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Abstract

This study investigated the effect of chord deformation on the unsteady aerodynamic mech-
anisms found in hovering flapping flight at a Reynolds number of Re = 2002. This was done
in order to get a better understanding of the physics involved in flapping flight, which in turn
could lead to improved Micro Aerial Vehicle (MAV) designs. A three-dimensional numerical
study was performed using an immersed boundary method (IBM) with the discrete forcing
approach. The solver was first validated against an experiment by Kim and Gharib (2011).

The effect of deformation was investigated by modeling a flapping wing as a flat plate. This
plate had an aspect ratio of 2 and three different time dependent chord shapes were defined:
a rigid case that only included rotation around the leading edge, a case with the maximum
deformation at the trailing edge (the deforming end case) and a case with the maximum
deformation at the center (the deforming center case). In the deforming end case the angle
of attack near the leading edge was increased compared to the rigid case, whereas in the
deforming center case the angle of attack near the leading edge was decreased. A flapping
angle of θ = 45◦ was chosen, which is typical to that of a wing in a four-winged MAV in
biplane configuration. The simulated configuration corresponds to one wing pair, where the
effect of the two wings on one another was simulated by use of a symmetry plane.

When the deformation was taken constant along the span, the deforming center case created
the highest lift coefficient (CL), followed by the rigid case and the deforming end case created
the lowest CL. The curvature of the deforming center case caused a higher pressure on the
lower surface of the plate, whereas the deforming end case reduced the pressure on the lower
surface. The higher angle of attack created by the deforming end case caused a faster CL
buildup, created by a faster buildup of the leading edge vortex (LEV). The lower angle of
attack in the deforming center case caused a slower LEV buildup and therefore slower CL
buildup. In all cases the presence of the symmetry plane increased LEV buildup, causing a
higher CL during the outstroke. No shedding of the LEV was observed in any of the cases.

When the deformation was varied along the span both deforming cases showed a higher CL
compared to the rigid case. For the deforming end case this was caused by a low pressure
region near the trailing edge of the tip of the plate caused by a combination of the tip and
trailing edge vortex. A distinct hump in CL buildup was shown to be caused by the interaction
of the LEV with the LEV shed from the previous stroke. This interaction was delayed for
the deforming center case, both by the slower LEV buildup and because the previously shed
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vortex got trapped below the plate, limiting the interaction.

Decreasing the distance to the symmetry plane showed an increased buildup speed of the
LEV, resulting in a faster CL buildup. The positive effect of the faster LEV buildup on CL
was limited, since the stronger LEV interacted much faster with the vortex shed from the
previous stroke, thus limiting further growth. As a result of this, the beneficial effect of the
deforming center on delaying the interaction was reduced when moving the plate closer to the
symmetry plane.

A later peak in CL showed a longer CL buildup and therefore led to a higher CmaxL . The
moment CmaxL was reached during strokes depended on the trailing edge vortex (TEV) and
the tip vortex (TV) behavior. The effect of the TEV and TV behavior on the timing depends
on the orientation of the surface of the plate on the location of the vortex. This dependence
means the positive and negative effects on the TEV and TV depend on the shape of the plate.
For the deforming center case CL benefits from a stronger TV near the leading edge, whereas
for the deforming end case CL benefits from the fact that the TEV stays closer to the trailing
edge.

The deformation of the wing is shown to play a significant role in the aerodynamic performance
of a flapping wing during hover. As a result of this it is important to take the deformation
of the wings into account when designing an MAV. Overall it is seen that the deforming
center case creates a higher CL compared to the other cases and reduces the negative effects
of interaction with the previously shed LEV. As a result of this, designing a wing prone to
deform in such a way will likely be beneficial to its performance.
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Chapter 1

Introduction

Micro aerial vehicles (MAVs) have the potential to play an important role in future informa-
tion gathering missions, in areas such as search and rescue, environmental monitoring and
security (Shyy et al., 2010). To be able to perform missions in different circumstances these
MAVs should be small, maneuverable, controllable and have a broad flight envelope (Groen,
2010). The Reynolds number range at which MAVs will operate and the desired flight per-
formance mean the vehicles require flapping flight propulsion, since fixed-wing aircraft do
not have the desired maneuverability and helicopters are too inefficient and noisy (Ansari
et al., 2009). This causes designers to look to nature for inspiration, since insects are ex-
tremely maneuverable, silent and much more efficient at low flight speeds (Ellington, 1999;
Zbikowski, 2002). An example of an insect inspired MAV is the DelFly project by the Delft
University of Technology (TU Delft), with some of the resulting designs shown in Figure 1.1.
Mimicking insect flight poses a number of challenges however, both technically, and due to a
lack of understanding of the fundamental aerodynamics behind the flight capabilities (Sane,
2003; Lehmann, 2008). Insect flight is very different from that of fixed wing aircraft or ro-
torcraft, since it relies on the use of unsteady aerodynamic mechanisms to generate sufficient
lift force. In free flying red admiral butterflies the unsteady mechanisms that were observed
are wake capture, a stable leading-edge vortex (LEV), clap and fling and use of rotational
mechanisms. Different aerodynamic mechanisms were used in successive strokes, which leads
to the conclusion that no single mechanism can be pointed out as the key to the aerodynamic
capabilities of flying insects (Srygley and Thomas, 2002). Instead, insects rely on a wide range
of mechanisms to maneuver, take-off, hover and land, with some insects using all mentioned
mechanisms, some only one and others only use unsteady mechanisms for carrying loads or
during special maneuvers (Lehmann, 2008).

Biologist have been interested in the flying capabilities of insects for a long time and have
conducted many experiments using tethered insects (Ellington et al., 1996), free flying insects
(Srygley and Thomas, 2002) and dynamically scaled mechanical flappers (Ellington et al.,
1996; Dickinson et al., 1999; Lehmann and Pick, 2007). Particularly the experiments with a
mechanical flapper have produced some very interesting results for MAV designers, including
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2 Introduction

Figure 1.1: DelFly I (50 cm span, 21.00g), DelFly II (28 cm span, 16.07g) and DelFly Micro
(10 cm span, 3.07g). Copied from de Croon et al. (2009).

optimal stroke trajectory (Dickinson et al., 1999; Wang et al., 2003), the effect of wing plan-
form (Usherwood and Ellington, 2002a) and leading edge design (Usherwood and Ellington,
2002b). To completely understand the effect of all parameters however, it is essential to quan-
tify and visualize the three-dimensional flow around the wings. Although recent developments
in non-intrusive measurement techniques allow researchers to capture three dimensional flow
fields (David et al., 2012; Kim et al., 2013), it remains very difficult to capture all relevant
details of the flow using only experimental techniques. To get a more detailed overview of
the relevant flow phenomena, numerical simulations can be performed (Wang, 2000). Several
three-dimensional simulations have been performed on specific insect geometries, however,
the computational requirements of such simulations are too demanding to do a systematic
parametric study of all the important parameters involved (van Oudheusden, 2009). A very
detailed three dimensional study on the effect of flexibility on the performance of a hawkmoth
wing has been performed for example (Nakata and Liu, 2012), but this study is so specific,
including vein distribution and anisotropy of the wing, that its results are hard to generalize.

This study aims to perform a three-dimensional simulation of hovering flapping wings to
investigate the effects of chordwise deformation on the unsteady aerodynamic mechanisms
found in flapping flight. This will result in a better understanding of the physics involved
in flapping flight, which in turn could lead to improved MAV designs. Since the actual
three-dimensional deformation of both insect and MAV wings is very specific to the wings’
structural and material properties, this study does not include fluid-structure interaction,
instead prescribing the time dependent deformation of the wings directly. That said, the
configuration of the wings that will be simulated is based on a wing pair as found on a four-
winged MAV in biplane configuration. This means the wings will rotate in opposing phase
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around a point at the leading edge root. In such cases the flow around one wing will be affected
by the presence of the other wing. The effect of the wings on one another will be simulated
by creating a symmetry plane, and investigated by varying the distances to the symmetry
plane. Only deformation in chordwise direction will be investigated in this study, with the
wing considered fully rigid in spanwise direction. However, for several cases the chordwise
deformation will be varied along the span, resulting in a twist in spanwise direction.

To perform the simulations a three-dimensional immersed boundary method (IBM) with a
discrete forcing approach will be used. A big challenge with simulating flapping wings is the
large translation and rotation of the wings. In conventional body conforming grid simulations
these large movements result in large grid deformations, which causes problems in convergence
and stability of the algorithms, as well as having a negative impact on the accuracy (Fadlun
et al., 2000). IBMs that employ a non-body conforming grid have been used successfully to
deal with large translations in two-dimensional simulations (Miller and Peskin, 2004, 2009),
and have also been extended to three-dimensional studies (Balaras, 2004; Zhang et al., 2013;
Tay et al., 2014).

Chapter 2 will discuss the unsteady aerodynamic mechanisms found in flapping flight and the
parameters that are known to affect them. Chapter 3 will discuss the governing equations and
how they are discretized using the immersed boundary method. Next, Chapter 4 will show
the validation of the solver. Chapter 5 will discuss the set-up of the simulations, discussing
the different motions and deformations that will be examined. The results of the simulations
are shown in Chapter 6 and finally conclusions will be drawn in Chapter 7.
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Chapter 2

Aerodynamic mechanisms in flapping flight

Flying insects have some impressive aerodynamic capabilities that cannot be explained by
conventional steady aerodynamic theory. The conventional theory on how wings generate
lift is based on a rigid wing moving through a fluid. However, in steady windtunnel tests on
insect wings these wings cannot generate enough lift to support the insect weight, let alone the
extra lift required for the special maneuvers shown by some insects. Insects therefore must use
unsteady aerodynamic mechanisms to generate the lift required for insect flight (Dickinson
et al., 1999). The wing stroke of insects is considered to consist of flapping motion, lead-
lag motion and feathering motion around a spanwise axis. Although these motions are not
actually independent they can basically be treated as a combination of heaving (also referred
to as plunging) normal to the chord, swaying motion parallel to the chord, and pitching
(Okamoto and Azuma, 2005), and all unsteady mechanisms should be caused by one or a
combination of these motions. The different unsteady aerodynamic mechanisms that are
observed in insect flight are wake capture, a stable leading edge vortex, clap and fling, clap
and fling and the use of rotational mechanisms. This chapter will explain these different
mechanisms and some of the parameters that are known to affect them.

2.1 Stable leading edge vortex and delayed stall

The first mechanism that will be discussed is the stable leading edge vortex (LEV) observed
over insect wings, which is often regarded as the most important of all the unsteady mecha-
nisms identified for flapping flight (Sudhakar and Vengadesan, 2010). Insects create a large
LEV by flapping their wings at a very high angle of attack. This strong vortex is capable of
creating a very high lift (Lehmann, 2008). A normal translating wing would shed the LEV
when the angle of attack becomes too large. Insect wings however, do not show shedding at
angles of attack much higher than ordinary translating wings. There are two different theories
for why the LEV does not shed during the flapping of insect wings. Over a normal translating
wing, at a high angle of attack, the vortex increases in size until it is shed and the wing stalls,
causing a loss in lift. Before stall however, the presence of the strong attached LEV produces
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6 Aerodynamic mechanisms in flapping flight

very high lift. This process is called delayed, or dynamic stall. The first possible explanation
for the stable LEV is that the stroke amplitude of insects is small enough to avoid shedding,
but that if the stroke amplitude would become larger shedding would occur (Sane, 2003).

The other explanation is that the LEV is stabilized by the rotation of the wing. Instead of
just translating their wings through the air, insects also rotate their wings around their body.
This rotation causes a strong spanwise flow that stabilizes the LEV, which explains why it
does not shed. In this case the stable vortex is simply a steady aerodynamic mechanism,
caused by three-dimensional flow (Usherwood and Ellington, 2002a). It is important to note
that the stabilizing effect of the axial flow on the LEV is not subject of debate (van den Berg
and Ellington, 1997), but instead whether this mechanism is sufficient to explain the stable
LEV observed in flying insects, or that dynamic stall is also required.

Parameters affecting the stability of the leading edge vortex

The stabilizing effect of the wing rotation on the LEV is independent of Reynolds number
but instead governed by the aspect ratio of a single wing. Theoretically all flapping wings
with a single wing aspect ratio of 3 or lower should be able to produce a stable LEV (Lentink
and Dickinson, 2009). The camber of the wing, thickness of the leading edge and twist of
the wing only have a small, if any, influence on the force production and stability of the LEV
(Usherwood and Ellington, 2002a). The flexibility of the wing affects the strength of the
LEV. When the wing is more flexible, the increased bending will lower the effective angle
of attack, leading to a weaker LEV (Gillebaart et al., 2011). Since the strength of the LEV
also influences the stability, a more flexible wing could also result in a more stable vortex
(Yin and Luo, 2010; Eldredge et al., 2010a). However very flexible wings will suffer from
premature detachment (Eldredge et al., 2010b). Finally the kinematics of the wing also affect
the stability of the LEV (Trizila et al., 2011).

