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Preface

This thesis is the final part of the Bachelor program of Applied Mathematics at the Delft
University of Technology. In high school my interest in mathematics started and the choice to
study Applied Mathematics was easily made. In my first year Dr. J.A.M. de Groot gave a lecture
in coding theory and in this lecture he explained how coding theory is used to enable the step
from Long Playing (LP’s) records to compact discs (CD’s). This is where I first got interested
in the subject and why I chose the elective course “Applied Algebra; Codes and Cryptography
Systems”, lectured by this same Dr. J.A.M. de Groot. Because I find the field of coding theory
very interesting I decided do my Bachelor thesis in this field.
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other classical methods of saving data is that DNA can store a lot of information on very little
space. But there are some constraints that we need to take into account and in this thesis I will
elaborate more on this. A lot of research has been done on the subject of saving data using DNA
and the paper of Limbichaya et. al. [1] focuses especially on the constraints. For this thesis I
mostly focused on this paper of Limbichaya et. al. with the title: “Family of Constrained Codes
for Archival DNA Data Storage” published in October 2018.
Lastly I would like to thank my supervisors Dr.ir. J.H. Weber and Dr. J.A.M. de Groot for
their guidance and support. They gave me a lot of feedback during the process of writing this
thesis and were always happy to answer my questions. Finally I also want to thank my Bachelor
committee for reviewing my thesis and presentation.

Lot van Leeuwen
Delft, May 2020
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Abstract

Every day we produce an extremely high amount of data and a significant portion of this data
is archival data. It is an important challenge to save this data in a cheap and environmentally
friendly way. The current methods to save archival data are sufficient, but improvements can
be made. Synthetic DNA based data storage is a great choice to do so. DNA is (roughly) made
out of four nucleotides, Adine (A), Cytosine (C), Guanine (G) and Thymine (T ). To save data
using DNA the binary data is encoded to quaternary data and later DNA strands are created
using this quaternary data. During the process of saving the data errors can occur. Previous
research [3] has found that some errors can be prevented by taking two constraints into account.
The no run-length constraint, which states that no DNA word can have two repeated symbols
and GC-weight constraint, which states that every DNA word must have a fixed number of G
and C nucleotides. These constraints reduce the number of quaternary data sequences that can
be used to save data.

The aim of this thesis is to improve the lower bound on the maximum number of quaternary
data sequences that satisfy the no run-length constraint, the fixed GC-weight and a minimum
distance. Limbachiya et. al. [1] gave an algorithm to compute a set with a given minimum
distance of quaternary data sequences that satisfies the constraints. The size of this set is the
lower bound that we aim to improve. We do so by introducing two other algorithms that also
compute a quaternary data sequences that satisfy the constraints and a minimum distance. The
size of each computed set gives a lower bound on the maximum size. The lower bound computed
with these two algorithms is always better or equal to the lower bound computed by Limbachiya
et. al for certain parameters. When the minimum distance of a code is 2 we know this maximum
size. The formula for this maximum size is given in this thesis together with a proof for this
formula.
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1 Introduction

This first chapter explains why DNA-based data storage could be a good method to store archival
data, which part of this subject will be researched in this thesis and the organisation of this
thesis.

1.1 Motivation

Nowadays an extremely high amount of data is produced every day. A significant portion of
this data is archival data. Archival data is meant to be stored away because the data does not
need to be accessible at every moment. Right now most of this data is stored on magnetic and
optical media [2]. Storing the data in this way is sufficient but there are improvements possible.
Storing data on magnetic and optical media has a density of about 100GB/mm3. This means
that storing zettabytes of data takes up a lot of physical space [2]. Durability is also important
for storing data. With the current techniques we can reach a durability of 30 years [2]. To
store the world’s archival data in a cheaper and environmentally friendly way it is important to
improve storage density and durability.

Synthetic DNA based information storage is a solution for this problem, as explained in
[3] DNA can store data up to 2 PB/gram, so 2 million GB/gram. The durability of DNA
is also extremely good, S. Yazdi states about the subject: “one can still recover the DNA of
species extinct for more than 10,000 years” [3]. Despite writing and reading DNA sequences is
expensive, DNA data storage has the potential to be a good option for archival data storage
[1]. In this thesis we focus on the sequences of nucleotides that eventually can be used to save
archival data.

1.2 Thesis statement

The research of Limbachiya et. al. named “Family of Constrained Codes for Archival DNA Data
storage” [1] draws our attention. This paper introduces two constraints on quaternary data
sequences that are very important for archival data storage using DNA. Using these constraints
a code is introduced. This code is called a DNA-d code and it consists of DNA codewords.
The constraints are: a DNA codeword cannot have a run of the same nucleotides, it has a fixed
number of G and C nucleotides and a code has a specific minimum distance. A DNA-d code
has a size and therefore their exists a DNA-d code of maximum size. This maximum size is
unknown in the paper of Limbachiya. To get a lower bound on this maximum size an algorithm
is given that computes a DNA-d code. The size of this computed DNA-d code is the existing
lower bound.

This thesis aims to answer the question: ‘‘Can the existing lower bound for the maximum size
of a DNA-d be improved”. In this thesis two algorithms to compute a DNA-d code are given.
These algorithms provide a better or equal lower bound on the maximum size of a DNA-d code
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than the lower bound computed by Limbachiya et. al. for certain parameters. Further a formula
for the maximum size of a DNA-d code is given when the minimum distance of the DNA-d code
is 2. This thesis states and proves this formula.

1.3 Organisation of the thesis

This section gives a description of how the remainder of this thesis is organised.

Chapter 2: Prerequisites. This chapter provides some basic knowledge about DNA and
how it is used to store data. The concepts discussed in this chapter will be used throughout
the thesis. The last section of this thesis introduces some basic concepts of coding theory, these
concepts are only a small part of the coding theory but very important to understand the infor-
mation given in this thesis.

Chapter 3: Constraints on DNA-based data storage. This chapter will begin by ex-
plaining the two constraints that are important in DNA-based data storage. After that the
DNA set and the DNA-d code are defined.

Chapter 4: Three algorithms to compute a DNA-d code. Firstly, this chapter gives
the algorithm from the paper of Limbachiya et. al. [1]. Secondly, two different algorithms that
compute a DNA-d code are given. The last section evaluates the given algorithms.

Chapter 5: A DNA-2 code of maximum size. This chapter states the most impor-
tant theorem of this thesis. This theorem gives a formula for the maximum size of a DNA-d
code with minimum distance 2. Some more knowledge is needed to prove this theorem. This
knowledge is given in Section 5.1 up to and including Section 5.4. In Section 5.1 we discuss the
size of the DNA set, Section 5.2 discusses the isolated points, Section 5.3 discusses how the DNA
words from the DNA set relate to each other given an minimum distance. In Section 5.4 we
discuss the binary even weight codes. Using the information given in all these sections, Section
5.5 gives the proof.

Chapter 6: Conclusions and recommendations. The final chapter concludes the results of
all the chapters of this thesis. It also gives recommendations for further research in this subject.
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2 Prerequisites

To understand the basics about data storage using DNA, some basic knowledge about DNA and
data storage is given in this chapter. Section 2.1 explains how we can use the structure of DNA
for data storage. Next, Section 2.2 elaborates a little bit on how to encode data. After which
the process of creating and reading DNA is described in Section 2.3. Lastly some basic concepts
of coding theory are explained in Section 2.4.

2.1 What is DNA

In this section we explain some basic knowledge of DNA, the information in this section is
retrieved from [2] and [5].

DNA is short for deoxyribonucleic acid and is found in every known organism. It is a macro
molecule and it stores the biological information of an organism. DNA is composed of two
strands, these strands are built by four basic building blocks. These units are called nucleotides.
The four nucleotides are Adine (A), Thymine (T ), Guanine (G) and Cytosine (C). In this thesis
the letters A, T , G and C will be used. The building units also consist of a sugar and a phosphate
group. The two strands are linked in a helix shape, this link happens in the following way: the
nucleotide A in one strand aligns with the nucleotide T in the other strand and the nucleotide
C in one strand aligns with the nucleotide G in the other strand. This is called complementary
base pairing. We say that the two strands are reverse complement of each other.

The 4 nucleotides are important for storing data because the order in which they appear
holds information. This is the phenomenon that is used to store archival data using DNA. In
the next section we elaborate more on this process.

2.2 From data to DNA

As explained in the motivation of this thesis, DNA can be a good alternative for archival data
storage. We assume that the archival data is binary. There are three steps in archival data
storage using DNA.

1. Binary data is encoded to quaternary data. We use quaternary data because a DNA strand
is made up of four nucleotides, Adine (A), Cytosine (C), Guanine (G) and Thymine (T).

2. DNA strands are created (synthesized) of the encoded quaternary data using a DNA
synthesizer after which the DNA strands are stored until use.

3. We read the DNA strands using DNA sequencing to get the quaternary data. When the
DNA strands are known, we decode the quaternary data to get the original binary data
[1].
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There are multiple ways to carry out the first step, for example using a Hamming code or a
Reed-Solomon code. This thesis will not be focused on this subject. For more information about
this subject we recommend reading the thesis of Eva Slingerland [6]. The second and the third
step are discussed in the next section. In this thesis we will focus on which DNA sequences can
be used to save archival data using DNA.

2.3 Creating and reading DNA

The creation of DNA strands is done by a method called DNA synthesizing. Reading DNA
strands is done by DNA sequencing. In this section the methods to do this are explained, the
information is retrieved from [2] and [3].

Both DNA synthesizing and DNA sequencing use a technique called polymerase chain reac-
tion (PCR). PCR is used to make a large amount of copies of a DNA strand. There are four main
components that PCR requires: a template, sequencing primers, a thermostable polymerase and
individual nucleotides. The template is either single stranded or double stranded in the double
helix shape (explained in Section 2.1). The template is copied a lot of times using the other
three components with complementary base paring. These copies are needed to analyse a DNA
strand.

