0

=− j
2

3

1

ωε0

[
e− j ka (

1+ j ka
)−1

]
(B.12)
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By combining all the results, the field E⃗ s (⃗r ) becomes as follows

E⃗ s (⃗r ) =
Ñ

V −Vδ

¯̄Ghs (⃗
r , r⃗ ′) · J⃗

(⃗
r ′)dr⃗ ′+ j

1

3ωε0
J⃗ (⃗r )− j

2

3

1

ωε0
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]
J⃗ (⃗r )

+
Ñ
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)
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)
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. (B.13)





C
Error Analysis

To use the V-MoM in a valid regime, it is important to investigate the causes of the error and how much error
those causes will contribute. Besides representing shapes properly, the key to achieve accurate simulation of
the numerical tool is to have enough basis function to describe the field distribution. In the previous chapter
a rough estimation of ∆<λd /30 is given as the constraint for the tool. However, the size of the basis function
∆ depends not only on the wavelength in the dielectric λd , but also on how propagation of the field in the
structure. Consider the same sphere with a relative permittivity of εr impinged by plane waves from 100GHz
to 1THz from broadside as shown in Fig. C.2. The field on the entire sphere from the V-MoM is compared
with CST.

Fig. C.2 shows the relative error the V-MoM makes with respect to CST. The size of basis function is chosen
to be ∆ = 16.7µm here in this case. It is shown that the results of a εr = 2 sphere at 1THz are more accurate
than a εr = 4 sphere at 500GHz, although the former case has a worse sampling (λd /13) than the latter one
(λd /18) in terms of wavelength in the dielectric. The high permittivity not only has an impact on the size of the
basis function, but also introduces fast varying fields. Two main factors considered in this thesis: dielectric
size of the resonator and the flections in it.

𝑘𝑃𝑊

𝐸 = 1𝑉/𝑚

𝐷 = λ0 = 1𝑚𝑚

𝜀𝑟 = 2,4

Figure C.1: Sphere with εr = 2,4 impinged by a plane wave from broad side
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Figure C.2: Error of the field from the V-MoM with respect to CST
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Figure C.3: A 0.5λ0 cube and 1λ0 cube incident by a plane wave from broadside

C.1. Dielectric Size
The number of propagation modes increases as the dielectric size of the resonator grows. To study this effect
and separate the effect of curvature of the resonator, a 1λ0 × 1λ0 × 1λ0 cube and a 0.5λ0 × 0.5λ0 × 0.5λ0is
simulated with a plane wave incident from broadside at 300GHz as shown in Fig. C.3. The results are plotted
in a frame of size 0.5λ0 ×0.5λ0 ×0.5λ0 at the most intense region in the cubes on the X -Z plane.

It is shown in Fig C.4 that the field inside the larger cube (Fig. C.4b) varies much faster than the field in
the smaller cube (Fig. C.4a) due to the difference between the excited propagation modes. This means the
larger the structure is, the more resonate ii will be and thus requires finer basis function to model the field
distribution.

A parametric analysis is done to show the error that the V-MoM commits for different size of resonators
(1λ0, 0.5λ0 and 0.25λ0). Different samplings are applied to the structures from poorly sampled (∆ < λd /10)
to well sampled (∆ > λd /30). The relative error the tool commits with respect to CST in Fig. C.5 shows that
the tool ,with the same sampling rate, has different accuracies for different sizes of resonators. For a quarter-
wavelength cube, the tool gives a relative error less than 10% with ∆=λd /7 while for a one-wavelength cube,
the sampling needs t be ∆ < λd /25 to achieve the same accuracy. This implies that the number of basis
functions needed does not simply scale with the dielectric size of the resonators as Nt ∝ V (λ0), but with a
higher order dependence that the user needs to be careful of for highly resonant structures.
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Figure C.4: The field inside the (a)1λ0 cube and (b) 0.5λ0 cube
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Figure C.5: Relative error the tool commits with respect to CST for 1λ0, 0.5λ0 and 0.25λ0 cubes