2.2 Rotational lift

Lift force measurements on a flapping wing show two force peaks when the wing rotates
around its spanwise axis and reverses direction, as shown in Figure 2.1. When the wing does
not rotate these peaks are absent, meaning the rotating of the wing generates these extra
peaks in lift force (Dickinson et al., 1999). The first peak occurs when the wing is rapidly
pitching around the spanwise axis, and the timing and sign of the peak are a function of the
the timing of the wing rotation. The extra generated lift related to the first peak is called
rotational lift. The lift peak attributed to rotational lift can be attributed to either one of
three separate mechanisms, or a combination of the three. One explanation for the extra lift
is that the wings own rotation serves as a source of circulation to generate the upward force.
Although this force has been compared to the Magnus effect (Dickinson et al., 1999), rotational
circulation is not akin to this effect (Lehmann, 2004), and is in fact a separate mechanism.
Rotating wings might experience both rotational and Magnus circulation, however, including
the Magnus force makes the prediction of some analytical models worse, and is possibly not
important for rotational lift at all (Walker, 2002). A third contribution to the extra lift found
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Figure 2.1: Separation of rotational lift and total lift. The red trace indicates measured lift,
and the blue trace represents the estimated translational component. Rotational circulation is
the difference between the measured and predicted values. White dots indicate lift transients
attributed to wake capture, black dots indicate transients attributed to rotational circulation.
Copied from Dickinson et al. (1999).

during wing rotation is the wings ability to delay stall during translation (Lehmann, 2004).
Kramer (as cited in Lehmann (2004)) has shown that a wing in steady motion can experience
lift coefficient above the steady stall value when the wing is rotating slowly from low to high
angles of attack. The increase in maximum lift coefficient by wing rotation is called the
Kramer effect. Although these three mechanisms are sometimes referred to separately, they
are often merged and referred to as either rotational forces or Kramer forces (Groen, 2010).

Parameters affecting rotational lift

As mentioned before the force peak that is attributed to rotational lift is affected by the
timing of the rotation. To have the proper angle of attack, the wing must pronate before the
downstroke and supinate before the upstroke. If the wing flips early the lift is increased, if
the wing flips late the lift is decreased. The force of the vortex generated by a rotating wing
is a function of the chordwise location of the center of rotation, and the chord length (Walker,
2002).

2.3 Wake capture and added mass effect

The position of the second force peak in Figure 2.1 is independent of the timing of the wing
rotation, and cannot be explained by the rotational lift. In Dickinson et al. (1999) it is
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8 Aerodynamic mechanisms in flapping flight

suggested that this might be caused by the wing interacting with the vortex that was shed
when the wing began to rotate. This mechanism is called wake capture. The claim that the
wake interacting with the wing causes the peak in lift is supported by several experiments
(Dickinson et al., 1999), and some simulations (Walker, 2002). Other simulations found that
when the effect of the wake was investigated the lift coefficient was actually reduced however,
and concluded that the high peak at the beginning of the stroke is not due to wake capture,
but instead due to reaction of accelerating an added mass of fluid (Sun and Tang, 2002;
Miller and Peskin, 2004, 2009). In other studies a distinction is made between rotational and
translational added mass effects (Jardin et al., 2012), where the translational added mass
has a nett effect of zero, and the rotational added mass has a positive effect on the lift. The
two-dimensional simulations of Miller and Peskin (2004) and Miller and Peskin (2009) showed
a negative effect caused by wake interaction, instead of an increase lift.

Parameters affecting wake capture

Although the timing of the second peak attributed to wake capture does not change with
wing rotation, its amplitude does. When the wing rotation is delayed with respect to stroke
reversal the angle of attack will be negative with respect to the oncoming flow, resulting in
negative lift. The interaction of the wing with the previously shed vortex is of course also
depending on the strength and position of the shed vortex. This means that the parameters
effecting the strength and the shedding of the LEV also affect the wake capture mechanism.
Gillebaart (2011) reported an increase in force due to the interaction with the wake, with
the increase in force being more significant when the wing was more rigid. It is unclear how
exactly the benefit of wake capture changes during fast forward or maneuvering flight of an
insect when the wings experience additional fluid components produced by the animals own
body motion (Lehmann, 2008).

2.4 Clap and fling

The clap and fling motion corresponds to a lift enhancing mechanism first proposed by Weis-
Fogh in 1973, while studying the hovering motion of a tiny wasp (Weish-Fogh, 1973). This
mechanism occurs when the wings clap together at the end of the upstroke, from ventral
to dorsal, and fling apart at the beginning of the downstroke as shown in Figure 2.2. How
this motion is thought to enhance lift was described analytically by Lighthill using two-
dimensional inviscid theory (Lighthill, 1973) and confirmed later by experiments, although
the actual produced lift proved to be higher than the value predicted by Lighthill (Maxworthy,
1979). The lift generation is augmented during fling by the formation of two large leading
vortices (Miller and Peskin, 2009). The leading vortex of each wing acts as the starting vortex
of the other, and being equal in size, causing the total circulation around both wings to remain
zero. This means no trailing vortices are required to conserve circulation, eliminating the delay
in lift buildup required by the Wagner effect. During the following translation the leading
edge vortices remain attached and small trailing edge vortices are formed. However, the
leading edge vortices are much stronger than the ones on the trailing edge, causing vortical
asymmetry. This asymmetry leads to negative circulation, giving larger lift forces when
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compared to flapping wings without fling motion in which case there the leading and trailing
edge vortices will be of equal strength (Miller and Peskin, 2004; Sun and Yu, 2006). During
clap two large trailing edges are formed which again are each others opposites. The large
circulation causes a high lift during this phase, approximately 1.6 times as large as a single
wing performing the same motion (Sun and Yu, 2003). During clap a small jet of fluid is also
squeezed out of the closing gap between the trailing edges, causing a modest increase in lift
(Lehmann and Pick, 2007).

Parameters affecting clap and fling

The added lift generated by the clap and fling mechanism is affected by several parameters.
The first parameter has to do with the whether the wings completely touch each other. For a
true ‘clap’ the wings have to physically touch each other, but even when there is a small gap
between the wings this mechanism can create extra lift. The extra generated lift decreases
with increasing gap size. When the gap becomes too large the wings do no longer influence
each other and the clap and fling mechanism is said to be absent (Kolomenskiy et al., 2009).
The influence of the gap size can be very important for certain simulations, in which it is not
possible to make the wings completely touch each other and a small gap is always present.
This effect is shown in Figure 2.3, which compares the results of (Kolomenskiy et al., 2009)
and (Miller and Peskin, 2004) in which the simulation method did not allow for a ’full’ clap
and fling. It can be seen that the gap does not only influence the size of the lift, but also
the timing of the lift creation. From research on different insects it has been discovered that
although clap and fling is very common in the smallest flying insects, larger insects do not
use this mechanism (Dickinson et al., 1999). A possible explanation is that the mechanism is
less effective at higher Reynolds numbers (Sun and Yu, 2006).

2.5 Interaction between mechanisms

Although the mechanisms discussed in this chapter are presented as separate mechanisms,
these mechanisms will affect one another, which may change their behavior. The wake of the
wing will be determined by the strength of the shed leading edge vortices and the moment
that they were shed. This means the stability and strength of the LEV will affect the be-
havior of wake interaction. This type of interaction between mechanisms will make it much
harder to distinguish between the separate mechanisms and might be the reason different
researchers come to different conclusions on their effects. This interaction also makes it more
difficult to determine what parameters affect a mechanism. For example, the aspect ratio of
the wing might not directly change the wake capture mechanism, but it changes the LEV
stability which will in turn affect wake capture. Again this makes distinguishing between sep-
arate mechanisms very difficult. Research focusing on the interaction between the different
mechanisms will help to explain the behavior better.
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10 Aerodynamic mechanisms in flapping flight

Figure 2.2: Clap and fling as redrawn from Weish-Fogh (1973) in Miller and Peskin (2004).
The three-dimensional motion (top) and the corresponding two-dimensional approximation
(bottom). In this drawing, the insect flies with its body oriented almost vertically, and the
wings move in a horizontal plane. At the beginning of the upstroke (A), the wings move from
the ventral to the dorsal side of the body, and rotate together about the leading edges. At the
beginning of the downstroke (B), the wings rotate apart about the trailing edges. Towards
the end of rotation, the wings translate away from each other.
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Figure 2.3: Comparison of the lift coefficient obtained in (Kolomenskiy et al., 2009) (solid
and dashed lines) with the corresponding curve in (Miller and Peskin, 2004) (dash-dot). The
spacing between the wing centerlines equals c/6 during the near clapfling. During the full
clapfling there is no spacing between the wings. Copied from (Kolomenskiy et al., 2009)
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Chapter 3

Governing equations and solver

With the ever increasing computing power and decreasing prices of modern computers, more
and more complex flows can be solved. Most codes capable of handling complex geometries
however, require either body-fitted curvilinear or unstructured meshes. High quality body-
fitted curvilinear meshes have as disadvantage that they require a lot of specialist attention
to get right, whereas unstructured meshes have negative impact on both the stability and
the convergence of the algorithms (Fadlun et al., 2000). For both cases, these disadvantages
become even more relevant when the simulation includes deforming or moving boundaries,
which will indeed be the case for the simulations performed in this study. To avoid these issues
an alternative strategy will be used in which the grid does not conform to the boundaries.
Methods in which the grid does not conform to the body are referred to as immersed boundary
methods (IBMs) and have several advantages over grid conforming methods. In the case of
moving boundaries a very big advantage is that no redistribution of the mesh is required.
Many different immersed boundary method exist with the main difference being in the way
they deal with the immersed boundary. In this study a combination of the methods described
by Kim et al. (2001), Yang and Balaras (2006) and Liao et al. (2010) is used. This chapter will
first explain the idea behind IBMs. Next the specific method used in this study will discussed
in a little more detail. Finally two important aspects in solving the system, the interpolation
scheme to prescribe the boundary condition and the numerical oscillations caused by moving
boundaries will be discussed.

3.1 Immersed Boundary Methods

Low Reynolds number flow is governed by the incompressible Navier-Stokes equations. The
non dimensionalized form of these equations is given in Equations 3.1 and 3.2.

∇ · u = 0 (3.1)
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(b) Non body conforming grid

Figure 3.1: Conventional and non-body conforming grids as used in CFD simulations.

∂u

∂t
= −u · ∇u+

1

Re
∇2u−∇p (3.2)

In which u is the velocity, t is time, p is the pressure and Re is the Reynolds number.

A standard approach when simulating a flow around a boundary is to generate a grid conform-
ing to that boundary, as shown in Figure 3.1a. Next, Equations 3.1 and 3.2 are discretized
on this grid, and the conditions at the boundary can be prescribed directly. As mentioned
in the introduction the generation of this grid can become troublesome in case of complex
boundaries. When using an immersed boundary method, the grid is generated with no regard
for the boundary (Mittal and Iaccarino, 2005), as shown in Figure 3.1b. Since this means
the boundary conditions cannot be prescribed directly, the governing equations have to be
modified to be able to include their effect. This is done by including an extra force term fc
in Equation 3.2 resulting in Equation 3.3.

∂u

∂t
= −u · ∇u+

1

Re
∇2u−∇p+ fc (3.3)

Two different approaches can be taken to solve for Equation 3.3. The first option applies
the forcing fc to the entire domain and then discretizes the equation. This approach is
called the continuous forcing approach. The second approach first discretizes the equations
without taking fc into account, after which the discretization in the cells near the boundaries
is adjusted to account for their presence (Mittal and Iaccarino, 2005). This approach is called
the discrete forcing approach. The next section will give some extra details on the approach
used in this study.

3.2 IBM method

The IBM used in this study is a combination of the methods described by Kim et al. (2001),
Yang and Balaras (2006) and Liao et al. (2010). In both the method by Liao et al and the one
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by Yang and Balaras, the forcing term fc is calculated explicitly using an Adam-Bashforth
second-order (AB2) scheme and the time integration scheme uses a semi-implicit AB2 scheme.
In this study, the time integration scheme has been changed to a fully implicit Crank-Nicolson
(CN2) scheme. Secondly, fc is calculated explicitly using the first-order forward Euler and
second-order AB2 schemes for the viscous and convective terms, respectively. This will reduce
the computational cost while having no observable difference on the results compared to an
AB2 scheme (Tay et al., 2014). The forcing term fc will be calculated using Equation 3.4.

fcn+1 =
uf − un

∆t
+

[
un · ∇un − 1

Re
∇2un

]
+∇pn (3.4)

In this equation the superscript indicates the time step number and uf is the velocity contri-
bution of the boundary which has to be imposed. Since the boundary does not match the grid
this velocity is not known and must be reconstructed using information from the interface
and the surrounding velocity field (Yang, 2005). The reconstruction is discussed in Section
3.3. Finally the total force exerted on the surface of the solid will be calculated using fcn+1,
using Equation 3.5.

Fi = −
∫
solid

fcn+1
i dV +

∫
solid

(
∂ui
∂t

+
∂uiuj
∂xj

)
dV (3.5)

3.3 Boundary reconstruction

To calculate fc the velocity uf has to be reconstructed in the grid points near the boundary.
To be able to do this it is first necessary to identify the grid points that are near the boundary.
This is done by first determining for each grid point if it lies within the solid region or in the
fluid region. If a point lies in the fluid region and has at least one neighboring point in the solid
region it is considered a forcing point. The velocities in the forcing points will be interpolated
to account for the boundary’s presence. The interpolation is done using a triangle linear
interpolation in three dimensions. A two-dimensional example of the interpolation method is
shown in Figure 3.2a.