To store information, it is needed to create a strand of DNA containing specific nucleotides
in a specific order. This technique is called DNA synthesizing [3]. When the DNA strand is
created using DNA synthesizing the PCR technique is used to create many copies, these copies
are then stored for later use.

DNA sequencing is used to obtain the data from the copies of DNA strands. DNA sequencing
obtains the order of the nucleotides in a strand, we also say that this method reads the DNA
strand. DNA polymerase enzymes, also known as “sequencing by synthesis” [3], is the most
popular technique to do this. This is a technique that uses PCR with the strands that need
to be read as the template but fluorescent nucleotides are used. The complement sequence can
be seen optically because every type of fluorescent nucleotide has a different color of light. The
original DNA strand can be determined using complementary base pairing.

These techniques to create and read DNA strands can lead to errors. We say that an error
has occurred when the quaternary sequence after encoding the binary data is not equal to the
quaternary sequence obtained after reading the DNA strand. These errors can lead to mistakes
in the decoded binary archival data after saving and this is something we want to avoid as much
as possible.

Using PCR we copy a lot of DNA strands and by synthesizing and sequencing a lot of strands
instead of just one the chance of an error to occur is smaller. But this will not prevent all errors.
For example, an error might occur in the following way when DNA strands are read using DNA
sequencing. The DNA strand is analysed by the color of its nucleotides but when two the same
nucleotides are next to each other, the light intensity and therefore the color decreases [3]. This
can result in errors.

2.4 Basic concepts of coding theory

This section states some fundamental definitions of coding theory in particular applied to the
quaternary alphabet. The book “Coding Theory And Cryptography, the essentials” [7] is used
as an information source for this section.

Suppose some binary information needs to be stored using DNA. The first step is encoding
this information to data that consists of the letters A, T,C and G. These encoded symbols form
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a word that contains all the information. Later, this word is saved using DNA synthesizing. The
DNA strand is read using DNA sequencing as explained in Section 2.3. For our convenience we
use the following bijection between the nucleotides and the quaternary alphabet.

A↔ 0, T ↔ 1, G↔ 2, C ↔ 3

Definition 1. We define a word of length n as c = [c1c2 . . . cn] where ci ∈ {0, 1, 2, 3} for
1 ≤ i ≤ n. We say c1 is the first symbol of c, c2 the second symbol etc. Take a, b ∈ N and
1 ≤ a, b ≤ n. We say that the symbols at ca and cb are next to each other if | a− b |= 1.

Definition 2. A quaternary code is a set Q of words over the quaternary alphabet.

A block code is a code where all its words have the same length. Only block codes are
considered in this thesis, so from now on a quaternary code (Q) will always be a quaternary
block code. The words that belong to a given code are called codewords. The size of a code
is defined as the number of codewords in a code and is denoted by |Q|. For example the set
{[00], [12], [20], [23], [33]} is a quaternary code where the codewords have length 2 and the size
of this code is 5.

Definition 3. We define the quaternary set as the quaternary code of maximum size for
codewords of length n. The quaternary set for n = 2 is

{[00], [01], [02], [03], [10], [11], [12], [13], [20], [21], [22], [23], [30], [31], [32], [33]}

note that a quaternary code is always a subset of this quaternary set.

As explained before, it is possible that one or multiple errors occur. The minimum distance
of a code is a powerful tool to detect errors or even correct these errors. First the definition of
the distance between two words is given, after the definition of a minimum distance of a code is
given.

Definition 4. Let c1 and c2 be words of length n. The (Hamming) distance between c1 and
c2 is the number of symbols in which they differ. The notation for the distance between these
two words is d(c1,c2).

All the codewords in a code have a distance to each other. For a code Q of at least two
codewords the minimum distance of the code is the smallest distance between any two different
codewords from the code.

Definition 5. The minimum distance of a code Q is d = min{d(c1, c2), ∀c1, c2 ∈ Q : c1 6= c2}.

The minimum distance of a code is a powerful property because not all the words from the
quaternary set can be in the code (except when d = 1). All the codewords from a code have at
least distance d to each other, using this an error can be detected. When a code has minimum
distance d that code is d− 1 error detecting and bd−1

2 c error correcting. We refer to [7] for more
information about these properties of codes.
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3 Constraints on DNA-based data storage

In this thesis we are interested in which words we can use to store data. As explained in
Section 2.3, it is possible that errors occur during the synthesizing and sequencing of DNA
strands. Previous studies stated that there are two major reasons that cause these errors,
namely homopolymer runs and GC content [1] [4] [3] [8]. In this chapter two constraints are
explained, these constraints reduce the number of synthesis and sequencing errors caused by
homopolymer runs and GC-content. Using these constraints we define the DNA set in Section
3.3. The DNA set consists of DNA words and these DNA words satisfy the constraints. In the
last section, a third constraint is added: the minimum distance. Using this minimum distance
a DNA-d code is defined in Section 3.4.

3.1 The no run-length constraint

A homopolymer run is a consecutive repetition of the same nucleotides. The first constraint that
is implemented is the no run-length constraint. Each DNA nucleotide is read as a (color)signal
during the DNA synthesis and sequencing. These nucleotides might be read as a single signal
if two or more repeated nucleotides occur in a DNA strand [1] [3]. An might error occurs if
this happens. For example in the word [20133320], the 3 is repeated three times. During the
sequencing or synthesizing, the homopolymer run might be read longer or shorter than it actually
is. To minimise the number of errors we do not allow a repetition of the same nucleotides in a
DNA word.

Definition 6. A word has no run-length when the word does not contain two repeated
nucleotides. The no run-length constraint says that no DNA word from the DNA set should
contain two or more repeated nucleotides.

3.2 The GC-weight constraint

The other important source for errors is the number of G and C nucleotides in a DNA strand.
We say that the GC-content of a DNA strand is the percentage of G and C nucleotides. Erlich
et. al. states that DNA strands with GC-content higher then 60% have a high chance that an
error occurs [1]. So the other requirement for the DNA set is the fixed GC-weight because a
DNA set with fixed GC-weight is more stable and this avoids errors [1].

Definition 7. The number of G and C nucleotides in a word is the GC-weight. The notation
for the GC-weight of a word is w. Note that with the notation introduced in Definition 1, the
GC-weight is the number of 2 and 3 symbols in a word.

For example [023102] is a word with GC-weight w = 3 because the 2 is mapped to the G
nucleotide and the 3 is mapped to the C nucleotide. As a result of this constraint the number of
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0 and 1 symbols in a DNA word and the number of 2 and 3 symbols in a DNA word are linked
to each other. To use this in the rest of the thesis the following definition is introduced.

Definition 8. As described we use the quaternary alphabet, {0,1,2,3}. We say that 0 and 1 are
opposites of each other and that 2 and 3 are opposites of each other.

3.3 The DNA set

With this knowledge we define the DNA set containing the words that satisfy the constraints.
The set will take 2 parameters. The first is the length (n) of the DNA words. The second is the
GC-weight (w) as defined in Definition 7.

Definition 9. We define the DNA set, DNA(n,w), as

DNA(n,w) = {c : c has length n, GC-weight w, no run-length},

We say that the words in DNA(n,w) are DNA words and the size of DNA(n,w) is B(n,w)
(i.e. | DNA(n,w) | = B(n,w)). Note that the DNA set is a subset of the quaternary set of
length n.

The DNA set is important because this set contains the words that satisfy the constraints.
These DNA words can be used to save archival data as they lower the chance that an error occurs.
Look at the word c = [21320]. c has length 5 and GC-weight 3 so c = [21320] ∈ DNA(5, 3).

In this thesis the DNA set is always created in the same way. This is relevant because in the
algorithms explained in Chapter 4, it is important in what order the DNA words appear in the
DNA set. To create the DNA set first generate all the words of length n over the quaternary
alphabet lexicographical [9]. It is immediately checked if the words satisfy the no run-length
constraint and the GC-weight constraint during the generation of the words. If a word satisfies
the constraints it is a DNA word and is added to the set DNA(n,w), if not then the word is
not a DNA word and thus not added. In the next example it is shown how the set DNA(3, 1)
is created. The Python code for computing the DNA set is given in Appendix A.1.

Example 1. We generate the DNA set DNA(3, 1). The first word generated lexicographical
of length 3 over the quaternary alphabet is [000]. This word does not satisfy the no run-length
constraint so we do not add it to DNA(3, 1). The same applies to the next 3 words, [001],
[002] and [003] so they are not added to DNA(3, 1). The next word, [010], does satisfy the no
run-length constraint but not the GC-weight of 1 so [010] is also not added to DNA(3, 1). The
first word that does satisfy the constraints is the word [012]. This word is added to the set
DNA(3, 1). Continue doing this and eventually the DNA set DNA(3, 1) is:

DNA(3, 1) = {[012], [013], [020], [021], [030], [031], [102], [103],

[120], [121], [130], [131], [201], [210], [301], [310]}.

We now know that the size of DNA(3, 1), also defined as B(3, 1), is equal to 16. Other ways to
get B(n,w), without computing the set DNA(n,w), are explained in Section 5.1.

3.4 A DNA-d code

We have lowered the chance of errors to occur with the two constraints but it is still possible
for errors to occur. As explained in Section 2.4 the minimum distance of a code is a powerful
tool to detect or even correct errors. The minimum distance of a set is defined in Definition 5.
To add this constraint to our DNA set we define the following code.
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Definition 10. A DNA-d code is a code containing words of length n, GC-weight w, no run-
length and the minimum distance is d. We define a word from this code as a DNA codeword.

