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Abstract: In smart cities, unmanned aerial vehicles and self-driving vehicles are gaining increased
concern. These vehicles might utilize ultra-reliable telecommunication systems, Internet-based
technologies, and navigation satellite services to locate their customers and other team vehicles to
plan their routes. Furthermore, the team of vehicles should serve their customers by specified due
date efficiently. Coordination between the vehicles might be needed to be accomplished in real-time
in exceptional cases, such as after a traffic accident or extreme weather conditions. This paper presents
the planning of vehicle routes as a team orienteering problem. In addition, an ‘agile’ optimization
algorithm is presented to plan these routes for drones and other autonomous vehicles. This algorithm
combines an extremely fast biased-randomized heuristic and a parallel computing approach.

Keywords: team orienteering problem; real-life optimization; parallel computing; biased randomization;
smart cities; unmanned aerial vehicles

1. Introduction

Sustainable cities and communities are identified as one of the 17 sustainable-
development goals proposed by the UN [1]. The achievement of this goal requires the
significant renewal of the way urban space is perceived. In this context, smart cities are
envisaged as the main driver of such a transformation. Advanced materials, sensors,
electronics, and networks embedded in our physical and social systems constitute the core
concept of a smart city, allowing for more sustainable and resilient societies [2].

Smart cities are an ever-changing environment [3], which aims to provide high-quality
life to its citizens supported by the advancement in information and communication
technology and the integration of the Internet of Things (IoT). As a result, new mobility
modes are considered such as ride-sharing [4] or the incorporation of electric vehicles [5].

Unmanned aerial vehicles (UAVs), commonly known as drones, have attracted signifi-
cant attention in the last decade, given their potential for new applications [6]. For example,
in the case of smart cities, they can work as aerial base stations, either collecting data from
mobile and ground sensors or serving as sensor-mounted aerial platforms [7]. In that way,
an on-demand data service can be realized, covering a larger number of sensors and users.

A major disadvantage of these devices is their limited energy capacity, which adds
a certain complexity to implementing these types of services, especially when serving
remote sites [8]. Several operational research lines arise to cope with this limitation: (i) the
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optimal drone placement (ODP) problem, which guarantees the coverage of static or
dynamic targets minimizing the required energy [9,10]; (ii) the problem of selecting the
optimum charging station once the drones have finished their tasks [11]; and (iii) the
route-planning problem and all its variants [12,13]. Considering that a fleet of drones can
work in a coordinated manner to achieve a common goal, such as the aerial surveillance of
an extended area, the problem of coordinating their individual paths accounting for their
available energy can be envisioned as a team orienteering problem (TOP). The objective
of the TOP would be, following the case of the aerial surveillance, to maximize the area
covered by the fleet of drones. Therefore, the efficiency of the fleet of drones is maximized.
The drone scheduling problem (DSP) is an extension of the TOP that considers multiple
depots (stations) [14]. Figure 1 depicts the conceptual framework of several operational
research problems regarding drones.

Figure 1. Conceptual definition of some Operational Research problems regarding drones.

Smart cities allow for real-time data, nevertheless, their potential can come to fruition
only if combined with real-time decision-making. This is not only the case for drones,
where optimal routing should be established accounting for the dynamic conditions (e.g.,
dynamic targets) but also for other types of autonomous vehicles working collaboratively,
which might be increasingly frequent in transportation and mobility activities. Traditional
optimization approaches cannot handle real-time conditions effectively [15]. Therefore,
new optimization approaches are required to deal with large-scale systems in ‘real-time’
(e.g., less than one second). The development of efficient solving approaches becomes
incredibly challenging given the large-scale problems that real applications involve, and
the fact that the TOP is NP-hard in nature like the most of routing problems [16].

In order to tackle the challenges imposed by smart cities, this paper proposes the use
of agile optimization algorithms [17] to solve TOPs with dynamic conditions in ‘real-time’,
i.e., below one second of wall-clock time. In this context, optimization algorithms are re-
designed to become (i) extremely fast to support real-time decision-making; (ii) extendable
to adapt parallelization techniques; (iii) flexible to handle different problems; (iv) parameter
loss to avoid parameter fine-tuning; and (v) dynamic to rerun as new data become available
(re-optimization).

Agile optimization includes the hybridization of biased-randomized algorithms [18]
and parallel computing [19]. The biased randomized algorithms result from utilizing
skewed probability distributions in deterministic heuristics [20]. The deterministic heuris-
tics handle even large-scale problems efficiently. The utilized distributions introduce a
randomized common-sense effect in these heuristics and result in probabilistic algorithms.
The probabilistic algorithms could be run in parallel to generate different solutions using
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an affordable computing device. Thus, thousands of these probabilistic algorithms could
be run simultaneously. The probabilistic algorithms generate many alternative solutions
in the same clock time compared to one solution found by the deterministic heuristic.
Some of these solutions could outperform the solution determined by the deterministic
heuristic. The biased-randomization techniques have been successfully tested on a variety
of optimization problems [21–23].