When simulating a moving boundary the role of grid points can change from time step to time
step. Besides having to reevaluate the role of all grid points at each time step this gives rise
to another issue. The time advancement scheme requires physical values of the velocities and
pressures from the previous time step, as well as their derivatives. Although the velocities
will be reconstructed in a forcing point, its derivatives will include grid points from inside the
solid. When a point that was a forcing point in the previous time step becomes a fluid point,
these non-physical derivatives can introduce spurious vorticity near the boundary, which in
turn can lead to large errors (Yang, 2005). To ensure this does not occur, a field extension
procedure was used in Yang and Balaras (2006). In this procedure all solid points with at
least one neighboring point in the fluid are identified. The velocities and pressures in these
pseudo-fluid points are extrapolated from the fluid to ensure the derivatives in the forcing
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(a) (b)

Figure 3.2: Two-dimensional examples of the interpolation and extrapolation method. Taken
from (Luo et al., 2012)

points have physical values. A two dimensional example of such an extrapolation method in
shown in Figure 3.2b. For this study the field extrapolation is not performed however, since
experience has shown that finding the pseudo-fluid points in three dimensional simulations
can become quite cumbersome, while the field extension does not help the solution.

Finding the points that can be used for the interpolation is an important step and, since
this has to be done at every time step in case of moving boundaries, can become rather time
consuming. A quick method to find the required points in case of a non deforming plate was
written for this study, and although it was not extensively used for the final simulations a
description of this method is given in Appendix A for future reference.

3.4 Spurious force oscillations in IBMs

The field extension method described in the previous section can reduce the spurious force os-
cillations in the solution but can not completely eliminate them (Lee et al., 2011). The reason
it is not effective in this study is a second source of spurious oscillations. When the boundary
moves, grid points can change their role from, or to, a forcing point. This can cause spurious
oscillations, for example, when a grid point changes its role from a fluid point to a forcing
point. When this happens the stencil for its calculation will change instantaneously from the
finite-difference stencil for the discrete Navier-Stokes equation, to the interpolation stencil.
Although both stencils are valid representations of the same flow field, their discretization
errors both have their own characteristics, which in general are not consistent to each other
(Luo et al., 2012). The triangle linear interpolation used has associated numerical errors of
O(∆x) and the spatial scheme used uses a scheme of O(∆x) for the convective terms, so the
difference between the schemes is expected to be of O(∆x). This means that when the bound-
ary crosses and a grid point switches to a forcing point this creates a temporal discontinuity
in the velocities. Since the pressure is proportional to the acceleration ∂u

∂t , the oscillation in
the pressure (and thus the force) is expected to be of O

(
∆x
∆t

)
. This means that decreasing

the time step will actually increase the resulting pressure oscillation. The behavior of these
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3.4 Spurious force oscillations in IBMs 17

fluctuations will be investigated in Chapter 4, but no changes to the solver will be made to
reduce their effect.
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Chapter 4

Validation

The immersed boundary solver described in Chapter 3 has been validated for two-dimensional
cases in Tay et al. (2012). The same study showed a quick three-dimensional validation case
of the solver at a low grid resolution at a Reynolds number of Re = 10000 of a plunging wing,
also described in Tay et al. (2014). An extra validation of the three-dimensional solver will
be performed in this chapter by comparing the results to an experiment performed by Kim
and Gharib (2011) at a Reynolds number of Re = 2000. Before this is done the spurious
fluctuations caused by the moving boundaries as discussed in Section 3.4 will be investigated
at a Reynolds of Re = 100. After these are investigated the solver is used to simulate the
full experiment, both with and without a moving boundary, and the results are compared.
Finally a grid and time step study is performed to investigate the impact of these parameters
on the solution.

4.1 Spurious fluctuations

When using an immersed boundary method with discrete forcing in a simulation with moving
boundaries, the solution produces spurious force oscillations on a solid body as explained
in Section 3.4. To be able to distinguish these oscillations from other possible fluctuations
that may have a physical meaning, their behavior in the code is examined. This is done by
simulating a impulsively started flat plate with aspect ratio AR = 1 at a 90 degree angle with
the direction of motion and moving with non-dimensional velocity U = 1. The corresponding
Reynolds number is equal to Re = 100. The force coefficient will be taken equal to Fi as
calculated by Equation 3.5.

When generating a grid for an IBM it is standard practice to have a region of uniform grid
spacing around the boundaries (Mittal and Iaccarino, 2005). When simulating a moving body
it is important that the uniform region is large enough to ensure the body does not travel
outside of the region, reducing the accuracy. On top of that the uniform region needs to
extend to some distance behind the body to ensure the wake is resolved correctly. Outside of
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(a) (b)

Figure 4.1: The non-uniform grid used in the simulations at Re = 100.

the uniform region the cell size increases to a fixed value according to an exponential function
(Tay et al., 2012). Throughout this report cell size ∆x is used to refer to the uniform cell size
normalized by chord length c. The grid used is shown in Figure 4.1 with the plate moving
in positive z-direction. The orange lines represent the initial position of the plate. From the
figure it can be seen that the plate touches the top boundary of the domain. This boundary
is a symmetry plane, and as a result only one half of the plate needs to be simulated.

Figure 4.2 shows the response in the drag coefficient CD for a plate with a uniform cell size
∆x = 0.012 and time step ∆t = 0.001. The response clearly shows large fluctuations.

The cause of the fluctuations is that the boundary moves from one cell to another, causing
an instantaneous change in the affected grid points as explained in Section 3.4. This can be
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Figure 4.2: Force response of a moving flat plate using the IB solver.
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Figure 4.3: Single-sided amplitude spectrum of fluctuations for ∆t = 0.002 and ∆x = 0.012.
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Figure 4.4: Force responses for different ∆t and ∆x.

clearly seen by the frequency of the fluctuations, shown in Figure 4.3. The peak in this plot
is at a frequency of 83.3 and its multiples. This frequency is exactly equal to U

∆x , proving the
relation between the fluctuations and the boundary crossing the grid points.

To investigate the behavior of the fluctuations, the simulation is redone using different time
steps, ∆t=0.0005, 0.001 and 0.002, and cell sizes ∆x=0.009, 0.012 and 0.018. Close-ups of
the results are shown in Figure 4.4.

The amplitudes in Figure 4.4 can be seen to be affected by both ∆x and ∆t. To visualize
this effect the amplitudes for different cell sizes and time steps are shown in Figure 4.5. The
plot also shows a best-fit power law trough the points from which it can be derived that

the fluctuations are of order O
(

∆x0.63

∆t0.45

)
. This order is much lower than the expected order

O
(

∆x
∆t

)
, mentioned in Section 3.4. More importantly however, the amplitude does decrease

with increasing ∆t and decreasing ∆x. The reason the order is lower than expected is not
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Figure 4.5: Fluctuation amplitudes at a) different minimum cell size, and b) different time
steps.

clear, but it is likely that a more extensive grid and time step study is required, since only 3
different grid sizes and three different time steps were used. Since no attempt will be made
to reduce the fluctuations, such a grid and time step study will not be performed here.

4.2 Kim and Gharib experiment

To validate the immersed boundary solver, it will be compared to the experiment described
in Kim and Gharib (2011). In this study a flat plate is accelerated from rest to a constant
velocity, inside a watertank. The plate has one free end, an aspect ratio of 3.75 and is at a
90 degree angle with the direction of motion. The Reynolds number based on the final plate
velocity is equal to Re = 2000. A photograph and a sketch of the setup of the experiment are
shown in Figure 4.6. The free surface of the water is considered a symmetry plane and will
be modeled as such. The acceleration phase in the experiment takes 0.25 seconds, but the
exact velocity profile is not specified in the original publication. Since it was not specified in
the publication a velocity profile is chosen that increases smoothly. The normalized velocity
profile that is chosen is given by Equation 4.1.

u =
σ

2Ac

log (cosh (Ac(t− t1)))

cosh (Ac(t− t2))
+ 0.5Amax (4.1)

With σ = 3.2, t1 = 0.1, t2 = 0.4125, Ac = 50 and Amax = 1. The resulting velocity is shown
in Figure 4.7. From the velocity plot it can be seen that the acceleration takes slightly longer.
This is done because the solver cannot deal with too sudden jumps in the acceleration, so the
profile is slightly smoothened. The experiment parameters are shown in Table 4.1.
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Figure 4.6: (a) Experimental setup. White lines are the edges of the plate model. (b) Details
of the mechanical model from the camera view. The arrow indicates the moving direction of
a traverse. Taken from Kim and Gharib (2011).
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Figure 4.7: Velocity profile of the inflow used in the simulations with a steady plate.

Parameter Value

Reynolds number based on final velocity 2000

Chord length 40 [mm]

Aspect Ratio 3.75

Final velocity 50 [mm/s]

Acceleration phase 0.25 [s]

Table 4.1: Experiment parameters as used in Kim and Gharib (2011) and simulations.
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4.2.1 Steady plate with impulsively started inflow

In the first simulation a steady flat plate is used, with an accelerating inflow. Although this
means the acceleration of the air around the plate will differ slightly from that set at the
inflow, it will give approximately the same forces and vortex structure, limit the size of the
uniform grid since no movement has to be taken into account and will eliminate the problems
associated with the moving body mentioned in Section 4.1. The fact that the velocity profile
will not perfectly match the experiment is not relevant because the exact profile used in the
experiment is not known anyway. The plate used in the simulation has a thickness h of 0.06c
instead of the 0.038c used in the experiment. This is done because experience has shown that
the interpolation method used requires at least 4 grid points inside of the plate. Making the
plate slightly thicker than in the experiment allows for a coarser grid while it is not expected
to affect the solution significantly. This assumption will be tested in Section 4.3. The drag
coefficient as used in the experiment is defined as CD = Drag

1/2ρfU2S
, in which ρf is the density

of the water, U is the final velocity and S is the surface area of the plate. To relate CD to
the coefficients given by Equation 3.5 requires multiplying Fi with 2c2

S = 0.5333. The non-
dimensional time T is defined in the experiment as the time it takes to travel the distance
of 1 chordlength. This means T is given by Equation 4.2, since the velocity is not constant
during the acceleration phase.

T =

∫ t

0

U(t)

c
dt (4.2)

As mentioned in the previous section it is standard practice to have a region of uniform
cell size around the simulated body. In the simulations performed in this section this would
lead to an excessively large number of cells however, so the uniform region does not include
the entire body for the validation cases. Instead the uniform area contains a small region
around the free end of the plate. The grid used for the steady simulation is shown in Figure
4.8a, in which the orange lines represent the plate, and the flow is coming from the negative
z-direction.

The drag force result of the simulation with a uniform section of ∆x = 0.009 and ∆t = 0.0005
is plotted in Figure 4.9 along with the result of the experiment. The initial peak in the force
can be seen to be higher in the experiment. This is most likely caused by the different
velocity profile used in the experiment. When the final velocity is reached the force drops in
both cases, and shows another distinct hump before approaching a steady state value. After
T=1 the simulation and the experiment gradually move towards a steady state value around
CD = 2. The experimental final value is not exactly stated but from the plot of Figure 4.9 is
estimated to be CD = 2.05 while the simulated value goes to CD = 1.93. This means the CD
found by the simulation is approximately 6% lower than that found by the experiment.

Next the vortices behind the flat plates are investigated. The experimental results show this
by plotting the isosurface of vorticity magnitude |ω| = 3, at T= 1.3, 3.3 and 5.3. The vorticity
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(a) (b)

Figure 4.8: The non-uniform grid used in the steady simulations along with a close-up.
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Figure 4.9: The drag force vs formation time for the steady plate for ∆x = 0.009 and
∆t = 0.0005and the experimental result.
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(a) Plot from simulation with ∆x=0.009. (b) Interpolated plot with ∆x=0.15.

Figure 4.10: Contour plots of vorticity magnitude at half span at T=3.3.

magnitude is given by Equation 4.3 (Anderson, 2007).

|ω| = |~∇× ~u| (4.3)

Where |ω| is non dimensionalized as ω = ωc
U .

To allow for a good comparison the resolution of the simulation is decreased to match the
resolution achieved in the experiment. This means the solution is interpolated onto a uniform
grid, with cell size ∆x = 0.15. Matching the resolution before the comparison is non-trivial
since it can have a significant effect on the flow field representation. The difference between
the simulation with ∆x = 0.009, and the interpolated result with ∆x = 0.15 can be clearly
seen from Figure 4.10. This figure shows a contour plot of the vorticity magnitude at T=3.3
at half the span. The narrow region of high vorticity leading from the edges of the plate seen
in the original image is smoothed out due to the interpolation. Since this region cannot be
represented in the experiment comparing the isosurfaces to the simulation directly would be
much harder to do.

The isosurfaces of |ω| = 3 from the interpolated results are shown in Figure 4.11 and 4.12.
In the same figures the results from the experiment are shown as well. The results from
the experiments are averaged over several runs, explaining the smoother appearance of the
vortices. Apart from the smoother experimental results the vortex structures are very similar
and no important differences can be identified.
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(a) Simulation at T=1.3 (b) Simulation at T=3.3 (c) Simulation at T=5.3

(d) Experiment at T=1.3 (e) Experiment at T=3.3 (f) Experiment at T=5.3

Figure 4.11: Front view of vorticity magnitude isosurfaces with |ω| = 3 from simulation and
experiment. Experimental results taken from Kim and Gharib (2011)
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(a) Simulation at T=1.3 (b) Simulation at T=3.3 (c) Simulation at T=5.3

(d) Experiment at T=1.3 (e) Experiment at T=3.3 (f) Experiment at T=5.3

Figure 4.12: Side view of vorticity magnitude isosurfaces with |ω| = 3 from simulation and
experiment. Experimental results taken from Kim and Gharib (2011)
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(a) (b)

Figure 4.13: The non-uniform grid used in the simulations with a moving body along with a
close up.