A DNA-d code is a subset of of the DNA set, so every DNA codeword is also a DNA word.
Now the DNA codewords can be used to save archival data. The aim of this thesis is to improve
the lower bound on the maximum number of DNA codewords.

Definition 11. Let the maximum number of DNA codewords of length n, GC-weight w and
minimum distance d be Bd(n,w).

Note that the DNA set is a DNA-1 code and thus that B1(n,w) = B(n,w). It is important
to realise that there can be multiple different DNA-d codes with size Bd(n,w). To get a DNA-d
code we start with all the DNA words from the DNA set and delete DNA words to create a set
that satisfies the minimum distance.

Example 2. Take n = 3, w = 1 and d = 2 and we are looking for a DNA-2 code that satisfies
these parameters. From Example 1 we know what DNA(3, 1) looks like. By observation we
delete some DNA words to form the following code.

{[012], [310], [103], [201]}

This is a DNA-2 code. This DNA-2 code can be used to save data but this is not a DNA-2 code
of maximum size. In Section 5.5 we learn that B2(3, 1) = 8.

Assume we have the DNA set and the desired minimum distance d is given. The DNA words
from the DNA set have a distance to each other (Definition 4). That distance is either smaller
than or equal to d − 1 or greater than d − 1. To use this throughout the thesis the following
definition is introduced.

Definition 12. Take c1, c2 ∈ DNA(n,w) and d ∈ Z+. c1 and c2 are (d-1)-neighbours when
d(c1,c2) ≤ d− 1.

When a DNA word of DNA(n,w) has no (d− 1)-neighbours that DNA word is special and
is defined as an isolated point.

Definition 13. Let c ∈ DNA(n,w) and d ∈ Z+ . c is called an isolated point when c has no
(d− 1)-neighbours. Let IPd(n,w) be the set of isolated points matching the given parameters
and Id(n,w) the number of isolated points, thus: |IPd(n,w)| = Id(n,w).

To get a better understanding of these definitions and their use, an example is given. In this
example it is shown that a DNA word is an isolated point by checking that the DNA word has
no (d− 1)-neighbours.

Example 3. Let n = 4, w = 2 and d = 2. In this example it is shown that c = [0123] is an
isolated point. In other words, we will try to find a (1)-neighbour of [0123] and show that no
such DNA word exists. In this case d = 2 so two DNA words are (1)-neighbours when their
distance is 1. A DNA word is a (1)-neighbour of [0123] when one symbol is changed. Note that
a symbol can only change into its opposite due to the GC-weight. Remember that 0 and 1 are
opposites and that 2 and 3 are opposites.

Look at the first symbol, c1 = 0. It cannot change into a 1 because of the no run-length
constraint but that is the only option due to the fixed GC-weight. So the first symbol cannot
change. A similar argument is used for c2, c3 and c4. In conclusion there is no DNA word of
length 4, GC-weight 2 and no run-length that is a (1)-neighbour of c.
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4 Three algorithms to compute a DNA-d
code

In this thesis we are interested in the maximum size of a DNA-d code. Unfortunately there
does not (yet) exists an explicit formula for Bd(n,w) but there are algorithms to find a DNA-d
code and therefore a lower bound on Bd(n,w). As explained in Section 3.4, a DNA-d code is
generated in the following way: the first step, start with the DNA set. The second step: either
delete some DNA words from the DNA set to satisfy the distance constraint or add some DNA
words to a new list without breaking the distance constraint. In this section three algorithms
are explained, the algorithms all differ in the second step.

The most important factor that affects the generated DNA-d code and thus the lower bound
for Bd(n,w) is the way and in what order the DNA words are added or deleted. When a DNA
word is added to a new list or deleted this can effect the next steps of creating the DNA-d
code. The first algorithm is from the paper of Limbachiya et. al. [1] and the second and third
algorithm are algorithms that we designed. These algorithms are variations on the algorithm
of Limbachiya et. al. Algorithm 2 and 3 are conceived to improve the lower bound given by
Algorithm 1.

4.1 Algorithm 1

The first algorithm is the algorithm from the paper of Limbachiya et. al. [1]. The algorithm
takes as input a length n, GC-weight w and minimum distance d, the result is a DNA-d code
that satisfies the input. The algorithm checks for all the DNA words of the DNA set what its
(d− 1)-neighbours are and how many (d− 1)-neighbours each DNA word has. This information
is put in a dictionary with the DNA words as keys and its number of (d− 1)-neighbours as its
value. An iteration starts with deleting the DNA word with the most (d− 1)-neighbours. After
the dictionary is adjusted for all those (d− 1)-neighbours. When multiple DNA words have the
maximum number of (d− 1)-neighbours the first of those DNA words is chosen. Keep iterating
until all the DNA words in the dictionary have zero (d − 1)-neighbours, the DNA words that
are still in the dictionary form a DNA-d code. The code for this algorithm is written in Python
and can be found in Appendix A.2.
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Algorithm 1:

Data: Length n, GC-weight w and minimum distance d
Result: A DNA-d code
1. Generate a list called DNAset containing all the DNA words in lexicographical order
from the set DNA(n,w).

2. Create a dictionary called words in sphere where the keys are the DNA words from
DNAset and its value is the number of (d− 1)-neighbours of the key.

if There is a value in words in sphere that is not equal to 0 then
delete the first DNA word with the maximum value from words in sphere. Reduce
the values of the DNA words in words in sphere that are a (d− 1)-neighbour of the
deleted DNA word by one.

else
The keys of words in sphere form a DNA-d code.

end

This algorithm computes a DNA-d code. We count the number of DNA codewords in the
DNA-d code to get a lower bound on Bd(n,w). An example is given to get a better understanding
of the algorithm. In this example we use n = 2, w = 1 and d = 2.

Example 4. The input of the algorithm is n = 2, w = 1 and d = 2. The algorithm computes a
DNA-d code that satisfies the given parameters.
Step 1: We generate list “DNAset” that consists of all the DNA words of DNA(2, 1). The list
“DNAset” is:

DNAset = [[02], [03], [12], [13], [20], [21], [30], [31]]

Step 2: We create a dictionary “words in sphere” with the 8 words as keys. For the value we
count the number of (1)-neighbours of the key. For example: The DNA word [02] has two DNA
words at distance 1, [03] and [12], so the value of [02] is 2. The generated dictionary is:

words in sphere = {[02] : 2, [03] : 2, [12] : 2, [13] : 2, [20] : 2, [21] : 2, [30] : 2, [31] : 2}

There is a value that is not equal to 0 so we start the first iteration. We delete the DNA word
with the maximum value. Because there are multiple keys that have the maximum value we
choose the first one. In this case we delete the DNA word [02] from the dictionary. The DNA
words that have distance 1 to [02] are [03] and [12] so we adjust the values of those words. Now
the dictionary is:

words in sphere = {[03] : 1, [12] : 1, [13] : 2, [20] : 2, [21] : 2, [30] : 2, [31] : 2}

Because there is still a value that is not equal to 0 we get into the second iteration. The first
key with the highest value is [13] and the two DNA words that have distance 1 to [13] are [03]
and [12]. After this iteration the dictionary looks like this:

words in sphere = {[03] : 0, [12] : 0, [20] : 2, [21] : 2, [30] : 2, [31] : 2}

After 2 iterations where [20] and [31] are deleted respectively the dictionary is:

words in sphere = {[03] : 0, [12] : 0, [21] : 0, [30] : 0}

Every value is 0 thus we have reached the end of the algorithm. The found DNA-2 code is:

{[03], [12], [21], [30]}

The size of the generated DNA-2 code is 4 thus B2(3, 1) ≥ 4.
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4.2 Algorithm 2

The second algorithm is a variation on the first algorithm. As explained in the introduction of
this chapter the order in which DNA words are added or deleted is the most important factor
in generating a DNA-d code. Our goal is to improve the lower bound of Bd(n,w). We came
up with a different algorithm that might give better results than Algorithm 1. The difference
between these algorithms is that the minimum key is added to a list instead of deleting the
maximum key.

Algorithm 2 takes the same input as Algorithm 1, a length n, GC-weight w and minimum
distance d and the result is a DNA-d code that satisfies the input. This algorithm creates a
dictionary just as in Algorithm 1 and it also creates an empty list. An iteration starts with
adding the key with minimum value to the list. When multiple keys have the minimal value the
first one is chosen. Next the minimal key and all the (d− 1)-neighbours of this minimal key are
deleted from the dictionary. Last the values of all the (d − 1)-neighbours of the deleted keys
are reduced to make the dictionary correct again. Keep iterating until the dictionary is empty.
The DNA words that are in the list form a DNA-d code. The DNA words now are also DNA
codewords. The python code of this algorithm can be found in Appendix A.3. The algorithm is
given in Algorithm 2 and after an example is given.

Algorithm 2:

Data: Length n, GC-weight w and minimum distance d
Result: A DNA-d code
1. Generate a list called DNAset containing all the DNA words in lexicographical order
from the set DNA(n,w).

2. Create a dictionary called words in sphere where the keys are the DNA words from
DNAset and the value is the number of (d− 1)-neighbours of the key.

3. Create an empty list named DNAdistance.
if words in sphere is not empty then

Add the first key with minimal value to the list DNAdistance, delete this minimal
key from words in sphere and delete all the DNA words from words in sphere that
are a (d− 1)-neighbours of the minimum key. Reduce the values of the DNA words
in words in sphere that are a (d− 1)-neighbour of a deleted DNA word.

else
The words in the list DNAdistance form a DNA-d code.

end

Example 5. As input of Algorithm 2 we again choose n = 2, w = 1 and d = 2. Step 1 and 2
are the same as in Example 4 so the dictionary is:

words in sphere = {[02] : 2, [03] : 2, [12] : 2, [13] : 2, [20] : 2, [21] : 2, [30] : 2, [31] : 2}

In step 3 we also create an empty list named “DNAdistance”.