C.2. Reflection
Besides the dielectric size of the resonator, the contrast on the boundaries between the structure and the
background also contributes to the fast varying field, by resulting strong reflected fields in the body. In Fig. C.6
two cubes with the same dielectric size (V =p

2λ0) but different relative permittivity (εr = 2,8) are simulated
using the tool and compared with CST for relative error. The total field on the X -Z plane in the cube is plotted
in Fig. C.7. Fig. C.7b shows that there is high reflected field in the top region of the denser cube, compared
with less reflections in the lighter cube in Fig. C.7a. In Fig.C.8 the relative error committed by the tool of the
two simulations are plotted with respect to CST, as a function of the size of the basis function. This result
implies that for this dielectric size, a sampling of∆=λd /10 is sufficient to describe the propagation modes in
the resonator. However, to describe the reflections, one needs to sample the denser resonator at ∆<λd /20.

To further illustrate the impact of reflections on the accuracy of the simulation, in Fig. C.9, cubes share the
same dielectric size (V =λ0) with different relative permittivity (εr = 2,4,6,9,12) are simulated using the tool.
Then those structures are also simulated in a so called "normalized background" with εBG

r = εr /2 to get the
same reflections on the boundaries. The structure are sampled with∆=λd /30. Fig. shows the relative error of
the fields compared with CST, with an addition set of simulation using larger structures of V = 2λ0. It is seen
that if the background is free space, the error increases as the contrast on the boundaries rises. However, if the
material of the background is normalized, the error tends to be stable for high dielectric density resonators, as
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Figure C.6: Two resonators with the same dielectric size: 1λ0 cube with εr = 2 and 0.5λ0 cube with εr = 8
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Figure C.7: The field inside the (a)1λ0 cube with εr = 2 and (b) 0.5λ0 cube with εr = 8
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Figure C.8: Relative error of field in the two resonators with the same dielectric size with respect to CST
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Figure C.9: Relative error of field in different dielectric constant cubes of the same size in normalized background material

the reflections are the same in all cases. With these experiments, the two main factors that affect the accuracy
of this tool are itentified as the contrast on the boundary and the size of the structure in terms of wavelength.





D
Power Radiated in Waveguide by Arbitrary

Oriented Sources

Let us consider a waveguide with x and y being its transverse dimensions and z being the longitudinal one
as shown in Fig. 7.7a. The waveguide is filled with a dielectric slab of thickness h backed by a ground plane.
The chosen reference system has its origin at the centre of left surface of the slab, and the waveguide cross
section has dimensions a and b along x and y , respectively. Let e⃗

(⃗
r , r⃗ ′) be the electric field produced at the

position r⃗ by electric sources located at r⃗ ′, and oriented along p̂i . By resorting to the spectral Green’s function
¯̄G
(
(kx ,ky )

)
, the field can be written as

E⃗
(⃗
r , r⃗ ′,h

)= 1

4π2

+∞∫
−∞

+∞∫
−∞

¯̄Ge j (
kx ,ky

) · p̂i e− j kx (x−x ′)e− j ky (y−y ′)e
− j kz

(
z− h

2

)
dkx dky (D.1)

Due to the presence of perfect electric conductor walls, the image theorem can be applied as shown in
Fig. D.1, allowing to replicate the sources located at

(
x ′, y ′) as shown below

E⃗
(⃗
r , r⃗ ′,h

)= 1

4π2

∞∫
−∞

∞∫
−∞

∑
nx

∑
ny

¯̄Gej (kx ,ky
) · p̂i F i

im

(
x ′, y ′)e− j kx (x−2nx a)e− j ky (y−2ny b)e

− j kz

(
z− h

2

)
dkx dky , (D.2)

With F i
im

(
x ′, y ′) describing the position and the orientation sources oriented along p̂i . By using the relations

∞∑
nx=−∞

e j kx nx 2a = π

a

∞∑
mx=−∞

δ (kx −kxm) , kxm = πmx

a
(D.3)