4.2.2 Impulsively started flat plate with zero inflow

In the next simulation the inflow will be set to zero and the plate will be accelerated to a
constant final velocity. The acceleration of the plate is the same as the acceleration of the
inflow in the previous experiment, and all other parameters are left the same to be able to
compare the two cases. As with the grid in Section 4.1, the grid has to be extended to prevent
the tip of the plate from moving out of the uniform region. The resulting grid is shown in
Figure 4.13a, in which the uniform section is 2.5 times larger than for the steady plate case.
This larger grid will make the calculations more demanding.

The drag force of the case with ∆x = 0.006 and ∆t = 0.0005 is shown in Figure 4.14. The
results clearly reveal the oscillations due to the moving boundary as mentioned in Section
4.1. The averaged force is also shown, along with the result of the steady plate with inflow.
Since the frequency of the fluctuations can be calculated from the plate velocity and the cell
size, averaging is done over the number time steps that make up one fluctuation cycle.

From Figure 4.14 it can be seen that the moving plate has a slightly lower peak than the
steady case. The second hump is lower and shorter than the one in the steady case as well.
The differences are most likely caused by the slightly different velocity ‘felt’ by the body. After
the second hump the force coefficient goes to a steady state value of CD = 1.83 which is about
5% lower than for the steady plate and almost 11% lower than that found in the experiment.
The vorticity magnitude isosurfaces are examined as well, and show no significant differences
with the ones from the steady plate case.
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Figure 4.14: CD response of the moving plate along with its averaged value, compared to the
response of the steady plate with inflow.

4.3 Grid and time step study

The uniform section of the grid will be refined to investigate the effect of the cell size on the
solution. A coarser grid with ∆x = 0.012 and a finer grid with ∆x = 0.006 will be used, as
well as a smaller time step of ∆t = 0.00025, to simulate the cases of Section 4.2.

4.3.1 Steady plate

The drag force of the three different grids used to simulate the steady plate case are shown
in Figure 4.15. The initial peak is 1.5% higher for the ∆x = 0.006 case and the same for the
case with ∆x = 0.012. The difference between the steady state values is less than 1% for all
cases. The big difference between the three cases occurs at the second hump. For the cases
with ∆x = 0.009 and 0.012 the second hump starts at the same time, but for ∆x = 0.012
the hump is lower and takes longer. The case with ∆x = 0.006 behaves rather differently,
with a much smaller hump that starts earlier. Clearly this part of the solution shows no grid
convergence.

Next to the grid refinement, the effect of changing the time step is also investigated. Figure
4.16 shows the drag force of two simulations at ∆x = 0.009, one with ∆t = 0.0005 and one
with ∆t = 0.00025. It can be seen that the peak is shifted slightly to the right with the
smaller time step but that the amplitude does not change.

4.3.2 Moving plate

To investigate the effect of the cell size and time step on the moving case a second simulation
is done with ∆x = 0.012 and ∆t = 0.001. Averaging out the fluctuations again gives the
result shown in Figure 4.17a. The second hump appears to start differently for the new case,
however investigating the non-averaged values in Figure 4.17b shows that this difference is
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Figure 4.15: CD vs formation time for the steady plate for ∆x=0.012, 0.009 and 0.006.
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Figure 4.16: The drag force vs formation time for the steady plate for ∆x=0.009 at ∆t=0.0005
and 0.00025.
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Figure 4.17: Averaged and non-averaged CD vs formation time plot of the moving plate.

primarily caused by averaging of the fluctuations. Still, the hump is lower than the one
for the ∆x = 0.009, ∆t = 0.0005 case, meaning this part of the solution again shows no
grid convergence. The initial peak is roughly 3% higher for the case with ∆x = 0.006 and
∆t = 0.0005. Both simulations converge to the same steady state value.

4.3.3 Influence of plate thickness

In Section 4.2 it was suggested that the effect of the thickness of the plate on the value of the
drag force is small. To test this assumption a simulation is performed with the plate thickness
equal to the experiment. This has to be done with ∆x = 0.006 to ensure there are enough
grid points inside of the body with this small thickness. The result is shown in Figure 4.18.
The peak is 4.5% higher in the case of the thin plate, and there are no extra bumps after the
initial peak. Both cases converge to the same steady state solution. Although both of these
results show differences with the experimental solution, the small difference between them
can be seen as proof of the assumption that the plate thickness does not have a large effect
on the force.
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Figure 4.18: The drag force vs formation time for the steady plate for ∆x=0.006 at h =0.06
and h =0.038
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Chapter 5

Set-up of simulations

To investigate how deformation of the chord affects the aerodynamic mechanisms around a
flapping wing a simplified model has been created for the flow simulations. This chapter will
describe the model and its simplifications. Next it will describe the simulations that will be
performed with the model and finally the grid on which the simulations are performed will
be shown.

5.1 Wing model

A wing will be modeled as a rectangular flat plate with a chord of c = 0.1[m], a thickness of
0.006[m] and an aspect ratio AR = 2. This aspect ratio is chosen at the low side of the range
of that of flying insects which is between 2 and 10 (Dudley, 2002). The low value is chosen
to reduce computational costs. Instead of modeling two separate plates, a symmetry plane
is used which will reduce the required computational resources as well. A three-dimensional
view of the motion is shown in Figure 5.1, and a topview is shown in Figure 5.2. In this figure
D represents the distance to the symmetry plane, and θ the flapping angle. Insects have a
wide range of flapping angles (Dudley, 2002) and in this case a total flapping angle θ of 45◦

is chosen. This flapping angle would be small for two-winged insects but is more typical to
that of a four-winged MAV in biplane configuration, like the Delflys shown in Figure 1.1 (e.g.
Delfly II has maximum flapping angle θ = 48◦ (Kristien M.E de Clercq et al., 2009)). The
configuration would then correspond to one wing pair, with the assumption that the wing
pairs do not influence one another. The motion will start with an outstroke, which results in
θ given by Equation 5.1.

θ = 22.5− 22.5 cos(ft) (5.1)

In Equation 5.1 f is the flapping frequency and t is the solution time. The Reynolds number
based on the average tip velocity U should be around that of the validation cases in Section
4.2. Taking f = 1[s−1] gives a average tip velocity of U = 2cARθ = 0.314[m/s], with θ given
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Figure 5.1: Three-dimensional view of the flapping motion.

Value Non-dimensionalized value

Chord 0.1[m] 1

Thickness 0.006[m] 0.06

Aspect ratio 2 2

Average tip velocity 0.314 [m/s] 1

Frequency 1 [s−1] 0.319

Reynolds number 2002 2002

Table 5.1: Parameters of the simulations

in radians. Using the definition Re = UL
ν and taking L = c and ν as the kinematic viscosity

of air at sea level (15.68 × 10−6) gives Re = 2002. The reduced frequency is now given by
k = fc/U = 0.319. All variables are summarized in Table 5.1. This table also includes the
non-dimensionalized variables, which are calculated using the chord length and the average
tip velocity.

5.2 Chordwise deformation patterns

To test the effect of the deformation two different type of deforming chords are defined, as
well as a case without deforming chord. How these deforming shapes were tested is explained
in Section 5.3.
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Figure 5.2: Top view of the flapping motion.

5.2.1 Rigid case with rotation

A fully rigid plate given just the flapping motion described n the previous section would give
only drag, since it has 90 degree angle of attack. To create an angle of attack the plate will
be rotated around the leading edge as shown in Figure 5.3. This angle is given by Equation
5.2.

α = −αmax sin(kT ) (5.2)

In which αmax represents the maximum angle. Note that this angle α is not the angle of
attack, but instead 90 degree minus the angle of attack.

5.2.2 Deforming end

The first deforming case does not contain any pitching, meaning an angle of attack is created
by the deformation alone. This is done by assuming the leading edge remains straight and
the maximum deformation occurs at the trailing edge. The shape of the chord is described
using a quadratic function of the distance from the leading edge. The deformation is given
by Equation 5.3.

δend = −Dmax
end

(z
c

)2
sin(kT ) (5.3)

In Equation 5.3 Dmax
end is the maximum deformation and z

c is the distance from the leading
edge normalized by the length of the chord. The resulting shape is shown in Figure 5.4. It
can be seen that this shape increases the angle of attack near the leading edge compared to
the rigid case.
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Figure 5.3: Definition of chord for the rigid case.

Figure 5.4: Shape of the chord for the deforming end case.
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Figure 5.5: Shape of the chord for the deforming center case.

5.2.3 Deforming center

The second deforming case allows the leading edge to rotate. It again uses a quadratic function
to describe the deformation, this case having the maximum deformation at the center of the
chord. The deformation is given by Equation 5.4.

δcenter = −Dmax
center

[
1− 4

(z
c
− 0.5

)2
]

sin(kT ) (5.4)

The deformation given by Equation 5.4 is combined with the angle of attack given by Equation
5.2 to give the complete deformed shape in time. The resulting shape is shown in Figure 5.5.
From the figure it is clear that for this case the deformation decreases the angle of attack at
the leading edge compared to the rigid case.

5.2.4 Elongation of arc length

The previously defined chord shapes have not taken into account that the deformation will
result in the distance between the leading and trailing edge becoming smaller. This simplifi-
cation means that the plates will stretch out during the deformation, increasing the surface
area of the plates. This increase in arc length is significant at the maximum deformation for
both cases, meaning its effect on the forces cannot be ignored. Although calculation of the
force coefficients will take the increasing surface area into account, any quantitative compar-
ison of the forces created by the different shapes could still be misleading. Care has to be
taken that effect of extending the chord is not confused with aerodynamic mechanisms. The
maximal elongation of the plates depends on the set values of Dmax and will be calculated in
the following section.
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5.3 Performed simulations

Several simulation will be performed using the defined motion and chord deformation. They
consist of three spanwise constant deforming cases, three spanwise varying deforming cases,
and finally two cases with changing distances to the symmetry plane.

5.3.1 Spanwise constant deformation

All three cases discussed in Section 5.2 will first be simulated, with α and δ constant for the
entire span of the plate. For the rigid case αmax is set to 30◦. Care must be taken that the
bottom of the plate does not cross the symmetry plane when it is at the maximum angle, so
the distance D can be calculated. The maximum angle α occurs when θ = 0. This means the
plate has an angle of 22.5◦ with respect to the symmetry plane, and thus D can be calculated
using D/c > sin 30 cos 22.5 = 0.46. For this reason the distance to the symmetry plane is
set to D=0.50c. The deformation δend is taken such that the trailing edge position matches
that of the rigid case. This means that Dmax

end = sin 30 = 0.5c. As mentioned in Subsection
5.2.4 the deformation causes the chord to be elongated. The length of a curve y is given by
Equation 5.5.

Lext =

∫ √
1 +

(
∂y

∂x

)2

dx (5.5)

Entering Equation 5.3 into Equation 5.5 gives a maximal elongated length of Lext = 1.148c,
or an increase in length of 14.8%. This increase is used to calculate the force coefficients given
by Equation 5.6.

Ci = Fi
2c2

Sext
(5.6)

In which Sext is the extended surface area given by LextcAR.

Initially the deforming center case was set up with Dmax
center = 0.35c, which would cause the

extended chord length to match that of the deforming end case, enabling direct comparison
between the two cases. However this Dmax

center corresponded to a very extreme deformation
which would yield no useful insights. Instead, the value was taken as Dmax

center = 0.175c.
Entering Equation 5.4 into Equation 5.5 gives a maximal elongation of 7.7%. On top of the
deformation this case will also be rotated with angle α, equal to the rigid case. All parameters
are non-dimensionalized using chord length c, and summarized in Table 5.2. Figure 5.6 shows
part of the instroke for the three cases for extra clarity.

5.3.2 Spanwise varying deformation

In insect wings the deformation is usually higher near the wing tip due to torsional flexibility
of the wing (Mazaheri and Ebrahimi, 2010). To investigate the effect of the spanwise varying
deformation the parameters of the spanwise constant simulations are redefined as functions
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Parameter Value

Distance to symmetry plane 0.5

Angle α 30◦

Dmax
end 0.5

Dmax
center 0.175

Table 5.2: Non-dimensionalized parameters for the spanwise constant deforming cases.

(a) (b) (c)

Figure 5.6: Three dimensional overview of the instrokes of the spanwise constant deforming
cases.

of the span position. This is done by a linear function resulting in a undeformed unrotated
chord at the root of the plate, and the shape at the tip matching that of the spanwise constant
deforming case. Since the span is equal to 2c, taking y in spanwise direction results in the
new definitions in Equations 5.7 to 5.9.

α = − y

2c
αmax sin(kT ) (5.7)

δend = − y

2c
Dmax
end

(z
c

)2
sin(kT ) (5.8)

δcenter = − y

2c
Dmax
center

[
1− 4

(z
c
− 0.5

)2
]

sin(kT ) (5.9)

All parameters stay the same as the ones shown in Table 5.2. Three dimensional views of the
instroke of the three cases are shown in Figure 5.7.