The parallel algorithms were utilized by a number of researchers in solving routing
problems. For example, Roberge and Tarbouchi [24] developed a framework to download
data from sensors by unmanned aerial vehicles. In their research, they used a genetic
algorithm as the single source algorithm to optimize the routes of the vehicles. The single
algorithm was run in parallel on a graphics processing unit and aimed to avoid collision.
Yelmewad and Talawar [25] used a graphics processing unit based parallel strategy to
reduce execution time needed to solve the vehicle routing problem. Other researchers
utilized multi-core approach for parallel computing. Abbasi et al. [26] aimed to reduce
the cost of intelligent systems in transportation. For that purpose, they studied multi-core
processors as well as graphics processing units and concluded that the parallelization
resources are efficiently utilized. Multi-threading in a multi-core system was utilized in the
multi-start approach [27]. Other researchers studied used protocol for data transmission
between different nodes in a network, such as Huang et al. [28]. These protocols aim to
reduce delays and energy consumption in different IoT devices.

In previous publications, the stochastic version of the TOP was investigated [29,30].
Simheuristic approach was used to handle the stochasticity of travel times. Monte Carlo
simulation was integrated with a biased randomized heuristic in Panadero et al. [29], and
Panadero et al. [30] combined a saving based heuristic and the variable neighborhood
search metaheuristic and integrated them in a simheuristic approach. Furthermore, the
dynamic change of customers’ reward was investigated by Reyes-Rubiano et al. [31]. For
this purpose, a biased randomized heuristic was extended into a learnheuristic. Therefore,
the main achievements of this paper are (i) proposing a fast heuristic able to generate
real-time solutions of reasonably good quality for the TOP; (ii) extending the heuristic into
a biased-randomized algorithm to generate many alternative promising solutions—some
of them might outperform the original one found by the heuristic; and (iii) integrating
the biased-randomized algorithm into a parallelization framework to generate solutions
in real-time. This paper presents a parallelized biased-randomized algorithm to solve
the TOP.

The remaining of the paper is structured as follows. Section 2 provides some related
work on the TOP, which serves as a scenario for testing our concepts, and Section 3
introduces a mathematical formulation of the considered problem. Section 4 presents a
biased-randomized algorithm to be easily parallelized. The actual parallelization concepts
are analyzed in Section 5. Section 6 describes the set of computational experiments that have
been carried out to test both exact and approximation-based solution methods. Section 7
analyzes in detail the obtained results. Finally, Section 8 summarizes the main contributions
of the work and possible further future work.

2. Related Work

The Orienteering Problem (OP) is among the most widely studied combinatorial
optimization problems, and even the Traveling Salesman Problem (TSP) with profits or
Selective TSP is commonly named as the OP [32]. The term OP was first introduced by
Golden et al. [33] that defines the TSP involving Knapsack constraints. Therefore, the goal
of the OP is to simultaneously (i) minimize the travel cost, which usually appears as a
constraint, and (ii) maximize the collected profit associated with each node. Moreover, it
is remarkable to mention that the OP is NP-hard [34]. We refer the reader to the surveys
Feillet et al. [35] for further information about OP solution approaches and more recently
in [36,37] for further information about OP numerous extensions and recent variants.
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The Team Orienteering Problem (TOP) is a well-known extension of the OP [38], and
it is also referred as the Vehicle Routing Problem (VRP) with profits [37]. In particular, the
TOP considers a group of agents for collecting the profits and provides a solution with
several tours [39] and, in that sense, the connotation of the TSP turns into the VRP. In
addition, most of the TOP’s studies originate from previous studies devoted to the OP and
VRP that have been adapted or extended to the context of the TOP.

Regarding the TOP solution techniques, from last decades until now, there are few
solution approaches based on exact methods such as Branch-and-Price [40,41], Branch-
and-Cut [42], and Column Generation [43]. However, to tackle large instances and reduce
computational times, we observe that (meta)heuristic methods are desirable. These meth-
ods might find (near)optimal solutions for the TOP problem, such as Tabu Search [38,44],
Variable Neighborhood Search [45], Ant Colony [46], Memetic Algorithm [47], Simulated
Annealing [48], Particle Swarm Optimization [49], Genetic Algorithm [50], Pareto Mimic
Algorithm [51], and Hybrid Harmony Search [52]. In recent years, simheuristics have
been introduced to solve large combinatorial optimization problems [53–55]. Regarding
the TOP, we observe that all these techniques in the state of the art have been tested to
prove that their solutions, in terms of objective function value and computational times,
are competitive ones. Furthermore, we find an extensive comparison of algorithms in the
literature on instances of Chao’s benchmark [39], such as the comparison in Dang et al. [49].
Commonly, the emerging algorithms focus on reaching the best-known-solution (BKS) for
these instances in the benchmark. However, in this paper, we constrain computational time
to only one second. Then, we compare our obtained solutions with the BKS and show with
a complete analysis that our solutions reach the BKS in most instances.

3. A Formal Description of the Problem

The TOP can be mathematically formalized as follows. Let us assume an undirected
graph G = (N, A), where: (i) N = {0, 1, 2, . . . , n + 1} includes the set of nodes accounting
for n customers, N′ = {1, 2, . . . , n}, a source node 0, and a sink node n + 1; and (ii) A is the
set of edges (i, j), with i 6= j, connecting nodes i ∈ N \ {n + 1} and j ∈ N \ {0}. At the
source, node 0, the team is composed of a limited number of vehicles m ≥ 1. Furthermore,
there is a maximum time, t0 > 0, for completing each open route (from its source node to
the sink node, with at least one customer node in between). Each customer node i ∈ N′

has a constant reward ui > 0, while u0 = un+1 = 0. Rewards can only be collected on the
first visit to a node. Each edge (i, j) ∈ A has an associated travel time, tij > 0. It is assumed
that tij = tji, i.e., for (i, j) ∈ A, the matrix of travel times, T = [tij], is a symmetric one that
satisfies the triangle inequality.