DNAdistance = []

The dictionary is not empty so we start the first iteration. The first minimal key is [02] so
we add this DNA word to “DNAdistance”. Next we delete [02] and the DNA words that are
(1)-neighbours of [02] from “words in sphere”. Last adjust the value of the (1)-neigbours of the
deleted DNA words. The list and dictionary now are:

DNAdistance = [[02]]
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words in sphere = {[13] : 0, [20] : 2, [21] : 2, [30] : 2, [31] : 2}

The dictionary is not empty so again we start an iteration. The first minimal key is [13] so we
add it to “DNAdistance”. There are no (1)-neighbours of [13] in the dictionary so all we do is
delete [13] from the dictionary and we end this iteration with:

DNAdistance = [[02], [13]]

words in sphere = {[20] : 2, [21] : 2, [30] : 2, [31] : 2}

In the next two iterations the DNA words [20] and [31] are added to “DNAdistance” respectively,
the list and dictionary are now:

DNAdistance = [[02], [13], [20], [31]]

words in sphere = {}

Because the dictionary is empty the end of the algorithm is reached. The DNA words in
“DNAdistance” form a DNA-d code and the size of this code is 4 thus B2(3, 1) ≥ 4. We have
already established this in Example 4. In this case we have not improved the lower bound.

4.3 Algorithm 3

The last algorithm that will be explained in this thesis is a bit different than the other two
algorithms because this algorithm does not generate the dictionary with (d − 1)-neighbours.
First a list with all the B(n,w) DNA words is created. Remember from Section 3.3 that these
DNA words are generated lexicographically. Also create an empty list, when the algorithm is
finished the words in this list form a DNA-d code. In every iteration the first DNA word from
the generated list is moved to the other list if this does not break the minimum distance. If
moving the DNA word does break the minimum distance this word is deleted. This algorithm
is a bit simpler than the other two algorithms but it might give a better lower bound. Below
the algorithm and an example is given. The python code can be found in Appendix A.4.

Algorithm 3:

Data: Length n, GC-weight w and minimum distance d
Result: A DNA-d code
1. Generate a list called DNAset containing all the DNA words in lexicographical order
from the set DNA(n,w) as explained in Section 3.3.

2. Create an empty list named DNAdistance.
3. Add the first DNA word of DNAset to DNAdistance and delete it from DNAset
if DNAset is not empty then

Define the first DNA word from DNAset as c.
if If c is a (d− 1)-neighbour of a DNA word already in DNAdistance then

Delete c from DNAset
else

Add c to DNAdistance and delete c from DNAset
end

else
The DNA words in the list DNAdistance form a DNA-d code.

end
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Example 6. For this example we again take the parameters: n = 2, w = 1 and d = 2. In step
1 we generate the list “DNAset”, step 2 is creating an empty list named “DNAdistance”.

DNAset = [[02], [03], [12], [13], [20], [21], [30], [31]]

DNAdistance = []

For the third step we delete the first DNA word, [02], from “DNAset” and add it to “DNAdis-
tance”.

DNAset = [[03], [12], [13], [20], [21], [30], [31]]

DNAdistance = [[02]]

In the first iteration we define c = [03]. Because [02] and [03] are (1)-neighbours and [02] is in
“DNAdistance” we delete [03]. The same argument is used for the next DNA word, [12]. After
these iterations the lists are:

DNAset = [[13], [20], [21], [30], [31]]

DNAdistance = [[02]]

In the next iteration, [13] is added to “DNAdistance” because [02] and [13] are not (1)-neighbours.
If we continue this process eventually the lists are:

DNAset = []

DNAdistance = [[02], [13], [20], [31]]

The algorithm is done and the computed DNA-d code is {[02],[13],[20],[31]}. This again does
not improve our lower bound in this case but it might in other cases.

4.4 Evaluation of the algorithms

Remember that our goal was to improve the lower bound computed with Algorithm 1. To
evaluate the three algorithms that are explained in Section 4.1, 4.2 and 4.3 a table of the size
of the computed DNA-d codes is given in Table 4.1. The 1, 2 and 3 in the table correspond to
the similar named algorithms. In this table we use that the GC-weight w = bn2 c. The value for
B(n,w) is also given. The values that are underlined are the highest lower bounds computed
with these algorithms with an exception when the three algorithms compute the same lower
bound. No value is underlined in that case. Table 4.1 gives the values for 2 ≤ n ≤ 11 and
2 ≤ d ≤ 4. In Appendix B a table with more values is given.

In the table we can see that for most of the cases the algorithms compute different lower
bounds for Bd(n, bn2 c). For the values given in the table we can see that most of the time the
lower bound computed with Algorithm 2 is the best. But we do not know if this is close to
the value for Bd(n,w). We do know that Algorithm 2 does not always compute the best lower
bound because for n = 6, w = 3 and d = 4 the lower bound computed by Algorithm 3 is better
than the lower bound computed by Algorithm 2. It might also be the case that for bigger n and
d an other algorithm gives a better lower bound. Thus we do not know what algorithm is the
best, or even if one of the algorithms is always better than another. The aim of this thesis was
to improve the lower bound that was given in the paper of Limbachiya et. al. and we have done
that for 3 ≤ n ≤ 11, w = bn2 c and 3 ≤ d ≤ 5.

When analyzing Table 4.1 a thing that stands out is the fact that the three algorithms give
the same lower bound for d = 2, 2 ≤ n ≤ 11 and w = bn2 c. This makes us wonder if the value
that is given in the table for d = 2 is the value for B2(n, bn2 c). This is the case and in the next
chapter the formula together with its proof for B2(n,w) is given.
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d = 2 d = 3 d = 4

n B(n,w) 1 2 3 1 2 3 1 2 3

2 8 4 4 4 - - - - - -
3 16 8 8 8 2 3 2 - - -
4 56 32 32 32 11 12 7 4 4 4
5 128 68 68 68 17 18 18 7 7 7
6 424 216 216 216 44 53 45 16 20 21
7 1040 528 528 528 110 119 101 36 44 37
8 3352 1704 1704 1704 289 326 286 86 127 97
9 8576 4336 4336 4336 662 762 687 199 227 216
10 27208 13688 13688 13688 1810 2126 1939 525 618 557
11 71568 35936 35936 35936 4320 5145 4666 1235 1426 1323

Table 4.1: Lower bounds for Bd(n,w) computed with the 3 algorithms, w = bn2 c. The underlined
values denote the highest lower bounds except when all three algorithms compute the same lower
bound.
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5 A DNA-2 code of maximum size

The algorithms in Chapter 4 do not improve the current lower bound for B2(n,w). It is not
possible to improve this lower bound when the computed DNA-d codes are of maximum size.
That is why we want to know the value for B2(n,w). In this chapter the formula for B2(n,w)
is given together with a proof.

The parameter d is equal to 2 in this chapter and this will not be explicitly mentioned
every time. We also shorten the term (1)-neighbour to: “neighbour”. The isolated points of
DNA(n,w) play an important role in the formula for B2(n,w). Note that in this situation an
isolated point is a DNA word with no neighbours.

Theorem 1. A DNA-2 code of size B2(n,w) contains all the isolated points of DNA(n,w),
that is IP2(n,w).

Proof. Let DNA2(n,w) ⊆ DNA(n,w) be a DNA-2 code of maximum size B2(n,w). Let
i ∈ IP2(n,w) be an isolated point of DNA(n,w). Assume i /∈ DNA2(n,w). We derive a
contradiction. Take c ∈ DNA2(n,w) arbitrary, then c ∈ DNA(n,w) and d(i, c) ≥ 2 because i
is an isolated point. So i can be added to DNA2(n,w) and DNA2(n,w) would still match its
given parameters. This proves that DNA2(n,w) was not a DNA-2 code of maximum size before
i was added and this is a contradiction.

Theorem 1 proves that IP2(n,w) is always a subset of a DNA-2 code of maximum size. The
size of IP2(n,w) is defined as I2(n,w). Now consider the set DNA(n,w)\IP2(n,w), this is the
biggest set of DNA words that does not contain an isolated point. In this chapter we prove that
there exists a subset of DNA(n,w)\IP2(n,w) of size B(n,w)−I2(n,w)

2 that forms, together with
the isolated points, a DNA-2 code of maximum size. The following theorem gives the formula
for B2(n,w).

Theorem 2.

B2(n,w) =
B(n,w)− I2(n,w)

2
+ I2(n,w) =

B(n,w) + I2(n,w)

2

To prove that a subset of DNA(n,w)\IP2(n,w) of size B(n,w)−I2(n,w)
2 exists and that it

forms, together with the isolated points, a DNA-2 code of maximum size we need some more
knowledge. Eventually in Section 5.5 the proof of Theorem 2 is given. We see that to calculate
B2(n,w) we need a formula for B(n,w) and a formula for I2(n,w). These are given in Sections
5.1 and 5.2 respectively.

5.1 The size of the DNA set

To calculate the value of B2(n,w) we need a formula for B(n,w). Limbachiya et. al. [1] stated
and proved the following theorem.
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Theorem 3. The number of DNA words in the DNA set is given by

B(n,w) =

ν−1∑
y=0

22ν+1−2y

(
ν − 1

y

)(
n− ν
ν − y

)
+

ν−2∑
y=0

22ν−1−2y

(
ν − 1

y

)(
n− ν − 1

ν − y − 2

)
(5.1)

for ν > 0, where ν = min(w, n− w). Further B(n,w) = 2 for min(w, n− w) = 0.

Proof. The proof of this theorem is given in [1] in section III.