5.3.3 Distance to symmetry plane

The minimum distance to the symmetry plane was determined to ensure that the trailing
edge of the spanwise constant deforming plates would not cross the symmetry plane. With
the spanwise varying deformation this is not an issue since there is almost no deformation of
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(a) (b) (c)

Figure 5.7: Three dimensional overview of the instrokes of the spanwise varying deforming
cases.

the chords near the root. This allows a simulation with the plates closer to the symmetry
plane to investigate the effects on the aerodynamics. The rigid case and the deforming center
case are both simulated at D = 0.25c, as well as without a symmetry plane, which simulates
a single wing.

5.4 Grid size

The grid used for the simulations described in this chapter is similar to the non-uniform grids
used for the validation cases in Chapter 4. It again consist of a section with uniform cell size
around the body, after which it expands exponentially towards the outside of the domain.
In this case the uniform section is much larger however, as can be seen in Figure 5.8. This
is needed both because the tip of the plate moves through a larger area, and due to the
presence of the symmetry plane. Due to the larger region with uniform cell size the required
computational time increases dramatically. Therefore it is chosen to use the coarsest grid
from the validation cases in Chapter 4 with uniform cell size ∆x = 0.012. This leads to a
region with uniform cell size of 289x413x260 cells. A time step of ∆t = 0.0008 is used for all
cases. Several flapping cycles will be simulated, after which it will be determined from the
force coefficients if the behavior is periodic. This is done to exclude startup effects. When the
forces behave periodic a final cycle is simulated from which the flow variables are stored at 25
points during the cycle. These results from the final cycle will be used for the visualizations
in Chapter 6.
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(a) (b)

Figure 5.8: The non-uniform grid used for the deforming chord simulations.
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Chapter 6

Results

The results of the different simulations presented in Chapter 5 are presented and discussed in
the following chapter. First the cases with spanwise constant deformation are investigated.
Next the results of the spanwise varying deformation cases are shown and compared to the
spanwise constant deformation simulations. The influence of the symmetry plane is investi-
gated by looking at a case with the plate closer to the symmetry plane, as well as a single
plate without symmetry plane. This is done for the spanwise varying rigid case, and the
spanwise varying deforming center case. Finally the vortices around the plate are examined
to determine their effect on the forces on the plate.

6.1 Spanwise constant deformation

For the three cases with spanwise constant deformation the lift and drag coefficients are
calculated, and averaged over the last 3 cycles. Figure 6.1 shows the lift coefficient CL and
drag coefficient CD for these cases, as well as their cycle average value. Figure 6.2 does
the same for CL/CD, in which the average value is calculated as the cycle average value of
CL/CD (not the the cycle average value of CL divided by the cycle average value of CD). The
force result of the complete simulations are shown in Appendix B.1, Figure B.1. Although
averaging the plots over 3 cycles reduces the fluctuations due to the moving boundary, they
are still present to some extend. Averaging over more cycles would give smoother results but
was considered too time consuming, as this would require a longer simulation time. Figures
6.1 and 6.2 represent one entire cycle, starting with an outstroke. The cycle average values
of the three cases are shown in Table 6.1.

From the average lift coefficients in Figure 6.1a it can be clearly seen that the deforming
center case creates the highest lift, followed by the rigid case and that the deforming end case
creates the lowest lift. The lift generation throughout the motion is very similar for all three
cases, with the most noticeable differences being the maximal values of CL and the lift build
up at the start of the instroke.
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Figure 6.1: CL and CD plot for the spanwise constant deforming cases. The motion starts
with an outstroke.
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Figure 6.2: CL/CD plot for the spanwise constant deforming cases. The motion starts with
an outstroke.

Case Average CL Average CD Average CL/CD
Rigid spanwise constant 0.9266 2.5326 0.2930

Deforming center spanwise constant 1.0130 3.0850 0.2931

Deforming end spanwise constant 0.7015 2.2200 0.2939

Table 6.1: Cycle averaged values of the force coefficients for the spanwise constant cases.
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(a) (b)

Figure 6.3: Pressure contours of the lower surface for the spanwise constant rigid case at a)
T=0.12 with the wingtip located at the left side and b) T=0.60 with the wingtip located at
the right side.

The CL buildup at the beginning of the instroke differs significantly from that at the be-
ginning of the outstroke. At the beginning of the outstroke, near T=0, CL increases almost
immediately for the deforming end case, and with a small delay also for the rigid case. The
lift coefficient of the deforming center case also increases right from the beginning, and a small
hump can be noticed in the buildup. Investigation of the non-averaged forces showed that this
hump is caused by fluctuations due to the interpolation near the boundary as described in
Section 4.1, and is not physical. At the start of the instroke at T=0.5 the rigid case CL starts
increasing almost immediately again, followed by the deforming end case. The gradients are
slightly lower however, causing a lower peak in CL. The gradient of the deforming center case
from T=0.6 to 0.7 is actually equal to that from T=0.1 to 0.2, however, it is almost zero for
the first 0.1 period of the instroke, from T=0.5 to 0.6. The difference between the outstroke
and the instroke is caused by the presence of the symmetry plane. The effect of the symmetry
plane can be seen very clearly from the pressure contours on the upper surface of the plates,
which are shown in Figures 6.3, 6.4 and 6.5. These figures clearly show that the symmetry
plane causes a large low pressure region at the upper surface of the plates, creating higher lift.
The difference is particularly important for the deforming center case, due to the shape of the
plate at the location of the low pressure region. At the start of the instroke it can be seen
from Figure 6.4b that the low pressure region is located at the lower half of the plate chord.
At this location the orientation of the plate is almost vertical with respect to the direction of
the motion, meaning the force caused by the low pressure has a very small component in lift
direction.

A possible explanation for the lower peak in CL for the deforming end case, is that the higher
angle of attack causes shedding of the leading edge vortex (LEV), as suggested in previous
studies (Miller and Peskin, 2009; Gillebaart, 2011). To investigate if this is indeed the case
the Q criterion contour is plotted for the cases at T=0.12, 0.28, 0.48 and 0.52 at 50% span
in Figure 6.6 to see if the LEV indeed sheds during the outstroke. From the plots at T=0.12
(Figures 6.6a to 6.6c) and T=0.28 (Figures 6.6d to 6.6f) it can be seen that for the deforming
center case the LEV develops slower than for the other two cases, which is caused by the
lower angle of attack at the leading edge. This slower LEV development can also be seen
in the contour plot of Figure 6.4b, and causes the slower lift buildup observed in Figure 6.1.
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(a) (b)

Figure 6.4: Pressure contours of the lower surface for the spanwise constant deforming center
case at a) T=0.12 with the wingtip located at the left side and b) T=0.60 with the wingtip
located at the right side.

(a) (b)

Figure 6.5: Pressure contours of the lower surface for the spanwise constant deforming end
case at a) T=0.12 with the wingtip located at the left side and b) T=0.60 with the wingtip
located at the right side.
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The higher angle of attack of the other cases does not appear to cause shedding of the leading
edge vortex however, as can be seen in the plots at T=0.48 and 0.52 (Figures 6.6j to 6.6l).
Shedding of the leading edge vortex is not observed at other points along the span either,
leading to the conclusion that the shedding of the leading edge vortex is not responsible for
the difference in CL in these cases. The Q criterion contour plots at other positions along the
span can be seen in Appendix B.1, Figures B.2 and B.3.

Instead of shedding of the LEV, the difference in CL can be understood by looking at the
pressure contours on the plate at the moment around the maximum CL. The lower surface
of the three cases at T=0.28 is shown in Figure 6.7, and the upper surface is shown in Figure
6.8. From Figure 6.7 it can be seen that the deforming center case has a larger high pressure
region on the lower surface of the plate compared to the rigid case. This high pressure region
can be explained by the curvature of the chord of the plate, which causes air to get trapped
under the plate. The curvature of the chord in the deforming end case instead reduces the
amount of air under the plate compared to the rigid plate, thus reducing the high pressure
region and causing a lower CL.

From the drag coefficients shown in Figure 6.1b it can be seen that the deforming center case
creates the highest drag, followed by the rigid case, and that the deforming end case creates
the lowest drag. The behavior of CD is very similar to that of CL since the same pressure
differences responsible for the lift generation also generate the drag. The timing of CD is
changed by the deformations. The rigid case shows a minimum in CD at T=0.5, when the
plate is changing direction from to outstroke to the instroke. The deforming end case shows
a minimum in CD earlier, around T=0.47, and the deforming center case shows a minimum
CD slightly later, around T=0.52. This phase shift can be explained by the way the plates
deform. In case the center deforms, the vertical surface area moving trough the fluid is lower
at the start of a stroke compared to the rigid case. When the end deforms the same happens
at the end of stroke when the plate straightens out.

Figure 6.2 shows the CL/CD for the three cases, as well as their cycle average values. It
can be seen from Table 6.1 that the cycle average values of CL/CD are approximately equal
for all three cases, again showing that the difference in pressure distribution caused by the
deformations has a similar effect on both the drag and the lift. The development of the curves
differ for the three cases, with the rigid case showing an almost symmetric distribution,
whereas the deforming end case has a peak in CL/CD slightly before reversing direction
and the deforming center has a peak slightly after reversing direction. These peaks can be
explained by the change in phase of the drag. Since this peaks are just caused by the phase
shift of the drag they do not affect the cycle average values.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.6: Contour plots of the Q criterion at 50% span, for the spanwise constant deforma-
tion cases. On the left side the rigid case, in the middle the deforming center case and on the
right side the deforming end case.
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(a) (b) (c)

Figure 6.7: Pressure contours of the lower surface for the spanwise constant deforming cases
at T=0.28. a) rigid case, deforming center, c) deforming end.

(a) (b) (c)

Figure 6.8: Pressure contours of the upper surfaces for the spanwise constant deforming cases
at T=0.28. a) rigid case, deforming center, c) deforming end.
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Case Average CL Average CD Average CL/CD
Rigid spanwise constant 0.9266 2.5326 0.2930

Deforming center spanwise constant 1.0130 3.0850 0.2931

Deforming end spanwise constant 0.7015 2.2200 0.2939

Rigid spanwise varying 0.5558 2.2998 0.2140

Deforming center spanwise varying 0.6171 2.5911 0.2449

Deforming end spanwise varying 0.5948 2.2179 0.2066

Table 6.2: Cycle averaged values of the force coefficients for the spanwise varying cases, as
well as the spanwise constant cases copied from Table 6.1.

6.2 Spanwise varying deformation

The cases with spanwise varying deformation are also simulated and the lift and drag coeffi-
cient are calculated. The resulting CL and CD averaged over the last three cycles are shown
in Figure 6.9 along with their cycle average values. The same is shown for CL/CD in Figure
6.10. The cycle average values for all three cases are shown in Table 6.2, along with the values
from the previous section to allow for an easier comparison. The force coefficients of the full
motion are shown in Appendix B.2, Figure B.5
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Figure 6.9: CL and CD plot for the spanwise varying deformation cases. The motion starts
with an outstroke.

From Table 6.2 it is clear that the lift coefficients of the spanwise varying deformation are
considerably lower than those found for the spanwise constant cases. This can be explained
by again looking at the pressure contours at the lower surface of the plates, as shown in Figure
6.11. Comparing these contours to the ones shown in Figure 6.7, it can be seen that the high
pressure regions are smaller and the pressures are much lower near the root of the plate. This
was indeed expected since the plate deforms less near the root. Table 6.2 shows that this
effect also lowers the drag coefficients.

From Figure 6.9a it can be seen that both the average and maximum CL created by the
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Figure 6.10: CL/CD plot for the spanwise varying deformation cases. The motion starts with
an outstroke.

(a) (b) (c)

Figure 6.11: Pressure contours of the lower surfaces for the spanwise varying deforming cases
at T=0.28. a) rigid case, b) deforming center, c) deforming end.
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(a) (b) (c)

Figure 6.12: Pressure contours of the upper surfaces for the spanwise varying deforming cases
at T=0.28. a) rigid case, b) deforming center, c) deforming end.

deforming center and the deforming end are higher than the lift for the rigid case. This
lower lift for the rigid case can not be observed from the pressure on the lower surface shown
in Figure 6.11, since the pressure on the rigid case (Figure 6.11a) is higher than on on the
deforming end case 6.11c). This means the higher CL must be caused by a difference on the
upper surface. The pressure contours of the upper surfaces for the three cases are shown in
Figure 6.12.

Figure 6.12a shows that for the rigid case an extensive low pressure region is located at the
leading edge, from about 25% of the span almost to the tip. Figure 6.12b shows a very
similar low pressure near the leading edge for the deforming center. Figure 6.12c shows that
the deforming end case also has a low pressure region at the leading edge starting around
25% of the span, but it is less strong towards the tip. All cases also show low pressure regions
near the trailing edge, which is associated to the trailing edge vortex (TEV), and near the tip,
associated to the tip vortex (TV). The deforming end case shows a particular low pressure
near the trailing edge tip, which will have a large influence on the CL due to the orientation
of the plate at this position. This can be clearly seen from Figure 6.13, which shows the
pressure isosurfaces of p=-1.5 at T=0.28. Since the surface of the plate near the low pressure
region has a considerable horizontal surface area, the low pressure region here has a large
contribution to the lift. From Figure 6.13 clearly shows the low pressure isosurfaces related
to the LEV, TEV and TV. The low pressure at the trailing edge tip is thus caused by a
combination of the TEV and TV, meaning these have a significant contribution to CL. The
contribution of the TEV and TV on CL will be discussed more extensively in Section 6.4.
It has to be noted that the elongation of the chord in the deforming end case is significant,
and that the low pressure region in this case lies in the region that would be much shorter
with the correct chord length. Therefore it is likely that the contribution of this low pressure
region to CL is too large and that CL is overestimated for this case.