A solution to the TOP is a set of feasible routes departing from the source node, visiting
a subset of customers in a specified order, and arriving at the sink node. In other words,
each route starts at the source node 0, collects the reward from one or more customers in
N′, and ends at the sink node, without exceeding the maximum travel time allowed, t0. Let
us consider the binary decision variable xij, which takes the value 1 if the edge (i, j) ∈ A is
used by a vehicle to collect the reward at node j, and 0 otherwise. In addition, let us define
the continuous variable wi, which represents the total travel time that the vehicle has spent
after visiting customer i. The objective function is given by the maximization of the total
collected reward:

max ∑
(i,j)∈A

uixij. (1)

This objective function is subject to the following constraints:

∑
j∈N\{0}

xij ≤ 1, ∀i ∈ N′, (2)

∑
i∈N\{n+1}

xij ≤ 1, ∀j ∈ N′, (3)
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∑
k∈N\{n+1}

xki = ∑
j∈N\{0}

xij, ∀i ∈ N′, (4)

∑
j∈N′

x0j = ∑
i∈N′

xi (n+1), (5)

∑
j∈N′

x0j ≤ m, (6)

wj ≤ t0, ∀j ∈ N \ {0}, (7)

wi + tij xij − wj ≤ t0 − t0 xij, ∀i ∈ N \ {n + 1}, ∀j ∈ N \ {0, i}, (8)

∑
i∈N

xii + x0 (n+1) = 0, (9)

xij ∈ {0, 1}, ∀(i, j) ∈ A, (10)

wi ≥ 0, ∀i ∈ N \ {0}. (11)

Constraints (2) and (3) impose that each customer node has at most one edge departing
from it or entering it, respectively. In addition, constraint (4) imposes that, for each customer
node, the number of incoming edges is equal to the number of outgoing edges (due to the
previous constraints, this value will be either 0 or 1). Constraint (5) ensures that the number
of routes starting at the source node is the same as the number of routes arriving at the sink
node. Constraint (6) forces that the number of routes must be less or equal to the number of
available vehicles m. Two constraints, (7) and (8), are introduced for both the connectivity of
the solution and the maximum travel time requirement. Constraint (9) avoids degenerated
routes. Finally, Constraints (10) and (11) define the range of the associated variables.

4. From a Heuristic to a Biased-Randomized Algorithm

In this paper, a heuristic is extended to a biased-randomized algorithm to solve
the TOP. The proposed algorithm extends the concept of ‘savings’ introduced by Clarke
and Wright [56] to the characteristics of the TOP: (i) different origin and destination
depots, (ii) some of the customers might not be covered, and (iii) the reward as well
as the savings in time or distance are considered to construct routes. Then, the constructive
heuristic is extended to utilize skewed probability distributions to introduce a non-uniform
randomization effect into the procedure of constructing solutions.

Figure 2 presents the proposed constructive heuristic. An initial dummy solution is
built for each customer i ∈ N′; a vehicle departs from the origin depot (node 0), visits
customer i, and then head towards the destination depot (node n + 1). If a route associated
with customer i in the dummy solution does not satisfy the driving-range constraint,
customer i is discarded from the solution because it cannot be served with the current
settings of the problem.

Next, the ‘enriched savings’ associated with each edge connecting two different
customers are computed; thus, the benefits obtained by visiting both customers in the
same route instead of using two different routes are calculated. The enriched savings of an
edge considers the travel time required to traverse the edge and the aggregated reward
generated by visiting both customers. Therefore, the enriched savings associated with an
edge (i, j), s′ij, are defined as s′ij = α · sij + (1− α) · (ui + uj) to account for the trade-off
between time-based savings sij = ti(n+1) + t0j − tij, and the aggregated reward, ui + uj.
Here, α ∈ (0, 1) is a parameter that depends on the rewards of customers. Experiments are
used to determine the value of α. In general, α is set close to zero in problems with high
heterogeneity rewards and one in problems with homogeneous customer rewards.

For each edge, we obtain its unique associated savings; recall that the matrix of travel
times is symmetric, so the savings do not depend on the direction in which the edge is
traversed. These savings are associated with arcs that connect two potential routes to be
merged. Then, the list of arcs can be sorted from higher to lower savings. Routes are
merged based on the sorted savings list. In each iteration of the merging process, the arc at



Appl. Sci. 2021, 11, 12092 6 of 18

the top of the sorted list is selected, and the two routes connected by this arc are merged
into a new route if the driving-range constraint is not violated. Finally, the list of routes
is decreasingly sorted according to the total reward. Routes with the highest rewards are
selected, and the number of selected routes equals the size of the vehicle fleet.

Start

savingList is empty ?

No

Sol ßGenerate a dummy Solution

savingList ßCompute the sorted
saving list

Select the associated routes 
 to the selected arc

mergedRouteßMerge associated
routes in a new one 

mergedRoute satisfies 
constraints? 

Yes

arc ßSelect the first element (arc) of
the savingList

End

sol ßUpdate Solution

Delete current arc from the savingList

Sort routes of the solution
(Sol) by profit

Yes

Validate constraints of
the mergedRoute

No

Delete routes of the solution
without assigned vehicle

Return Solution (Sol)

Figure 2. Flowchart of the Heuristic approach.