∞∑
ny=−∞

e j ky ny 2a = π

b

∞∑
my=−∞

δ
(
ky −kym

)
, kym = πmy

b
(D.4)

and by calculating the integrals of the Dirac deltas, (D.2) becomes as follows

E⃗ i (⃗
r , r⃗ ′,h

)= 1

4ab

∞∑
mx=−∞

∞∑
my=−∞

¯̄Gej (kxm ,kym
) · p̂i F i

im

(
x ′, y ′)e− j kxm x e− j kym y e

− j kzm

(
z− h

2

)
(D.5)

The corresponding magnetic field can be written as

H⃗ i (⃗
r , r⃗ ′,h

)= 1

4ab

1

ζ0

∞∑
mx=−∞

∞∑
my=−∞

k̂m ×
(

¯̄Gej (kxm ,kym
) · p̂i

)
F i

im

(
x ′, y ′)e− j kxm x e− j kym y e

− j kzm

(
z− h

2

)
. (D.6)

The power radiated in the waveguide by an elementary source located at r⃗ ′ can be obtained by integrating
the Poynting vector on the surface Swg located at z = h in the waveguide, as

P i
wg = Re


Ï
Swg

E⃗
(⃗
r , r⃗ ′,h

)× H⃗∗ (⃗
r , r⃗ ′,h

) · ẑd r⃗

 (D.7)
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Figure D.1: Images of source oriented along (a) x-, (b) y-, and (c) z-axis due to the presence of perfect electric conductor walls of the
waveguide

which by using the plane wave expansion of the fields, can be rewritten as

P i
wg =

1

16(ab)2

1

ζ0
Re

{∑
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∑
my

∑
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x

∑
m′
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(D.8)

The vector products of (D.8) can be rewritten as

(
¯̄Gej (km ,ky
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)
×
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k̂m′ ×

(
¯̄Gej∗

(
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with p̂i ∈
{

x̂, ŷ , ẑ
}
. Since the operator ¯̄Gej∗ (

km ,ky
) · p̂i extracts the transverse component, that is orthogo-

nal to ˆkm , (D.9) becomes

∣∣∣ ¯̄Gej (km ,ky
) · p̂i

∣∣∣2
k̂m · ẑ =
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k̂zm (D.10)

And the integral can be closed as
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For mx = m′
x (D.8) becomes

P i
wg = Re

1
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Therefore, (D.12) becomes as follows
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While for mx ̸= m′
x one obtains
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thanks to the oddity of the sum with respect to mx −m′
x and my −m′

y . The function F i
im

(
x ′, y ′) for the sources

oriented along the three components can be written as

F x
im

(
x ′, y ′)= e j kx x ′
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with the minus signs accounting for the odd symmetry of the perfect electric conductor (PEC) plane for tan-
gent sources. The sums of the complex exponentials can be rewritten as follows
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(
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Hence the power radiated by each component can be written as
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∣∣∣2

k̂zm sin2 (
kxm x ′)cos2 (

kym y ′) (D.17b)

P z
wg =

1

ab

1

ζ0

∑
mx

∑
my

∣∣∣ ¯̄Ge j (
kxm ,kym

) · ẑ
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E
Green’s Function of a Slab inside a

Waveguide

To evaluate the Green’s function of a dielectric slab of thickness h and infinitely extended in x and y with the
presence of backing reflector, as shown in Fig. E.1. One can resort to the equivalent transmission line model,
and the Green’s function of a horizontally polarized source located in the slab can be written as

¯̄Gej (kx ,ky
)=


− vTMk2

x+vTEk2
y

k2
ρ

(
vTE−vTM)

kx ky

k2
ρ(

vTE−vTM)
kx ky

k2
ρ

− vTEk2
x+vTMk2

y

k2
ρ

ζ kx
k i TM ζ

ky

k i TM

 (E.1)

where vTM, vTE, i TM, and i TE are the Transverse Magnetic (TM) and Transverse Electric (TE) solutions of the

current the voltage at the observation point as shown in Fig. E.2, kρ =
√

k2
x +k2

y is the tangent component of

the wave number and ζ is the characteristic impedance.