From Figure 6.9a a distinct dip can be seen during the acceleration phase of the plates, both
during the outstroke and the instroke. The contour plots of the Q criterion are investigated
at the moments around this dip during the instroke, at T=0.559, 0.599, 0.639 and 0.679, at
50% of the span to see if this is associated to shedding of the LEV. The plots are shown in
Figure 6.14. Although it can be seen that the LEV moves further away from the plate for the
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(a) (b) (c)

Figure 6.13: Pressure isosurfaces of p = −1.5 near the tip for the spanwise varying deforming
cases at T=0.28.

deforming end case, the difference cannot explain the large hump shown in CL. Contour plots
of the Q criterion at different locations along the span do not show distict shedding of the
LEV either. These contour plots are shown in Appendix B, Figures B.6 and B.7. Since the
shedding of the LEV cannot be identified as the source for the hump, the pressure isosurfaces
are investgated. The pressure isosurfaces with p = −1 at the beginning of the instroke are
shown in Figure 6.15. From Figure 6.15a to 6.15c the vortices from the previous outstroke
stroke can be clearly identified, with the shed TV, TEV and LEV in front of the plate. Figures
6.15d to 6.15f show that at T=0.64, the new LEV in the deforming end case interacts with
the previously shed LEV, this instant corresponds to the dip in CL in Figure 6.9a. The other
two cases show no interaction, and no change in the CL slope. At the next instance, shown
in Figures 6.15g to 6.15i the shed LEV from the previous stroke has been completly absorbed
into the new LEV for the deforming end case, and CL is again increasing. For the rigid case
the interaction between the shed and the new LEV has started, and this is again accompanied
by a dip in CL. Finally Figures 6.15j to 6.15l show the shed LEV completely absorbed by the
new vortex for the rigid case as well, and the CL again increasing. For the deforming center
case the interaction between the two vortices is starting, and this matches the small dip in
CL as well. This interaction is not seen in the pressure isosurfaces for the spanwise constant
deforming cases, which are shown in Appendix B.1, Figure B.4.

From the previous results it can be concluded that not the shedding of the LEV is responsible
for the dip in CL seen in Figure 6.9a, but the interaction of the LEV with the shed LEV from
the previous stroke. If this is indeed the case there should be no dips in the buildup of CL
during the initial stroke, since there will be no previously shed vortices. Figure 6.16 shows
the CL for the three cases during the initial stroke, and it is clear that the dips are indeed
absent. To see how the interaction between the two vortices reduces CL, a close-up of the
LEV buildup with and without interaction is shown in Figure 6.17. It can be clearly seen in
Figure 6.17b that the LEV from the previous stroke weakens the new LEV.

The faster buildup of the LEV in the deforming end case causes the interaction with the
shed vortex to occur earlier. The lowering of the angle of attack by the deforming center
case delays the interaction and reduces the negative effect. The curvature of the chord of
the plate in the deforming center case also causes the previously shed vortex to get trapped
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.14: Contour plots of the Q criterion at 50% span, for the spanwise varying deforma-
tion cases during the instroke. On the left side the rigid case, in the middle the deforming
center case and on the right side the deforming end case.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.15: Pressure isosurfaces of p=-1 during the instroke. On the left side the rigid case,
in the middle the deforming center case and on the right side the deforming end case.
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Figure 6.16: CLs of the three cases during initial outstroke.

(a) (b)

Figure 6.17: Velocity vectors showing the effect of the interaction of the LEV. Left without
interaction, and right with interaction.
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Figure 6.18: Lift and drag coefficient plot for the spanwise varying rigid cases, at different
distances from the symmetry plane. The motion starts with an outstroke.

below the plate, delaying the interaction further. Despite the earlier interaction between the
vortices, the deforming end case still shows a higher CL compared to the rigid case. Although
both have similar values around T=0.24, CL continues to increase for the deforming end case
to around T=0.27, whereas the rigid case has reached its peak. The peak of the deforming
center case also occurs around T=0.27. This difference in peak timing will be discussed in
Section 6.4.

6.3 Effect of distance to symmetry plane

The distance to the symmetry plane as used in the previous experiment was taken as D=0.50c.
As explained in Chapter 5 this was done to ensure the plates did not cross the plane in the
spanwise constant deformation cases. To investigate the effect of this distance the spanwise
varying rigid and deforming center cases are also simulated at a distance of D=0.25c and
without a symmetry plane.

6.3.1 Rigid case

The lift and drag coefficient for the three rigid cases at different distances are shown in Figure
6.18. The values are again averaged over the three last simulated cycles. The cycle average
values are listen in Table 6.3.

From Figure 6.18a it is clear that moving the plate closer to the symmetry plane creates a
higher cycle average CL. During the outstroke this is caused by the faster buildup of the LEV,
which is caused by the fling phase of the clap and fling mechanism. Although this mechanism
is usually explained with two wings touching one another, or touching the symmetry plane for
this case, its effect is still present when there is a small gap. The fling phase occurs during the
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Figure 6.19: CL/CD plot for the spanwise varying rigid cases, at different distances from the
symmetry plane. The motion starts with an outstroke.

first moments of the outstroke. During the fling the low pressure region between the wings
increases the flow over the leading edge, resulting in the creation of massive LEVs (Percin
et al., 2011). This is very clear from the CL buildup. Decreasing the gap between the wings
will create a lower pressure and stronger LEVs. This low pressure region will also greatly
increase the drag as can be seen in Figure 6.18b.

The positive effect of the faster LEV buildup is reduced by the interaction with the previously
shed vortex. The stronger LEV of the D=0.25c case interacts earlier than the weaker vortices
of the other two cases, after which its CL is lower. Around T=0.22 all three cases have
the same CL, however, where the case with D=0.50c and the case without symmetry plane
have their peak around T=0.23, the case for D=0.25c continues to increase until its peak at
T=0.25. This difference in timing of the peaks will again be discussed separately in Section
6.4.

The clap phase corresponds to the last part of the instroke when the wings clap together.
During clap the air between the wings gets trapped and pushed downward, giving a small
positive contribution to the lift (Lehmann and Pick, 2007). This effect will be stronger when
the distance to the symmetry plane is smaller. The case for D=0.25c shows a slightly higher
CL during the final part of the instroke than the other two cases caused by trapped air being
pushed down. This trapped air also gives a small increase in drag.

Figure 6.19 shows CL/CD for the different cases. It shows that the average CL/CD is almost
equal for the single plate and the plate with the symmetry plane at D=0.50c. For the case
with D=0.25c the average is lower so moving the plate closer to the symmetry plane appears
to have a negative effect on CL/CD.
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Figure 6.20: Lift and drag coefficient plot for the spanwise varying deforming center cases, at
different distances from the symmetry plane. The motion starts with an outstroke.
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Figure 6.21: CL/CD plot for the spanwise varying deforming center cases, at different dis-
tances from the symmetry plane.

6.3.2 Deforming center case

The lift and drag coefficient for the three deforming center cases are shown in Figure 6.20,
and their cycle average values are listed in Table 6.3. As for the rigid cases of the previous
subsection, moving the plate closer to the symmetry plane increases the average force coef-
ficients, particularly during the outstroke. The buildup of CL for the D=0.25c case is much
higher than for the other two cases, but the positive effect of CL is again limited by the earlier
interaction with the LEV from the previous stroke. The interaction also takes considerably
longer for this case. No interaction occurs for the D=0.25c case during the instroke. As in
the rigid case, moving the plate closer to the symmetry plane increases the average CL and
CD and decreases the average CL/CD.

The case without the symmetry plane shows a slight difference between the instroke and the
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Case CL CD CL/CD ∆ CL ∆ CD ∆ CL/CD
Rigid D=0.25c 0.5979 2.5778 0.2049 +11.3% +16.9% -3.7%

Rigid D=0.50c 0.5558 2.2998 0.2140 +3.4% +4.3% +0.6%

Rigid no symmetry 0.5373 2.2045 0.2127 0 0 0

Deforming center D=0.25c 0.6414 2.8739 0.1971 +9.2% +18.0% -5.1%

Deforming center D=0.50c 0.6171 2.5911 0.2058 +5.1% +6.4% -0.9%

Deforming center no symmetry 0.5874 2.4359 0.2077 0 0 0

Table 6.3: Difference in force coefficients with varying distance to the symmetry plane for the
rigid and deforming center case.

outstroke. The outstroke shows interaction with the previous shed LEV at T=0.18, whereas
the instroke shows a much smaller effect on CL, around T=0.68. Investigation of the flow
field does show interaction between the LEV and the shed vortex, and the non-averaged
values in fact do show a hump in lift coefficient for the final instroke. However the two earlier
instrokes do not show any interaction. This shows the difficulty of predicting interaction with
the previously shed LEV. If the interaction does not occur during every instroke or every
outstroke, averaging has to be done differently, if at all possible. If averaging is not possible
due to cycle-to-cycle variations in the forces, it will be much harder to distinguish physical
phenomena from the fluctuations caused by the interpolation method. The full force response
of the case without symmetry plane is shown in Appendix B.3, Figure B.8.

6.3.3 Effect of deformation

As mentioned in Section 5.2.4 comparing the coefficients of different deforming cases directly
could give misleading results due to the elongation of the chords. However it is possible to
compare how changing the distance to the symmetry plane affects the coefficients for the
different cases. Table 6.3 shows the cycle average values of CL, CD and CL/CD for the cases
of this section, along with the difference compared to a plate without symmetry plane. The
results show that the difference between a single plate without symmetry plane and the plate
at D=0.25c increases CL with approximately 10% and CD with approximately 17%. This
causes CL/CD to be reduced by roughly 4%. The increase in CL is higher for the rigid case
than for the deforming center case, whereas the increase in CD is lower. The reason can
be found from the interaction with the previously shed vortex. At larger distances from the
symmetry plane the slower build up of the LEV causes the interaction to occur very late, at
which point its impact is small. The faster LEV development caused by the proximity of the
symmetry plane causes the interaction to occur earlier, resulting in a much larger impact on
CL. Although the interaction occurs slightly earlier for the rigid case with D=0.25c as well,
the difference is much smaller compared to the case without symmetry plane.

Apart from the difference in interaction between the LEV and the previously shed vortex,
moving the symmetry plane closer also moves the peak of the CL curve to the right. This has
a positive effect on CL for the rigid case, whereas this effect is much smaller for the deforming
center case. The timing of the peak will be discussed in the next section.
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Spanwise constant cases

Case Time of peak CL Value CmaxL

Rigid D=0.50c 0.288 2.043

Deforming center D=0.50c 0.298 2.314

Deforming end D=0.50c 0.285 1.459

Spanwise varying cases

Case Time of peak CL Value of CmaxL

Rigid no symmetry 0.232 1.198

Rigid D=0.5c 0.236 1.175

Rigid D=0.25c 0.255 1.248

Deforming center no symmetry 0.272 1.259

Deforming center D=0.50c 0.276 1.298

Deforming center D=0.25c 0.276 1.373

Deforming end D=0.50c 0.272 1.257

Table 6.4: Timing of CL peak during outstroke for all cases along with the associated value
of CL.

6.4 Peak timing

Several results showed a difference in timing of the peak in CL and especially during the
outstroke a later peak extends the period of lift buildup, leading to a higher CmaxL . The
peak timings are examined in an attempt to find a possible explanation for this difference.
The timing of the CL peaks occurring during the outstroke is shown for all cases in Table
6.4, along with the value of CL at the moment of the peak. The table shows some clear
differences between the cases. The spanwise constant cases have considerably later peaks
than the spanwise varying cases, especially for the rigid cases. For the constant spanwise
cases the peak of the deforming end case is the earliest, and the deforming center case comes
last.

In the spanwise varying deforming cases at D=0.50c the deforming center case also shows the
latest peak, however, the deforming end has a peak at almost the same instant. The rigid
case has a much earlier peak. Since both of the deforming cases show a later peak than the
rigid case, this difference cannot be explained simply by the speed of the LEV buildup, since
the LEV buildup will be faster than the rigid case for the deforming end case, and slower
than the rigid case for the deforming center case. The elongation of the chords discussed
in Section 5.2.4 also does not provide a complete explanation, since the spanwise constant
deforming end has an earlier peak than the spanwise constant rigid case. A possible effect
of the elongation of the chord would also not explain the difference in timing between the
spanwise varying rigid case at different distances from the symmetry plane.

To find the an explanation for these differences in timing the behavior of the vortices around
the plates is investigated. Since the spanwise varying rigid cases show a large difference in
timing when the distance to the symmetry plane is changed, these cases are investigated first.
Figure 6.22 show the contour plots of the Q criterion of these cases around the moment the
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peaks occur, at 50% of the span. For the case without symmetry and the one with D=0.50c
the peak in CL occurs just before T=0.24, and for the case with D=0.25c the peak occurs
after T=0.24. Particullary the difference in timing between the D=0.50c and D=0.25c cases
is large with a difference of ∆T=0.02, whereas the difference between the case with D=0.50c
and the case without symmetry plane is only ∆T=0.004. Looking at Figures 6.22d to 6.22f
shows that the LEV is slightly lower, and closer to the surface of the plate for the D=0.25c
case, compared to the other two cases. The LEV is also strongest for the D=0.25c case, and
weakest for the case without symmetry plane. Looking at how the LEVs develop from T=0.20
to T=0.32 at 50% of the span does not show a clear explanation for the much larger difference
in peak CL timing between the D=0.50c and D=0.25c compared to the difference between
the D=0.50c case and the case without symmetry plane. LEV development at different points
along the span also does not show a clear explanation for this difference. These contour plots
at different positions along the span are shown in Appendix B, Figure B.9.