The described heuristic is extended into a probabilistic algorithm as follows: The
greedy behavior of the heuristic is altered by combining it with biased-randomization
techniques to introduce non-uniform random behavior [57]. In our work, we utilized
geometric probability distribution with a parameter β (0 < β < 1). Parameter β of
the geometric distribution controls the greediness of the randomized behavior. In our
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experiments, we set the value of β to 0.3. This value was a result of parameter tuning
experiments. Thus, the heuristic becomes randomized algorithm and utilizes the greedy
behavior of the original heuristic.

5. Extending to a Parallel Biased-Randomized Algorithm

The intrinsic characteristics of biased-randomized algorithms make them a good
candidate to be parallelized. They could be utilized in a multi-start framework, which is a
sequential and iterative approach. In each iteration of this approach, a different solution is
generated [58]. In our paper, multi-start methods are composed of two phases: In the first
one, a new solution is generated using the biased-randomized heuristic, and in the second
one, the algorithm compares the newly generated solution with the best solution obtained
so far to update the latter whenever appropriate.

Instead of using this sequential approach, multiple instances of the biased-randomized
algorithm can be run in parallel (e.g., each using a different computer thread or core) by as-
signing a different seed of the pseudo-random number generator to each instance (Figure 3).
In parallel programming, these types of methods—where the same code is executed using
different input parameters without requiring communication or dependency between
the processes—are known as embarrassingly parallel algorithms [59]. These algorithms are
usually easy to adapt for parallel execution, and they are good candidates to be executed
using massively parallel processing architectures [60].

…

Thread1 Thread2 Thread3 ThreadN

Ex
ec

ut
io

n 
Ti

m
e

Select the best Solution

Create the threads

Parallel 
Region

Sequential 
Region

Sequential 
Region

Figure 3. Executing different instances of biased-randomized algorithm in a parallel way.

In the context of unmanned aerial vehicles or self-driving vehicles, decisions should be
made in short times, e.g., seconds or even in milliseconds. Using a distributed computing
architecture—such as cloud platforms—is an unsuitable approach in this context due to the
relatively high latencies of the network. Thus, high-performance computing architectures
on-chip must be employed. These architectures could be multi-core processors or graphics
processing units (GPUs). These processor units consist of hundreds of smaller low-energy
cores that are divided into groups, streaming multiprocessors [61]. The architecture enables
parallel computation with relative energy efficiency compared to traditional processors.
Using modern multi-core processors represents another appropriate approach for running
embarrassingly parallel algorithms. Multi-core processors have become very popular in
the last years, in part because modern computers contain several processing units or cores
in a single chip [62]. Moreover, multi-core processors can execute several threads by core
simultaneously (hyper-threading), turning these processors into a valuable and inexpensive
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approach to execute parallel programs. The union of biased-randomized algorithms and
parallel architectures makes a perfect combination to obtain high-quality solutions in
complex systems scenarios in the order of just a few seconds or even milliseconds.

In our approach (Algorithm 1), we have used a Multi-core shared memory program-
ming paradigm. Thus, the algorithm executes asynchronous threads that contain as input
parameters an independent instance of the BR-heuristic, a seed (pseudo-random number),
and a list (solutionList). The list is a shared variable by all the threads, and each thread
saves the best-found solution in one second using its instance of the BR-Algorithm in this
list. After creating and running all the threads, the algorithm waits until all threads are
executed. Notice that the algorithm ends its parallel execution at this point, and the shared
variable solutionList contains all the solutions found by all the threads. Then, the program
executes its last step sorting the list of solutions by reward and selecting the best solution
(bestSolution).

Algorithm 1 Parallel Biased-Randomized Algorithm (numberOfThreads).
1: solutionList← ∅
2: for i← 1 to numberOfThreads do
3: seed← PseudoRandomNumberGenerator()
4: t← thread(i, BRTopAlgorithm, seed, solutionList) %Create a thread
5: t.start() %Thread starts to execute
6: end for
7: SynchronizeThreads() %Programm waits until all threads finish
8: sortedSolutions← SortSolutionsByReward(solutionList)
9: bestSolution← selectBestSolution(sortedSolutions)

10: return bestSolution

6. Numerical Experiments

This section describes the numerical experiments we have carried out to test the
concept of agile optimization when applied to the TOP. First, we have employed exact
methods to solve the optimization problem. This initial experiment allows us to understand
the possible limitations of these methods in terms of computational times and the size
of the instances they can solve in practical applications. Then, we have employed our
parallelized biased-randomized algorithm to generate solutions in real-time. Finally, these
solutions have been compared with the optimal or near-optimal ones available in the
scientific literature whenever possible.

Both solving approaches have been tested using the benchmark instances presented
in [39], which are available in the repository http://www.mech.kuleuven.be/en/cib/
op/instances (accessed on 17 December 2021). This benchmark has been widely used in
previous works to test the performance of algorithms aimed at solving the deterministic
TOP. The benchmark comprises a total of 354 instances, which are divided into seven
different sets (Table 1). The number of nodes, the node locations, and the rewards are
identical for all instances within a set. However, the maximum allowed driving range (t0)
and the number of vehicles vary between the instances. The sum of all customers’ rewards
is shown in column “Rewards” in Table 1. The number of vehicles varies between 2 and 4,
and the driving range varies between the values tabulated in Table 1. Therefore, from one
instance to another, the driving range is increased by the tabulated step. Each instance in a
set has a nomenclature px.y.z, where x denotes the set number, y is the number of vehicles,
and z symbolizes the maximum driving range.

http://www.mech.kuleuven.be/en/cib/op/instances
http://www.mech.kuleuven.be/en/cib/op/instances
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Table 1. Characteristics of the benchmark sets used in the experiments.