To characterize the Green’s function (E.1), one has to find the voltage and current along the equivalent
transmission line model. Due to the presence of the TE and the TM modes, an equivalent transmission line for
each mode has to be formulated and solved. As shown in Fig E.3, the upper and lower part of the transmission
line model can be represented by an equivalent impedance Zup and Zdown, solution of which can be written

⋯ ⋯

⋰

⋰
ℎ𝑥

𝑦

𝑧

Figure E.1: A infinite slab of thickness h on top of a reflector
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Figure E.2: Equivalent transmission line model of an horizontally polarized elementary source located at z = z′, in a dielectric slab of
thickness h.
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s tan

(
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2
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where

Z TM
0 = ζ0kz0

k0
(E.3a)

Z TM
s = ζ0kzs

ks
(E.3b)

Z TE
0 = ζ0k0

kz0
(E.3c)

Z TE
s = ζ0ks

kzs
(E.3d)

kz0 =
√

k2
0 −k2

x0 −k2
y0 (E.3e)

kzs =
√

k2
s −k2

xs −k2
y s . (E.3f)

where k0 and ks is the wavenumber in free space and in the dielectric respectively.
After having characterized the input impedances of the upper and of the lower section, the voltage and

current distribution along the equivalent transmission line have to be determined. The two transmission
lines problems associated with the TE and TM modes have to be solved separately, but with an analogous
procedure. Since the same operations are carried out on the TE and TM problem, the the TE and TM super-
scripts are omitted for simplicity. The voltage and the current on the transmission line can be expressed as
(E.4)

V (z) =V +e− j kzs z +V −e j kzs z (E.4a)

I (z) = V +

Zs
e− j kzs z − V −

Zs
e j kzs z (E.4b)
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Figure E.3: Equivalent impedance of the upper part and the lower part of the circuit

where V + and V − are the amplitudes of the voltage waves propagating along the positive, and negative z-
direction, respectively. The voltage and the current at z = h/2, i.e., on the top of the slab, can be written as

V

(
h

2

)
=V +e− j kzs

h
2 +V −e j kzs

h
2 (E.5a)

I

(
h

2

)
= V +

Zs
e− j kzs

h
2 − V −

Zs
e j kzs

h
2 . (E.5b)

Since at z = h/2 ,since the equivalent impedance at that section is Ztot, and the transmission line is excited
with 1 A at z = z ′, one can write as follows

V

(
h

2

)
= Z0I

(
h

2

)
. (E.6)

Combining (E.5a), (E.5b) and (E.6), one obtains the following realationship

V + =V − Zs +Z0

Z0 −Zs
e j kzs h . (E.7)

Similarly, at z = z ′, the voltage and the current follow the Ohm’s law

V
(
z ′)= Ztot · I

(
z ′)= Ztot ·1A (E.8)

where

Ztot = Zup||Zdown = ZupZdown

Zup +Zdown
. (E.9)

By combining (E.9) and (E.4a) with z = z ′, one can express V − as follows

V − = Ztot
Z0+Zs
Z0−Zs

e j kzs he− j kzs z ′ +e j kzs z ′
= ΓZtot

e j kzs he− j kzs z ′ +Γe j kzs z ′ (E.10)

where Γ is the reflection coefficient between Zs and Z0

Γ= Z0 −Zs

Z0 +Zs
. (E.11)
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Then by combining (E.7) and (E.10), V + can be written as

V + = Ztot

e j kzs he− j kzs z ′ +Γe j kzs z ′ e j kzs h . (E.12)

Therefore, the voltage and current at z = h/2 in (E.5a) and (E.5b) can be derived by using (E.12) and (E.10)

V
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h

2

)
= (1+Γ) Ztot

e
j kzs

(
h
2 −z ′

)
+Γe

− j kzs

(
h
2 −z ′

) = v (E.13a)
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2

)
= 1
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(1+Γ) Ztot

e
j kzs

(
h
2 −z ′

)
+Γe

− j kzs

(
h
2 −z ′

) = i (E.13b)



F
Graphical User Interface

F.1. Start Page
Fig F.1 shows the overview of the GUI’s start page, where the measure of unit of the project, the interested
frequency range are defined. By clicking the "Create" or "Load" button, the user can create a new file or load
an existing file respectively.