Theorem 3 gives a formula for B(n,w) but this formula contains multiple binomial coefficients
that can take a long time to compute. That is why we also give a recursive function for B(n,w).
We say that the 0- and 1-symbol are low category symbols and the 2- and 3-symbol are high
category symbols.

Definition 14. Define DNA(n,w, i) with i ∈ {L,H} as follows

DNA(n,w,L) = {c ∈ DNA(n,w) : cn = 0 ∨ cn = 1}

DNA(n,w,H) = {c ∈ DNA(n,w) : cn = 2 ∨ cn = 3}

Define B(n,w, i) with i ∈ {L,H} as follows

B(n,w,L) = |DNA(n,w,L)|

B(n,w,H) = |DNA(n,w,H)|

The sets DNA(n,w,L) and DNA(n,w,H) are disjoint because a DNA word can only have
one symbol as its last symbol.

Theorem 4. Let n,w ∈ N, n ≥ 1 and 0 ≤ w ≤ n then

B(n,w) = B(n,w,L) +B(n,w,H) (5.2)

where B(n,w,L) and B(n,w,H) are specified as follows:

• B(n, 0, L) = 2

• B(n, 0, H) = 0

• B(n, n, L) = 0

• B(n, n,H) = 2

For n ≥ 2 and 0 < w < n:

B(n,w,L) = B(n− 1, w, L) + 2B(n− 1, w,H) (5.3)

B(n,w,H) = 2B(n− 1, w − 1, L) +B(n− 1, w − 1, H) (5.4)

Proof. DNA(n, 0) is the set containing the two DNA words of length n that alternate the 0-
symbol and the 1-symbol because the GC-weight is zero. The first symbols of the DNA words
are 0 and 1 respectively. Using Definition 14, B(n, 0, L) = 2 and B(n, 0, H) = 0. A similar
argument for B(n, n, L) = 0 and B(n, n,H) = 2 is used.
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Let c ∈ DNA(n,w,L) with n ≥ 2 and 0 < w < n. We prove that c can always be created
by the following method: adding the last symbol of c to a DNA word of DNA(n − 1, w, L)
or DNA(n − 1, w,H) and that there is only one way of creating c with this method. Be-
cause c ∈ DNA(n,w,L) we have cn = 0 or cn = 1. So [c1c2 . . . cn−1] ∈ DNA(n − 1, w,H) or
[c1c2 . . . cn−1] ∈ DNA(n− 1, w, L).

First assume that [c1c2 . . . cn−1] ∈ DNA(n − 1, w,H) then there are two options to create
c, cn = 0 or cn = 1. Both of these options will not break the no run-length constraint because
cn−1 = 2 or cn−1 = 3. Next assume that [c1c2 . . . cn−1] ∈ DNA(n − 1, w, L) then there is only
one option to create c, if cn−1 = 0 then cn = 1 and if cn−1 = 1 then cn = 0.

Because [c1c2 . . . cn−1] is always in DNA(n−1, w, L) or in DNA(n−1, w,H) we can always cre-
ate c out of these two sets with the method explained above. Because the sets DNA(n−1, w, L)
and DNA(n− 1, w,H) are disjoint c can only be created by adding the last symbol in one way,
thus c will never be counted twice. In conclusion: to count B(n,w,L) add B(n − 1, w, L) and
2 ·B(n− 1, w,H).

Next let c ∈ DNA(n,w,H) with n ≥ 2 and 0 < w < n. The proof for B(n,w,H) is sim-
ilar to the proof of B(n,w,L) but note that because c ∈ DNA(n,w,H) we have cn = 2 or
cn = 3. So [c1c2 . . . cn−1] ∈ DNA(n− 1, w − 1, L) or [c1c2 . . . cn−1] ∈ DNA(n− 1, w − 1, H).

Because DNA(n,w,L) and DNA(n,w,H) are disjoint and the union of these sets is DNA(n,w),
i.e. DNA(n,w,L) ∪ DNA(n,w,H) = DNA(n,w). We conclude that B(n,w) = B(n,w,L) +
B(n,w,H).

Table 5.1 is created with the equations in Theorem 4, ”L” denotes the output of B(n,w,L)
and ”H” denotes the output of B(n,w,H). ”T” is the value of B(n,w). The Python code
that calculates these values can be found in Appendix A.6. A bigger table with more values of
B(n,w) is given in Appendix B.

w=0 w=1 w=2 w=3

n L H T L H T L H T L H T

1 2 0 2 0 2 2 - - - - - -
2 2 0 2 4 4 8 0 2 2 - - -
3 2 0 2 12 4 16 4 12 16 0 2 2
4 2 0 2 20 4 24 28 28 56 4 20 24
5 2 0 2 28 4 32 84 44 128 44 84 128
6 2 0 2 36 4 40 172 60 232 212 212 424
7 2 0 2 44 4 48 292 76 368 636 404 1040
8 2 0 2 52 4 56 444 92 536 1444 660 2104
9 2 0 2 60 4 64 628 108 736 2764 980 3744

Table 5.1: The values of B(n,w,L) indicated by “L”, B(n,w,H) indicated by “H” and B(n,w)
indicated by “T” for DNA words of length n and GC-weight w.

17



5.2 The number of isolated points

As stated in Theorem 1, we know that the set IP2(n,w) is always included in a DNA-2 code of
size B2(n,w). We want to count the number of isolated points. To do so we need to know when
a DNA word is an isolated point and when it is not an isolated point. The following theorem
gives us this.

Theorem 5. Let c ∈ DNA(n,w). Then c is an isolated point ⇐⇒ every symbol of c is next
to its opposite.

Proof. =⇒
Take c1 ∈ IP2(n, 2). Assume that there exists an a to which applies that c1,a is not next to its
opposite. We derive a contradiction.

Case 1: If c1,a = 0 then


c1,a+1 = 2 or 3 if a = 1

c1,a−1 = 2 or 3 if a = n

c1,a−1 = 2 or 3 and c1,a+1 = 2 or 3 otherwise

.

Look at the DNA word, c2 ∈ DNA(n,w), that is exactly the same as c1 but c1,a is changed
into its opposite. In this case c2,a = 1. Now c2 still has length n, GC-weight w and c2 has no
run-length so c2 is a DNA word. c1 has a neighbour because d(c1, c2) = 1. c1 not an isolated
point. The proof of case 2 (c1,a = 1), case 3 (c1,a = 2) and case 4 (c1,a = 3) is similar to the
proof of case 1. This completes the contradiction.

⇐=
Let c ∈ DNA(n,w), every symbol of c is (on the left side and/or on the right side) next to its
opposite. We prove that c is an isolated point. Take 1 ≤ a ≤ n arbitrary so ca is a symbol of c.
We check that it is not possible to change ca and still match the given n, w and no run-length.

• Because of the fixed GC-weight w, ca can only change into its opposite.

• Because ca is next to its opposite, due to the no run-length constraint ca cannot change
into its opposite.

This proves that no symbol can change so the DNA word c has no neighbours. c is an isolated
point.

To calculate B2(n,w) we need a formula for I2(n,w). This formula is given in the next
theorem. We first define two subsets of IP2(n,w).

Definition 15. Define IP2(n,w, i) with i ∈ {L,H} as follows

IP2(n,w,L) = {c ∈ IP2(n,w) : cn = 0 ∨ cn = 1}

IP2(n,w,H) = {c ∈ IP2(n,w) : cn = 2 ∨ cn = 3}

Define I2(n,w, i) with i ∈ {L,H} as follows

I2(n,w,L) = |IP2(n,w,L)|

I2(n,w,H) = |IP2(n,w,H)|

Note that IP2(n,w) ⊆ DNA(n,w), IP2(n,w,L) ⊆ DNA(n,w,L) and that IP2(n,w,H) ⊆
DNA(n,w,H). It follows directly that I2(n,w) ≤ B(n,w), I2(n,w,L) ≤ B(n,w,L) and that
I2(n,w,H) ≤ B(n,w,H).
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Theorem 6. Let n,w ∈ N, n ≥ 1 and 0 ≤ w ≤ n then

I2(n,w) = I2(n,w,L) + I2(n,w,H) (5.5)

Where I2(n,w,L) and I2(n,w,H) are specified as follows:

• I2(1, 0, L) = 0

• I2(1, 0, H) = 0

• I2(1, 1, L) = 0

• I2(1, 1, H) = 0

for n ≥ 2:

• I2(n, 0, L) = 2

• I2(n, 0, H) = 0

• I2(n, n, L) = 0

• I2(n, n,H) = 2

• I2(n, 1, L) = 0

• I2(n, 1, H) = 0

• I2(n, n− 1, L) = 0

• I2(n, n− 1, H) = 0

And for n ≥ 3 and 1 < w < n− 1:

I2(n,w,L) = I2(n− 1, w, L) + 2I2(n− 2, w,H) (5.6)

I2(n,w,H) = 2I2(n− 2, w − 2, L) + I2(n− 1, w − 1, H) (5.7)

Proof. The two DNA words from DNA(1, w) always have distance 1 to each other for 0 ≤ w ≤ 1
so I2(1, w, L) = 0 and I2(1, w,H) = 0.

DNA(n, 0) is the set containing two DNA words and the symbols of both these DNA words
alternate between ”0” and ”1” where one DNA word starts with 0 and the other starts with
1. The distance between these DNA words is n so both DNA words are isolated points. Thus
I2(n, 0, L) = 2 and I2(n, 0, H) = 0. The proof for I2(n, n, L) and I2(n, n,H) is similar.

The 0- and 1-symbols are difined as low category symbols. The 2- and 3-symbols are defined as
high category symbols. Let c ∈ DNA(n, 1) then there is only one high category symbol in c so
that symbol cannot be next to its opposite. Using Theorem 5, c is never an isolated point. Thus
I2(n, 1, L) = 0 and I2(n, 1, H) = 0. The proof for I2(n, n− 1, L) and I2(n, n− 1, H) is similar.