Set (x) Nodes Reward Vehicles (y) Driving Range (z) Number of Instances

p1 32 285
2 2.5–42.5

563 1.7–28.3
4 1.2–21.2

p2 21 450
2 7.5–22.5

333 5.0–15.0
4 3.8–11.2

p3 33 800
2 7.5–55

603 5.0–36.7
4 3.8–27.5

p4 100 1306
2 25.0–120.0

603 16.7–80.0
4 12.5–60.0

p5 66 1680
2 2.5–65.0

783 1.7–43.3
4 1.2–32.5

p6 64 1344
2 7.5–40.0

423 5.0–26.7
4 3.8–20.0

p7 102 1458
2 10.0–200.0

603 6.7–133.3
4 5.0–100.0

6.1. Solving the TOP Using Exact Methods

The proposed mathematical model has been implemented using the IBM ILOG CPLEX
Optimization Studio v12.6.2, and the computations were conducted on a PC with an Intel i5-
6500 quad-core processor running at 3.6 GHz and with 20 GB of RAM. The CPLEX default
options have been used in the experimentation, with the specification of the following
settings: (i) a time limit of 3600 s, (ii) a relative gap of 0.01%, and (iii) a tolerance integrality
of 0.001%. The computational results are reported in Table 2. Columns 1 and 5 identify the
instance for sets p1 and p2, respectively. Columns 2 and 6 show the solution value obtained
with CPLEX. The computational time (in seconds) requested to obtain these values is given
in columns 3 and 7. Furthermore, the CPLEX final status indicates whether the solution is
guaranteed to be optimal or not. In the latter case, the best-known solution (BKS) from the
literature is provided.

It is observed that in set p2 (instances with 21 nodes), optimal solutions can usually be
achieved after a few seconds or minutes. However, in set p1 (instances with 33 nodes), only
a few optimal solutions can be achieved, whereas others cannot reach the optimal solution
even when employing up to 60 min of computation. It is noticed that some solutions
differ significantly from the BKS, such as instances p1.2.r and p1.3.p. In conclusion, exact
methods are not a feasible option to provide real-time solutions for large-sized instances
with hundreds of nodes.
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Table 2. Computational results for the p1 and p2 instances in CPLEX.

Instances Solution Time (s) BKS Found Instances Solution Time (s) BKS Found

p1.2.b 15 0.06 YES p2.2.a 90 0.39 YES
p1.2.c 20 0.47 YES p2.2.b 120 7.13 YES
p1.2.d 30 17.46 YES p2.2.c 140 74.96 YES
p1.2.e 45 1372.59 YES p2.2.d 160 209.65 YES
p1.2.f 80 3600.01 YES p2.2.e 190 541.92 YES
p1.2.g 80 3600.01 NO (BKS 90) p2.2.f 200 17.58 YES
p1.2.h 100 3600.01 NO (BKS 110) p2.2.g 200 136.81 YES
p1.2.i 105 3600.01 NO (BKS 135) p2.2.h 230 1016.16 YES
p1.2.j 135 3600.01 NO (BKS 155) p2.2.i 230 3600.01 YES
p1.2.k 150 3600.01 NO (BKS 175) p2.2.j 230 3600.01 NO (BKS 260)
p1.2.l 180 3600.01 NO (BKS 195) p2.2.k 270 3600.01 NO (BKS 275)

p1.2.m 175 3600.01 NO (BKS 215) p2.3.a 70 0.03 YES
p1.2.n 160 3600.01 NO (BKS 235) p2.3.b 70 0.22 YES
p1.2.o 215 3600.01 NO (BKS 240) p2.3.c 105 0.34 YES
p1.2.p 215 3600.01 NO (BKS 250) p2.3.d 105 0.47 YES
p1.2.q 230 3600.01 NO (BKS 265) p2.3.e 120 2.06 YES
p1.2.r 205 3600.01 NO (BKS 280) p2.3.f 120 6.36 YES
p1.3.c 15 0.26 YES p2.3.g 145 12.2 YES
p1.3.d 15 4.85 YES p2.3.h 165 84.39 YES
p1.3.e 30 7.75 YES p2.3.i 200 11.71 YES
p1.3.f 40 46.75 YES p2.3.j 200 8.01 YES
p1.3.g 50 2818.14 YES p2.3.k 200 23.77 YES
p1.3.h 70 3600.01 YES p2.4.a 10 0.02 YES
p1.3.i 105 3600.01 YES p2.4.b 70 0.02 YES
p1.3.j 105 3600.01 NO (BKS 115) p2.4.c 70 0.16 YES
p1.3.k 115 3600.01 NO (BKS 135) p2.4.d 70 0.14 YES
p1.3.l 125 3600.01 NO (BKS 155) p2.4.e 70 0.17 YES