In the drop-down lists at 1⃝ and 2⃝, the user can define their preferred measure unit for the frequency and
the length, respectively.

The frequency range under investigation is defined in 3⃝ and 4⃝ as the minimum and the maximum fre-
quency. The field of 3⃝ and 4⃝ is numeric and uses the units defined in 1⃝.

By clicking the check box at 5⃝, the user chooses to define the dimension of the structures in terms of the
wavelength. If the 5⃝ is checked, the numeric field at 6⃝ can be filled, where the reference frequency of the
wavelength is defined with the units defined in 1⃝. For example, if the user defines the reference frequency
as 150 GHz, then the dimensions used in later stage will be "2 mm" and overwrite the units 2⃝. The checkbox
5⃝ by default, and can be optionally chosen.

Figure F.1: Overview of the start page of the GUI
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By clicking the "Create" button at 7⃝ the user creates a new project and a window appears to select the file
destination as indicated in Fig. F.2. The user can change the project file name, and the default project name
is "NewProject".

Figure F.2: Window to select the created file’s destination

After the "Save" button in Fig. F.2 is clicked, a folder with the chosen file name is created in the destination
as shown in the left side of Fig. F.3. The folder have a structure indicated by the right side of Fig. F.3, where

• the ".mat" file in the red box is the main file that stores all the information of the project, and it is named
"ProjectName + Main".

• The "Current" folder is used to store the solution of the equivalent currents, which can be imported
into the project gained in the main page (Fig. F.5).

• The "Excitation" folder stores the excitation information of the project.

• The "Export" folder stores the results of the simulation on the user’s demand.

• The "Geometry" folder stores the shapes of the project.

• The folder "Grid" stores by default the pre-computed reaction integrals.

Figure F.3: Location and structure of the created folder

The the user may click the "Load" button 8⃝ in Fig. F.1 to open an already existing project. A pre-existing
project can be loaded by selecting the main file, as shown in Fig. F.3.
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Figure F.4: Window to select the loaded file

After creating a new project or loading a previous project, the tool is directed to the Main working page
as shown in Fig. F.5. The bluearea is pertinent to the structured grid used in the project. The green region
is used to defineand combine all the different shapes that constitute the geometry under analysis. The red
part is used for the plane wave excitation. The yellow part is used for the discrete port excitation. The purple
box indicates the measure units used in the project. The black box displays the messages from the tool. The
geometry under analysis is shown on the right side of the page.

Figure F.5: Overview of the design page of the GUI

F.2. Pre-Computation
In the "Grid" panel, the user can either load an existing grid file by clicking the "Import" button or compute
anew one by clicking the "Compute New Grid" button. Once the "Import" button is clicked, the user can
select a "projectnameGrid.mat" grid file, which is usually placed in the "Grid" folder as shown in Fig. F.3.
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The destination of the grid file used in this project is displayed in the "Grid File" text field. To compute a
new grid, click "Compute New Grid", then the tool directs to a new sub-window. The frequency range of the
new grid is defined in 1⃝ and 2⃝. The number of the frequency points equispaced between the minimum
and maximum frequency is defined in 3⃝. The dimension of the discretized box, and the length of the basis
function are defined in 4⃝, 5⃝, 6⃝, and 7⃝. The properties of the background material are then selected, i.e.,
the permittivity with 8⃝ and, if lossy, the conductivity 9⃝. The path where the grid is stored, is defined at 10⃝.
By clicking 11⃝, the grid starts to be computed.

Figure F.6: Overview of the "Geometry" panel for grid definition

The grid file contains a struct named "GridInfo", which has several fields. "Dim" is a vector containing
the size of the grid as

[
Lx ,Ly ,Lz

]
expressed in meters. The variable "lbf" denotes the length of the basis

function expressed in meters. The vector "Freq" records the frequency points expressed in Hertz. "Imp"
is a cell array that contains the radiation matrix Zrad

xx and Zrad
xy having a dimension of

[
Nx ×Ny ×Nz ×N f

]
.