Since the LEV cannot explain the difference in peak CL timing, the other vortices are inves-
tigated. Figure 6.23 shows the pressure isosurfaces of the three spanwise varying rigid cases
with p = −2, around the moment the peaks occur. In the figures it is possible to identify
apart from the LEV, also the tip vortex and trailing edge vortex. Note that the ‘hole’ in the
low pressure region near the trailing edge in Figure 6.23c is just the edge of the symmetry
plane. A clear difference can be seen between the TEVs of the case with D=0.25c and the
other two. For both the case without symmetry plane and the one with D=0.50c the TEV
moves downward below the plate (Figures 6.23a-6.23d-6.23g and 6.23b-6.23e-6.23h), whereas
it moves upward over the upper surface of the plate for the case with D=0.25c (Figures 6.23c-
6.23f-6.23i). The large low pressure region caused by the TEV moving over the upper surface
of the plate will affect the forces on the plate, and could therefore explain the difference in
the CL peak timing.

To investigate whether the assumption that the different behavior of the TEV causes the
difference in peak CL timing is also true for different cases, apart from those in Figure 6.23,
the same pressure isosurfaces with p = −2 are shown for the spanwise varying deforming
center cases. These isosurfaces are shown in Figure 6.24. As for the spanwise varying rigid
cases, the TEV moves downward below the plate for the the cases without symmetry plane and
with D=0.50c (Figures 6.24a-6.24d-6.24g and 6.24b-6.24e-6.24h), whereas it moves upward
over the upper surface of the plate for the case with D=0.25c (Figures 6.24c-6.24f-6.24i). In
these cases the different motion of the TEV does not appear to affect the timing of the CL
peak however, since Table 6.4 shows that the timing of the peak for the case with D=0.50c
and D=0.25c is exactly the same. Further comparison of Figures 6.23 and 6.24 in fact shows
very similar TEV behavior for the rigid and deforming center case, when at the same distance
to the symmetry plane. The reason the TEV behavior does not have a large effect on the
peak CL timing for the deforming center case can be explained by the orientation of the plate.
Near the trailing edge the surface of the plate is almost vertical, meaning it cannot have a
large contribute to CL. So although the TEV behavior will affect the peak CL timing for the
rigid cases, the timing is also affected by other effects to create the difference between the
rigid case and the deforming center case.

Since the TEV behavior alone cannot explain the differences in peak CL timing between the
rigid and deforming center cases, the tip vortices are also investigated. Figures 6.25 and 6.26
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Figure 6.22: Contour plots of Q criterion for the spanwise varying cases at different distances
from the symmetry plane at 50% span. Left without symmetry plane, in the center at D=0.50c
and right at D=0.25c.
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(a) (b) (c)

(d) (e) (f)
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Figure 6.23: Side view of the isosurfaces of the pressure with p = −2 for the spanwise varying
rigid cases at various distances from the symmetry plane. Left without symmetry plane, in
the center at D=0.50c and right at D=0.25c.
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Figure 6.24: Isosurfaces of the pressure with p = −2 for the spanwise varying deforming
center cases at various distances from the symmetry plane. Left without symmetry plane, in
the center at D=0.50c and right at D=0.25c.
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show a different view of the isosurfaces from Figures 6.23 and 6.24, and show the development
of the TVs for both the rigid and deforming center cases respectively, at different distances
from the symmetry plane. Comparing the rigid and deforming center cases shows a clear
difference between the TVs created, especially near the leading edge. For the rigid cases the
TV is attached from the leading edge to approximately 25% of the chord around T=0.24
(Figures 6.25d to 6.25f), and detaches towards T=0.28 for the cases without symmetry plane
and with D=0.50c (Figures 6.25g and 6.25h), and around T=0.32 for the case with D=0.25
(Figure 6.25l). For the deforming center cases on the other hand, the TV is attached from
the leading edge to approximately 40% of the chord for the case without symmetry plane and
with D=0.50c at T=0.24(Figures 6.26d and 6.26e), increasing to approximately 60% around
T=0.32 (Figures 6.26j to 6.25k). For the case with D=0.25c the TV is fully attached around
T=0.24 and T=0.28 (Figures 6.26f and 6.26i), reducing to 60% around T=0.32 (Figure 6.26l).
The low pressure region associated to the TV will have a large influence on CL when it is near
the leading edge, due to the orientation of the plate in the deforming center case. The fact
that the TV is fully attached for the case with D=0.25c does not have a large effect on CL,
since the orientation of the plate is almost vertical for the last 40% of the chord, resulting in
the very similar peak CL times for the deforming center cases.

The clear influence of the local orientation of the plate at the location of the TV and TEV on
CL also plays a role in the peak CL timing of the deforming end case. A view of the pressure
isosurfaces where p = −2 for the spanwise varying deforming end case at T=0.24,0.28 and 0.32
is shown in Figure 6.27. It clearly shows the TEV staying closer to the trailing edge compared
to the deforming center and rigid cases in Figures 6.23 and 6.24. Again the orientation of
the plate is important, since the deforming end case has a nearly horizontal surface near the
leading edge, increasing the effect of the TEV on CL. For the same reason the absence of a
TV near the leading edge will not influence the peak CL timing for the deforming end case.
As mentioned in Section 6.2 the actual chord of the deforming edge case should be shorter
near the trailing edge tip, so it is likely that the effect of the TEV on the peak CL timing
should be smaller.

Finally the peak CL timing of the spanwise constant cases has not been discussed yet. The
pressure isosurfaces with p = −2 are shown for the spanwise constant cases at T=0.28 in
Figure 6.28, along with the spanwise varying cases at D=0.50c. From the figure it is clear
that TEVs and TVs found for the spanwise varying cases are larger and closer to the plates
for the spanwise constant cases. For the rigid case the difference between the peak CL timing
for the spanwise constant and spanwise varying cases is largest, since both the TEV and the
TV have a large effect on CL.

It can be concluded from this section that the deformation of the plate does not only affect
the vortex formation around the plate, but also directly affects the way the created vortices
affect the forces on the plate. For the deforming center case the TEV plays a much smaller
role on CL compared to the rigid case, whereas the TV plays a more significant role.
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Figure 6.25: Side view of the isosurfaces of the pressure with p = −2 for the spanwise varying
rigid cases at various distances from the symmetry plane. Left without symmetry plane, in
the center at D=0.50c and right at D=0.25c.
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Figure 6.26: Side view of the isosurfaces of the pressure with p = −2 for the spanwise varying
deforming center cases at various distances from the symmetry plane. Left without symmetry
plane, in the center at D=0.50c and right at D=0.25c.
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(a) (b) (c)

Figure 6.27: Isosurfaces of the pressure where p = −2 for the spanwise varying deforming end
case at different times. a) T=0.204, b) T=0.280, c) T=0.319.

(a) (b) (c)

(d) (e) (f)

Figure 6.28: Isosurfaces of the pressure with p = −2 at T=0.28 for the spanwise constant cases
on the top, and the spanwise varying cases on the bottom, all at distance to the symmetry
plane of D=0.50c. Left the rigid cases, in the center the deforming center cases and at the
right deforming end cases.
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Chapter 7

Conclusions and Recommendations

This study investigated the effect of chord deformation on the unsteady aerodynamic mech-
anisms found in hovering flapping flight at a Reynolds number of Re = 2002. This was done
by defining two different types of deforming chords, as well as a rigid plate rotating around
its leading edge. These were simulated in a flapping motion next to a symmetry plane. The
simulations included three cases with a spanwise constant deformation and three cases with a
spanwise varying deformation. The influence of the deformation on the positive and negative
effects of changing the distance to the symmetry plane was also investigated for two cases.
Finally, distinct differences in the timing of the peak in the lift coefficient were found between
certain cases, and the behavior of the vortices around the plates was investigated to find an
explanation for these differences.

All simulations were performed using a three-dimensional immersed boundary solver. Al-
though this solver had been used before, a validation case was simulated to gain better
insight into the performance of the solver. The conclusions that could be drawn from the
performed validation and simulations are stated in this chapter. After the conclusions some
recommendations are given for future research.

7.1 Conclusions

7.1.1 Validation

The spurious forces inherent to the solver were investigated. From the frequency of the
fluctuations it was concluded that they are caused by the boundary moving from one cell to
another crossing a grid point. The frequency of the fluctuations was exactly equal to U

∆x .
The amplitude of the fluctuations was expected to be of order O(∆x

∆t ). Although reducing

∆x and increasing ∆t did reduce the fluctuations, they were found to be of order ∆x0.63

∆t0.45
. A

more extensive grid and time step study might provide insight into the reason the found order

MSc. Thesis Tijs Noyon



74 Conclusions and Recommendations

differs from the expected order, but was not performed in this study.

To validate the solver an experiment by Kim and Gharib (2011) was simulated. In this
experiment a flat plate was accelerated from rest to a constant velocity inside a watertank.
This was first simulated using a non-moving flat plate with an accelerating inflow. Since the
exact velocity profile during the acceleration was not known, a smooth profile was chosen. Due
to this different acceleration the initial force peak did not match between the simulation and
experiment. After a constant force coefficient was reached the value found by the simulation
was around 6% lower than that found in the experiment. A second case with the plate moving
and zero inflow showed results similar to that of the steady plate, with differences explained
by the difference between the inflow velocity and the velocity ‘felt’ by the plate. The steady
state force coefficient found for the moving plate was 6% lower than for the steady plate, and
11% lower than the experimental results.

To compare the flow fields, the results of the simulation had to be interpolated to match the
resolution of the experiment, since the lower resolution of the experiment had a significant
effect on the representation of the flow field. No significant differences could be detected
between the isosurfaces of the vorticity magnitude of the experiment and those created from
the interpolated simulation results.

A grid refinement study showed no difference in the steady state force coefficient between the
coarsest grid with ∆x = 0.012 and the finest grid with ∆x = 0.006 for both the simulation
with a steady plate and the one with a moving plate. A difference of 1.5% for the initial peak
height was found between the coarsest grid and the finest grid for the steady plate, and a
difference of 4.5% for the moving plae. The second hump found in the force response showed
no grid convergence.

7.1.2 Simulation results

For the cases with spanwise constant deformation, the deforming center case creates the
highest lift coefficient, followed by the rigid case, and the deforming end case creates the
lowest lift coefficient. This is not caused by shedding of the leading edge vortex, since no
shedding is observed for any of the cases. The difference in lift coefficient is instead caused
by the difference in pressure on the lower side of the plates. The curvature of the surface in
the deforming center case increases the pressure on the lower surface, whereas the curvature
of the deforming end case reduces the pressure.

The deforming end case creates a higher angle of attack near the leading edge. This higher
angle of attack causes a faster CL buildup, created by the faster buildup of the LEV. The
deforming center case lowers the angle of attack at the leading edge, causing a slower LEV
buildup and therefore slower CL buildup. In all cases the presence of the symmetry plane
increases LEV buildup, causing a higher CL during the outstroke.

For the cases with spanwise varying deformation, the deforming center case create the highest
lift coefficient, in this case followed by the deforming end case, with the rigid case showing

Tijs Noyon M.Sc. Thesis



7.2 Recommendations 75

the lowest value of CL. The high CL of the deforming end case is caused by a low pressure
region near the trailing edge of the tip of the plate, caused by a combination of the tip and
trailing edge vortex. Due to the description of the deforming end case, the chord of the plate
is elongated at this position, making it likely that the contribution of this low pressure region
to CL is overestimated.

A distinct hump is visible in CL buildup of the cases with spanwise varying deformation. This
hump is not caused by shedding of the LEV, since again no shedding is observed for any of
the cases. Instead it is shown that this hump corresponds to interaction of the LEV with the
LEV shed from the previous stroke. The interaction is delayed for the deforming center case,
both by the slower LEV buildup and because the previously shed vortex gets trapped below
the plate, limiting the interaction.

The presence of the symmetry plane increases the buildup speed of the LEV, and with this
the CL buildup. The difference between a plate without a symmetry plane and a plate with
distance D=0.25c to the symmetry plane shows an increase in CL of 9.2% for the spanwise
varying deforming center case, and 11.3% for the spanwise varying rigid case, whereas CD
increases 18.0% and 16.9% for the deforming center and rigid cases respectively. The positive
effect of the faster LEV buildup on CL is limited, since the stronger LEV interacts much faster
with the vortex shed from the previous stroke, thus limiting further growth. As a result of
this, the beneficial effect of the deforming center on delaying the interaction is reduced when
moving the plate closer to the symmetry plane.

The moment the maximum CL is reached during strokes varies for different cases. A later
peak in CL shows a longer CL buildup and therefore leads to a higher CmaxL . The difference
in timing appears to be caused by the trailing edge vortex and the tip vortex behavior. The
effect of the TEV and TV behavior on the timing depends on the orientation of the surface
of the plate on the location of the vortex. This dependence means the positive and negative
effects on the TEV and TV depend on the shape of the plate. For the deforming center case,
CL benefits from a stronger TV near the leading edge, whereas for the deforming end case
CL benefits from the fact that the TEV stays closer to the trailing edge.