p1.3.m 165 3600.01 NO (BKS 175) p2.4.f 105 0.28 YES
p1.3.n 165 3600.01 NO (BKS 190) p2.4.g 105 0.55 YES
p1.3.o 165 3600.01 NO (BKS 205) p2.4.h 120 1.34 YES
p1.3.p 175 3600.01 NO (BKS 220) p2.4.i 120 3.21 YES
p1.3.q 220 3600.01 NO (BKS 230) p2.4.j 120 5.89 YES
p1.3.r 210 3600.01 NO (BKS 250) p2.4.k 180 17.61 YES
p1.4.d 15 0.95 YES - - - -
p1.4.e 15 3.88 YES - - - -
p1.4.f 25 7.75 YES - - - -
p1.4.g 35 11.54 YES - - - -
p1.4.h 45 165.71 YES - - - -
p1.4.i 60 759.26 YES - - - -
p1.4.j 75 2914.08 YES - - - -
p1.4.k 100 3600.01 YES - - - -
p1.4.l 120 3600.01 YES - - - -

p1.4.m 125 3600.01 NO (BKS 130) - - - -
p1.4.n 130 3600.01 NO (BKS 155) - - - -
p1.4.o 155 3600.01 NO (BKS 165) - - - -
p1.4.p 155 3600.01 NO (BKS 175) - - - -
p1.4.q 165 3600.01 NO (BKS 190) - - - -
p1.4.r 165 3600.01 NO (BKS 210) - - - -

6.2. Solving the TOP with Our Agile Optimization Algorithm

The proposed heuristic has been implemented using Java SE 8.0 and tested on a
workstation with a multi-core processor Intel Xeon E5-2650 v4 with 16 cores and 32 GB of
RAM. Each instance is run during 1 s using a different number of threads (from 1 to 128) to
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evaluate the quality of the solution as the number of threads increases. Each thread was a
different algorithm run, and each run used a different seed for the pseudo-random number
generator. In this way, each thread explores a different path in the solution space—but
always keeping the logic behind the constructive heuristic. Increasing the number of
threads increases the total computing time (as more computing resources are running in
parallel) but not the wall-clock time, which is still 1 s. To assess the effectiveness of the
proposed approach, the obtained solutions have been compared against the BKS from the
literature. In particular, the performance of the algorithm is measured using the current
BKS reported by [51]. Tables 3 and 4 show instances and their found solutions. The BKS
is tabulated as the obtained reward and the computational time—in seconds—to reach it.
Our best solution (OBS) for a specific number of threads is tabulated. The computational
time using 128 threads is only recorded in Tables 3 and 4. We have used this time because
128 threads found the best OBS among the different number of threads. The average
percentage gap between the OBS for 128 threads and the BKS is calculated. Notice that
increasing the number of used threads might find better solutions. For example, the
solution found using 128 threads is better than the one found using 16 threads for instance
p1.3.m (Table 3). These results are discussed in the next section.

Table 3. Results for set p1.

Instance
BKS ([51]) Our Best Solution (OBS)

Gap (%)
[a] − [b]Reward

[a]
Time

(s) Thr1 Thr2 Thr4 Thr8 Thr16 Thr32 Thr64
Thr128

[b]
Time

(s)

p1.2.b 15 3.00 15 15 15 15 15 15 15 15 0.09 0.00
p1.2.c 20 2.00 20 20 20 20 20 20 20 20 0.19 0.00
p1.2.d 30 4.30 30 30 30 30 30 30 30 30 0.74 0.00
p1.2.e 45 3.40 45 45 45 45 45 45 45 45 0.49 0.00
p1.2.f 80 4.90 80 80 80 80 80 80 80 80 0.04 0.00
p1.2.g 90 3.00 85 85 85 85 85 85 85 90 0.62 0.00
p1.2.h 110 5.10 105 105 105 105 105 105 105 110 0.25 0.00
p1.2.i 135 12.10 130 130 130 130 130 130 130 135 0.44 0.00
p1.2.j 155 8.30 150 150 150 150 150 150 155 155 0.98 0.00
p1.2.k 175 31.00 170 170 175 175 175 175 175 175 0.24 0.00
p1.2.l 195 2.70 185 185 185 185 185 190 190 195 0.29 0.00

p1.2.m 215 45.30 200 205 205 205 205 205 205 215 0.56 0.00
p1.2.n 235 6.40 230 230 230 230 230 230 230 235 0.58 0.00
p1.2.o 240 10.30 235 235 235 235 235 235 235 235 0.27 2.13
p1.2.p 250 10.10 240 240 240 240 240 240 240 245 0.61 2.04
p1.2.q 265 7.80 250 250 250 250 255 255 255 255 0.33 3.92
p1.2.r 280 9.20 275 275 275 275 275 275 275 275 0.43 1.82
p1.3.c 15 3.00 15 15 15 15 15 15 15 15 0.73 0.00
p1.3.d 15 3.00 15 15 15 15 15 15 15 15 0.60 0.00
p1.3.e 30 2.00 30 30 30 30 30 30 30 30 0.88 0.00
p1.3.f 40 2.00 40 40 40 40 40 40 40 40 0.36 0.00
p1.3.g 50 4.30 50 50 50 50 50 50 50 50 0.51 0.00
p1.3.h 70 4.60 70 70 70 70 70 70 70 70 0.16 0.00
p1.3.i 105 2.00 95 95 95 95 100 100 100 105 0.50 0.00
p1.3.j 115 16.90 110 110 110 115 115 115 115 115 0.09 0.00
p1.3.k 135 5.80 125 125 130 130 130 130 130 130 0.53 3.85
p1.3.l 155 6.50 155 155 155 155 155 155 155 155 0.49 0.00

p1.3.m 175 19.40 160 160 160 160 165 165 165 170 0.37 2.94
p1.3.n 190 6.70 185 185 190 190 190 190 190 190 0.21 0.00
p1.3.o 205 8.30 205 205 205 205 205 205 205 205 0.76 0.00
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Table 3. Cont.