"Centers" contains the position vectors of the voxels. "Number" denotes the number of basis function along
x, y , and z by

[
Nx , Ny , Nz

]
. "Mat" stands for the material of the background using [εr ,σ]. Note that all the

variables on the interface is in user defined unit while all the files and variables that the tool work with has a
unit in SI.

Figure F.7: Data structure of the grid file

F.3. Design
In the main page the user is able to design and visualize their desired geometries and excitation terms.
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F.3.1. Geometry Design
In the "Geometry" panel shown in Fig. F.8, the user can import, add, edit, delete and plot the geometries by
using the buttons from 2⃝- 6⃝.

Adding Shapes The user can add the four basic geometries (i.e., ellipsoid, sphere, slab, cylinder) by first
selecting the shape in the shape drop-down list 1⃝ and pressing the "Add" button at 3⃝. After the button is
clicked, the sub window appears for parametrization of the shapes as shown in Fig. F.9. After the parametriza-
tion of the shape the user can click the "Confirm" button and the created is added in the list box on the left.

Figure F.8: Overview of the "Geometry" panel for shape design

After that a shape is added, the user may rename it in the "Name" field 1⃝, as shown in Fig. F.9. The
parameters describing the shapes are set in "Dimension" 2⃝, and the material is specified in 3⃝. The shapes
can be displaced along x, y , and z using the panel "Transform" 4⃝ . By clicking the "Rotate" button 5⃝, the
user is redirected to a dedicated page, as shown in Fig. F.10. Then by clicking the "Confirm" button 6⃝, the
user can create a shape in the list box.

Figure F.9: Parametrization pages of the shapes in GUI

User may rename their shapes in the "Name" field at 1⃝, as shown in Fig. F.9. At 2⃝ and 3⃝, the parameters
and materials of the shapes are defined in the "Dimension" and "Material" panel respectively. The shapes can
be displaced along x, y , and z using the panel Transform at 4⃝. Then by clicking the "Rotate" button at 5⃝,
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the user is directed to the rotation page of the shapes, as shown in Fig. F.10. Then by clicking the "Confirm"
button at 6⃝, the user can create a shape in the list box.

In the rotation page, by clicking the "Add" button at 1⃝, the user can create a rotation. At the axis drop-
down list at 2⃝, the axis of the rotation can be chosen in terms of x, y , and z. Angles of the rotation are defined
at the "Angle" field at 3⃝ in degrees. The direction of rotation is defined always as the counter-clockwise
direction when the centre axis is facing you, as shown in Fig. 4.3. The "Step" field denotes the ordering of the
rotation. A step of rotation can be deleted when the user selects the unwanted row and presses the "Delete"
button at 4⃝. Finally the rotation is applied to the shapes when the user press button "Apply" at 5⃝.

Figure F.10: Rotation page of the shapes in GUI

Editing and Deleting Shapes To edit or delete a shape, the user needs to select the shape in the list box in
Fig. F.8 and to click the "Edit" or the "Delete" button. After the "Edit" button is pushed, the user can return
to the parametrization page as shown in Fig. F.9. All information is automatically refilled in the field and the
changing step is the same as the adding part.

Import Geometry The user can import a geometry file using 2⃝ in Fig. F.8. The geometry file contains a
struct named "GeoInfo", which has several fields: "Shapes" is a string array containing the type of shapes
used in the geometry, the string array "NameTag" denotes the name given to each shape, "ShapeParameter"
is a N ×8 matrix that contains the paramters that define each shape, "Rotaiton" is a struct array that records
the rotation information of each shape, and the indexes of the shapes are stored in the cell array "Idx".

Figure F.11: Data structure of the geometry file

F.3.2. Excitation Design
Plane Wave Excitation By checking the plane wave excitation box at 1⃝ in Fig. F.12, the user excites the grid
with a plane wave. The plane wave is defined by its direction of incidence, given by the azimuth and the
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elevation angles
(
φ,θ

)
at 2⃝ and 3⃝, and its TM and TE polarization at 4⃝ and 5⃝ respectively.