Next we will look at the part of the formula where I2(n,w,L) is described. Let c ∈ IP2(n,w,L)
with n ≥ 3 and 1 < w < n − 1. Because c ∈ IP2(n,w,L) c always ends with 2 or more low
category symbols (Theorem 5). We prove that c can always be created by the following method:
adding the last symbol to a DNA word of IP2(n− 1, w, L) or adding the last two symbols to a
DNA word of IP2(n− 2, w,H) and that there is only one way to create c with this method.

First we assume that c ends with exactly 2 low category symbols then [c1 . . . cn−2] ∈ DNA(n−
2, w,H). Note that [c1 . . . cn−2] ∈ IP2(n − 2, w,H) because of Theorem 5. There are two op-
tions to create c: cn−1 = 0 and cn = 1 or cn−1 = 1 and cn = 0. This will not break the no
run-length constraint because cn−2 = 2 or cn−2 = 3. Next we assume that c ends with 3 or
more low category symbols. Then [c1 . . . cn−1] ∈ DNA(n − 1, w, L) and because of Theorem 5,
[c1 . . . cn−1] ∈ IP2(n− 1, w, L). To create c there is only one option for cn, if cn−1 = 0⇒ cn = 1
and if cn−1 = 1⇒ cn = 0.
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We see that we can always create c out of the set IP2(n−2, w,H) or out of the set IP2(n−1, w, L).
Last we prove that there is only one way of creating c out of these two sets, or in other words,
an isolated point is never counted double. If c ends with exactly 2 low category symbols,
c can never be created from an isolated point from IP2(n − 1, w, L) because the DNA word
[c1c2 . . . cn−1] /∈ IP2(n− 1, w, L). If c ends with 3 or more low category symbols, c can never be
created from the DNA words of IP2(n−2, w,H) because the DNA words in IP2(n−2, w,H) end
with a high category symbol. In conclusion: to count I2(n,w,L) add two times I2(n− 2, w,H)
and one time I2(n− 1, w, L).

Next Let c ∈ IP2(n,w,H) with n ≥ 3 and 1 < w < n − 1. The proof for I2(n,w,H) is
similar to the proof of I2(n,w,L). Note that c can end with exactly 2 high category symbols or
c can end with 3 or more high category symbols.

Because IP2(n,w,L) and IP2(n,w,H) are disjoint and IP2(n,w,L)∪IP2(n,w,H) = IP2(n,w).
We conclude that I2(n,w) = I2(n,w,L) + I2(n,w,H).

Table 5.2 gives the output of the recursive formula for I2(n,w), where L denotes I2(n,w,L),
H denotes I2(n,w,H) and T gives the value for I2(n,w). The Python code of this recursive
formula is given in Appendix A.7. A bigger table with more values can be found in Appendix
B. We now know when a DNA word is an isolated point and therefore also when a DNA word
is not an isolated point. All the DNA words of DNA(n,w) can be clustered in a certain way
and this is needed to prove Theorem 2. It is explained in the next section.

w=0 w=1 w=2 w=3 w=4 w=5

n L H T L H T L H T L H T L H T L H T

1 0 0 0 0 0 0 - - - - - - - - - - - -
2 2 0 2 0 0 0 0 2 2 - - - - - - - - -
3 2 0 2 0 0 0 0 0 0 0 2 2 - - - - - -
4 2 0 2 0 0 0 4 4 8 0 0 0 0 2 2 - - -
5 2 0 2 0 0 0 4 4 8 4 4 8 0 0 0 0 2 2
6 2 0 2 0 0 0 12 4 16 4 4 8 4 12 16 0 0 0
7 2 0 2 0 0 0 20 4 24 12 4 16 4 12 16 4 20 24
8 2 0 2 0 0 0 28 4 32 20 4 24 28 28 56 4 20 24
9 2 0 2 0 0 0 36 4 40 28 4 32 52 44 96 44 52 96

Table 5.2: The values of I2(n,w,L) indicated by “L”, I2(n,w,H) indicated by “H” and I2(n,w)
indicated by “T” for DNA words of length n and GC-weight w.

5.3 Clusters

Definition 16. We define the graph G2(n,w) on the set DNA(n,w) with d = 2 as follows: The
DNA words of DNA(n,w) are the nodes of the graph and two nodes are connected by an edge
when the DNA words corresponding to those nodes are neighbours, i.e. two DNA words c1, c2
are connected by an edge if d(c1, c2) = 1.

The DNA set can be visualised by a graph (Definition 16). Figure 5.1 and Figure 5.2 show
G2(2, 1) and G2(3, 1). As seen in the figures G2(n,w) consists of separate smaller graphs, these
smaller graphs are called clusters.
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Figure 5.1: G2(2, 1)

Figure 5.2: G2(3, 1)

Definition 17. A path in a graph is a consecutive sequence of edges. These edges join a
sequence of nodes.

Definition 18. Let c1 and c2 ∈ DNA(n,w) and d = 2. G2(n,w) is the graph created with
DNA(n,w). A cluster is a subgraph of G2(n,w) where c1 and c2 are in the same cluster when
there is a path between the nodes of c1 and c2. The size of a cluster is defined as the number of
nodes in that cluster. An isolated point is in a cluster of size 1.

It is important to notice that all the DNA words that are in the same cluster have similarities.

Definition 19. We define the structure of a DNA word c ∈ DNA(n,w) as a sequence S(c) =
S(c)1S(c)2...S(c)n where

S(c)a =


ca if ca is next to its opposite

L if ca = 0 ∨ 1 and not next to its opposite

H if ca = 2 ∨ 3 and not next to its opposite

with 1 ≤ a ≤ n and a ∈ N.

Let c ∈ DNA(n,w) and 0 ≤ x ≤ n with x ∈ N the number of symbols of c that are not next
to its opposite. Define the place of the first symbol of c that is not next to its opposite as O

c
1,

the place of the second symbol of c that is not next to its opposite as O
c
2 etc. Thus the places

of the symbols of c that are not next to its opposite are O
c
1, O

c
2, ..., O

c
x.

Example 7. Let c = [310231] ∈ DNA(6, 3). The structure of c is H1023L, where x = 2 and
O
c
1 = 1 and O

c
2 = 6.

Theorem 7. Let c1,c2 ∈ DNA(n,w). We have the following equivalence: c1 and c2 are in the
same cluster ⇐⇒ S(c1) = S(c2).

Proof. ⇒ Create the graph G2(n,w) and assume that the nodes of c1 and c2 are found in the
same cluster. We prove that S(c1) = S(c2).

c1 and c2 are found in the same cluster thus there is a path between c1 and c2. So c1 and
c2 are connected by a consecutive sequence of edges, two nodes are connected by an edge if their
distance is 1. So c1 and c2 are connected by DNA words from DNA(n,w) that have distance 1
to each other.

S(c1) is the structure of c1 and consist of symbols(0,1,2 and/or 3) and/or ”H” and/or ”L”.
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The symbols (0,1,2 and/or 3) can only change into its opposite because of the GC-weight but
this is not possible because of the no run-length constraint. So all the DNA words in the same
cluster as c1 have the same symbol (0,1,2 and/or 3) at the same place in their structure. Thus
S(c2) also has the same symbol (0,1,2 and/or 3) at the same place as S(c1). The symbol that is
denoted by an ”L” or an ”H” can only change into its opposite because of the GC-weight. Note
that the ”L” is used for the 0− 1 pair and ”H” is used for the 2− 3 pair. So all the structures
of the DNA words that are in the same cluster as c1 have an ”L” at the same place and have
an ”H” at the same place. In conclusion because c1 and c2 are in the same cluster: S(c1) = S(c2).

⇐ Assume that S(c1) = S(c2), we prove that c1 and c2 are in the same cluster, i.e. c1 and
c2 are connected by DNA words from DNA(n,w) that have distance 1 to each other.

Without loss of generality we assume that the symbols at the places O
c1
1 , ..., O

c1
y differ from

the symbols at the places O
c2
1 , ..., O

c2
y where y = d(c1, c2). Define c3 ∈ DNA(n,w) the same as

c1 but with the the symbol at O
c1
1 changed into its opposite. Now d(c1, c3) = 1 so they are in

the same cluster and because S(c1) = S(c2) = S(c3): d(c2, c3) = y − 1. Define the DNA word
c4 ∈ DNA(n,w) as c3 but with the symbol at O

c3
2 changed into its opposite. Now d(c3, c4) = 1 so

c1, c3 and c4 are in the same cluster and because all the structures are the same d(c2, c4) = y−2.
Continue this until we define a DNA word that has distance 0 to c2. Now we can conclude that
c1 and c2 are in the same cluster of G2(n,w).

From Theorem 7 we know that all the DNA words in a cluster have the same structure. Let
str := S1S2 . . . Sn with Si ∈ {0, 1, 2, 3, L,H}, 1 ≤ i ≤ n be a structure. Let x be the number of
times Si ∈ {L,H}. We characterize a cluster as:

Cl(str) := {c ∈ DNA(n,w) : S(c) = str}

Corollary 8. Let c ∈ DNA(n,w). Let x be the number of symbols of c that are not next to
its opposite. Then c is found in a cluster of size 2x.

Proof. We know that all the DNA words from the cluster of c have the same structure, we say
S(c) = strc. We count the number of DNA words that have the same structure as c. strc has
x times an ”L” or an ”H” at the places O

c
1, O

c
2, ..., O

c
x and n − x times a symbol 0, 1, 2 or 3.