Instance
BKS ([51]) Our Best Solution (OBS)

Gap (%)
[a] − [b]Reward

[a]
Time

(s) Thr1 Thr2 Thr4 Thr8 Thr16 Thr32 Thr64
Thr128

[b]
Time

(s)

p1.3.p 220 6.60 215 215 215 215 215 215 215 215 0.91 2.33
p1.3.q 230 9.10 225 230 230 230 230 230 230 230 0.23 0.00
p1.3.r 250 13.70 240 240 240 240 240 240 240 240 0.34 4.17
p1.4.d 15 3.00 15 15 15 15 15 15 15 15 0.73 0.00
p1.4.e 15 3.00 15 15 15 15 15 15 15 15 0.99 0.00
p1.4.f 25 3.00 25 25 25 25 25 25 25 25 0.99 0.00
p1.4.g 35 2.00 35 35 35 35 35 35 35 35 0.26 0.00
p1.4.h 45 2.00 45 45 45 45 45 45 45 45 0.66 0.00
p1.4.i 60 2.00 60 60 60 60 60 60 60 60 0.51 0.00
p1.4.j 75 2.60 75 75 75 75 75 75 75 75 0.05 0.00
p1.4.k 100 5.60 100 100 100 100 100 100 100 100 0.14 0.00
p1.4.l 120 5.00 120 120 120 120 120 120 120 120 0.10 0.00

p1.4.m 130 2.40 120 120 120 120 125 125 125 125 0.97 4.00
p1.4.n 155 2.90 145 145 145 145 145 150 150 150 0.88 3.33
p1.4.o 165 3.40 160 160 165 165 165 165 165 165 0.60 0.00
p1.4.p 175 3.60 175 175 175 175 175 175 175 175 0.20 0.00
p1.4.q 190 2.20 180 180 180 180 180 185 185 185 0.42 2.70
p1.4.r 210 1.30 185 185 210 210 210 210 210 210 0.22 0.00

Average: 126.04 6.81 121.56 121.77 122.71 122.81 123.23 123.54 123.65 124.69 0.47 2.04

Table 4. Results for set p2.

Instance
BKS ([51]) Our Best Solution (OBS)

Gap (%)
[a] − [b]Reward

[a]
Time

(s) Thr1 Thr2 Thr4 Thr8 Thr16 Thr32 Thr64
Thr128

[b]
Time

(s)

p2.2.a 90 2.30 90 90 90 90 90 90 90 90 0.48 0
p2.2.b 120 1.00 120 120 120 120 120 120 120 120 0.55 0
p2.2.c 140 1.00 130 130 130 130 140 140 140 140 0.41 0
p2.2.d 160 1.00 155 155 160 160 160 160 160 160 0.05 0
p2.2.e 190 3.00 190 190 190 190 190 190 190 190 0.97 0
p2.2.f 200 1.00 200 200 200 200 200 200 200 200 0.03 0
p2.2.g 200 1.00 200 200 200 200 200 200 200 200 0.18 0
p2.2.h 230 1.50 230 230 230 230 230 230 230 230 0.08 0
p2.2.i 230 2.00 230 230 230 230 230 230 230 230 0.25 0
p2.2.j 260 1.00 260 260 260 260 260 260 260 260 0.12 0
p2.2.k 275 6.30 265 265 265 265 275 275 275 275 0.13 0
p2.3.a 70 1.00 70 70 70 70 70 70 70 70 0.99 0
p2.3.b 70 1.00 70 70 70 70 70 70 70 70 0.68 0
p2.3.c 105 1.00 105 105 105 105 105 105 105 105 0.09 0
p2.3.d 105 1.00 105 105 105 105 105 105 105 105 0.38 0
p2.3.e 120 1.00 120 120 120 120 120 120 120 120 0.67 0
p2.3.f 120 1.00 120 120 120 120 120 120 120 120 0.39 0
p2.3.g 145 1.00 140 140 140 140 140 140 140 140 0.44 3.57
p2.3.h 165 1.00 165 165 165 165 165 165 165 165 0.49 0
p2.3.i 200 1.00 200 200 200 200 200 200 200 200 0.96 0
p2.3.j 200 1.00 200 200 200 200 200 200 200 200 0.69 0
p2.3.k 200 1.00 200 200 200 200 200 200 200 200 0.79 0
p2.4.1 10 2.00 10 10 10 10 10 10 10 10 0.72 0
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Table 4. Cont.