From the conclusions stated in this section it is clear that the deformation of the wing plays a
significant role in the aerodynamic performance of a flapping wing during hover. This means
it is important to take the deformation of the wings into account when designing an MAV.
Overall it is seen that the deforming center case creates a higher CL compared to the other
cases, and reduces the negative effects of interaction with the previously shed LEV. As a
result of this, designing a wing prone to deform in such a way will likely be beneficial to its
performance.

7.2 Recommendations

The force results in this report were averaged to eliminate the fluctuations caused by the IBM
scheme used for the simulation. The results show more cycles are needed to get a good average,
and that for some cases averaging is not possible since the results are not periodic. A better
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approach would be to eliminate the fluctuations by modifying the code itself. The studies of
Seo and Mittal (2011) and Luo et al. (2012) have shown possible methods of suppressing the
fluctuations, and especially the latter could be implemented into the solver with relative ease.

A second aspect that can be implemented into the IBM solver is the application of Fluid
Structure Interaction (FSI). Application of two way FSI is complicated when using a discrete
forcing approach for several reasons, including problems that are specific to the chosen method
(Yang et al., 2008). A similar method to the one used in this study has been used for FSI
simulations in Yang et al. (2008) and Yang and Stern (2012) however, and the same approach
could be used to allow FSI calculations with the current solver. Implementing this ability will
give the option to perform more specific studies on deformation effects on the aerodynamic
performance of flapping insect wings.

One of the most important benefits of the lowering of the angle of attack by deforming the
wing found in several studies was the delayed shedding of the leading edge vortex (Yin and
Luo, 2010; Eldredge et al., 2010a; Gillebaart, 2011). In this study none of the cases showed
shedding of the LEV, including the case where the angle of attack near the leading edge was
increased by the deformation, so this benefit was not observed. Since the stability of the LEV
is affected by the aspect ratio (Lentink and Dickinson, 2009; Harbig et al., 2013; Carr et al.,
2013) shedding of the LEV might occur at higher aspect ratios, in which case the effect of the
deformation on the stability would become important. Simulations with higher aspect ratio
wings are necessary to investigate this issue and might show a more profound effect of the
deformation of the LEV stability.

The stability and structure of the LEV is also affected by the maximum stroke angle (Carr
et al., 2013). As with using higher aspect ratios, simulating larger stroke angles could show
shedding of the LEV and a larger effect of the deformation on the LEV stability as well.

The deforming plates simulated in this study are very basic shapes that do not necessarily
correspond to deforming wings seen in flying insects or MAVs. Although the simplification
of the shapes allows for better generalization of the results, the simulation of more complex
shapes would lead to a better link between the results and the performance of flying insects
and MAVs. A trade-off can be made be made between the ability to generalize the results
and the ability to compare results to a specific case, since wing deformation differs greatly
with different structural and kinematic parameters. A full FSI simulation would be the
ultimate specific case, whereas this study represents the other side of the spectrum, but
several intermediate cases can be imagined that could have very interesting results.

Different deformation shapes are also required to study the effect of the deformation on the
clap and fling mechanism. In this study the minimal distance of the plate to the symmetry
plane simulated was 0.25 chordlengths, to prevent the plate from crossing the symmetry
plane. In full clap and fling the wings will actually touch each other, causing very different
deformations than the ones simulated in this study. The two-dimensional study of Gillebaart
(2011) prescribed deformed wing shapes based on experimental data, and a similar method
could be used to prescribe three-dimensional wings performing clap and fling.

This study showed that the deforming center case created the highest CL. Simulating different
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deformed shapes is recommended to see if it is possible to create an even higher CL, or improve
the CL/CD of the wing. A study investigating the optimal shape of the wing could lead to
better wing designs, resulting in improved performance for MAVs.
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Appendix A

Interpolation points method

To determine which points are inside a body a small Fortran function is written. This code
uses the coordinates of the 8 corners to determine whether points are in or outside of a
rectangular cuboid. This function consist of several smaller functions that are all called by
the main function find inside points

A.1 Function input

The function will receive the coordinates of the eight corners and an array containing all grid
points of which it should be determined if they are inside the body. This array consist of 4
columns containing the x, y and z coordinate of each gridpoint, and a fourth column which
will contain a 0 if the point is outside, and a 2 if the point is inside of the body. This column
contains the only value that can be changed by the function. The function can also receive a
start and finish index number, to limit the number of grid points that are checked. The first
action of the function is to create surfaces from the corner points. To correctly do this the
corner coordinates have to be given in a fixed order. This order is shown in Figure A.1. The
surfaces are created by the function build surfaces

A.2 Determining the cuboids boundaries

To find which points are inside the cuboid their coordinates are checked against the surfaces.
For example, all points that are inside the cuboid depicted in Figure A.1 must have a x
coordinate higher than the surface 1-5-8-4, and lower than the surface 2-6-7-3. These
surfaces will be referred to as bottom x and top x. The same is done for the y and z
coordinates and the other surfaces. In the situation as depicted in Figure A.1 determining
which surfaces should be used for which coordinate is quite obvious. However, if the cuboid
would start to rotate around the line 1-5, this would become harder. At one point the surface
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Figure A.1: Order in which the corner coordinates should be given to the function.

2-6-7-3 would become parallel to the original position of surface 3-7-8-4, at which point it
can no longer be used to determine if the x coordinate is in or outside of the cuboid. To
make sure the correct surface is used the bottom and top surfaces for each coordinate are
determined at every timestep. A surface cannot serve as a bottom or top to any coordinate
if all its edges are perpendicular to one of the other coordinate axes. This can be checked by
calculating the derivatives of the edges. Again referring to Figure A.1, the derivatives of the
edges belonging to surface 2-6-7-3, would be ∂x

∂y 23
= 0, ∂x∂y 26

= NaN, ∂x∂z 23
= NaN, ∂x∂z 26

= 0,
∂y
∂z 23

=∞ and ∂y
∂z 26

= 0 as well as 1 divided by these derivatives ( ∂y∂x23
, ∂y
∂x26

, ...) with NaN

representing Not a Number which is the result of 0
0 . The surface that is a top or bottom

surface for the x coordinate should have at least one edge that has a real and finite derivative
for ∂x

∂y and one for ∂x
∂z . So surface 2-6-7-3 can be the top surface for the x coordinate since it

has ∂x
∂y 23

= 0 and ∂x
∂z 26

= 0, and it can be seen that only 1-5-8-4 also has this. As the cuboid
rotates it is possible that four or even all six surfaces have real and finite derivatives for a
certain coordinate. In this case the other derivatives are compared, to make sure the surface
that is selected is the one least suited for any of the other coordinates, while making sure no
surface is used for two different coordinates. The only thing left to do is determine which
surface is the top and which is the bottom surface, which is done by calculating the average
value of the coordinate for which they are the top and bottom. The assigning of top and
bottom is done by the function find derivatives.

A.3 Determining surface slopes and angles

To determine if a point is below or above a surface the slope of the surface has to be known.
The most straightforward case is shown in Figure A.2. Imagine the plane ABCD is the
top z surface, and it has to be checked if the z coordinate of point E is below this surface,
with the z axis pointing out of the paper. This means it is required to know the z value
of the surface, at the same x and y coordinate as point E. To do this the slope of the
surface along the line AEsur must be known, as well as the length of AEsur, calculated as
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Figure A.2: Example situation in which to find the z coordinate of the surface at the x and
y coordinates of points E and F.

L =
√

(xE − xA)2 + (yE − yA)2. Here Esur is the projection of point E onto the surface.
Although the length can be calculated directly, the slope of the surface along line AEsur

cannot. Therefore the line has to be split up into an x and a y component. This is done by
first calculating corner α, and then using φE and L to calculate the lengths EsurE1 and E1A.
These lengths can now simply be multiplied by derivatives ∂z

∂x and ∂z
∂y to find the z value at

Esur. In case the point F is investigated the procedure is exactly the same, with the length
FF1 getting a negative value. This is as if the surface ABCD is infinitely long in both x and
y direction, having the same derivatives everywhere. This means the z value of F might be
below this infinite surface, and the point can not be called outside of the body by checking
its z coordinate. It can be clearly seen however, that the y value of the point is too low, and
when checking bottom y it will be called outside of the body.

Figure A.3 shows the same plane rotated around the z axis. The line AEsur can again be
separated into two components, one parallel to line AB and one to line DA with now the
need to calculate both α and β, to be able to get φ. In this case the resulting lengths EsurE1

and E1A can not be multiplied with the derivatives as in the previous case, since the lines
have both an x and y component. Instead they are multiplied by the slopes of the surface
edges, lines AB and DA. The z coordinate of Esur is now given by Equation A.1.

zEsur =
zD − zA√

(xD − xA)2 + (yD − yA)2
EsurE1 +

zB − zA√
(xB − xA)2 + (yB − yA)2

E1A (A.1)

The final case that could occur is when surface ABCD would also rotate around the y axis.
Continuing to look at in the x − y plane gives the picture shown in Figure A.4. It can be
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Figure A.3: Example with surface rotated around z axis.

clearly seen that the angle between the surface edges is no longer a straight angle, so splitting
line AEsur into two lines parallel to the two edges is less straightforward. The angle ε also
has to be calculated, and will be equal to angle φ2. Using this angle and φ1 the last angle of
the triangle, φ3, can be calculated. Now that all angles are known the law of cosines can be
used to calculate lengths EsurE1 and E1A. The law of cosines is given in Equation A.2.

AEsur
2 = EsurE1

2 + E1A
2 − 2EsurE1E1A cosφ2 (A.2a)

EsurE1
2 = E1A

2 + AEsur
2 − 2E1AAEsur cosφ1 (A.2b)

E1A
2 = AEsur

2 + EsurE1
2 − 2AEsurEsurE1 cosφ3 (A.2c)

After some manipulation of the cosine rule the lengths E1A and EsurE1 can be calculated
with Equation A.3.

E1A =
AEsur(1− cos2 φ3)

cosφ1 + cosφ2 cosφ3
(A.3a)

EsurE1 = AEsur cosφ3 + E1A cosφ2 (A.3b)

The z value of Esur can now again be calculated using Equation A.1. This means that to be
able to determine if the z coordinate of a point is below the surface ABCD for all instances,
the values that should be known are the angle between line AB and the y axis, the angle
between line DA and the y axis, the slope in z direction along both line AB and DA, the
angle between line AEsur and the y axis, and finally the length of the xy component of this
same line. The last two of these value have to be calculated for each point individually, but
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Figure A.4: Example with surface rotated around y axis.

the first four have to be calculated for the surface only once every timestep, and can then
used to check multiple points.

The angles and slopes of the surface edges are calculated by the function slopes. This function
is called six times, once for every surface. Finally the function inside point finder is called,
which loops over all the given grid points and check if they are in or outside of the cuboid.
In case it finds that the gridpoint is inside the body it will change the fourth value after the
x, y and z coordinate from a 0 into a 2.

A.4 Limitations

The function was designed to check if points are inside of a rectangular cuboid. To create an
efficient function to do this, some assumptions were made that do not have to be valid for
different shapes. The requirements for the function to work correctly are

• The shape must have 8 different corners, and no more.

• The corners must be in the order shown in Figure A.1.

• All edges must be straight lines.

• All surfaces must be straight surfaces.

The second and fourth requirement are particularly important since the program might work
when they are ignored, but the results will not represent the correct body. The third require-
ment cannot be ignored since the program does not have an option to use curved edges.
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Appendix B

Extra figures for results

B.1 Extra figures for Section 6.1
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Figure B.1: Full CL and CD response plot for the spanwise constant deforming cases. The
coefficients are not corrected for the chord elongation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure B.2: Contour plots of the Q criterion at 75% span, for the spanwise constant defor-
mation cases. On the left side the rigid case, in the middle the deforming center case and on
the right side the deforming end case.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure B.3: Contour plots of the Q criterion at 90% span, for the spanwise varying deforming
cases. On the left side the rigid case, in the middle the deforming center case and on the right
side the deforming end case.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure B.4: Pressure isosurfaces of p=-1 during the instroke for the spanwise constant cases.
On the left side the rigid case, in the middle the deforming center case and on the right side
the deforming end case.
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B.2 Extra figures for Section 6.2
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Figure B.5: Full CL and CD response plot for the spanwise constant varying cases. The
coefficients are not corrected for the chord elongation.
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(a) (b) (c)
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Figure B.6: Contour plots of the Q criterion at 75% span, for the spanwise varying deformation
cases during the instroke. On the left side the rigid case, in the middle the deforming center
case and on the right side the deforming end case.
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Figure B.7: Contour plots of the Q criterion at 90% span, for the spanwise varying deformation
cases during the instroke. On the left side the rigid case, in the middle the deforming center
case and on the right side the deforming end case.
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B.3 Extra figures for Section 6.3
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Figure B.8: Lift and drag coefficient plot for the spanwise varying deforming center case
without symmetry plane. The coefficients are not corrected for the chord elongation.
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(a) (b) (c)

(d) (e) (f)
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Figure B.9: Contour plots of Q criterion for the spanwise varying cases at different distances
from the symmetry plane at 75% span. Left without symmetry plane, in the center at D=0.50c
and right at D=0.25c.
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