Because there are two options for the ”L”, 0 or 1 and two options for the ”H”, 2 or 3 we can
create 2x different DNA words that have the same structure as c and thus |Cl(strc)| = 2x.

The DNA words in a cluster are a subset of the DNA set and every DNA word in that cluster
has the same number of symbols that are not next to its opposite, x. We want to prove that
for every cluster there exists a subset of size 2x

2 of that cluster, where the subset is a DNA-2
code. We also want to prove that it is not possible to have a bigger subset of the cluster that
is a DNA-2 code. To prove this we use a well known bound from coding theory, the Singleton
bound.

5.4 Even weight codes

We now know what the graph of the DNA(n,w)\IP (n,w, 2) DNA words looks like and the size
of its clusters. Before we can prove Theorem 2 we need one important theorem, the Singleton
bound. This theorem is different than the other theorems and definitions in this thesis because
we will use the binary code, in other words: binary words of length n. The size of the set
containing all the binary words is 2n [7]. Note that in this theorem there is no GC-weight
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constraint and no run-length constraint. The weight of a binary codeword c is defined as the
number of ones in c.

Definition 20. The expression A2(n, d) represents the maximum number of possible codewords
in a binary code of length n and minimum distance d.

Theorem 9. The Singleton bound states that A2(n, d) ≤ 2n−d+1.

A famous result of the singleton bound is that the maximum number of binary codewords
of length n and with minimum distance 2 is equal to 2n−1. Thus A2(n, 2) = 2n−1. For example
the following two sets are binary codes with minimum distance 2 and have size 2n−1.

Ceven := {binary codeword c : weight of c is even}

Codd := {binary codeword c : weight of c is odd}

5.5 Proof of Theorem 2

Our main goal is to prove Theorem 2 and we will use the result of Theorem 9 and a special
mapping to do so. To explain the mapping we will look at a cluster of DNA words in a graph
G2(n,w). This cluster has size 2x (Corollary 8). The number of symbols that are not next to its
opposite is x. We can map the DNA words of such a cluster to all the binary words of length x.
This is done in the following way. As seen in Theorem 7 all the DNA words from a cluster have
the same structure. The symbols that are next to its opposite cannot change and will be the
same for every DNA word in that cluster, for this mapping we will forget about these symbols.
The symbols that can change are more important. Remember that they can only change into
its opposite so they are either 0 − 1 or 2 − 3. We map the symbols to binary symbols where a
0, 2 7→ 0 and a 1, 3 7→ 1. By mapping in this way we only need the structure and the mapped
binary words to get the DNA words back. In Example 8 we give the mapping for the cluster
with structure 01HLH of the graph G2(5, 2).

It is important that this mapping is bijective (surjective and injective), we first show that
it is surjective. Assume we know the structure of the cluster defined as “str”. To prove that
this mapping is surjective we let b be an arbitrary binary word. From this binary word together
with the structure we obtain a DNA word c1, we show that c1 ∈ Cl(str). The codeword c1 is in
Cl(str) if S(c1) = str (Theorem 7). This is the case because we used that structure to obtain
c1. Next we prove that the mapping is injective. Let c1, c2 ∈ Cl(str). Define b1 as the binary
mapping of c1 and b2 as the binary mapping of c2. Assume b1 = b2, we show that c1 = c2. A
“0” in the binary word shows that the symbol in the DNA word is a 0-symbol or a 2-symbol.
A “1” in the binary word shows that the symbol in the DNA word is a 1-symbol or a 3-symbol.
Because we know the structure there is always only one possibility, so c1 = c2.
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Example 8. Look at the DNA set with n = 5 and w = 2. In this example we show the way to
map the DNA words of the cluster with structure 01HLH to a binary code of size 2x.

The structure of this cluster is: 0 1 H L H
[01313] 7→ [111]
[01303] 7→ [101]
[01213] 7→ [011]
[01312] 7→ [110]
[01302] 7→ [100]
[01212] 7→ [010]
[01203] 7→ [001]
[01202] 7→ [000]

We can use this mapping for every node in every cluster of G2(n,w). This mapping always
gives us a binary code of length x (number of symbols that are not next to its opposite). From
Theorem 9 we know that the even weight code or the odd weight code have maximum size.
Therefore we also now that the quaternary words that map to these codes have maximum size.

Take the subset of a cluster that consists of all the DNA words that have an even (or odd)
weight. The size of this subset is 2x

2 . Because the mapping of these DNA-2 code have distance
2 or more to each other, this subset is a DNA-2 code. Such an subset can be created for every
cluster. Combining all those subsets together with the isolated points and a DNA-2 code is
created with size B(n,w)+I2(n,w)

2 . Because there is no subset of a cluster that can be of bigger
size, the created DNA-2 code is of maximum size. This completes the proof of Theorem 2.
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6 Conclusions and recommendations

In this chapter, a short summary is given of the research done in this thesis. We also discuss
what conclusions can be deduced from the research done. Lastly some recommendations for
future work are discussed.

6.1 Conclusion

A DNA-d code is defined in Chapter 3. This code takes three parameters, the length n of the
DNA codewords, the GC-weight w of the DNA codewords and the minimum distance of the
code. The maximum size of such a code is defined as Bd(n,w). The aim of this thesis is to
improve the current lower bound on Bd(n,w). The current lower bound is described in the paper
“Family of Constrained Codes for Archival DNA Data Storage” by Limbachiya et. al. [1]

In Chapter 4, three algorithms to get a lower bound on Bd(n,w) were discussed. Algorithm
1 was the algorithm given in the paper of Limbachiya et. al. [1] and two additional algorithms
were given with the aim to improve the lower bound given by Algorithm 1.

To analyse these algorithms we looked at the lower bound computed with the three algorithms
for 2 ≤ n ≤ 11, w = bn2 c and 2 ≤ d ≤ 5. The lower bounds are given in Table B.1. From these
results we can draw the conclusion that Algorithm 2 improved the lower bound on Bd(n,w) of
Limbachiya et. al. [1] for mostly all of the parameters. The exceptions were:

– For minimum distance equal to 2 the lower bound computed by all three algorithms for
all lengths was equal.

– For minimum distance 4 of both length 4 and 5 the computed bounds of all three algorithms
were equal.

– For minimum distance 4 of length 6 the highest lower bound was computed by algorithm
3. The lower bound computed by Algorithm 2 still improved the lower bound given by
Algorithm 1.

A DNA-d code with the best lower bound as its size can be used to store archival data. More
data can be stored using such a DNA-d code when compared to a DNA-d code designed by
Limbachiya et. al. This gets us a little step closer to implementing DNA-based data storage.

The goal to improve the current lower bound is reached for most cases. For B2(n,w) we
have not improved it. This is because the computed lower bound is B2(n,w). The formula to
get this value is given in Chapter 5. The maximum size for a DNA-2 code is given at the end of
this section. B(n,w) is the size of the DNA set and I2(n,w) is the number of isolated points of
the DNA set.

In conclusion, the current lower bound is almost always improved for the parameters 2 ≤
n ≤ 11, w = bn2 c and 2 ≤ d ≤ 5. We also conclude that the maximum size of a DNA-2 code is:

Bd(n,w) =
B(n,w) + I2(n,w)

2
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6.2 Recommendations

The aim of this thesis was to improve the lower bound on Bd(n,w) given by Limbachiya et. al.
[1]. Multiple remarks can be made about this thesis and about future research.

In this thesis two constraints have been taken into account. Some adjustments can be made
to these constraints. First the no run-length constraint will be discussed. In this thesis the
decision was made to not allow two repeated symbols in a DNA word. This lowers the chance
for an error to occur in a polymer run. When research has been done on these polymer runs,
it might conclude that it is also sufficient to allow small polymer runs. When this constraint
changes the DNA set will contain more DNA words. This results in a different DNA-d code
with a different maximum size. More research has to be done on this subject to know what the
effect of this would be on the DNA-d code.

As explained in [4], the chance of an error to occur decreases when the GC-rate is around
50%. When the GC-weight is half of the length the DNA set only takes parameter. This is
an interesting subject for further research. Table B.3 shows the lower bounds computed with
Algorithm 1, 2 and 3 for w = n

2 and 3 ≤ d ≤ 5. Unfortunately, from this table we can not
immediately propose a conjecture for Bd(n, bn2 c). Finding a formula for Bd(n, bn2 c) brings us
a step closer to finding a formula for Bd(n,w). When researching these specific parameters a
conjecture might be purposed.

The aim of this thesis was to improve the lower bound on Bd(n,w). Using algorithm 2 and 3
we have reached our goal but it is unknown how tight this lower bound is. It might be possible
to give an indication of how tight this lower bound is. An upper bound for Bd(n,w) is B(n,w).
Further research on a better upper bound might give more information about this subject.

It is possible that there is no formula for Bd(n,w) in general. When the exact value for
Bd(n,w) is unknown it is of great value to know if an algorithm that computes a DNA-d code
is always better than an other algorithm. We do not know which one of the three algorithms
computes the biggest DNA-d code for the parameters that were not examined. We also do
not know why Algorithm 2 performs better, most of the time, for the examined parameters.
When the length of the DNA words get longer the time it takes for the algorithms to find a
DNA-d code get very long. Because of time restrictions it might not be possible to try all three
algorithms. Further research on these algorithms is recommended. Further research to find a
different algorithm is also advised.

The exact value for Bd(n,w) is still unknown but maybe there are formulas for specific pa-
rameters. In this thesis we have already researched this for d = 2. The case where n = d is also
recommended to research. For the case n = d, Table B.2 in Appendix B gives the lower bounds
for the case n = d computed with the algorithms from Chapter 4. We did not find a conjecture
for the case n = d. Further research needs to be done and a conjecture might be purposed.