Figure F.12: Plane wave excitation page

Discrete Port Excitation By checking the discrete port box, as shown in Fig. F.13, the user excites the grid
with discrete ports by adding, editing or deleting a port at 1⃝- 3⃝. The geometry of the port is defined a cuboid,
and by default it has a electric field oriented along the x-axis by default without any rotation. The source
impedance of the port and the voltage on the gap are defined in 5⃝ and 6⃝. Note that only one type of excita-
tion is allowed in the tool, so by checking one excitation method, the other one is disabled automatically. By

Figure F.13: Discrete port excitation page

clicking the "Find Solution" button 1⃝ in Fig. F.5, the linear system solver is started.
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F.4. Result
The results from the too contains the electric field inside the body, the far field properties, and the circuit
parameters, which can be accesses by the tab button in the red box as shown in Fig. F.14.

F.4.1. Near Field Distribution
As shown in Fig. F.14, in the electric field window the user can click the button "Plot Near Field" 8⃝ , to plot
the absolute value the electric field on the plane chosen in the "Plane Cut" panel 1⃝. The user can select the
position of the cut at 3⃝, the component of the field at 2⃝ and the frequency at 11⃝. The limits of the x-axis,
the y-axis and the color bar can be ajusted using the fields at 4⃝- 6⃝. The phase can be adjusted at 7⃝ and by
checking the "Animation" box at 8⃝ the user plots the animated field with a varying phase.

Figure F.14: The result page of the electric field inside the body

F.4.2. Far Field

Figure F.15: The result page of the farfield properties

In the far field page, as shown in Fig. F.15, the user can plot the far field properties and export the figure
using 6⃝ and 7⃝, respectively. At the "Target" panel denoted by 1⃝, the far field pattern is chosen to be plotted
in a constant θ or constant φ plane, specified by an angle defined in degrees and at the certain distance
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defined in meters. At the drop-down list at 3⃝ the user can choose to plot the electric field, the directivity or
the gain. The drop-down list at 2⃝ is chosen to plot the quantities in either linear scale or logarithm scale. At
4⃝ and 5⃝ the limits of the axis can be adjusted. The sampling of the x-axis is 100 points in the tool.

F.4.3. Circuit Parameter
By clicking the "Matrix" button, the user enters the result page of circuit parameters, as shown in Fig. F.16.
The Z, Y, and S parameters of the antenna can be selected, plotted and exported using 2⃝, 6⃝, and 7⃝ re-
spectively. At the drop-down list at 1⃝, the scale can be chosen as linear or logarithm. By selecting in the
component drop-down list at 3⃝, the user can plot different component of the parameters in terms of the real
and imaginary part, magnitude and phase. In the field at 4⃝ and 5⃝, the limits of the axes can be adjusted.

Figure F.16: The result page of the circuit parameters

F.5. Save Project and Export Result
The user can store the project by clicking the "Save Configuration" button at 5⃝ in Fig. F.5 or by using the
"Save" option in the menu bar as shown in Fig. F.17. The configuration of the project then is saved to the
main file. By clicikng the "Save as" option and select a destination, the user created another file folder to save
the configuration of the current project. The grid, geometry, the equivalent current, the excitation, and the
post-processed result can be exported using the "Export" option in the menu.

Figure F.17: Menu to save the project
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F.6. Potential Malfunctions and Their Solutions
ProjectName or ProjectName not found The update of the project destination in the tool is not automatic,
therefore, it is highly recommended to stay in the same folder for a fixed project. In case there is a need to
change the repository of the project or an error accurs, the user should try to load the main file in MatLab
workspace and change the project name and path manually.

Circuit parameters not loaded When loading the result from an existing project, if the circuit parameter is
not loaded, try to plot the geometry once more by pressing the "Visualization" button at 6⃝ in Fig. F.8. The
tool takes the port information from the desinged geometry.

Figure F.18: Circuit parameters not loaded in a project

The GUI will be available on the THz Sensing Group’s website [33]. Currently, the GUI is still under testing
and bug reports are appreciated by us to continue improve the GUI. Please send your questions and findings
to us by [33].
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