Instance
BKS ([51]) Our Best Solution (OBS)

Gap (%)
[a] − [b]Reward

[a]
Time

(s) Thr1 Thr2 Thr4 Thr8 Thr16 Thr32 Thr64
Thr128

[b]
Time

(s)

p2.4.b 70 1.00 70 70 70 70 70 70 70 70 0.13 0
p2.4.c 70 2.00 70 70 70 70 70 70 70 70 0.94 0
p2.4.d 70 2.00 70 70 70 70 70 70 70 70 0.41 0
p2.4.e 70 2.00 70 70 70 70 70 70 70 70 0.29 0
p2.4.f 105 1.00 105 105 105 105 105 105 105 105 0.62 0
p2.4.g 105 1.00 105 105 105 105 105 105 105 105 0.74 0
p2.4.h 120 1.00 120 120 120 120 120 120 120 120 0.73 0
p2.4.i 120 1.00 120 120 120 120 120 120 120 120 0.66 0
p2.4.j 120 1.00 120 120 120 120 120 120 120 120 0.31 0
p2.4.k 180 1.00 180 180 180 180 180 180 180 180 0.81 0

Average: 140.45 1.43 139.55 139.55 139.70 139.70 140.30 140.30 140.30 140.30 0.49 0.11

7. Analysis of Results

The BKS is obtained in sets p1 and p2 at least in 75% of the instances (Figure 4). It is
obtained even when using a reduced number of threads (between 1 and 8 in many cases).
Set p3 achieved this outstanding performance in at least 50% of the instances, and sets p5,
p6, and p7 in 25% of them. Figure 4 shows gaps for experiments with 128 threads.
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Figure 4. Gaps with respect to the BKS using agile optimization algorithms with 128 threads.

Set p4 deserves special attention due to its topology and size (number of nodes, node
locations, and rewards). Indeed, it was the most challenging benchmark proposed by
Chao et al. [39]. No matter the number of vehicles and the maximum driving range, the
resulting gap percentage is higher than the rest of the sets, with a mean value close to 8%.
It can also be observed that the larger the size of the instance, the larger the mean gap can
be; instances in sets p4 and p7 have a larger percentage gap (8% and 5%, respectively).
Nevertheless, it is also noticeable that the overall percentage gap across the 354 tested
instances is just 3%, which is an outstanding result if one considers that it is obtained in
less than one second (see Tables 3 and 4). In 54% of the instances, the BKS is achieved by
using a reduced number of threads.
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Regarding the computational times to reach our best solutions (OBS), Figure 5 depicts
a boxplot comparing the average computational time—in seconds—invest by our approach
in each set, with respect to the computational times used in [51] to reach the BKS. These
times are very competitive compared to the average times required to obtain the BKS,
approximately 36 s. Notice that by investing an average time of 0.53 s, we obtain an
average gap of less than 2.60%, proving that our approach is highly competitive to be
used under real-time scenarios. Notice that if we execute our approach serially, we would
need, in the worst case, 128 s to reach the same results. Therefore, the benefits of using
parallel techniques when dealing with real-time scenarios with a highly dynamic scenario
are necessary.

Figure 5. Computational times of our approach with respect to the computational times to reach the BKS.

Finally, Figure 6 illustrates how our agile optimization approach can reduce the gap
with respect to the BKS; increasing the number of parallel threads reduces the gap between
found solutions and the BKS without increasing the wall-clock time, which is always
limited to 1 s.
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Figure 6. Gap evolution as the number of threads increases for four selected instances.

8. Conclusions

This paper discusses the need for ‘agile’ optimization in the context of data-driven
smart cities, where unmanned aerial vehicles and self-driving vehicles might require
solutions to complex problems in real-time (less than a second). The paper uses the team
orienteering problem to illustrate these concepts. The team orienteering problem is an NP-
hard optimization problem, which challenges the capabilities of exact methods to provide
optimal solutions in short computing times. For that reason, the paper proposes a greedy
heuristic, which is then extended into a biased-randomized algorithm. This algorithm is
then encapsulated into a parallelization framework, allowing running multiple threads in
parallel and selecting the best solution. We tested our algorithm on a well-known set of
benchmarks for the team orienteering problem. The experiments showed that high-quality
solutions could be generated in a few seconds by our algorithm.

Our work could be extended by considering the dynamic environment of the problem.
In the dynamic environment, the travel times and rewards change over time. Thus, the
constructed routes might be changed during the execution to adapt these changes. The
constructed routes and decisions are re-evaluated when a change is detected by sensors,
in-route vehicles, video cameras, etc.

Author Contributions: Conceptualization, A.A.J. and J.P.; methodology, A.A.J. and J.P.; software,
A.A. and J.P.; validation, C.S., M.N. and M.A.; formal analysis, A.A., C.S. and A.A.J.; investigation,
All authors; resources, All authors; data curation, M.A.; writing—original draft preparation, All
authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2021, 11, 12092 16 of 18

Data Availability Statement: Not applicable.

Acknowledgments: This work has been partially supported by the Spanish Ministry of Science
and Innovation (PID2019-111100RB-C21/AEI/10.13039/501100011033, RED2018-102642-T). We also
acknowledge the support of the Erasmus+ Program (2019-I-ES01-KA103-062602).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.;

Noble, I. Policy: Sustainable Development Goals for People and Planet. Nature 2013, 495, 305–307. [CrossRef]
2. Nogal, M.; O’Connor, A. Cyber-transportation Resilience. Context and Methodological Framework. In Resilience and Risk; Linkov,

I., Palma-Oliveira, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 415–426.
3. Le-Dang, Q.; Le-Ngoc, T. Internet of Things (IoT) Infrastructures for Smart cities. In Handbook of Smart Cities; Maheswaran, M.,

Badidi, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–30.
4. Wang, X.; Dessouky, M.; Ordonez, F. A Pickup and Delivery Problem for Ridesharing Considering Congestion. Transp. Lett. 2016,

8, 259–269. [CrossRef]
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