DNA-based data storage has the ability of becoming a state of the art method that could
change the world of archival data storage. But before DNA-based data storage is implemented
more research has to be done on this subject.
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Python code

import scipy as sp

from scipy import special

import math

import itertools

import numpy as np

def has_runlength(word):

#function that checks if a word has run-length

return any(word[i]==word[i+1] for i in range(len(word)-1))

def get_weight(word):

#gets the GC-weight of a word

return word.count(2) + word.count(3)

def get_distance(word1,word2):

#determine the distance between two words

return len([i for i in range(len(word1)) if word1[i]-word2[i] != 0])

def get_words_in_sphere(code,codeword, d):

#get all the (d-1)-neighbours of a codeword

return [w for w in code if 0<get_distance(codeword,w)<d]

def get_maximum(distances):

#maximum is the key with the max value of the dictionary distances

maximum = max(distances, key=distances.get)

return maximum

def get_minimum(distances):

#minimum is the key with the min value of the dictionary distances

minimum = min(distances, key=distances.get)

return minimum

def get_minimum_distance(code):

#returns the minimum distance of a code

min_distance = 10000

for codeword1 in code:

for codeword2 in code:

if codeword1 != codeword2:

distance = get_distance(codeword1,codeword2)
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if min_distance > distance:

min_distance = distance

return min_distance

A.1 Generating DNA(n,w)

#This function returns the DNA list, the words are generated lexicographical.

#A word is added to the list if it satisfies the no run-length constraint

#and the fixed GC-weight.

def DNA(n,w):

Qcode = list(itertools.product(range(4),repeat=n))

DNAcode = [codeword for codeword in Qcode if

not has_runlength(codeword) and get_weight(codeword)==w]

return DNAcode

A.2 Algorithm 1

#Using a list of DNA words a dictionary is created with the DNA words as keys

#and its (d-1)-neighbours as value.

def alg1_step2_list(code,d):

words_in_sphere = {codeword: get_words_in_sphere(code,codeword,d)

for codeword in code}

return words_in_sphere

#Create a dictionary with the DNA words as keys and the number of

#(d-1)-neighbours as value

def alg1_step2_dist(words_in_sphere):

distances = {key:len(value) for key,value in words_in_sphere.items()}

return distances

#The following function defines the maximum, deletes it from the dictionaries

#and reduces the value of its (d-1)-neighbours by one.

def alg1_step3(distances, words_in_sphere):

maximum = get_maximum(distances)

del distances[maximum]

for value in words_in_sphere[maximum]:

distances[value] -= 1

words_in_sphere[value].remove(maximum)

del words_in_sphere[maximum]

#While the dictionary "distances" is not empty we keep calling alg1_step3

def alg1_step4(distances, words_in_sphere):

while max(distances.values())>0:

alg1_step3(distances,words_in_sphere)

return len(words_in_sphere)
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#This function combines all the steps from above to create a DNA-d code.

#If the lower bound is needed change the last line in: "return len(step4)"

def alg1(n,w,d):

DNAcode = DNA(n,w)

step2list = alg1_step2_list(DNAcode,d)

step2dist = alg1_step2_dist(step2list)

step3 = alg1_step3(step2dist,step2list)

step4 = alg1_step4(step2dist,step2list)

return step4

A.3 Algorithm 2

#Using a list of DNA words a dictionary is created with the DNA words as keys

#and its (d-1)-neighbours as value.

def alg2_step2_list(code,d):

words_in_sphere = {codeword: get_words_in_sphere(code,codeword,d)

for codeword in code}

return words_in_sphere

#Create a dictionary with the DNA words as keys and the number of

#(d-1)-neighbours as value

def alg2_step2_dist(words_in_sphere):

distances = {key:len(value) for key,value in words_in_sphere.items()}

return distances

#The following function defines the minimum, adds this minimum to a list

#"code", deletes minimum and all its (d-1)-neighbours from the dictionaries

#and reduces the value of all (d-1)-neighbours of the deleted words by one.

def alg2_step3(distances,words_in_sphere,code):

minimum = get_minimum(distances)

code.append(minimum)

del distances[minimum]

for value in words_in_sphere[minimum]:

del distances[value]

for val in words_in_sphere[value]:

if val in distances:

words_in_sphere[val].remove(value)

distances[val]-=1

del words_in_sphere[value]

del words_in_sphere[minimum]

return code

#While the dictionary "words_in_sphere" is not empty we keep calling alg2_step3

def alg2_step4(distances, words_in_sphere,code):

while words_in_sphere:

alg2_step3(distances,words_in_sphere,code)

return code
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#This function combines all the steps from above to create a DNA-d code.

#If the lower bound is needed change the last line in: "return len(step4)"

def alg2(n,w,d):

DNAcode = DNA(n,w)

step2list = alg2_step2_list(DNAcode,d)

step2dist = alg2_step2_dist(step2list)

DNAdistance = []

step3 = alg2_step3(step2dist,step2list,DNAdistance)

step4 = alg2_step4(step2dist,step2list,step3)

return step4

A.4 Algorithm 3

#define the first word from the DNA list and add it to

#the list "DNAcode" unless it breaks the minimal distance.

def alg3_step1(distancecode,DNAcode,d):

word = DNAcode[0]

if all(get_distance(word,codeword)>=d for codeword in distancecode):

distancecode.append(word)

DNAcode.remove(word)

return distancecode, DNAcode

#keep calling alg3_step1 untill the list "DNAcode" is empty.

def alg3_step2(distancecode,DNAcode,d):

while DNAcode:

alg3_step1(distancecode,DNAcode,d)

return distancecode

#This function combines the functions above to create a DNA-d code.

#If the lower bound is needed change the last line in: "return len(step2)"

def alg3(n,w,d):

DNAcode = DNA(n,w)

DNAdistance = []

step1a,step1b = alg3_step1(DNAdistance,DNAcode,d)

step2 = alg3_step2(step1a,step1b,d)

return step2

A.5 The formula for B(n,w)

#This formula is from the paper of Limbachiya et. al. Part 1 calculates the

#first part of the formula and part 2 the second.

#To get B(n,w) these parts are added.

def B(n,w):

v = min(w,n-w)

part1 = 0

part2 = 0

for y in range(v):

part1 = part1+2**(2*v+1-2*y)*sp.special.binom(v-1,y)
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*sp.special.binom(n-v,v-y)

for y in range(v-1):

part2 = part2 + 2**(2*v-1-2*y)*sp.special.binom(v-1,y)

*sp.special.binom(n-v-1,v-y-2)

return part1+part2

A.6 The recursive formula for the size of the DNA set

#The function below calculates the value for B(n,w,L).

def BL(n,w):

if w==0:

return 2

if w==n:

return 0

else:

return BL(n-1,w)+2*BH(n-1,w)

#The function below calculates the value for B(n,w,H).

def BH(n,w):

if w==0:

return 0

if n==w:

return 2

else:

return 2*BL(n-1,w-1)+BH(n-1,w-1)

#To get B(n,w) the values for B(n,w,L) and B(n,w,H) are added

def Brec(n,w):

print("Low=", BL(n,w))

print("High=", BH(n,w))

return BL(n,w)+BH(n,w)

A.7 The recursive formula for the number of isolated points

#The function below calculates the value for I_2(n,w,L). First the

#starting conditions are given, after the recursive part of the function.

def IL(n,w):

if n!=1 and w==0:

return 2

if n==1 or n==w or w==1 or w==n-1:

return 0

else:

return IL(n-1,w)+2*IH(n-2,w)

#The function below calculates the value for I_2(n,w,H). First the

#starting conditions are given, after the recursive part of the function.

def IH(n,w):

if n==1 or w==0 or w==1 or w==n-1:
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return 0

if n!=1 and n==w:

return 2

else:

return 2*IL(n-2,w-2)+IH(n-1,w-1)

#To get I_2(n,w) the values for I_2(n,w,L) and I_2(n,w,H) are added

def Irec(n,w):

print("Low=",IL(n,w))

print("High=",IH(n,w))

return IL(n,w)+IH(n,w)
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B Tables

B.1 Tables: Lower bounds for maximum size of DNA-d code

d = 2 d = 3 d = 4 d = 5

n B(n,w) 1 2 3 1 2 3 1 2 3 1 2 3

2 8 4 4 4 - - - - - - - - -
3 16 8 8 8 2 3 2 - - - - - -
4 56 32 32 32 11 12 7 4 4 4 - - -
5 128 68 68 68 17 18 18 7 7 7 2 3 2
6 424 216 216 216 44 53 45 16 20 21 6 7 6
7 1040 528 528 528 110 119 101 36 44 37 11 15 12
8 3352 1704 1704 1704 289 326 286 86 127 97 29 37 29
9 8576 4336 4336 4336 662 762 687 199 227 216 59 77 67
10 27208 13688 13688 13688 1810 2126 1939 525 618 557 141 180 164
11 71568 35936 35936 35936 4320 5145 4666 1235 1426 1323 284 389 349

Table B.1: Lower bounds for Bd(n,w) computed with the 3 algorithms from Chapter 4. We use
w = bn2 c

d = n = 3 d = n = 4 d = n = 5 d = n = 6 d = n = 7

w 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 3 2 4 4 4 2 3 2 2 3 2 2 2 2
3 2 2 2 2 2 2 2 3 2 4 4 4 2 3 2
4 - - - 2 2 2 2 2 2 2 3 2 2 3 2
5 - - - - - - 2 2 2 2 2 2 2 2 2
6 - - - - - - - - - 2 2 2 2 2 2
7 - - - - - - - - - - - - 2 2 2

Table B.2: Size of the generated DNA-distance codes by Algorithms 1,2 and 3 for d = n and
1 ≤ w ≤ n

B.2 Tables: the size of the DNA set and the number of isolated
points
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